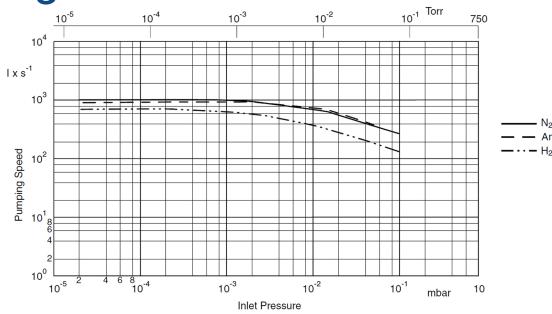
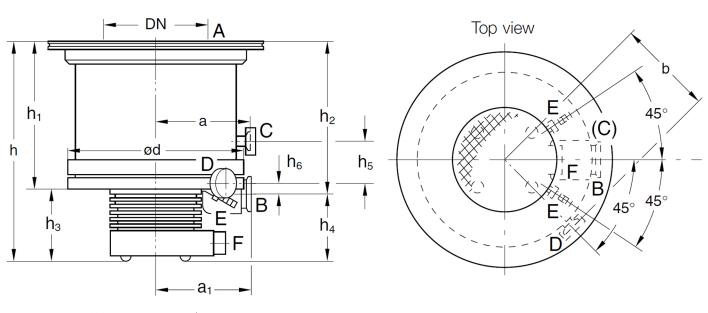
WWW.PROVAC.COM


Leybold TMP-1100C Technical Specifications

	TURBOVAC 1100 C					
Inlet flange DN	200 ISO-K	250 ISO-K				
Pumping speed						
N_2 Ix s ⁻¹	830	1050				
Ar Ixs ⁻¹	760	980				
He I x s ⁻¹	750	850				
H ₂ Ix s ⁻¹	600	630				
Max. gas throughput						
N ₂ mbar x I x s ⁻¹	25	25				
Ar mbar x I x s ⁻¹	15	15				
He mbar x I x s ⁻¹	25	25				
H ₂ mbarxlxs ⁻¹	30	30				
Compression ratio						
N_2	1 x 10 ⁵	1 x 10 ⁵				
Ar	1 x 10 ⁵	1 x 10 ⁵				
H_2	1 x 10 ⁴	1 x 10 ⁴				
Ultimate pressure mbar (Torr)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)				
Max. foreline pressure for N ₂ mbar (Torr)	0.1 (0.075)	0.1 (0.075)				
Recommended forevacuum pump	TRIVAC D 65 B / EcoDry M15/20	TRIVAC D 65 B / EcoDry M15/20				
Run-up time to 95% speed min	9	9				
Purge / vent port DN	10 KF	10 KF				
Cooling water connection						
(hose nozzles) mm (in.)	10 (0.39)	10 (0.39)				
Weight, approx. kg (lbs)	22 (48)	22 (48)				
Supply voltage V AC	42	42				
Max. power consumption VA	400	400				


WWW.PROVAC.COM

Leybold TMP-1100C

Pumping Curves

Dimensions

DN		h	h_1	h_2	h_3	h_4	h ₅	h ₆	а	a_1	b	d
200 ISO-K	mm	325	214	231	111	94	63	28.5	133	153	141	258
	in.	12.80	8.43	9.09	4.37	3.70	2.48	1.12	5.24	6.02	5.55	10.16
250 ISO-K	mm	310	200	217	111	94	63	28.5	133	153	141	258
	in.	12.20	7.87	8.54	4.37	3.70	2.48	1.12	5.24	6.02	5.55	10.16

WWW.PROVAC.COM

Leybold TMP-1100C

Features & Benefits

- · oil-free for generation of clean high & ultra-high vacuum conditions
- high performance in any orientation
- · high degree of operating reliability
- ceramic ball bearings
- easy to operate
- compact design
- robust rotor design
- integrated control system for monitoring temperature of bearings
- easy to integrate into complex vacuum systems
- low operating costs

Applications

- · load locks · transfer chamber · optical coating · flat panel displays
- research & development fusion experiments space simulation
- large area coating · data storage

