
9. Wave phenomena
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9.1 – Simple harmonic motion

9.2 – Single-slit diffraction

9.3 – Interference

Essential Ideas

The solution of the harmonic oscillator can be framed 
around the variation of kinetic and potential energy in 
the system.

Single-slit diffraction occurs when a wave is incident 
upon a slit of approximately the same size as the 
wavelength.

Interference patterns from multiple slits and thin films 
produce accurately repeatable patterns.  © IBO 2014
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9.1 Simple harmonic  
 motion

Essential idea: The solution of the harmonic oscillator can 
be framed around the variation of kinetic and potential 
energy in the system.

Understandings:
•	 The	defining	equation	of	SHM
•	 Energy	changes

Recall from chapter 4 that if the acceleration a of a system is:

•	 directly	proportional	to	its	displacement	x	from	its	
equilibrium	position

and
•	 directed	towards	the	equilibrium	position

then	the	system	will	execute	SHM.	

This	is	the	formal	definition	of	SHM.	

We	expressed	this	definition	mathematically	as	

a = – const × x     

The negative sign indicated that the acceleration was 
directed	towards	the	equilibrium	position.	Mathematical	
analysis	 shows	 that	 the	 constant	 is	 in	 fact	 equal	 to	 ω2	
where	ω	 is	 the	angular	 frequency	(defined	above)	of	 the	
system.	Hence	equation	4.5	becomes

a	=	–	ω2 x

If	 a	 system	 is	 performing	 SHM,	 then	 to	 produce	 the	
acceleration,	a	force	must	be	acting	on	the	system	in	the	
direction	of	the	acceleration.	From	our	definition	of	SHM,	
the magnitude of the force F is given by

F = – kx       

where k is a constant and the negative sign indicates that 
the	force	 is	directed	towards	the	equilibrium	position	of	
the	system.	(Do	not	confuse	this	constant	k	with	the	spring	
constant.	However,	when	dealing	with	the	oscillations	of	a	
mass	on	the	end	of	a	spring,	k	will	be	the	spring	constant.)

To understand the solutions of the SHM	 equation,	 let	
us consider the oscillations of a mass suspended from a 
vertically supported spring. We shall consider the mass of 
the spring to be negligible and for the extension x to obey 
the rule F = kx. F (= mg) is the force causing the extension. 
Figure	901(a)	shows	the	spring	and	a	suspended	weight	of	
mass m	 in	equilibrium.	In	Figure	901(b),	 the	weight	has	
been pulled down a further extension x0.
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Figure 901 SHM of a mass suspended by a spring

In	Figure	901	(a),	the	equilibrium	extension	of	the	spring	
is e and the net force on the weight is mg – ke = 0.

In	Figure	408	(b),	if	the	weight	is	held	in	position	at	x	=	x0 
and then	released,	when	the	weight	moves	to	position	P,	a	
distance x	from	the	equilibrium	position	x	=	0,	the	net	force	
on the weight is mg – ke – kx.	Clearly,	then	the	unbalanced	
force on the weight is –kx. When the weight reaches a point 
distance x	above	the	equilibrium	position,	the	compression	
force in the spring provides the unbalanced force towards 
the	equilibrium	position	of	the	weight.

The acceleration of the weight is given by Newton’s second law;

F = –kx = ma

i.e.   

This is of the form a = -ω2 x  where  ω = , that  
is, the	 weight	 will	 execute	 SHM	 with	 a	 frequency		 
 

The displacement of the weight x is given by 

ω

This	is	the	particular	solution	of	the	SHM	equation	for	the	
oscillation of a weight on the end of a spring. This system 

 
NATURE OF SCIENCE:
Insights: The equation for simple harmonic motion (SHM) 
can be solved analytically and numerically. Physicists use 
such solutions to help them to visualize the behaviour of 
the oscillator. The use of the equations is very powerful as 
any oscillation can be described in terms of a combination 
of harmonic oscillators. Numerical modelling of oscillators 
is important in the design of electrical circuits. (1.11)              

© IBO 2014
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is often referred to as a harmonic oscillator.

Alternatively,	if	the	weight	was	at	its	equilibrium	position	
when	t	=	0,	then	the	trigonometric	expression	would	be

x  = x0sinωt

The velocity v of the weight at any instant can be found 
by	finding	 the	gradient of the displacement-time graph 
at that instant. The displacement time graph is a cosine 
function and the gradient of a cosine function is a negative 
sine function. The gradient of 

x  = x0cosωt is in fact T 2T
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where v0	is	the	maximum	and	minimum	velocity	equal	in	
magnitude to ωx0.

Students	familiar	with	calculus	will	recognise	the	velocity	v as 

( )0
d d cos sin
d d o
xv x t x t
t t

ω ω ω= = = − .	Similarly,	

( ) 2 2
0 0

d d sin cos
d d
va x t x t x
t t

ω ω ω ω ω= = − = − = −

which	of	course	is	just	the	defining	equation	of	SHM.

However,	 we	 have	 to	 bear	 in	 mind	 that	 ωt varies 
between	 0	 and	 2π where cosωt is negative for ωt for  
 

 
and sinωt is negative for ωt in the range π to  

 
2π. This effectively means that when the displacement 
from	equilibrium	is	positive,	the	velocity	is	negative	and	
so	directed	towards	equilibrium.	When	the	displacement	
from	equilibrium	is	negative,	the	velocity	is	positive	and	
so	directed	away	from	equilibrium

The	sketch	graph	in	Figure	902	shows	the	variation	with	
time t of the displacement x and the corresponding 
variation with time t of the velocity v. This clearly 
demonstrates the relation between the sign of the velocity 
and sign of the displacement.
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Figure 902 Displacement-time and velocity-time graphs

We can also see how the velocity v changes with 
displacement x.

We can express sinωt in terms of cosωt using the 
trigonometric relation

2 2sin cos 1θ θ+ =

From which it can be seen that

Replacing θ with ωt we have

2
0 1 cosv x tω ω= − −

Remembering that  and putting x0 inside the 
square	root	gives

v	=	–ω√
_______

 ( x0 
2 – x2 )   

Bearing in mind that v can	 be	 positive	 or	 negative,	 we	
must write

v	=	±ω√
_______

 ( x0 
2 – x2 )     

The velocity is zero when the displacement is a maximum 
and is a maximum when the displacement is zero.

The graph in Figure 903 shows the variation with x of 
the velocity v for a system oscillating with a period of 1 
second	and	with	an	amplitude	of	5	cm.	The	graph	shows	
the variation over  a time of any one period of oscillation. 
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Figure 903 Velocity-displacement graph
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Boundary Conditions
The	 two	 solutions	 to	 the	 general	 SHM	 equation	 are	

 and . Which solution applies to 
a	particular	system	depends,	as	mentioned	above,	on	the	
boundary conditions for that system. For systems such 
as	the	harmonic	oscillator	and	the	simple	pendulum,	the	
boundary condition that gives the solution  
is that the displacement x = x0 when t = 0. For some 
other systems it might turn out that x = 0 when t =0. This 
will lead to the solution . From a practical 
point	of	view,	the	two	solutions	are	essentially	the	same;	
for example when timing the oscillations of a simple 
pendulum,	you	might	decide	to	start	the	timing	when	the	
pendulum	bob	passes	 through	 the	equilibrium	position.	
In	effect,	the	two	solutions	differ	in	phase	by	 .

The table in Figure 904 summarises the solutions we have 
for	SHM.

x =  x 0 cosωt x =  x 0 sinωt

ν = −  ν 0 sinωt ν =  ν 0 cosωt

ν = –  ωx 0 sinωt ν =  – ωx 0 cosωt

ν = ± ω √
______

 x0 
2 – x2 ν = ± ω √

______
 x0 

2 – x2 

Figure 904 Common equations

We should mention that since the general solution to 
the	 SHM	equation	 is	  there are 
in	fact	three	solutions	to	the	equation.	This	demonstrates	
a fundamental property of second order differential 
equations;	that	one	of	the	solutions	to	the	equation	is	the	
sum of all the other solutions. This is the mathematical 
basis of the so-called principle of superposition.

SHM	 is	 a	 very	 good	 example	 in	 which	 to	 apply  the 
Newtonian	method	discussed	in	Chapter	2;	i.e.	if	the	forces	
that	act	on	a	system	are	known,	then	the	future	behaviour	
of	the	system	can	be	predicted.	Here	we	have	a	situation	in	
which the force is given by –kx. From Newton’s second law 
therefore –kx = ma,	where	m is the mass of the system and a 
is	the	acceleration	of	the	system.	However,	the	acceleration	
is not constant. For those of you who have a mathematical 
bent,	the	relation	between	the	force	and	the	acceleration	is	 
 
written as 

2d
d

xkx m
t

− =
2

. This is what is called a “second  
 
order	differential	equation”.	The	solution	of	the	equation	
gives x as a function of t.	The	actual	solution	is	of	the	SHM	
equation	is	

x = Pcosωt + Qsinωt where P and Q are constants and ω is  
 
the	angular	frequency	of	the	system	and	is	equal	to . 

Whether a particular solution involves the sine function or  
the	cosine	function,	depends	on	the	so-called	‘boundary	
conditions’. If for example x = x0	 (the	 amplitude)	when	
t =	0,	then	the	solution	is	x = x0cosωt. 

The	 beauty	 of	 this	mathematical	 approach	 is	 that,	 once	
the	 general	 equation	 has	 been	 solved,	 the	 solution	 for	
all	 systems	executing	SHM	 is	known.	All	 that	has	 to	be	
shown	to	know	if	a	system	will	execute	SHM,	is	that	the	
acceleration	of	the	system	is	given	by	Equation	4.5	or	the	
force	is	given	by	equation	4.7.	The	physical	quantities	that	
ω will depend on is determined by the particular system. 
For	example,	for	a	weight	of	mass	m oscillating at the end 
of a vertically supported spring whose spring constant is k,	 
 
then ω = or	 ,	 from	 equation	 4.4	  For  
 
a	 simple	 pendulum,	 ω =  where l is the length of  
the pendulum and g is the acceleration of free fall such 

that  T	=	2π√
_

  l _ g   . 

Examples

The	graph	in	Figure	905	shows	the	variation	with	time	 t 
of the displacement x of	a	system	executing	SHM.	(Some	
question	parts	were	already	done	in	the	SL	chapter	4).
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Figure 905 Displacement – time graph for SHM

 Use the graph to determine the 

(i)	 period	of	oscillation
(ii)	 amplitude	of	oscillation
(iii)	 maximum	speed
(iv)	 speed	at	t = 1.3 s
(v)	 maximum	acceleration

Solutions

(i)	 2.0 s (time for one cycle)
(ii)	 8.0 cm
(iii)	 Using  gives  

 (remember that ) = 25 cm s-1
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(iv)	 v = −v0sinωt = −25sin (1.3π). To find the 
value of the sine function, we have to convert 
the 1.3π into degrees (remember ω and hence 
ωt, is measured in radians) 

 
 1  deg therefore 1.3π = 1.3 × 180 
 = 234° 
 therefore v1 = −25sin (234°) = +20 cm s –1.

 Or we can solve using 			ω√
_______

 ( x0 
2 – x2 )     

 
 from the graph at t = 1.3 s, x = – 4.8 cm

 therefore v = π × = 20 cm s-1

(v) Using = π2 × 8.0 = 79 m s-2

Energy changes
We must now look at the energy changes involved in 
SHM.	To	do	so,	we	will	again	concentrate	on	the	harmonic	
oscillator. The mass is stationary at x = +x0	 	 (maximum	
extension)	and	also	at	x = –x0	 (maximum	compression).	
At these two positions the energy of the system is all 
potential energy and is in fact the elastic potential energy 
stored in the spring. This is the total energy of the system 
ET and clearly

	 Equation	4.12

That	is,	that	for	any	system	performing	SHM,	the	energy	of	
the	system	is	proportional	to	the	square	of	the	amplitude.	
This is an important result and one that we shall return to 
when we discuss wave motion.

At x =	0	the	spring	is	at	its	equilibrium	extension	and	the	
magnitude of the velocity v of the oscillating mass is a 
maximum v0.	The	energy	is	all	kinetic	and	again	is	equal	to	
ET. We can see that this is indeed the case as the expression 
for the maximum kinetic energy Emax in terms of v0 is 

 

Clearly ET and Emax are	equal	such	that

ET =  1 __ 2 kx0 
2 = Emax =  1 __ 2 mv0 

2  

From which

v0 
2 =  k __ m  x0 

2			(as	v0	≥	0)			

Therefore

v0 = √
__

  k __ m   x0 = ωx0   

which	ties	in	with	the	velocity	being	equal	to	the	gradient	
of	the	displacement-time	graph	(see	4.1.5).	As	the	system	
oscillates there is a continual interchange between kinetic 
energy and potential energy such that the loss in kinetic 
energy	equals	the	gain	in	potential	energy	and	ET = EK + EP.

Remembering that ,	we	have	that

 

Clearly,	 the	potential	energy	EP at any displacement x is 
given by

 

At any displacement x,	the	kinetic	energy	EK is EK =  1__
2mv2

Hence	remembering	that	

v
_______
( x0

2 – x2 )   ,	we	have

EK = 1__
2m 2 ( x0

2 – x2 ) 

Although	 we	 have	 derived	 these	 equations	 for	 a	 harmonic	
oscillator,	they	are	valid	for	any	system	oscillating	with	SHM.	
The sketch graph in Figure 906 shows the variation with 
displacement x of EK and EP for one period.

displacement

en
er

gy potential
kinetic

Figure 906 Energy and displacement

Example

The amplitude of oscillation of a mass suspended by a 
vertical spring is 8.0 cm. The spring constant of the spring 
is	74	N	m–1.	Determine

(a)		 the	total	energy	of	the	oscillator

(b)		 the	potential	and	the	kinetic	energy	of	the	
oscillator at a displacement of 4.8 cm from 
equilibrium.
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Solution

(a)  Spring constant k = 74 N m-1 and

 x0 = 8.0 × 10-2 m

 ET = ½ kx0
2

      = ½ × 74 × 64 × 10-4 = 0.24 J

(b) At x = 4.8 cm 

 Therefore EP = ½ × 74 × (4.8 × 10-2)2

   = 0.085 × 10-4 J

 EK = ET − EP = 0.24 − 0.085 = 0.16 J

EXERCISE 9.1
1. Which graph shows the relationship between the 

acceleration a and the displacement x from the 
equilibrium	position	of	an	object	undergoing	
simple harmonic motion?

Acceleration

Displacement

Acceleration

Displacement

A. B.

Acceleration

Displacement

Acceleration

Displacement

C. D.

2.	 An	object	is	undergoing	simple	harmonic	motion	
about	a	fixed	point	P,	and	the	magnitude	of	its	
displacement	from	P	is	x. Which one of the 
following statements is correct?

Magnitude	of	the	
resultant force

Direction	of	the	
resultant force

A. Proportional	to	x Away	from	point	P

B. Inversely proportional 
to x Away	from	point	P

C. Proportional	to	x Towards	point	P

D. Inversely proportional 
to x Towards	point	P

3.	 The	angular	speed	of	the	“minute”	hand	of	an	
analogue watch is

A.	 π	/	1800	rad	s-1 C.	 π	/	30	rad	s-1

B.	 π	/	60	rad	s-1 D.	 120	rad	s-1

4. Which of the following is true of the magnitude 
of the acceleration of the object that is undergoing 
simple harmonic motion?

A. It is greatest at the midpoint of the motion.
B. It is greatest at the end points of the motion.
C. It is uniform throughout the motion.
D.	 It	is	greatest	at	the	midpoints	and	the	

endpoints.

5.	 A	particle	oscillates	with	simple	harmonic	motion	
with a period T. 

  At time t	=	0,	the	particle	has	its	maximum	
displacement. Which graph The variation with 
time t of the kinetic energy of the particle is 
shown in which diagram below?

A.

00

Ek

T t

D.

00

Ek

T t

C.

00

Ek

T t

B.

0

Ek

t0 T

6.	 Figure	907	below	shows	how	the	displacement	of	
the magnet of mass 0.3 kg hanging from a spring 
varies with time for two oscillations.
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Using information from this graph calculate the

(a)	 value	of	the	spring	constant.
(b)	 maximum	kinetic	energy	of	the	magnet.

7.	 A	system	is	oscillating	with	SHM	as	described	by	
the graph in the Figure 908 below.
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(a)	 Use	the	graph	to	determine	the

(i)	 period	of	oscillation
(ii)	 amplitude	of	oscillation
(iii)	 maximum	speed
(iv)	 speed	at	t	=	1.3	s
(v)	 maximum	acceleration

(b)		 State	two	values	of	t	for	when	the	magnitude	of	the	
velocity is a maximum and two values of t for when 
the magnitude of the acceleration is a maximum.

9. Figure 909 shows the relationship that exists between 
the acceleration and the displacement from the 
equilibrium	position	for	a	harmonic	oscillator.
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Figure 909

(a)	 State	and	explain	two	reasons	why	the	graph	
opposite indicates that the object is executing 
simple harmonic motion.

(b)	 	Determine	the	frequency	of	oscillation.

9.2 Single-slit    
 diffraction

Essential idea: Single-slit	diffraction	occurs	when	a	wave	
is incident upon a slit of approximately the same size as 
the wavelength.

Understandings:
•	 The	nature	of	single-slit	diffraction

The nature of single-slit 
diffraction
Single slit diffraction intensity distribution

When plane wavefronts pass through a small aperture they 
spread out as discussed in chapter 4. This is an example 
of	the	phenomenon	called	diffraction.	Light	waves	are	no	
exception to this and ways for observing the diffraction of 
light have also been discussed previously. 

However,	when	we	look	at	the	diffraction	pattern	produced	
by	light	we	observe	a	fringe	pattern,	that	is,	on	the	screen	
there	 is	 a	 bright	 central	 maximum	 with	 “secondary”	
maxima either side of it. There are also regions where 
there is no illumination and these minima separate the 
maxima. If we were to actually plot how the intensity of 
illumination varies along the screen then we would obtain 
a graph similar to that as in Figure 910.

 

intensity

distance along screen

Figure 910 Intensity distribution for single-slit diffraction

We would get the same intensity distribution if we were 
to plot the intensity against the angle of diffraction θ.	(See	
next	section).

 
NATURE OF SCIENCE:
Development of theories: When light passes through an 
aperture the summation of all parts of the wave leads 
to an intensity pattern that is far removed from the 
geometrical shadow that simple theory predicts. (1.9)

© IBO 2014
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This intensity pattern arises from the fact that each point 
on	the	slit	acts,	in	accordance	with	Huygen’s	principle,	as	
a source of secondary wavefronts. It is the interference 
between these secondary wavefronts that produces the 
typical diffraction pattern.

Obtaining an expression for the intensity distribution is 
mathematically a little tricky and it is not something that 
we	 are	 going	 to	 attempt	 here.	 However,	 we	 can	 deduce	
a useful relationship from a simple argument. In this 
argument we deal with a phenomenon called Fraunhofer 
diffraction,	that	is	the	light	source	and	the	screen	are	an	
infinite	distance	away	form	the	slit.	This	can	be	achieved	
with the set up shown in Figure 911.

lens 1                 lens 2 

single slit

source

screen

Figure 911 Apparatus for viewing Fraunhofer diffraction

The source is placed at the principal focus of lens 1 and 
the	 screen	 is	placed	at	 the	principal	 focus	of	 lens	2.	Lens	
1 ensures that parallel wavefronts fall on the single slit and 
lens	2	ensures	that	the	parallel	rays	are	brought	to	a	focus	
on the screen. The same effect can be achieved using a laser 
and placing the screen some distance from the slit. If the 
light	 and	 screen	are	not	 an	 infinite	distance	 from	 the	 slit	
then we are dealing with a phenomenon called Fresnel 
diffraction and such diffraction is very difficult to analyse 
mathematically. To obtain a good idea of how the single slit 
pattern	comes	about	we	consider	the	diagram	Figure	912.

X
θ2

Yλ

d

P

b

f

screen

θ1

Figure 912 Single slit diffraction

In particular we consider the light from one edge of the 
slit	to	the	point	P	where	this	point	is	 just	one	wavelength	
further from the lower edge of the slit than it is from the 

upper edge. The secondary wavefront from the upper edge 
will	travel	a	distance	λ/2	further	than	a	secondary	wavefront	
from	 a	 point	 at	 the	 centre	 of	 the	 slit.	Hence	when	 these	
wavefronts	 arrive	 at	 P	 they	will	 be	 out	 of	 phase	 and	will	
interfere destructively. The wavefronts from the next point 
below the upper edge will similarly interfere destructively 
with the wavefront from the next point below the centre of 
the slit. In this way we can pair the sources across the whole 
width of the slit. If the screen is a long way from the slit then 
the angles θ1 and θ2	become	nearly	equal.	 (If the screen is 
at infinity then they are equal and the two lines PX and XY 
are at right angles to each other).	From	Figure	1116	we	see	
therefore	that	there	will	be	a	minimum	at	P	if

λ b θ1   sin=   where b is the width of the slit.

However,	both	angles	are	very	small,	equal	to	θ say,	where	
θ is the angle of diffraction.

So	it	can	be	written	 θ λ
b---

=

This actually gives us the half-angular width of the central 
maximum. We can calculate the actual width of the 
maximum along the screen if we know the focal length of 
the lens focussing the light onto the screen. If this is f then 
we have that

θ d
f---

= 	 	 Such	that		 	 d fλ
b-----   

=

To obtain the position of the next maximum in the pattern 
we note that the path difference is 3

2
---λ. We therefore divide 

the	slit	into	three	equal	parts,	two	of	which	will	produce	
wavefronts that will cancel and the other producing 
wavefronts that reinforce. The intensity of the second 
maximum is therefore much less than the intensity of 
the	central	maximumof	 the	order	of	0.05	or	1/20	of	 the	
original	intensity.		(Much	less	than	one	third	in	fact	since	
the	wavefronts	that	reinforce	will	have	differing	phases).

We can also see now how diffraction effects become more 
and more noticeable the narrower the slit becomes. If light 
of wavelength 430 nm was to pass through a slit of width 
say	10	cm	and	fall	on	a	screen	3.0	m	away,	then	the	half	
angular width of the central maximum would be 0.13 µm. 

d =   
f λ

 ___ b   =   3 × 430 ×  10 –9   ____________ 0.1   = 0.13 μm

There will be lots of maxima of nearly the same intensity 
and the maxima will be packed very closely together. 
(The	first	minimum	occurs	at	a	distance	of	0.12	µm	from	
the centre of the central maximum and the next occurs 
effectively	at	a	distance	of	0.24	µm).	We	effectively	observe	
the geometric pattern. Refer to Example.

We also see now how for diffraction effects to be noticeable 
the wavelength must be of the order of the slit width. 
The width of the pattern increases in proportion to the 
wavelength and decreases inversely with the width of the 
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9.3 Interference

Essential idea: Interference patterns from multiple slits 
and	thin	films	produce	accurately	repeatable	patterns.

Understandings:
•	 Young’s	double-slit	experiment
•	 Modulation	of	two-slit	interference	pattern	by	one-slit	

diffraction effect
•	 Multiple	slit	and	diffraction	grating	interference	patterns
•	 Thin	film	interference

Young’s double slit experiment
Please	 refer	 to	 interference	 in	 chapter	 4.	 However,	 we	
will reiterate the condition for the interference of waves 
from two sources to be observed. The two sources must 
be coherent,	that	is	they	must	have	the	same	phase	or	the	
phase difference between them must remain constant.

Also,	 to	 reinforce	 topics	 concerning	 the	 principle	 of	
superposition,	and	path	difference	and	phase	difference,	
included in Figure 913 is another example of two source 
interference.

We can obtain evidence for the wave nature of sound by 
showing that sound produces an interference pattern. 
Figure 913 shows the set up for demonstrating this.

CRO

speaker

speaker

signal
generator

microphoneX

Y

Figure 913 Interference using sound waves

The two speakers are connected to the same output of 
the	 signal	 generator	 and	placed	 about	 50	 cm	apart.	The	
signal	generator	frequency	is	set	to	about	600	Hz	and	the	

slit. If the slit width is much greater than the wavelength 
then the width of the central maxima is very small.

In	summary,

for destructive interference and minima

d	sinθ	=	nλ	 	 where	n	=	1,	2,	3…

for constructive interference and maxima

d	sinθ	=	(	n	+	½	)λ	 where	n	=	1,	2,	3…

Note that waves from point sources along the slit arrive in 
phase at the centre of the fringe pattern and constructively 
interfere	to	produce	the	central	maximum,	called	the	zero 
order	maximum	(n	=	0).

Example

Light	from	a	laser	is	used	to	form	a	single	slit	diffraction	pattern.	
The width of the slit is 0.10 mm and the screen is placed 3.0 m 
from the slit. The width of the central maximum is measured 
as	2.6	cm.	Calculate	the	wavelength	of	the	laser	light?

Solution

Since the screen is a long way from the slit we can use the 
small angle approximation such that the f is equal to 3.0 m.

The half-width of the central maximum is 1.3 cm so we have

λ
1.3 10 2–×( ) 1.0 10 4–×( )×

3.0------------------------------------------------------------------=

To give λ = 430 nm.

This example demonstrates why the image of a point source 
formed by a thin converging lens will always have a finite width.

Exercise 9.2
1.		 A	parallel	beam	of	light	of	wavelength	500	nm	is	

incident	on	a	slit	of	width	0.25	mm.	The	light	is	
brought	to	focus	on	a	screen	placed	1.50	m	from	
the slit. Calculate the angular width and the linear 
width of the central diffraction maximum.

2.		 Light	from	a	laser	is	used	to	form	a	single	slit	
diffraction pattern on a screen. The width of the 
slit is 0.10 mm and the screen is 3.0 m from the 
slit. The width of the central diffraction maximum is 
2.6	cm.	Calculate	the	wavelength	of	the	laser	light.

3.	 Determine	the	angle	that	you	would	expect	to	find	
constructive	interference	(for	n	=	0,	n	=	1	and	n	=	2)	 
from	a	single	slit	of	width	2.0	μm	and	light	of	
wavelength 600 nm.

 
NATURE OF SCIENCE:
Curiosity: Observed patterns of iridescence in animals, 
such as the shimmer of peacock feathers, led scientists to 
develop the theory of thin film interference. (1.5)

Serendipity: The first laboratory production of thin films 
was accidental. (1.5)

© IBO 2014
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microphone	is	moved	along	the	line	XY,	that	is	about	one	
metre from the speakers. As the microphone is moved 
along	 XY	 the	 trace	 on	 the	 cathode	 ray	 oscilloscope	 is	
seen to go through a series of maxima and minima 
corresponding to points of constructive and destructive 
interference of the sound waves.

An	interesting	investigation	is	to	find	how	the	separation	
of the points of maximum interference depends on the 
frequency	 of	 the	 source	 and	 also	 the	 distance	 apart	 of	
the speakers.

In the demonstration of the interference between two 
sound	sources	described	above,	if	we	were	to	move	one	of	
the speakers from side to side or backwards and forwards 
the sound emitted from the two speakers would no 
longer be in phase. No permanent points of constructive 
or destructive interference will now be located since the 
phase difference between the waves from the two sources is 
no	longer	constant,	i.e.	the	sources	are	no	longer	coherent.

Light	 from	 an	 incandescent	 source	 is	 emitted	 with	 a	
completely random phase. Although the light from two 
separate	 sources	 will	 interfere,	 because	 of	 the	 randomly	
changing phase no permanent points of constructive or 
destructive interference will be observed. This is why a 
single	slit	 is	needed	in	the	Young’s	double	slit	experiment.	
By	acting	as	a	point	source,	it	essentially	becomes	a	coherent	
light source. The light emitted from a laser is also very nearly 
coherent and this is why it is so easy to demonstrate optical 
interference and diffraction with a laser.

Young’s	 double	 slit	 experiment is one of the great classic 
experiments of physics and did much to reinforce the wave 
theory	of	light.	Thomas	Young	carried	out	the	experiment	
in about 1830.

It is essentially the demonstration with the ripple tank 
and	 the	 sound	 experiment	 previously	 described,	 but	
using light. The essential features of the experiment are 
shown in Figure 914.

screen
double slit

single slit

coloured �lter

S 1

S2

Figure 914 Young’s double slit experiment 

Young	allowed	sunlight	to	fall	onto	a	narrow	single	slit.	
A few centimetres from the single slit he placed a double 
slit. The slits are very narrow and separated by a distance 
equal	 to	 about	 fourteen	 slit	widths.	A	 screen	 is	 placed	

about	 a	metre	 from	 the	double	 slits.	Young	observed	a	
pattern	of	multicoloured	“fringes”	 in	 the	 screen.	When	
he	 placed	 a	 coloured	 filter	 between	 the	 single	 slit	 and	
double slit he obtained a pattern that consisted of bright 
coloured fringes separated by darkness.

The single slit essentially ensures that the light falling on 
the double slit is coherent. The two slits then act as the two 
speakers in the sound experiment or the two dippers in 
the ripple tank. The light waves from each slit interfere and 
produce the interference pattern on the screen. Without 
the	filter	a	pattern	is	formed	for	each	wavelength	present	
in	the	sunlight.	Hence	the	multicoloured	fringe	pattern.

You	 can	 demonstrate	 optical	 interference	 for	 yourself.	
Smoking	 a	 small	 piece	 of	 glass	 and	 then	 drawing	 two	
parallel lines on it can make a double slit. If you then look 
through	the	double	slit	at	a	single	tungsten	filament	lamp	
you	will	see	the	fringe	pattern.	By	placing	filters	between	
the lamps and the slits you will see the monochromatic 
fringe pattern.

You	can	also	see	the	effects	of	optical	interference	by	looking	
at	net	curtains.	Each	‘hole’	in	the	net	acts	as	a	point	source	
and the light from all these separate sources interferes and 
produces	quite	a	complicated	interference	pattern.

A laser can also be used to demonstrate optical interference. 
Since	the	light	from	the	laser	is	coherent	it	is	very	easy	to	
demonstrate interference. Just point the laser at a screen 
and place a double slit in the path of the laser beam.

Let	us	now	look	at	the	Young’s	double	slit	experiment	in	
more detail. The geometry of the situation is shown in 
Figure	915.

S1

S2 X

P

Q

D

y

d

screen

θ

θ’

Figure 915 The geometry of Young’s  
double slit experiment

S1	and	S2 are the two narrow slits that we shall regard as 
two	coherent,	monochromatic	point	sources.	The	distance	
from the sources to the screen is D and the distance 
between the slits is d. 

The waves from the two sources will be in phase at Q 
and	 there	will	 be	 a	bright	 fringe	here.	We	wish	 to	find	
the	condition	for	there	to	be	a	bright	fringe	at	P	distance	
y from Q.

PHYSICS 2015.indb   292 15/05/14   3:37 PM



Wave Phenomena

293

A
H

L

We note that that D (≈	1	metre)	is	very	much	greater	than	
either y or d.	(≈ few	millimetres)	.	This	means	that	both	θ and 
θʹ are	very	small	angles	and	for	intents	and	purposes	equal.

From the diagram we have that

θ = 
D
y

And

2S X
d

θʹ =

(Remember,	the	angles	are	very	small)

Since	θ ≈ θʹ then

2S Xy
D d

=

But	S
2	
X is the path difference between the waves as they 

travel	to	P.	We	have	therefore	that

path difference = D
yd

There	will	therefore	be	a	bright	fringe	at	P	if	

D
yd

 = nλ

Suppose	that	there	is	a	bright	fringe	at	y = y
1
 corresponding 

to n = n
1
 then

D
dy1  = n

1
λ

If the next bright fringe occurs at y = y
2
 this will correspond 

to n = n
1
	+1.	Hence

D
dy2 	=	(n

1
	+1)λ

This means that the spacing between the fringes y
2
 – y

1
 is 

given by

y
2
 – y

1
 = d

D
λ

Young	actually	use	this	expression	to	measure	the	wavelength	
of the light he used and it is a method still used today.

We see for instance that if in a given set up we move the slits 
closer together then the spacing between the fringes will get 
greater.	Effectively	our	interference	pattern	spreads	out,	that	
is there will be fewer fringes in a given distance. We can 
also increase the fringe spacing by increasing the distance 
between	the	slits	and	the	screen.	You	will	also	note	that	for	a	

given	set	up	using	light	of	different	wavelengths,	then	“red”	
fringes	will	space	further	apart	than	“blue”	fringes.

In this analysis we have assumed that the slits act as point 
sources and as such the fringes will be uniformly spaced 
and	of	equal	intensity.	A	more	thorough	analysis	should	
take	into	account	the	finite	width	of	the	slits.	

Returning	to	Figure	915	we	see	that	we	can	write	the	path	
difference	S2X as

S
2
X = dtan θʹ

But since θʹ  is a small angle the sine and tangent will be 
nearly	equal	so	that

S
2
X = dsinθʹ

And since θʹ ≈ θ then

S
2
X = dsinθ

The condition therefore for a bright fringe to be found at a 
point of the screen can therefore be written as

dsinθ = nλ

In	summary,

for constructive interference and minima

d sinθ = nλ	 	 where	n	=	1,	2,	3…

for destructive interference and maxima

d sinθ = ( n + ½ )λ	 where	n	=	1,	2,	3…

Figure 916 shows the intensity distribution of the fringes 
on the screen when the separation of the slits is large 
compared	to	their	width.	The	fringes	are	of	equal	intensity	
and	of	equal	separation.

Intensity

distance along screen

Figure 916 The intensity distribution of the fringes

It	 is	worth	noting	 that	 if	 the	 slits	 are	 close	 together,	 the	
intensity of the fringes is modulated by the intensity 
distribution of the diffraction pattern of one of the slits.
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Example

Light	 of	 wavelength	 500	nm	 is	 incident	 on	 two	 small	
parallel	 slits	 separated	 by	 1.0	mm.	Determine	 the	 angle	
where	the	first	maximum	is	formed?

If after passing through the slits the light is brought 
to	a	 focus	on	a	 screen	1.5	m	 from	the	slits	calculate	 the	
observed fringe spacing on the screen.

Solution

Using the small angle approximation we have

3

7

10
105
−

−×
==

d
λθ

= 5 × 10-4 rad

The fringe spacing is given by

3

7

10
1055.1

−

−××
==

d
Dy λ

= 0.75 mm

Modulation of two-slit interference pattern  
by one-slit diffraction effect

In practice the intensity pattern of the maxima as shown in 
Figure	 917	 is	 not	 constant,	 but	 fluctuates	 while	 decreasing	
symmetrically on either side of the central maximum as shown 
in	Figure	917.	The	intensity	pattern	is	a	combination	of	both	
the single-slit diffraction	envelope and the double slit pattern. 
That is the amplitude of the two-slit interference pattern is 
modulated	(i.e.	adjusted	to)	by	a	single	slit	diffraction	envelope.	

2λ
D

___ λ
D

D

___λ
d

d

___

Double slit
�nite width

Figure 917 Double slit pattern

For	a	given	slit	separation	d,	wavelength	of	light,	and	fixed	
slit	to	screen	distance,	the	variation	in	intensity	depends	on	
the	width	of	the	slit	D.	Although	increasing	the	width	of	the	
slits	increases	the	intensity	of	light	in	the	fringes,	it	also	makes	
them less sharp and they become blurred. As the slit width is 
widened,	the	fringes	gradually	disappear	because	numerous	
point sources along the widened slit give rise to their own 
dark and bright fringes that then overlap with each other.

Exercise 9.3
1.	 In	Figure	913,	the	distance	between	the	speakers	

is	0.50	m	and	the	distance	between	the	line	of	
the	speakers	and	the	screen	is	2.0	m.	As	the	
microphone	is	moved	along	the	line	XY,	the	
distance between successive points of maximum 
sound	intensity	is	0.30	m.	The	frequency	of	the	
sound	waves	is	4.4	×	103	Hz.	Calculate	a	value	for	
the speed of sound.

2.	 Laser	light	of	wavelength	610	nm	falls	on	two	slits	
1.0	x	10-5	apart.	Determine	the	separation	of	the	first	
order	maximum	formed	on	a	screen	2.0	m	away.

3.	 Two	parallel	slits	0.12	mm	apart	are	illuminated	
with red light with a wavelength of 600 nm. An 
interference	pattern	falls	on	a	screen	1.5	m	away.

  Calculate

(a)	 the	distance	from	the	central	maximum	to	
the	first	bright	fringe

(b)	 the	distance	to	the	second	dark	line.

Multiple slit and diffraction 
grating interference patterns

If we examine the interference pattern produced when 
monochromatic light passes through a different number 
of slits we notice that as the number of slits increases 
the	 number	 of	 observed	 fringes	 decreases,	 the	 spacing	
between them increases and the individual fringes become 
much sharper. We can get some idea of how this comes 
about by looking at the way light behaves when a parallel 
beam passes through a large number of slits. The diagram 
for this is shown in Figure 918.

θ
θd

1

2

3

telescope

Figure 918 A parallel beam passing through several slits

The slits are very small so that they can be considered to act 
as point sources. They are also very close together such that 
d	 is	small	(10–6 m).	Each	slit	becomes	a	source	of	circular	
wave	fronts	and	the	waves	from	each	slit	will	interfere.	Let	us	
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consider the light that leaves the slit at an angle θ as shown. 
The	path	difference	between	wave	1	and	wave	2	is	dsinθ and 
if	this	is	equal	to	an	integral	number	of	wavelengths	then	
the two waves will interfere constructively in this direction. 
Similarly	 wave	 2	 will	 interfere	 constructively	 with	 wave	
3	 at	 this	 angle,	 and	wave	 3	with	 4	 etc.,	 across	 the	whole	
grating.	Hence	if	we	look	at	the	light	through	a	telescope,	
that	is	bring	it	to	a	focus,	then	when	the	telescope	makes	an	
angle θ to the grating a bright fringe will be observed. The 
condition for observing a bright fringe is therefore

dsinθ = mλ

Suppose	we	use	light	of	wavelength	500	nm	and	suppose	
that d = 1.6 × 10–6 m.

Obviously we will see a bright fringe in the straight on 
position θ	=	0	(the	zero order).	

The next position will be when m =	1	(the	first order)	and	
substitution	in	the	above	equation	gives	θ = 18°. 

The next position will be when m	=	2	(the	second order)	
and this give θ = 38°.

For m	=	3,	sinθ is greater than 1 so with this set up we only 
obtain	5	fringes,	one	zero	order	and	two	either	side	of	the	
zero order. 

The calculation shows that the separation of the orders is 
relatively large. At any angles other than 18° or 38° the light 
leaving the slits interferes destructively. We can see that the 
fringes will be sharp since if we move just a small angle away 
from 18° the light from the slits will interfere destructively.

An array of narrow slits is usually made by cutting narrow 
transparent lines very close together into the emulsion on 
a	photographic	plate	(typically	200	lines	per	millimetre).	
Such	an	arrangement	is	called	a	diffraction grating.

The diffraction grating is of great use in examining the 
spectral characteristics of light sources.

All elements have their own characteristic spectrum. 
An element can be made to emit light either by heating 
it until it is incandescent or by causing an electric 
discharge	 through	 it	when	 it	 is	 in	 a	 gaseous	 state.	 Your	
school probably has some discharge tubes and diffraction 
gratings.	If	it	has,	then	look	at	the	glowing	discharge	tube	
through	a	diffraction	grating.	If	for	example,	the	element	
that you are looking has three distinct wavelengths then 
each wavelength will be diffracted by a different amount 
in	accordance	with	the	equation	dsinθ = nλ.

Also	if	laser	light	is	shone	through	a	grating	on	to	a	screen,	
you will see just how sharp and spaced out are the maxima. 
By measuring the line spacing and the distance of the screen 
from	the	laser,	the	wavelength	of	the	laser	can	be	measured.	

If your school has a set of multiple slits say from a single 
slit	 to	eight	 slits,	 then	 it	 is	also	a	worthwhile	exercise	 to	
examine how the diffraction pattern changes when laser 
light is shone through increasing numbers of slits.

Consider a grating of N	parallel	equidistant	slits	of	width	a	
separated	by	an	opaque	region	of	width	D. We know that light 
diffracted from one slit will be superimposed and interfere 
with light diffracted from all the other slits. The intensity	
profile of the resultant wave will have a shape determined by

•	 the	intensity	of	light	incident	on	the	slits
•	 the	wavelength	of	this	light
•	 the	slit	width
•	 the	slit	separation

Typical	 intensity	 profiles	 formed	 when	 a	 plane	 wave	
monochromatic	light	at	normal	incidence	on	one,	two	and	
six slits are shown in Figure 919. In this example the slit 
width	is	one	quarter	of	the	grating	spacing.

Six slits sharper
fringes

d = 4a

I α N 2

(N – 2)
= 4 subsidiary maxima

order
0 4321

I = 36

Two slits

order
0

single-slit
di�raction

envelope

d = 4a
4th principal maximum missing

principa maxima

I = 4 (nominal units)

4321

intensity

order

ISS

One slit

0 1

single-slit
di�raction

pattern

N = number of slits
slit width a

Figure 919 Intensity profiles
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1. For N	≥	2,	the	fringe	pattern	contains	principal	maxima	
that are modulated by the diffraction envelope.

2.	 For	N	>	2,	the	fringe	pattern	contains	(N	–	2)	
subsidiary maxima.

3. Where the grating spacing d is four time the slit width 
a	(4	x	a =d),	then	the	fourth	principal	maximum	is	
missing from the fringe pattern. Where the grating 
spacing	d	is	three	time	the	slit	width	a	(3	x	a =d),	then	
the third principal maximum is missing from the 
fringe	pattern,	and	so	on.

4. Increasing N increases the absolute intensities of the 
diffraction pattern  
(	I = N	2)

If white light is shone through a grating then the central image 
will be white but for the other orders each will be spread out 
into	a	continuous	spectrum	composed	of	an	infinite	number	
of adjacent images of the slit formed by the wavelength of the 
different wavelengths present in the white light. At any given 
point in the continuous spectrum the light will be very nearly 
monochromatic because of the narrowness of the images 
of the slit formed by the grating. This is in contrast to the 
double	slit	where	if	white	light	is	used,	the	images	are	broad	
and the spectral colours are not separated.

In	 summary,	 as	 is	 the	 case	 of	 interference	 at	 a	 double	
slit,	 there	 is	 a	 path	 difference	 between	 the	 rays	 from	
adjacent slits of d sinθ. Where there is a whole number of 
wavelengths,	constructive	interference	occurs

For constructive interference and minima

d sinθ = mλ	 	 where	n	=	1,	2,	3…

When there is a path difference between adjacent rays of 
half	a	wavelength,	destructive	interference	occurs.	

For   and maxima

d sinθ = ( m + ½ )λ	 where	n	=	1,	2,	3…

Exercise 9.4
1.	 Light	from	a	laser	is	shone	through	a	diffraction	

grating on to a screen. The screen is a distance of 
2.0	m	from	the	laser.	The	distance	between	the	
central	diffraction	maximum	and	the	first	principal	
maximum formed on the screen is 0.94 m. The 
diffraction	grating	has	680	lines	per	mm.	Estimate	
the wavelength of the light emitted by the laser.

2.	 Monochromatic	light	from	a	laser	is	normally	
incident on a six-slit grating. The slit spacing 
is three times the slit width. An interference 
pattern	is	formed	on	a	screen	2	m	on	the	other	
side of the grating.

(a)	 Determine	and	explain	the	order	of	the	
principal maxima missing from the fringe 
pattern.

(b)	 How	many	subsidiary	maxima	are	there	
between the principal maxima?

(c)	 How	many	principal	maxima	are	there	

	 (i)	 Between	the	two	first	order	minima	
in the diffraction envelope?

	 (ii)	 Between	the	first	and	second	order	
minima in the diffraction envelope?

(d)	 Draw	the	pattern	formed	by	the	bright	
fringes	in	(c).

(e)	 Sketch	the	intensity	profile	of	the	fringe	pattern.

Thin film interference
You	might	well	be	 familiar	with	 the	 coloured	pattern	of	
fringes	 that	 can	 be	 seen	 when	 light	 is	 reflected	 off	 the	
surface	of	water	upon	which	a	thin	oil	film	has	been	spilt	
or	from	light	reflected	from	bubbles.	We	can	see	how	these	
patterns	arise	by	looking	at	Figure	920.

Extended
light source air

A

B

C

1
2

3

4

Oil �lm

Water

Figure 920 Reflection from an oil film

Consider light from an extended source incident on 
a	 thin	film.	We	also	consider	a	wave	 from	one	point	of	
the source whose direction is represented by the ray 
shown.	Some	of	this	light	will	be	reflected	at	A	and	some	
transmitted	 through	 the	 film	where	 some	will	 again	 be	
reflected	at	B	(some	will	also	be	transmitted	into	the	air).	
Some	of	the	light	reflected	at	B	will	then	be	transmitted	at	
C	and	some	reflected	and	so	on.	If	we	consider	just	rays	
1	and	2	then	these	will	be	not	be	in	phase	when	the	are	
brought to a focus by the eye since they have travelled 
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different distances. If the path difference between them 
is an integral number of half wavelengths then we might 
expect	 the	 two	waves	 to	 be	 out	 of	 phase.	However,	 ray	
1	 undergoes	 a	 phase	 change	 of	 π	 on	 reflection	 but	 ray	
2	 does	 not	 since	 it	 is	 reflected	 at	 a	 boundary	 between	
a	 more	 dense	 and	 less	 dense	 medium.	 (See	 chapter	 4)	
Hence	if	the	path	difference	is	an	integral	number	of	half-
wavelengths	rays	1	and	2	will	reinforce	i.e.	ray	1	and	2	are	
in	phase.	However,	 rays	3,	5,	7	etc.	will	be	out	of	phase	
with	rays	2,	4,	6	etc.	but	since	ray	2	is	more	intense	than	
ray	3	and	ray	4	more	intense	than	ray	5,	these	pairs	will	
not cancel out so there will be a maximum of intensity.

If	the	path	difference	is	such	that	wave	1	and	2	are	out	of	
phase,	since	wave	1	is	more	intense	than	wave	2,	they	will	
not	completely	annul.	However,	it	can	be	shown	that	the	
intensities	of	waves	2,	3,	4,	5…	add	to	equal	the	intensity	
of	wave	1.	Since	waves	3,	4.	5…	are	in	phase	with	wave	2	
there will be complete cancellation. 

The path difference will be determined by the angle at 
which	 ray	1	 is	 incident	 and	also	on	 the	 thickness	 (and	
the	actual	refractive	index	as	well)	of	the	film.	Since	the	
source	is	an	extended	source,	the	light	will	reach	the	eye	
from many different angles and so a system of bright and 
dark	fringes	will	be	seen.	You	will	only	see	fringes	if	the	
film	is	very	thin	(except	if	viewed	at	normal	incidence)	
since	increasing	the	thickness	of	the	film	will	cause	the	
reflected	 rays	 to	 get	 so	 far	 apart	 that	 they	 will	 not	 be	
collected by the pupil of the eye.

From	 the	 argument	 above,	 to	 find	 the	 conditions	 for	
constructive and destructive interference	we	need	only	find	
the	path	difference	between	ray	1	and	ray	2.	Figure	921	shows	
the geometry of the situation.

A B
E

F

C

D

1         2

φ’ φ’

φ

φ

d

Figure 921 The geometry of interference

The	film	is	of	thickness	d and refractive index n and the 
light has wavelength λ. If the line BF is perpendicular to 
ray 1 then the optical path difference (opd) between ray 1 
and	ray	2	when	brought	to	a	focus	is

opd = n(AC	+	CB)	–	AF

We have to multiple by the refractive index for the path 
travelled	by	the	light	in	the	film	since	the	light	travels	more	
slowly	 in	 the	film.	 If	 the	 light	 travels	 say	 a	distance	x in a 
material of refractive index n then in the time that it takes to 
travel	this	distance,	the	light	would	travel	a	distance	nx in air. 

If	the	line	CE	is	at	right	angles	to	ray	2	then	we	see	that

AF = nBE

From	the	diagram	AC	=	CD	so	we	can	write	

opd = n(CD	+	CB)	–	nBE	=	nDE

Also	from	the	diagram	we	see	that,	where	φ is the angle 
of refraction 

DE	=	2cosφ 

From which opd	=	2ndcosφ 

Bearing	in	mind	the	change	in	phase	of	ray	1	on	reflection	
we have therefore that the condition for constructive 
interference is 

2nd φcos m 1
2---+ 

  λ m, 1 2 …   , ,= =

And	for	destructive	interference		 2ndcosφ = mλ

Each	fringe	corresponds	to	a	particular	opd for a particular 
value of the integer m and for any fringe the value of the 
angle φ	 is	 fixed.	This	means	 that	 it	will	 be	 in	 the	 form	
of an arc of a circle with the centre of the circle at the 
point where the perpendicular drawn from the eye meets 
the	 surface	 of	 the	 film.	 Such	 fringes	 are	 called	 fringes	
of	equal	 inclination.	Since	 the	eye	has	a	 small	aperture	
these	fringes,	unless	viewed	at	near	to	normal	incidence	 
(φ	 =	 0),	 will	 only	 be	 observed	 if	 the	 film	 is	 very	 thin.	
This	is	because	as	the	thickness	of	the	film	increases	the	
reflected	 rays	will	 get	 further	 and	 further	 apart	 and	 so	
very few will enter the eye.

If	white	light	is	shone	onto	the	film	then	we	can	see	why	
we get multi-coloured fringes since a series of maxima 
and minima will be formed for each wavelength present 
in	 the	 white	 light.	 However,	 when	 viewed	 at	 normal	
incidence,	it	is	possible	that	only	light	of	one	colour	will	
under	go	constructive	interference	and	the	film	will	take	
on this colour. 
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Thickness of oil films

The exercise to follow will help explain this use.

Non-reflecting films

A	 very	 important	 but	 simple	 application	 of	 thin	 film	
interference	is	in	the	production	of	non-reflecting	surfaces.

A	thin	film	of	thickness	d and refractive index n1 is coated 
onto glass of refractive index n where n1 < n.	 Light	 of	
wavelength λ	 that	 is	 reflected	 at	 normal	 incidence	 will	
undergo destructive interference if 12

2
n d λ

= ,	that	is	

14
d

n
λ

=

(remember that there will now no phase change at the glass 
interface i.e. we have a rare to dense reflection)

The	 use	 of	 such	 films	 can	 greatly	 reduce	 the	 loss	 of	
light	by	 reflection	 at	 the	 various	 surfaces	of	 a	 system	of	
lenses	 or	 prisms.	 Optical	 parts	 of	 high	 quality	 systems	
are	 usually	 all	 coated	with	non-reflecting	 films	 in	 order	
to	 reduce	 stray	 reflections.	 The	 films	 are	 usually	 made	
by	evaporating	calcium	or	magnesium	fluo	ride	onto	 the	
surfaces	in	vacuum,	or	by	chemical	treatment	with	acids	
that leave a thin layer of silica on the surface of the glass. 
The	coated	surfaces	have	a	purplish	hue	by	reflected	light.	
This is because the condition for destructive interference 
from	a	particular	film	thickness	can	only	be	obtained	for	
one wavelength. The wavelength chosen is one that has a 
value corresponding to light near the middle of the visible 
spectrum.	This	means	that	reflection	of	red	and	violet	light	
is greater combining to give the purple colour. Because of 
the factor cosφ,	at	angles	other	than	normal	incidence,	the	
path difference will change but	not	significantly	until	say	
about	30°	(e.g.	cos	25°	=	0.90).

It should be borne in mind that no light is actually lost by 
a	non-reflecting	film;	the	decrease	of	reflected	intensity	is	
compensated by increase of transmitted intensity. 

Non-reflecting	 films	 can	 be	 painted	 onto	 aircraft	 to	
suppress	reflection	of	radar.	The	thickness	of	the	film	
is determined by 

4
nd λ

=
 
where λ is the wavelength of 

the radar waves and n	the	refractive	index	of	the	film	
at this wavelength.

Example 

A	 plane-parallel	 glass	 plate	 of	 thickness	 2.0	 mm	 is	
illuminated with light from an extended source. The 
refractive	index	of	the	glass	is	1.5	and	the	wavelength	of	the	
light is 600 nm. Calculate how many fringes are formed.

Solution

We assume that the fringes are formed by light incident at 
all angles from normal to grazing incidence.

At normal incidence we have 2nd = mλ

From which, 

m 2 1.5 2 10 3–×××
6 10 7–×

------------------------------------------- 10 000,= =

At grazing incidence the angle of refraction φ is in fact the 
critical angle. 

Therefore, φφ arcsin 1
1.5------- 
  42 °= =

i.e. cosφ = 0.75

At grazing incidence 2ndcosφ = m / λ

From which (and using cos(sin–1(1/1.5) = 0.75), 

m 2 1.5 2 10 3– 0.75××××
6 10 7–×

------------------------------------------------------------ 7500= =

The total number of fringes seen is equal to m – m / = 2500.

Exercise  9.5
When	 viewed	 from	 above,	 the	 colour	 of	 an	 oil	 film	 on	
water appears red in colour. Use the data below to estimate 
the	minimum	thickness	of	the	oil	film.

average wavelength of red light = 630 nm

refractive	index	of	oil	for	red	light	=	1.5

refractive index of water for red light = 1.3
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9.4  Resolution

Essential idea: Resolution places an absolute limit on the 
extent to which an optical or other system can separate 
images of objects.

Understandings:

•	 The	size	of	a	diffracting	aperture
•	 The	resolution	of	simple	monochromatic	 

two-source systems

The size of a diffracting aperture
Our discussion concerning diffraction so far has been for 
rectangular slits. When light from a point source enters a 
small	circular	aperture,	it	does	not	produce	a	bright	dot	as	an	
image,	but	a	circular	disc	known	as	Airy’s	disc	surrounded	
by	fainter	concentric	circular	rings	as	shown	in	Figure	922.

Laser

Figure 922 Diffraction at a circular aperture

Diffraction	at	an	aperture	is	of	great	importance	because	the	
eye and many optical instruments have circular apertures. 

What is the half-angular width of the central maximum of the 
diffraction formed by a circular aperture? This is not easy to 
calculate since it involves some advanced mathematics. The 
problem	was	first	solved	by	the	English	Astronomer	Royal,	
George	Airy,	in	1835	who	showed	that	for	circular	apertures

θ 1.22 λ
b--------------=  where b is the diameter of the aperture. 

Example 2

In	the	following	diagram,	parallel	light	from	a	distant	point	
source	(such	as	a	star)	is	brought	to	focus	on	the	screen	S	
by	a	converging	lens	(the lens is shown as a vertical arrow).	

The	focal	 length	(distance	 from	lens	 to	screen)	 is	25	cm	
and the diameter of the lens is 3.0 cm. The wavelength of 
the	light	from	the	star	is	560	nm.	Calculate	the	diameter	of	
the diameter of the image on the screen. 

Solution

The lens actually acts as a circular aperture of diameter 
3.0 cm. The half angular width of central maximum of the 
diffraction pattern that it forms on the screen is 

7
5

2

1.22 1.22 5.6 10 2.3 10
3.0 10b

λθ
−

−
−

× ×
= = = ×

×
 rad

The diameter of the central maxima is therefore 

25 × 10-2 × 2.3 × 10-5 

= 5.7 × 10-6 m. 

Although this is small, it is still finite and is effectively the 
image of the star as the intensity of the secondary maxima 
are small compared to that of the central maximum.

The resolution of simple 
monochromatic two-source 
systems
The astronomers tell us that many of the stars that we 
observe with the naked eye are in fact binary stars. That 
is,	what	we	 see	 as	 a	 single	 star	 actually	 consists	of	 two	
stars	in	orbit	about	a	common	centre.	Furthermore,	the	
astronomers	tell	us	that	if	we	use	a	“good”	telescope	then	
we	will	actually	see	the	two	stars.	That	is,	we	will	resolve 
the single point source into its two component parts. 
So	what	is	it	that	determines	whether	or	not	we	see	the	
two stars as a single point source i.e. what determines 
whether or not two sources can be resolved? It can’t just 
be	that	the	telescope	magnifies	the	stars	since	if	they	are	
acting as point sources magnifying them is not going to 
make a great deal of difference. 

In	each	of	our	eyes	there	is	an	aperture,	the	pupil,	through	
which the light enters. This light is then focused by the eye 
lens onto the retina. But we have seen that when light passes 
through an aperture it is diffracted and so when we look at 

 
NATURE OF SCIENCE:
Improved technology: The Rayleigh criterion is the limit 
of resolution. Continuing advancement in technology 
such as large diameter dishes or lenses or the use of 
smaller wavelength lasers pushes the limits of what we 
can resolve. (1.8)

© IBO 2014
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a	point	source,	a	diffraction	pattern	will	be	formed	on	the	
retina. If we look at two point sources then two diffraction 
patterns will be formed on the retina and these patterns 
will overlap. The width of our pupil and the wavelength of 
the light emitted by the sources will determine the amount 
by which they overlap. But the degree of overlap will also 
depend on the angular separation of the two point sources. 
We	can	see	this	from	Figures	923.	

pupil
retina

S1

S2

P2

P1

θ

Figure 923

Light	from	the	source	S1 enters the eye and is diffracted by 
the pupil such that the central maximum of the diffraction 
pattern	is	formed	on	the	retina	at	P1.	Similarly,	light	from	
S2	produces	a	maximum	at	P2. If the two central maxima 
are well separated then there is a fair chance that we will 
see the two sources as separate sources. If they overlap 
then we will not be able to distinguish one source from 
another. From the diagram we see as the sources are 
moved	closer	to	the	eye,	then	the	angle	θ increases and so 
does the separation of the central maxima.

Figures	924,	925,	926	and	927	shows	the	different	diffraction	
patterns	and	the	intensity	distribution,	that	might	result	on	
the retina as a result of light from two point sources

.

S1 S21. Well resolved

Figure 924 Very well resolved

S1            S2
2. Well resolved

Figure 925 Well resolved

S1   S23. Just resolved
    Rayleigh criterion
    Minimum of S2
    coincides with
    maximum peak of
    S1

Figure 926 Just resolved

4. Not resolved

Figure 927 Not resolved

We have suggested that if the central maxima of the two 
diffraction patterns are reasonably separated then we 
should be able to resolve two point sources. In the late 
19th century Lord Rayleigh suggested by how much they 
should be separated in order for the two sources to be 
just resolved. If	the	central	maximum	of	one	diffraction	
pattern	 coincides	 with	 the	 first	minima	 of	 the	 other	
diffraction	 pattern	 then	 the	 two	 sources	 will	 just	 be	
resolved. This is known as the Rayleigh Criterion.

Figure	926	shows	just	this	situation.	The	two	sources	are	
just resolved according to the Rayleigh criterion since the 
peak of the central maximum of one diffraction pattern 
coincides	with	the	first	minimum	of	the	other	diffraction	
pattern. This means that the angular separation of the 
peaks of the two central maxima formed by each source 
is just the half angular width of one central maximum i.e.

θ λ
b---

=

where b is the width of the slit through which the light 
from	the	sources	passes.	However,	we	see	from	Figure	1117	
that θ is the angle that the two sources subtend at the slit. 
Hence	we	conclude	that	two	sources	will	be	resolved	by	a	
slit if the angle that they subtend at the slit is greater than or 
equal	to	λ⁄b
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So	far	we	have	been	assuming	that	the	eye	is	a	rectangular	
slit whereas clearly it is a circular aperture and so we must 
use the formula 

θ 1.22 λ
b--------------=

As mentioned above the angle θ is sometimes called the 
resolving power but should more accurately be called the 
minimum angle of resolution (	θmin)

Clearly the smaller θ the greater will be the resolving power.

The diffraction grating is a useful for differentiating closely 
spaced	lines	in	emission	spectra.	Like	a	prism	spectrometer,	
it can disperse a spectrum into its components but it is 
better suited because it has higher resolution than the 
prism spectrometer.

If λ1 and λ2	 are	 two	 nearly	 equal	 wavelengths	 that	 can	
barely	be	distinguished,	the	resolvance	or	resolving	power	
of	the	grating	is	defined	as:

R =   λ _______ (	λ	2  –  λ 1	)
   =   λ ___ Δλ    

Where λ ≈ λ1 ≈ λ2

Therefore,	 the	diffraction	grating	with	a	high	resolvance	
will be better suited in determining small differences  
in wavelength.

If the diffraction grating has N	lines	being	illuminated,	it	
can be shown that the resolving power of the mth order 
diffraction is given by

R = mN

Obviously,	the	resolvance	becomes	greater	with	the	order	
number m and with a greater number of illuminated slits.

Example

A benchmark for the resolving power of a grating is the sodium 
doublet in the sodium emission spectrum. Two yellow lines in 
its	spectrum	have	wavelengths	of	589.00	nm	and	589.59	nm.

(a)	 Determine	the	resolvance	of	a	grating	if	the	given	
wavelengths are to be distinguished from each other.

(b)	 How	many	lines	in	the	grating	must	be	
illuminated in order to resolve these lines in the 
second order spectrum?

Solution

(a)	 R =   λ ___ Δλ   =   589.00	nm  __________________  (589.00	–	589.59)	nm       

   =   589	nm _______ 0.59	nm   = 1.0 × 103

(b)	 N =   R __ m   =   1.0 ×  10 3  ________ 2	 		=	5.0	×		10	2  lines.

It has been seen that diffraction effectively limits the 
resolving power of optical systems. This includes such 
systems	 as	 the	 eye,	 telescopes	 and	 microscopes.	 The	
resolving power of these systems is dealt with in the next 
section. This section looks at links between technology 
and resolving power when looking at the very distant and 
when looking at the very small.

Radio telescopes

The average diameter of the pupil of the human eye 
is	 about	 2.5	 mm.	 This	 means	 that	 the	 eye	 will	 just	
resolve two point sources emitting light of wavelength 
500	 nm	 if	 their	 angular	 separation	 at	 the	 eye	 is	 
 7

4
3

5.0 101.22 2.4 10
2.5 10

θ
−

−
−

×
= × = ×

×  rad

If the eye were to be able to detect radio waves of wavelength 
0.15	m,	 then	 to	have	 the	 same	 resolving	power	 the	pupil	
would have to have a diameter of about 600 m. Clearly 
this	 is	 nonsense,	 but	 it	 does	 illustrate	 a	 problem	 facing	
astronomers who wish to view very distant objects such as 
quasars	and	galaxies	 that	emit	radio	waves.	Conventional	
radio	 telescopes	 consist	 of	 a	 large	 dish,	 typically	 25	 m	
in	 diameter.	 Even	 with	 such	 a	 large	 diameter,	 the	 radio	
wavelength resolving power of the telescope is much less 
than	the	optical	resolving	power	of	the	human	eye.	Let	us	
look at an example. 

Example

The Galaxy Cygnus A can be resolved optically as an 
elliptically	 shaped	 galaxy.	 However,	 it	 is	 also	 a	 strong	
emitter	of	 radio	waves	of	wavelength	0.15	m.	The	Galaxy	
is	estimated	to	be	5.0	×	1024	m	from	Earth.	Use	of	a	radio	
telescope shows that the radio emission is from two sources 
separated by a distance of 3.0 × 1021	m.	 Estimate	 the	
diameter	of	the	dish	required	to	just	resolve	the	sources.

Solution

The angle θ that the sources resolve at the telescope is given by 

θ 
21

4
24

3.0 10 6.0 10
5.0 10

θ −×
= = ×

×
 rad

and  
4

1.22 1.22 0.15 3000
6.0 10

d λ
θ −

×
= = =

×
m = 3.0 km.

A radio telescope dish of this size would be impossible 
to	make,	 let	alone	support.	This	shows	that	a	single	dish	
type radio telescope cannot be used to resolve the sources 
and	 yet	 they	 were	 resolved.	 To	 get	 round	 the	 problem,	
astronomers use two radio telescopes separated by a large 
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distance. The telescopes view the same objects at the same 
time and the signals that each receive from the objects 
are simultaneously superimposed. The result of the 
superposition of the two signals is a two-slit interference 
pattern. The pattern has much narrower fringe spacing 
than that of the diffraction pattern produced by either 
telescope	 on	 its	 own,	 hence	 producing	 a	 much	 higher	
resolving	power.	When	telescopes	are	used	like	this,	they	
are called a stellar interferometer. 

In	Socorro	in	New	Mexico	there	is	a	stellar	interferometer	
that	 consists	 of	 27	 parabolic	 dishes	 each	 of	 diameter	
25	 m,	 arranged	 in	 a	 Y-shape	 that	 covers	 an	 area	 of	 
570	km2.	This	is	a	so-called	Very	Large	Array	(VLA).	Even	
higher resolution can be obtained by using an array of 
radio telescopes in observatories thousands of kilometres 
apart.	 A	 system	 that	 uses	 this	 so-called	 technique	 of	
‘very-long-baseline	 interferometry’	 (VLBI)	 is	 known	 as	
a	‘very-long-baseline	array’	(VLBA).	With	VLBA,	a	radio	
wavelength resolving power can be achieved that is 100 
times	greater	than	the	best	optical	telescopes.	Even	higher	
resolving power can be achieved by using a telescope that 
is	in	a	satellite	orbiting	Earth.	Japan’s	Institute	of	Space	and	
Astronautical	 Science	 (ISAS)	 launched	 such	a	 system	 in	
February	 1997.	The	National	Astronomical	Observatory	
of	 Japan,	 the	 National	 Science	 Foundation’s	 National	
Radio	 Astronomy	 Observatory	 (NRAO);	 the	 Canadian	
Space	Agency;	 the	Australia	Telescope	National	Facility;	
the	 European	 VLBI	 Network	 and	 the	 Joint	 Institute	
back	 this	 project	 for	Very	Long	Baseline	 Interferometry	
in	 Europe.	This	 project	 is	 a	 very	 good	 example	 of	 how	
Internationalism	can	operate	in	Physics.

Electron microscope

Telescopes are used to look at very distant objects that are 
very	 large	 but,	 because	 of	 their	 distance	 from	us,	 appear	
very	small.	Microscopes	on	the	other	hand,	are	used	to	look	
at objects that are close to us but are physically very small. 
As	we	have	 seen,	 just	magnifying	objects,	 that	 is	making	
them	appear	larger,	is	not	sufficient	on	its	own	to	gain	detail	
about	the	object;	for	detail,	high	resolution	is	needed.	

Figure	928	is	a	schematic	of	how	an	optical microscope is 
used	to	view	an	object	and	Figure	929	is	a	schematic	of	a	
transmission electron microscope	(TEM).

Optical lens 
system 

bright light 
source 

glass slide containing  
specimen (object) 

eye 

Figure 928 The principle of a light microscope 

magnetic lens 
system

 

electron
 source

 

thin wafer of 
material 

Screen/CCD
 

Figure 929 The principle of an electron microscope 

In	 the	 optical	 microscope,	 the	 resolving	 power	 is	
determined by the particular lens system employed and 
the wavelength λ	 of	 the	 light	 used.	 For	 example,	 two	
points in the sample separated by a distance d will just be 
resolved if

2d m
λ=

where m is a property of the lens system know as the 
numerical aperture. In practice the largest value of m 
obtainable	 is	 about	 1.6.	 Hence,	 if	 the	 microscope	 slide	
is	 illuminated	with	 light	 of	wavelength	 480	 nm,	 a	 good	
microscope will resolve two points separated by a distance 
d	≈	1.5	×	10-7	m	≈	0.15	µm.	Points	closer	 together	 than	
this	will	not	be	resolved.	However,	this	is	good	enough	to	
distinguish	some	viruses	such	as	the	Ebola	virus.

Clearly,	the	smaller	λ the higher the resolving power and 
this is where the electron microscope comes to the fore. 
The electron microscope makes use of the wave nature of 
electrons	(see	13.1.5).	In	the	TEM,	electrons	pass	through	
a wafer thin sample and are then focused by a magnetic 
field	 onto	 a	 fluorescent	 screen	 or	CCD	 (charge	 coupled	
device	see	14.2).	Electrons	used	in	an	electron	microscope	
have	wavelengths	typically	of	about	5	×	10-12	m.	However,	
the numerical aperture of electron microscopes is 
considerably	smaller	 than	that	of	an	optical	microscope,	
typically	about	0.02.	Nonetheless,	this	means	that	a	TEM	
can	resolve	two	points	that	are	about	0.25	nm	apart.	This	
resolving power is certainly high enough to make out the 
shape of large molecules.

Another	 type	 of	 electron	 microscope	 uses	 a	 technique	
by which electrons are scattered from the surface of 
the sample. The scattered electrons and then focused as 
in	 the	TEM	 to	 form	 an	 image	 of	 the	 surface.	These	 so-
called	scanning	electron	microscopes	(SEM)	have	a	lower	
resolving	 power	 than	 TEM’s	 but	 give	 very	 good	 three	
dimensional images.

The eye

We saw in the last section that the resolving power of 
the	 human	 eye	 is	 about	 2	 ×	 10-4	 rad.	 Suppose	 that	 you	
are looking at car headlights on a dark night and the car 
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is a distance D away. If the separation of the headlight 
is	 say	 1.5	 m	 then	 the	 headlights	 will	 subtend	 an	 angle	 
θ 1.5

D
θ =

 
at your eye. Assuming an average wavelength of  

500	 nm,	 your	 eye	 will	 resolve	 the	 headlights	 into	 two	
separate	sources	if	this	angle	equals	2	×	10-4 rad. This gives 
D	=	7.5	km.	In	other	words	if	the	car	is	approaching	you	on	
a straight road then you will be able to distinguish the two 
headlights	as	separate	sources	when	the	car	is	7.5	km	away	
from you. Actually because of the structure of the retina 
and optical defects the resolving power of the average eye 
is about 6 × 10-4 rad. This means that the car is more likely 
to	be	2.5	km	away	before	you	resolve	the	headlights.

Astronomical telescope

Let	us	return	to	the	example	of	the	binary	stars	discussed	at	
the beginning of this section on resolution. The stars Kruger 
A and B form a binary system. The average separation of the 
stars is 1.4 × 1012	m	and	their	average	distance	from	Earth	
is	1.2	×	1017	m.	When	viewed	through	a	telescope	on	Earth,	
the system will therefore subtend an angle.

12

17

1.4 10
1.2 10

θ
×

=
×

=	 1.2	×	10-5 rad at the objective lens of the telescope. 
Assuming that the average wavelength of the light emitted 
by	the	stars	is	500	nm,	then	if	the	telescope	is	to	resolve	the	
system into two separate images it must have a minimum 
diameter D	where	1.2	×	10-5 = 

71.22 5.00 10
D

−× × . 

This gives D	=	0.050m,	 which	 is	 about	 5	 cm.	 So	 this	
particular system is easily resolved with a small 
astronomical telescope.

Exercise 9.6
1.	 It	is	suggested	that	using	the	ISAS,	VLBA,	it	would	

be	possible	to	“see”	a	grain	of	rice	at	a	distance	of	
5000	km.	Estimate	the	resolving	power	of	the	VLBA.

2.	 The	distance	from	the	eye	lens	to	the	retina	is	20	
mm. The light receptors in the central part of the 
retina	are	about	5	×	10-6	apart.	Determine	whether	
the spacing of the receptors will allow for the eye 
to resolve the headlights in the above discussion 
when	they	are	2.5	km	from	the	eye.

3.	 The	diameter	of	Pluto	is	2.3	×	106 m and its 
average	distance	from	Earth	is	6.0	×	1012 m. 
Estimate	the	minimum	diameter	of	the	objective	
of	a	telescope	that	will	enable	Pluto	to	be	seen	as	a	
disc as opposed to a point source.

9.5 Doppler effect

Essential idea:	The	Doppler	effect	describes	the	phenomenon	
of	wavelength/frequency	shift	when	relative	motion	occurs.

Understandings:
•	 The	Doppler	effect	for	sound	waves	and	light	waves

The Doppler effect for sound 
waves and light waves

Consider two observers A and B at rest with respect to 
a	sound	source	that	emits	a	sound	of	constant	frequency	
f. Clearly both observers will hear a sound of the same 
frequency.	However,	suppose	that	the	source	now	moves	
at constant speed towards A. A will now hear a sound of 
frequency	fA that is greater than f and B will hear a sound 
of	 frequency	 fB that is less than f. This phenomenon is 
known as the Doppler Effect	 or	Doppler	Principle	 after	 
C. J. Doppler	(1803-1853).

The same effect arises for an observer who is either moving 
towards or away from a stationary source.

Figure 930 shows the waves spreading out from a stationary 
source	 that	 emits	 a	 sound	 of	 constant	 frequency	 f. The 
observers	A	and	B	hear	a	sound	of	the	same	frequency.

A B

wavefront

S

Figure 930 Sound waves from a stationary source

Suppose	 now	 that	 the	 source	 moves	 towards	 A	 with	
constant speed v.	Figure	9310	(a)	shows	a	snapshot	of	the	
new wave pattern.

 
NATURE OF SCIENCE:
Technology: Although originally based on physical 
observations of the pitch of fast moving sources of 
sound, the Doppler effect has an important role in many 
different areas such as evidence for the expansion of the 
universe and generating images used in weather reports 
and in medicine. (5.5)

© IBO 2014

PHYSICS 2015.indb   303 15/05/14   3:37 PM



Chapter 9

304

A
H

L

source
A B

smaller
wavelength

larger
wavelength

Figure 931 (a) Sound waves from a moving source

The wavefronts are now crowded together in the direction 
of travel of the source and stretched out in the opposite 
direction. This is why now the two observers will now hear 
notes	of	different	frequencies.	How	much	the	waves	bunch	
together and how much they stretch out will depend on 
the speed v.	Essentially,	 A

A

cf
λ

= and B
B

cf
λ

=  where λA < λB 
and v is the speed of sound.

If	the	source	is	stationary	and	A	is	moving	towards	it,	then	
the waves from the source incident on A will be bunched 
up. If A is moving away from the stationary source then the 
waves from the source incident on A will be stretched out.

Christian Doppler	(1803–1853)	actually	applied	the	principle	
(incorrectly	as	it	happens)	to	try	and	explain	the	colour	of	
stars.	 However,	 the	 Doppler	 effect	 does	 apply	 to	 light	 as	
well	as	to	sound.	If	a	light	source	emits	a	light	of	frequency	
f then if it is moving away from an observer the observer 
will	measure	the	light	emitted	as	having	a	lower	frequency	
than f.	Since	the	sensation	of	colour	vision	is	related	to	the	
frequency	of	light	(blue	light	is	of	a	higher	frequency	than	
red	 light),	 light	 emitted	 by	 objects	 moving	 way	 from	 an	
observer is often referred to as being red-shifted whereas if 
the object is moving toward the observer it is referred to as 
blue-shifted.	This	idea	is	used	in	Option	E	(Chapter	16).

We do not need to consider here the situations where either 
the source or the observer is accelerating. In a situation 
for example where an accelerating source is approaching 
a	stationary	observer,	then	the	observer	will	hear	a	sound	
of	 ever	 increasing	 frequency.	 This	 sometimes	 leads	 to	
confusion in describing what is heard when a source 
approaches,	 passes	 and	 then	 recedes	 from	 a	 stationary	
observer.	 Suppose	 for	 example	 that	 you	 are	 standing	
on a station platform and a train sounding its whistle is 
approaching at constant speed. What will you hear as the 
train approaches and then passes through the station? As 
the train approaches you will hear a sound of constant pitch 
but increasing loudness. The pitch of the sound will be 
greater than if the train were stationary. As the train passes 
through the station you will hear the pitch change at the 
moment	the	train	passes	you,	to	a	sound,	again	of	constant	
pitch. The pitch of this sound will be lower than the sound 
of the approaching train and its intensity will decrease as 
the train recedes from you. What you do not hear is a sound 
of increasing pitch and then decreasing pitch.

The Doppler equations for sound

Although you will not be expected in an IB examination to 
derive	the	equations	associated	with	aspects	of	the	Doppler	
effect,	you	will	be	expected	to	apply	them.	For	completeness	
therefore,	 the	derivation	of	the	equations	associated	with	
the	Doppler	effect	as	outlined	above	is	given	here.

S ′S O

vs

Figure 931 (b) 

In	Figure	931	(b)	the	observer	O	is	at	rest	with	respect	to	a	
source	of	sound	S	is	moving	with	constan	speed	vs directly 
towards O. The source is emitting a note of constant 
frequency	f and the speed of the emitted sound is v. 

S/	 shows the position of the source ∆t later. When the 
source	is	at	rest,	then	in	a	time	∆t the observer will receive 
f∆t waves and these waves will occupy a distance v∆t. i.e 

v
      f

λ =
f∆t
v∆t =

(Because of the motion of the source this number of 
waves will now occupy a distance (v∆t – vs∆t).	The	 ‘new’	
wavelength is therefore 

v – vs

      f
λ’ =

f∆t
v∆t – vs∆t

=

If f/	is	the	frequency	heard	by	O	then
/

/

vf
λ

=  or 
/

/

v
f

λ = = sv v
f
−

From which

/

s

vf                  f
v v

=
−

Dividing	through	by	v gives

Equation	11.1/
1

1 s
f       f v

v
=

−

If the source is moving away from the observer then we have

/

s

vf                  f
v v

=
−

1

1 sf v
v

=
+

  

Equation	11.2
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We now consider the case where the source is stationary and 
the observer	is	moving towards	the	source with speed v0 . 
In this situation the speed of the sound waves as measured 
by the observer will be v0 + v . We therefore have that

v0 + v = f⁄λ = / vf
λ

×

From which

/ o1 vf                      f
v

 = + 
 

 Equation	11.3

If the observer	is	moving	away	from	the	source then

/ o1 vf                      f
v

 = − 
 

From	equation	(11.3),	we	have	that

/ o o1 v vf f f f f f
v v

 ∆ = − = + − = 
 

 Equation	11.4

The	velocities	that	we	refer	to	in	the	above	equations	are	the	
velocities with respect to the medium in which the waves 
from	the	source	travel.	However,	when	we	are	dealing	with	a	
light source it is the relative velocity between the source and 
the observer that we must consider. The reason for this is that 
light	is	unique	in	the	respect	that	the	speed	of	the	light	waves	
does not depend on the speed of the source. All observers 
irrespective of their speed or the speed of the source will 
measure the same velocity for the speed of light. This is 
one	of	 the	cornerstones	of	 the	Special	Theory	of	Relativity	
which	is	discussed	in	more	detail	in	Option	H	(Chapter18).
When	 applying	 the	 Doppler	 effect	 to	 light	 we	 are	mainly	
concerned with the motion of the source. We look here 
only at the situation where the speed of the source v is much 
smaller than the speed of light c	in	free	space.	(v << c).	Under	
these	circumstances,	when	the	source	is	moving	towards	the	
observer,	equation	11.1	becomes

/ vf f f f
c

− = ∆ =   Equation	11.5

and	when	the	source	is	moving	away	from	the	observer,	
equation	11.2	becomes / vf f f f

c
− = ∆ = −

Provided	 that	 v << c,	 these	 same	 equations	 apply	 for	 a	
stationary source and moving observer 

We look at the following example and exercise.

Example

A	source	emits	a	sound	of	frequency	440	Hz.	It	moves	in	a	
straight line towards a stationary observer with a speed of 
30	m	s-1.	The	observer	hears	a	sound	of	frequency	484	Hz.	
Calculate the speed of sound in air.

Solution

We use equation 11.1 and substitute f/= 484 Hz, f = 440 Hz 

and vs = 30 m s-1.

therefore 
1

484 440 301
v

=
−

 such that 
30 4401

484v
− =  to 

give v = 330 m s-1.

Example

A particular radio signal from a galaxy is measured as 
having	a	frequency	of	1.39	×	109	Hz.	The	same	signal	from	
a	source	in	a	laboratory	has	a	frequency	of	1.42	×	109	Hz.

Suggest	why	 the	galaxy	 is	moving	away	 from	Earth	and	
calculate	its	recession	speed	(i.e.	the	speed	with	which	it	is	
moving	away	from	Earth).

Solution

The fact that the frequency from the moving source is less 
than that when it is stationary indicates that it is moving 
away from the stationary observer i.e. Earth.

Using 
vf         f
c

∆ =  we have 

8 9
6

9

3 10 (1.42 1.39) 10 6.34 10
1.42 10

c fv
f
∆ × × − ×

= = = ×
×

 m s-1

It is usual when dealing with the Doppler effect of light to 
express speeds as a fraction of c. So in this instance we have 
v = 0.021 c

Using the Doppler effect
We have seen in the above example and exercise how the 
Doppler	effect	may	be	used	to	measure	the	recession	speed	
of distant galaxies. The effect is also used to measure speed 
in	other	situations.	Here	we	will	look	at	the	general	principle	
involved	 in	 using	 the	 Doppler	 effect	 to	 measure	 speed.	
Figure	932	shows	a	source	(the	transmitter)	that	emits	either	
sound	 or	 em	 waves	 of	 constant	 frequency	 f. The waves 
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from	the	source	are	 incident	on	a	reflector	that	 is	moving	
towards the transmitter with speed v.	The	reflected	waves	
are detected by the receiver placed alongside the transmitter.

re�ector 

v 

transmitter

receiver

f f / 

f // f / 

Figure 932 Using the Doppler effect to measure speed

We shall consider the situation where v << c where c is the 
speed of the waves from the transmitter.

For	 the	 reflector	 receiving	 waves	 from	 the	 transmitter,	
it is effectively an observer moving towards a stationary 
source.	From	equation	(11.4),	 it	therefore	receives	waves	
that	have	been	Doppler	shifted	by	an	amount	

/ vf f f
c

− =   Equation	11.6

For	 the	 receiver	 receiving	waves	 from	 the	 reflector,	 it	 is	
effectively a stationary observer receiving waves from a 
moving	source.	From	equation	(11.5),	it	therefore	receives	
waves	that	have	been	Doppler	shifted	by	an	amount	

// / /vf f f
c

− =   Equation	11.7

If	we	add	equations	(11.6)	and	(11.7)	we	get	that	the	total	
Doppler	shift	at	the	receiver	∆f is

// / v vf f f f f
c c

− = ∆ = +

But / 1 vf                     f
c

 = + 
 

 hence

1 v v vf f f
c c c

 ∆ = + + 
 

But since v << c,	we	 can	 ignore	 the	 term	
2

2

v
c  when we 

expand	the	bracket	in	the	above	equation.

Therefore we have
2vf            f
c

∆ =  Equation	11.8

If v ≈ c	 then	 we	 must	 use	 the	 full	 Doppler	 equations.	
However,	 for	 em	 radiation	we	will	 always	only	 consider	
situations in which v << c.

Example

The	speed	of	sound	in	blood	is	1.500	×	103 m s-1. Ultrasound 
of	frequency	1.00	MHz	is	reflected	from	blood	flowing	in	
an	 artery.	The	 frequency	of	 the	 reflected	waves	 received	
back	at	the	transmitter	is	1.05	MHz.	Estimate	the	speed	of	
the	blood	flow	in	the	artery.

Solution

Using equation (11.8) we have

6 6
3

20.05 10 10
1.5 10

v
× = ×

×
to give v ≈ 36 m s-1. (We have assumed that the ultrasound 
is incident at right angles to the blood flow.)

Exercise 9.7
1. Judy is standing on the platform of a station. A 

high speed train is approaching the station in a 
straight line at constant speed and is sounding its 
whistle.	As	the	train	passes	by	Judy,	the	frequency	
of the sound emitted by the whistle as heard by 
Judy,	changes	from	640	Hz	to	430	Hz.	Determine

(a)	 the	speed	of	the	train

(b)	 the	frequency	of	the	sound	emitted	by	the	
whistle as heard by a person on the train. 
(Speed	of	sound	=	330	m	s-1)

2.	 A	galaxy	is	moving	away	from	Earth	with	a	
speed	of	0.0500c.	The	wavelength	of	a	particular	
spectral line in light emitted by atomic hydrogen 
in	a	laboratory	is	6.56	×	10-7 m. Calculate the 
value	of	the	wavelength	of	this	line,	measured	in	
the	laboratory,	in	light	emitted	from	a	source	of	
atomic hydrogen in the galaxy.
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10. Fields

Contents

10.1 – Describing fields

10.2 – Fields at work

Essential Ideas

Electric charges and masses each influence the space 
around them and that influence can be represented 
through the concept of fields.

Similar approaches can be taken in analysing electrical 
and gravitational potential problems. © IBO 2014
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10.1 Describing fields

Essential idea: Electric charges and masses each influence 
the space around them and that influence can be 
represented through the concept of fields.

Understandings:
•	 Gravitational	fields	
•	 Electrostatic	fields	
•	 Electric	potential	and	gravitational	potential
•	 Field	lines
•	 Equipotential	surfaces

Gravitational potential
We	have	seen	that	if	we	lift	an	object	of	mass	m to a height h 
above	the	surface	of	the	Earth	then	its	gain	in	gravitational	
potential energy is mgh.	However,	this	is	by	no	means	the	
full	story.	For	a	start	we	now	know	that	g	varies	with	h and 
also	 the	 expression	 really	 gives	 a	 difference	 in	 potential	
energy	between	the	value	that	the	object	has	at	the	Earth’s	
surface	and	the	value	that	it	has	at	height	h.	So	what	we	
really	need	is	a	zero	point.	Can	we	find	a	point	where	the	
potential	energy	is	zero	and	use	this	point	from	which	to	
measure changes in potential energy? 

The point that is chosen is in fact infinity. At infinity the 
gravitational	field	strength	of	any	object	will	be	zero.	So	
let	us	see	if	we	can	deduce	an	expression	for	the	gain	in	
potential	energy	of	an	object	when	it	is	“lifted”	from	the	
surface	of	the	Earth	to	infinity.	This	in	effect	means	finding	
the	work	necessary	to	perform	this	task.

δr

r r δr+

r ∞=

m
g

A
B

Me

Figure 1001 Gravitational forces

In	the	diagram	we	consider	the	work	necessary	to	move	
the particle of mass m a distance δr	 in	 the	gravitational	
field of the Earth.

The force on the particle at A is F
G Mem

r2
----------------=

If	the	particle	is	moved	to	B, then since δr	 is	very	small,	
we	 can	 assume	 that	 the	 field	 remains	 constant	 over	 the	
distance AB.	The	work	δW done against	the	gravitational	
field	of	the	Earth	in	moving	the	distance	AB	is

δW
GMem

r2
----------------δr–=

(remember	that	work	done	against	a	force	is	negative)

To	find	the	total	work	done,	W, in going from the surface 
of	the	Earth	to	infinity	we	have	to	add	all	these	little	bits	of	
work.	This	is	done	mathematically	by	using	integral	calculus.	

W
G Me m

r2
----------------–

 
 
 

rd
R

∞

∫ G Me m 1

r2
----- rd

R

∞

∫– G Me m 1
r---–

R

∞
–= = =

GMe m 0 1
R---– 

 ––=

G Mem
R----------------–=

Hence	we	have,	where	R	is	the	radius	of	the	Earth,	that	the	
work	done	by	the	gravitational	field	in	moving	an	object	of	
mass m from R	(surface	of	the	Earth)	to	infinity,	is	given	by

    W
GMe m

R----------------    –=

We	 can	 generalise	 the	 result	 by	 calculating	 the	 work	
necessary per unit mass to	 take	 a	 small	 mass	 from	
the	 surface	 of	 the	 Earth	 to	 infinity.	 This	 we	 call	 the	
gravitational potential, V,	i.e.,	

We	would	get	exactly	the	same	result	if	we	calculated	the	
work	done	by	the	field	to	bring	the	point	mass	from	infinity	
to the surface of Earth. In this respect the formal definition 
of	gravitational	potential	at	a	point	in	a	gravitational	field	
is therefore defined as the work done per unit mass in 
bringing a point mass from infinity to that point.

Clearly	 then,	 the	 gravitational	 potential	 at	 any	 point	 in	
the	 Earth’s	 field	 distance	 r from the centre of the Earth 
(providing	r > R)	is

    V
GMe

r------------    –=

The	potential	is	therefore	a	measure	of	the	amount	of	work	
that	has	to	be	done	to	move	particles	between	points	in	a	
gravitational	field	and	its	unit	 is	 the	J	kg–1. We also note 
that	the	potential	is	negative	so	that	the	potential	energy	

 
NATURE OF SCIENCE:
Paradigm shift: The move from direct, observable 
actions being responsible for influence on an object to 
acceptance of a field’s “action at a distance” required a 
paradigm shift in the world of science. (2.3)

© IBO 2014
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as	we	move	away	from	the	Earth’s	surface	increases	until	it	
reaches	the	value	of	zero	at	infinity.

If	the	gravitational	field	is	due	to	a	point	mass	of	mass	m,	
then	we	have	the	same	expression	as	above	except	that	Me 
is replaced by m and	must	also	exclude	 the	value	of	 the	
potential at the point mass itself i.e. at r = 0.

We	can	express	the	gravitational	potential	due	to	the	Earth	
(or	due	to	any	spherical	mass)	in	terms	of	the	gravitational	
field strength at its surface.

At	the	surface	of	the	Earth	we	have	

g 0– Re 
GM
Re

---------–= e

So	that,	

g 0Re
2 GM= e

Hence at a distance r from the centre of the Earth the 
gravitational	potential	V	can	be	written	as

V
GMe

r------------–
g 0 Re

2

r------------–= =

The potential at the surface of the Earth 

(r = Re)	is	therefore	-g0Re

It	 is	 interesting	 to	 see	 how	 the	 expression	 for	 the	
gravitational	 potential	 ties	 in	 with	 the	 expression	 mgh. 
The	potential	at	the	surface	of	the	Earth	is	-g0Re (see the 
example	above)	and	at	a	height	h	will	be	-g0g 0 Re h+( )– 	if	we	
assume that g0	does	not	change	over	 the	distance	h. The 
difference	in	potential	between	the	surface	and	the	height	
h is therefore g0h.	So	the	work	needed	to	raise	an	object	
of mass m to a height h is mgh	 ,	 i.e.,	 m ×	difference	 in	
gravitational	potential

This	 we	 have	 referred	 to	 as	 the	 gain	 in	 gravitational	
potential	energy	(see	2.3.5).

However,	 this	 expression	 can	 be	 extended	 to	 any	 two	
points	 in	any	gravitational	field	such	 that	 if	an	object	of	
mass m	moves	between	 two	points	whose	potentials	are	
V1 and V2 respectively,	 then	 the	 change	 in	 gravitational	
potential	energy	of	the	object	is	m(V1 – V2).

Gravitational  
potential gradient

Let	 us	 consider	 now	 a	 region	 in	 space	 where	 the	
gravitational	field	is	constant.	In	Figure	912	the	two	points	
A	and	B	are	separated	by	the	distance	∆x.

 

A B 

direction of  uniform gravitational 
�eld of strength I 

∆x 

Figure 1002 The gravitational potential gradient

The	 gravitational	 field	 is	 of	 strength	 I and is in the 
direction	 shown.	The	 gravitational	 potential	 at	 A	 is	 V 
and	at	B	is	V +	∆V. 

The	work	done	 is	 taking	a	point	mass	m	from	A	to	B	 is	
F∆x = mI∆x.

However,	by	definition	this	work	is	also	equal	to	-m∆V.

Therefore mI∆x	=	-m∆V

or 
VI
x

∆
= −

∆
Effectively	this	says	that	the	magnitude	of	the	gravitational	
field	 strength	 is	 equal	 to	 the	 negative	 gradient	 of	 the	
potential. If I is constant then V is a linear function of x 
and I	is	equal	to	the	negative	gradient	of	the	straight	line	
graph formed by plotting V against x. If I is not constant 
(as	usually	the	case),	then	the	magnitude	of	I at any point 
in the field can be found by find the gradient of the V-x 
graph at that point. An example of such a calculation can 
be	found	in	Section	9.2.9.

For those of you who do HL maths the relationship between 
field and potential is seen to follow from the expression for 
the potential of a point mass viz:

mV G
r

= −

2

d
d
V mG I
r r

− = + =  

Potential due to one  
or more point masses

Gravitational	potential	is	a	scalar	quantity	so	calculating	the	
potential due to more than one point mass is a matter of 
simple	addition.	So	for	example,	the	potential	V due to the 
Moon and Earth and a distance x from	the	centre	of	Earth,	
on	a	straight	line	between	them,	is	given	by	the	expression

E MM MV G
x r x

 = − + − 

where	ME	=	mass	of	Earth,	MM= mass of Moon and r = 
distance	between	centre	of	Earth	and	Moon.
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Equipotentials and field lines
If	the	gravitational	potential	has	the	same	value	at	all	points	
on	 a	 surface,	 the	 surface	 is	 said	 to	 be	 an	 equipotential 
surface.	So	for	example,	if	we	imagine	a	spherical	shell	about	
Earth	whose	centre	coincides	with	the	centre	of	Earth,	this	
shell	will	be	an	equipotential	surface.	Clearly,	if	we	represent	
the	gravitational	field	strength	by	field	lines,	since	the	lines	
“radiate”	out	from	the	centre	of	Earth,	then	these	lines	will	be	
at	right	angles	to	the	surface	If	the	field	lines	were	not	normal	
to	the	equipotential	surface	then	there	would	be	a	component	
of	 the	 field	 parallel	 to	 the	 surface.	This	 would	mean	 that	
points	on	the	surface	would	be	at	different	potentials	and	so	
it	would	no	longer	be	an	equipotential	surface.	This	of	course	
holds	true	for	any	equipotential	surface.

Figure	 1003	 shows	 the	 field	 lines	 and	 equipotentials	 for	
two	point	masses	m. 

m m

Figure 1003 Equipotentials for two point masses

It	 is	 worth	 noting	 that	 we	 would	 get	 exactly	 the	 same	
pattern	 if	we	were	 to	 replace	 the	point	masses	with	 two	
equal	point	charges.	(See	9.3.5)

Escape speed
The potential at the surface of Earth is 	 which	 
means	that	the	energy	required	to	take	a	particle	of	mass	 
m	from	the	surface	to	infinity	is	equal	to	

But	what	does	it	actually	mean	to	take	something	to	infinity?	
When	the	particle	is	on	the	surface	of	the	Earth	we	can	think	of	
it	as	sitting	at	the	bottom	of	a	“potential	well”	as	in	figure	1004.

 

particle

surface of Earth

in�nity

GM
R---------

FIgure 1004 A potential well

The	“depth”	of	the	well	is	  and if the particle gains an  
amount	 of	 kinetic	 energy	 equal	 to	 	where	m is its  
mass	then	it	will	have	just	enough	energy	to	“lift”	it	out	
of	the	well.	

In	 reality	 it	 doesn’t	 actually	 go	 to	 infinity	 it	 just	means	
that	 the	 particle	 is	 effectively	 free	 of	 the	 gravitational	
attraction	of	 the	Earth.	We	 say	 that	 it	has	 “escaped”	 the	
Earth’s	gravitational	pull.	We	meet	this	idea	in	connection	
with	molecular	 forces.	Two	molecules	 in	 a	 solid	will	 sit	
at	 their	 equilibrium	 position,	 the	 separation	 where	 the	
repulsive	force	is	equal	to	the	attractive	force.	If	we	supply	
just	 enough	 energy	 to	 increase	 the	 separation	 of	 the	
molecules such that they are an infinite distance apart then 
intermolecular	forces	no	longer	affect	the	molecules	and	
the	solid	will	have	become	a	liquid.	There	is	no	increase	in	
the	kinetic	energy	of	the	molecules	and	so	the	solid	melts	
at constant temperature.

We	can	calculate	the	escape	speed	of	an	object	very	easily	
by	 equating	 the	 kinetic	 energy	 to	 the	 potential	 energy	
such that

1
2
---mvesc ape

2 GMe m
Re

----------------=

    vesc ape⇒
2GMe

Re
--------------- 2g0 Re    = =

Substituting for g0 and Re	gives	a	value	for	vescape of about 
11	km	s–1 from the surface of the Earth.

You	will	note	that	the	escape	speed	does	not	depend	on	the	
mass	of	the	object	since	both	kinetic	energy	and	potential	
energy are proportional to the mass.

In	theory,	if	you	want	to	get	a	rocket	to	the	moon	it	can	
be	done	without	reaching	the	escape	speed.	However,	this	
would	necessitate	 an	enormous	amount	of	 fuel	 and	 it	 is	
likely	 that	 the	rocket	plus	 fuel	would	be	so	heavy	that	 it	
would	never	get	off	the	ground.	It	is	much	more	practical	
to	 accelerate	 the	 rocket	 to	 the	 escape	 speed	 from	Earth	
orbit	and	then,	in	theory,	just	launch	it	to	the	Moon.

Example

Use	 the	 following	data	 to	determine	 the	potential	 at	 the	
surface of Mars and the magnitude of the acceleration of 
free fall 

mass	of	Mars		 =	6.4	×	1023	kg

radius	of	Mars	 	=	3.4	×	106 m

Determine	also	the	gravitational	field	strength	at	a	distance	
of 6.8 × 106	m	above	the	surface	of	Mars.
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Solution

= − = − × × =   ×
23

11     7
6

6.4 10
6.7 10 –1.3 10

3.4 10
MV G
R

− ×
×

N	kg-1

But V = -g0R 

Therefore 
7

0 6

1.3 10 3.8
3.4 10

Vg
R

×
= − = =

×
m s-2

To determine the field strength gh at 6.8 × 106 m above the  
surface, we use the fact that 0 2

Mg G
R

=  such that GM = g0R
2

Therefore 
2 2

0
h 2 2 2

h h

3.8 (3.4) 0.42
(10.2)

g RGMg
R R

×
= = = =  m s-2

(the distance from the centre is 3.4 × 106 + 6.8 × 106 = 10.2 × 106 m) 

Exercise 10.1
1.	 The	graph	below	shows	how	the	gravitational	

potential	outside	of	the	Earth	varies	with	distance	
from the centre.

0          10      20       30      40       50       60      70

–1

–2

–3

–4

–5

–6

–7

r /m × 106

V
 / 

Jk
g–1

 × 
10

7

(a)	 Use	the	graph	to	determine	the	gain	in	
gravitational	potential	energy	of	a	satellite	
of	mass	200	kg	as	it	moves	from	the	surface	
of the Earth to a height of 3.0 × 107	m	above	
the	Earth’s	surface.

(b)	 Calculate	the	energy	required	to	take	it	 
to infinity?

(c)	 Determine	the	slope	of	the	graph	at	the	
surface	of	the	Earth,	m?	Comment	on	 
your	answer.

Electric potential energy 

The	 concept	 of	 electric	 potential	 energy	 was	 developed	
with	 gravitational	 potential	 energy	 in	 mind.	 Just	 as	 an	
object	near	the	surface	of	the	Earth	has	potential	energy	
because	 of	 its	 gravitational	 interaction	 with	 the	 Earth,	
so	too	there	is	electrical	potential	energy	associated	with	
interacting charges.

Let	us	first	look	at	a	case	of	two	positive	point	charges	each	
of 1μC that are initially bound together by a thread in a 
vacuum	in	space	with	a	distance	between	them	of	10	cm	
as	shown	in	Figure	1005.	When	the	thread	is	cut,	the	point	
charges,	initially	at	rest	would	move	in	opposite	directions,	
moving	with	velocities	v1 and v2 along the direction of the 
electrostatic force of repulsion.

BEFORE AFTER

v v21

Figure 1005 Interaction of two positive particles

The electric potential energy	between	two	point	charges	
can be found by simply adding up the energy associated 
with	each	pair	of	point	charges.	For	a	pair	of	interacting	
charges,	the	electric	potential	energy	is	given	by:

∆U = ∆Ep + ∆Ek = ∆W = ∆Fr = 
kqQ

 ____ r2  × r =  
kqQ

 ____ r      

Because	no	external	force	is	acting	on	the	system,	the	energy	
and	 momentum	 must	 be	 conserved.	 Initially,	 Ek = 0 and  
Ep =	k	qQ	/	r	=	9	×	109 × 1 × 10-12	/	0.1	m	=	0.09	J.	When	they	
are	a	great	distance	 from	each	other,	Ep	will	be	negligible.	
The	final	energy	will	be	equal	to	½	mv1

2	+	½	mv2
2	=	0.09	J.	

Momentum	 is	also	conserved	and	 the	velocities	would	be	
the same magnitude but in opposite directions.

Electric potential energy	is	more	often	defined	in	terms	of	
a	point	charge	moving	in	an	electric	field	as:

‘the	 electric	potential	 energy	between	any	 two	points	 in	
an electric field is defined as negative	of	the	work	done by 
an	electric	field	in	moving	a	point electric charge	between	
two	locations	in	the	electric	field.’

    ΔU = ΔEp = -ΔW = -Fd = qEx 
 
   

  ΔU = ΔEp +ΔEk = ΔW =  ΔFr = kqQ / r2 x r = kqQ 

where	x	is	the	distance	moved	along	(or	opposite	to)	the	
direction of the electric field.

Electric potential energy	is	measured	in	joule	(J).	Just	as	
work	is	a	scalar	quantity,	so	too	electrical	potential	energy	
is a scalar quantity. The negative of the work done by an 
electric field in moving a unit electric charge between 
two points is independent of the path taken. In	physics,	
we	say	the	electric	field	is	a	‘conservative’ field.
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Suppose	an	external	force	such	as	your	hand	moves	a	small	
positive	 point	 test	 charge	 in	 the	 direction	 of	 a	 uniform	
electric	 field.	As	 it	 is	moving	 it	must	 be	 gaining	 kinetic	
energy.	If	this	occurs,	then	the	electric	potential	energy	of	
the unit charge is changing. 

In	Figure	1006	a	point	charge	+q	is	moved	between	points	
A	and	B	through	a	distance	x in a uniform electric field.  

B  

A 

x 

  
 

 

+ q 

Figure 1006 Movement of a  
positive point charge in a uniform field

In	order	to	move	a	positive	point	charge	from	point	A	to	
point	B,	an	external	 force	must	be	applied	 to	 the	charge	
equal	to	qE (F = qE).

Since the force is applied through a distance x,	then	negative	
work	has	 to	 be	done	 to	move	 the	 charge	 because	 energy	
is	 gained,	meaning	 there	 is	 an	 increase	electric potential 
energy	between	the	two	points.	Remember	that	the	work	
done	is	equivalent	to	the	energy	gained	or	lost	in	moving	
the charge through the electric field. The concept of electric 
potential energy is only meaningful as the electric field 
which	generates	the	force	in	question	is	conservative.

   W F x× E q x   ×= =  

θ x cos θ x 

Figure 1007 Charge moved at an angle to the field

If	 a	 charge	moves	 at	 an	 angle	 θ	 to	 an	 electric	 field,	 the	
component of the displacement parallel to the electric 
field	is	used	as	shown	in	Figure	918

W F x Eq x θcos×= =

The	electric	potential	energy	is	stored	in	the	electric	field,	
and	 the	electric	field	will	 return	 the	energy	 to	 the	point	
charge	 when	 required	 so	 as	 not	 to	 violate	 the	 Law	 of	
conservation	of	energy.

Electric potential 

The electric potential at a point in an electric field is 
defined as being the work done per unit charge in bringing 
a small positive point charge from infinity to that point.

ΔV = V∞ – Vf = – W ___ q 

If	we	designate	the	potential	energy	to	be	zero	at	infinity	
then	 it	 follows	 that	electric	potential	must	also	be	zero	
at infinity and the electric potential at any point in an 
electric	field	will	be:

ΔV = – W ___ q 

Now	suppose	we	apply	an	external	force	to	a	small	positive	
test	charge	as	it	is	moved	towards	an	isolated	positive	charge.	
The	external	force	must	do	work	on	the	positive	test	charge	
to	move	it	towards	the	isolated	positive	charge	and	the	work	
must	be	positive	while	the	work	done	by	the	electric	field	
must	therefore	be	negative.	So	the	electric	potential	at	that	
point	must	be	positive	according	to	the	above	equation.	If	
a	negative	isolated	charge	is	used,	the	electric	potential	at	a	
point	on	the	positive	test	charge	would	be	negative.	Positive	
point	 charges	of	 their	 own	accord,	move	 from	a	place	of	
high	electric	potential	 to	a	place	of	 low	electric	potential.	
Negative	 point	 charges	 move	 the	 other	 way,	 from	 low	
potential	to	high	potential.	In	moving	from	point	A	to	point	
B	in	the	diagram,	the	positive	charge	+q	is	moving	from	a	
low	electric	potential	to	a	high	electric	potential.	

In	 the	definition	given,	 the	 term	“work	per	unit	charge”	
has significance. If the test charge is +1.6 × 10-19C	where	
the charge has a potential energy of 3.2 × 10-17	J,	then	the	
potential	would	be	3.2	×	10-17J	/	+1.6	×	10-19	C	=	200	JC-1. 
Now	 if	 the	 charge	 was	 doubled,	 the	 potential	 would	
become	 6.4	×	10-17	 J.	 However,	 the	 potential	 per	 unit	
charge	would	be	the	same.

Electric potential is a scalar quantity	and	it	has	units	JC-1 
or	volts	where	1	volt	equals	one	 joule	per	coloumb.	The	
volt	allows	us	to	adopt	a	unit	for	the	electric	field	in	terms	
of	the	volt.

Previously,	the	unit	for	the	electric	field	was	NC–1. 

W = qV and F = qE,	so		W ___ V  =  F __ E 

E =  FV ___ W  =  FV ___ Fm   V m–1.

That	 is,	 the	 units	 of	 the	 electric	 field,	 E,	 can	 also	 be	
expressed as V m–1.

The work done per unit charge in moving a point 
charge between two points in an electric field is again 
independent of the path taken.
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Electric potential due to a point charge

Let	us	 take	a	point	 r	metres	 from	a	 charged	object.	The	
potential	at	this	point	can	be	calculated	using	the	following:

W = –Fr = –qV and F = – 
q1 q2 _____ 4πε0r

2  

Therefore,	

 W = – 
q1 q2 _____ 4πε0r

2  × r = – 
q1 q2 _____ 4πε0r

  = –q1 ×  
q2 _____ 4πε0r

  = –q1V  

That is
    V q

4πε0r---------------    =

Or,	simply

   V kq
r------    

=

Example

Determine	how	much	work	is	done	by	the	electric	field	of	
point	charge	15.0	μC	when	a	charge	of	2.00	μC	is	moved	
from	 infinity	 to	 a	point	 0.400	m	 from	 the	point	 charge.	
(Assume	no	acceleration	of	the	charges).

Solution

The work done by the electric field is W = -qV  
= -1/4πε0 × q × (Q /r∞ - Q / r0.400)

W = (- 2.00 × 10-6 C × 9.00 × 109 NmC-2 × 15.0 × 10-6 C) ÷ 
0.400 m = - 0.675 J

An external force would have to do +0.675 J of work.

Electric field strength and 
electric potential gradient

Let	us	 look	back	at	Figure	1006.	Suppose	again	 that	 the	
charge	+q	is	moved	a	small	distance	by	a	force	F	from	A	to	
B	so	that	the	force	can	be	considered	constant.	The	work	
done	is	given	by:

∆W F x∆×=

The	force	F	and	the	electric	field	E	are	oppositely	directed,	
and	we	know	that:

F = -qE and ΔW = q ΔV 

Therefore,	the	work	done	can	be	given	as:

q ΔV = -q E Δx 

Therefore E V∆
x∆-------

–=

The rate of change of potential ΔV at a point with respect 
to distance Δx in the direction in which the change is 
maximum is called the potential gradient. We say that the 
electric field = - the potential gradient and the units are Vm-

1. From the equation we can see that in a graph of electric 
potential versus distance, the gradient of the straight line 
equals the electric field strength. 

In reality, if a charged particle enters a uniform electric field, 
it will be accelerated uniformly by the field and its kinetic 
energy will increase. This is why we had to assume no 
acceleration in the last worked example.

Ek∆ 1
2---

mv2 q E x⋅ ⋅ q V
x---

x⋅ ⋅ q V⋅= = = =

Example

Determine	 how	 far	 apart	 two	 parallel	 plates	 must	 be	
situated	 so	 that	 a	 potential	 difference	 of	 1.50	 ×	 102 V 
produces an electric field strength of 1.00 × 103 NC-1.

Solution

Using E V∆
x------- x⇔– V∆

E-------
1.5 102 V×

1.00 103 N C 1–×
------------------------------------------= = =

 = 1.50 × 10-1

The plates are 1.50 × 10-1 m apart.

The electric field and the electric potential at a point due 
to an evenly distributed charge +q on a sphere can be 
represented graphically as in Figure 1008.

 

r

r

V

E

r0

r0

r0

Charge of +Q evenly distributed 
over  surface

E 1
4πε0
------------ Q

r2----- r r0>,=

V 1
4πε0
------------Q

r----
r r0>,=

Figure 1008 Electric field and  
potential due to a charged sphere
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When	 the	 sphere	 becomes	 charged,	 we	 know	 that	 the	
charge	distributes	 itself	evenly	over	the	surface.	Therefore	
every	part	of	the	material	of	the	conductor	is	at	the	same	
potential. As the electric potential at a point is defined as 
being	numerically	equal	to	the	work	done	in	bringing	a	unit	
positive	charge	from	infinity	to	that	point,	it	has	a	constant	
value	in	every	part	of	the	material	of	the	conductor.

Since the potential is the same at all points on the conducting 
surface,	then	∆V	/	∆x	is	zero.	But	E	=	–	∆V	/	∆x.	Therefore,	
the electric field inside the conductor is zero. There is no 
electric field inside the conductor.

Some	further	observations	of	the	graphs	in	Figure	1009	are:	

•	 Outside	the	sphere,	the	graphs	obey	the	relationships	
given	as	E α 1 / r2 and V α 1 / r

•	 At	the	surface,	r = r0.	Therefore,	the	electric	field	and	
potential	have	the	minimum	value	for	r at this point 
and this infers a maximum field and potential.

•	 Inside	the	sphere,	the	electric	field	is	zero.
•	 Inside	the	sphere,	no	work	is	done	to	move	a	charge	

from	a	point	inside	to	the	surface.	Therefore,	there	is	
no potential difference and the potential is the same 
as	it	is	when	r = r0.

Similar	graphs	can	be	drawn	for	the	electric	field	intensity	and	
the electric potential as a function of distance from conducting 
parallel	plates	and	surfaces,	and	these	are	given	in	Figure	1009.

Potential plot E  �eld plotE �eld:
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x

Figure 1009 Electric field and electric  
potential at a distance from a charged surface

Potential due to one  
or more point charges

The potential due to one point charge can be determined 
by	using	the	equation	formula

V = kq / r.

Example 1

Determine the electric potential at a point 2.0 × 10-1 m 
from	the	centre	of	an	 isolated	conducting	 sphere	with	a	
point	charge	of	4.0	pC	in	air.	

Solution

Using the formula

V = kq / r , we have

V
9.0 10 9×( ) 4.0 10 12–×( )×

2.0 10 1–×( )
------------------------------------------------------------------ 0.18 V= =

the potential at the point is 1.80 × 10-1 V.

The potential due to a number of point charges can be 
determined by adding up the potentials due to individual 
point charges because the electric potential at any point 
outside a conducting sphere will be the same as if all the 
charge was concentrated at its centre.

Example 2

Three	point	charges	of	are	placed	at	the	vertices	of	a	right-
angled	triangle	as	shown	in	the	diagram	below.	Determine	
the	absolute	potential	at	 the	+	2.0	μC	charge,	due	to	the	
two		other	charges.	

- 6μC 
 

+3μC +2μC 

4 m 

3 m 

Solution

The electric potential of the +2 μC charge due to the  
– 6 μC charge is:

V = (9 × 109 Nm2C-2 × -6 × 10-6 C) ÷ (√ 32 + 42) m =  
- 1.08 × 104 V
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In	summary,	we	can	conclude	that

• No work is done to move a charge along an 
equipotential.

• Equipotentials are always perpendicular to the 
electric lines of force.

Figure	1011	and	1012	show	some	equipotential	 lines	 for	
two	 oppositely	 charged	 and	 identically	 positive	 spheres	
separated by a distance.

+ve –ve

equipotential lines

Figure 1011 Equipotential lines  
between two opposite charges

equipotential lines

Figure 1012 Equipotential lines between 
two charges which are the same

 + 

– – – – 

+ + + 

40 V 

30 V 

20 V 

10 V 

50 V 

 

Figure 1013 Equipotential lines between charged parallel plates

Figure	1013	shows	the	equipotential	lines	between	charged	
parallel plates. Throughout this chapter the similarities and 
differences	 between	 gravitational	 fields	 and	 electric	 fields	
have	been	discussed.	The	relationships	that	exists	between	
gravitational	and	electric	quantities	and	the	effects	of	point	
masses	and	charges	is	summarised	in	Table	1014	

The electric potential of the +2 μC charge due to the  
+3 μC charge is:

V = (9 × 109 Nm2C-2 × 3 × 10-6 C) ÷ 3m = 9 × 103 V

The net absolute potential is the sum of the 2 potentials
- 1.08 × 104 V + 9 × 103 V =
- 1.8 × 103 V

The absolute potential at the point is - 1.8 × 103 V.

Equipotential surfaces
Regions	 in	 space	 where	 the	 electric	 potential	 of	 a	 charge	
distribution	has	a	constant	value	are	called	equipotentials. The 
places	where	the	potential	is	constant	in	three	dimensions	are	
called equipotential surfaces,	and	where	they	are	constant	in	
two	dimensions	they	are	called	equipotential lines. 

They	are	in	some	ways	analogous	to	the	contour	lines	on	
topographic	maps.	In	this	case,	the	gravitational	potential	
energy	 is	 constant	 as	 a	mass	moves	 around	 the	 contour	
lines	 because	 the	 mass	 remains	 at	 the	 same	 elevation	
above	the	Earth’s	surface.	The	gravitational	field	strength	
acts in a direction perpendicular to a contour line.

Similarly,	because	the	electric	potential	on	an	equipotential	
line	has	 the	same	value,	an	electric	 force	can	do	no	work	
when	a	 test	charge	moves	on	an	equipotential.	Therefore,	
the	 electric	 field	 cannot	 have	 a	 component	 along	 an	
equipotential,	and	thus	it	must	be	everywhere	perpendicular	
to	the	equipotential	surface	or	equipotential	line.	This	fact	
makes	it	easy	to	plot	equipotentials	if	the	lines	of	force	or	
lines	of	electric	flux	of	an	electric	field	are	known.

For	example,	there	are	a	series	of	equipotential	lines	between	
two	parallel	plate	conductors	that	are	perpendicular	to	the	
electric	 field.	There	will	 be	 a	 series	 of	 concentric	 circles	
(each	circle	further	apart	than	the	previous	one)	that	map	
out	the	equipotentials	around	an	isolated	positive	sphere.	
The	 lines	 of	 force	 and	 some	 equipotential	 lines	 for	 an	
isolated	positive	sphere	are	shown	in	Figure	1010.

Lines of
equipotential

Figure 1010 Equipotentials around an isolated  
positive sphere
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Figure 1014 Formulas

Example 

Deduce the electric potential on the surface of a gold 
nucleus that has a radius of 6.2 fm.

Solution

Using the formula

V = kq / r , and knowing the atomic number of gold is 79. 
We will assume the nucleus is spherical and it behaves as if it 
were a point charge at its centre (relative to outside points).

V = 9.0 × 109 Nm2C-2 × 79 × 1.6 × 10-19 C ÷ 6.2 × 10-15 m 
= 1.8 × 107 V

The potential at the point is 18 MV.

Example 

Deduce	 the	 ionisation	 energy	 in	 electron-volts	 of	 the	
electron in the hydrogen atom if the electron is in its 
ground state and it is in a circular orbit at a distance of  
5.3 × 10-11 m from the proton. 

Solution

This problem is an energy, coulombic, circular motion question 
based on Bohr’s model of the atom (not the accepted quantum 
mechanics model). The ionisation energy is the energy required 
to remove the electron from the ground state to infinity. 
The electron travels in a circular orbit and therefore has a 
centripetal acceleration. The ionisation energy will counteract 
the coulombic force and the movement of the electron will be 
in the opposite direction to the centripetal force.

Total energy = Ek electron + Ep due to the proton-electron 
interaction

ΣF = kqQ / r2 = mv2 / r and as such mv2 = = kqQ / r.

Therefore, Ek electron = ½ kqQ / r.

Ep due to the proton-electron interaction = - kqQ / r.

Total energy = ½ kqQ / r + - kqQ / r = -½ kqQ / r 

= - 9.0 × 109 Nm2C-2 × (1.6 × 10-19 C)2 ÷ 5.3 × 10-11 m =  
-2.17 × 10-18 J

= -2.17 × 10-18 J ÷ 1.6 × 10-19 = -13.6 eV. 

The ionisation energy is 13.6 eV.

Exercise 10.2
1.	 A	point	charge	P	is	placed	midway	between	two	

identical	negative	charges.	Which	one	of	the	
following	is	correct	with	regards	to	electric	field	
and	electric	potential	at	point	P?

Electric field Electric potential
A non-zero zero
B zero non-zero
C non-zero non-zero
D zero zero

2.		 Two	positive	charged	spheres	are	tied	together	in	
a	vacuum	somewhere	in	space	where	there	are	no	
external forces. A has a mass of 25 g and a charge 
of	2.0	μC	and	B	has	a	mass	of	15	g	and	a	charge	of	
3.0	μC.	The	distance	between	them	is	4.0	cm.	They	
are	then	released	as	shown	in	the	diagram.

 

BEFORE    AFTER 

v1 v2 

A B 

(a)	 Determine	their	initial	electric	potential	
energy in the before situation.

(b)	 Determine	the	speed	of	sphere	B	after	release.

3.	 The	diagram	below	represents	two	equipotential	
lines in separated by a distance of 5 cm in a 
uniform electric field.

 +   +   +   +   +   +   +   +  

–   –   –   –   –   –   –   – 

 
 

 

40 V 

20 V 
5 cm 
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Determine the strength of the electric field. 

4.		 This	question	is	about	the	electric	field	due	to	a	
charged sphere and the motion of electrons in that 
field.	The	diagram	below	shows	an	isolated,	metal	
sphere	in	a	vacuum	that	carries	a	negative	electric	
charge of 6.0 μC.

 

– 

(a)	 On	the	diagram	draw	the	conventional	way	
to represent the electric field pattern due to 
the charged sphere and lines to represent 
three	equipotential	surfaces	in	the	region	
outside the sphere.

(b)	 Explain	how	the	lines	representing	the	
equipotential	surfaces	that	you	have	
sketched	indicate	that	the	strength	of	the	
electric	field	is	decreasing	with	distance	
from the centre of the sphere.

(c)	 The	electric	field	strength	at	the	surface	of	
the sphere and at points outside the sphere 
can be determined by assuming that the 
sphere acts as a point charge of magnitude 
6.0 μC at its centre. The radius of the sphere 
is 2.5 × 10–2 m. Deduce that the magnitude 
of the field strength at the surface of the 
sphere is 8.6 × 107 Vm–1.

 An electron is initially at rest on the surface 
of the sphere.

(d)	 (i)	 Describe	the	path	followed	by	the	
electron	as	it	leaves	the	surface	of	the	
sphere.

	 (ii)	 Calculate	the	initial	acceleration	of	
the electron.

5.	 Determine	the	amount	of	work	that	is	done	in	
moving	a	charge	of	10.0	nC	through	a	potential	
difference	of	1.50	×	102 V.

6. Three identical 2.0 μC conducting spheres are 
placed	at	the	corners	of	an	equilateral	triangle	of	
sides 25 cm. The triangle has one apex C pointing 
up	the	page	and	2	base	angles	A	and	B.	Determine	
the	absolute	potential	at	B	.

7.	 Determine	how	far	apart	two	parallel	plates	
must	be	situated	so	that	a	potential	difference	of	
2.50 × 102 V produces an electric field strength of 
2.00 × 103 NC-1.

8.	 The	gap	between	two	parallel	plates	is	1.0	×	10-3	m,	
and	there	is	a	potential	difference	of	1.0	×	104 V 
between	the	plates.	Calculate

i.	 the	work	done	by	an	electron	in	moving	
from one plate to the other

ii.	 the	speed	with	which	the	electron	reaches	
the second plate if released from rest.

iii.	 the	electric	field	intensity	between	the	plates.

9.	 An	electron	gun	in	a	picture	tube	is	accelerated	
by a potential 2.5 × 103	V.	Determine	the	kinetic	
energy	gained	by	the	electron	in	electron-volts.

10. Determine the electric potential 2.0 × 10-2 m from 
a	charge	of	-1.0	×	10-5 C.

11.		 Determine	the	electric	potential	at	a	point	mid-
way	between	a	charge	of	–20	pC	and	another	
of	+	5	pC	on	the	line	joining	their	centres	if	the	
charges are 10 cm apart.

12. During a thunderstorm the electric potential 
difference	between	a	cloud	and	the	ground	is	
1.0 × 109 V. Determine the magnitude of the 
change in electric potential energy of an electron 
that	moves	between	these	points	in	electron-volts.

13. A charge of 1.5 μC is placed in a uniform electric 
field	of	two	oppositely	charged	parallel	plates	with	
a	magnitude	of	1.4	×	103 NC-1.

(a)	 Determine	the	work	that	must	be	done	
against	the	field	to	move	the	point	charge	a	
distance of 5.5 cm.

(b)	 Calculate	the	potential	difference	between	
the final and initial positions of the charge. 

(c)	 Determine	the	potential	difference	between	
the plates if their separation distance is 15 cm.

14.	 During	a	flash	of	lightning,	the	potential	
difference	between	a	cloud	and	the	ground	was	
1.2 × 109 V and the amount of transferred charge 
was	32	C.

(a)	 Determine	the	change	in	energy	of	the	
transferred charge.

(b)	 If	the	energy	released	was	all	used	to	
accelerate	a	1	tonne	car,	deduce	its	final	
speed.

(c)	 If	the	energy	released	could	be	used	to	melt	
ice	at	0	°C,	deduce	the	amount	of	ice	that	
could be melted.
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15.	 Suppose	that	when	an	electron	moved	from	A	to	B	
in the diagram along an electric field line that the 
electric field does 3.6 × 10-19	J	of	work	on	it.

		 Determine	the	differences	in	electric	potential:	

(a)	 VB – VA
(b)	 VC – VA
(c)	 VC – VB

16.	 Determine	the	potential	at	point	P	that	is	located	
at	the	centre	of	the	square	as	shown	in	the	
diagram	below.

- 6μC

+3μC +2μC

1m

1m

5μC

P

10.2 Fields at work

Essential idea:	 Similar	 approaches	 can	 be	 taken	 in	
analysing	electrical	and	gravitational	potential	problems.

Understandings:
•	 Potential	and	potential	energy
•	 Potential	gradient	
•	 Potential	difference
•	 Escape	speed
•	 Orbital	motion,	orbital	speed	and	orbital	energy
•	 Forces	and	inverse-square	law	behaviour

Orbital motion, orbital speed 
and orbital energy

Although	 orbital	 motion	 may	 be	 circular,	 elliptical	 or	
parabolic,	 this	 sub-topic	 only	 deals	with	 circular	 orbits.	
This	 sub-topic	 is	 not	 fundamentally	 new	 physics,	 but	
an	 application	 that	 synthesizes	 ideas	 from	 gravitation,	
circular	motion,	dynamics	and	energy.

The	Moon	orbits	the	Earth	and	in	this	sense	it	is	often	referred	
to	as	a	satellite	of	the	Earth.	Before	1957	it	was	the	only	Earth	
satellite.	However,	in	1957	the	Russians	launched	the	first	man	
made	satellite,	Sputnik	1.	Since	this	date	many	more	satellites	
have	been	launched	and	there	are	now	literally	thousands	of	
them	orbiting	the	Earth.	Some	are	used	to	monitor	the	weather,	
some used to enable people to find accurately their position on 
the	surface	of	the	Earth,	many	are	used	in	communications,	
and	no	doubt	some	are	used	to	spy	on	other	countries.	Figure	
1015	shows	how,	in	principle,	a	satellite	can	be	put	into	orbit.

The	person	(whose	size	is	greatly	exaggerated	with	respect	
to	 Earth)	 standing	 on	 the	 surface	 on	 the	 Earth	 throws	
some	 stones.	The	 greater	 the	 speed	 with	 which	 a	 stone	
is	 thrown	 the	 further	 it	 will	 land	 from	 her.	 The	 paths	
followed	by	the	thrown	stones	are	parabolas.	By	a	stretch	
of	 the	 imagination	we	can	visualise	a	 situation	 in	which	
a	stone	is	 thrown	with	such	a	speed	that,	because	of	 the	
curvature	of	the	Earth,	it	will	not	land	on	the	surface	of	the	
Earth	but	go	into	“orbit”.	(Path	4	on	Figure	1015).

 
NATURE OF SCIENCE:
Communication of scientific explanations: The ability to 
apply field theory to the unobservable (charges) and the 
massively scaled (motion of satellites) required scientists 
to develop new ways to investigate, analyse and report 
findings to a general public used to scientific discoveries 
based on tangible and discernible evidence. (5.1)

© IBO 2014
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1

2

3
4Earth

Figure 1015 Throwing a stone into orbit

The	force	that	causes	the	stones	to	follow	a	parabolic	path	
and	to	fall	to	Earth	is	gravity	and	similarly	the	force	that	
keeps	 the	 stone	 in	 orbit	 is	 gravity.	 For	 circular	 motion	
to	 occur	 we	 have	 seen	 that	 a	 force	 must	 act	 at	 right	
angles	to	the	velocity	of	an	object,	that	is	there	must	be	a	
centripetal	force.	Hence	in	the	situation	we	describe	here	
the centripetal force for circular orbital motion about the 
Earth	is	provided	by	gravitational	attraction	of	the	Earth.	

We	 can	 calculate	 the	 speed	with	which	 a	 stone	must	be	
thrown	in	order	to	put	it	into	orbit	just	above	the	surface	
of the Earth. 

If the stone has mass m and speed v	 then	we	have	 from	
Newton’s	2nd	law	

mv2

RE
---------- G

MEm

RE
2------------=

where	RE is the radius of the Earth and ME is the mass of 
the Earth.

Bearing	in	mind	that	g 0 G
ME

RE
2--------= ,	then	

v g RE 10 6.4 106×× 8 103×= = =

That	is,	the	stone	must	be	thrown	at	8	×	103m s–1.

Clearly	 we	 are	 not	 going	 to	 get	 a	 satellite	 into	 orbit	 so	
close	to	the	surface	of	the	Earth.	Moving	at	this	speed	the	
friction	due	to	air	resistance	would	melt	the	satellite	before	
it	had	travelled	a	couple	of	kilometres.	In	reality	therefore	
a	satellite	is	put	into	orbit	about	the	Earth	by	sending	it,	
attached	to	a	rocket,	beyond	the	Earth’s	atmosphere	and	
then	giving	it	a	component	of	velocity	perpendicular	to	a	
radial	vector	from	the	Earth.	See	Figure	1016.

 

Earth Satellite carried by rocket to here
Satellite orbit

Tangential component of velocity

Figure 1016 Getting a satellite into orbit

Kepler’s third law
(This work of Kepler and Newton’s synthesis of the work is 
an excellent example of the scientific method and makes for 
a good TOK discussion)

In 1627 Johannes Kepler	 (1571-1630)	published	his	 laws	
of	 planetary	 motion.	 The	 laws	 are	 empirical	 in	 nature	
and	were	 deduced	 from	 the	 observations	 of	 the	Danish	
astronomer Tycho de Brahe	 (1546-1601).	The	 third	 law	
gives	 a	 relationship	 between	 the	 radius	 of	 orbit	 R of a 
planet and its period T	of	revolution	about	the	Sun.	The	
law	is	expressed	mathematically	as

2

3 constantT
R

=

We	 shall	 now	use	Newton’s	 Law	of	Gravitation	 to	 show	
how	it	is	that	the	planets	move	in	accordance	with	Kepler’s	
third	law.

In	essence	Newton	was	able	to	use	his	law	of	gravity	to	
predict the motion of the planets since all he had to do 
was	 factor	 the	F	 given	by	 this	 law	 into	his	 second	 law,	 
F = ma,	 to	 find	 their	 accelerations	 and	 hence	 their	 
future positions. 

In	Figure	1017	the	Earth	is	shown	orbiting	the	Sun	and	the	
distance	between	their	centres	is	R.

 

R
Sun

Earth

F es

F se

Figure 1017 Planets move according to Kepler’s third law

Fes is the force that the Earth exerts on the Sun and Fse is 
the force that the Sun exerts on the Earth. The forces are 
equal	and	opposite	and	the	Sun	and	the	Earth	will	actually	
orbit	about	a	common	centre.	However	since	 the	Sun	 is	
so	very	much	more	massive	than	the	Earth	this	common	
centre	will	be	close	to	the	centre	of	the	Sun	and	so	we	can	
regard the Earth as orbiting about the centre of the Sun. 
The	other	thing	that	we	shall	assume	is	that	we	can	ignore	
the forces that the other planets exert on the Earth. (This 
would	not	be	a	wise	thing	to	do	if	you	were	planning	to	
send	 a	 space	 ship	 to	 the	Moon	 for	 example.).	We	 shall	
also	 assume	 that	 we	 have	 followed	 Newton’s	 example	
and	indeed	proved	that	a	sphere	will	act	as	a	point	mass	
situated at the centre of the sphere.

Kepler	 had	 postulated	 that	 the	 orbits	 of	 the	 planets	 are	
elliptical	but	 since	 the	eccentricity	of	 the	Earth’s	orbit	 is	
small	we	shall	assume	a	circular	orbit.	
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The	acceleration	of	the	Earth	towards	the	Sun	is	a = Rω2

where	ω ω 2π
T------=

Hence,
a R 2π

T
------ 
 ×

2 4π2 R
T 2-------------   = =

But	 the	 acceleration	 is	 given	 by	 Newton’s	 Second	 Law,	 
F = ma,	where	F	is	now	given	by	the	Law	of	Gravitation.	
So in this situation 

F ma
GMs Me

R2
-------------------= = ,	but,	we	also	have	that

a a R 2π
T

------ 
 ×

2 4π2 R
T 2-------------   = =  and m = Me so that 

G MsMe

R2------------------- Me
4π2R

T2
-------------×

GMs

4π2
-----------⇒ R3

T2------= =

But	the	quantity	

	is	a	constant	that	has	the	same	value	for	each	of	the	planets	
so	we	have	for	all	the	planets,	not	just	Earth,	that

   R3

T2
------ k   =

where	k	is	a	constant.	Which	is	of	course	Kepler’s	third	law.

This	is	indeed	an	amazing	breakthrough.	It	is	difficult	to	refute	
the idea that all particles attract each other in accordance 
with	the	Law	of	Gravitation	when	the	law	is	able	to	account	
for	the	observed	motion	of	the	planets	about	the	Sun.

The	 gravitational	 effects	 of	 the	 planets	 upon	 each	 other	
should produce perturbations in their orbits. Such is the 
predictive	power	of	the	Universal	Gravitational	Law	that	
it enabled physicists to compute these perturbations. The 
telescope	had	been	invented	in	1608	and	by	the	middle	of	
the 18th Century had reached a degree of perfection in 
design that enabled astronomers to actually measure the 
orbital perturbations of the planets. Their measurements 
were	always	 in	agreement	with	 the	predictions	made	by	
Newton’s	law.	However,	in	1781	a	new	planet,	Uranus	was	
discovered	 and	 the	 orbit	 of	 this	 planet	 did	 not	 fit	 with	
the	 orbit	 predicted	 by	 Universal	 Gravitation.	 Such	 was	
the	 physicist’s	 faith	 in	 the	Newtonian	method	 that	 they	
suspected	that	the	discrepancy	was	due	to	the	presence	of	
a	yet	undetected	planet.	Using	the	Law	of	Gravitation	the	
French	astronomer	J.Leverrier and the English astronomer. 
J. C. Adams	were	able	 to	calculate	 just	how	massive	 this	
new	planet	must	be	and	also	where	it	should	be.	In	1846	
the	 planet	Neptune	was	 discovered	 just	where	 they	 had	
predicted.	 In	a	 similar	way,	discrepancies	 in	 the	orbit	of	
Neptune	 led	to	 the	prediction	and	subsequent	discovery	
in	1930	of	the	planet	Pluto.	Newton’s	Law	of	Gravitation	

had passed the ultimate test of any theory; it is not only 
able	to	explain	existing	data	but	also	to	make	predictions.

Satellite energy
When	a	satellite	is	in	orbit	about	a	planet	it	will	have	both	
kinetic	energy	and	gravitational	potential	energy.	Suppose	
we	 consider	 a	 satellite	 of	mass	 m that is in an orbit of 
radius r about a planet of mass M.

The	gravitational	potential	due	to	the	planet	at	distance	r 
from its centre is 

. 

The	gravitational	potential	energy	of	the	satellite	Vsat 

 is therefore  
GMe m

r----------------– .

That	is,	Vsat 
GMem

r----------------–= .

The	gravitational	field	strength	at	the	surface	of	the	planet	
is	given	by	

g 0
GMe

Re
2------------=

Hence	we	can	write	

Vsat 
g0 Re

2

r
–=

m

The	kinetic	energy	of	the	satellite	Ksat		is	equal	to	½mv2	,	
where	v is its orbital speed. 

By	equating	the	gravitational	force	acting	on	the	satellite	
to	its	centripetal	acceleration	we	have	

G Mem

r2---------------- mv2

r
---------- mv2⇔

GMem
r----------------= = .

From	which1
2---

mv2 1
2---

GMem
r----------------×=

= 0 e

2
g R

r

2m

Which	 is	 actually	 quite	 interesting	 since	 it	 shows	 that,	
irrespective	 of	 the	 orbital	 radius	 the	 KE	 is	 numerically	
equal	 to	 half	 the	 PE,	 Also	 the	 total energy E tot K sat Vsat+ 1

2---
G Me m

r----------------× 
G Me m

r----------------– 
 + 1

2---
G Me m

r----------------–= = =of the 
satellite	is	always	negative	since

E tot K sat Vsat+ 1
2---

G Me m
r----------------× 

G Me m
r----------------– 

 + 1
2---

G Me m
r----------------–= = =
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The energies of an orbiting satellite as a function of radial 
distance	from	the	centre	of	a	planet	are	shown	plotted	in	
Figure	1018.
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Figure 1018 Energy of an orbiting satellite as  
a function of distance from the centre of a planet

Weightlessness
Suppose that you are in	an	elevator	(lift)	that	is	descending	
at	 constant	 speed	and	you	 let	 go	of	 a	book	 that	you	are	
holding	in	your	hand.	The	book	will	fall	to	the	floor	with	
acceleration	equal	to	the	acceleration	due	to	gravity.	If	the	
cable	that	supports	the	elevator	were	to	snap	(a	situation	
that	I	trust	will	never	happen	to	any	of	you)	and	you	now	
let	go	the	book	that	you	are	holding	in	your	other	hand,	
this	 book	 will	 not	 fall	 to	 the	 floor	 -	 it	 will	 stay	 exactly	
in	 line	with	your	hand.	This	 is	because	 the	book	 is	now	
falling	with	 the	 same	acceleration	as	 the	elevator	and	as	
such	 the	 book	 cannot	 “catch”	 up	 with	 the	 floor	 of	 the	
elevator.	Furthermore,	if	you	happened	to	be	standing	on	
a	set	of	bathroom	scales,	the	scales	would	now	read	zero	
-	you	would	be	apparently	weightless.	It	is	this	idea	of	free	
fall	that	explains	the	apparent	weightlessness	of	astronauts	
in an orbiting satellite. These astronauts are in free fall 
in	the	sense	that	they	are	accelerating	towards	the	centre	 
of the Earth. 

It	 is	 actually	 possible	 to	 define	 the	weight	 of	 a	 body	 in	
several	 different	 ways.	We	 can	 define	 it	 for	 example	 as	
the	gravitational	force	exerted	on	the	body	by	a	specified	
object	 such	 as	 the	 Earth.	This	we	 have	 seen	 that	we	 do	
in	lots	of	situations	where	we	define	the	weight	as	being	
equal	to	mg.	If	we	use	this	definition,	then	an	object	in	free	
fall	cannot	by	definition	be	weightless	since	it	is	still	in	a	
gravitational	field.	However,	if	we	define	the	weight	of	an	
object	in	terms	of	a	“weighing”	process	such	as	the	reading	
on	a	set	of	bathroom	scales,	which	in	effect	measures	the	
contact	 force	 between	 the	 object	 and	 the	 scales,	 then	
clearly	objects	in	free	fall	are	weightless.	One	now	has	to	

ask	the	question	whether	or	not	it	is	possible.	For	example,	
to	measure	the	gravitational	force	acting	on	an	astronaut	
in orbit about the Earth.

We	can	also	define	weight	in	terms	of	the	net	gravitational	
force	acting	on	a	body	due	to	several	different	objects.	For	
example	 for	 an	 object	 out	 in	 space,	 its	 weight	 could	 be	
defined in terms of the resultant of the forces exerted on it 
by	the	Sun,	the	Moon,	the	Earth	and	all	the	other	planets	
in the Solar System. If this resultant is zero at a particular 
point	then	the	body	is	weightless	at	this	point.

In	view	of	the	various	definitions	of	weight	that	are	available	
to	us	it	is	important	that	when	we	use	the	word	“weight”	we	
are	aware	of	the	context	in	which	it	is	being	used.

Example 

Calculate	 the	 height	 above	 the	 surface	 of	 the	 Earth	 at	
which	a	geo-stationary	satellite	orbits.

Solution

A geo-stationary satellite is one that orbits the Earth in such 
a way that it is stationary with respect to a point on the 
surface of the Earth. This means that its orbital period must 
be the same as the time for the Earth to spin once on its axis 
i.e. 24 hours.

From Kepler’s third law we have 
G Ms

4π2
----------- R3

T2
------= .

That is, 

R
Me

m
h

using the fact that the force of attraction between the satellite 
and the Earth is given by 

F
G Mem

R2
----------------=

 

and that F = ma

where m is the mass of the satellite and a 4π2R

T2
-------------=

we have,

GMem

R2---------------- m 4π2R

T2
-------------×

GMe

4π2
------------⇒ R3

T2------= =
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Now, the mass of the Earth is 6.0 × 1024 kg and the period, T, 
measured in seconds is given by T = 86,400 s.

So substitution gives R = 42 × 106 m

The radius of the Earth is 6.4 × 106 m so that the orbital 
height, h, is about 3.6 × 107 m.

Example 

Calculate	the	minimum	energy	required	to	put	a	satellite	
of	mass	500	kg	into	an	orbit	that	is	as	a	height	equal	to	the	
Earth’s	radius	above	the	surface	of	the	Earth.

Solution

We have seen that when dealing with gravitational fields 
and potential it is useful to remember that 

g 0
G M

Re
2---------=  or, g0 Re

2 GM=

The gravitational potential at the surface of the Earth is 

g 0– Re 
GM
Re

---------–= . 

The gravitational potential at a distance R

from the centre of the Earth is 

= 

The difference in potential between the surface of the Earth 
and a point distance R from the centre is therefore

   V∆ g 0Re 1
Re
R------– 

    =

If R 2Re=  then V∆
g0 Re

2------------=

This means that the work required to “lift” the satellite into orbit 
is g0Rm where m is the mass of the satellite. This is equal to 

10 3.2 106 500×××  = 16000 MJ.

However, the satellite must also have kinetic energy in 
order to orbit Earth. This will be equal to 

g 0 mRe
2

2R-----------------
g 0mRe

2

4----------------- 8000 MJ= =

The minimum energy required is therefore 

24000 MJ.

Exercise 10.3
1. The speed needed to put a satellite in orbit does 

not depend on

A. the radius of the orbit.
B.	 the	shape	of	the	orbit.
C.	 the	value	of	g	at	the	orbit.
D. the mass of the satellite.

2.	 Estimate	the	speed	of	an	Earth	satellite	whose	
orbit	is	400	km	above	the	Earth’s	surface.	Also	
determine the period of the orbit.

3.	 Calculate	the	speed	of	a	200	kg	satellite,	orbiting	
the Earth at a height of 7.0 × 106 m. 

  Assume that g = 8.2 m s–2 for this orbit.

4.	 The	radii	of	two	satellites,	X	and	Y,	orbiting	
the Earth are 2r and 8r	where	r is the radius of 
the Earth. Calculate the ratio of the periods of 
revolution	of	X	to	Y.

5. A satellite of mass m	kg	is	sent	from	Earth’s	surface	
into an orbit of radius 5R,	where	R is the radius of 
the	Earth.	Write	down	an	expression	for	

(a)	 the	potential	energy	of	the	satellite	in	orbit.

(b)	 the	kinetic	energy	of	the	satellite	in	orbit.

(c)	 the	minimum	work	required	to	send	the	
satellite	from	rest	at	the	Earth’s	surface	into	
its orbit.

6. A satellite in an orbit of 10r,	falls	back	to	Earth	
(radius r)	after	a	malfunction.	Determine	the	
speed	with	which	it	will	hit	the	Earth’s	surface?

7. The radius of the moon is ¼ that of the Earth 
Assuming	Earth	and	the	Moon	to	have	the	same	
density,	compare	the	accelerations	of	free	fall	at	
the surface of Earth to that at the surface of the 
Moon.

8.	 Use	the	following	data	to	determine	the	
gravitational	field	strength	at	the	surface	of	the	
Moon and hence determine the escape speed from 
the surface of the Moon. 

  Mass of the Moon = 7.3 × 1022	kg,	

		 Radius	of	the	Moon	=	1.7	×	106 m
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