
42 43

STUDENT WORKBOOK

Stage B – Detailed Design
Introduction
In Stage B of the dossier, students are required to design their solution before implementing (writing) the program in
Java. Most students find this challenging as they must think ahead and predict what will function.

Experienced software designers assure us that time spent on the design stage is not wasted time and that spending time
thinking about the solution before actually writing it reduces the total amount of time required for the project.

Problems and decisions must be faced sooner or later – putting this off until the middle of the program is likely to
result in false starts and insurmountable problems, causing the student to throw everything away and start again. So, a
thorough effort in Stage B is worthwhile.

The IB assessment criteria seem to imply a traditional higher-level language – a ‘top-down’ approach – but this is not
a requirement. An Object-Oriented Programming (OOP) approach is encouraged and may well start out with B3 –
Modular Design, then move on to the details of data-structures and algorithms. The B1, B2 and B3 sections may be done
in any order, and many students find it sensible to take turns on all three – design a data-structure, then design some
corresponding algorithms, then package it up into a class, and then go back to another data-structure. No specific order
is implied or expected for this work. At the end, all 3 parts must be finished before starting stage C.

Stage B consists of breaking the problem down into smaller and smaller pieces and organizing the pieces into cohesive
modules. You can start by putting a few ideas down on paper.

Exercises
Think of two important sections that your program will need – these may become classes or modules.

..

..

3
DESIGN

B1 - Data Structures

B2 – Algorithms

B3 – Modular Organization

44

THE COMPUTER SCIENCE DOSSIER

Think of one data-structure (e.g. array, file, record,…) that belongs in one of these 2 sections (classes).

..

..

Think of two important algorithms (methods) that are needed to process the data in the data-structure.

..

..

Think of two other algorithms your program will need that will NOT process the data in this data-structure, and thus do not
belong in the same class with this data-structure.

..

..

..

For example, consider the Home Library sample dossier. That solution needs the following:

Modules•	 for (1) inputting data and (2) storing data.

The data will be stored in a file (•	 a data-structure) and will be accessed by the storage module.

The storage module needs •	 algorithms to search for data in the file and delete old records.

Algorithms•	 for validating input and getting the current date belong in the input module, not in storage.

Decomposition - Discovering Data, Algorithms and Modules
For Stage B you must produce a plan for the Data Structures , Algorithms and Modules that your program will need.

Start by reading the goals and the user-stories (or use cases) from Stage A. Look at specific words and then identify:

Nouns for Data Structures (Variables)
NOUNS represent data-items or data-structures. The little things are data-items. Collections or lists are data-structures.
For example, a name is a simple variable, but a list of names is a data structure - probably an array. If a list is permanent,
it needs to be stored in a file.

Verbs for Algorithms (Methods)
VERBS represent things to do - algorithms. When you identify an algorithm, try to link it to a data-item or data-structure.
Be clear and explicit. For example, rather than “search”, it should be “find a name in a file” or “find a name in the names
array”. Try to group the algorithms together with the data-structure(s) affected in the same [class]. When possible,
include parameters and results (return values).

Modules (Classes)
Once the data-structures and algorithms are identified, group these together into cohesive modules (classes). Cohesive
means the ideas belong together. In a program for a video-rental store, the customer database should be separate from

44 45

STUDENT WORKBOOK
the video database, and these should form separate classes. The task of renting a video will use both of these classes, but
it should be in a third class - e.g. the cash-register class.

Examining User Stories
Data, algorithms and modules can be “discovered” by examining user stories. Here is a sample story from the QuizTacToe
sample dossier. Nouns (bold) and verbs (italic) have been identified.

	 Various Types of Problems

I give small 10 minute quizzes about twice a week. I’d like to use the same type of questions as I have
on these quizzes. Those are short problems with either multiple choice answers, or quite simple
numerical answers, or single word answers (like fill-in-the-blank).

Input: 		 copy existing quiz problems into the computer to be used in the game.

Processing: 	 problems are organized according to topic.

Output: 	 problems are saved in data files on the hard-disk.

Exercise
Copy a user-story or a few goals from your Analysis. Highlight the nouns and verbs in different colors.

..

..

..

..

..

..

..

Which Mastery Aspects?
The dossier requires students to demonstrate specific programming techniques – these are called ‘Mastery aspects’. Keep
in mind that mastery aspects must be ‘well-documented and appropriate’ and that ‘non-trivial’ means … ‘the program
benefits from the use of the aspect’. This is much easier to accomplish if you have a clear reason for each mastery factor
you use. The reasons should be explored during Stage B - Design.

Choosing appropriate mastery aspects will depend on the topic, the user’s needs and the Criteria for Success (goals), as
well as the your programming skill. Below are some examples based on dossiers submitted by past students. They outline
both good ideas and poor (inappropriate) ideas. These examples represent a student’s thinking at the design stage. They
are presented very briefly, when you write about your choices there will be a lot more detail about your thinking.

SL Library Book Checkouts
This is a simple version of a program to track books checked out from a library.

46

THE COMPUTER SCIENCE DOSSIER
Good (Appropriate Use) Poor (Inappropriate)

2-D Array – contains Title, Author, date, customer
in columns. Add a row containing a record for
each book that gets checked out, remove a record
each time a book is returned.

Objects as Data Records – save today’s date in a Date
object.

Files – array will be saved in a file and loaded back into the
array each time the program runs.

1-D Array of Strings – each String contains a Book Title
and the Customer’s Name, separated by ‘/’. Add a String
each time a book is checked out.

Search – find a record when a book is returned. Search – can search for a book to see whether it has been
checked out.

Loops – used in search, loading and saving. Sentinel – ask the user whether they want to quit, store the
answer in a boolean flag.

If..then.. – used in search and various other places. Loops – ask the user about quitting, over and over again,
until they say “true” or “false”.

Sorting – used to alphabetize list of overdue books. Selection – check whether the user want to quit.
Nested Loops – used to save and load 2-D array as well as
sorting.

Return values - the “do you want to quit” question is asked
in a method named quitting(), and it returns an integer
value that tells the number of times the user answered
incorrectly.

User Defined Methods, Parameters, and Return Values -
use these to break program into reusable code modules.

Additional Libraries – use a 3rd party Web-browser library
to allow the user to surf the web.
Methods – execute methods in the Web-browser library
Parameters – in Web-browser library

Appropriate use of mastery aspects is closely related to the design of the solution. The good design above is very sensible,
leading easily to a usable program. The poor version contains a number of questionable design decisions, leading to a
solution that is difficult to use. The poor design also indicates the reasons for the mastery aspects, some of which are
inappropriate and would probably not earn mastery marks.

Below is a brief summary of specific problems.

Mastery Item and Reason What’s Wrong with This

Objects as Data Records – save today’s date in
a Date object

Unless the date is used for something in the program, just storing it
in a Date object won’t show mastery. Anyway, it’s preferable to create
a user-defined class with more than a single field, like a class to store
the title of a book and a customer name as a record.

1-D Array of Strings – each String contains a
Book Title and the Customer’s Name, separated
by ‘/’. Add a String each time a book is checked
out.

This might be OK and get the mastery mark. However, a
2-D array or an array of records would be considerably more
sensible.

Search – can search for a book to see whether it
has been checked out.

This might be useful and might get a mastery mark. However, a better
design would search for user names, to check for overdue books. Of
course, searching for a user will be difficult since the name is buried
inside a String concatenated with the book title.

Sentinel – ask the user whether they want to
quit and store the answer in a Boolean flag.

It appears the student is expecting 4 mastery marks based on one
very small method. There are several problems with this, as described
below.

46 47

STUDENT WORKBOOK

Mastery Item and Reason What’s Wrong with This

Loops – ask the user about quitting, over and
over again, until they say “true” or “false”.

- a single loop (if it’s the only loop in the program) is not enough to
show mastery of loops. The same goes for a single use of a sentinel
and a single if.. command.

Selection – check whether the user want to
quit.

- the method apparently returns the wrong value. It should return a
Boolean value, not a number.

Return values - the “do you want to quit”
question is asked in a method named quitting(),
and it returns an integer value that tells the
number of times the user answered incorrectly.

All that said, it is very unusual for an SL student to write a program that
only contains one single if command and one single loop. The search
feature (above) almost certainly contains a loop and an if.. command.
So the problem here might actually just be poor documentation of
the mastery aspects.

Additional Libraries – use a 3rd party Web-
browser library to allow the user to surf the
web.

This might get a mastery mark if surfing the web is actually an
important feature in this application. However, it sounds like it
was simply added on so the student could use a library and get this
mastery mark. The program probably doesn’t ‘benefit’ from this.

Methods – execute methods in the Web-
browser library.

This will not get a mastery mark because the mastery mark is given
for user-defined methods (written by the student), not for executing
existing methods.

Parameters – in Web-browser library Again, the mastery mark is given for using parameters in a user-
defined method, not in an existing method.

The worst part of the poor solution is that it does not use files. It’s hard to imagine how this could function, unless we
believe the program will simply keep running forever and the computer will never shut down. If the program does shut
down, then all the data in the array will simply disappear. A week later, there will be no record of who checked out the
books.

HL Text-File Index Builder
This is a program to index all the words in a text document, such as a novel. It will produce an index that lists all the words
and their locations in the document, like you see in the back of a textbook.

Good (Appropriate Use) Poor (Inappropriate)

Searching for Data in a File – searching for words in a
text file.

Add to RandomAccessFile – text-document will be stored
in a RandomAccessFile with a single word in each record
(50 bytes per record).

Parsing a Text File – splitting text into single words, broken
by spaces, commas, periods and any other punctuation
(except apostrophes).

Deleting from RandomAccessFile – can delete a word
from the RandomAccessFile.

Use of Additional Libraries – GUI interface including
Buttons, TextAreas, Lists, Menus.

Search in a file – searching for a word in the file.

Use of 5 SL aspects - selection, complex selection, loops,
files, methods, parameters, return values in multiple places
in the program.

Recursion – binary search to find a word in the
RandomAccessFile.

48

THE COMPUTER SCIENCE DOSSIER

Good (Appropriate Use) Poor (Inappropriate)

ADT (3 marks) – linked-list for each word containing all
the positions of that word in the text-file.

Two-dimensional Array – in each row, there is a word and
a list of numbers showing where the word is found in the
file.

Encapsulation – linked-list will be encapsulated into a
LinkedList class.

Hierarchical-Composite Data Structure – a class that
contains a word and an array of all it’s positions in the
file.

Polymorphism – LinkedLlist class has multiple methods
with the same name but different parameter lists, like
search(word), search(word, starting position). Also
multiple constructors.

Encapsulation – the hierarchical-composite class will be
defined in a separate class, with private data items.

Inheritance – Entry will be a class containing a word and
it’s LinkedList, as well as methods for saving and loading
the entry from file.

Use of 5 SL aspects - selection, complex selection, loops,
files, methods, parameters, return values in multiple places
in the program.
Use of Additional Libraries – GUI interface including
Buttons, TextAreas, Lists, Menus.
Inheritance – program will extend EasyApp which
provides easy constructors for AWT GUI.

Appropriate use of mastery aspects is closely related to the design of the solution. The good design above is very sensible,
leading easily to a usable program. The poor design has chosen to avoid ADTs and text-files – maybe the student doesn’t
like programming these. There are several design decisions in the poor version that will lead to a solution that is difficult
to use. The poor design outlines reasons for the mastery aspects, some of which are inappropriate and would not earn
mastery marks.

Below is a brief summary of specific problems.

Mastery Item and Reason What’s Wrong with This

Add to RandomAccessFile – text-document will be stored
in a RandomAccessFile with a single word in each record
(50 bytes per record).

Deleting from RandomAccessFile – can delete a word
from the RandomAccessFile.

The concept here is inappropriate and will make the
solution quite difficult to use. Presumably the original
document will be a text-file. It is very unlikely to be available
as a RandomAccessFile, so the solution will probably only
work for a sample file created by the student programmer.
Also, why would anybody want to delete a word from a
document? That doesn’t make sense. The student may be
trying to avoid the problem of parsing text-files, but that is
inappropriate. No mastery marks.

Search in a file – searching for a word in the file.

Recursion – binary search to find a word in the
RandomAccessFile.

Binary search only works in a sorted list. But the words
in the file will surely be in their written order, not sorted
alphabetically. Even if the student writes a correct binary
search algorithm, the application will not benefit, as it
cannot be used. Therefore no mastery aspects can be
credited.

Two-dimensional Array – in each row, there is a word and
a list of numbers showing where the word is found in the
file.

This is OK and will probably get the mastery mark, as
long as the array is large enough (enough columns) to
accommodate a word with hundreds of occurrences.
Otherwise it would cause an unnecessary limitation. A
Linked List would be better, but it’s not required.

48 49

STUDENT WORKBOOK

Mastery Item and Reason What’s Wrong with This

Hierarchical-Composite Data Structure – a class (Entry)
that contains a word and an array of all its positions in the
file.

Encapsulation – the hierarchical-composite class will be
defined in a separate class, with private data items.

It sounds like this class is only added to get the mastery
mark. It will probably not be used for anything, since the
index is stored in the 2D array.

If the code is just written and not used by the application,
then it will not receive a mastery mark.

But if the 2-D array is replaced by a 1-D array of Entry
objects, then these mastery marks can be awarded.

Use of 5 SL aspects - selection, complex selection, loops,
files, methods, parameters, return values in multiple places
in the program.

This is fine. HL dossiers almost always get this mastery
mark – as long as the methods are actually used for
something.

Use of Additional Libraries – GUI interface including a
couple of Buttons, TextAreas, Lists, Menus.

Fine. A GUI interface is fine for the additional libraries
mark, as long as it is not trivial. It needs to be more than
just a couple Buttons.

Inheritance – program will extend EasyApp which
provides easy constructors for and AWT GUI.

No, just extending an existing class is not enough for this
mastery mark. Normally a student would be extending a
user-defined class.

As in the SL Library project, the basic concept here is inappropriate. This could make sense if the original text document
can be converted to Random Access by using a feature in this program – a text-file parsing method. But if the assumption
is that the user will somehow provide a RandomAccessFile, then the solution won’t work.

More Than a Textbook Exercise
The dossier is more than a textbook exercise. It cannot be completed simply by pasting together code from practice
exercises. The dossier must be designed to solve the problem in a sensible way. Students can certainly use code and
ideas from practice exercises, but they must still design a sensible application and modify their code to fit the design.
An inappropriate design might score high marks in the Stage B criteria, as long as the design is thorough and well
documented – but it could still be penalized in the mastery aspects.

An inappropriate design usually results in mastery aspects that cannot be awarded and the penalty can be very large.
Although mastery aspects are awarded on the basis of the finished program listing, students should start thinking about
the mastery aspects during the design stage. It is very difficult to ‘fix it’ later when they discover the solution just does
not work.

A few more sensible designs are outlined below. You should not copy these outright, but you may use them as inspiration
for your own dossiers.

Mastery Intentions – HL Students
Do this during Stage B – Design. Write a brief outline of your intended program. Then for each mastery aspect, write a
brief reason or explanation of how it will be addressed. Then ask your teacher for comments.

Outline of Intended Program:

..

..

..

..

..

50

THE COMPUTER SCIENCE DOSSIER
Mastery aspect and explanation for using it:

Adding data in a RandomAccessFile

Deleting from a RandomAccessFile

Searching for specified data in a file

Recursion

Merging sorted data structures

Polymorphism

Inheritance

Encapsulation

Parsing a text file or data stream

Hierarchical composite data structure

Five standard level mastery aspects

ADT

1. Incomplete

2. All Key Methods

3. Some Error Checking

4. Complete and Robust

Use of additional libraries

Insert into an ordered sequential file

