QSFP28-100GB-LR4 100Gb/s QSFP28 Dual-Rate LR4 Optical Transceiver

Product Features

- Hot pluggable QSFP28 MSA form factor
- Compliant to IEEE 802.3ba 100GBASE-LR4
- Up to 10km reach for G.652 SMF
- Single +3.3V power supply
- Operating case temperature: 0~70 $^\circ\mathrm{C}$
- Transmitter: cooled 4x28Gb/s LAN
 WDM TOSA (1295.56, 1300.05, 1304.58, 1309.14nm)
- Receiver: 4x28Gb/s PIN ROSA
- 4x28G Electrical Serial Interface (CEI-28G-VSR)
- Maximum power consumption 3.5W
- Duplex LC receptacle
- RoHS-6 compliant

Applications

- 100GBASE-LR4 Ethernet Links
- Infiniband QDR and DDR interconnects
- Client-side 100G Telecom connections
- OTU4 rate connections

This product is a 100Gb/s transceiver module designed for optical communication applications compliant to 100GBASE-LR4 of the IEEE P802.3ba standard. The module converts 4 input channels of 28Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba. The high performance cooled LAN WDM DFB transmitters and high sensitivity PIN receivers provide superior performance for 100Gigabit Ethernet applications up to 10km links and compliant to optical interface with IEEE802.3ba Clause 88 100GBASE-LR4 requirements. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Ordering Information

Part Number	Description
QSFP28-100GB-L	QSFP28 LR4 10km optical transceiver Dual-Rate with full real- time
R4	digital diagnostic monitoring and pull tab

Regulatory Compliance

Feature	Standard	Performance
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compatible with
	EN 55022:2010, Class B	standards
Electromagnetic susceptibility (EMS)	EN 55024:2010	Compatible with
		standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I
	EN60950, EN (IEC) 60825-1,2	laser product

Absolute Maximum Ratings

The operation in excess of any absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	TS	-40	85	degC	
Operating Case Temperature	ТОР	0	70	degC	
Power Supply Voltage	VCC	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	THd	5.5		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	ТОР	0		70	degC	Operating Case Temperature
Power Supply Voltage	VCC	3.135	3.3	3.465	V	Power Supply Voltage
Data Rate, each Lane			25.78125		Gb/s	Dual Rate, each Lane
			/27.9			
Control Input Voltage High		2		Vcc	V	Control Input Voltage High
Control Input Voltage Low		0		0.8	V	Control Input Voltage Low
Link Distance with G.652	D	0.002		10	km	Link Distance with G.652

Electrical Characteristics

Parameter	Test Point	Min	Typical	Max	Unit	Notes
Power Consumption				3.5	W	
Supply Current	Icc			1.12	А	
Transceiver Power-onInitialization Time				2000	ms	1
Single-ended Input VoltageTolerance (Note 2)		-0.3		4.0	V	Referred to TP1 signal common
AC Common Mode InputVoltage		15			mV	RMS
Tolerance						
Differential Input VoltageSwing		50			mVpp	LOSA Threshold
Threshold						
Differential Input VoltageSwing	Vin,pp	190		700	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common
AC Common Mode OutputVoltage				7.5	mV	RMS
Differential Output VoltageSwing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	

Notes:

1. Power-on Initialization Time is the time from when the power supply voltages reach and remain above

the minimum recommended operating supply voltages to the time when the module is fully functional.

2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

QSFP28-100GB-LR4

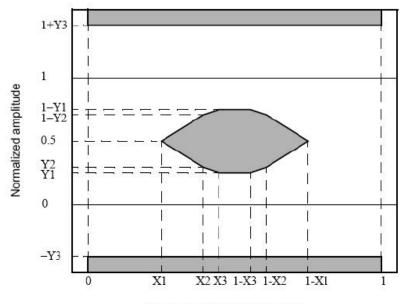
Optical Characteristics

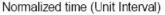
Parameter	Symbol	Min	Typical	Max	Unit	Notes
	LO	1294.53	1295.56	1296.59	nm	
	L1	1299.02	1300.05	1301.09	nm	
Wavelength Assignment	L2					
		1303.54	1304.58	1305.63	nm	
	L3	1308.09	1309.14	1310.19	nm	
		Transmi	tter			
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	РТ			10.5	dBm	
Average Launch Power, each Lane	PAVG	-4.3		4.5	dBm	
OMA, each Lane	POMA	-1.3		4.5	dBm	1
Difference in Launch Power	Ptx,diff			5	dB	
between any Two Lanes (OMA)						
Launch Power in OMA minus						
Transmitter and Dispersion Penalty		-2.3			dBm	
(TDP), each Lane						
TDP, each Lane	TDP			2.2	dB	
Extinction Ratio	ER	4			dB	
Relative Intensity Noise	RIN			-130	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-12	dB	
Eye Mask{X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4,				
		0.45, 0.25,		2		
		0.28, 0.4}				
Average Launch Power OFF Transmitter,	Poff			-30	dBm	
each Lane						
		Receiv	er	'		
Damage Threshold, each Lane	THd	5.5			dBm	3
Total Average Receive Power				10.5	dBm	
Average Receive Power, each Lane		-10.6		4.5	dBm	
Receive Power (OMA), each Lane				4.5	dBm	
Receiver Sensitivity (OMA), eachLane	SEN			-10.6	dBm	
Stressed Receiver Sensitivity(OMA),						
each Lane				-6.8	dBm	4
Receiver Reflectance	RR			-26	dB	
Difference in Receive Power	Prx,diff			5.5	dB	
between any Two Lanes (OMA)						
LOS Assert	LOSA	-24		-13.6	dBm	
LOS Deassert	LOSD			-11.6	dBm	

QSFP28-100GB-LR4

LOS Hysteresis	LOSH		1.5		dB	
Receiver Electrical 3 dB upper	Fc			31	GHz	
Cutoff Frequency, each Lane						
Со	nditions of S	tress Receive	r Sensitivity Te	est (Note 5)		
Vertical Eye Closure Penalty, eachLane			1.8		dB	
Stressed Eye J2 Jitter, each Lane			0.3		UI	
Stressed Eye J9 Jitter, each Lane		0.47		UI		

Notes:


1. Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.


2. See Figure 1 below.

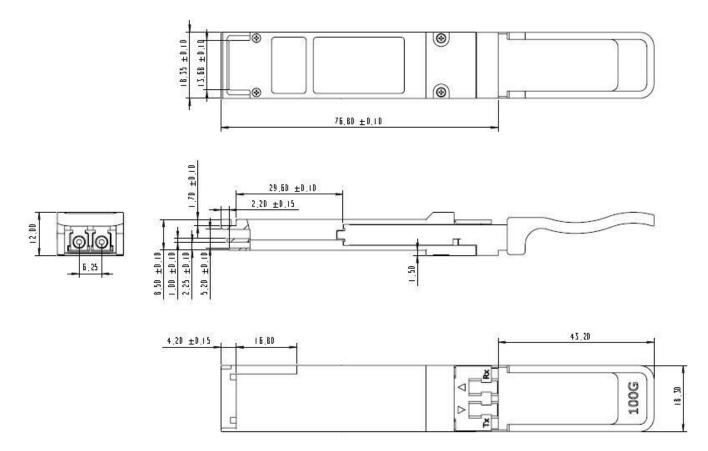
3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

4. Measured with conformance test signal at receiver input for BER = 1x10-12.

5. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Figure1.EyeMaskDefinition

Digital Diagnostic Functions

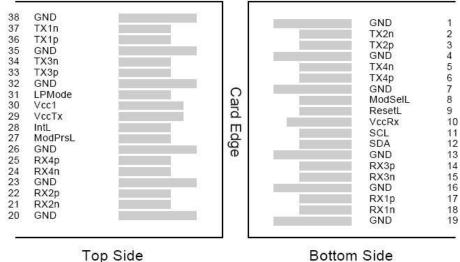

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Full operating range

QSFP28-100GB-LR4

Channel RX power monitor absolute error	DMI_RX	-3	3	dB	Per channel
Channel Bias current monitor	DMI_Ibias	-10%	10%	mA	Per channel
Channel TX power monitor absolute error	DMI_TX	-3	3	dB	Per channel

Mechanical Dimension


ESD

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Pin Assignment and Description

Viewed from Top

Bottom Side Viewed from Bottom

Pin Assignment

PIN #	Logic	Symbol	Description	Notes
1		GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	
8	LVTLL-I	ModSelL	Module Select	

QSFP28-100GB-LR4

	1		
9	LVTLL-I	ResetL	Module Reset
10		VccRx	+3.3V Power Supply Receiver
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Ground
20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29		VccTx	+3.3 V Power Supply transmitter
30		Vcc1	+3.3 V Power Supply
31	LVTTL-I	LPMode	Low Power Mode
32		GND	Ground
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Output
35		GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Output
38		GND	Ground

http://www.halowill.com

HaloWill

⊕ ☆

Datasheet will be updated without notice, but we'll work hard to ensure the accuracy of this document.
 All rights reserved by Halowill Networks Limited.