

Microbial Preservation Plate

Preservation Plate

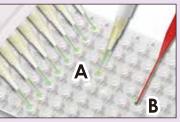
Microorganisms and DNA can be preserved in a dry state! A new style of sample preservation.

Space Saving

It is very compact and space saving in comparison with preserving in tubes samples of liquid condition. Marking space on the plate and compact body make sample storage management easier.

Recover Samples Directly on PCR Plate

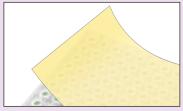
Paper chips can be put directly into the solution to start PCR or in situ hybridization.


Reduce Contamination Risk

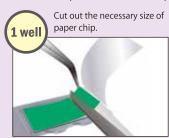
Compared to the traditional way of repeated samplings from the same tube, Preservation Plate (PVP) can reduce contamination risk by using different wells on the PVP and/or changing the PVP sheet itself dependent on the sample (Note: Only 96 well PVP can be cut easily with scissors).

Select a preservation plate according to the sample type

Because a protective agent is applied to the paper chips of the "Microbial Preservation Plate", it is very suitable for desiccation of bacteria and yeast. In addition, the paper chips used in "Preservation Plate" which can preserve nucleic acid and blood, do not contain any reagents and salt. Thus, you can later use any desired solution.


Preservation Method

- ①Let the paper chip absorb a liquid sample. A: For a liquid sample
 - Solution volume perwell 96 well \rightarrow 5 µL 3 well \rightarrow 50 μ L


1 well → 200 μL B: For a sample from agar

- 2Dry the sample.
 - Recommended dry time 96 well → 60 minutes or more 3 well, 1 well \rightarrow 90 minutes or more
- 3 Seal the plate with the protection seal and store it in room temperature.

Recovery Method

①Peel off the protection seal and place the paper chip into a container.

Push the paper chips by tweezers etc.

2) Put the solution into the container and stir. In the case of agar, rub the paper chip onto agar.

Note: When handling the specific pathogens, please act in accordance with the applicable laws and regulations in your country.

Microbial Preservation Plate

For general bacteria / For yeast

Material: [96 well] Polypropylene (plate) [3 well, 1 well] Polystyrene (plate)

Microbial Preservation Plate

Microbial strains such as E.coli and yeast can be dry-preserved on a paper chip coated with a preservation agent.

Samples can be sealed individually with an accessory protection seal to prevent contamination and inactivation. This enables compact and efficient preservation at room temperature - it is no longer necessary to use deep freeze or dry ice for transportation.

Note: When handling the specific pathogens, please act in accordance with the applicable laws and regulations in your country.

[Cautions of storage] This item is set expiry date. Please check this "Expiry Date" indicated on the products label.

ı	Cat. No.	ltem		Unit
	176-531S	Microbial Preservation Plate for Bacteria, 96 well	Sterilized	5 plates / bag
	176-551S	Microbial Preservation Plate for Fungi, 96 well	Sterilized	5 plates / bag
	176-3315	Microbial Preservation Plate for Bacteria, 3 well	Sterilized	5 plates / unit
	176-3515	Microbial Preservation Plate for Fungi, 3 well	Sterilized	5 plates / unit
	176 - 231S	Microbial Preservation Plate for Bacteria, 1 well	Sterilized	5 plates / unit
	176-2515	Microbial Preservation Plate for Fungi, 1 well	Sterilized	5 plates / unit

■ Micro	Microbial viability with time in Preservation Plate		Time(month)	0.5				3				6				12				24			
No.	Kingdom	Genus Species	JCM No.	-20°C	4°C	RT	37℃	-20°C	4℃	RT	37℃	-20°C	4℃	RT	37℃	-20°C	4℃	RT	37℃	-20°C	4°C	RT	37℃
1		Deinococcus grandis	6269	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	0	0	×	×
2		Chryseobacterium meningosepticum	21065	0	0	0	0	0	0	×	×	0	×	×	×	0	×	×	×	0	×	×	×
3		Flavobacterium aquatile	20475	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
4		Sphingobacterium multivorum	21156	0	0	×	×	0	×	×	×	0	×	×	×	0	×	×	×	0	×	×	×
5		Sphingomonas paucimobilis	7156	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	0	0	×	×
6		Methylobacterium extorquens	2802	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	0	0	0	×
7		Alcaligenes faecalis	20522	0	0	0	0	0		×	×	0	0	×	×	0	0	×	×	0	0	×	×
8		Comamonas testosteroni	5832	0	0	×	×	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×
9		Delftia acidovorans	5833	0	×	×	×	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
10	<u>a</u> .	Herbaspirillum seropedicae	21448	0	0	0	0	0	0	×	×	0	×	×	×	0	×	×	×	×	×	×	×
11	er	Halomonas halophila	20791	0	0	×	×	0	×	×	×	0	×	×	×	0	×	×	×	0	×	×	×
12		Pseudomonas aeruginosa	5962	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	×	×	×	×
13	ac	Azotobacter vinelandii	21475	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
14	B	Pseudoalteromonas carrageenovora	8851	0	0	0	0	0	×	×	×	0	×	×	×	0	×	×	×	0	×	×	×
15		Shewanella putrefaciens	20190	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
16	Φ	Vibrio proteolyticus	21193	0	0	0	0	0	0	0	0	0	0	×	×	0	0	×	×	×	×	×	×
17	٦	Escherichia coli	1649	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	0	×	×	×
18	∸	Enterobacter aerogenes	1235	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	0	×	×	×
19		Bacillus subtilis	1465	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20		Planococcus citreus	2532	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	0	0	×	×
21		Lactobacillus delbrueckii subsp. delbrueckii	1012	0	0	0	0	0	0	0	×	0	0	0	×	0	0	×	×	0	0	×	×
22		Arthrobacter globiformis	1332	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	0	0	×	×
23		Micrococcus luteus	1464	0	0	0	0	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×
24		Brevibacterium linens	1327	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	0	0	×	×
25		Corynebacterium glutamicum	1318	0	0	0	0	0	0	0	×	0	0	×	×	0	0	×	×	0	×	×	×
26		Microbacterium lacticum	1379	0	0	0	0	0	0	×	×	0	0	×	×	0	0	×	×	0	0	×	×
27		Rhodococcus equi	1311	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	0	0	×	×
28	Fungi	Saccharomyces cerevisiae	7255	0	0	0	0	0	0	×	×	0	×	×	×	0	×	×	×	0	×	×	×
29	团	Schizosaccharomyces pombe	21877	0	0	0	0	0	0	0	0	0	0	0	×	0	0	0	×	0	0	0	×

^{*}The above data are as of 1.May.2013 and may be subject to update in the future.

^{*2} types of preservation agent of different formulation are used for bacteria and yeast are used in the above experiments.

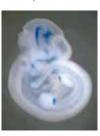
^{*}The above data are extracted from our own experiments and not to gurantee the results in other experiments. Return or exchange of the products caused by the result of preservation are not acceptable.

Preservation Plate

For DNA, RNA, oligonucleotide, or blood

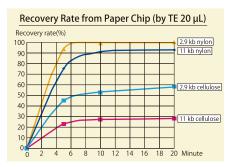
Watson's Preservation Plate (PVP) has been developed in order to enable storage and transportation of such bioresources as nucleic acids (DNA / RNA / oligonucleotide) and blood under room temperature and pressure.

Simply place such samples onto paper chips, then dry, the preservation is completed.


Cat. No.	ltem	Unit
176-501C	Preservation Plate, 96 well, Cellulose	5 plates / bag
176-502C	Preservation Plate, 96 well, Nylon	5 plates / bag
176-301C	Preservation Plate, 3 well, Cellulose	10 plates / unit
176-302C	Preservation Plate, 3 well, Nylon	10 plates / unit
176-201C	Preservation Plate, 1 well, Cellulose	10 plates / unit
176-202C	Preservation Plate, 1 well, Nylon	10 plates / unit

Application Examples

Preservation of oligo-synthesis RNA probe and ISH (ISH: in situ hybridization)


After a week of preservation under normal temperature.

After 4 months of preservation under normal temperature.

There is always a risk of contamination with RNase based on operator error which may influence the outcome of your experiment. Using PVP the samples remain in the same condition for every ISH providing you have preserved samples in a suitable amount for each experiment. The preservation period is more than 4 months under normal temperature.

•DNA Preservation and Sequence Analysis

Target DNA can be preserved and used for analysis in a later day. PVP with nylon paper chips is recommended for long chain samples like genomic DNA or high value samples. After sufficient drying, is possible to preserve samples for several months. (Preservation period may vary depending on the level of purification.)