KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

kca

Blueberry Mutant Cake

Sample ID: SA-220802-10927

CBC

CBD

CBG

CBL

CBN

CBT

Total

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Status

Tested

Tested

Tested

Tested

Tested

Tested

Yes

Internal Standard Normalization

Result

(mg/g)

ND

0.856

ND ND

0.236

0.581

0.653

0.553

ND

ND

ND

ND

382

517

0.553

ND

901

Client

1 of 6

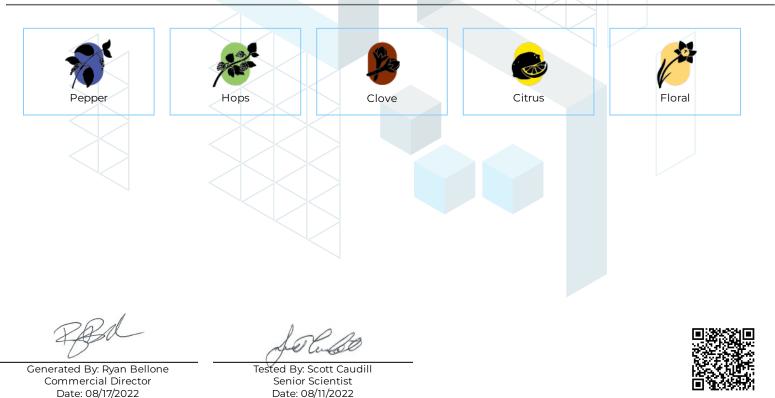
ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Iac-MR le Generated By: Ryan Bellone Tested By: Scott Caudill Commercial Director Senior Scientist ISO/IEC 17025:2017 Accredited Accreditation #108651 Date: 08/17/2022 Date: 08/17/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

2 of 6

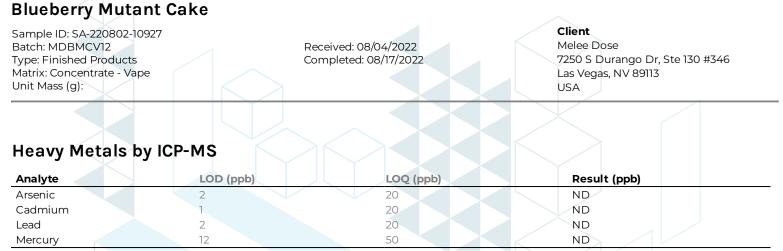
Blueberry Mutant Cake


Sample ID: SA-220802-10927 Batch: MDBMCV12 Type: Finished Products Matrix: Concentrate - Vape Unit Mass (g):

Received: 08/04/2022 Completed: 08/17/2022 **Client** Melee Dose 7250 S Durango Dr, Ste 130 #346 Las Vegas, NV 89113 USA

Terpenes by HS-GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.00100	0.00500	0.22651	Limonene	0.001	0.005	0.365503
(+)-Borneol	0.00100	0.00500	ND	Linalool	0.001	0.005	0.326951
Camphene	0.00100	0.00500	0.008904	β-myrcene	0.001	0.005	0.081577
Camphor	0.00100	0.00500	<loq< th=""><th>Nerol</th><th>0.001</th><th>0.005</th><th>ND</th></loq<>	Nerol	0.001	0.005	ND
3-Carene	0.00100	0.00500	0.013161	cis-Nerolidol	0.001	0.005	ND
β -Caryophyllene	0.00100	0.00500	0.55787	trans-Nerolidol	0.001	0.005	ND
Caryophyllene Oxide	0.00100	0.00500	ND	Ocimene	0.001	0.005	0.008309
α -Cedrene	0.00100	0.00500	ND	α -Phellandrene	0.001	0.005	0.007955
Cedrol	0.00100	0.00500	ND	α -Pinene	0.001	0.005	0.028916
Eucalyptol	0.00100	0.00500	ND	β-Pinene	0.001	0.005	0.046836
Fenchone	0.00100	0.00500	ND	Pulegone	0.001	0.005	ND
Fenchyl Alcohol	0.00100	0.00500	0.097632	Sabinene	0.001	0.005	ND
Geraniol	0.00100	0.00500	ND	Sabinene Hydrate	0.001	0.005	ND
Geranyl Acetate	0.00100	0.00500	ND	α -Terpinene	0.001	0.005	<loq< th=""></loq<>
Guaiol	0.00100	0.00500	ND	γ-Terpinene	0.001	0.005	ND
Hexadhydrothymol	0.00100	0.00500	0.014706	α -Terpineol	0.001	0.005	0.045806
α -Humulene	0.00100	0.00500	0.266596	γ-Terpineol	0.001	0.005	0.014481
Isoborneol	0.00100	0.00500	ND	Terpinolene	0.001	0.005	0.0073
Isopulegol	0.00100	0.00500	ND	Total Terpenes (%)			2.40


ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

3 of 6

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 08/17/2022

Tested By: Nicholas Howard Scientist Date: 08/12/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories makes using a state of a sample weight of the approximation of the state of an analysis shall not be reproduced amounts of any substances.

4 of 6

Blueberry Mutant Cake

Sample ID: SA-220802-10927 Batch: MDBMCV12 Type: Finished Products Matrix: Concentrate - Vape Unit Mass (g):

Received: 08/04/2022 Completed: 08/17/2022 Client

Melee Dose 7250 S Durango Dr, Ste 130 #346 Las Vegas, NV 89113 USA

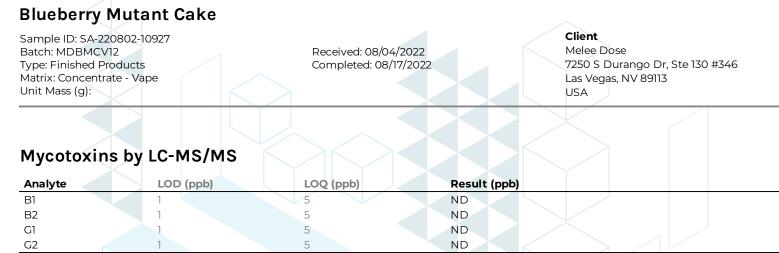
Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Acephate	30	100	ND	Hexythiazox	30	100	ND
Acetamiprid	30	100	ND	Imazalil	30	100	ND
Aldicarb	30	100	ND	Imidacloprid	30	100	ND
Azoxystrobin	30	100	ND	Kresoxim methyl	30	100	ND
Bifenazate	30	100	ND	Malathion	30	100	ND
Bifenthrin	30	100	ND	Metalaxyl	30	100	ND
Boscalid	30	100	ND	Methiocarb	30	100	ND
Carbaryl	30	100	ND	Methomyl	30	100	ND
Carbofuran	30	100	ND	Mevinphos	30	100	ND
Chloranthraniliprole	30	100	ND	Myclobutanil	30	100	ND
Chlorfenapyr	30	100	ND	Naled	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Clofentezine	30	100	ND	Paclobutrazol	30	100	ND
Coumaphos	30	100	ND	Phosmet	30	100	ND
Cypermethrin	30	100	ND	Piperonyl Butoxide	30	100	ND
Diazinon	30	100	ND	Prallethrin	30	100	ND
Dichlorvos	30	100	ND	Propiconazole	30	100	ND
Dimethoate	30	100	ND	Propoxur	30	100	ND
Dimethomorph	30	100	ND	Pyrethrins	30	100	ND
Ethoprophos	30	100	ND	Pyridaben	30	100	ND
Etofenprox	30	100	ND	Spinetoram	30	100	ND
Etoxazole	30	100	ND	Spinosad	30	100	ND
Fenhexamid	30 <	100	ND	Spiromesifen	30	100	ND
Fenoxycarb	30	100	ND	Spirotetramat	30	100	ND
Fenpyroximate	30	100	ND	Spiroxamine	30	100	ND
Fipronil	30	100	ND	Tebuconazole	30	100	ND
Flonicamid	30	100	ND	Thiacloprid	30	100	ND
Fludioxonil	30 <	100	ND	Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 08/17/2022

Hun S Tested By: Jasper van Heemst



Tested By: Jasper van Heems Principal Scientist Date: 08/15/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

5 of 6

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 08/17/2022

Humes Tested By: Jasper van Heemst

Tested By: Jasper van Heems Principal Scientist Date: 08/15/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

6 of 6

Blueberry Mutant Cake

Sample ID: SA-220802-10927 Batch: MDBMCV12 Type: Finished Products Matrix: Concentrate - Vape Unit Mass (g):

Received: 08/04/2022 Completed: 08/17/2022 Client Melee Dose 7250 S Durango Dr, Ste 130 #346

Las Vegas, NV 89113 USA

Residual Solvents by HS-GC-MS/MS

			1				
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 08/17/2022

Tested By: Scott Caudill Senior Scientist Date: 08/16/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other riska associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.