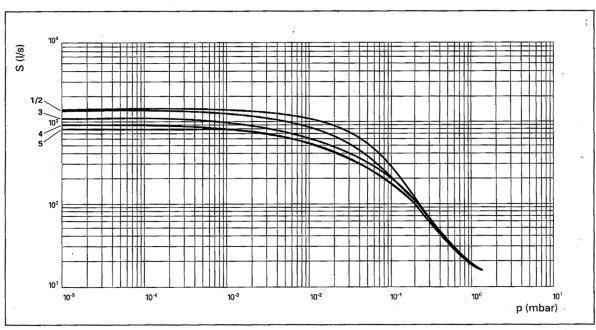
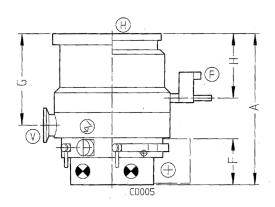
Pfeiffer TMH-1600, TMH-1600C, TMU-1600, TMU-1600C


Technical Specifications

			MH 1600 MU 1600	TMH 1600 C TMU 1600 C		
Connection nominal diameter Inlet Outlet Venting connection			DN 250 ISO-K DN 250 CF-F ISO-KF/G 1/4" G 1/8"	DN 200 ISO-K DN 250 ISO-K DN 200 CF-F DN 250 CF-F DN 40 ISO-K/G 1/4"F G 1/8"		
Electronic Drive Unit		TCP	380/TCP 600	TCP 600		
Nominal rotation speed Stand-by rotation speed Run-up time (up to 90% of the nominal rotation speed, fore- vacuum pressure ≤ 0.1 mbar)	1/min 1/min min		36 000 24 000 21/7	36 000 24 000 7		
Volum flow rate for Nitrogen N ₂ Helium He Hydrogen H ₂ Argon Ar Tetraflourmethan CF ₄	Vs Vs Vs Vs	1100 1320 1050 -	1500 1450 1150 -	1100 1320 1050 1050 850	1500 1450 1150 1400 1100	
Compression ratio for N ₂ He H ₂ Ar CF ₄		>1·10 ⁸		> 10 ¹² > 1 · 10 ⁶ 3 · 10 ⁶ >10 ¹² >10 ¹²	3	
Aaximum fore-vacuum pressure N_2 mbar V_S He mbar V_S mbar V_S mbar V_S Ar mbar V_S mbar V_S CF4 mbar V_S			12 10 4 12 12	12 10 4 12 12		
He H ₂ Ar	mbar Vs mbar Vs mbar Vs mbar Vs mbar Vs		5 ¹⁾ (10) 5 ¹) (14) 4 ¹⁾ (17) -	17 ²⁾ (10 - - 14,5 ²) (5, 15 ²) (8)	5)	
Recommended backing pump Rotary vane pump Diaphragm vacuum pump Dry three stage backing pump Final pressure with DUO 010 M mbar MD 4T/MD 4TC mbar		U1 <	JO 010 M MD 4T niDry TM 1 · 10 ⁻¹⁰ 1 · 10 ⁻¹⁰ 1 · 10 ⁻¹⁰	DUO 010 M MD 4TC UniDryTM <1 · 10·10 <1 · 10·10 <1 · 10·10		
UniDry TM Max. cooling water consumption with water at 15°C ⁴) Cooling water temperature Permissible ambient temperature with air cooling	Wh 'C 'C	100 5 - 25 0 - 35		100 5 - 25 not permissible		
Permissible magnetic field Heating power consumption Weight Noise level	mT W kg dB (A)	49/51	3 170 51/53 < 47	3 170 51 < 47	51/53	

WWW.PROVAC.COM

Pfeiffer TMH-1600, TMH-1600C, TMU-1600, TMU-1600C


Pumping Curves


Pumping speed

- 1 TMH/U 1600: N₂
- 2 TMH/U 1600: He
- 3 TMH/U 1600: H₂
- 4 TMH/U 1000: He 5 TMH/U 1000: N₂, H₂

Dimensions

	Α	В	С	D	E	F	G	Н	J	К
TMH/U 1000/C	333	214	141	67.2	187.5	130	182	117.2	206	190
TMH/U 1600/C	377	220	163.	5 67.2	187.5	130	228.	5 159	228.	5 190

- High vacuum connection
- Fore-vacuum connection
- Venting connection
- Power connection
- Water connection
- Air cooling
- G Gas inlet

3536 WWW.PROVAC.COM

Pfeiffer TMH-1600, TMH-1600C, TMU-1600, TMU-1600C

Features & Benefits

- pump and drive form single unit
- simple and economical system solution
- modular design for maximum flexibility
- all components connects on the plug & play principle
- · minimal space requirements for the entire system
- integrated serial interface provides additional versatility
- low vibration and noise level
- low system costs

Applications

- research and development
 basic physical research
 HV technology
- vacuum processing accelerators fusion technology

Recommended controller/backing pump

- Diaphgragm pumps: MD-4T
- · Vane pumps; DUO 010M
- Dry pumps; UniDry
- · Controllers; TCP-380 · TCP-600