

QSFP-40GB-IR4

40Gb/s QSFP+ IR4 Optical Transceiver

Product Features

- Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-LR4 Standard
- QSFP+ MSA compliant
- Compliant with QDR/DDR Infiniband data rates
- Up to 11.2Gb/s data rate per wavelength
- 4 CWDM lanes MUX/DEMUX design
- Up to 2km transmission on single mode fiber (SMF)
- Operating case temperature: 0 to 70°C
- Maximum power consumption 2.5W
- LC duplex connector
- RoHS compliant

Applications

- 40GBASE-LR4 Ethernet Links
- InfinibandQDRandDDR interconnects
- Client-side 40G Telecom connections

This product is a transceiver module designed for 2m-2km optical communication applications. The design is compliant to 40GBASE-LR4 of the IEEE 802.3ba standard. The module converts 4 inputs channels (ch) of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Ordering Information

Part Number	Description				
OSED 40CD ID4	QSFP+ LR4 2km optical transceiver with full real-time digital				
QSFP-40GB-IR4	diagnostic monitoring and pull tab				

Regulatory Compliance

Feature	Standard	Performance
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compatible with
	EN 55022:2010, Class B	standards
Electromagnetic susceptibility (EMS)	EN 55024:2010	Compatible with
		standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I
	EN60950, EN (IEC) 60825-1,2	laser product

Functional Description

This product converts the 4-channel 10Gb/s electrical input data into CWDM optical signals (light), by a driven 4-wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40Gb/s data, propagating out of the transmitter module from the SMF. The receiver module accepts the 40Gb/s CWDM optical signals input, and de-multiplexes it into 4 individual 10Gb/s channels with different wavelength. Each wavelength light is collected by a discrete photo diode, and then outputted as electric data after amplified first by a TIA and a post amplifier. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus — individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the HostVcc voltage on the Host board.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	$^{\circ}$	
Operating Case Temperature	T _{OP}	0	70	$^{\circ}$	
Power Supply Voltage	V _{cc}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	TH _d	3.3		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	T _{OP}	0		70	$^{\circ}$ C	
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	V	
Data Rate, each Lane		1	10.3125		Gb/s	
Control Input Voltage High		2		V _{cc}	V	
Control Input Voltage Low		0		0.8	V	
Link Distance with G.652	D	0.002		10	km	

Electrical Characteristics

The following electrical characteristics are defined over the Recommended OperatingEnvironment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Unit	Notes
Power Consumption				2.5	W	
Supply Current	I _{cc}			0.7	А	
Transceiver Power-on Initialization				2000		1
Time				2000	ms	1
	Ţ	ransmitter (e	each Lane)			
Single-ended Input Voltage Tolerance		0.2		4.0		Referred to TP1
(Note 2)		-0.3		4.0	V	signal common
AC Common Mode Input Voltage	15				>/	DNAC
Tolerance					mV	RMS
Differential Input Voltage Swing		Γ0			\	LOCA Thread ald
Threshold		50			mVpp	LOSA Threshold
Differential Input Voltage Swing	Vin,pp	190		700	mVpp	
Differential Input Impedance	Zin	90	100	110	ohm	
Differential Input Return Loss		See IEEE 802.3b		A.4.11	dB	10MHz- 11.1GHz
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	

Data Dependent Pulse Width Shrinkage (DDPWS) Tolerance		0.07			UI			
Eye Mask Coordinates {X1, X2, Y1, Y2}		0.11, 0.31			UI	Hit Ratio = 5x10 ⁻⁵		
	1 1 1 1		95, 350		mV			
Receiver (each Lane)								
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common		
AC Common Mode Output Voltage				7.5	mV	RMS		
Differential Output Voltage Swing	Vout,pp	300		850	mVpp			
Differential Output Impedance	Zout	90	100	110	ohm			
Termination Mismatch at 1MHz				5	%			
Differential Output Return Loss		See IEEE 802.3ba 86A.4.2.1			dB	10MHz- 11.1GHz		
Common Mode Output Return Loss		See IEE	E 802.3ba 86A	.4.2.2	dB	10MHz- 11.1GHz		
Output Transition Time		28			Ps	20% to 80%		
J2 Jitter Output	Jo2			0.42	UI			
J9 Jitter Output	Jo9			0.65	UI			
Eye Mask Coordinates {X1, X2, Y1, Y2}		0.29, 0.5, 150, 425			UI mV	Hit Ratio = 5x10-5		

- 1.Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.
- 2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

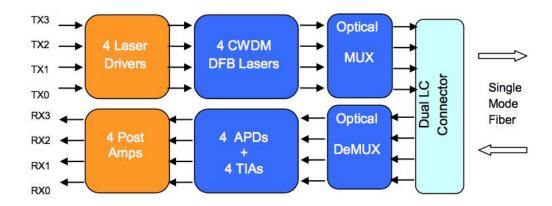
Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
	L0	1264.5	1271	1277.5	nm	
Marial anothe Assistance	L1	1284.5	1291	1297.5	nm	
Wavelength Assignment	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
		Transmit	ter			
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	P _T		1	8.3	dBm	
Average Launch Power, each Lane	P _{AVG}	-4	1 1 1 1 1 1	2.3	dBm	
Optical Modulation Amplitude (OMA), each Lane	Рома	-4		3.5	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			6.5	dB	
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-4.8			dBm	
TDP, each Lane	TDP		1 1 1 1 1 1 1	2.6	dB	
Extinction Ratio	ER	3.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	12dB reflection

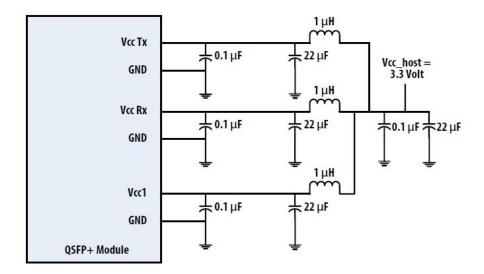
					40
TOL			20	dB	
R _T			-12	dB	
	JO 25, O 4	0.45 0.25 (1 28 N Al		
	(0.23, 0.4)	0.43, 0.23, 0	J.26, U.4 ₅		
Poff	20		-30	dRm	
1 011			-30	GBIII	
	Receiv	er			
TH₀	3.3			dBm	2
			8.3	dBm	
	-13.7		2.3	dBm	
R _R			-26	dB	
SEN			-11	dBm	
			_0	dBm	3
			-9	ubili	3
Prx diff			7.5	dВ	
117,0111			7.5	иь	
LOSA	-28			dBm	
LOSD			-15	dBm	
LOSH	0.5			dB	
E -			12.2	GH ₇	
1 C			12.5	GHZ	
nditions of S	tress Receiver	Sensitivity 1	Test (Note 5)		
		1.9		dB	
		0.3		UI	
		0.47		UI	
	Poff TH _d R _R SEN Prx,diff LOSA LOSD LOSH F _C	R _T {0.25, 0.4, Poff Received TH _d 3.3 -13.7 R _R SEN Prx,diff LOSA -28 LOSD LOSH 0.5 F _C	R _T {0.25, 0.4, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.25, 0.45, 0.45, 0.25, 0.45, 0.45, 0.25, 0.45	RT -12 {0.25, 0.4, 0.45, 0.25, 0.28, 0.4} Receiver THd 3.3 RR -26 SEN -11 Prx,diff 7.5 LOSA -28 LOSH 0.5 Fc 12.3 nditions of Stress Receiver Sensitivity Test (Note 5) 1.9 0.3	RT -12 dB {0.25, 0.4, 0.45, 0.25, 0.28, 0.4} -30 dBm Receiver THd 3.3 dBm dBm RR -13.7 2.3 dBm RR -26 dB dBm SEN -11 dBm Prx,diff 7.5 dB LOSA -28 dBm LOSD -15 dBm LOSH 0.5 dB Fc 12.3 GHz nditions of Stress Receiver Sensitivity Test (Note 5) 1.9 dB 0.3 UI

- 1.Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here.
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 3. Measured with conformance test signal at receiver input for BER = $1x10^{-12}$.
- 4. MVertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Digital Diagnostic Functions

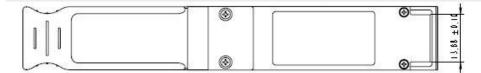

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

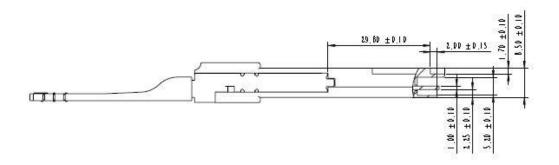
Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI Temp	-3	+3	°C	Over operating
Temperature monitor absolute error	Divii_Terrip	-5	тэ		temperature range
Supply voltage monitor absolute error	DMI VCC	0.1	+0.1	V	Over full operating
Supply voltage monitor absolute error	DMI_VCC	-0.1	+0.1	V	range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	+2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	+10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	+2	dB	1

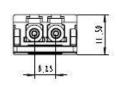


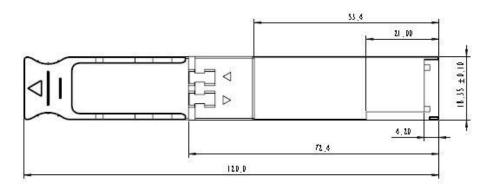
1.Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Block Diagram of Transceiver

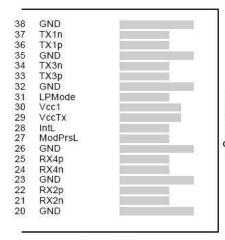


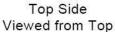

Recommended Power Supply Filter

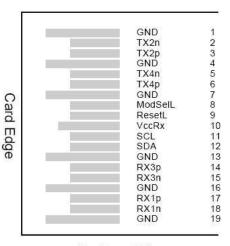




Mechanical Dimensions




This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.


Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Pin Assignment and Description

Bottom Side Viewed from Bottom

Pin Assignment

PIN#	Logic	Symbol	Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	

9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

- 1.GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and VccTx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

- ✓ Datasheet will be updated without notice, but we'll work hard to ensure the accuracy of this document.
- ✓ All rights reserved by Halowill Networks Limited.