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Proof

Axioms

Mathematics is based on axioms. These are ‘facts’ that
are assumed to be true. An axiom is a statement that 

is accepted without proof. Early sets of axioms contained 
statements that appeared to be obviously true. Euclid 
postulated a number of these ‘obvious’ axioms.

An example of an axiom is:

‘Things equal to the same thing are equal to each 
other’; That is,if y = a and x = a then y = x.

Euclid was mainly interested in geometry and we still call 
plane geometry ‘Euclidean’. In Euclidean space, the shortest 
distance between two points is a straight line. We will see later 
that it is possible to develop a useful, consistent mathematics 
that does not accept this axiom.

Most axiom systems have been based on the notion of a ‘set’, 
meaning a collection of objects. An example of a set axiom is 
the ‘axiom of specification’. In crude terms, this says that if we 
have a set of objects and are looking at placing some condition 
or specification on this set, then the set thus specified must 
exist. An example of this axiom is:

Assume that the set of citizens of China is defined. If we 
impose the condition that the members of this set must be 
female, then this new set (of Chinese females) is defined.

As a more mathematical example, if we assume that the 
set of whole numbers exists, then the set of even numbers 
(multiples of 2) must also exist.

Mathematics has, in some sense, been a search for the smallest 
possible set of consistent axioms. It is an unusual pursuit in 
this respect. Pure mathematics is concerned with absolute 

truth only in the sense of creating a self-consistent structure 
of thinking.

As an example of some axioms that may not seem to be 
sensible, consider a geometry in which the shortest path 
between two points is the arc of a circle and all parallel lines 
meet. These 'axioms' do not seem to make sense in 'normal' 
geometry. The first mathematicians to investigate non-
Euclidean geometry were the Russian, Nicolai Lobachevsky 
(1792–1856) and the Hungarian, Janos Bolyai (1802–60).

Independently, they developed self-consistent geometries 
that did not include the so called parallel postulate which 
states that for every line AB and point C outside AB there is 
only one line through C that does not meet AB.

A

C

B
Since both lines extend to infinity in both directions, this 
seems to be 'obvious’. Non-Euclidean geometries do not 
include this postulate and assume either that there are no 
lines through C that do not meet AB 
or that there is more than one such 
line. It was the great achievement of 
Lobachevsky and Bolyai that they 
proved that these assumptions lead 
to geometries that are self consistent 
and thus acceptable as ‘true’ to pure 
mathematicians. In case you are 
thinking that this sort of activity is completely useless, one of 
the two non-Euclidean geometries discussed above has 
actually proved to be useful; the geometry of shapes drawn on 
a sphere. This is useful because it is the geometry used by the 
navigators of aeroplanes and ships.

London

Delhi

A.8 Proof

SL 1.6
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Proof
Proof has a very special meaning in mathematics. We use the 
word generally to mean 'proof beyond reasonable doubt' in 
situations such as law courts when we accept some doubt in a 
verdict. For mathematicians, proof is an argument that has no 
doubt at all. When a new proof is published, it is scrutinized 
and criticized by other mathematicians and is accepted when 
it is established that every step in the argument is legitimate. 
Only when this has happened does a proof become accepted.

Technically, every step in a proof rests on the axioms of 
the mathematics that is being used. As we have seen, there 
is more than one set of axioms that could be chosen. The 
statements that we prove from the axioms are known as 
theorems. Once we have a theorem, it becomes a statement 
that we accept as true and which can be used in the proof 
of other theorems. In this way we build up a structure that 
constitutes a 'mathematics'. The axioms are the foundations 
and the theorems are the superstructure. In the previous 
section we made use of the idea of consistency.

This means that it must not be possible to use our axiom set 
to prove two theorems that are contradictory.

There are a variety of methods of proof. This section will look 
at some of these in detail. We will mention others.

Rules of Inference

All proofs depend on rules of inference. Fundamental to 
these rules is the idea of ‘implication’.

As an example, we can say that 2x = 4 (which is known as a 
proposition) implies that x = 2 (provided that x is a normal 
real number and that we are talking about normal arithmetic). 
In mathematical shorthand we would write this statement as 
2x = 4 ⇒ x = 2.

This implication works both ways because x = 2 implies that 
2x = 4 also. This is written as x = 2 ⇒ 2x = 4. or the fact that 
the implication is both ways can be written as x = 2 ⇔ 2x = 4. 
The symbol ⇔ is read as ‘If and only if ’ or simply as ‘Iff ’, i.e. 
If with two fs.

There are four main rules of inference:

1. The rule of detachment: from a is true and a ⇒ b
is true we can infer that b is true where a and b are
propositions.

Example

If the following propositions are true:

It is raining.

If it is raining, I will take an umbrella.

We can infer that I will take an umbrella.

2. The rule of syllogism: from a ⇒ b is true and b ⇒ c is
true, we can conclude that a ⇒ c is true. a, b and c are
propositions.

Example: 

If we accept as true that:

if x is an odd number then x is not divisible by 4 
(a ⇒ b) and,

if x is not divisible by 4 then x is not divisible by 16 
(b ⇒ c)

We can infer that the proposition:

if x is an odd number then x is not divisible by 16 
(a ⇒ c) is true.

3. The rule of equivalence: at any stage in an argument we 
can replace any statement by an equivalent statement.

Example: 

If x is a whole number, the statement x is even could be 
replaced by the statement x is divisible by 2.

4. The rule of substitution: If we have a true statement
about all the elements of a set, then that statement is
true about any individual member of the set.

Example: 

If we accept that all lions have sharp teeth then Benji, 
who is a lion, must have sharp teeth.

Now that we have our rules of inference, we can look at some 
of the most commonly used methods of proof

Proof by Exhaustion

This method can be, as its name implies, exhausting! It 
depends on testing every possible case of a theorem.
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Example

Consider the theorem: Every year must contain at least one 
‘Friday the thirteenth’.

There are a limited number of possibilities as the first day of 
every year must be a Monday or a Tuesday or a Wednesday ... 
or a Sunday (seven possibilities). Taking the fact that the year 
may or may not be a leap year (with 366 days) means that 
there are going to be fourteen possibilities.

Once we have established all the possibilities, we would look 
at the calendar associated with each and establish whether 
or not it has a ‘Friday the thirteenth’. If, for example, we are 
looking at a non-leap year in which January 1st is a Saturday, 
there will be a ‘Friday the thirteenth’ in May. Take a look at 
all the possibilities (an electronic organizer helps!). Is the 
theorem true?

Direct Proof

The diagrams below represent a proof of the theorem of 
Pythagoras described in The Ascent of Man (Bronowski, pp. 
158–61). The theorem states that the area of a square drawn on 
the hypotenuse of a right-angled triangle is equal to the sum 
of the areas of the squares drawn on the two shorter sides. The 
method is direct in the sense that it makes no assumptions at 
the start. Can you follow the steps of this proof and draw the 
appropriate conclusion?

Notation

Written Mathematics tends to use a lot of 'notation' or 
'shorthand'.

Here is a short list of symbols frequently used in proofs:

Equality

The symbol = means that two quantities are equal. It was 
invented by a Welshman, Robert Recorde (1512–1558).

Thus 2x + 3 = 7 is a statement of equality.

One important feature of equalities is that they are not 
necessarily always true. Our statement is true if x = 2 but false 
if x = 1.

Identity

The statement 2(x + 3) ≡ 2x + 6 is an identity. It is true for all 
values of x. The triple barred equals sign emphasises that it is 
a stronger statement of equality than =.

'Not equal to' is written ≠. So 5 ≠ 7.

Implication

There is a commonly used notation that is used when we want 
to say that one true statement implies the truth of another.

It is raining therefore I will wear a raincoat is shortened to:

'It is raining' ⇒ 'I will wear a raincoat'. The symbol ⇒ is read 
'implies'.

Note that an implication does not necessarily work in reverse. 
If I wear a raincoat, it is not necessarily raining.

If an implication is two way, we use a double headed arrow.

If x = 2 then 2x = 4 works both ways. If 2x = 4 then x = 2. This 
is shortened to x = 2 ⇔ 2x = 4

x 2 +1 ,x +1 x +1( )2 ,x 2 + 2x +1

1
3
,0.!3 x 2 + 2x +1 ,x +1
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a x 2 +1 ,x +1  

It is common to think that these two expressions are 
either equal or identical. If they are, they must be equal 
whatever value of x we choose. Suppose we choose 2.

22 +1 = 5  and 2+1= 3

x 2 +1 ≠ x +1

b x +1( )2 ,x 2 + 2x +1

This is true for all x. x +1( )2 ≡ x 2 + 2x +1

c 
1
3
,0.!3

These two quantities are identically equal 1
3
≡ 0.!3 .

d x 2 + 2x +1 ,x +1

This is a more complex example. We need to be careful 
about the fact that 'square root' returns two answers. If 
we allow that, then ≠ is the correct answer. 

Suppose we only take the positive value of the square 
root. This will be true for x ≥ 0. What about negative 
values? Taking particular values does not provide a 
general proof. It can, however get things started.

−2( )2 + 2× −2( )+1 = 4− 4+1 =1  and

−2+1= −1 .

x ∈! x ∈!

a x is specified as being a Natural Number, 1, 2, 3, 4, ... 
so we do not need to worry about whether or not –2 is 
even. This is an implication that runs both ways: 

x ∈!  x is even ⇔ x ∈!  x is divisible by 2.

b Numbers bigger than 7 are also bigger than 5 but not 
the other way round.

a > 7 ⇒ a > 5

c 2 is the only even prime and is included. This is a one-
way implication. 

p > 2 is prime ⇒ p is odd

d This only works one way (because of the negative 
option for square root).

x = 7 ⇒ x2 = 49

Exercise A.8.1

1. Classify these statements as true/false:

a x is odd ⇒ x is divisible by 3.

b x is odd ⇒ x2 is odd.

c x is even ⇒ x2 is even.

d x is prime ⇔ x2 has exactly two factors.

e 
1

x +1
− 2
x
≡ − x + 2( )
x x +1( ) ,x > 0

f x is divisible by 2 & 3 ⇒ x is divisible by 6.

g x +1( )3 − x −1( )3 ≡ 2 .

2. Which of these statements of equality are also
identities?

a 2x + 3 = 7

b x(x –2) = x2 – 2x

c x = x 2

d 
1

x −1
− 2
x +1

≡ − x −3( )
x 2 −1

,x > 0

e a x( ) y = a xy

f ba =b a

g 1
a
− 1
b
+ 1
c
= a −b +c

abc
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Geometric Proofs
One of the best ways of practising the construction of direct 
proofs is to look at geometric examples. These depend on the 
axioms of Euclid and a number of geometric theorems.

Whilst they are not strictly on the syllabus, these proofs also 
played an important part in the long history of Mathematics. 
The following problems use Mathematics that you should 
have encountered during your Middle School Years.

A summary of some important facts can be found here:

A

B

P

D

C

Proofs should proceed from accepted truths through a chain 
of implication to the desired statement.

In this case, 'accepted truth' includes the data in the question 
as well as previously proved theorems such as Pythagoras.

The data in this case AP = DP and BP = CP.

∠APB = ∠BPC (Vertically Opposite Angles)

⇒ ∆ABP and ∆CDP are congruent (Side-Angle-Side
criterion).

Notice that both of the implication have justifications. This is 
a key feature of all mathematical proofs - no statements are 
accepted as true unless they can be justified.

We were not asked to do this but some further inferences can 
be drawn:

Since the triangles are congruent, it follows that 
∠ABP = ∠DCP

Note that we must be careful to pair these angles correctly. It 
is this pair that are equal because they are opposite AP and 
DP and AP = DP..

∠ABP = ∠DCP ⇒ AB is parallel to CD (alternate angles).

A

E

B

CD

In ΔAED and ΔBDE:

AE = EB (given)

ED is common to both triangles

∠AED = ∠BED = 90˚ (given) ⇒ ΔAED and ΔBDE are 
congruent (side-angle-side criterion)

AD = BD

AD = DC (given) ⇒

BD = DC  (rule of syllogism) ⇒

ΔBDC is isosceles
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Be careful of falling for superficial proofs such as "There are 
four red bits and four green bits so the areas are the same".

A B

C

Let the square by 2 by 2.

The area of the square is 2 × 2 = 4 square units (u2).

AB = BC = 1 by symmetry.

AC2 = AB2 + BC2 (Pythagoras)

AC2 = 12 + 12

⇒ AC = 2

Area of the large circle  = πr2

= π × 2( )2

= 2π (u2)

Green shaded area = area of circle – area of square

2π – 4 (u2)

To find the area of the red 'petal shapes'.

A B

C
The area with the two types of red shading is a quarter circle 
of radius 1.

Red shaded area  = ¼πr2

= ¼π × 12

= ¼π

The surrounding square is 1 by 1 and has area 1 (u2)

The white area bounded above = 1 – ¼π

Returning to the first diagram the red shaded area is the big 
square (2 by 2) minus 8 of these white areas.

The red area = 4 – 8 × (1 – ¼π) 

= –4 + 2π

= 2π – 4.

It follows that the red and green areas are the same.

If you feel that the step we made right at the start (assuming a 
size for the square) was not legitimate, you are probably right.

This can all be put right by letting the size of the square be x.

The whole proof can then proceed as before. The technique of 
tackling a difficult proof by simplifying it first, developing a 
proof and then using the same strategy to do the general case 
can be very useful.

Exercise A.8.2

1. Prove that if ∠BAC = ∠ACD, triangles ABE and CDE
are similar.

D

A

B

E

C

2. Prove that if the angles marked with the green dots are
equal, then the red lines are parallel.SAMPLE  PAGES
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3. A circle is inscribed in a 5, 12, 13 right triangle

Prove that the radius of the circle = 2.

4. Three semicircles are drawn on the sides of a right
angled triangle. Prove that the sum of the areas of the
two smaller circles (green) is equal to the area of the
large semicircle (red).

5. The figure consists of five semicircles all centred on the 
blue line. Prove that the white and green areas have:

i Equal areas

ii Equal perimeters.

8 cm

2 cm

8 cm

6. Gothic Tracery. The diagram shows a pattern common 
in gothic window designs.

a
O

b

The main arch consists of the arcs of two circles of 
radius a. The green arc is centred at O.

Prove that b = a 6
5

.

7. A right triangle has area A and perimeter 2P. Prove
that the hypotenuse is given by:

P − A
P

8. Two solids are made from twelve congruent equilateral 
triangles.

The first is a tetrahedron of volume T and the second
is an octahedron of volume O.

Prove that O = 4T.

9. A spherometer is a device for measuring the radius
of curvature of objects such as lenses. It consists of
a triangular device with three prongs arranged in an
equilateral triangle. A fourth prong can be screwed
up and down so that all four make contact with the
object.

a
a

a

The green prong makes contact with the lens (which 
has radius r) when it is h below the plane of the red 
prongs. Prove that:

r = a 2

6h
+ h

2
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Numerical Proofs
Proofs of theorems involving numbers almost always deal 
with infinite sets. This means that 'proof by exhaustion' is 
seldom an option.

It is also the case that there are some superficially simple 
statements that have been very resistant to proof. Some 
examples are:

Twin Primes

Pairs of prime numbers such as 11 & 13 that are separated 
by one even number are said to be 'twin primes'. The truth of 
the statement 'There are an infinite number of twin primes' is 
unresolved.

Goldbach's Conjecture

Every even number greater than 2 can be written as the sum 
of two prime numbers. For example: 6=3+3, 8=3+5 etc.

This is unproved.

Fermat's Last Theorem

an +bn = c n ,a ,b ,c ,n ∈!  has no solutions for n > 2.

This has been proved recently. It was proposed in 1637 so it 
took over 300 years of trying!

The approaches we have been using (working from the data 
through a string of inferences to the required statement) work 
for these problems too.

Let:
a =n −1,b =n ,c =n +1,d =n + 2
ab +ac +ad +bc +bd +cd +1
= n −1( )n + n −1( ) n +1( )+ n −1( ) n + 2( )+n n +1( )
…+n n + 2( )+ n +1( ) n + 2( )+1
=n 2 −n +n 2 −1+n 2 +n − 2+n 2 +n +n 2 + 2n +n 2 +3n + 2+1
= 6n 2 +6n
= 6n n +1( )

n n +1( )  is the product of an odd and even number and so 
is even.

6 × an even number is divisible by 12, so:

ab + ac + ad + bc + bd + cd + 1 is divisible by 12.

We have suggested that a good way of approaching a general 
proof of this sort is to look at a particular example, frame a 
proof for that and use the strategy to complete the full truth.

Let us look at the problem of the divisibility by 9 of 567 (which 
has a digit sum of 5 + 6 + 2 = 18).

According to the test, since 18 is divisible by 9, then 567 is 
divisible by 9.

In constructing the proof, write 567 as:

567 = 5 × 102 + 6 × 101 + 7 × 100

Consider what happens if we divide every term in this equation 
by 9. What we are interested in is what the remainders will be.

Since 9, 99, 999, 9 999 etc. are all divisible by 9, it follows that 
100, 101, 102, 103 etc, leave a remainder of 1 on division by 9.

Likewise, 5 leaves a remainder of 5 on division by 9, 6 leaves a 
remainder of 6 on division by 9 etc.

So the remainders of the right hand side are:

5 × 1 + 6 × 1 + 7 × 1 = 5 + 6 + 7 = 18.

If the remainder is divisible by 9, then there is no remainder 
at all.

Generalising:

If x = a0 × 100 +a1 × 101 +a2 × 102 +a3 × 103 +...

The remainders on division by 9 are: 

a0 × 1 +a1 × 1 +a2 × 1 +a3 × 1 +... (ie. the digit sum).
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So, x is divisible by 9 if and only if the digit sum is divisible 
by 9.

Note that this is a theorem that can be successively applied.

383, 942 has a digit sum of 29 which has a digit sum of 11 
which has a digit sum of 2 which is not divisible by 9. Hence, 

383, 942 is not divisible by 9.

Again, we look at a specific example.

A simplified version is: 

Find a rational number that is between 2
3

and 3
4

.

The mean of two numbers is always between them.

The mean of 2
3

and 3
4

 is 

2
3
+ 3

4
2

=

2× 4
3× 4

+ 3×3
4×3

2

= 2× 4+3×3
2×3× 4

= 17
24

If we want to check that this fraction is between 2
3

 and 3
4

, we 
need to use LCMs.

2
3

:17
24

: 3
4

2×8
3×8

:17
24

: 3×6
4×6

16
24

:17
24

: 18
24

It is evident that: 16
24

<17
24

<18
24

Thus, we have found a rational number between 2
3

and 3
4

.

Now, follow this pattern to prove the general case:

Let the two rational numbers be: a
b
, c
d
,a ,b ,c ,d ∈! .

with - a
b
< c
d

.

The mean of these two numbers is: 

a
b
+ c
d

2
=

ad
bd

+ ac
bd

2

= ad +ac
2bd

Since a, b, c, d are all integers, both the numerator and 
denominator of this expression are integers.

Thus ad +bc
2bd

is a rational number between a
b
, c
d

.

If you accept that a mean of two numbers must lie between 
them, the proof ends here.

Note that we can conclude that there must be another rational 
number between the lower number and the mean. There is 
also yet another rational between the mean and the larger 
number.

Successive use of this theorem means that we can infer that, 
between any two rational numbers, there are an infinite 
number of other rational numbers.

The check (which is not really necessary) is a bit more 
complex as we may be dealing with cases in which some of a, 
b, c, d are negative.

If a, b, c, d > 0: a
b
< ad +bc

2bd
< c
d

2ad
2bd

< ad +bc
2bd

< 2bc
2bd

2ad <ad +bc < 2bc
This contains two propositions: 2ad <ad +bc

ad <bc
and ad +bc < 2bc

ad <bc

That is, there is a single proposition here: ad < bc.

We have to be careful multiplying both sides of the inequality 
by 2bd in case this is negative. We have already specified that 
it is not. 

Since we started with: a
b
< c
d

, it follows that: ad
bd

< bc
bd

.

Since bd is positive: ad < bc, which is what we need.

If bd is negative, inequality signs must be reversed if there is 
multiplication by it.
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2ad
2bd

< ad +bc
2bd

< 2bc
2bd

 becomes 2ad >ad +bc > 2bc .

As before, this resolves to the single statement: ad > bc.

But the original premise also leads to this:

a
b
< c
d

ad
bd

< bc
bd

ad >bc
and the proof is complete.

Exercise A.8.3

1. Prove that every number that ends in 0 or 5 is divisible
by 5.

2. Prove that every square number can be written as the
sum of two triangle numbers.

3. Does this pattern continue?

13 = 12

13 + 23 = (1 + 2)2

13 + 23 + 33 = (1 + 2 + 3)2

13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2

4. Generalise and prove that this pattern continues:

              1 + 1 + 1 = 3

       1 + 2 + 3 + 2 + 1 = 9

1 + 3 + 6 + 7 + 6 + 3 + 1= = 27

5. Generalise and prove that this pattern continues:

              1 – 1 + 1 = 1

       1 – 2 + 3 – 2 + 1 = 1

 1 – 3 + 6 – 7 + 6 – 3 + 1= = 1

6. Prove that x is divisible by 11 if and only if alternating
sum of its digits a0 − a1 + a2 − a3 + a4 +···+am(−1)m is
divisible by 11.

7. Prove that the sum of the digits of the digits of the sum

of the digits of the sum of the digits of 44444444 is 7.

8. Prove that there exist rational numbers A & B such
that AB is irrational.

9. Following on from the previous question, prove that
there exist irrational numbers A & B such that AB is
rational.

10. If one million factorial is written in full, how many
zeros does it end in?

11. If a, b and c are integers such that a|b and b|c,then a|c
means a divides into c.

12. Prove that if m is an integer then 3 divides m3 − m.

13. Two integers are said to be relatively prime if their
greatest common divisor is 1.

i Show that if m is a positive integer, then 3m + 2
and 5m + 3 are relatively prime.

ii Show that if a and b are relatively prime 
integers,then the greatest common divisor of 
a + 2b and 2a + b = 1 or 3.

14. The diagram shows the pattern known a Leibniz's
Harmonic Triangle. It is cousin to Pascal's Triangle.
Can you see how it 'works'?

1
1

1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
12

1
12

1
20

1
30

1
20

Use the triangle to investigate the truth, or otherwise, 
of these postulates.

i 1
1
= 1

2
+ 1

6
+ 1

12
+ 1

20
+ 1

30
+ ...

ii 1
2
= 1

3
+ 1

12
+ 1

30
+ 1

60
+ 1

105
+ ...

iii 
1
3
= 1

4
+ 1

20
+ 1

60
+ 1

140
+ 1

280
+ ...
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Algebraic Proofs
We have already been using algebra to construct proofs as 
they relate to postulates involving numbers and geometric 
shapes.

Here are two further examples:

n ∈! , 3n +1( )2 − 3n −1( )2

3n +1( )2 − 3n −1( )2 = 9n 2 +6n +1− 9n 2 −6n +1( )
=12n

n is a whole number, 12 is a multiple of 4 so 12n is also a 
multiple of 4.

For a natural number, 2n is even. The next even number is 
2n + 2.

The sum of the squares is: 2n( )2 + 2n + 2( )2 = 4n 2 + 4n 2 + 4n + 4

= 4 2n 2 +n +1( )
Since 4 is divisible by 4 and the bracket is a whole number, the 
expression is divisible by 4 as required.

Exercise A.8.4

1. Show that the sum of any three consecutive even
numbers is a multiple of 6.

2. Show that n ∈! , 2n +3( )2 − 2n −3( )2  is divisible by 8.

3. Compare the two series:

1+ 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ ...

1+ 1
2
+ 1

4
+ 1

4
+ 1

8
+ 1

8
+ 1

8
+ 1

8
+ ...

Hence prove that: 
1
n
=∞

n=1

∞

∑

4. Prove that every recurring decimal can be written as a
mixed number and is, hence, rational. Hence conclude
that the decimal representation of π is not a recurring
decimal.

5. Prove that the conjecture:

For all natural numbers n, nn > n! is false.

6. Investigate the truth, or otherwise, of Stirling's
Formula:

n!! 2πn n
e

⎛
⎝⎜

⎞
⎠⎟
n

7. Prove that
k + 2( )!
k −1( )! = k

3 +3k 2 + 2k ,k >1,k ∈! .

8. Prove that a set with n members has 2n subsets
(including the set itself and the empty set).

9. Use the laws of indices to prove that for non-zero a, a0

is 1.

10. Consider lim
n→∞

n n +1( )−n( ) .

Hence prove that π can be the limit of a sequence of 
numbers of the form n − m .
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Exercise A.8.5

1. Prove that a+b+c+d+e+f=360˚.

a

f e

d

c

b

2. A square is inscribed in a 3, 4, 5 triangle. Prove that its
side length is 1⁵/₇ units.

3
5

4

3. A '7 smooth number' is one that factorises into prime
numbers less than or equal to 7.

Prove that 86 436 000 is 7 smooth.

4. Prove that 2n + 1 where n is an odd number is divisible
by 3.

5. Prove that the sum of the angles marked with the red
dots is 180˚.

6. Prove that there are at least two positive integers
a, b >5 such that a3 + b3 = a4.

7. Prove that if n is an odd positive integer n4 – 18n2 + 17
is divisible by 64.

8. The binary operation ◉ is defined on the set {a,b,c,d}
by this table:

◉ a b c d
a a c d b
b c b a d
c d a c a
d b d a d

Prove that the operation is commutative ie. X◉Y=Y◉X 
for all members of the set.

9. Prove that the two coloured triangles are similar.

>

>

10. Prove that if n is not divisible by 7, then either n3 + 1 or
n3 – 1 is divisible by 7.

11. Prove that AB is a diameter of the circle.
A

B
2x

2x

x

12. Two circles have radii 1 and 3+2√2 and touch
externally. Prove that their common tangents are
perpendicular.

13. If p1,p2,p3,...pn are the first n prime numbers, prove
that: p1,×p2×p3×...×pn+1 is also prime and hence prove
that there are an infinite number of prime numbers.

14. a>0, b>0, c>0 and a+b+c=2 prove abc≤1.

15. Prove that an integer that ends with 7 cannot be a
perfect square.

16. If a and b are integers and b is odd, prove that
x2 + 2ax + 2b = 0 has no rational roots.

17. Prove that for n ∈!+ ,n!< n +1
2

⎛
⎝⎜

⎞
⎠⎟
n

.
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TOOLBOX

Pascal and Fibonnaci
Pascal's Triangle is the pattern shown here. It is of considerable 
importance in Probability Theory, The Binomial Theorem etc.

1

1   2   1
1   3    3   1

1   4    6   4   1
1   5   10  10  5  1

1  6   15  20  15  6  1

1    1

The numbers down the side are all 1. The numbers in the 
body of the triangle are such that each number (eg. yellow) is 
the sum of the two numbers above and to either side. 

1   2   1
1   3    3   1

1   4    6   4   1
1   5   10  10  5  1

1  6   15  20  15  6  1

1
1    1

If we compare the combinatorial numbers (which we 
encountered when studying the Binomial Theorem) with the 
numbers in the Pascal Triangle, there is a superficial similarity.

0C 0 =1
1C 1 =11C 0 =1

2C 0 =1 2C 2 =12C 1 =2
3C 0 =1 3C 1 =3 3C 2 =3 3C 3 =1

4C 0 =1 4C 1 =4 4C 2 =6 4C 3 =4 4C 4 =1

There are a number of things that we need to prove if we want 
to establish that the resemblance is more than superficial.

The first is that the beginning and end numbers in each row 
are 1.

This means that, if we are to prove the whole thing, we start 
by proving:

nC 0 =
nCn =1,n ∈!

Hint: nCr =
n!

n − r( )!r !
.

The hard bit is the pattern in the body of the table. 

We have advised you to tackle difficult proofs like this by 
taking a particular case, proving that and then using the same 
strategy to prove the general case.

Taking the example marked in yellow and green in the 
diagram:

1   2   1
1   3    3   1

1   4    6   4   1
1   5   10  10  5  1

1  6   15  20  15  6  1

1
1    1

The numbers in green are: 5C 2 =10  and 5C 3 =10 .

The number in yellow is: 6C 3 = 20 .

Just using a calculator and observing that it 'works' is not 
good enough. We need to work from the definition of 
combinatorial numbers to prove this special case:

5C 2 +
5C 3 =

5!
5− 2( )!2!

+ 5!
5−3( )!3!

 which has to be equal to:

6C 3 =
6!

6−3( )!3!

There is some fairly intricate LCM work involved here as you 
are working with numbers in factorial form. Remember to 
notice how this works as, to complete the proof, you will need 
to tackle the general case.

Further Patterns

The rows of Pascal's Triangle appear to sum to powers of 2. 
Can you prove that they all do?

The first few triangle numbers (1, 3, 6, 10, 15,...) appear in two 
of the diagonals. Is this a pattern that continues?

If Pascal's Triangle is written in echelon form, it appears that 
the Fibonacci sequence emerges.

1   2   1
1   3   3   1

1   4   6    4    1
1   5   10  10   5    1

1    6   15  20  15  6  1

1
1   1

Incomplete
columns1   1   2   3   5   8   13

Does this pattern continue. Can you prove it?
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There are many surprising patterns in the Fibonacci Sequence. 
For example, the limit of the ratio of successive terms is 
related to the Golden Mean

The Golden Mean

1 unit

1 unit
x

Place a dividing point such that the ratio of the 
shorter part to the longer part is the same as the 
ratio of the longer part to the whole.
�is becomes the basis of the‘perfect rectangle’.

1 unit
x

The Fibonacci Limit

If the nth Fibonacci Number is denoted by Fn, find:

lim
n→∞

Fn+1

Fn

⎛
⎝⎜

⎞
⎠⎟

Can you prove the relationship between this and the Golden 
Mean?
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Using the 6th Editions of IBID Press Mathematics Texts
This series of texts has been written for the IB Courses Mathematics: Analysis and Approaches 
and Mathematics: Applications and Interpretations that start teaching in August 2019.

Course Studied
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Approaches (H
L)

M
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atics: Applications 
and Interpretations (SL)

M
athem

atics: Applications 
and Interpretations (H

L)

D
iscounted Package

Mathematics: Analysis 
and Approaches (SL)

Pure(SL)

Mathematics: Analysis 
and Approaches (HL)

Pure(HL)

Mathematics: 
Applications and 
Interpretations (SL)

Applied(SL)

Mathematics: 
Applications and 
Interpretations (HL)

Applied(HL)
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Distinctive Features of the IBID Mathematics Series:

• The five books are organised to help with parallel time-tabling. The
books can be bought in print form or as licensed e-books.

• The print form product can be bought as discounted packages.

• Launch recommended retail prices will mean that an SL student
of either course can be equipped with IBID print texts for $AUS 70
(approximately $US 50 , € 45, £ 40)

• An HL student will receive 3 books (~700pp) for $AUS 110
(approximately $US 80 , € 70, £ 65)

• The requirements for 'Toolbox' activities are covered extensively.
There is a complete chapter in the Core Text (included in this
'Sampler') that deals with Problem Solving Skills. Toolbox sections
with hints and suggestions for Investigations are scattered
throughout the books. This component will account for 20% of a
student's assessment.

• Extra questions and answers to the exercises are complimentary
extras accessible via QR codes in the book or as free downloads from
the IBID website.

• Additional resources such as videos describing calculator use,
experimental data etc. available via QR codes or the website.

• Organised and keyed to the 2019 Syllabi

• Full colour presentation, comprehensive explanations, examples
and exercises.
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