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Poisson Distribution

The Poisson distribution was first brought to light by the
eminent French mathematician Simeon Denis Poisson 

(1781–1840) in his 1837 work Recherches sur la probabilite de 
Judgement, where he included a limit theorem for the 
binomial distribution. At 
the time, this was viewed as 
little more than a welcome 
approximation for the 
difficult computations 
required when using the 
binomial distribution. 
However, this was the 
embryo from which grew 
what is now one of the most 
important of all probability 
models.

Poisson's distribution attracted little attention until the 
publication in 1898 of Das Gesetz der keinem Zahlen, in which 
the author, Ladislaus Bortkiewicz (1868 – 1931), showed how 
the distribution could be used to explain statistical regularities 
in the occurrence of rare events. His most striking example 
was the number of deaths from horse kicks in 14 units of the 
Prussian Army in different years between 1875 & 1894. There 
was comprehensive data on this and Poisson's predictions 
matched them closely.

Number of 
Deaths Number of Years Poisson 

Prediction
1 91 92
2 32 34
3 11 8
4 2 1

5+ 0 0

This table means that in the 20 years of the study and over  
the 14 cavalry units, there were 91 unit-months in which one 
soldier died from horse kicks. The Poisson Predictions are 
striking in their match to the data.

Our heading picture is of one of the horses of the Spanish 
Riding School in Vienna - which would, of course, never 
dream of kicking anyone.

However, a more general (and useful) use of the Poisson 
distribution (as opposed to only seeing it as an approximation 
to the binomial under certain conditions) is to define the 
distribution as the distribution of the number of ‘events’ in a 
‘random process’.

The key in identifying a Poisson distribution, then, is to be 
able to identify the ‘random process’ and the ‘event’. As we 
shall see, the event can be distributed over time, or distance, 
or length, or area, or volume, or …

Examples of ‘random processes’ and their corresponding 
‘events’ are:

Random process Event
Telephone calls in a fixed 

time interval. 
Number of wrong calls in 

an hour. (Time dependent)

Accidents in a factory. Number of accidents in a 
day. (Time dependent)

Flaws in a glass panel. 
Number of flaws per 

square centimetre (Area 
dependent)

Flaws in a string. Number of flaws per 5 
metres. (Length dependent)

Bacteria in milk. Number of bacteria per 2 
litres. (Volume dependent)

D.12 Poisson Distribution

AHL 4.17
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The above examples serve to highlight the properties 
associated with the Poisson distribution. These can be best 
summarized as:

Step 1.  An event is as likely to occur in one given interval 
as it is in another (equally likely).

Step 2.  The occurrence of an event at a ‘point’ – be it a time 
interval, an area, etc. – is independent of when (or 
where) other events have occurred.

Step 3.  Events occur uniformly, ie. the expected number 
of events in a given time interval, or area, or, … is 
proportional to the size of the time interval, or area, 
or, …

Note how similar these conditions are to those of the binomial 
distribution. However, one main difference between the two 
distributions is that there is, at least theoretically, no upper 
limit to the number of times an event may occur!

With this in mind, we now provide a statement for the Poisson 
distribution, incorporating the distribution function.

If X(t) is the number of events in a time interval of length t, 
corresponding to a random process, with rate λ per unit time, 
then, we say that X(t) ~ Pn(t)– read as 'the random variable X 
has a Poisson distribution with parameter λt'.

Setting μ = λt, we define the Poisson probability distribution 
as:

P X = x( )= e −µ .µ x

x!
,x = 0,1,2,...

Note that the rate λ can be specified as the number of events 
per unit time, or per unit area, or per unit of volume, or unit 
of length, etc.

The best way to see how this works is through the following 
examples.

The description of the situation fits the conditions under 
which a Poisson distribution can be assumed. From the 
information given we have that λ = 0.5.

Next we define the random variable X as the number of cars 
that pass the given point in a two-hour period.

This means that our parameter μ = λ × 2 = 0.5 × 2 = 1.

P X = x( )= e −1.1x

x!
= e −1

x!
,x = 0,1,2,...

And so, P X = 0( )= e −1

0!
≈ 0.3679

The description of the situation fits the conditions under 
which a Poisson distribution can be assumed. 

From the information given we have that λ = 1
3

 (i.e. one in 
three metres).

Next we define the random variable X as the number of faults 
in a string 5 metres long. That is, number of faults per bobbin.

This means that our parameter µ = λ ×5= 1
3
×5= 5

3
 so that 

the probability function for X is given by:

P X = x( )= e −5
3

x!
× 5

3
⎛
⎝⎜

⎞
⎠⎟
x

,x = 0,1,2,...

a P X = 2( )= e −5
3

2!
× 5

3
⎛
⎝⎜

⎞
⎠⎟

2

≈ 0.2623

b At first sight, P X ≥ 2( )  would seem to require us to 
compute an infinite set of probabilities for X = 2, 3, 
4,... however, we can use the fact that all probability 
distributions sum to 1. It is easier to calculate:

P X ≥ 2( )=1− P X < 2( )
=1− P X = 0( )− P X =1( )
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Poisson Distribution

P X ≥ 2( )=1− e
−5

3

0!
× 5

3
⎛
⎝⎜

⎞
⎠⎟

0

− e
−5

3

1!
× 5

3
⎛
⎝⎜

⎞
⎠⎟

1

=1−e −5
3 − 5

3
e −5

3

≈ 0.4963

Video demonstration of this using 
calculators.

Based on these two examples we can set out a general 
approach to handling questions that require the use of the 
Poisson distribution:

1. Identify that scenario which fits the requirements of a
Poisson distribution.

2. Determine the ‘base’ rate, λ.

3. Define the random variable.

4. Determine the parameter, μ, that corresponds to the
random variable in Step 3.

The description of the situation fits the conditions under 
which a Poisson distribution can be assumed. 

From the information given we have that λ = 1
12

(i.e. 1 in 12 
seconds).

Next we define the random variable X as the number of 
particles emitted in 1 minute (or 60 seconds).

This means that our parameter µ = λ ×60= 1
12

×60= 5  so

that the probability function for X is given by:

P X = x( )= e −5 .5x

x!
,x = 0,1,2,...

P X ≤5( )= e −5 .50

0!
+ e

−5 .51

1!
+ ...+ e

−5 .55

5!

= e −5 1+5+ 52

2
+ 53

6
+ 54

24
+ 55

120
⎛
⎝⎜

⎞
⎠⎟

= 1097
12

e −5

≈ 0.6160

Mean and Variance of the Poisson Distribution

For a random variable X having a Poisson distribution with 
parameter μ, then:

E(X) = μ and Var(X) = μ

These are remarkable and distinctive properties of the Poisson 
Distribution. Their value is illustrated in these examples:

In this case we are given that the average is ²/₃ errors per 
screen. Then, if we let the random variable N denote the 
number of errors per screen we have that E(N)= ²/₃ and μ = ²/₃

P N = 2( )= e −2
3

2!
2
3

⎛
⎝⎜

⎞
⎠⎟

2

≈ 0.1141
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Let the random variable X denote the number of cars that 
pass over the bridge per day. We first determine the average 
number of cars that pass over the bridge over the 100 days.

Cars (X) 0 1 2 3 4
Days (f) 58 29 10 2 1
Cars × Days 0 29 20 6 4

Total number of cars = 0 + 29 + 20 + 6 + 4 = 59.

μ = average number of cars per day = 59 ÷ 100 = 0.59

If this is a Poisson Distribution, it will be:

P X = x( )= e −0.59 . 0.59( )x
x!

,x = 0,1,2,...

Using a calculator to find the first few probabilities:

The actual number of cars predicted by the model is found by 
multiplying by 100.

Cars (X) 0 1 2 3 4
Days (f) 58 29 10 2 1
P(X) 0.554 0.327 0.096 0.019 0.003
Prediction 55 33 10 2 0

The actual data (row 2) and the expected number from the 
Poisson model (row 4) are in good agreement.

We can, therefore, be reasonably sure that the Poisson 
distribution is an appropriate model for the number of cars 
that pass over this bridge.

a Let the random variable X denote the number of flaws 
per 100 cm by 150 cm metal sheet. 

We have that X ~ Pn(μ) where μ is to be determined.

Knowing P(X ≥ 1) = 0.2 we have, 1 – P(X = 0) = 0.2

P X = 0( )= 0.8
e −µ = 0.8
µ ≈ 0.2231

i.e. average number of flaws per sheet is 0.2232.

b P X =1( )= 0.8 0.2231( )1 ≈ 0.1785

Sum of two Poisson Distributions

If we have two independent Poisson Distributions:

X ~ P(λ) and Y ~ P(μ), what about the distribution of the sum 
of the two variables?

We might hope that X + Y, the sum of the two variables, will 
also follow a Poisson distribution. Further more, we would 
hope also that its mean will be the sum of the independent 
means. In mathematical terms X + Y ~ P(λ + μ)

This is an applied course so we will not prove this result (yet), 
but will use an example to illustrate it.SAMPLE  PAGES
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What can we say about the number of defectives of either or 
both types in our batch of 50?

If we look first at the issues with the semiconductors there is 
a mean number of defectives per batch of 0.015 × 50 = 0.75

We will call these 'Type A faults'.

Tabulating the probabilities for the number of faults per 
batch, we get:

Defectives Probability A
0 0.4724
1 0.3543
2 0.1329
3 0.0332
4 0.0062
5 0.0009
6 0.0001

Next, we look at the defects of the casings which have a mean 
of 0.01 × 50 = 0.5 per batch. 

We will call these 'Type B faults'.

Tabulating this distribution:

Defectives Probability B
0 0.6065
1 0.3033
2 0.0758
3 0.0126
4 0.0016
5 0.0002
6 0.0000

Looking at the tables, what is the probability that we will have 
a batch with no faults of either sort? This means, a batch with 
no faults at all.

The two types of fault are independent and so we have that:

        P(A+B = 0)  = P(A = 0) × P(B = 0)

= 0.4724 × 0.6065

≈ 0.2865

What about the probability that we have just one fault in a 
batch? This is EITHER one fault of type A AND no faults of 
type B OR no faults of type A AND one fault of type B.

The 'either', 'and' & 'or' words in these statements have 
precise meanings in probability. 'And' means we can multiply 
probabilities, but only if the events are independent. 'Or' 
means we add probabilities, but only if the events are exclusive 
(cannot occur together). In this case a batch cannot have no 
type A faults and one type B at the same time as one type A 
fault and no type B faults. So these two events are exclusive 
and we can add their probabilities (without subtracting their 
intersection - as this is zero).

        P(A+B = 1)  = P(A = 0) × P(B = 1) + P(A = 1) × P(B = 0)

= 0.4724 ×0.3033 + 0.3543 × 0.6065

≈ 0.3582

What is the probability of a total of 2 faults in a batch? This 
is more complicated as there are three ways this can happen:

Type A Type B Probability
0 2 0.4724 × 0.0758 = 0.0358
2 0 0.1329 × 0.6065 = 0.0806
1 1 0.3543 × 0.3033 = 0.1075

Total = 0.2239

The calculation is getting progressively more complicated, 
but do not despair as we can use the fact that the distribution 
we are after is the Poisson Distribution with the sum of the 
two parameters.

Recall that type A faults average 0.75 per batch and type B 
average 0.5 per batch.

The sum of the two fault types is 0.75 + 0.5 = 1.25

Thus, we should find that the total number of faults per batch 
is Poisson distributed:

P N = 0( )= e −1.25

0!
1.25( )0 ≈ 0.2865

P N =1( )= e −1.25

1!
1.25( )1 ≈ 0.3581

P N = 2( )= e −1.25

2!
1.25( )2 ≈ 0.2238

etc.

Give or take rounding errors, these are the results we obtained 
after much more work using the two separate distributions.

SAMPLE  PAGES



Chapter D.12

54

a We have a Poisson Distribution with a mean of 5.7.

P N = 0( )= e −5.7 ×5.70

0!
≈ 3.34×10−3

P N =1( )= e −5.7 ×5.71

1!
≈ 0.0191

P N =1( )= e −5.7 ×5.72

2!
≈ 0.0544

etc.

If we tabulate the first few results, we get:

Cars Probability
0 0.0033
1 0.0191
2 0.0544
3 0.1033
4 0.1472
5 0.1678
6 0.1594
7 0.1298
8 0.0925
9 0.0586

10 0.0334

b We have a Poisson Distribution with a mean of 3.6.

Cars Probability
0 0.0273
1 0.0984
2 0.1771
3 0.2125

Cars Probability
4 0.1912
5 0.1377
6 0.0826
7 0.0425
8 0.0191
9 0.0076

10 0.0028

c We have a Poisson Distribution with a mean of 
5.7 + 3.6 = 9.3.

Cars Probability
0 0.0001
1 0.0009
2 0.0040
3 0.0123
4 0.0285
5 0.0530
6 0.0822
7 0.1091
8 0.1269
9 0.1311

10 0.1219

This road/rail crossing is one of the remotest in the World. It 
is at Forrest in the middle of the Nullarbor Plain. You might 
just be able to see that there is a gravel road crossing. What 
drivers need to be careful to notice is the Indian Pacific on its 
4 352 km, 75 hour trip from Perth to Sydney.

It would be difficult to justify expending taxpayer funds on a 
full set of gates at this location!
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Poisson Distribution

Exercise D.12.1

1. a If X ~ Pn(2) write down the probability
distribution function for the random variable X.

b Find:

i P(X = 0)  ii P(X = 2)

 iii P(X > 1)  iv P(X = 2 | X > 1)

2. The flaws in a string occur at a rate of 2 every 5 metres.
Find the probability that a string contains 3 flaws in:

a  2 metres of string.

b  10 metres of string.

3. Cars that stop at a particular petrol station during
weekdays arrive at a rate of 10 cars every hour.
Assuming a Poisson distribution, find the probability
that:

a  there will be one car at the petrol station during
any 15-minute interval.

b there will be some cars at the petrol station 
during any 15-minute interval.

4. A switchboard receives an average of 100 calls per
hour. Find the probability that:

a  the switchboard receives 2 calls during a one-
minute time interval.

b the switchboard receives at least 2 calls during a 
two-minute time interval.

5. On average a data entry operative has to correct one
item in every 800 items. Each screen contains 200
items.

a  Find the probability that the operative makes
more than one correction per screen.

b If more than one correction per screen is 
required, the screen needs to be retyped. What is 
the probability that more than two attempts are 
needed before a screen is deemed satisfactory?

6. Cars have been observed to pass a given point on a
country road at a rate of 5 cars per hour.

a  Find the probability that no cars pass this point
in a 20-minute period.

b Find the probability that at least 2 cars pass this 
point in a 30-minute period.

7. Bolts are produced in large quantities and it is expected 
that there is a 2.5% rejection rate due to thread defects
and a 1.5% rejection rate due to finish defects. A batch
of 40 bolts is randomly selected for inspection. Using
the Poisson distribution, find the probability that:

a  the batch contains at least one defective. 

b the batch contains no defectives.

Ten such batches are randomly selected. If it is found 
that at least 2 batches have at least 4 defective bolts, 
the total output is considered for the scrap heap to be 
recycled.

c Find the probability that the total output is sent 
to the scrap heap.

8. Road accidents in a certain area occur at an average of
1 every 4 days. Find the probability that during a one
week period there will be:

a  two accidents.

b  at least two accidents.

9. Telephone calls arrive at a switchboard at a rate of
4 every minute. Find the probability that in a two-
minute interval there will be fewer than 6 incoming
calls.

10. Faults in glass sheets occur at a rate of 2.1 per square
metre. If a square metre glass sheet contains at least 3
faults it is returned to the manufacturer.

a  Find the probability that a square metre sheet is
returned to the manufacturer.
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b Six such glass sheets are inspected. What is 
the probability that at least half of them are 
returned to the  manufacturer?

11. The number of faults in a glass sheet is known to have
a Poisson distribution. It is found that 2% of sheets are
rejected because they have chipped edges and 3% are
rejected because they have scratched faces.

a  Find the probability that a sheet contains at
least two flaws.

b If the random variable X denotes the number of 
flaws per sheet, find P(X > μ + 2σ).

12. A shopkeeper finds that the number of orders for an
electrical good averages 2 per week. At the start of the
trading week, i.e. on a Monday, the shopkeeper has 5
such items in stock. Assuming that the orders follow a
Poisson distribution, find the probability that during a
given 5-day week:

a there are three orders.

b there are more orders than he can satisfy from 
his existing stock.

If and when his stock level is down to two items during 
the week, he orders another four items:

c what are the chances that he will order another 
four items?

Extra Questions

Answers

TOOLBOX

We have alluded the fact that the sum of two Poisson 
Distributions is also a Poisson Distribution.

Using Algebra, can you prove that if:

P X = x( )= e −µ .µ x

x!
,x = 0,1,2,...

P Y = y( )= e −λ .λ y

y!
, y = 0,1,2,...

then the sum of these two variables: Z = X + Y is:

P Z = z( )= e − µ+λ( ) . µ +λ( ) y
z !

,z = 0,1,2,...

Investigations

There is a lot in the news these days about 'freak weather 
events'.

These are events such as tornados, hurricanes etc. There are 
good statistics available for the long term average occurrences 
of these.

Can you use these to investigate the legitimacy of sensationalist 
headlines such as:

Once in a Century Storm 
Next Week!!!

Alternatively, many of the events described in our examples 
and exercises refer to negatives such as faults, flaws and 
accidents. Bear in mind that you can apply Poisson to positive 
events such as prizes, lottery wins etc. You may find some 
good investigative topics here!
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