MATHEMATICS

ANALYSIS AND

Approaches - HL

SAMPLE

Bill Blyth, Györgyi Bruder Fabio Cirrito, Millicent Menryo Benedict Hung, William Larson, Rory McAuliffe James Sanders. 6th Edition

Copyright ©IBID Press, Victoria.

www.ibid.com.au

First published in 2019 by IBID Press, Victoria

Library Catalogue:

Bruder, Blyth, Cirrito, Henry, Hung, Larson, McAuliffe, Sanders

1. Mathematics

2. International Baccalaureate.

Series Title: International Baccalaureate in Detail

ISBN XXXXX

All rights reserved except under the conditions described in the Copyright Act 1968 of Australia and subsequent amendments. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission of the publishers.

While every care has been taken to trace and acknowledge copyright, the publishers tender their apologies for any accidental infringement where copyright has proved untraceable. They would be pleased to come to a suitable arrangement with the rightful owner in each case.

This material has been developed independently by the publisher and the content is in no way connected with nor endorsed by the International Baccalaureate Organization.

All copyright statements, '© IBO 20019’ refer to the Syllabus Guide published by the International Baccalaureate Organization in 2013.

IBID Press expresses its thanks to the International Baccalaureate Organization for permission to reproduce its intellectual property.

Cover design by Key-Strokes.

Published by IBID Press, www.ibid.com.au
ANALYSIS AND APPROACHES HL:TABLE OF CONTENTS
A: NUMBER AND ALGEBRA
A. 5 Counting Principles 6
A. 6 Partial Fractions 15 5
A. 7 Complex Numbers 23 3
A. 8 Proof 47 7
A. 9 Systems of Linear Equations 57 7
B: FUNCTIONS
B. 5 Factor and Remainder Theorem 66
B. 6 Rational Functions 75
B. 7 Further Functions 85 5
B. 8 Modulus Function and Solving Inequalties 93
C: TRIGONOMETRY AND GEOMETRY
C. 8 Reciprocal and Inverse Trigonometric Functions 103
C. 9 Further Identities 113
C. 10 Trigonometric Functions 117
C. 11 Vectors 124
D: STATISTICS AND PROBABILITY
D. 7 Bayes' Theorem 180
D. 8 Further Probability Distributions 185
E: CALCULUS
E. 7 Continuity and Differentiability 198
E. 8 Further Limits (SAMPLE CHAPTER INCLUDED) 207
E. 9 Implicit Differentiation 211
E. 10 Integration Methods 223
E. 11 Differential Equations 233

AHL 5.13 L'Hôpital's Rule

French mathematician Guillaume François Antoine, Marquis de l'Hôpital (1661 1704) is chiefly remembered for a limits rule that bears his name. The name is also frequently spelled l'Hôspital.

L'Hôpital's Rule is particularly useful in evaluating limits that involve expressions that resolve to $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

L'Hôpital's Rule is usually stated as:
If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ takes the indeterminate form $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$, then:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

The full proof of this result is quite complex. We will show that the result holds true for the indeterminate form when $f(c)=g(c)=0$.

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow c} \frac{f(x)-0}{g(x)-0} \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)-g(c)}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} & =\frac{\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}}{\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}} \\
& =\frac{\lim _{x \rightarrow c} f^{\prime}(x)}{\lim _{x \rightarrow c} g^{\prime}(x)} \\
& =\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

So, as long as $g^{\prime}(c) \neq 0$, the result is complete.
If the quotient of the derivatives is still of the form $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$
we have to apply L'Hopital's rule again and calculate the quotient of the second, third,.... derivatives at $x=c$ until the quotient yields a properly defined value.

The first of our examples deals with a very important limit that is crucial in the first principles differential of the trigonometric functions.

Example E.8.1

Use L'Hôpital's Rule to evaluate: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

As $\frac{\sin (0)}{0}$ is of the form $\frac{0}{0}$ we can apply L'Hopital's Rule. Letting: $f(x)=\sin (x), g(x)=x$, we use calculus:

$$
f^{\prime}(x)=\cos (x), g^{\prime}(x)=1
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x} & =\lim _{x \rightarrow 0} \frac{\cos (x)}{1} \\
& =\frac{\cos (0)}{1} \\
& =1
\end{aligned}
$$

Example E.8.2

$$
\text { Evaluate: } \lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}
$$

Let: $f(x)=\ln (x), g(x)=x-1$

$$
f^{\prime}(x)=\frac{1}{x}, g^{\prime}(x)=1
$$

$f(1)=\ln (1)=0, g(1)=1-1=0$ and so L'Hopital's rule is applicable.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1} & =\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1} \\
& =1
\end{aligned}
$$

This cannot be fully checked using a calculator as any attempt to evaluate the expression at $x=1$ will give an error message. However, plotting the graph and using trace will support our answer:

Example E.8.3

$$
\text { Evaluate: } \lim _{x \rightarrow 0} \frac{\cot (x)}{\ln (x)}
$$

Let: $f(x)=\cot (x), g(x)=\ln (x)$
We have a $\frac{\infty}{-\infty}$ limit and can use L'Hopital's Rule.

$$
\lim _{x \rightarrow 0} \frac{\cot (x)}{\ln (x)}=\lim _{x \rightarrow 0} \frac{\left(-\frac{\sin ^{2}(x)}{\left(\frac{1}{x}\right)}\right.}{(x)}
$$

$$
=-\lim _{x \rightarrow 0} \frac{x}{\sin ^{2}(x)}
$$

This is $\frac{0}{0}$ and we apply the rule a second time.

$$
\begin{aligned}
-\lim _{x \rightarrow 0} \frac{x}{\sin ^{2}(x)} & =-\lim _{x \rightarrow 0} \frac{1}{2 \sin (x) \cos (x)} \\
& =-\lim _{x \rightarrow 0} \frac{1}{\sin (2 x)} \\
& =-\infty
\end{aligned}
$$

Example E.8.4
Evaluate: $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{n}}$

We have a $\frac{\infty}{\infty}$ limit and can use L'Hopital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{n}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{n x^{n-1}} \\
& =\lim _{x \rightarrow \infty} \frac{0}{n x^{n-1}} \\
& =0
\end{aligned}
$$

Example E.8.5

$$
\text { Evaluate: } \lim _{x \rightarrow 0} x \ln (x)
$$

This product is of the form $0 \times-\infty$ and so the expression must be rewritten as:

$$
\lim _{x \rightarrow 0} x \ln (x)=\lim _{x \rightarrow 0} \frac{\ln (x)}{\frac{1}{x}}
$$

Next, use the rule: $\lim _{x \rightarrow 0} \frac{\ln (x)}{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}$

$$
=\lim _{x \rightarrow 0}(-x)
$$

$$
=0
$$

Example E.8.6

$$
\text { Evaluate: } \lim _{x \rightarrow \infty} x \sin \left(\frac{\pi}{x}\right)
$$

This product is of the form $0 \times \infty$ and so the expression must be rewritten as:

$$
\lim _{x \rightarrow \infty} x \sin \left(\frac{\pi}{x}\right)=\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{\pi}{x}\right)}{\frac{1}{x}}
$$

Exercise E.8.1

1. Determine the following limits.
a $\quad \lim _{x \rightarrow 0}\left(\frac{x+\sin 2 x}{x-\sin 2 x}\right)$
b $\quad \lim _{x \rightarrow \pi}\left(\frac{x-\pi}{\sin 2 x}\right)$
c $\quad \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sin 2 x}{\cos x}\right)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{\pi}{x}\right)}{\frac{1}{x}} & =\lim _{x \rightarrow \infty} \frac{\frac{\pi}{x^{2}} \cos \left(\frac{\pi}{x}\right)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \pi \cos \left(\frac{\pi}{x}\right) \\
& =\pi
\end{aligned}
$$

2. Determine the following limits.
a

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{e^{2 x}}\right)
$$

b $\quad \lim _{x \rightarrow \infty}\left(\frac{\ln x}{x}\right)$
c $\quad \lim _{x \rightarrow \infty}\left(\frac{2 x}{x+\ln x}\right)$
3. Determine the following limits.
a $\quad \lim _{x \rightarrow 0}\left(\frac{2 x}{x+\sin x}\right)$
b $\quad \lim _{x \rightarrow 0}\left(\frac{\cos x-1}{x^{2}}\right)$
c $\quad \lim _{x \rightarrow 0}\left(\frac{x-\sin x}{x^{3}}\right)$
4. Determine the following limits.

$$
\text { a } \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sin x-1}{\cos x}\right)
$$

b $\quad \lim _{x \rightarrow 0^{+}} x \ln \left(1+\frac{1}{x}\right)$
c

$$
\lim _{x \rightarrow 1}\left(\frac{\ln x-(x-1)}{x-1}\right)
$$

Extra questions

5. Determine the following limits, if they exist.
a $\quad x \rightarrow \frac{\pi}{2}(\tan x+\sec x)$
b $\quad \lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$
c $\quad \lim _{x \rightarrow 1}\left(\frac{\ln x}{x^{2}-x}\right)$
b

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x}
$$

8. Evaluate the following limits, if they exist.
a $\quad \lim _{x \rightarrow 0} \frac{x-\sin x}{x^{2} e^{x}}$

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{\cos x}{x^{2}}\right) & =\lim _{x \rightarrow 0}\left(\frac{-\sin x}{2 x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{-\cos x}{2}\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

7. Determine the following limits, if they exist.
a

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x} e^{x}\right)
$$

b

$$
\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{e^{x}}\right)
$$

6. What is wrong in the calculation:
$\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{e^{x}}\right)$

$$
x \rightarrow 0 \quad \sin ^{2} x
$$

$$
\text { c } \quad \lim _{x \rightarrow 1}\left(\frac{x^{4}-7 x^{3}+8 x^{2}-2}{x^{3}+5 x-6}\right)
$$

Using the 6th Editions of IBID Press Mathematics Texts

This series of texts has been written for the IB Courses Mathematics: Analysis and Approaches and Mathematics: Applications and Interpretations that start teaching in August 2019.

Course Studied	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					
Mathematics: Analysis and Approaches (SL)						Pure(SL)
Mathematics: Analysis and Approaches (HL)						Pure(HL)
Mathematics: Applications and Interpretations (SL)						Applied(SL)
Mathematics: Applications and Interpretations (HL)						Applied(HL)

Distinctive Features of the IBID Mathematics Series:

- The five books are organised to help with parallel time-tabling. The books can be bought in print form or as licensed e-books.
- The print form product can be bought as discounted packages.
- Launch recommended retail prices will mean that an SL student of either course can be equipped with IBID print texts for \$AUS 70 (approximately \$US $50, € 45, £ 40$)
- An HL student will receive 3 books ($\sim 700 \mathrm{pp}$) for \$AUS 110 (approximately \$US $80, € 70, £ 65$)
- The requirements for 'Toolbox' activities are covered extensively. There is a complete chapter in the Core Text (included in this 'Sampler') that deals with Problem Solving Skills. Toolbox sections with hints and suggestions for Investigations are scattered throughout the books. This component will account for 20% of a student's assessment.
- Extra questions and answers to the exercises are complimentary extras accessible via QR codes in the book or as free downloads from the IBID website.
- Additional resources such as videos describing calculator use, experimental data etc. available via QR codes or the website.
- Organised and keyed to the 2019 Syllabi
- Full colour presentation, comprehensive explanations, examples and exercises.

