

TCG

Trusted Platform Module Library

Part 1: Architecture

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published

Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 1: Architecture

Page ii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to
reproduce, create derivative works, distribute, display and perform the Source Code and
derivative works thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code)
the rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions
and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions
and the following disclaimers in the documentation and/or other materials provided with the
distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)
THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.
Contact TCG Administration (admin@trustedcomputinggroup.org) for information on specification
licensing rights available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF
ANY PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in
any way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Change History

Revision 98

Added parameter to MemoryMove(), MemoryCopy(), and MemoryConcat() to make sure that the data

being moved will fix into the receiving buffer

Change the size of local 2B buffers so that they are sized to the sum of the sizes of the elements rather

than any other mathematical construct. This forces the size of the local buffer to track any changes to the

sizes of the input components rather than have some assumed relationship.

Made multiple changes to code to eliminate “dead” code (code that could not be reached by any

perturbation of the inputs).

Removed the “+” from the handle parameter in TPM2_HMAC_Start().

Changed TPM_RC_BAD_TAG to 0x01e so that its value would match TPM_BADTAG from 1.2

Changed reference implementation so that it would only allow use of default exponent for creation of RSA

keys. It will allow other exponents for imported keys.

Changed _cpri__GenerateKeyRSA() in CpriRSA.c so that it no longer reads outside the bounds of an

array when getting a value to use for encrypting/decrypting with a key, generated from a seed.

Removed TPM_NV_INDEX entity name space.

Authorization check includes locality.

Revision 99

Added phEnableNV to make NV enable independent of the platform hierarchy enable.

Added TPM2_PolicyNvWritten to permit a policy based on whether or not NV has been written

Added TPM_PT_NV_BUFFER_MAX, the maximum data size in an NV write.

Added define for HCRTM PCR, platform specific

Return code when an NV hierarchy is disabled is TPM_RC_HANDLE.

TPM2_Shutdown state may be nullified on any subsequent command.

CTR mode increments the entire IV, not just 32 bits.

TPM2_PolicySecret cannot have a null authHandle.

Revision 101

Added Definitions for Endorsement Authorization, Owner Authorization, Platform Authorization.

An error may change TPM state under certain conditions.

A restricted signing key cannot have a scheme of TPM_ALG_NULL.

Added TPMS_EMPTY.

Trusted Platform Module Library Part 1: Architecture

Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

TPM2_Sign: The signing scheme hash algorithm determines the size of the hash to be signed. However,

this may be removed in a future revision.

TPM2_PCR_Allocate may return an error if the allocation fails.

Revision 103

Added ISO/IEC references and forward.

Handle errors always return TPM_RC_HANDLE, not TPM_RC_HIERARCHY.

TPM_PCR_Allocate does not change allocation for a bank not listed.

For a policy ticket, if expiration is non-negative, a NULL ticket is returned.

Revision 105

Added lockoutPolicy.

Added vendor-specific handles.

Added detection of a clock discontinuity to tickets.

Reworked TPM2_Import description.

Revision 107

Some reworking of H-CRTM, D-RTM.

Some clarification of policy expiration.

Changed references to ISO/IEC standards.

Change PPS, EPS Clear flush resident transient and persistent objects.

Revision 109

Any field upgrade preserves state, not just the standard commands.

Added TPM 2.0 Part 1 description of vendor-specific authorization values.

Refined description of PCR interaction with H-CRTM, TPM2_Startup, and locality. _TPM2_Hash_Start

indicates the start of an H-CRTM sequence, not DRTM.

A non-authorization session must have at least one of encrypt, decrypt, or audit set

A policy session timeout can only change to a shorter value.

Added defines for ECC curves and removed some redundant values in the Part B annex.

TPM2_Sign can use a symmetric key.

TPM2_NV_UndefineSpace fails if TPMA_NV_POLICY_DELETE is set.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Revision 111

TPM2_ContextSave encrypts just the TPM2B_CONTEXT_SENSITIVE structure.

TPM 2.0 Part 2 structures removed algorithms and added notation referring to algorithm registry.

HMAC commands cannot be used with a restricted key.

Revision 113

Clarified Auth Role for hierarchies and NV Index.

Added password check to authorization checks.

Indicated that handles returned by the TPM are TPM_HT_TRANSIENT (three places).

Revision 115

FIPS 186-4 note.

Return codes for tag requires vs. actual mismatch.

Revision 117

A trial session cannot use encrypt or decrypt

HMAC is optional when the HMAC key is the Empty Buffer. If present, it must be correct.

CFB uses sessionValue in the KDF, not sessionKey

FIPS-140 requires NV to be erased when an Index is deleted. NV data must be initialized on a first partial

write.

TPM2_Create for a keyed hash object must have TPM_ALG_NULL if sign and decrypt are both SET or

CLEAR.

For an unrestricted HMAC key, if both the key and parameter have a non-NULL scheme, they must

match.

Revision 119

Defined transient object and made the use of object and sequence object more consistent.

Refined the description of an exclusive audit session, the definition of auditReset, and its relationship to

the audit attribute.

Explained that the TPM clock must be accurate even if there is no reliable external clock.

Updated the informative algorithm ID table.

TPM2_HMAC and TPM2_HMAC_Start return code change.

All signing commands, including attestation commands, return TPM_RC_KEY for a non-signing key.

TPM2_SetCommandCodeAuditStatus is not audited when used to change the algorithm.

Trusted Platform Module Library Part 1: Architecture

Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Trial policy sessions check authorizations.

DA protection does apply to TPM_RH_LOCKOUT.

Revision 121

continueAuthSession is ignored for a password session.

Reworked NV attributes to accommodate more NV types. Defined TPM_NT.

For a hybrid counter Index, the first write always writes through to NV memory.

Added ECC point padding description.

Unmarshaling routines return error code, not bool. Detailed CommandDispatcher parameters. Unmarshal

flag set means null is permitted.

The algorithm ID table in this specification is informative.

Context gap must be 2^^n-1.

Handle type 0x03 is for saved sessions, not active session.

Timeout is of length TPM2B_DIGEST, not UINT64.

nullProof can be used in a ticket.

TPM2_EncryptDecrypt uses an unrestricted key. The sign attribute is used as an encrypt attribute. A non-

null mode cannot be overridden.

A TPM2_PolicySecret being satisfied by a policy requires a password or auth value. The object must

permit password or HMAC authorization.

TPM2_PolicyNV is an immediate assertion.

Revision 122

NULL password can have continue set or clear.

Sign attribute becomes encrypt attribute for a symmetric cipher object.

Saved context metadata is normative. Encrypted data is vendor specific.

TPMU_SYM_MODE, TPMS_SCHEME_XOR selector permits NULL.

If the session requires a policy session, returns TPM_RC_AUTH_TYPE.

TPM2_NV_Certify returns TPM_RC_NV_UNINITIALIZED if unwritten even if size is zero.

Revision 123

Advised that callers should not use NV read public to calculate the Name.

Removed advice that FIPS may require an authValue size of half the hash algorithm digest size.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page vii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Clarified that nonceTPM is only used once in an HMAC calculation when the session is being used for

both encrypt and decrypt.

Clarified that authValue is an Empty Buffer if a session is not an authorization session.

Clarified that sessionValue for authorization sessions that are encrypt or decrypt sessions is sessionKey ||

authValue regardless of binding.

Clarified that nameAlg is the authPolicy hash algorithm.

Structure definition lower limits apply to TPM inputs. Upper limits refer to inputs and outputs.

The year and day of year can indicate an errata date.

TPM_RC_NONCE is returned for a nonce value mismatch.

TPMS ALGORITHM_DETAIL_ECC kdf can be TPM_ALG_NULL.

TPMS_CONTEXT savedHandle indicates the context type.

If a handle in handle area references a session and the session is not present, returns

TPM_RC_REFERENCE_H0 + N.

Clarified that the size of an encrypted parameter can be zero.

TPM2_Startup can result in the PCR update counter non-zero because of PCR resets.

For RSA salt key, the size of an encrypted salt must be the same as the size of the public modulus.

TPM2_ECDH_KeyGen requires restricted CLEAR and decrypt SET.

TPM2_Commit does not require the sign attribute.

TPM_PolicyOR extends the digest into a Zero Digest PolicyDigest. It does not replace the digest.

TPM2_PolicyPCR with a trial policy may use the TPM PCR if the caller does provide PCR settings.

TPM2_PolicyNV, TPM2_PolicyCounterTimer, TPM2_NV_Certify, can return TPM_RC_VALUE if the

offset is greater than the data size.

Indicated that the reference implementation can do compare operations on a structure using a cast to a

byte array, so unmarshaling code must initialize input buffers.

Revision 124

This revision begins to implement the NV PIN Index type. The information is incomplete and subject to

change. It is included as a work in progress rather than create two forks to the specification.

Clarified that TPM2B_DATA is the size of a TPMT_HA but is not required to contain an algorithm ID.

Clarified that time can be set to zero at _TPM_Init or TPM2_Startup.

TPM2_StartAuthSession rejects a symmetric salt key.

Revision 125

Trusted Platform Module Library Part 1: Architecture

Page viii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Continued specifying NV PIN Index. The information is complete but not reviewed and still subject to

significant changes.

Session-based encryption should support XOR, but a block cipher is platform specific.

Added TPM_PT_MODES for FIPS and other indications. Added TPMA_MODES.

Clarified the TPMA_STARTUP_CLEAR attribute (enable flags) settings on the various startup types.

_PRIVATE structure - changed from TPMT_SENSITIVE to TPM2B_SENSITIVE.

Revision 126

Reworded the PIN Index and rewrap text.

Added restrictions on unique input for TPM2_Create and TPM2_CreatePrimary.Removed obsolete

TPM_CC_PP_FIRST and TPM_CC_PP_LAST.

Revision 127

Removed symmetric salt.

Revision 128

sensitiveDataOrigin is set for an asymmetric object.

Clarified that only the template unique field may be altered when an object is created.

A PIN index can be used in TPM2_PolicySecret if read or write locked.

ehProof is changed on TPM2_Clear.

TPM2_SetPrimaryPolicy requires a policy length consistent with the hash algorithm.

Revision 130

Augmented section 27.1 “Object Creation / Introduction” by adding the table “Creation Commands” and a

description of that table.

Augmented section 27.6.1 “Entropy Creation / Introduction” by adding the table “Deriving Cryptographic

Values” and a description of that table.

Added TPM2_PolicyTemplate(), TPM2_CreateLoaded(), TPMI_DH_PARENT.

Revision 131

Added TPM2_PolicyAuthorizeNV(), TPM2_EncryptDecrypt2().

Noted that TPM2_Create() may require transient resources.

TPM2_Clear() increments the pcrUpdateCounter, permitting a policy that can be invalidated on

TPM2_Clear().

TPM_PT_NV_BUFFER_MAX returns the maximum size for NV read and NV certify as well as NV write,

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page ix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Noted that TPMA_NV_POLICY_DELETE with a policy that cannot be satisfied defines an Index that can

never be deleted.

TPM2_NV_Read ignores offset for bits and counter indexes.

Revision 132

Reworked Part 4 for refactored crypto code merge.

Added application note on audit alternative.

Added command code for PolicyAuthorizeNV and EncryptDecrypt2.

Added getcapability TPM_CAP_AUTH_POLICIES for hierarchy policies, and new structure

TPMS_TAGGED_POLICY.

Offset is ignored when reading counter and bits NV indexes.

ReadClock can have audit session.

Revision 133

Added additional option to ticket expiration, and timeEpoch.

TPM2B_PRIVATE always has authorization value padded.

Clarified GPIO inputs and outputs.

EC Schnorr computation changes.

Salt always uses OAEP.

KDF must reject weak keys.

Revision 134

TPM2_Create for a fixedParent storage key only requires the symmetric algorithm of the parent and child

to match.

Policy ticket creation also digests the timeEpoch.

Revision 135

Weak symmetric keys will not be generated and cannot be loaded.

OAEP uses the object's scheme. If the object's scheme is TPM_ALG_NULL, uses the objects Name

algorithm.

GPIO input and output settings are platform or vendor specific.

Added a TPM2_Create, etc. reference code error check if data objects have sensitiveDataOrigin SET.

The normative text was correct.

Revision 135 June 20

Modified the ECDAA signature calculation

Trusted Platform Module Library Part 1: Architecture

Page x TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Revision 136

Added PolicyAuthorize definition.

Noted that weak symmetric keys are not permitted.

OAEP uses the key's scheme unless it is NULL

Modifications to the ECDAA sign operation.

Parents use CFB mode, and cannot have a NULL symmetric algorithm

The salt key scheme must be NULL or OAEP.

Revision 137

Updated the interaction between nonceTPM and expiration.

data may be a non - Empty Buffer when a primary key is created.

TPM2_PolicySecret() referencing a PIN Pass Index returns a NULL ticket.

TPM2_SelfTest returns TPM_RC_FAILURE on failure.

phEnableNV is set on TPM Reset or TPM Restart

TPM2_Create and TPM2_CreatePrimary input is actually TPM2_PUBLIC even though the parameter

says TPM2_TEMPLATE.

TPM2_PolicySecret for PIN and non-PIN Index clarifications.

TPM2_PolicyNV, TPM2_NV_Read, TPM2_NV_Certify may ignore offset parameter.

TPM2_NV_GlobalWriteLock, TPM2_NV_ReadLock may write NV.

Part 4 added SelfTest.h, Simulator_fp.h, removed CryptEccData.c,

Part 4 updated TPM2B structure sample.

Revision 138

Added back expiration comment that timeout cannot become smaller.

Explained the result of TPM_CAP_AUTH_POLICIES.

Removed obsolete CommandDispatcher.h and HandleProcess.h.

Revision 139

Revision 140

Added Attached Component (AC Send) description, structures, and functions.

TPM2_ECC_Parameters() may zero pad results.

TPM2_DictionaryAttackParameters does not reset failedTries.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Revision 141

Clarified that the KDFa 0x00 byte is only explicitly added if Label is not present or if it is not NULL-

terminated.

Clarified that recoveryTIme may be tracked through a shutdown.

Added TDES annex explaining parity generation.

Revision 142

Code merge with 141.

Revision 143

Clarified HMAC key calculation for bound policy session with and without TPM2_PolicyAuthValue. Similar

clarification for encrypted policy session.

Added the TPM2_MAC commands and merged with TPM2_HMAC commands. Added

TPMI_ALG_MAC_SCHEME.

Changed TPM2B_TIMEOUT back to a UINT64.

TPM2_FlushContext for sessions ignores the upper byte of the handle.

Revision 144

Minor updates for TPM2_MAC.

Added TPMI_ALG_CIPHER_MODE, used for EncryptDecrypt.

Salt key must be a decrypt key.

seedValue is the size of the nameAlg digest.

Revision 145

More informative explanation. No normative changes.

Revision 146

Typos and fonts. No normative changes

Revision 147

Field upgrade should preserve the TPM vendor provisioned EKs.

Salt can only use asymmetric key encryption.

Alternative implementation of failedTries on non-orderly shutdown.

Added description of entropy usage for derived objects.

Alternate implementations for NV counter index initialization.

TPM_PT_NV_COUNTERS_MAX - zero value indicates no specified maximum.

Trusted Platform Module Library Part 1: Architecture

Page xii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Added TPMI_DH_SAVED for handle values that can be used in TPM2_ContextSave or

TPM2_FlushContext.

TPMS_SCHEME_XOR cannot have a NULL hash algorithm

TPM2_PolicyTemplate() error codes if command is sent twice or if cpHash is already set.

CryptSym.h added to Part 4.

Revision 148

Reworked the attestation key certification to indicate that an encrypted challenge response is a more

likely use case than an encrypted certificate.

Field upgrade should not affect TPM2_CreatePrimary() outputs under certain conditions.

The reset of the TIme circuit is related to TPM power, not TPM_Init.

MAX_SYM_DATA 128 changed from shall to should.

sign and decrypt both CLEAR or SET and scheme not TPM_ALG_NULL returns TPM_RC_SCHEME.

TPM2_PCR_Allocate() takes effect at _TPM_Init(), not TPM2_Startup().

Clarified in the text (the code was correct) that TPM2_PolicyDuplicationSelect() Names do not include the

size.

The TPM may enter Failure mode if TPM2_Startup() is not TPM_SU_CLEAR after an algorithm set

change that affects PCR banks. It was previously not a may.

After a field upgrade, preserving seeds, etc. was changed from shall to should.

Revision 149

Part 1 added phEnableNV to STATE_CLEAR_DATA, clearCount increments on TPM Restart, not TPM

Resume

Noted that TPM2_EventSequenceComplete() always returns all hashes.

Noted that TPM2_PCR_Allocate() requirement for TPM_SU_CLEAR only applies until after the next

_TPM_Init.

Part 4: For code merge: Added KdfTestData.h. Deleted BnEccData.c. Changed CryptDataEcc.c to

CryptEccData.c

Revision 150

Added some notes about the interaction between audit and parameter encryption. Clarified that the audit

digest is a single hash of cpHash and rpHash.

The random commit value has to be at least equal to the security strength of the signing key. KDFa for

the commit calculation uses vendorAlg, not nameAlg.

+ decoration only applies to command parameters, not response parameters.

TPM2_Startup() does not clear the written bit for an orderly counter Index.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Removed CryptHashData.h.

Revision 151

TPM2_Hash() and TPM2_SequenceComplete() creates a ticket, with an Empty digest if in the NULL

hierarchy.

TPM2_VerifySignature() returns a ticket with an Empty digest if the key is in the NULL hierarchy.

Updated ECC key generation and point padding in the Part 1 annex.

The TPM_PT_PS_REVISION value is platform specific.

Moved implementation specific description of the Clock Safe flag to an example.

Clarified that the getcapability returning TPML_PCR_SELECTION must return a selection for allocated

banks but can return additional selections.

Revision 152

Added a first draft of TPM2_CertifyX509().

Revision 153

C.5 ECC Key Generation changed d to c and G to Q.

TPM2B_PRIVATE_KEY_RSA is permitted to be larger for fixedTPM keys. the TPM2B_PRIVATE

structure in TPM2_Create() and TPM2_Load() may contain five CRT primes (instead of one).

Assign TPM_CC_CertifyX509 command code, x509Sign attribute, TPMA_X509_KEY_USAGE, Add

TPM2_CertifyX509 description, parameters, and actions.

Define NV digest attestation structure, TPMS_NV_DIGEST_CERTIFY_INFO, and added certifying an NV

digest to TPM2_NV_Certify.

Revision 154

Clarify that label in KDFa is an octet stream and the conditions for the KDFa zero byte.

Clarify the required size of an object sensitive area seedValue for TPM generated and imported objects.

Clarify that the L parameter in OAEP is a byte stream with the last byte zero, not a null terminated string.

Add an Annex with a Library Profile Guide.

Clarify that TPM_PT_NV_BUFFER_MAX applies to NV extend or NV certify.

The TPMA_X509_KEY_USAGE keyAgreeement and encipherOnly attributes require the decrypt

attribute.

Explain that most of TPM2_SetAlgorithmSet is vendor-dependent.

Explain that the initialization of the list of commands requiring physical presence is platform-specific.

Revision 155

Trusted Platform Module Library Part 1: Architecture

Page xiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Part 2 removed , S AND <IO> from several table titles.

TPM_ECC_CURVE add + to TPM_ECC_NONE

Part 4 added files for X.509 support: OIDS.h, MinMax.h, and AC support: AC_spt.c

Changed Implementation.h to TpmProfile.h and added a pointer in TpmBuildSwitches.h to preset the

values.

Revision 156

Added the ACT feature.

Explained that the TPM2_CertifyX509 partialCertificate and addedToCertificate are a DER encoded

SEQUENCEs. Explained the encoding of the TPMA_OBJECT element. Noted that tbsDigest is returned

as a debugging aid. Changed qualifyingData to reserved and that it must be an Empty Buffer.

Added a requirement that, if a command resets PCR in multiple banks, the PCR Update Counter must be

incremented only once. If a command causes PCR in multiple banks to change, the PCR Update Counter

must be incremented once for each bank.

Revision 157

Added the ACT code.

Revision 158

Minor updates to the ACT description.

Revision 159

Added several missing source code files to Part 4.

Reversed the TPMA_X509_KEY_USAGE bit map.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xv

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Acknowledgements

The writing of a specification, particularly a security specification, takes many hours for both development

and review. This specification is no exception with roughly 100 individuals involved in the process. The

TCG would like to acknowledge the contribution of those individuals (listed below) and the companies

who allowed them to volunteer their time to the development of this specification.

The TCG would like to acknowledge the special contribution of David Wooten in the development of the

TPM 2.0 architecture and documentation of this specification. We also acknowledge the generosity of

Microsoft in contributing the code in this specification, written by David Wooten, Jiajing Zhu, and Paul

England.

Special thanks are due to David Challener, David Wooten, Julian Hammersley, Graeme Proudler, and Ari

Singer who served as Chair of the TPM Working Group at different times during the development of this

specification.

The TCG would also like to give special thanks to David Grawrock, David Wooten, and Ken Goldman,

who were the editors of this specification.

Trusted Platform Module Library Part 1: Architecture

Page xvi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Contributors:

Loic Duflot; ANSSI
Frederic Guihery; AMOSSYS
Ralf Findeisen; AMD
Julian Hammersley; AMD
Dean Liberty; AMD
Ron Perez; AMD
Emily Ratliff; AMD
Gary Simpson; AMD
Gongyuan Zhuang; AMD
John Mersh; ARM Ltd.
Kerry Maletsky; Atmel
Randy Mummert; Atmel
Ronnie Thomas; Atmel
Douglas Allen; Broadcom
Chares Qi; Broadcom
Daniel Nowack; BSI
Florian Samson; BSI
Bill Lattin; Certicom
Matt Harvey; CESG
Paul Waller; CESG
Bob Bell; Cisco
Bill Jacobs; Cisco
Rafael Montalvo; Cisco
Frank Mosberry; Dell
Amy Nelson; Dell
Ari Singer; DMI
Sigrid Gürgens; Fraunhofer SIT
Andreas Fuchs: Fraunhofer SIT
Carsten Rudolph; Fraunhofer SIT
Carline Covey; Freescale Semiconductor
Ira McDonald; High North
Vali Ali; Hewlett Packard
Liqun Chen; Hewlett Packard
Carey Huscroft; Hewlett Packard
Wael Ibrahim; Hewlett Packard
Graeme Proudler; Hewlett Packard
Ken Goldman; IBM
Hans Brandl; Infineon
Hubert Braunwarth; Infineon
Ga-Wai Chin; Infineon
Roland Ebrecht; Infineon
Markus Gueller; Infineon
Ralph Hamm; Infineon
Georg Rankl; Infineon
Will Arthur; Intel
Ernie Brickell; Intel
Alex Eydelberg; Intel
David Grawrock; Intel
Jiangtao Li; Intel
David Riss; Intel
Ned Smith; Intel
Claire Vishik; Intel
Monty Wiseman; Intel
Igor Slutsker; Intel
Liran Perez; Intel
Zecharye Galitzky; Intel
Joshua Su; ITE
David Challener; Johns Hopkins APL

Huang Qian; Lenovo
Ronald Aigner; Microsoft
Jing De Jong-Chen; Microsoft
Shon Eizenhoefer; Microsoft
Carl Ellison; Microsoft
Paul England; Microsoft
Leonard Janke; Microsoft
Richard Korry; Microsoft
Jork Loeser; Microsoft
Andrey Marochko; Microsoft
Jim Morgan; Microsoft
Dennis Mattoon; Microsoft
Himanshu Raj; Microsoft
David Robinson; Microsoft
Rob Spiger; Microsoft
Stefan Thom; Microsoft
Mark Williams; Microsoft
David Wooten; Microsoft
Jiajing Zhu; Microsoft
Luis Samenta; MIT
Ariel Segall; MITRE
Nataly Kremer; M-Systems Flash
Andrew Regenscheid; NIST
Qin Fan; Nationz
Jay Liang; Nationz
Xin Liu; Nationz
Jan-Erik Ekberg; Nokia
Michael Cox; NTRU
Nick Howgrave-Graham; NTRU
William Whyte; NTRU
Leooid Asriel; Nuvoton
Dan Morav; Nuvoton
Erez Naory; Nuvoton
Oren Tanami; Nuvoton
Dennis Huage; NVIDIA
Whllys Ingersoll; Oracle
Scott Rotondo; Oracle
Timothy Markey; Phoenix
Anders Rundgren; PrimeKey Solutions
Laszlo Elteto; Safenet
Michael Willet; Seagate
Olivier Collart; STMicroelectronics
Miroslav Dusek; STMicroelectronics
Jan Smrcek; STMicroelectronics
Mohamed Tabet; STMicroelectronics
Paul Sangster; Symantec
Jerome Quevremont; Thales
Mark Ryan; University of Birmingham
Mike Boyle; US Department of Defense
Stanley Potter; US Department of Defense
Sandi Roddy; US Department of Defense
Adrian Stanger; US Department of Defense
Kelvin Li; VIA
Nick Bone; Vodafone
Mihran Dars; Wave Systems
Thomas Hardjono; Wave Systems
Greg Kazmierczak; Wave Systems
Len Veil; Wave Systems

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xvii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

CONTENTS

 Scope .. 1
 Specification Organization... 2
 Normative references .. 3
 Terms and definitions .. 4
 Symbols and Abbreviated Terms .. 14

5.1 Symbols .. 14
5.2 Abbreviations .. 14

 Compliance ... 17
 Conventions .. 18

7.1 Bit and Octet Numbering and Order ... 18
7.2 Sized Buffer References ... 18
7.3 Numbers ... 18

 Changes from Previous Versions .. 20
 Trusted Platforms .. 21

9.1 Trust .. 21
9.2 Trust Concepts.. 21

 Trusted Building Block .. 21
 Trusted Computing Base.. 21
 Trust Boundaries .. 21
 Transitive Trust ... 22
 Trust Authority .. 22

9.3 Trusted Platform Module .. 23
9.4 Roots of Trust ... 23

 Root of Trust for Measurement (RTM) ... 24
 Root of Trust for Storage (RTS) ... 24
 Root of Trust for Reporting (RTR) .. 24

9.5 Basic Trusted Platform Features .. 25

 Introduction ... 25
 Certification .. 25
 Attestation and Authentication ... 26
 Protected Location ... 29
 Integrity Measurement and Reporting .. 29

 TPM Protections .. 31

10.1 Introduction ... 31
10.2 Protection of Protected Capabilities.. 31
10.3 Protection of Shielded Locations .. 31
10.4 Exceptions and Clarifications .. 31

 TPM Architecture ... 33

11.1 Introduction ... 33
11.2 TPM Command Processing Overview .. 33
11.3 I/O Buffer ... 37
11.4 Cryptography Subsystem ... 37

Trusted Platform Module Library Part 1: Architecture

Page xviii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Introduction ... 37
 Symmetric Block Cipher MAC Algorithms .. 37
 Hash Functions .. 37
 HMAC Algorithm ... 38
 Asymmetric Operations .. 38
 Signature Operations ... 39
 Symmetric Encryption .. 41
 Extend .. 42
 Key Generation .. 43

 Key Derivation Function ... 43
 Random Number Generator (RNG) Module .. 47
 Algorithms .. 49

11.5 Authorization Subsystem .. 50
11.6 Random Access Memory .. 50

 Introduction ... 50
 Platform Configuration Registers (PCR) .. 50
 Object Store ... 51
 Session Store ... 52
 Size Requirements ... 52

11.7 Non-Volatile (NV) Memory .. 52
11.8 Power Detection Module ... 53

 TPM Operational States .. 54

12.1 Introduction ... 54
12.2 Basic TPM Operational States .. 54

 Power-off State ... 54
 Initialization State ... 54
 Startup State .. 55
 Shutdown State .. 57
 Startup Alternatives .. 58

12.3 Self-Test Modes .. 59
12.4 Failure Mode ... 60
12.5 Field Upgrade ... 61

 Introduction ... 61
 Field Upgrade Mode ... 61
 Preserved TPM State ... 64
 Field Upgrade Implementation Options .. 65

 TPM Control Domains ... 66

13.1 Introduction ... 66
13.2 Controls ... 66
13.3 Platform Controls .. 67
13.4 Owner Controls ... 68
13.5 Privacy Administrator Controls ... 68
13.6 Primary Seed Authorizations .. 69
13.7 Lockout Control ... 69
13.8 TPM Ownership .. 70

 Taking Ownership .. 70

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Releasing Ownership ... 70

 Primary Seeds ... 72

14.1 Introduction ... 72
14.2 Rationale ... 72
14.3 Primary Seed Properties ... 73

 Introduction ... 73
 Endorsement Primary Seed (EPS) .. 74
 Platform Primary Seed (PPS)... 74
 Storage Primary Seed (SPS) ... 75
 The Null Seed ... 75

14.4 Hierarchy Proofs ... 75

 TPM Handles ... 77

15.1 Introduction ... 77
15.2 PCR Handles (MSO=0016) .. 77
15.3 NV Index Handles (MSO=0116) .. 77
15.4 Session Handles (MSO=0216 and 0316) .. 77
15.5 Permanent Resource Handles (MSO=4016) ... 78
15.6 Transient Object Handles (MSO=8016) ... 78
15.7 Persistent Object Handles (MSO=8116) .. 79

 Names ... 80
 PCR Operations .. 81

17.1 Initializing PCR.. 81
17.2 Extend of a PCR ... 81
17.3 Using Extend with PCR Banks ... 81
17.4 Recording Events ... 82
17.5 Selecting Multiple PCR ... 82
17.6 Reporting on PCR ... 83

 Reading PCR ... 83
 Attesting to PCR ... 83

17.7 PCR Authorizations .. 84

 PCR Not in a Set .. 84
 Authorization Set .. 84
 Policy Set ... 85
 Order of Checking .. 85

17.8 PCR Allocation .. 85
17.9 PCR Change Tracking .. 86
17.10 Other Uses for PCR .. 86

 TPM Command/Response Structure .. 87

18.1 Introduction ... 87
18.2 Command/Response Header Fields .. 88

 tag ... 89
 commandSize/responseSize .. 89
 commandCode ... 89
 responseCode .. 89

Trusted Platform Module Library Part 1: Architecture

Page xx TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.3 Handles ... 89
18.4 Parameters ... 90
18.5 authorizationSize/parameterSize .. 90
18.6 Authorization Area .. 91

 Introduction ... 91
 Authorization Structure ... 92
 Session Handles .. 93
 Session Attributes (sessionAttributes) ... 93

18.7 Command Parameter Hash (cpHash) .. 95
18.8 Response Parameter Hash (rpHash) ... 96
18.9 Command Example .. 96
18.10 Response Example ... 98

 Authorizations and Acknowledgments .. 99

19.1 Introduction ... 99
19.2 Authorization Roles ... 99
19.3 Physical Presence Authorization .. 100
19.4 Password Authorizations .. 101
19.5 Sessions ... 102
19.6 Session-Based Authorizations .. 102

 Introduction ... 102
 Authorization Session Formats .. 103
 Session Nonces ... 103
 Authorization Values .. 105
 HMAC Computation ... 105
 Note on Use of Nonces in HMAC Computations ... 107
 Starting an Authorization Session .. 107
 sessionKey Creation .. 108
 Unbound and Unsalted Session Key Generation .. 108

 Bound Session Key Generation ... 109
 Salted Session Key Generation ... 112
 Salted and Bound Session Key Generation ... 113
 Encryption of salt .. 114
 Caution on use of Unsalted Authorization Sessions .. 114
 No HMAC Authorization ... 115
 Authorization Selection Logic for Objects .. 115
 Authorization Session Termination .. 116

19.7 Enhanced Authorization .. 116

 Introduction ... 116
 Policy Assertion .. 117
 Policy AND ... 117
 Policy OR.. 119
 Order of Evaluation .. 121
 Policy Session Creation ... 121
 Policy Assertions (Policy Commands) ... 122
 Policy Session Context Values .. 125
 Policy Example ... 127

 Trial Policy .. 127
 Modification of Policies ... 127

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xxi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_PolicyTicket() 129
 Use of TPM for authPolicy Computation .. 131
 Trial Policy Session .. 131
 Use of TPM2_PolicySigned() and TPM2_PolicySecret() without nonceTPM 132

19.8 Dictionary Attack Protection .. 132

 Introduction ... 132
 Lockout Mode Configuration Parameters ... 133
 Lockout Mode ... 134
 Recovering from Lockout Mode ... 134
 Authorization Failures Involving lockoutAuth ... 134
 Non-orderly Shutdown .. 135
 Justification for Lockout Due to Session Binding ... 135
 Sample Configurations for Lockout Parameters .. 136

 Audit Session .. 137

20.1 Introduction ... 137
20.2 Exclusive Audit Sessions .. 138
20.3 Command Gating Based on Exclusivity ... 138
20.4 Audit Session Reporting ... 138
20.5 Audit Establishment Failures .. 139
20.6 Audit Alternative .. 139

 Session-based encryption ... 140

21.1 Introduction ... 140
21.2 XOR Parameter Obfuscation .. 141
21.3 CFB Mode Parameter Encryption ... 141

 Protected Storage ... 143

22.1 Introduction ... 143
22.2 Object Protections .. 143
22.3 Protection Values .. 143
22.4 Symmetric Encryption ... 144
22.5 Integrity ... 144

 Protected Storage Hierarchy ... 147

23.1 Introduction ... 147
23.2 Hierarchical Relationship between Objects .. 147
23.3 Duplication .. 148

 Definition... 148
 Protections ... 149
 Rewrap ... 154

23.4 Duplication Group ... 157
23.5 Protection Group ... 158
23.6 Summary of Hierarchy Attributes .. 159
23.7 Primary Seed Hierarchies ... 160

 Credential Protection ... 161

24.1 Introduction ... 161
24.2 Protocol ... 161

Trusted Platform Module Library Part 1: Architecture

Page xxii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.3 Protection of Credential .. 161
24.4 Symmetric Encrypt .. 162
24.5 HMAC ... 162
24.6 Summary of Protection Process ... 163

 Object Attributes .. 164

25.1 Base Attributes.. 164

 Introduction ... 164
 Restricted Attribute ... 164
 Sign Attribute .. 164
 Decrypt Attribute ... 164
 Uses ... 166

25.2 Other Attributes ... 167

 fixedTPM and fixedParent .. 167
 stClear .. 167
 sensitiveDataOrigin .. 168
 userWithAuth .. 168
 adminWithPolicy ... 168
 noDA ... 169
 encryptedDuplication .. 169

 Object Structure Elements .. 170

26.1 Introduction ... 170
26.2 Public Area .. 170
26.3 Sensitive Area ... 170
26.4 Private Area .. 171
26.5 Qualified Name ... 172
26.6 Sensitive Area Encryption ... 172
26.7 Sensitive Area Integrity ... 172

 Object Creation ... 174

27.1 Introduction ... 174
27.2 Public Area Template ... 175

 Introduction ... 175
 type ... 175
 nameAlg ... 175
 objectAttributes ... 175
 authPolicy ... 176
 parameters ... 176
 unique ... 176

27.3 Sensitive Values ... 176

 Overview... 176
 userAuth ... 176
 data ... 176

27.4 Creation PCR .. 177
27.5 Public Area Creation ... 177

 Introduction ... 177

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xxiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 type, nameAlg, objectAttributes, authPolicy, and parameters ... 177
 unique ... 177

27.6 Creation Entropy ... 178

 Introduction ... 178
 Entropy for Ordinary Objects .. 179
 Entropy for Primary Objects ... 179

27.7 Sensitive Area Creation .. 179

 Introduction ... 179
 type ... 180
 authValue ... 180
 seedValue .. 180
 sensitive.. 181

27.8 Creation Data and Ticket .. 182
27.9 Creation Resources .. 182

 Object Derivation ... 183

28.1 Introduction ... 183
28.2 Derivation Parameters .. 183
28.3 Public Area Template ... 183
28.4 Entropy for Derived Objects .. 184

 Conceptual Description .. 184
 Implementation Alternatives ... 185

28.5 Derivation Process .. 185

 Object Loading .. 186

29.1 Introduction ... 186
29.2 Load of an Ordinary Object ... 186
29.3 Public-only Load ... 186
29.4 External Object Load .. 187

 Context Management .. 188

30.1 Introduction ... 188
30.2 Context Data ... 189

 Introduction ... 189
 Sequence Number ... 189
 Handle .. 190
 Hierarchy .. 191

30.3 Context Protections .. 191

 Context Confidentiality Protection .. 191
 Context Integrity Protection .. 192

30.4 Object Context Management .. 193
30.5 Session Context Management.. 193
30.6 Eviction ... 194
30.7 Incidental Use of Object Slots ... 195

 Attestation ... 196

Trusted Platform Module Library Part 1: Architecture

Page xxiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.1 Introduction ... 196
31.2 Standard Attestation Structure .. 196
31.3 Privacy .. 197
31.4 Qualifying Data ... 197
31.5 Anonymous Signing .. 197
31.6 X.509 Certificate Signing .. 197

 Cryptographic Support Functions .. 200

32.1 Introduction ... 200
32.2 Hash .. 200
32.3 HMAC ... 200
32.4 Hash, MAC, and Event Sequences .. 200

 Introduction ... 200
 Hash Sequence .. 201
 Event Sequence ... 201
 HMAC Sequence .. 201
 Sequence Contexts .. 202

32.5 Symmetric Encryption ... 202
32.6 Asymmetric Encryption and Signature Operations ... 202

 Locality .. 203
 Hardware Core Root of Trust Measurement (H-CRTM) Event Sequence .. 204

34.1 Introduction ... 204
34.2 Dynamic Root of Trust Measurement ... 204
34.3 H-CRTM before TPM2_Startup() and TPM2_Startup() without H-CRTM 205

 Command Audit ... 206
 Timing Components .. 208

36.1 Introduction ... 208
36.2 Time .. 209
36.3 Clock ... 209

 Introduction ... 209
 Clock Implementation ... 210
 Orderly Shutdown of Clock... 210
 Clock Initialization at TPM2_Startup() .. 211
 Setting Clock .. 211
 Clock Periodicity ... 212

36.4 resetCount .. 212
36.5 restartCount .. 213
36.6 Note on the Accuracy and Reliability of Clock .. 213
36.7 Privacy Aspects of Clock .. 214

 NV Memory ... 216

37.1 Introduction ... 216
37.2 NV Indices ... 216

 Definition... 216
 NV Index Allocation .. 217
 NV Index Deletion .. 218
 High-Endurance (Hybrid) Indices ... 218

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xxv

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Reading an NV Index ... 220
 Updating an Index .. 220
 NV Index in a Policy ... 224
 PIN Index Considerations... 225

37.3 Owner and Platform Evict Objects .. 226
37.4 State Saved by TPM2_Shutdown() .. 227

 Background .. 227
 NV Orderly Data ... 227
 NV Clear Data .. 227
 NV Reset Data ... 228

37.5 Persistent NV Data ... 229
37.6 NV Rate Limiting ... 231
37.7 NV Other Considerations .. 232

 Power Interruption .. 232
 External NV .. 232
 PCR in NV .. 233

 Multi-Tasking ... 234
 Errors and Response Codes ... 235

39.1 Error Reporting ... 235
39.2 TPM State After an Error .. 235
39.3 Resource Exhaustion Warnings ... 235

 Introduction ... 235
 Transient Resources .. 235
 Temporary Resources .. 236

39.4 Response Code Details .. 236

 General Purpose I/O ... 238
 Minimums .. 239

41.1 Introduction ... 239
41.2 Authorization Sessions ... 239
41.3 Transient Objects .. 239
41.4 NV Counters and Bit Fields .. 239

 Attached Components ... 240

42.1 Introduction ... 240

 Purpose .. 240
 Concept .. 240

42.2 TPM2_AC_Send() .. 240
42.3 Send Object Types ... 241
42.4 Send Object Attributes .. 241
42.5 Attached Component Authorization .. 241
42.6 Attached Component Object Management .. 242

 Discovery .. 242
 Setup .. 242
 Sending .. 242

42.7 Power States... 243

Trusted Platform Module Library Part 1: Architecture

Page xxvi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

42.8 Attached Component Format.. 243

 Authenticated Countdown Timer (ACT) .. 244

43.1 Introduction ... 244
43.2 Description .. 244
43.3 Typical Use ... 244
43.4 Failure Mode ... 245
43.5 Field Upgrade ... 245
43.6 Typical ACT authPolicy ... 246

Annex A (informative) Policy Examples ... 247

A.1 Introduction ... 247
A.2 TPM 1.2 Compatible Authorization ... 247

Annex B (normative/informative) RSA ... 249

B.1 Introduction ... 249
B.2 RSAEP .. 250
B.3 RSADP .. 250
B.4 RSAES_OAEP .. 250
B.5 RSAES_PKCSV1_5 ... 250
B.6 RSASSA_PKCS1v1_5 .. 250
B.7 RSASSA_PSS .. 251
B.8 RSA Key Generation .. 252

B.8.1 Background .. 252
B.8.2 Large Prime Generation ... 252
B.8.3 RSA Key Generation Algorithm .. 253

B.9 RSA Cryptographic Primitives .. 253

B.9.1 Introduction ... 253
B.9.2 TPM2_RSA_Encrypt() .. 253
B.9.3 TPM2_RSA_Decrypt() .. 254

B.10 Secret Sharing .. 254

B.10.1 Overview... 254
B.10.2 RSA Encryption of Salt ... 254
B.10.3 RSA Secret Sharing for Duplication ... 254
B.10.4 RSA Secret Sharing for Credentials ... 255

Annex C (normative/informative) ECC ... 256

C.1 Introduction ... 256
C.2 Split Operations .. 256

C.2.1 Introduction ... 256
C.2.2 Commit Random Value .. 256
C.2.3 TPM2_Commit() ... 257
C.2.4 TPM2_EC_Ephemeral() ... 258
C.2.5 Recovering the Private Ephemeral Key ... 259

C.3 ECC-Based Secret Sharing .. 259
C.4 EC Signing .. 259

C.4.1 ECDSA ... 259
C.4.2 ECDAA ... 259

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xxvii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.4.3 EC Schnorr ... 261

C.5 ECC Key Generation .. 263
C.6 Secret Sharing .. 263

C.6.1 ECDH ... 263
C.6.2 ECDH Encryption of Salt .. 264
C.6.3 ECC Secret Sharing for Duplication ... 264
C.6.4 ECC Secret Sharing for Credentials .. 264

C.7 ECC Primitive Operations ... 264

C.7.1 Introduction ... 264
C.7.2 TPM2_ECDH_KeyGen() .. 264
C.7.3 TPM2_ECDH_ZGen() .. 264
C.7.4 Two-phase Key Exchange ... 265

C.8 ECC Point Padding ... 266

Annex D (normative/informative) Support for SMx Family of Algorithms .. 268

D.1 Introduction ... 268
D.2 SM2 ... 268

D.2.1 Introduction ... 268
D.2.2 SM2 Digital Signature Algorithm .. 269
D.2.3 SM2 Key Exchange .. 271

D.3 SM3 ... 272
D.4 SM4 ... 272

Annex E (normative/informative) TDES ... 273

E.1 TDES Key Parity Generation .. 273

Annex F (informative) Library Profile Guide ... 274

F.1 Introduction ... 274
F.2 Platform Specific Constants .. 274
F.3 PCR .. 274
F.4 Algorithms ... 274
F.5 Commands .. 274
F.6 Buffers ... 275
F.7 NV Storage ... 275
F.8 Sessions and Objects ... 275
F.9 Physical Presence .. 275
F.10 Dictionary Attack Lockout ... 275
F.11 Self Test .. 275
F.12 ACT ... 275

Trusted Platform Module Library Part 1: Architecture

Page xxviii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Tables

Table 1 — Block Cipher Parameters .. 41

Table 2 — Hierarchy Control Setting Combinations ... 67

Table 3 — Equations for Computing Entity Names .. 80

Table 4 — Separators ... 88

Table 5 — Tag Values .. 89

Table 6 — Use of Authorization/Session Blocks... 92

Table 7 — Description of sessionAttributes .. 93

Table 8 — Command Layout for Example Command .. 97

Table 9 — Example Command Showing authorizationSize ... 97

Table 10 — Response Layout for Example Command .. 98

Table 11 — Example Response Showing parameterSize .. 98

Table 12 — Password Authorization of Command ... 101

Table 13 — Password Acknowledgment in Response ... 101

Table 14 — Session-Based Authorization of Command .. 103

Table 15 — Session-Based Acknowledgment in Response ... 103

Table 16 — Schematic of TPM2_StartAuthSession Command ... 107

Table 17 — Handle Parameters for TPM2_StartAuthSession .. 108

Table 18 — Format to Start Unbounded, Unsalted Session ... 109

Table 19 — Format to Start Bound Session ... 111

Table 20 — Format to Start Salted Session ... 112

Table 21 — Format to Start Salted and Bound Session ... 113

Table 22 — Mapping of Hierarchy Attributes .. 159

Table 23 — Allowed Hierarchy Settings ... 160

Table 24 — Mapping of Functional Attributes ... 166

Table 25 — TPM 1.2 Correspondence ... 167

Table 26 — Public Area Parameters .. 170

Table 27 — Sensitive Area Parameters .. 171

Table 28 — Creation Commands ... 174

Table 29 — Deriving Object Entropy .. 179

Table 30 — Standard Attestation Structure .. 196

Table 31 — Contents of the ORDERLY_DATA Structure .. 227

Table 32 — Contents of the STATE_CLEAR_DATA Structure .. 228

Table 33 — Contents of the STATE_RESET_DATA Structure .. 228

Table 34 — Contents of the PERSISTENT_DATA Structure ... 229

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page xxix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figures

Figure 1 — Attestation Hierarchy .. 27

Figure 2 — Architectural Overview ... 33

Figure 3 — Command Execution Flow ... 37

Figure 4 — Random Number Generation ... 48

Figure 5 — TPM Startup Sequences .. 57

Figure 6 — On-Demand Self-Test .. 59

Figure 7 — Failure Mode Behavior ... 61

Figure 8 — Resuming Field Upgrade Mode after _TPM_Init .. 63

Figure 9 — Field Upgrade Mode ... 64

Figure 10 — Command Structure ... 88

Figure 11 — Response Structure ... 88

Figure 12 — Command/Response Header Structure ... 88

Figure 13 — Authorization Layout for Command.. 92

Figure 14 — Authorization Layout for Response .. 93

Figure 15 — A 12-input OR Policy .. 121

Figure 16 — Use of TPM2_PolicyAuthorize() to Avoid PCR Brittleness .. 128

Figure 17 — Creating a Private Structure ... 146

Figure 18 — Symmetric Protection of Hierarchy... 148

Figure 19 — Duplication Process with Inner and Outer Wrapper ... 152

Figure 20 — Duplication Process with Outer Wrapper and No Inner Wrapper .. 153

Figure 21 — Duplication Process with Inner Wrapper and TPM_RH_NULL as NP 154

Figure 22 — Duplication Process with no Inner Wrapper and TPM_RH_NULL as NP 154

Figure 23 — Key Recovery Process ... 155

Figure 24 — Duplication Groups ... 158

Figure 25 — Protection Groups .. 159

Figure 26 — Creating a Identity Structure .. 163

Figure 27 — Response Code Evaluation .. 237

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library

Part 1: Architecture

 Scope

This specification defines the Trusted Platform Module (TPM) a device that enables trust in computing

platforms in general. It is broken into parts to make the role of each part clear. All parts are required in

order to constitute a complete standard

For a complete definition of all requirements necessary to build a TPM, the designer will need to use the

appropriate platform-specific specification to understand all of the requirements for a TPM in a specific

application or make appropriate choices as an implementer.

Those wishing to create a TPM need to be aware that this specification does not provide a complete

picture of the options and commands necessary to implement a TPM. To implement a TPM the designer

needs to refer to the relevant platform-specific specification to understand the options and settings

required for a TPM in a specific type of platform or make appropriate choices as an implementer.

EXAMPLE The number of platform configuration registers and their attributes are not defined in this
specification. Those values would be specified by a platform specific specification or alternatively
determined by an implementer.

Trusted Platform Module Library Part 1: Architecture

Page 2 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Specification Organization

This specification contains four parts, as follows. In normative clauses, text labeled NOTE or EXAMPLE

are informative, non-normative. Text in Part 2 table columns Description or Comments are informative,

non-normative.

TPM 2.0 Part 1: Architecture

TPM 2.0 Part 1 contains a narrative description of the properties, functions, and methods of a TPM.

Unless otherwise noted, this narrative description is informative. TPM 2.0 Part 1 contains descriptions of

some of the data manipulation routines that are used by this specification. The normative behavior for

these routines is in C code in TPM 2.0 Part 3 and TPM 2.0 Part 4. Algorithms and processes described in

this TPM 2.0 Part 1 may be made normative by reference from TPM 2.0 Part 2, TPM 2.0 Part 3, or TPM

2.0 Part 4.

TPM 2.0 Part 2: Structures

TPM 2.0 Part 2 contains a normative description of the constants, data types, structures, and unions for

the TPM interface. Unless otherwise noted: (1) all tables and C code in TPM 2.0 Part 2 are normative,

and (2) normative content in TPM 2.0 Part 2 takes precedence over any other part of this specification.

TPM 2.0 Part 3: Commands

TPM 2.0 Part 3 contains: (1) a normative description of commands, (2) tables describing the command

and response formats, and (3) C code that illustrates the actions performed by a TPM. Within TPM 2.0

Part 3, command and response tables have the highest precedence, followed by the C code, followed by

the narrative description of the command. TPM 2.0 Part 3 is subordinate to TPM 2.0 Part 2.

A TPM need not be implemented using the C code in TPM 2.0 Part 3. However, any implementation

should provide equivalent or, in most cases, identical results as observed at the TPM interface or

demonstrated through evaluation.

TPM 2.0 Part 4: Supporting Routines

TPM 2.0 Part 4 presents C code that describes the algorithms and methods used by the command code

in TPM 2.0 Part 3. The code in TPM 2.0 Part 4 augments Parts 2 and 3 to provide a complete description

of a TPM, including the supporting framework for the code that performs the command actions.

Any TPM 2.0 Part 4 code may be replaced by code that provides similar results when interfacing to the

action code in TPM 2.0 Part 3. The behavior of TPM 2.0 Part 4 code not included in an annex is

normative, as observed at the interfaces with TPM 2.0 Part 3 code. Code in an annex is provided for

completeness, that is, to allow a full implementation of the specification.

NOTE This specification does not provide code for lower-level cryptographic algorithms and use of external
libraries is required for a complete implementation.

Extensive modification of the code provided in TPM 2.0 Part 4 annexes is expected for any TPM

implementation. Modifications are required in order to interface the TPM code with actual TPM hardware

rather than the simulation framework provided. In addition, modifications of the code in TPM 2.0 Part 4

annexes would be necessary in order to meet the needs of applicable evaluation regimes.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Normative references

The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced

document (including any amendments) applies.

IETF RFC 8017, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications

Version 2.2

NIST SP800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography (Revised)

NIST SP800-108, Recommendation for Key Derivation Using Pseudorandom Functions (revised)

FIPS PUB 186-3, Digital Signature Standard (DSS)

ISO/IEC 9797-2, Information technology -- Security techniques -- Message Authentication Codes (MACs)

-- Part 2: Mechanisms using a dedicated hash-function

IEEE Std 1363TM-2000, Standard Specifications for Public Key Cryptography

IEEE Std 1363a™-2004 (Amendment to IEEE Std 1363™-2000), IEEE Standard Specifications for Public

Key Cryptography- Amendment 1: Additional Techniques

ISO/IEC 10116:2006, Information technology — Security techniques — Modes of operation for an n-bit

block cipher

GM/T 0003.1-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 1: General

GM/T 0003.2-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 2: Digital

Signature Algorithm

GM/T 0003.3-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 3: Key

Exchange Protocol

GM/T 0003.5-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 5: Parameter

definition

GM/T 0004-2012: SM3 Cryptographic Hash Algorithm

GM/T 0002-2012: SM4 Block Cipher Algorithm

ISO/IEC 10118-3, Information technology — Security techniques — Hash-functions — Part 3: Dedicated

hash functions

ISO/IEC 14888-3, Information technology -- Security techniques -- Digital signature with appendix -- Part

3: Discrete logarithm based mechanisms

ISO/IEC 15946-1, Information technology — Security techniques — Cryptographic techniques based on

elliptic curves — Part 1: General

ISO/IEC 18033-3, Information technology — Security techniques — Encryption algorithms — Part 3:

Block ciphers

TCG Algorithm Registry

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Trusted Platform Module Library Part 1: Architecture

Page 4 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1

“ATH”
sequence of four octets of data containing 41 54 48 0016 that is used as a label in a KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.2

“CFB”
sequence of four octets containing 43 46 42 0016 that is used as a label in a KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.3

“DUPLICATE”
sequence of 10 octets containing 44 55 50 4C 49 43 41 54 45 0016 that is used as a label in a
KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.4

“IDENTITY”
sequence of nine octets containing 49 44 45 4E 54 49 54 59 0016 that is used as a label in a KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.5

“OBFUSCATE”
sequence of 10 octets containing 4F 42 46 55 53 43 41 54 45 0016 that is used as a label in a
KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.6

“SECRET”
sequence of seven octets containing 53 45 43 52 45 54 0016 that is used as a label in a KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.7

“STORAGE”
sequence of eight octets containing 53 54 4F 52 41 47 45 0016 that is used as a label in a KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

4.8

“XOR”
sequence of four octets containing 58 4F 52 0016 that is used as a label in a KDF

NOTE See 11.4.10.2 for justification for the terminating octet of 0016.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.9

ancestor
<object loaded in a TPM> Storage Key that was required to have been loaded prior to loading an
object

4.10

authValue
octet string containing a value that is used for access authorization. The value is used as a
password or to derive a key for an HMAC calculation.

4.11

authPolicy
digest value produced by an execution of policy commands and used for access authorizat ion

4.12

bound
authValue of the Object is not included in the HMAC authorization for the authorization session

4.13

canonical form
data structure in the format used for transport to and from the TPM (see 4.36)

4.14

CLEAR
bit with a value of zero (0), or the action of causing a bit to have a value of zero (0)

4.15

command
discrete TPM function that is exposed externally and recognizable by a TPM’s command
processor; also, the values sent to the TPM to indicate the operation to be performed

4.16

commandCode
numeric identifier of the operation to be performed by a TPM

4.17

context
collection of data that provides qualifying information about a data object to differentiate it from
others of the same type or to differentiate one version of a data object from another

4.18

cpHash
hash of the command code, Object names, and parameters of a command

4.19

Derivation Parent
loadable key used to derive other keys; a TPM_ALG_KEYEDHASH Parent Key

4.20

descendant
<Storage Key> Object whose loading is conditional on a specific Storage Key having been
previously loaded

Trusted Platform Module Library Part 1: Architecture

Page 6 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.21

digest
result of a hash operation

4.22

duplicate
allowing a Protected Object created by a TPM to be used on a different TPM

4.23

ECDH
Diffie-Hellman secure secret sharing process using elliptic curve operations

4.24

entity
a hierarchy, PCR, object, or NV Index in a TPM shielded location

4.25

Ephemeral Key
key created as part of a protocol that is not used again after the protocol is complete

4.26

Empty Auth
Empty Buffer used as an authorization value

4.27

Empty Buffer
sized array with no data; indicated by a size field of zero followed by an array containing no
elements

4.28

Empty Digest
Empty Buffer used as a digest

4.29

Empty Point
ECC point with Empty Buffers for both the x and y coordinates

4.30

Empty Policy
Empty Buffer used when a policy value is required; as a policyValue, an Empty Buffer will satisfy
no policy

NOTE No policy can be satisfied by an Empty Policy because an Empty Policy has zero length but a
policyDigest is the size of a hash digest and a digest is never zero length.

4.31

Endorsement Authorization
authorization using either endorsementAuth or endorsementPolicy

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.32

Extend

Extended
operation that replaces the current value of a digest with the hash of a buffer constructed by
concatenating new data (normally a digest) to the current value of the digest (see 11.4.8)

4.33

External Object
Object that may be loaded into a TPM without being a member of a specific hierarchy

4.34

Failure mode
mode in which the TPM returns TPM_RC_FAILURE in response to all commands except
TPM2_GetTestResult() or TPM2_GetCapability()

4.35

import
operation that allows a Protected Object not created by a TPM to be incorporated into a
hierarchy of the TPM

4.36

internal form
data structure using a layout that is specific to an implementation that may or may not be the
same as the canonical form

4.37

Lockout Authorization
Authorization using either lockoutAuth or lockoutPolicy

4.38

LSB0

little-endian
the least-significant octet of a datum is at byte offset 0

4.39

MSB0

big-endian
the most-significant octet of a datum is at byte offset 0

4.40

LSb0

the least-significant bit of a datum is assigned the bit number of 0

4.41

MSb0
the most-significant bit of a datum is assigned the bit number of 0

4.42

non-volatile
data that is retained even when power is removed

Trusted Platform Module Library Part 1: Architecture

Page 8 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.43

NULL
context-sensitive value that, when applied to a pointer, is a system-defined value indicating that
the pointer does not reference data; and, when applied to a structure identified by an algorithm
identifier, is the TPM_ALG_NULL value indicating that no add itional data is present

4.44

NULL Password

NULL Auth
authorization where the authorization value is the Empty Buffer, resulting in an authorization that
is a sequence of 9 octets containing either 40 00 00 09 00 00 00 00 0016 or 40 00 00 09 00 00 01
00 0016

4.45

NULL Signature
signature with the TPM_ALG_NULL signature scheme that contains no data

4.46

NULL-terminated
sequence of non-zero values followed by a value containing zero; most often a NULL-terminated
string where the values are ASCII-encoded octets

4.47

NULL Ticket
ticket structure with tag set to a value that is correct for the context, hierarchy is TPM_RH_NULL,
and digest is an Empty Buffer

4.48

NV Index

Index
user defined non-volatile shielded location

4.49

Object
key or data that has a public portion and, optionally, a sensitive portion; and which is a member
of a hierarchy

NOTE An NV Index is not an object.

4.50

octet
eight bits of data

NOTE On most modern computers, this is the smallest addressable unit of data.

4.51

orderly shutdown
when the TPM has completed TPM2_Shutdown() before power to the TPM is removed or
_TPM_Init is asserted

4.52

ordinary key
key produced with a seed taken from the TPM RNG

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

cf. Primary Key

4.53

Owner Authorization
authorization using either ownerAuth or ownerPolicy

4.54

Parent Key
any object with the decrypt and restricted attributes SET and the sign attribute CLEAR

NOTE There are two types of parent keys: Storage Parent and Derivation Parent.

4.55

PCR
one or more platform configuration registers each containing a digest

4.56

PCR.alg
hash algorithm associated with a specific PCR

4.57

PCR bank
collection of PCR identified by a hash algorithm, with each PCR in the bank containing a digest
computed using the bank identifier's hash algorithm

4.58

PCR.digest
digest value associated with a specific PCR

4.59

Permanent Entity
TPM resource with an architecturally defined handle that does not change

Note The value of a Permanent Entity may change

4.60

Persistent Entity
TPM resource created by a Protected Capability that persists in TPM memory across power
cycles and TPM resets

4.61

Platform Authorization
authorization using either platformAuth or platformPolicy

4.62

policyDigest
digest uniquely representing an ordered set of policy commands and operands; used to
determine if a policy authorizing an action has been satisf ied

Trusted Platform Module Library Part 1: Architecture

Page 10 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.63

policySession→cpHash
policy session context value that, if not the Empty Buffer, is the cpHash value that the authorized
command is required to have for the authorization to be valid

4.64

PolicyAuthorize Command
either TPM2_PolicyAuthorize() or TPM2_PolicyAuthorizeNV()

4.65

platform firmware
code added to the platform by its manufacturer that is needed for booting and proper platform
operation

NOTE Commonly, but not exclusively, referred to as BIOS or UEFI or SMM code

4.66

Primary Key
key derived from a Primary Seed that is associated with the hierarchy of the Primary Seed

cf. ordinary key

4.67

Primary Object
Primary Key or a data blob with a sensitive area that is encrypted using a symmetric key derived
from the public area of the object and a Primary Seed

4.68

private area
encrypted and integrity protected blob that contains the sensitive area of an object

4.69

Primary Seed
large random value contained within a TPM from which Primary Keys and Primary Objects are
derived

4.70

Protected Capability
operation performed by the TPM on data in a Shielded Location in response to a command sent
to the TPM

4.71

Protected Object
object with an encrypted sensitive portion, the sensitive portion of which the TPM will only
decrypt when it is in a Shielded Location

4.72

RAM
memory that may be accessed in any order and which has no endurance limitations

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.73

reset interval
period between two successive TPM Resets and the interval during which the resetCount is not
changed

4.74

response
values returned by the TPM when it completes processing of a command

4.75

Resume PCR
platform configuration register with a value that is preserved over a TPM Res ume sequence

4.76

Root of Trust
component that must always behave in the expected manner because its misbehavior cannot be
detected

NOTE The complete set of Roots of Trust has at least the minimum set of functions to enable a description
of the platform characteristics that affect the trustworthiness of the platform.

4.77

rpHash
hash of the response code and the parameters of a response

4.78

Sealed Data Object
encrypted, user-defined, data blob that is associated with a hierarchy and loaded using
TPM2_Load() or TPM2_CreatePrimary()

4.79

sensitive area
contain the confidential or secret parts of an object that are required to be encrypted and
integrity protected when not in a Shielded Location on a TPM

4.80

sequence object
transient data structure used to hold hash state that has a handle and may be context swapped

NOTE See clause 30

4.81

session
transient TPM structure that maintains the state associated with a sequence of autho rizations or
an audit digest

4.82

SET
bit with a value of one (1), or the action of causing a bit to have a value of one (1)

Trusted Platform Module Library Part 1: Architecture

Page 12 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.83

Shielded Location
location on a TPM that contains data that is shielded from access by any entity other than the
TPM and which may be operated on only by a Protected Capability

4.84

Shutdown(CLEAR)
abbreviated form of the command TPM2_Shutdown() with the startupType parameter set to
TPM_SU_CLEAR

4.85

Shutdown(STATE)
abbreviated form of the command TPM2_Shutdown() with the startupType parameter set to
TPM_SU_STATE

4.86

sizeof(x)
operator that returns the number of octets in the operand 'x'

4.87

Startup(CLEAR)
abbreviated form of the command TPM2_Startup() with the startupType parameter set to
TPM_SU_CLEAR

4.88

Startup(STATE)
abbreviated form of the command TPM2_Startup with the startupType parameter set to
TPM_SU_STATE

4.89

Storage Key
key used to provide integrity and confidentiality protection for descendant keys that are stored off
of the TPM

4.90

Storage Parent
Storage Key that is acting as a parent key

4.91

Temporary Object
Objects that become unusable after a TPM Reset and that may not be converted into Persistent
Objects

4.92

temporary resource
data object created during the execution of a command that does not persist in TPM mem ory
after the command completes

4.93

TPM_GENERATED_VALUE
32-bit number (FF 54 43 4716) that is used to tag structures that are generated by a TPM

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.94

TPM Reset
resetting of all TPM internal state to default values due to Startup(CLEAR)

4.95

TPM Resource Manager

TRM
software executing on a system with a TPM that ensures that the resources necessary to
execute TPM commands are present in the TPM

4.96

TPM Restart
Startup(CLEAR) that initializes all PCR but preserves most other TPM state from the previous
Shutdown(STATE)

4.97

TPM Resume
Startup(STATE) that initializes some PCR but preserves most TPM state from the previous
Shutdown(STATE)

4.98

transient object
object or sequence object that may be explicitly loaded and unloaded from TPM memory by the
TRM; cleared from TPM memory when the TPM is initialized (TPM2_Startup())

4.99

transient resource
object, sequence object, or session that may be explicitly loaded and unloaded from TPM
memory by the TRM; cleared from TPM memory when the TPM is initialized (TPM2_Startup())

4.100

Trusted Platform Module

TPM
implementation of this specification

4.101

user-installable software
any software that may be installed on a platform other than platform firmware

4.102

volatile data
data that is lost when power is removed

4.103

Zero Digest
non-zero-length digest with all octets set to zero

Trusted Platform Module Library Part 1: Architecture

Page 14 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Symbols and Abbreviated Terms

5.1 Symbols

For the purposes of this document, the following symbol definitions apply unless the text is in the
Courier font.

A || B concatenation of B to A

x the smallest integer not less than x

x the largest integer not greater than x

A ≔ B assignment of the results of the expression on the right (B) to the parameter on the left

A = B equivalence (A is the same as B)

{ A } an optional element

A ⊕ B bitwise exclusive OR of elements

A & B logical AND of elements

A | B the logical OR of elements

{A | B} selection of elements

{A : B} an inclusive range of elements between A and B

<A, B, … > an ordered list of elements (a tuple)

0…0 a context-sensitive number of octets of zero

F() denotes a function F

F(p == x) denotes a function or TPM command F with parameter p set to value x

length(x) denotes a function that returns the number of significant bits in an integer value x

H() denotes the hash function

[n]P multiplication of point P by the integer value n

A • B multiplication of two integer values A and B

A→B denotes a reference to element B within structure A

A mod B A modulus B

Text in the Courier font indicates code written according to the C language standard.

5.2 Abbreviations

For the purposes of this document, the following abbreviations apply.

Abbreviation Description

TPM Prefix for an indication passed from the system interface of the
TPM to a Protected Capability defined in this specification

AK Attestation Key

BIOS Basic Input/Output System

CA Certificate Authority

CFB Cipher Feedback mode

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Abbreviation Description

CPU Central Processing Unit

CRTM Core Root of Trust for Measurement

CTR Counter mode

D-RTM dynamic RTM

DA dictionary attack

DoS Denial of Service

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

EA Enhanced Authorization

EAL evaluated assurance level

ECDAA ECC-based Direct Anonymous Attestation

ECDH Elliptic Curve Diffie-Hellman

EK Endorsement Key

EPS Endorsement Primary Seed

FIPS Federal Information Processing Standard

FUM Field Upgrade mode

GPIO General Purpose I/O

HMAC Hash Message Authentication Code

I/O Input/Output

IV Initialization Vector

KDF key derivation function

KVT known value test

LPC Low Pin Count

LSb Least Significant bit

LSO Least Significant Octet

MSb Most Significant bit

MSO Most Significant Octet

NIST National Institute of Standards and Technology

NP new parent

NV non-volatile

NVRAM Non-Volatile Random Access Memory

OAEP Optimal Asymmetric Encryption Padding

OEM Original Equipment Manufacturer

OIAP Object-Independent Authorization Protocol

OID Object Identifier in ASN.1 format

OSAP Object-Specific Authorization Protocol

PCR platform configuration register(s)

Trusted Platform Module Library Part 1: Architecture

Page 16 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Abbreviation Description

POST Power On Self-Test

PP Physical Presence

PPS Platform Primary Seed

PRF Pseudo-Random Function

PRNG Pseudo-Random Number Generator

PSS Probabilistic Signature Scheme

QN Qualified Name

RNG Random Number Generator

RSA Rivest, Shamir and Adleman

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

S-RTM Static RTM

SHA Secure Hash Algorithm

SMAC Symmetric block cipher Message Authentication Code

SMM System Management Mode

SPS Storage Primary Seed

SRK Storage Root Key

TBB Trusted Building Block

TCB Trusted Computing Base

TCG Trusted Computing Group

TPM Trusted Platform Module

TPM2_ Prefix for a command defined in this specification

TSS TCG Software Stack

UEFI Unified Extensible Firmware Interface

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Compliance

Unless the TPM 2.0 Part 3 general description of a command indicates that the command is mandatory, a

compliant TPM need not implement the command. However, if implemented, the command is required to

have the behavior defined in TPM 2.0 Part 3. A platform-specific specification will indicate the commands

from this specification that are required to be implemented in order to be compliant with that platform-

specific specification.

The code in this specification is a reference implementation that describes required TPM behavior as

observed from the TPM interface. The C-code may be reorganized or rewritten in any desired

implementation language and remain compatible with this specification as long as the observable

behavior is equivalent.

Even though the code in the reference implementation has undergone extensive testing, it is likely that

some errors exist and one or more of those errors could lead to a TPM failure or exploit. Regardless of

any other statement about normative behavior, one should not assume that a TPM exploit or failure is an

intended behavior. It is not necessary to reproduce such a behavior in order to be compliant with this

specification.

NOTE Please report bugs in the reference code to the TCG (admin@trustedcomputinggroup.org) so that
the reference code may be brought into compliance with the specification.

The response codes in the specification are normative. An implementation performing a check prescribed

by this specification is required to return the indicated error if the check fails. The order in which checks

are performed is not normative. This means that a command with multiple errors could return different

response codes on different TPMs. However, the response code returned is required to be the normative

response code used to indicate the specific failure.

Capacities and algorithms of a TPM implementation may vary from the reference implementation; in this

case, the same error would not occur in the same situation (such as, a TPM implementation with more

memory may be able to satisfy a request where the reference implementation would have returned an

error). However, these differences should not cause a different response code to be returned when the

nature of the error is the same as in the reference implementation.

TPM 2.0 Part 4 of the specification contains major subsystems that may change for each instance of a

TPM. For example, the NV subsystem of the reference implementation is not representative of the actual

implementation of most physical NV implementations but is a crude analog. When the subsystem is

rewritten, an equivalent interface should be provided, and the errors returned are required to match those

of the reference implementation.

NOTE A constraint on the design of the TPM was the process of compliance -testing of different TPM
implementations. If a TPM implementation has modularity similar to the reference implementation,
then TPM tests that assume a modular design will be able to produce reliable test results on each
TPM implementation.

The reference implementation uses static and stack-based allocation of resources and does not do

allocations on a heap. However, a TPM implementation may use heap-based memory management in

which case some error conditions and codes will differ. These differences are limited, and the allowed

response codes and error conditions are defined in 39.3.

Trusted Platform Module Library Part 1: Architecture

Page 18 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Conventions

7.1 Bit and Octet Numbering and Order

An integer value is considered to be an array of one or more octets. The octet at offset zero within the

array is the most significant octet (MSO) of the integer. Bit number 0 of that integer is its least significant

bit and is the least significant bit in the last octet in the array.

EXAMPLE A 32-bit integer is an array of four octets; the MSO is at offset [0], and the most significant bit is bit
number 31. Bit zero of this 32-bit integer is the least significant bit in the octet at offset [3] in the
array.

NOTE 1 Array indexing is zero-based.

NOTE 2 This definition does not match the “network bit order” used in many IETF documents, such as RFC
4034. In those documents, the most significant bit of a datum has the lowest bit number. It is
conventional practice to send that bit first when using a serial network protocol, and the bits are
numbered in the order in which they are sent. This specification numbers bits according to the power
of two to which they correspond within a datum. This numbering corresponds to the normal
convention for bit numbering in hardware registers that hold integer values rather than fixed -point
numbers.

NOTE 3 The TPM uses MSB0, LSb0 numbering.

The first listed member of a structure is at the lowest offset within the structure and the last listed member

is at the highest offset within the structure.

For a character string (letters delimited by “”), the first character of the string contains the MSO.

7.2 Sized Buffer References

The specification makes extensive use of a data structure called a sized buffer. A sized buffer has a size

field followed by an array of octets equal in number to the value in the size field.

The structure will have an identifying name. When the specification references the size field of the

structure, the structure name is followed by “.size” (a period followed by the word “size”). When the

specification references the octet array of the structure, the structure name is followed by “.buffer” (a

period followed by the word “buffer”).

7.3 Numbers

Numbers are decimal unless a different radix is indicated.

Unless the number appears in a table intended to be machine readable, the radix is a subscript following

the digits of the number. Only radix values of 2 and 16 are used in this specification.

Radix 16 (hexadecimal) numbers have a space separator between groups of two hexadecimal digits.

EXAMPLE 1 40 FF 12 3416

Radix 2 (binary) numbers use a space separator between groups of four binary digits.

EXAMPLE 2 0100 1110 00012

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The number of digits indicates the number of bits in the representation.

EXAMPLE 3 2016 is a hexadecimal number that contains exactly 8 bits and has a decimal value of 32.

EXAMPLE 4 10 00002 is a binary number that contains exactly 6 bits and has a decimal value of 32.

EXAMPLE 5 0 2016 is a hexadecimal number that contains exactly 12 bits and has a decimal value of 32.

A number in a machine-readable table may use the “0x” prefix to denote a base 16 number. In this

format, the number of digits is not always indicative of the number of bits in the representation.

EXAMPLE 6 0x20 is a hexadecimal number with a value of 32, and the number of bits is determined by the
context.

Trusted Platform Module Library Part 1: Architecture

Page 20 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Changes from Previous Versions

This version of the TPM specification introduces these additional features to the TPM family:

• Definition of an interface that allows variability of underlying cryptographic algorithms – TPM 1.2 is
constrained by its data structures to using RSA and SHA1. The TPM 2.0 structure and interface
defines support for a wide range of hash and asymmetric algorithms along with limited support for
use of various block, symmetric ciphers. Of particular note is the addition of support for the elliptic
curve (ECC) family of asymmetric algorithms.

• Unification of authorization methods – TPM 1.2 has different schemes to authorize the use,
delegated use, and migration of objects. This 2.0 specification provides a uniform framework for
using authorization capabilities, so they may be combined in unique ways to provide more
flexibility.

• Expansion of authorization methods – TPM 2.0 allows authorization with clear-text passwords and
Hash Message Authentication Code (HMAC). It also allows construction of an arbitrarily complex
authorization policy for an object using multiple authorization qualifiers.

• Dedicated BIOS support – TPM 2.0 adds a Storage hierarchy controlled by platform firmware,
letting the OEM benefit from the cryptographic capabilities of the TPM regardless of the support
provided to the OS.

• Simplified control model – TPM 2.0 needs no special provisioning process to be useful to
applications. Although objects on which the TPM operates may have limitations, all commands
are available all the time. This lets application developers rely on TPM capabilities being available
whenever a TPM is present.

A TPM compatible with this specification need not be compatible with previous TPM specifications.

This specification defines the operations a TPM performs and the structures used for communication

between the TPM and the host system. It does not define an electrical interface to the TPM, nor does it

specify which subset of TPM 2.0 commands and resources are required for a specific platform. Please

refer to platform-specific TPM specifications for this information.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Trusted Platforms

9.1 Trust

In the context of Trusted Computing Group (TCG) specifications, “trust” is meant to convey an

expectation of behavior. However, predictable behavior does not necessarily constitute behavior that is

worthy of trust. For example, we expect that a bank will behave like a bank, and we expect that a thief will

behave like a thief.

In order to determine the expected behavior of a platform, it is necessary to determine its identity as it

relates to the platform behavior. Physically different platforms may have identical behavior. If they are

constructed of components (hardware and software) that have identical behavior, then their trust

properties should be the same.

The TCG defines schemes for establishing trust in a platform that are based on identifying its hardware

and software components. The Trusted Platform Module (TPM) provides methods for collecting and

reporting these identities. A TPM used in a computer system reports on the hardware and software in a

way that allows determination of expected behavior and, from that expectation, establishment of trust.

9.2 Trust Concepts

 Trusted Building Block

A trusted building block (TBB) is a component or collection of components required to instantiate a Root

of Trust. Typically, platform-specific, a TBB is part of a Root of Trust that does not have Shielded

Locations.

One example of a TBB is the combination of the CRTM, the connection between CRTM storage and a

motherboard, the path between CRTM storage and the CPU, the connection between the TPM and a

motherboard, and the path between the CPU and the TPM. This combination comprises the Root of Trust

for Reporting (RTR).

A TBB is a component that is expected to behave in a way that does not compromise the goals of trusted

platforms.

 Trusted Computing Base

A trusted computing base (TCB) is the collection of system resources (hardware and software) that is

responsible for maintaining the security policy of the system. An important attribute of a TCB is that it be

able to prevent itself from being compromised by any hardware or software that is not part of the TCB.

The TPM is not the trusted computing base of a system. Rather, a TPM is a component that allows an

independent entity to determine if the TCB has been compromised. In some uses, the TPM can help

prevent the system from starting if the TCB cannot be properly instantiated.

 Trust Boundaries

The combination of TBB and Roots of Trust form a trust boundary, within which measurement, storage,

and reporting may be accomplished for a minimal configuration. In systems that are more complex, it may

be necessary for the CRTM to establish trust in other code, by making measurements of that other code

and recording the measurement in a PCR. If the CRTM transfers control to that other code regardless of

the measurement, then the trust boundary is expanded. If the CRTM will not run that code unless its

Trusted Platform Module Library Part 1: Architecture

Page 22 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

measurement is the expected value, the trust boundary remains the same because the measured code is

an expected extension of the CRTM.

 Transitive Trust

Transitive trust is a process whereby the Roots of Trust establish the trustworthiness of an executable

function, and trust in that function is then used to establish the trustworthiness of the next executable

function.

Transitive trust may be accomplished either by: (1) knowing that a function enforces a trust policy before it

allows a subsequent function to take control of the TCB, or (2) using measurements of subsequent

functions so that an independent evaluation may establish the trust. The TPM may support either of these

methods.

 Trust Authority

When the RTM begins to execute the CRTM, the entity that may vouch for the correctness of the TBB is

the entity that created the TBB. For typical systems, this is the platform manufacturer. In other words, the

manufacturer is the authority on what constitutes a valid TBB, and its reputation is what allows someone

to trust a given TBB.

As the system transitions to code outside the CRTM, the transitive trust chain is maintained by

measurement of that code. If execution of that code is conditional on its measurement, then the authority

for that code remains unchanged. That is, if the platform manufacturer’s CRTM does not run code outside

the CRTM unless that code has a specific measured value, then the platform manufacturer remains the

trust authority regardless of who provided that code.

In modern architectures, where firmware and software components come from many different suppliers, it

is often not feasible for platform manufacturers to know the signers of all code that runs on a platform.

Therefore, they may not remain the authority on platform state for very long. The measurements recorded

in the RTS then determine the chain of authority for the current system state.

Two different methods allow evaluation of the trust authority for a platform.

1) Code is measured (hashed), and its value is recorded in the RTS. If the code is run regardless of its

measurement, then the authority for the trust is the digest of the code reported by the RTR. That is,

the measurements speak for themselves, and the verifier needs either to have knowledge of the

measurements that constitute trustworthy code or knowledge of the measurements that indicates

malicious or vulnerable code.

2) Code is signed so that the identity of the authority for the code is known. If this identity is recorded in

the RTS, the evaluation can be changed. Instead of being based on knowing the digest of the code, it

can be based on identities of the signers of the code.

Because trusted sources of code may sometimes produce code with security vulnerabilities, support for

revocation is often required. To allow revocation of specific code modules, it is often necessary to use a

hybrid solution where both authorities and details are recorded. This simplifies the process of determining

whether a module from a specific vendor has been revoked.

NOTE If the code is measured (hashed) and not signed, it is harder to know if a specific measurement is
valid unless there is a centralized database of all known digests of revoked code. When the identity
of the authority is known, one can contact the vendor to determine if it has revoked code with a
given hash.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3 Trusted Platform Module

A TPM is a system component that has state that is separate from the system on which it reports (the

host system). The only interaction between the TPM and the host system is through the interface defined

in this specification.

TPMs are implemented on physical resources, either directly or indirectly. A TPM may be constructed

using physical resources that are permanently and exclusively dedicated to the TPM, and/or using

physical resources that are temporarily assigned to the TPM. All of a TPM’s physical resources may be

located within the same physical boundary, or different physical resources may be within different

physical boundaries.

Some TPMs are implemented as single-chip components that are attached to systems (typically, a PC)

using a low-performance interface (such as, Low Pin Count, or LPC). The TPM component has a

processor, RAM, ROM, and Flash memory. The only interaction with these TPMs is through the LPC bus.

The host system cannot directly change the values in TPM memory other than through the I/O buffer that

is part of the interface.

Another reasonable implementation of a TPM is to have the code run on the host processor while the

processor is in a special execution mode. For these TPMs, parts of system memory are partitioned by

hardware so that the memory used by the TPM is not accessible by the host processor unless it is in this

special mode. Further, when the host processor switches modes, it always begins execution at specific

entry points. This version of a TPM would have many of the same attributes as the stand-alone

component in that the only way for the host to cause the TPM to modify its internal state is with well-

defined interfaces. There are several different schemes for achieving this mode switching including

System Management Mode, Trust Zone™, and processor virtualization.

Definition of the interaction between the host and the TPM is the primary objective of this specification.

Prescribed commands instruct the TPM to perform prescribed actions on data held with the TPM. A

primary purpose of these commands is to allow determination of the trust state of a platform. The ability of

a TPM to accomplish its objective depends on the proper implementation of Roots of Trust.

9.4 Roots of Trust

TCG-defined methods rely on Roots of Trust. These are system elements that must be trusted because

misbehavior is not detectable. The set of roots required by the TCG provides the minimum functionality

necessary to describe characteristics that affect a platform’s trustworthiness.

While it is not possible to determine if a Root of Trust is behaving properly, it is possible to know how

roots are implemented. Certificates provide assurances that the root has been implemented in a way that

renders it trustworthy. For example, a certificate may identify the manufacturer and evaluated assurance

level (EAL) of a TPM. This certification provides confidence in the Roots of Trust implemented in the

TPM. In addition, a certificate from a platform manufacturer may provide assurance that the TPM was

properly installed on a machine that is compliant with TCG specifications so that the Root of Trust

provided by the platform may be trusted (see 9.5.2 for more information on certification).

The TCG requires three Roots of Trust in a trusted platform:

• Root of Trust for Measurement (RTM),

• Root of Trust for Storage (RTS), and

• Root of Trust for Reporting (RTR).

Trust in the Roots of Trust can be achieved through a variety of means but is anticipated to include

technical evaluation by competent experts.

Trusted Platform Module Library Part 1: Architecture

Page 24 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Root of Trust for Measurement (RTM)

The RTM sends integrity-relevant information (measurements) to the RTS. Typically, the RTM is the CPU

controlled by the Core Root of Trust for Measurement (CRTM). The CRTM is the first set of instructions

executed when a new chain of trust is established. When a system is reset, the CPU begins executing the

CRTM. The CRTM then sends values that indicate its identity to the RTS. This establishes the starting

point for a chain of trust (see 9.5.5 for a more detailed description of integrity measurement).

 Root of Trust for Storage (RTS)

The TPM memory is shielded from access by any entity other than the TPM. Because the TPM can be

trusted to prevent inappropriate access to its memory, the TPM can act as an RTS.

Some of the information in TPM memory locations is not sensitive and the TPM does not protect it from

disclosure. An example of non-sensitive data is the current contents of a platform configuration register

(PCR) containing a digest. Other information is sensitive and the TPM does not allow access to the

information without proper authority. An example of sensitive data in a Shielded Location is the private

part of an asymmetric key.

Sometimes, the TPM uses the contents of one Shielded Location to gate access to another Shielded

Location. For example, access to (use of) a private key for signing may be conditioned on PCR having

specific values.

 Root of Trust for Reporting (RTR)

9.4.3.1 Description

The RTR reports on the contents of the RTS. An RTR report is typically a digitally signed digest of the

contents of selected values within a TPM.

NOTE Not all Shielded Locations are directly accessible. For example, the values of the private part of
keys and authorizations are in Shielded Locations on which the TPM will not report.

The values on which the RTR reports typically are

• evidence of a platform configuration in PCR (such as, TPM2_Quote()),

• audit logs (such as, TPM2_GetCommandAuditDIgest ()), and

• key properties (such as, TPM2_Certify()).

The interaction between the RTR and RTS is critical. The design and implementation of this interaction

should mitigate tampering that would prevent accurate reporting by the RTR. An instantiation of the RTS

and RTR will

• be resistant to all forms of software attack and to the forms of physical attack implied by the
TPM’s Protection Profile, and

• supply an accurate digest of all sequences of presented integrity metrics.

9.4.3.2 Identity of the RTR

The TPM contains cryptographically verifiable identities for the RTR. The identity is in the form of

asymmetric aliases (Endorsement Keys or EKs) derived from a common seed. Each seed value and its

aliases should be statistically unique to a TPM. That is, the probability of two TPMs having the same EK

should be insignificant.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The seed may be used to generate multiple asymmetric keys, all of which would represent the same TPM

and RTR.

9.4.3.3 RTR Binding to a Platform

The TPM reports on the state of the platform by quoting the PCR values. For assurance that these PCR

values accurately reflect that state, it is necessary to establish the binding between the RTR and the

platform. A Platform Certificate can provide proof of this binding. The Platform Certificate is assurance

from the certifying authority of the physical binding between the platform (the RTM) and the RTR.

9.4.3.4 Platform Identity and Privacy Considerations

The uniqueness of an EK and its cryptographic verifiability raises the issue of whether direct use of that

identity could result in aggregation of activity logs. Analysis of the aggregated activity could reveal

personal information that a user of a platform would not otherwise approve for distribution to the

aggregators.

To counter undesired aggregation, TCG encourages the use of domain-specific signing keys and

restrictions on the use of an EK. The Privacy Administrator controls use of an EK, including the process of

binding another key to the EK.

NOTE Privacy Administrator's control of the EK differs from Owner control of the RTS providing separation
of the security and identity uses of the TPM.

Unless the EK is certified by a trusted entity, its trust and privacy properties are no different from any

other asymmetric key that can be generated by pure software methods. Therefore, by itself, the public

portion of the EK is not privacy sensitive.

9.5 Basic Trusted Platform Features

 Introduction

At a minimum, a trusted platform provides the three Roots of Trust described previously. All three roots

use certification and attestation to provide evidence of the accuracy of information. A trusted platform will

also offer Protected Locations (see 10.3) for the keys and data objects entrusted to it. Finally, a trusted

platform may provide integrity measurement to ensure the trustworthiness of a platform by logging

changes to platform state; this is done by recording logged entries in PCR for later validation as being

correct and unaltered. These basic TPM concepts are now described in detail.

 Certification

The nominal method of establishing trust in a key is with a certificate indicating that the processes used

for creating and protecting the key meets necessary security criteria. A certificate may be provided by

shipping the TPM with an embedded key (that is, an Endorsement Key) along with a Certificate of

Authenticity for the EK. The EK and its certificate may be used to associate credentials (certificates) with

other TPM keys; this process is described in 9.5.3.3. When a certified key has attributes that let it sign

TPM-created data, it may attest to the TPM-resident record of platform characteristics that affect the

integrity (trustworthiness) of a platform.

NOTE The EK does not have to be installed when the TPM is shipped. At the factory, an EK may be
generated from the Endorsement Seed and a Certificate of Authenticity created for that EK. The EK
does not have to be permanently installed in the TPM. When the TPM is in possession of a
customer, the customer may, at their discretion, have the TPM use the Endorsement Seed and
recreate the EK for which they have a Certificate of Authenticity.

Trusted Platform Module Library Part 1: Architecture

Page 26 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Attestation and Authentication

9.5.3.1 Types of Attestation

Trusted platforms employ a hierarchy of attestations:

1) An external entity attests to a TPM in order to vouch that the TPM is genuine and complies with this

TPM specification. This attestation takes the form of an asymmetric key embedded in a genuine TPM,

plus a credential that vouches for the public key of that pair.

NOTE 1 A credential that is used to vouch for the embedded asymmetric key is commonly called an
"Endorsement Certificate."

2) An external entity attests to a platform in order to vouch that the platform contains a Root-of-Trust-for-

Measurement, a genuine TPM, plus a trusted path between the RTM and the TPM. This attestation

takes the form of a credential that vouches for information including the public key of the asymmetric

key pair in the TPM.

NOTE 2 A credential used to vouch for the platform is commonly called a "Platform Certificate."

3) An external entity called an “Attestation CA” attests to an asymmetric key pair in a TPM in order to

vouch that a key is protected by an unidentified but genuine TPM and has particular properties. This

attestation takes the form of a credential that vouches for information including the public key of the

key pair. An Attestation CA typically relies upon attestations of type 1 and 2 in order to produce

attestation of type 3.

NOTE 3 The credential created by the CA is commonly called an "Attestation Key Certificate."

4) A trusted platform attests to an asymmetric key pair in order to vouch that a key pair is protected by a

genuine but unidentified TPM and has particular properties. This attestation takes the form of a

signature signed by the platform’s TPM over information that describes the key pair, using an

attestation-key protected by the TPM, plus attestation of type 3 that vouches for that attestation key.

NOTE 4 This type of attestation is done using TPM2_Certify().

5) A trusted platform attests to a measurement in order to vouch that a particular software/firmware state

exists in a platform. This attestation takes the form of a signature over a software/firmware

measurement in a PCR using an attestation key protected by the TPM, plus attestation of type 3 or 4

for that attestation key.

NOTE 5 This is type of attestation is commonly called a "quote" and is done with TPM2_Quote().

6) An external entity attests to a software/firmware measurement in order to vouch for particular

software/firmware. This attestation takes the form of a credential that vouches for information

including the value of a measurement and the state it represents.

NOTE 6 This is commonly called "third-party certification."

Attestation of types 3 and 4 entail the use of a key to sign the contents of Shielded Locations. An

Attestation Key (AK) is a particular type of signing key that has a restriction on its use, in order to prevent

forgery (the signing of external data that has the same format as genuine attestation data). The restriction

is that an AK may be used only to sign a digest that the TPM has created. If an AK is known to be

protected by a TPM (by virtue of attestation of type 3 or 4), it may be relied on to report accurately on

Shielded Location content, and not sign externally provided data that appears to be valid and TPM-

produced but is not.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

measurements

Attestation Key
(certified by

Attestation CA)

platform

TPM
1

2

3

4

5 6

Platform Attestation

software

Figure 1 — Attestation Hierarchy

9.5.3.2 Attestation Keys

When the TPM creates a message to sign from internal TPM state (such as, in TPM2_Quote()), a special

value (TPM_GENERATED_VALUE) is used as the message header. A TPM-generated message always

begins with this value.

When the TPM digests an externally provided message, it checks the first few octets of the message to

ensure that they do not have the same value as TPM_GENERATED_VALUE. When the digest is

complete, the TPM produces a ticket that indicates the message did not start with

TPM_GENERATED_VALUE. When an AK is used to sign the digest, the caller provides the ticket so that

the TPM can determine that the message used to create the digest was not a possible forgery of TPM

attestation data.

NOTE The digest in the ticket must match the digest being presented to the AK for signing.

Trusted Platform Module Library Part 1: Architecture

Page 28 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

EXAMPLE If an attacker produced a message block that was identical to a TPM-generated quote, that message
block would start with TPM_GENERATED_VALUE to indicate that it is a proper TPM quote. When
the TPM performs a digest of this block, it notes that the first octets are the same as
TPM_GENERATED_VALUE. It will not generate the ticket indicating that the message is safe to
sign, so an AK may not be used to sign this digest. Similarly, an entity checking an attestation made
by an AK must verify that the message signed begins with TPM_GENERATED_VALUE in orde r to
verify the message is indeed a TPM-generated quote.

Values signed by an AK may be assured to reflect TPM state, but AKs may also be used for general

signing purposes.

An AK does not have much value to a remote challenger if the AK cannot be associated with the platform

that it represents. This association is made using the identity certification process.

9.5.3.3 Attestation Key Identity Certification

Any TPM user that can create a key on a TPM can create a restricted-use signing key. The key creator

may then ask a third party, such as an attestation Certificate Authority (CA), to provide a certificate for it.

The attestation CA may request that the caller provide some evidence that the key being certified is a

TPM-resident key.

Evidence of TPM residency may be provided using a previously generated certificate for another key on

the same TPM. An EK or Platform Certificate may provide this evidence.

NOTE 1 There is no requirement that certificates come only from an attestation CA. The method described
above is an example of a scheme that may be used when privacy is required.

If a certified key may sign, it may be used to certify that some other object is resident on the same TPM.

This allows the new AK to be linked to a certified key. A CA may use the certification from the TPM to

produce a traditional certificate for the new key.

If the certified key is a decryption key and may not sign, then an alternative method is used to allow the

new key or data object to be reliably certified. For this alternative certification, the identity of the Object to

be certified and a certificate for the decryption key (such as, an EK) are provided to the CA. From the

certificate, the CA determines the public key for the decryption key. The CA then produces a challenge for

the Object to be certified and encrypts the challenge with the certified key. The encrypted challenge is

given to the TPM containing both the certified decryption key and the key to be certified.

The challenge is protected using methods that are dependent on the type of the certified decryption key.

The general method is described in clause 24. Additional methods appropriate to RSA keys are described

in B.10.4 and additional methods appropriate to ECC key are in C.6.4. The protection process produces

an encrypted blob, an HMAC over the blob, and a secret value that can only be recovered by the certified

decryption key.

TPM2_ActivateCredential() is used to access the challenge. The TPM recovers the secret value and uses

it to generate the keys necessary to decrypt and validate the HMAC and encrypted blob. If the challenge

is recovered successfully, and the key being certified by the credential is loaded on the TPM, then the

challenge is returned to the caller, and then provided to the CA. After the CA validates the challenge, it

can issue the certificate for the key

NOTE 3 The protection process used for the challenge is almost identical to the process used for key import.
In order to make sure that there is no misuse of the encrypted structures, an application -specific
value is used in the key recovery process. In the case of a challenge, the label “IDENTITY” is used
in the KDF that generates the keys (symmetric and HMAC) from the seed value.

TPM2_ActivateCredential() can operate on any Object. The choice of attributes for an Object to be

certified is at the discretion of the CA. Because a unique identifier for the Object is included in the integrity

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

hash, the TPM enforces the challenge's accessibility only if the Object matches the criteria set by the CA

as expressed in the object identifier.

 Protected Location

When the sensitive portion of an object is not held in a Shielded Location on the TPM, it is encrypted.

When encrypted, but not on the TPM, it is not protected from deletion, but it is protected from disclosure

of its sensitive portions. Wherever it is stored, it is in a Protected Location.

Objects in long-term protected storage need to be loaded into the TPM for use. The application that

created the objects manages their movement from long-term storage to the TPM.

Since a TPM has limited memory, it may be unable to hold all objects required by all applications

simultaneously. The TPM supports swapping of object contexts by a TPM Resource Manager (TRM) so

that the TPM can service these multiple applications. The object contexts are encrypted before being

returned to the TRM by the TPM. If the object is needed later, the TRM can reload the context into the

TPM providing a cache-like behavior.

Encryption of Protected Locations uses multiple seeds and keys that never leave the TPM. One of these

is the Context Key. It is a symmetric key used to encrypt data when it is temporarily swapped out of the

TPM so that a different working set of objects may be loaded. Other sensitive values that never leave the

TPM are the Primary Seeds. These seeds are the root of the storage hierarchies that protect objects that

are retained by applications. A Primary Seed is a random number used to generate protection keys for

other objects; these objects may be Storage Keys that contain protection keys that are then used to

protect still more objects.

Primary Seeds may be changed, and when they are changed, the objects they protected will no longer be

usable. For example, the Storage Primary Seed (SPS) creates the Storage hierarchy for owner-related

data, and that seed changes when the owner changes.

 Integrity Measurement and Reporting

The Core Root of Trust for Measurement (CRTM) is the starting point of measurement. This process

makes the initial measurements of the platform that are Extended into PCR in the TPM. For

measurements to be meaningful, the executing code needs to control the environment in which it is

running, so that the values recorded in the TPM are representative of the initial trust state of the platform.

A power-on reset creates an environment in which the platform is in a known initial state, with the main

CPU running code from some well-defined initial location. Since that code has exclusive control of the

platform at that time, it may make measurements of the platform from firmware. From these initial

measurements, a chain of trust may be established. Because this chain of trust is created once when the

platform is reset, no change of the initial trust state is possible, so it is called a static RTM (S-RTM).

An alternative method of initializing the platform is available on some processor architectures. It lets the

CPU act as the CRTM and apply protections to portions of memory it measures. This process lets a new

chain of trust start without rebooting the platform. Because the RTM may be re-established dynamically,

this method is called dynamic RTM (D-RTM). Both S-RTM and D-RTM may take a system in an unknown

state and return it to a known state. The D-RTM has the advantage of not requiring the system to be

rebooted.

An integrity measurement is a value that represents a possible change in the trust state of the platform.

The measured object may be anything of meaning but is often

• a data value,

Trusted Platform Module Library Part 1: Architecture

Page 30 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• the hash of code or data, or

• an indication of the signer of some code or data.

The RTM (usually, code running on the CPU) makes these measurements and records them in RTS

using Extend. The Extend process (see 17.2) allows the TPM to accumulate an indefinite number of

measurements in a relatively small amount of memory.

The digest of an arbitrary set of integrity measurements is statistically unique, and an evaluator might

know the values representing particular sequences of measurements. To handle cases where PCR

values are not well known, the RTM keeps a log of individual measurements. The PCR values may be

used to determine the accuracy of the log, and log entries may be evaluated individually to determine if

the change in system state indicated by the event is acceptable.

Implementers play a role in determining how event data is partitioned. TCG’s platform-specific

specifications provide additional insight into specifying platform configuration and representation as well

as anticipated consumers of measurement data.

Integrity reporting is the process of attesting to integrity measurements recorded in a PCR. The

philosophy behind integrity measurement, logging, and reporting is that a platform may enter any state

possible — including undesirable or insecure states — but is required to accurately report those states.

An independent process may evaluate the integrity states and determine an appropriate response.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 TPM Protections

10.1 Introduction

This part of the specification describes the protections provided by the Trusted Platform Module. This

clause describes the properties of selected capabilities and selected data locations for a TPM that has

been evaluated according to a Protection Profile and a TPM that has not been modified by physical

means.

TPM protections are based on the concepts of Protected Capabilities and Protected Objects. A Protected

Capability is an operation that must be performed correctly for a TPM to be trusted. A Protected Object is

data (including keys) that must be protected for a TPM operation to be trusted. Protected Objects in the

TPM reside in Shielded Locations; the TPM may manipulate the contents of Shielded Locations only by

using Protected Capabilities. Protected Objects outside Shielded Locations have their integrity and

confidentiality protected cryptographically.

Since a Protected Object may reside outside of Shielded Location protections, the definition of “access” to

a Protected Object denotes disclosure of its contents, not modification. Such objects are not protected

against loss or tampering. However, before loading a Shielded Location with an outside object, the TPM

will use a secure hash function to validate that the object was properly protected and not altered. If the

integrity check fails, the TPM returns an error and does not load the object.

The only operations on Shielded Locations of a TPM are the Protected Capabilities defined in this

specification and the vendor-specific operations that meet the requirements of 10.4.

10.2 Protection of Protected Capabilities

A Protected Capability may be modified only by other Protected Capabilities in the same TPM. Thus, the

process of updating TPM firmware is required to be a Protected Capability.

10.3 Protection of Shielded Locations

As noted, access to any data on a TPM requires use of a Protected Capability. Therefore, all information

on a TPM is in a Shielded Location. The contents of a Shielded Location are not disclosed unless the

disclosure is intended by the definition of the Protected Capability. A TPM is not allowed to export data

from a Shielded Location other than by using a Protected Capability.

NOTE Data in an I/O buffer that can be modified by the host is not “on” the TPM, even though the I/O
buffer may be shielded from access while the TPM is processing a command or generating a
response.

10.4 Exceptions and Clarifications

Vendor-specific operations may access and modify Shielded Locations on a TPM under the following

circumstances.

• A vendor-specific operation may use the standard TPM authorization mechanism.

• A vendor-specific capability may read any TPM-resident structure that is not required to be in a
Shielded Location at all times if the usage of that structure is authorized per the structure’s
authorization mechanism.

EXAMPLE A vendor-specific command may use the public portion of a key. If the key is a user key, no
authorization would be required.

Trusted Platform Module Library Part 1: Architecture

Page 32 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE Among other things, the exception above enables access to a Shielded Location, so the structure’s
access authorization may be checked.

• Vendor-specific operations may use a sequence of Protected Capabilities.

• Vendor-specific operations may use the standard TPM command interface or use a vendor-
defined interface.

These clarifications serve to approve specific legitimate interpretations of the requirements.

• A vendor-specific operation that takes advantage of exceptions and clarifications to the
“protection” requirements should be defined as part of the security target of the TPM. Such a
vendor-specific command or capability should be evaluated to determine whether it meets
Platform-specific TPM and System Security Targets.

• If a TPM stores vendor-specific cipher-text that is protected against subversion to the same or
greater extent as internal TPM-resources stored outside the TPM with TCG-defined methods,
then that cipher-text does not require protection from physical attack. If the TPM stores only
vendor-specific cipher-text that does not require protection from physical attack, that location may
be excluded from analysis when determining whether the TPM complies with the “physical
protection” requirements specified by TCG.

• If a TPM uses external memory for non-volatile storage of TPM state (including seeds and proof
values), movement of the TPM state to and from the NV memory constitutes a vendor-defined
operation that is allowed by this specification. The protection profile of that TPM should include a
description of the protections of that data to ensure confidentiality and integrity of the data and to
mitigate against rollback attacks.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 TPM Architecture

11.1 Introduction

This clause describes the overall operation of the TPM and the functional units required for its operation.

The major elements of the architecture are shown in Figure 2.

Figure 2 — Architectural Overview

11.2 TPM Command Processing Overview

Figure 3 is a high-level flow diagram for a TPM command. The figure shows only the normal flow for a

command that executes successfully. The tabs on a box indicate the name of the module performing the

operation. Additional details for each of the modules shown in Figure 3 are in this clause and in clauses

dedicated to those modules.

The partitioning of functions in Figure 3 is illustrative and not normative.

11.4.4 Asymmetric Engine(s)

11.4.2 Hash Engine(s)

11.4.6 Symmetric Engine(s)

12 & 13 Management

11.5 Authorization

11.4.8 Key Generation

11.4.10 RNG

11.8 Power Detection

Execution Engine

(Parts 3 & 4)

11.6 Volatile Memory

11.7 Non-Volatile Memory*

• Platform Seed

• Endorsement Seed

• Storage Seed

• Monotonic counters

• Etc.

• PCR Banks

• Keys in use

• Sessions

• Etc.

Data communication path

I/O

* NV memory may be provided by a system chip with the data going

to/from NV in a protected form. What is kept in the “TPM” in that

case is a cached copy of the NV contents.

Trusted Platform Module Library Part 1: Architecture

Page 34 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The flow assumes that the command has been placed in an input buffer that is accessible to the Execute

Command module (this name is used because of its similarity to the ExecCommand() function in the

reference code that performs the functions illustrated here).

NOTE 1 The mechanism for getting the command into the TPM buffer and providing the command -available
indication is specific to each physical interface and is defined in interface-specific documents.

The command structure includes a standard header (see 18) that Execute Command validates. It then

determines if the command requires access to any Shielded Location that is identified by a handle. If so, it

calls the Handle module to verify that the handle references the right type of resource for the command

and that the resource is currently loaded on the TPM.

When control returns to Execute Command, it checks the tag parameter in the command header to

determine if authorization values are provided. If so, Authorizations is called to validate that each of the

authorizations is correct. The authorizations are associated with a handle value, so the authorization is

specific to a particular entity.

After validating the authorizations, Execute Command calls Command Dispatch to unmarshal the

remaining command parameters and validate that the required parameters of the required type are

present. All parameters are validated to meet the requirements of its data type as defined in TPM 2.0 Part

2 even if the parameter will subsequently be discarded because of optional behavior of a command.

After unmarshaling the parameters, Command Dispatch calls the command-specific library function to

execute the specific command. Additional parameter checking may be required in the command-specific

actions.

The command processing is structured so that changes to the TPM state do not occur until the TPM can

validate that the command parameters are correct and that the resources necessary to complete the

command are available. Only then will it make irreversible changes to the TPM state. This structuring

ensures that when the TPM returns an error, the TPM will be in the same state as before command

actions modified the data in any Shielded Location.

NOTE 2 Requiring that the TPM retain its state minimizes the interference between applications and helps
prevent system instability due to careless use of the TPM by applications.

There are several classes of operations that return an error but may change TPM state.

• An authorization failure may update the dictionary attack mechanism.

• The self test mechanism has state (for example, which algorithms have been tested) that is
considered to be different from the command execution state. Changes to this state may occur
regardless of the command return code. For example, an implicit self test invoked to test an
algorithm required by the command may mark the algorithm as tested.

• If a self test fails, the TPM will go into Failure Mode.

When the command actions are complete, the Command Dispatch marshals response parameters into

the output buffer. If the command had authorizations, Acknowledge is called to construct acknowledge

session values for the response.

If the command encounters an error, the response packet will contain a code that is characteristic of the

error and, when possible, an indication of whether the error was associated with a handle, an

authorization session, or a command parameter. No additional qualifying data is present. In most cases,

the error code and parameter location value suffice to isolate the problem.

NOTE 3 In the case of a self-test failure, the TPM response code is not sufficient to diagnose the problem.
Therefore, a reporting scheme is provided so that the failure cause can be read. However, error
report contents vary by vendor and are not standardized. There is thus no need to standardize self -
test response codes because no standard remediation is possible for most self -test failures.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

After constructing the response, including acknowledge sessions, the TPM indicates to the interface that

the response is ready to be returned.

The TPM command/response structure is described in Clause 17.10 (see clause 19 for a description of

the methods for creating the values that authorize use of a TPM Shielded Location and clause 39 for

response code formatting information).

During the processing of these commands, the TPM uses other modules that the following parts of this

clause will describe.

Trusted Platform Module Library Part 1: Architecture

Page 36 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Execu
te C

o
m

m
an

d

Validate Command Header
• Correct type (tag)?
• Correct size (commandSize)?
• Command implemented

(commandCode)?

Does command use
handles to reference

TPM objects?

Are authorizations
required to use referenced

objects?

Execute Command module does operations
that are common across commands but which
may have some variation by command

Were authorizations
present in the

Command?

Yes

Yes

No

Command Received

Response Out

Yes

Create Response Header

No

No

Authorization

For each authorization:
• Is authorization the right type for command?
• Is authorization valid for object ?
Decrypt first parameter if it is encrypted

Command Dispatch

In command-specific manner:
• Unmarshal (unpack) command parameters
• Call function to perform command-specific

actions
• Marshal (pack) response parameters

Acknowledge

• If requested, encrypt first parameter
• For each authorization in the command,

generate an acknowledgement
• Update any audit values

Handle

For each handle:
• Is handle valid for the command?
• Is referenced object present in the TPM?

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figure 3 — Command Execution Flow

11.3 I/O Buffer

The I/O buffer is the communications area between a TPM and the host system. The system places

command data in the I/O buffer and retrieves response data from the buffer.

A description of the physical processes used to move I/O buffer data to/from the system is beyond the

scope of this specification. Platform-specific working groups within the TCG produce the specifications for

the physical interfaces to the TPM on their platforms. Those specifications detail the interactions between

system software and the TPM I/O buffer.

There is no requirement that the I/O buffer be physically isolated from other parts of the system. It can be

a shared memory. However, when processing of a command begins, the implementation must ensure

that the TPM is using the correct values. For example, if the TPM performs a hash of the command data

as part of the authorization processing, the TPM needs to protect the validated command data from

modification. That is, before the data is validated, it is required to be protected from modification. Before

the data is modified, it is required to be in a Shielded Location.

11.4 Cryptography Subsystem

 Introduction

The Cryptography subsystem implements the TPM’s cryptographic functions. It may be called by the

Command Parsing module, the Authorization Subsystem, or the Command Execution module. The TPM

employs conventional cryptographic operations in conventional ways. These operations include

• hash functions,

• asymmetric encryption and decryption,

• asymmetric signing and signature verification,

• symmetric encryption and decryption,

• symmetric signing (HMAC and SMAC) and signature verification, and

• key generation.

The remainder of this clause describes some algorithms usually found in a TPM to show how they are

handled. These descriptions illustrate, but do not limit, the choice of available algorithms.

 Symmetric Block Cipher MAC Algorithms

The TPM may implement Symmetric Block Cipher Message Authentication Code (SMAC).

An SMAC is a form of symmetric signature over some data using a symmetric block cipher algorithm. It

provides assurance that protected data was not modified and that it came from an entity with access to a

key value. To have usefulness in protecting data, the key value needs to be a secret or a shared secret.

 Hash Functions

Hash functions may be used directly by external software or as the side effect of many TPM operations.

The TPM uses hashing to provide integrity checking and authentication as well as one-way functions, as

needed (such as, KDF).

Trusted Platform Module Library Part 1: Architecture

Page 38 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

A TPM should implement an approved hash algorithm that has approximately the same security strength

as its strongest asymmetric algorithm.

EXAMPLE An ECC with a 384-bit key has a security strength of 192 bits. SHA384, with 192 bits of security,
would meet the preceding requirement above.

NOTE The TCG may create sets of algorithms that do not have the same security strength for the hash and
asymmetric algorithms.

A hash function will be denoted by Halgorithm() with the algorithm subscript indicating the hash algorithm or

the parameter that contains the hash algorithm identifier. In some cases, the algorithm subscript is

missing, in which case the algorithm will be determined by context.

The Command Dispatch module will use the hash function when validating certain types of

authorizations. Hash functions are also used in support of other operations in the TPM such as PCR

Extend.

 HMAC Algorithm

The TPM implements the Hash Message Authentication Code (HMAC) algorithm described in ISO/IEC

9797-2.

An HMAC is a form of symmetric signature over some data. It provides assurance that protected data was

not modified and that it came from an entity with access to a key value. To have usefulness in protecting

data, the key value needs to be a secret or a shared secret.

ISO/IEC 9797-2 defines the HMAC operation as:

 HMAC(Κ, text) = H((Κ̅ ⊕ OPAD) || H((Κ̅ ⊕ IPAD) || text)) (1)

(See ISO/IEC 9797-2 for a description of parameters.)

Performing the HMAC computation requires selection of a hash algorithm. This specification modifies the

notation from ISO/IEC 9797-2 to be:

 HMAChashAlg (K, text) (2)

If the algorithm subscript is not present, the hash algorithm is implied by the context.

The Command Dispatch module may use the HMAC function to validate an authorization. The HMAC

function may be used by the Command Execution module in support of its operations.

 Asymmetric Operations

A TPM uses asymmetric algorithms for attestation, identification, and secret sharing. A TPM may support

any asymmetric algorithm to which the TCG has assigned an identifier. An asymmetric algorithm identifier

will indicate a family of algorithms and methods that are used with that algorithm.

The methods for using an asymmetric algorithm are found in algorithm-specific annexes to this TPM 2.0

Part 1. Currently, the only supported asymmetric algorithms are RSA (described in Annex B) and ECC

using prime curves (described in Annex B).

A TPM is required to implement at least one asymmetric algorithm.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Signature Operations

11.4.6.1 Signing

The TPM may sign using either an asymmetric or a symmetric algorithm. The method of signing depends

on the type of the key. For an asymmetric algorithm, the methods of signing are dependent on the

algorithm (RSA or ECC). For symmetric signatures, HMAC and SMAC signing schemes are defined. If a

key may be used for signing, then it will have the sign attribute.

NOTE 1 The signing schemes for RSA are described in B.6 (RSASSA_PKCS1v1_5) and B.7 (RSASSA_PSS).
The signing schemes for ECC are described in C.4 (EC Signing).

NOTE 2 Symmetric signing (HMAC and SMAC) may only be performed with unrestricted signing keys.

A key with a sign attribute may also have a restriction on the contents of the message that can be signed

with the key. When a key has this restriction, the TPM will not use the key to sign message digests that

the TPM did not compute.

Any attestation message produced by a TPM will have a header (TPM_GENERATED_VALUE) to identify

the data as being produced within a TPM. If a restricted key is used to sign this data, then a relying party

can have assurance that the message data came from a TPM.

To allow a restricted key to sign an externally generated message, the TPM is used to produce the

message digest. When the TPM computes the digest, it will validate that the message does not begin with

TPM_GENERATED_VALUE. If it does, then the TPM will not produce the special certification (a ticket)

that indicates that the digest was produced by the TPM and is safe to sign with a restricted key.

A key designated as a signing key may be used in any command that uses a signing key. For some

commands, the signing scheme may be specified in the command. Not all schemes are valid for all keys,

and the TPM generates an error if the scheme is not allowed with the indicated key type.

EXAMPLE 1 The RSASSA-PKCS1-v1_5 signing scheme is not valid with an ECC key.

EXAMPLE 2 A key that has the "restricted" attribute may only be used with one signing scheme. If it is limited to
be used with RSASSA-PSS, it may not be used with RSASSA-PKCS1-v1_5.

A restricted signing key is required to have a signing scheme specified in the key definition and that is the

only signing scheme that is allowed to be used with the key. For an unrestricted key, the key definition

may contain a signing scheme selection, or the signing scheme may be determined when the key is used.

To defer the signing scheme selection, the key would be created with TPM_ALG_NULL as the signing

scheme selection.

11.4.6.2 Signature Verification

TPM2_VerifySignature() validates a signature over a digest. The command takes a handle of a public

key, a digest, and a block that contains the signature over the digest.

The TPM validates that the signature scheme is compatible with the selected key. In general, the TPM will

be able to validate any signature over a digest that it could have produced.

If the signature is valid, the TPM will produce a ticket.

11.4.6.3 Tickets

A ticket is an HMAC signature that uses a proof value as the HMAC key.

Trusted Platform Module Library Part 1: Architecture

Page 40 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE Hierarchy proof values are described in detail in14.4.

The TPM uses tickets for two purposes:

• re-signing data. After checking an asymmetric signature, the TPM re-signs the digest using a TPM
symmetric key. The TPM can later re-verify a signature without having to load the asymmetric
key; and

• expanding state memory. When hashing an external message, the TPM has some state that
indicates the message did not start with TPM_GENERATED_VALUE. This state information
cannot be retained indefinitely in the TPM. A ticket allows this state to be stored off of the TPM in
a way that is easy for the TPM to validate. When a digest is later presented to the TPM to be
signed, the ticket is provided allowing the TPM to validate that the digest to be signed is safe to
sign.

The proof value used for a ticket will minimally have a number of bits equal to the size of the digest

produced by the hash algorithm.

EXAMPLE A proof value of 256 bits is required for a SHA256 ticket.

There are five different ticket types:

1) TPMT_TK_CREATION – this ticket type is produced when an object is created (TPM2_Create() or

TPM2_CreatePrimary()). The ticket is used in TPM2_CertifyCreation() so that the TPM can certify

that it created a specific object and the environmental parameters (PCR) that were extant when the

object was created. This avoids having the digest of the creation data be a permanent part of an

object’s data structure.

2) TPMT_TK_VERIFIED – this ticket type is produced by TPM2_VerifySignature() and used by

TPM2_PolicyAuthorize(). If a signature is signed by an asymmetric key, the signature verification

might be time consuming. If the same authorization is going to be used many times (such as an

authorization for TPM2_PolicyAuthorize()), there is a performance advantage to having the

asymmetric authorization converted so that it uses symmetric cryptography which is usually faster.

This ticket is the symmetric equivalent authorization.

3) TPMT_TK_AUTH – this ticket is produced by TPM2_PolicySigned() or TPM2_PolicySecret() and

used in TPM2_PolicyTicket(). A policy authorization can be tied to a specific policy session or allowed

to be used in any policy. When it can be used in any policy, it has a time at which it expires (which

can be some arbitrary time in the future). The long-lived authorization may be given in

TPM2_PolicySigned()/TPM2_PolicySecret() and a ticket is produced that is used to verify the

authorization parameters (what was authorized) and the time in the future when the authorization

expires. This ticket is then processed by TPM2_PolicyTicket() and, until the ticket expires, will have

the same effect on the policyDigest computation as the original authorization.

NOTE If produced by TPM2_PolicySigned(), the ticket will use the TPM_ST_AUTH_SIGNED structure tag
and if produced by TPM2_PolicySecret(), the ticket will use the TPM_ST_AUTH_SECRET structure
tag. TPM2_PolicyTicket() will use this tag to indicate which command code to use
(TPM_CC_PolicySigned/TPM_CC_PolicySecret) when extending policyDigest.

4) TPMT_TK_HASHCHECK – This ticket is used to indicate that a digest of external data is safe to sign

using a restricted signing key. A restricted signing key may only sign a digest that was produced by

the TPM. If the digest was produced from externally provided data, there needs to be an indication

that the data did not start with the same first octets as are used for data that is generated within the

TPM. This prevents “forgeries” of attestation data. This ticket is used to provide the evidence that the

data used in the digest was checked by the TPM and is safe to sign. Assuming that the external data

is "safe", this type of ticket is produced by TPM2_Hash() or TPM2_SequenceComplete() and used by

TPM2_Sign().

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5) NULL Ticket – A NULL Ticket is produced when a response has a ticket, but no ticket is produced. An

example is TPM2_PolicySecret() with an expiration time of zero. It does not produce a ticket because,

since the expiration time was zero, the authorization expires immediately. In this case, the TPM will

return a NULL Ticket. A NULL Ticket may also be used as an input parameter when the command

requires a ticket, but no ticket data is available.

 Symmetric Encryption

The TPM uses symmetric encryption to encrypt some command parameters (typically, authentication

information) and to encrypt Protected Objects stored outside it. Cipher Feedback mode (CFB) is the only

block cipher mode required by this specification.

Any symmetric block cipher supported by a TPM may be used for parameter encryption. However weak

keys are not permitted to be used. Additionally, a TPM should support XOR obfuscation, which is a hash-

based stream cipher. XOR obfuscation may be used only for confidential parameter passing.

NOTE XOR allows an application to have confidential and integrity -protected interactions with only one
algorithm in common with the TPM (a hash).

When paired with an asymmetric key — as in an ECC decrypting key — a symmetric key is required to

have as many bits of security strength as the asymmetric key with which it is paired.

EXAMPLE 1 SP800-57 classifies 2048-bit RSA as providing 112 bits of security. AES with 128- or 256-bit keys
provides adequate symmetric security for pairing with a 2048-bit RSA key.

EXAMPLE 2 A prime-modulus ECC key has a security strength that is half the size of the prime modulus. AES
with 128- or 256-bit keys is suitable for pairing with a 256-bit ECC key, but AES with 128-bit keys is
not recommended for pairing with a 384-bit ECC key.

When a symmetric key is used for data encryption, the encrypted data has an HMAC. This HMAC is

checked before the data is decrypted. Verification that the decrypted data is properly associated with the

symmetric key is intended to make it more difficult to perform power analysis. To defeat the protections, it

would be necessary to defeat two different families of protection rather than one as would exist if the

integrity protection were applied to the clear text rather than the cipher text.

11.4.7.1 Block Cipher Modes

The block cipher modes referenced in this specification are defined in ISO/IEC 10116:2006. That

specification allows parameterization of most of the modes. In a TPM implementation, the parameters are

fixed, as defined in Table 1.

Table 1 — Block Cipher Parameters

Mode Common Name Parameter Comments

CTR Counter j = n size of the plaintext variable

OFB Output Feedback j = n size of the plaintext variable

CBC Cipher-block Chaining m = 1 interleave factor

CFB Cipher-feedback

r = n size of feedback buffer

k = n size of feedback variable

j = n size of plaintext variable

ECB Electronic Code Book none

NOTE n is the input block size of the cipher.

Trusted Platform Module Library Part 1: Architecture

Page 42 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.4.7.2 Cipher Feedback (CFB) Mode

CFB is used when a symmetric block cipher is chosen as the encryption algorithm associated with a

session. When used for parameter encryption, the key and Initialization Vector (IV) are derived from a

per-session key so that reuse of the same key and IV is statistically unlikely.

NOTE ISO/IEC 10116 use the term Start Variable instead of Initialization Vector (IV).

CFB is also used for symmetric encryption of the sensitive area of an object when the object is not stored

in a Shielded Location. When used in this way, the key and IV are derived from a secret. In some cases,

the IV is set to zero.

11.4.7.3 XOR Obfuscation

XOR obfuscation resembles Counter mode (CTR) block encryption, but it uses a KDF as the pseudo-

random function instead of a symmetric block cipher.

XOR obfuscation reduces to one (a hash) the number of algorithms that a caller needs in common with

the TPM in order to use the TPM with some level of confidentiality and authentication.

This specification’s XOR scheme differs from that used in TPM 1.2: it uses a different formulation for input

into the hash function.

When this specification calls for use of XOR obfuscation, it uses a function reference. The function

prototype is:

 XOR(data, hashAlg, key, contextU, contextV) (3)

where

data a variable-sized buffer containing the data to be obfuscated

hashAlg the hash algorithm to be used in the KDF

key a variable-sized value containing a secret key

contextU a variable-sized value used to qualify one of the parties to the operation

(often a nonce value)

contextV a variable-sized value used to qualify one of the parties to the operation

(often a nonce value)

The XOR() function uses the hash, key, contextU, and contextV parameters in a call to KDFa() to

produce a mask value:

 mask ≔ KDFa (hashAlg, key, “XOR”, contextU, contextV, data.size • 8) (4)

NOTE The “XOR” value is defined in 4.8.

The octets of mask are then XOR’d with the octets of data.buffer.

 Extend

The Extend operation is used to make incremental updates to a digest value. It is useful for
updating PCR, auditing, and constructing policy. Extend uses a hash function to combine new
data with an existing digest. Its notation is:

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 digestnew ≔ HhashAlg (digestold || datanew) (5)

where

digestnew the value of the digest (such as, a PCR) after the Extend operation

HhashAlg the hash function using a context-specific algorithm (such as, the hash

algorithm associated with a specific bank of PCR)

digestold the value of the digest before the Extend operation

datanew a variable number of octets of data that are to be hashed with the initial

value of digestold to produce Extend results

The Extend operation may also apply to an NV Index that has the TPMA_NV_EXTEND attribute.

 Key Generation

Key generation produces two different types of keys. The first, an ordinary key, is produced using the

random number generator (RNG) to seed the computation. The result of the computation is a secret key

value kept in a Shielded Location.

The second type, a Primary Key, is derived from a seed value, not the RNG directly. The RNG usually

generates the seed that is persistently stored on the TPM. Generation of a Primary Key from a seed is

based on use of an approved key derivation function (KDF). The KDF from SP800-108 is widely used in

this specification.

This specification places no upper limit on the time allowed to generate a key. Platform-specific

specifications may limit the time for generating various key types.

Depending on the application, the TPM may generate a key by

• using bits from the RNG, or

• deriving the key from another secret value.

There are many ways to generate keys; these methods are described in detail in each clause where

generation of a key is required.

 Key Derivation Function

11.4.10.1 Introduction

The TPM uses a hash-based function to generate keys for multiple purposes. This specification uses two

different schemes: one for ECDH and one for all other uses of a KDF.

The ECDH KDF is from SP800-56A. The Counter mode KDF, from SP800-108, uses HMAC as the

pseudo-random function (PRF). It is referred to in the specification as KDFa().

11.4.10.2 KDFa()

With the exception of ECDH, KDFa() is used in all cases where a KDF is required. KDFa() uses Counter

mode from SP800-108, with HMAC as the PRF.

As defined in SP800-108, the inner loop for building the key stream is:

Trusted Platform Module Library Part 1: Architecture

Page 44 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 K(i) ≔ HMAC (KI , [i]2 || Label || 0016 || Context || [L]2) (6)

where

K(i) the ith iteration of the KDF inner loop

HMAC() the HMAC algorithm using an approved hash algorithm

KI the secret key material

[i]2 a 32-bit counter that starts at 1 and increments on each iteration

Label a octet stream indicating the use of the key produced by this KDF

 0016 Added only if Label is not present or if the last octet of Label is not zero.

Context a binary string containing information relating to the derived keying

material

[L]2 a 32-bit value indicating the number of bits to be returned from the KDF

NOTE 1 Equation (6) is not KDFa(). KDFa() is the function call defined below.

As shown in equation (6), there is an octet of zero that separates Label from Context. In SP800-108,

Label is a sequence of octets that may or may not have a final octet that is zero. If Label is not present, a

zero octet is added. If Label is present and the last octet is not zero, a zero octet is added.

After each iteration, the HMAC digest data is concatenated to the previously produced value until the size

of the concatenated string is at least as large as the requested value. The string is then truncated to the

desired size (which causes the loss of some of the most recently added bits), and the value is returned.

When this specification calls for use of this KDF, it uses a function reference to KDFa(). The function

prototype is:

 KDFa (hashAlg, key, label, contextU, contextV, bits) (7)

where

hashAlg a TPM_ALG_ID to be used in the HMAC in the KDF

key a variable-sized value used as KI

label a variable-sized octet stream used as Label

contextU a variable-sized value concatenated with contextV to create the Context

parameter used in equation (6) above

contextV a variable-sized value concatenated to contextU to create the Context

parameter used in equation (6) above

bits a 32-bit value used as [L]2; and is the number of bits returned by the

function

The values of contextU and contextV are passed as sized buffers and only the buffer data is used to

construct the Context parameter used in equation (6) above. The size fields of contextU and contextV are

not included in the computation. That is:

 Context ≔ contextU.buffer || contextV.buffer (8)

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The 32-bit value of bits is in TPM canonical form, with the least significant bits of the value in the highest

numbered octet.

The implied return from this function is a sequence of octets with a length equal to (bits + 7) / 8. If bits is

not an even multiple of 8, then the returned value occupies the least significant bits of the returned octet

array, and the additional, high-order bits in the 0th octet are CLEAR. The unused bits of the most

significant octet (MSO) are masked off and not shifted.

EXAMPLE If KDFa() were used to produce a 521-bit ECC private key, the returned value would occupy 66

octets, with the upper 7 bits of the octet at offset zero set to 0.

11.4.10.3 KDFe for ECDH

Producing a symmetric encryption key for an ECC-protected object uses “One-Pass Diffie-Hellman, C(1,

1, ECC CDH)” from SP800-56A, 6.2.2.2. The KDF used is the “Concatenation Key Derivation Function

(Approved Alternative 1)”. The inner loop of that KDF uses:

 digesti ≔ H(counter || Z || OtherInfo) (9)

where

digesti the digest generated on the ith iteration of the loop (i starts at 1)

H() an approved hash function

counter a 32-bit counter that is initialized to 1 and incremented on each iteration

Z the X coordinate of the product of a public ECC key and a different

private ECC key

OtherInfo a collection of qualifying data for the KDF defined below

The 32-bit counter value is included in TPM canonical form, with the least-significant bit of the counter in

the highest numbered octet.

After each iteration, digesti is concatenated to the previously produced digests (MSO of digesti follows the

LSO of digesti-1). The number of iterations is determined by the number of bits to be produced and the

size of the digest produced by the hash function. In the returned octet string, the MSO of the returned

value is the MSO of digest1.

In SP800-56A, OtherInfo is specified as:

 OtherInfo ≔ AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo} {|| SuppPrivInfo} (10)

where

AlgorithmID a bit string that indicates how the derived keying material will be parsed

and for which algorithm(s)

PartyUInfo public information contributed by party U (the initiator)

PartyVInfo public information contributed by party V (the responder)

SuppPubInfo public information known to both U and V (optional)

SuppPrivInfo private (secret) information known to both U and V (optional)

This specification requires that OtherInfo be constructed as:

Trusted Platform Module Library Part 1: Architecture

Page 46 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 OtherInfo ≔ Use || PartyUInfo.buffer || PartyVInfo.buffer (11)

where

Use a null-terminated string indicating the use of the key (e.g., “DUPLICATE”,

“IDENTITY”, “SECRET”, etc.) (see clause 4 for the definition of these
values). This field satisfies the requirements of SP800-56A since the
parsing of keying material is determined by the use.

PartyUInfo.buffer the x-coordinate of the public point of an ephemeral key

PartyVInfo.buffer the x-coordinate of the public point of a static TPM key

The x-coordinates of the public points are sized buffers (that is, integers indicating the size in octets of the

buffer that follows). The buffer data is used in the KDF, but the size field is not.

When this specification calls for use of this KDF, it uses a function reference to KDFe(). The function

prototype is:

 KDFe(hashAlg, Z, Use, PartyUInfo, PartyVInfo, bits) (12)

where

hashAlg the hash algorithm to be used as H() in equation (9) above

Z the product of a public point and a private x-coordinate

Use a null-terminated string indicating the use of the key (e.g., “DUPLICATE”,

“IDENTITY”, “SECRET”, etc.) (see clause 4 for the definition of these
values).

PartyUInfo the x-coordinate of the public point of an ephemeral key

PartyVInfo the x-coordinate of the public point of a static TPM key

bits a 32-bit value indicating the number of bits to be returned

The implied return from this function is an octet string containing bits/8 octets. If bits is not an even

multiple of 8, the return value is the least-significant bits of the return value, and the additional high-order

bits in the 0th octet are CLEAR. The unused bits of the MSO are masked off and not shifted.

NOTE The function prototype in (12) is not a C-language prototype but, rather, a prototype to illustrate the
parameters of the KDF for specific uses. The C-language prototype will include an extra parameter
that will be the buffer to receive the key material generated by the KDF.

11.4.10.4 Rejection of weak keys

Some algorithms have known weak keys. If such a key is generated, it must be discarded, and a new key

generated by starting over with another iteration of the KDF. In the case of DES, there are 64 known

weak or semi-weak keys. None of them are allowed. In the case of AES, at least one bit in the upper half

of the key must be set. Again, if this is not true, the key must be discarded, and a new key generated by

starting over with another iteration of the KDF.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Random Number Generator (RNG) Module

11.4.11.1 Source of Randomness

The RNG is the source of randomness in the TPM. The TPM uses random values for nonces, in key

generation, and for randomness in signatures.

The RNG is a Protected Capability with no access control. It nominally consists of

• an entropy source and collector,

• a state register, and

• a mixing function (typically, an approved hash function).

The entropy collector collects entropy from entropy sources and removes bias. The collected entropy is

then used to update the state register providing input to the mixing function to produce the random

numbers.

The mixing function may be implemented with a pseudo-random number generator (a PRNG). A PRNG

may produce numbers that are apparently random from a non-random input (such as, a counter).

Combining an approved PRNG with an input that has considerably more entropy than a counter yields an

RNG with properties no worse than the underlying PRNG and possibly much better.

The RNG should meet the certification requirements of the intended market.

The TPM should provide sufficient randomness for each use by an internal function. When accessed by

an external call, it should be able to provide 32 octets of randomness. Larger requests may fail if

insufficient randomness is available.

Each RNG access produces a new value regardless of the data’s use. There is no distinction between

accesses for internal versus external purposes.

11.4.11.2 Entropy Source and Collector

A TPM should have at least one internal source of entropy, and possibly more. These sources could

include noise, clock variations, air movement, and other types of events.

As noted, the entropy collector is the process that collects the entropy from various sources and removes

bias.

EXAMPLE If the entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, t hen the collector
design corrects the bias before sending the information to the state register.

The entropy source and collector should provide entropy to the state register in a manner that is not

visible to an outside process or other TPM capability.

The entropy collector should regularly update the state register with additional, unbiased entropy.

Trusted Platform Module Library Part 1: Architecture

Page 48 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Figure 4 — Random Number Generation

Any Protected Capability that requires an unpredictable number obtains it from a Random Number

Generator (RNG) Protected Capability in the same TPM. The RNG Protected Capability assembles

random bits from a Deterministic Random Bit Generator (DRBG) Protected Capability in the same TPM.

The DRBG Protected Capability obtains entropy from the entropy Protected Capability in the same TPM

and the TPM2_StirRandom() Protected Capability can be used to add additional information. The entropy

Protected Capability obtains entropy from an entropy source in the same TPM.

NOTE 1 The "additional information" added by TPM2_StirRandom() could be entropy gathered from other
sources but the TPM has no way of determining if the value has any entropy or not. As a
consequence, it is just deemed to be "additional information."

NOTE 2 The DRBG Protected Capability of a non-FIPS TPM consists of a DRBG mechanism that should
comply with NIST Recommendation SP800-90 A, revised March 2012; except it does not comply with
its Clause 11.

NOTE 3 The DRBG Protected Capability of a FIPS TPM consists of a DRBG mechanism that complies with
NIST Recommendation SP800-90 A, revised March 2012.

The DRBG mechanism security should be at least as strong as the security strength of the strongest

cryptographic algorithm implemented in the TPM.

The DRBG Protected Capability should be reseeded using entropy from the entropy Protected Capability

when:

• a flag is SET indicating that reseeding is required;

• TPM2_StirRandom() is executed;

• after the TPM has failed a self-test; or

• before the SPS is replaced.

It may be reseeded at other times, as well.

NOTE 4 Each TPM may be seeded during TPM manufacture, via a manufacturer-specific method, using a
personalization string for the DRBG that should be specific to the manufacturer and the type of TPM,
plus a manufacturer-provided nonce that is specif ic to the individual TPM.

RNG Protected Capability

DRBG Protected Capability

Entropy Protected Capability

Entropy
Source

TPM2_StirRandom()

entropy

random
bits

random
numbers

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.4.11.3 Nonce Creation

The RNG module provides the bits used in any TPM-generated nonce.

 Algorithms

11.4.12.1 Algorithm Identifiers

The structures and commands in this specification are constructed with minimal reliance on algorithm

defaults.

In most cases, an algorithm identifier identifies a family of algorithms followed by qualifiers. This differs

from the TPM 1.2 version of the specification, which often included the key size in the algorithm identifier

(TPM_ALG_AES128). This specification only uses the TPM 1.2 form of algorithm identifiers for hash

algorithms.

Since this specification depends on being able to discern the hash output size from the algorithm ID, its

hash algorithm identifiers imply a digest size.

EXAMPLE 1 Some of the hash algorithm identifiers are TPM_ALG_SHA256, TPM_ALG_SHA384, and
TPM_ALG_SM3_256.

Algorithm identifiers for symmetric and asymmetric encryption identify the family, such as RSA, ECC,

AES, etc. For these algorithms, supplementary information is required to define parameters.

EXAMPLE 2 Some family algorithm identifiers are TPM_ALG_ECC, TPM_ALG_RSA, TPM_ALG_SM4, and
TPM_ALG_AES.

11.4.12.2 Algorithm Support

This specification does not require implementation of any specific set of algorithms. When determining

algorithms or algorithm sets supported, implementers should carefully consider factors such as use

cases, strength of function, interoperability, backward compatibility, algorithm diversity, etc. TCG

recommends using TCG platform-specific specifications that reflect industry best practices.

NOTE 1 It is anticipated that support for TPM 1.2 compatibility will be retained unless support for the 1.2
algorithms (RSA 2048 and SHA1) would prevent that TPM from being sold.

TCG will specify sets of algorithms to be incorporated by various platform-specific specifications. Each set

includes a minimum of one hash algorithm, one symmetric encryption algorithm with approved

parameters, and one asymmetric encryption/signing algorithm with approved parameters. Without a

complete set of algorithms, the TPM would be unable to support all necessary functions.

A TPM may support algorithms in addition to the required sets. These do not need to be part of any set.

For example, the TPM may include an additional hash algorithm without including an additional

asymmetric or symmetric algorithm.

It is possible, and very likely given the multitude of algorithms supported by the TPM, that key-size

support will differ between TPM implementations. In addition, keys created by outside software may

greatly increase the number of key sizes that are possible to load.

A TPM will not create or load an object that uses an algorithm that is not supported by the TPM. When

creating an object, the TPM checks the template for the object being created and when loading an object,

the TPM checks the public area of the object. In both cases, the TPM validates that it supports all of the

indicated algorithms, parameters, and key sizes.

Trusted Platform Module Library Part 1: Architecture

Page 50 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The strength of at least one algorithm set supported by a TPM should be at least 112 bits. Other

algorithms and algorithm sets may be supported in any combination.

NOTE 2 A set’s strength is normally determined by the number of bits in a key of the symmetric algorithm. An
exception is Suite B, Top Secret, where the strength is considered to be 192 bits even though the
symmetric algorithm has 256-bit keys.

If a TPM supports RSA, it should support a key size of 2048 bits or larger. Support for smaller key sizes is

allowed but discouraged.

NOTE 3 Support for smaller keys is allowed so that legacy keys may continue to be supported. Use of key-
sizes less than 1024 bits is strongly discouraged.

A platform-specific specification may mandate support for algorithms or algorithm sets. It may select only

those algorithms for which the TCG has assigned algorithm identifiers.

A TPM may only implement algorithms that have a TCG-assigned algorithm ID.

11.5 Authorization Subsystem

The Authorization Subsystem is called by the Command Dispatch module at the beginning and end of

command execution. Before the command may be executed, the Authorization Subsystem checks that

proper authorization for use of each of the Shielded Locations has been provided.

Some commands access Shielded Locations that require no authorizations; access to some locations

may require a single-factor authorization; and access to other Shielded Locations may require use of an

authorization policy of arbitrary complexity.

The only cryptographic functions required by the Authorization Subsystem are hash and HMAC. An

asymmetric algorithm may be required if TPM2_PolicySigned() is implemented.

The details of the different methods of authorization are provided in Clause 19.

11.6 Random Access Memory

 Introduction

Random access memory (RAM) holds TPM transient data. Data in TPM RAM is allowed, but not required,

to be lost when TPM power is removed. Because the values in TPM RAM may be lost, in this

specification they are referred to as being volatile, even if the data loss is implementation-dependent.

When the specification refers to a value that has both volatile and non-volatile copies, they may be kept in

a single location as long as that location has the properties of allowing random access and having

unlimited endurance.

Not all values in TPM RAM are in Shielded Locations. A portion of TPM RAM contains the I/O buffer with

properties that are described in 11.3.

 Platform Configuration Registers (PCR)

PCR are Shielded Locations used to validate the contents of a log of measurements. The nominal

behavior of a trusted platform is to maintain, in a log, a record of the events that affect the security state

of the platform, at least through the boot process while it is establishing the TCB. When additions are

made to the log, the TPM receives a copy of the log entry or the digest of data described by the log. The

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

data sent to the TPM is included in an accumulative hash in a PCR. The TPM may then provide an

attestation of the value in the PCR, which, in turn, verifies the contents of the log.

It is possible for a single PCR to record all log entries. However, this would make it difficult to evaluate the

different stages of platform evolution as it boots into the operating system. Normally, multiple PCR are

provided in a TPM to allow simplification of the evaluation.

EXAMPLE 1 A TPM intended for a PC could have a PCR dedicated to recording measurements of the BIOS, a
PCR dedicated to the boot ROM on add-in cards, and a PCR dedicated to the OS loader. The
platform-specific specifications determine the number of PCR and their attributes in a TPM.

PCR may also be used to gate access to an object. If selected PCR do not have the required values, the

TPM will not allow use of the object.

A TPM may maintain multiple banks of PCR. A PCR bank is a collection of PCR that are Extended with

the same hash algorithm. PCR banks are identified by the hash algorithm used to Extend the PCR in that

bank.

Multiple banks may handle situations where one hash algorithm is required for legacy or compatibility with

one set of applications, while a different hash algorithm is required to meet the security needs of another

application. Within a bank, all PCR updates use the same hash algorithm. Not all banks need to have the

same number of PCR, but the attributes of all PCR with the same Index, other than hash algorithm, are

the same in all banks.

EXAMPLE 2 If PCR[0] has an attribute that allows it to be reset by TPM2_PCR_Reset(), then that attribute
applies to PCR[0] in all banks.

NOTE 1 Since banks may have different numbers of PCR, a PCR Index value may not be valid for all banks.
The allocation of PCR may also be changed by TPM2_PCR_Allocate() using Platform Authorization.
Changing the PCR allocation does not change the attributes of the PCR.

The contents of a PCR may be modified or reported. The two ways to modify a PCR are to reset it or

Extend it. Reporting on a PCR may be accomplished through simple reading, inclusion in an attestation,

or inclusion in a policy.

Although listed in this clause, PCR need not be maintained in RAM. They may be kept in non-volatile

memory. If kept in non-volatile memory, consideration must be made for the possible impact on TPM

performance during the critical boot phase, when many measurements are recorded.

A TPM is required to implement a PCR bank for each supported algorithm. However, a PCR bank may be

defined such that it contains no PCR.

NOTE 2 The requirement that a PCR bank be implemented for each hash algorithm allows the unmarshaling
to be based on the implemented algorithms rather than the implemented PCR.

The TPM may support Resume PCR that retain their state across a TPM Resume sequence but are set

to their default initial value on TPM Reset or TPM Restart.

 Object Store

TPM RAM holds keys and data that are loaded into the TPM from external memory. In most cases, an

object may not be used or modified unless it was first loaded into TPM RAM with one of the object load

commands: (TPM2_Load(), TPM2_CreatePrimary(), TPM2_LoadExternal(), or TPM2_ContextLoad()).

NOTE TPM2_Create() does not automatically load the object. After creation, the object needs to be
explicitly loaded with TPM2_Load(), to load both the public and private portions, or with
TPM2_LoadExternal() to load just the public portion.

Trusted Platform Module Library Part 1: Architecture

Page 52 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The structure used for keys may be generalized for use on data objects if the access properties used for

keys are suitable for access to these objects.

EXAMPLE A data blob may be defined so that access requires that some set of PCR has defined values, or an
authorization value may be needed for access. Such a data blob, called a Sealed Data Object, is
managed in the same way that a key is managed. That is, the Sealed Data Object should be loaded
before being accessed, and the loaded blob may be context saved.

The TPM operates on other structures that are passed as parameters in specific commands. These

structures are transient and are not stored in the TPM as identifiable entities after the command has

completed.

Items loaded in the TPM are given handles to let them be referenced in subsequent commands.

 Session Store

The TPM uses sessions to control a sequence of operations. A session may audit actions, provide

authorizations for actions, or encrypt parameters passed in commands.

A session may be created as needed using one of the session creation commands. The session is

assigned a handle at that time.

A TPM may be designed so that the RAM used for sessions is from a memory pool shared with the object

store. It may also be designed so that the session store and object store are separated and dedicated.

 Size Requirements

Random access memory (RAM) should be large enough to handle the transient state, sessions, and

objects needed for completion of any implemented command. The minimums for the worst-case

command in this specification are:

• two loaded entities (two keys, a key and a Sealed Data Object, or a hash/HMAC sequence and a
key);

• three authorization sessions;

• an input buffer able to accommodate the largest command or an output buffer required for the
largest possible response;

NOTE The largest command or response depends on the algorithms supported by the implementation.

• any vendor-defined state required for operation; and

• all defined PCR.

11.7 Non-Volatile (NV) Memory

The NV memory module stores persistent state associated with the TPM. Some NV memory is available

for allocation and use by the platform and entities authorized by the TPM Owner.

TPM NV memory contains Shielded Locations and Shielded Location can only be accessed with

Protected Capabilities.

If the specification is not explicit about storage of a parameter, that parameter may be in either RAM or

NV, according to vendor preference.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If the NV memory of the TPM is subject to wear, then the TPM should detect whether the data being

written to an NV memory location is the same as that currently stored and not perform the NV write if they

are the same.

The OS or the platform may define a special NV data structure (an NV Index) in order to store persistent

data values. NV memory may also be used persistently to store a loaded object. When a persistent object

is referenced in a TPM command, the TPM may move that object into an object slot so it may be

accessed more efficiently. The TRM needs to ensure that sufficient object memory RAM is available to

allow this movement.

NOTE The movement occurs transparently.

A TPM capability indicates if the TPM is using Transient Object resources when a command references a

persistent object. If so, the TRM needs to ensure that a Transient Object slot is available for each

persistent object so referenced.

11.8 Power Detection Module

This module manages TPM power states in conjunction with platform power states.

All platform-specific TCG specifications that define the binding of the TPM to the platform should include

a requirement that the TPM be notified of all power state changes.

The TPM supports only the ON and OFF power states. Any system power transition requiring the RTM to

be reset also causes the TPM to be reset (_TPM_Init). Any system power transition that causes the TPM

to be reset will also cause the RTM to be reset.

NOTE In most cases, the RTM will be a host CPU.

Trusted Platform Module Library Part 1: Architecture

Page 54 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 TPM Operational States

12.1 Introduction

This clause describes TPM operational states and state transitions.

12.2 Basic TPM Operational States

 Power-off State

A hardware TPM is in the Power-off state when reset is being asserted or when no power is applied to the

TPM. The TPM may internally generate reset by detecting low power or reset may be provided by an

external source.

It is possible to transition to the Power-off state from any other state because power can be lost at any

time.

NOTE Uncontrolled transitions to this state are not shown in diagrams/descriptions because they would
add unnecessary clutter and provide no additional understanding.

 Initialization State

The TPM is placed in its initialization state when it receives the _TPM_Init indication. _TPM_Init is

provided in a platform-specific manner. For a hardware TPM, the _TPM_Init is normally signaled by the

de-assertion of the TPM’s reset signal. It may also be signaled by an interface protocol or setting. For a

software implementation, _TPM_Init may be a dedicated procedure call.

Regardless of how it is generated, _TPM_Init should coincide with a reset of the Roots of Trust for

Measurement for which the TPM is the Root of Trust for Reporting. For example, if the TPM is a

component on the PC’s motherboard, _TPM_Init should coincide with a reset of the processor and

chipset. After _TPM_Init is indicated, the RTM should begin executing the Core Root of Trust for

Measurement. It should not be possible to reset the TPM without resetting the RTM. It should not be

possible to reset the RTM without resetting the TPM.

While in the Initialization state, the TPM performs basic initialization functions in preparation for accepting

commands on the TPM interface. These functions are implementation dependent but, minimally, the TPM

should perform validation of the TPM firmware necessary to execute the expected command. If the TPM

is in Field Upgrade mode (FUM), the expected command is TPM2_FieldUpgradeData(). If the TPM is not

in FUM, the expected command is TPM2_Startup().

After completing the initializations, the TPM waits for the next command and, if the command is not the

expected first command, the TPM will return an error indicative of the mode. If the TPM returns an error, it

will continue to wait for the expected first command.

NOTE 1 If the TPM is not in FUM, it returns TPM_RC_INITIALIZE. If the TPM is in FUM, it returns
TPM_RC_UPGRADE.

NOTE 2 If TPM2_Startup()/TPM2_FieldUpgrateData() is not the first command to the TPM, it indicates failure
of the system to properly enter the CRTM, and the reliability of TPM measurements may not be
assured. While it is possible to define a special failure mode that prohibits just PCR-related
operations, it is expected to be infrequent enough not to warrant such a mode and, as shown in
Figure 5, the TPM does not enter Failure Mode, if the first command is not TPM2_Startup().

When the TPM receives TPM2_Startup(), it becomes operational and is able to process other commands.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 3 For compliance with other standards, such as FIPS 140, it is necessary for the TPM to validate the
firmware associated with a command’s execution before that command is executed. This includes
the code associated with TPM2_Startup() and TPM2_FieldUpgadeData(). This validation may require
use of a digital signature or message authent ication code.

Occasionally, some TPM state may need to be retained over a power transition. This might occur if the

platform is entering the Suspend state, where the preponderance of system state is retained. To allow the

TPM to reflect this condition, system software may issue TPM2_Shutdown(TPM_SU_STATE) to the TPM.

TPM2_Shutdown() initiates an orderly shutdown of the TPM. The command’s startupType parameter

indicates the type of startup that is anticipated to follow and the type of data to be saved. For

TPM2_Shutdown(TPM_SU_CLEAR), the amount of data saved to NV memory is relatively small, with

considerably more information retained when TPM_SU_STATE is indicated.

 Startup State

12.2.3.1 TPM2_Startup()

TPM2_Startup() transitions the TPM from the Initialization state to an Operational state. The command

includes information from the platform to inform the TPM of the platform’s operating state.

TPM2_Startup() has two options: TPM_SU_CLEAR and TPM_SU_STATE. The operating state of a TPM

after TPM2_Startup() is dependent on how the TPM was shut down and the selected startup option.

12.2.3.2 Startup Types

The following terms are used to refer to the different startup and shutdown operations:

• Startup(CLEAR) means TPM2_Startup(startupType == TPM_SU_CLEAR);

• Startup(STATE) means TPM2_Startup(startupType == TPM_SU_STATE);

• Shutdown(STATE) means TPM2_Shutdown(startupType == TPM_SU_STATE); and

• Shutdown(CLEAR) means TPM2_Shutdown(startupType == TPM_SU_CLEAR).

The combinations of Shutdown() and Startup() provide three unique methods of preparing the TPM for

operation:

1) TPM Reset is a Startup(CLEAR) that follows a Shutdown(CLEAR), or a Startup(CLEAR) for which

there was no preceding Shutdown() (that is, a disorderly shutdown). A TPM Reset is roughly

analogous to a reboot of a platform. As with a reboot, most values are placed in a default initial state,

but persistent values are retained. Any value that is not required by this specification to be kept in NV

memory is reinitialized. In some cases, this means that values are cleared, in others it means that

new random values are selected.

2) TPM Restart is a Startup(CLEAR) that follows a Shutdown(STATE). This indicates a system that is

restoring the OS from non-volatile storage, sometimes called “hibernation”. For a TPM Restart, the

TPM restores values saved by the preceding Shutdown(STATE) except that all the PCR are set to

their default initial state. This allows the TPM to record the boot sequence to ensure that the TCB is

properly instantiated while allowing continued function of the restored OS.

3) TPM Resume is a Startup(STATE) that follows a Shutdown(STATE). This indicates a system that is

restarting the OS from RAM memory, sometimes called “sleep.” For sleep, the expectation is that the

CRTM will perform the minimal actions required to make the system functional and then “return” to

the running OS rather than rebooting it. TPM Resume restores all of the state that was saved by

Shutdown(STATE), including those PCR that are designated as being preserved by Startup(STATE).

PCR not designated as being preserved, are reset to their default initial state.

Trusted Platform Module Library Part 1: Architecture

Page 56 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 1 The PCR are designated in a platform-specific specification.

If the TPM receives Startup(STATE) that was not preceded by Shutdown(STATE), then there is no state

to restore and the TPM will return TPM_RC_VALUE. The CRTM is expected to take corrective action to

prevent malicious software from manipulating the PCR values such that they would misrepresent the

state of the platform. The CRTM would abort the Startup(State) and restart with Startup(CLEAR).

NOTE 2 The startup behavior defined by this specification is different than TPM 1.2 with respect to
Startup(STATE). A TPM 1.2 device will enter Failure Mode if no state is available when the TPM
receives Startup(STATE). This is not the case in this specification. It is up to the CRTM to take
corrective action if it the TPM returns TPM_RC_VALUE in response to Startup(STATE).

The TPM is required to validate the integrity of any NV values before those values are used before that

state is used. This includes the state saved by TPM2_Shutdown(STATE)(see 12.2.4). When the TPM

determines that some NV value required for proper TPM operation is not valid, the TPM will enter Failure

Mode.

It is not specified when the validation of state specific to TPM Resume is to be checked. This gives

implementation options that may be specified by a platform-specific specification or determined by the

vendor.

The startup sequences are illustrated in Figure 5.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

In FUM

_TPM_Init
Indication

Is Command
TPM2_Startup()

FUM
Resume

Command
Received

Minimally includes self-test
for TPM2_FieldUpgradeData()

Device
Reset

Wait For
Command

Return
TPM_RC_INITIALIZE

Operational

N

Is Command
Startup(STATE)

Y

Was Previous
Shutdown(STATE)

Return
TPM_RC_VALUE

Device Reset

N

Y

N

N

Is Command
Startup(CLEAR)

SET Initialized

Set Default State

Set PCR to Default
Initialization State

Restore Saved State

N

Y

Initialization for
Fieldupgrade

TPM Reset TPM Restart

Y

Initialization for
Startup

Minimally includes self-test
for TPM2_Startup()

Was Restore
Successful

Y

TPM Resume

Failure
Mode

N

Return
TPM_RC_SUCCESS

Y

Figure 5 — TPM Startup Sequences

 Shutdown State

TPM2_Shutdown() is used to prepare the TPM for loss of power. As with TPM2_Startup(),

TPM2_Shutdown() has two options: TPM_SU_CLEAR and TPM_SU_STATE.

Trusted Platform Module Library Part 1: Architecture

Page 58 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

TPM2_Shutdown(TPM_SU_STATE) preserves the majority of the TPM operational state so that it may be

restored on a subsequent TPM2_Startup(). TPM2_Shutdown(TPM_SU_CLEAR) preserves a minimal

amount of state, mostly to ensure continuity of the TPM timing functions.

NOTE The timing functions are described in Clause 36.

The TPM preserves state data in NV memory. Data is copied from RAM into NV memory so that it is not

lost when power is removed from the TPM. The amount of data copied to NV memory is largely

implementation-dependent, but the specification indicates the state data that is required to be preserved.

This state data is recovered in a subsequent TPM2_Startup(). The type of startup determines what parts

of the saved state data is restored and what is discarded.

A shutdown is “orderly” if the TPM receives TPM2_Shutdown() before power is lost and if the state is not

subsequently modified by a TPM command before the next _TPM_Init.

These commands will invalidate saved TPM state:

NOTE This is not an inclusive list:

• TPM2_Clear(), TPM2_ChangeEPS(), TPM2_ChangePPS() – these commands invalidate saved
contexts in the hierarchy. TPM2_Clear() invalidates preserved contexts in both the storage and
endorsement hierarchies.

• TPM2_ContextSave() – context variables are modified by context save. Saving a session context
changes the session context ID and its tracking state (saved or in memory). Saving an object
context changes the object context ID.

• TPM2_ContextLoad() for a session – the context ID and tracking state (in TPM or context saved)
for each active session should be retained across a TPM Restart or TPM Resume sequence.
Saving or loading a session context changes the context ID or its tracking state. Saving or loading
an object context need not invalidate a preserved context.

• Any command that modifies a PCR – regardless of the implementation, any change to a Resume
PCR will invalidate the saved state. If the TPM implements TPM2_PolicyPCR() and uses a PCR
generation counter, any PCR modification will change this counter value.

EXAMPLE If a Shutdown(STATE) occurs but, prior to Startup(STATE), a TPM2_PCR_Event() is executed
selecting a Resume PCR, then the preserved state is no longer valid, and Startup(STATE) is not
valid until another Shutdown(STATE) occurs.

• Any command that modifies Clock or returns the value of Clock.

A TPM implementation may invalidate a preserved context on any command except

TPM2_GetCapability().

 Startup Alternatives

The description of the startup process above was given in terms of a command interface. In some

systems, the TPM code is run in a special processor mode that provides the required isolation between

the TPM state and any other program state. For these implementations, TPM2_Startup() may not be a

command that is actually implemented. That is, the platform initialization may boot, validate the TPM

code, and place the TPM in a state that is functionally equivalent to having run TPM2_Startup() on a

discrete TPM component.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.3 Self-Test Modes

If a command requires use of an untested algorithm or functional module, the TPM performs the test and

then completes the command actions. When performing a self-test on demand, the TPM should test only

those algorithms needed to complete the command (see Figure 6).

NOTE 1 It is preferable for the TPM to perform self-tests on untested algorithms and functional blocks as a
background task to increase the likelihood that algorithms are tested before they are needed.

Figure 6 — On-Demand Self-Test

After sending TPM2_Startup(), the system may use either TPM2_SelfTest() or

TPM2_IncrementalSelfTest() to cause the TPM to perform tests of untested algorithms. TPM2_SelfTest()

may optionally cause the TPM to perform a full self-test of all algorithms and functional blocks. Once

these commands are issued, the TPM returns TPM_RC_TESTING for any command that requires use of

any testable function until all requested tests are completed.

NOTE 2 FIPS 140-2 requires that all power-on self-tests be complete before the TPM returns any value that
depends on the results of a testable function. If compliance with FIPS 140-2 is required, any
command that requires use of an untested function causes the TPM to operate as if
TPM2_SelfTest(fullTest = NO) was received. The TPM returns TPM_RC_TESTING and continues to
return TPM_RC_TESTING until all tests are complete. Alternatively, it may complete all tests and
then complete the command. It may also return TPM_RC_NEEDS_TEST.

Process
Command

Wait For
Command

Command uses
untested

functions?

Test Successful?Y

Return Result

N

Return
TPM_RC_FAILURE

Operational

YN

Failure
Mode

Test Required
Functions

Trusted Platform Module Library Part 1: Architecture

Page 60 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 3 Authenticated tests may be generated by attaching an audit session to TPM2_GetTestResult() and
then using TPM2_GetSessionAuditDigest() to obtain the signature.

If any self-tests fail, the TPM goes into Failure mode and does not allow execution of any Protected

Capabilities except TPM2_GetTestResult() and TPM2_GetCapability(). The TPM exits Failure mode

when it receives _TPM_Init.

12.4 Failure Mode

If the TPM fails an internal test, it enters Failure mode. While in Failure mode, the TPM returns

TPM_RC_FAILURE in response to any command except TPM2_GetTestResult() or

TPM2_GetCapability() (see Figure 7). While in Failure mode, the TPM is only required to provide a limited

number of property values. They are all in the set of TPM properties (TPM_CAP_TPM_PROPERTIES):

• TPM_PT_MANUFACTURER

• TPM_PT_VENDOR_STRING_1

• TPM_PT_VENDOR_STRING_2

• TPM_PT_VENDOR_STRING_3

• TPM_PT_VENDOR_STRING_4

• TPM_PT_VENDOR_TPM_TYPE

• TPM_PT_FIRMWARE_VERSION_1

• TPM_PT_FIRMWARE_VERSION_2

NOTE An implementation is allowed to return other property values.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figure 7 — Failure Mode Behavior

12.5 Field Upgrade

 Introduction

This specification describes optional Protected Capabilities for upgrading the TPM firmware. The methods

described in this specification would allow the upgrade process to be handled in a standard way on TPMs

from multiple vendors. The methods described here should not be viewed as limiting the vendor's options

for implementation of their own, vendor-specific methods for upgrading the TPM firmware. However, the

field upgrade methods chosen by the vendor should not be less robust than the methods described in this

specification. In particular, the authorizations for the upgrade should be the same as the field upgrade

commands in this specification.

 Field Upgrade Mode

This specification describes two optional upgrade methods: full and incremental. These terms do not refer

to how much of the firmware in the TPM changes, but to how the upgrade is applied.

• For a full upgrade, the TPM stores in Shielded Locations all blocks of the firmware update. It
makes no change to the executing firmware unless all the blocks are confirmed to be correct. The
upgrade process may be interrupted or abandoned without affecting TPM functionality.

Failure
Mode

Wait For
Command

TPM2_GetTestResult()

Return Test Results

Return
TPM_RC_FAILURE

N

Y

NOTE: Only exit from Failure
Mode is _TPM_Init

TPM2_GetCapability()

Return Capability

Y

N

Trusted Platform Module Library Part 1: Architecture

Page 62 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• For an incremental upgrade, firmware updates may be applied as each block is received. The
TPM may not be fully functional if the upgrade process is abandoned.

The field upgrade process starts when the TPM receives a properly authorized

TPM2_FieldUpgradeStart() (see Figure 6). That command contains the digest of a first block of the

upgrade. If the next command is TPM2_FieldUpgradeData() and the digest of the data parameter

(fuData) of the command matches the signed digest in TPM2_FieldUgradeStart(), the TPM accepts

fuData as containing the upgrade data.

The TPM may buffer firmware update blocks and not change the firmware until its buffer is full. When a

consequential change to the running firmware is made, the TPM enters Field Upgrade mode (FUM) and

does not accept any command but TPM2_FieldUpgradeData() until the update is complete (see Figure

7). Before the TPM enters FUM

• it may accept other commands, and

• the update sequence may be abandoned by sending a zero-length upgrade data buffer. The TPM
acknowledges that it has abandoned the field upgrade by returning TPM_ALG_NULL for
nextDigest.

When the field upgrade process is complete, the TPM may either return to normal operation or enter a

mode that requires _TPM_Init before normal TPM operations resume. The TPM vendor should determine

if a reboot is required after the firmware update and cause the TPM to set the mode appropriately.

If the TPM is reset (_TPM_Init) while in FUM and the TPM is not able to revert to normal operation, three

possibilities exist for recovery. The choice is determined by the digest of the first upgrade block provided

to the TPM after _TPM_Init. The TPM may retain up to three digest values that it uses for comparison:

1) the digest of the first upgrade block of the current sequence to be used when the intent is to restart

the current upgrade sequence from the start (called Digest C in Figure 8);

2) the digest of the first block of the firmware that was being replaced (called Digest P in Figure 8) to be

used when the intent is to abort the upgrade and restore the previous firmware; and

3) the digest of the first upgrade block of the factory installed firmware (called Digest F in Figure 8) to

restore the TPM to its factory state.

To enable option 2) above, the TPM may support TPM2_FirmwareRead() so that the software performing

the upgrade can save a copy of the current TPM firmware in case the upgrade fails.

NOTE TPM2_FirmwareRead() may not be supported on a TPM even if the TPM can perform a field
upgrade.

If _TPM_Init is received while the TPM is in FUM, then TPM Reset is required after the field upgrade

completes, regardless of the nature of the firmware changes. This reset is required because the TPM

does not accept TPM2_Startup() while in FUM, and the TPM will not reflect the state of the platform.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figure 8 — Resuming Field Upgrade Mode after _TPM_Init

Digest C = Digest F

Digest C = Digest P

FUM
Resume

TPM2_FieldUpgradeData()

Wait For
Command

Return
TPM_RC_UPGRADE

N

H(fuData) ==
Dnext

Dnext is the expected digest
of the next data block in the
current sequence,

H(fuData) ==
Digest P

Y

Digest P (Previous) is the
digest of the first data block
in the firmware being
replaced.

H(fuData) ==
Digest F

Digest F (Factory) is the digest of
the first data block of the factory
installed TPM firmware.

Return
Digest C and Dnext

N

N

N

Y

Y

Y

FUM
Continue

Digest C (Current) is the
digest of the first block of the
firmware being installed.

Trusted Platform Module Library Part 1: Architecture

Page 64 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Complete Upgrade
FUM := FALSE

Load fnData
Dnext := Next Block Digest

Enter FUM after TPM receives a valid
fuData block and the TPM makes a
firmware change that does not allow
the TPM to continue normal
operations

TPM2_FieldUpgradeData()

Wait For
Command

Return
TPM_RC_UPGRADE

H(fnData) ==
Dnext

Y

Return
Digest C and Dnext

N

FUM

Dnext == empty

FUM
Continue

N

Y

Y

Return TPM_RC_REBOOT

Wait For
Command

Y

N

TPM remains in this
loop until _TPM_Init

Return
nextDigest := TPM_ALG_NULL

Initialized ==
TRUE

Restart Required

N

Y

Operational

NOTE: Dnext is the digest of the
next expected block of
the current firmware
update sequence

N

Figure 9 — Field Upgrade Mode

 Preserved TPM State

A field upgrade may not cause exposure of any data that is specific to a TPM instance. This includes:

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• Primary Seeds;

• Hierarchy authValue, authPolicy, and proof values;

• lockoutAuth and authorization failure count values;

• PCR authValue and authPolicy values;

• NV Index allocations and contents;

• Persistent object allocations and contents; and

• Clock.

In particular, if the TPM supports TPM2_FirmwareRead(), the returned data is not allowed to contain any

data that is unique to the TPM instance.

A field upgrade should not cause the loss of any data that is specific to a TPM instance.

NOTE 1 A platform manufacturer may provide a means to change preserved data to accommodate a case
where a field upgrade fixes a flaw that might have compromised TPM secrets.

 Field Upgrade Implementation Options

The method described above for management of a TPM field upgrade is intended for use in a TPM that is

implemented as stand-alone component (that is, when the TPM is manufactured and sold as a

component that is added to a platform). When the TPM is not a stand-alone component, other methods of

field upgrade are possible and are not precluded by this specification.

If other methods are used, the security of that method is the responsibility of the platform manufacturer.

Trusted Platform Module Library Part 1: Architecture

Page 66 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 TPM Control Domains

13.1 Introduction

Three entities control the TPM: the platform firmware, the platform Owner, and the Privacy Administrator.

The Owner and Privacy Administrator are often the same entity. This control does not give these entities

the ability to access user keys or data, but it does give them the ability to control selected TPM resources.

Each of the three entities has its own domain of control. Within that domain are TPM resources reserved

to that entity. Each entity exercises its control over its domain by use of domain-specific authorization

values.

The NV space defined by the platform firmware has an additional control, phEnableNV. When SET, NV

space defined by the platform firmware is accessible. When CLEAR, it is inaccessible. This permits

independent control of the platform firmware hierarchy and its NV space. For example, the platform

hierarchy can be disabled while still permitting access to platform firmware NV space.

13.2 Controls

The platform firmware, platform Owner, and Privacy Administrator each have an authorization value and

an authorization policy to control some portion of the TPM, including a specific Primary Seed (see clause

14). The authorizations, policies, and Primary Seed for each domain are:

• platformAuth/platformPolicy/PPS for platform firmware;

• ownerAuth/ownerPolicy/SPS for the Owner; and

• endorsementAuth/endorsementPolicy/EPS for the Privacy Administrator.

Associated with each hierarchy is a logical switch (that is, an “enable”) that determines whether the

hierarchy is enabled. These enables are phEnable, shEnable, and ehEnable.

When the enable for a hierarchy is SET (1) and the specification indicates that an action may be

authorized with an authorization value, the corresponding policy is also allowed. For instance, when

phEnable is SET and platformAuth is allowed, platformPolicy may also be used.

When the enable for a hierarchy is CLEAR, neither the corresponding authValue nor authPolicy may

authorize operations.

The interaction of the two authorization types (value and policy) and the associated hierarchy enable are

intended to provide a flexible set of controls. Table 2 shows the control combinations.

Table 2 shows the authValue as either being "Known" or "Unknown". These correspond to the enabled

and disabled states for an authValue. When the authValue is known, it can be used for authorization, but

it cannot be used when the authValue is unknown. Since a zero-length string (Empty Buffer) is a valid,

knowable authValue; the way to make the authValue unknown, and disable its use, is to set it to a large

random number and then discard that number.

Table 2 shows the authPolicy as either being "Set" or "Empty". These also correspond to the enabled and

disabled states for an authPolicy. An authPolicy will have to match the value of a digest (policyDigest) in

order for it to be a valid authorization. Since no digest has a zero length, setting the authPolicy to an

Empty Buffer will disable use of the authPolicy. It is also possible to disable use of the authPolicy by

setting it to any value that does not represent a known policy but the conventional way to disable use of

authPolicy is to set it to an Empty Buffer (see 19.7 for the description of policyDigest generation and use).

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 2 — Hierarchy Control Setting Combinations

hierarchy
enable authValue authPolicy Description

SET Known Set The hierarchy is enabled, and objects in it may be loaded. Either
authValue or authPolicy may manage resources related to the
hierarchy.

SET Unknown Set The authValue may be made unknown by setting it to a random value
and then discarding the value. This prevents the authValue from being
used. This combination is useful for keeping the hierarchy enabled but
using a policy-based delegation scheme for managing hierarchy-
related resources. An example is delegating control of creating
Primary Objects in a hierarchy to one entity while delegating control of
related NV resources to a different entity.

SET Known Empty When the authPolicy is empty, it cannot match any policyDigest value
so the use of authPolicy is disabled. This combination is most
analogous to the control scheme of TPM 1.2, where an authValue
(ownerAuth) is used to manage the resources of the single hierarchy
supported by a 1.2 TPM.

CLEAR N/A N/A When an enable is FALSE, the corresponding authValue and
authPolicy may not be used to authorize any TPM action.

TPM2_HierarchyChangeAuth() may change the authValue associated with a hierarchy but only if the

hierarchy is enabled. Either the authPolicy or the authValue of a hierarchy may be used to authorize a

change to the authValue.

13.3 Platform Controls

The platform firmware has overall control of the TPM and the availability of the TPM to the platform

Owner or Privacy Administrator. The platform firmware is assumed to be provided by the platform

manufacturer and performs the management of the hardware in preparation for use by an operating

system (the operating system may be provided by a different vendor). In some systems, platform firmware

runs after the OS is loaded. Often this firmware is required to ensure the safety of the system.

EXAMPLE Some systems have thermal properties that, if not managed properly, could lead to destruction of
the system, and could even lead to the system becoming a fire hazard.

If the firmware is crucial to the safety of the system, the platform manufacturer may design in a firmware

update process that ensures that only firmware approved by the manufacturer for a specific machine is

allowed to be loaded on the system. This firmware may use cryptography to validate the firmware update

before it is loaded. The TPM has cryptographic functions that are similar or identical to the functions

needed by the platform firmware for its management of the system. Rather than replicate those

cryptographic capabilities, the platform firmware is given its own set of TPM resources for its use. Reuse

of the TPM cryptographic capabilities by the platform is intended primarily as a cost savings.

The platform manufacturer decides if it is possible to disable use of the TPM by the platform. The method

for disabling use of the TPM by the platform is platform-manufacturer specific.

The properties of the TPM required by the platform manufacturer need not match those of the Owner.

The platform manufacturer decides what cryptographic algorithms are required to safeguard the platform.

These algorithms may differ from the algorithms use by the Owner or the Privacy Administrator.

Platform controls allow the following operations not available to an ordinary TPM user:

• allocation of TPM NV memory;

• PCR configuration;

Trusted Platform Module Library Part 1: Architecture

Page 68 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• control of the availability of any key hierarchies; and

• change of the PPS, SPS, and EPS and reset of associated authorization values and policy.

NOTE 1 This is not a comprehensive list. The uses of the platform controls are documented in TPM 2.0 Part
3. In that document, an authorization of a command that allows the use of the platform handle
(TPM_RH_PLATFORM) indicates that the command accepts platformAuth or platformPolicy.

phEnable gates use of both platformAuth/platformPolicy and the PPS hierarchy, as described in the

previous clause. When phEnable is CLEAR, a _TPM_Init is required to SET it.

On any _TPM_Init, phEnable is SET to ensure that the platform may use the TPM during its initialization.

On TPM Reset or TPM Restart, platformAuth is set to an EmptyAuth, and platformPolicy is set to an

Empty Policy.

NOTE 2 Platform controls are reset on TPM Restart because the BIOS goes through a full initializ ation and
has no memory of any previous authorization values.

NOTE 3 phEnable must be SET before TPM2_Startup when accommodating the case of an interrupted field
upgrade that prevents startup from running. phEnable must be SET to permit field upgrade
authorization.

A platformAuth/platformPolicy may be used in TPM2_HierarchyControl() to SET or CLEAR shEnable or

ehEnable.

13.4 Owner Controls

The TPM controls available to the Owner are a subset of those available to the platform. These include

• allocation of TPM NV memory, and

• control of the availability of any storage hierarchies.

The shEnable gates use of both ownerAuth/ownerPolicy and the SPS hierarchy, as described in 13.2.

The shEnable is SET on each TPM Reset, TPM Restart, or when the SPS is changed (TPM2_Clear()).

The shEnable may be CLEAR (TPM2_HierarchyControl()) using either Lockout Authorization or Platform

Authorization. When shEnable is CLEAR, it may only be SET (TPM2_HierarchyControl()) if Platform

Authorization is provided.

The ownerAuth and ownerPolicy values are persistent. They are set to standard initialization values when

the SPS is changed (TPM2_Clear()): ownerAuth is set to an EmptyAuth, and ownerPolicy is set to an

Empty Policy. They may be explicitly changed by designated commands.

13.5 Privacy Administrator Controls

The Privacy administrator has control over the Endorsement Hierarchy and reporting of privacy-sensitive

data.

The Privacy Administrator uses endorsementAuth and endorsementPolicy to exercise its control. The

Privacy Administrator has a more limited domain of control than those of the platform firmware and the

Owner. The cases when endorsementAuth or endorsementPolicy are required are:

• when creating Primary Objects in the Endorsement hierarchy, and

• when controlling the availability of the Endorsement hierarchy.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Other actions that may be considered to be privacy-sensitive require use of objects in the Endorsement

hierarchy. For example, certification of a TPM object by the TPM produces a data structure that has data

that could allow cross-correlation of the objects. This data is obfuscated unless the certifying key is in the

Endorsement hierarchy. The privacy administrator of the TPM is expected to manage the creation of

objects in the Endorsement hierarchy to ensure that the use of those objects is in accordance with their

privacy policy.

The ehEnable gates use of endorsementAuth/endorsementPolicy and the EPS hierarchy, as described in

13.1. It also gates use of the vendor-specific handles TPM_RH_AUTH_00 to TPM_RH_AUTH_FF.

Additionally, when the SPS changes, the objects in the EPS hierarchy are flushed from the TPM, and new

EPS objects (that is, Primary Objects) must be created.

NOTE Clearing the hierarchy is necessary to ensure that the new Owner may not abuse objects created by
a previous one and so that objects belonging to the previous Owner may not compromise the new
one.

The ehEnable is SET on each TPM2_Startup(TPM_SU_CLEAR) (that is, TPM Reset or TPM Restart) or

when the SPS is changed (TPM2_Clear()). The ehEnable may be CLEAR using either Endorsement

Authorization or Platform Authorization. When ehEnable is CLEAR, it may be SET using Platform

Authorization

NOTE TPM2_HierarchyControl() will SET or CLEAR ehEnable if the proper authorization is provided.

The endorsementAuth and endorsementPolicy values are persistent. They are set to standard

initialization values when the SPS (TPM2_Clear()) or EPS (TPM2_ChangeEPS()) are changed:

endorsementAuth is set to an EmptyAuth, and endorsementPolicy is set to an Empty Policy. They may be

explicitly changed by designated commands.

13.6 Primary Seed Authorizations

Use of a Primary Seed to create a Primary Object requires use of the authorization associated with that

Primary Seed: Platform Authorization for the PPS, Owner Authorization for the SPS, and Endorsement

Authorization for the EPS.

13.7 Lockout Control

A TPM is required to implement a lockout mechanism to protect against so-called “dictionary attacks,”

where an attacker tries numerous authorization values until one succeeds. Dictionary attack protection is

common for security devices, such as smartcards, that use human input for authorization. A human

source of authorization likely has too little entropy to protect against an automated attack, so logic that

prevents high-speed guessing of the values is required.

When the dictionary attack lockout is engaged, preventing use of some resources, it is helpful to have a

secret value that resets lockout. The TPM stores the secret value as lockoutAuth. Alternatively, a policy

(lockoutPolicy) can be used to reset lockout.

NOTE 1 The primary attack model for the dictionary attack begins when a system falls into the hands of a
thief. The thief tries to recover data on the system by guessing the password used to protect a disk’s
encryption keys. The dictionary attack logic defeats th is attack by preventing the thief from making
many guesses before the TPM locks out further attempts. When/if the system is returned to its
rightful owner, that owner can enter the lockoutAuth value or satisfy lockoutPolicy, access the disk
encryption keys, and return to normal operation.

NOTE 2 Unfortunately, dictionary attack logic is not forgiving of poor typing or a short memory. If someone
types his or her password incorrectly due to clumsiness or poor memory, the dictionary attack logic
might not differentiate this from an attack, so it locks the TPM. Lockout Authorization allows
recovery from this situation.

Trusted Platform Module Library Part 1: Architecture

Page 70 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The lockoutAuth value is reset to EmptyAuth and lockoutPolicy to the Empty Buffer when TPM2_Clear() is

executed.

NOTE 3 TPM2_Clear() changes the SPS rendering all previously-created user objects inaccessible. There
are, therefore, no keys for the dictionary attack logic to protect.

The lockoutAuth value may be changed (TPM2_HierarchyChangeAuth()) only when its current value is

provided. LockoutPolicy may be changed using TPM2_SetPrimaryPolicy().

Generally, dictionary attack protection is not applied to objects associated with the PPS or to NV Indexes

defined using Platform Authorization. The platform firmware is expected to select a high-entropy value

when setting the platformAuth after a TPM reset. Additionally, since Platform Authorization does not

provide access to user data protected by the TPM, disclosure of platformAuth does not expose user

secrets.

See 19.8 for full details on setting of parameters associated with dictionary attack logic and other aspects

of the dictionary attack protection.

13.8 TPM Ownership

 Taking Ownership

Taking ownership of a TPM is the process of inserting authorization values for the ownerAuth,

endorsementAuth, and lockoutAuth.

A TPM that has been cleared (TPM2_Clear()) has its ownerAuth, endorsementAuth, and lockoutAuth

values set to EmptyAuth and its ownerPolicy, endorsementPolicy, and lockoutPolicy values set to Empty

Buffers. The OS is expected to change these values and manage them on behalf of the platform Owner.

The platform may prevent access to the hierarchies associated with Owner Authorization and

Endorsement Authorization and prevent use of the TPM’s persistent storage by the operating system and

user applications. TPM cryptographic capabilities would still be available, and these could be used as if

the TPM were a software cryptographic library.

 Releasing Ownership

TPM2_Clear() clears the current Owner from the TPM. A persistent TPM control

(TPMA_PERMANENT.disableClear) controls whether TPM2_Clear() is functional. If disableClear is

CLEAR, then TPM2_Clear() may be authorized using either Platform Authorization or Lockout

Authorization. If the control is SET, then TPM2_Clear() is not functional.

NOTE TPMA_PERMANENT.disableClear may be SET or CLEAR using platformAuth/platformPolicy , giving
the platform the ability to enable execution of TPM2_Clear() when needed.

TPM2_Clear() instructs the TPM to:

• flush any transient or persistent objects associated with the SPS or EPS hierarchies (PPS objects
are not affected);

• release any NV Index locations that do not have their TPMA_NV_PLATFORMCREATE attribute
SET;

• set shEnable and ehEnable to TRUE;

• set ownerAuth, endorsementAuth, and lockoutAuth to an EmptyAuth;

• set ownerPolicy, endorsementPolicy, and lockoutPolicy to an Empty Policy;

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• replace the existing SPS with a new value from the RNG; and

• recompute shProof, and ehProof.

Trusted Platform Module Library Part 1: Architecture

Page 72 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Primary Seeds

14.1 Introduction

A Primary Seed is a large, random value that is persistently stored in a TPM; it is never stored off the

TPM in any form. Primary Seeds are used in the generation of symmetric keys, asymmetric keys, other

seeds, and proof values.

A Primary Seed generates Primary Objects using the methods described in Clause 27.5. In brief, the

caller provides the parameters of an object to be created, and the TPM uses these parameters and the

Primary Seed in a key derivation function (KDF) to produce an object of the desired type. After the TPM

generates a Primary Object, it uses the parameters of that object and the Primary Seed to generate a

symmetric key to encrypt the sensitive portion of the object (that is, the private data and authorizations). It

then returns the public portion and name of the object to the caller. The Primary Object may then be

context saved and loaded like any other object. It may be stored persistently in the TPM’s NV memory

(TPM2_EvictControl()).

Primary Seeds generate only Primary Objects. All other objects use the random number generator of the

TPM as the source of entropy for generating secrets in the object.

14.2 Rationale

The algorithm flexibility provided by this specification makes it possible for the TPM to support many

different asymmetric key types. TPM 1.2 supported only the RSA algorithm with a limited number of

commonly used parameters. The addition of ECC support significantly increases the number of

parameters because curve parameters may vary based on application.

While this flexibility is a major benefit of TPM 2.0, it creates new challenges for managing TPM

Endorsement Keys (EKs) and EK certificates. As mentioned in 9.4.3.2, an EK is an identity for the Root of

Trust for Reporting (RTR), and algorithm agility creates the possibility of having many identities for the

same RTR, with each identity based on a different set of cryptographic algorithms.

One possible approach for handling many EKs and their associated certificates would be for the TPM

manufacturer to have the TPM create EKs for many key parameters and store them on the TPM; in this

way, a key with the correct parameters would be available in most situations. The TPM vendor could then

create one or more certificates for those keys. However, this approach would require a prohibitive amount

of NV memory to store all the key pairs and associated parameters. The approach taken in this

specification allows certification of a large number of EKs with different parameters without requiring that

any of them be stored in persistent TPM memory.

The mechanism of this specification uses a persistent, randomly generated seed value from which EKs

are derived. The derivation process lets the TPM generate a different EK for each set of key parameters.

As long as the seed value does not change, the same key parameters generate the same EKs.

The typical use of this EK generation approach is as follows: The TPM manufacturer or the platform

manufacturer has the TPM create a new Endorsement Primary Seed (EPS) and then generate key pairs

based on sets of input parameters and that EPS. The TPM retains the generated keys. Combinations of

key parameters should be chosen to ensure that likely TPM users would find a combination to suit their

needs. The manufacturer then generates one or more certificates for the generated public keys and then

ships the TPM/system with no EK pair stored on it. The system owner decides which key types are

needed, and the parameters for those types are entered into the TPM. If the parameters are the same as

those used by the manufacturer, the TPM generates the same key pair. The system owner then has an

EK with its certificate. Since an EK is not generally duplicable, the owner has a choice to make. They may

either re-create the EK whenever it is needed or tell the TPM to save the EK in persistent memory.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The seed key concept may be applied to two other TPM key hierarchies: one used by platform firmware,

and one used for the owner’s Storage hierarchy. The Endorsement Keys (EK) are generated from the

Endorsement Primary Seed (EPS), platform keys from the Platform Primary Seed (PPS), and Storage

Root Keys (SRK) from the Storage Primary Seed (SPS). Each seed value has a different life cycle, but

the way it seeds the associated hierarchies is approximately the same.

It is preferred that a TPM manufacturer generate a certificate for at least one EK before the device ships.

This certificate would be based on the EPS that is present in the TPM at that time. While it is possible for

the manufacturer to let the TPM populate the EPS and generate an RSA key pair, the unpredictability of

the generation time may make injecting an EPS a more attractive option. The time taken to inject an EPS

would be deterministic and one or more RSA key pairs could be generated for that EPS outside of the

TPM. This could save considerable time during manufacturing.

The external algorithm for generating a key pair from the EPS has to be the same as the algorithm used

by the TPM; otherwise, they will generate different keys. The generation times for the external and TPM

processes will be proportional so the manufacturer can use the time for external key generation time as

an indicator of the time that the TPM will take when the end user attempts to recreate the EK. If the

manufacturer does decide to inject an EPS and generate RSA keys outside of the TPM, there is an

opportunity to benefit the customer by discarding EPS values that result in long key pair generation times

for the certified values.

Another possible option is to inject the EPS and a precomputed pair of RSA primes that are compatible

with a specific template (compatible meaning that the primes are the right size and that the prime (p) and

p-1 are not evenly divisible by the public exponent). The TPM could access those primes when the

associated template is used for an EK. If this method is used, the TPM manufacturer has to make sure it

is critical that the precomputed primes are only associated with a single template and that the primes are

erased from the TPM when the EPS is changed.

The primary seed approach allows multiple storage hierarchies with differing security properties, as

needed by various applications, without requiring that all of the SRKs occupy persistent TPM memory. An

SRK may be made persistent in TPM NV memory if required by the application.

This scheme is also used in support of the Platform hierarchy for implementation simplicity.

14.3 Primary Seed Properties

 Introduction

A Primary Seed is required to have at least twice the number of bits as the security strength of any

symmetric or asymmetric algorithm implemented on the TPM.

EXAMPLE 1 RSA2048 is considered to have a security strength of 112 bits. If it were the strongest algorithm on
the TPM, then the required size of an associated Primary Seed would be at least 224 bits.

EXAMPLE 2 If AES256 were implemented, the Primary Seed would be 512 bits even if: (1) the desired security
strength is 196 bits, and (2) AES256 is used only for convenience, as is the case with Suite B.

A different authority controls each Primary Seed. In normal use, Primary Seeds are expected to have

different lifetimes.

After a field upgrade that changes the Primary Seed strength, or that changes the algorithm that uses the

Primary Seed, the TPM shall generate the original EKs corresponding to the EK certificates provisioned

by the TPM manufacturer if the same template is provided to the TPM2_CreatePrimary() command until

such time as TPM2_ChangeEPS command changes the EPS.

Trusted Platform Module Library Part 1: Architecture

Page 74 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

For a field upgrade that does not change the Primary Seed strength or the algorithm that uses the

Primary Seed and does not otherwise affect the security of Primary Objects based on the seeds,

TPM2_CreatePrimary() with the same inputs should produce the same Primary Object in the platform,

storage, and endorsement hierarchies after the field upgrade as it did before the field upgrade.

This requirement shall not be in effect for other keys derived from the EPS or for keys derived from the

SPS or PPS.

EXAMPLE A field upgrade can cause TPM2_CreatePrimary() to generate a different key for the same input
template. For example, revisions prior to revision 01.38 used KDFa, while revision 01.38 and after
use DRBG. In addition, the security strength requirement could cause a change in the seed length if
the field upgrade implements a stronger algorithm.

 Endorsement Primary Seed (EPS)

The EPS is used to generate EKs and is the basis of the RTR’s identity.

The TPM creates an EPS whenever it is powered on and no EPS is present. TPM2_ChangeEPS() may

change the EPS (replace it with a new EPS), but this requires authorization by Platform Authorization.

The TPM manufacturer may inject an EPS and, under controlled conditions, compute the asymmetric EKs

that the TPM would generate given specific input parameters. Only the TPM vendor may inject an EPS.

When an EPS is replaced, all objects in the Endorsement Hierarchy are invalidated, and certificates

associated with the EKs generated from that EPS are no longer useful. This means that certificates for

new EPS-based EKs may be needed. The environment in which this process occurs may not provide

assurance that the EKs are generated from a genuine TPM. To support recertification in such an

environment, the TPM allows cross certification of keys between the Platform hierarchy and the

Endorsement hierarchy under control of the platform firmware. Cross certification allows a chain of trust to

be maintained as the seeds are changed.

When a platform enters the distribution channel, it is expected to have a certificate for at least one EK for

the TPM on that platform.

Either endorsementAuth or endorsementPolicy is required to use the EPS for creation of a Primary Object

in the Endorsement hierarchy.

 Platform Primary Seed (PPS)

The PPS is used to generate the hierarchy controlled by platform firmware. The hierarchies derived from

this seed are for exclusive use by platform firmware and should not be made available to user-installable

software (such as, OS and applications).

NOTE 1 The platform firmware may be changed because of actions by a person with possession of the
platform, but that is not included in the definition of user -installable software.

The TPM creates a PPS whenever it is powered on and no PPS is present. TPM2_ChangePPS() may

change the PPS (replace it with a new PPS), but this requires authorization by Platform Authorization.

A PPS may be injected but only by the TPM manufacturer.

Platform Authorization is required to use the PPS to create a Primary Object in the Platform hierarchy.

The authorization for use of objects in the PPS hierarchy should use a policy containing a reference to

platformAuth and not be based on a key-specific authorization value.

NOTE 2 The TPM does not enforce this imperative.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 3 A simple way to achieve this control is to create a policy that references platformAuth in a
TPM2_PolicySecret(). If the only component of the policy is TPM2_PolicySecret() referencing
TPM_RH_PLATFORM, the policy may be the same for all objects in the Platform hierarchy and for
all platforms that implement the chosen policy hash.

 Storage Primary Seed (SPS)

The SPS is used to generate hierarchies controlled by the platform owner. This seed generates the keys

that serve as Storage Root Keys for normal OS and application use.

The TPM creates the SPS whenever it is powered on and no SPS is present. TPM2_Clear() may be used

to change the SPS if the TPM owner wants to ensure that no previously generated keys in the Storage

hierarchy may be used in the future.

Changing the SPS invalidates all objects in the Storage Hierarchy and they cannot be recreated.

Changing the SPS also invalidates all objects in the Endorsement Hierarchy and only the Primary Objects

in the Endorsement Hierarchy may be recreated.

 The Null Seed

The Null Seed is set to a random value on every TPM reset. The Null Seed can be used to generate

hierarchies (primary objects and children of primary keys) that are only usable until the next TPM reset.

Objects in the null-hierarchy cannot be made into persistent objects. However, in other respects objects in

this hierarchy behave like objects in the other hierarchy.

14.4 Hierarchy Proofs

The TPM uses a proof value to prove that it created or checked an externally provided value. A proof

value is associated with a hierarchy and is statistically unique. The proof values are used in tickets. The

tickets use the hierarchy-specific proof values. A ticket may not be used when its associated hierarchy is

disabled.

EXAMPLE 1 The TPM may validate asymmetrically signed data. After doing so, it produces a ticket that is an
HMAC over the signed data, with the HMAC key being a proof value. This proves to the TPM that it
has already checked the asymmetric signature, so it does not have to do so again. Subsequently,
when the TPM needs to check that the data was properly signed, it may use symmetric cryptography
(a hash) rather than asymmetric cryptography to validate the signature.

EXAMPLE 2 When the TPM performs TPM2_ContextSave() on an object in the Storage hierarchy, it may include
the Storage hierarchy proof (shProof) in the object’s integrity value. When the SPS is changed,
shProof will change so that the saved contexts may not be reloaded.

A Platform hierarchy proof (phProof), used for objects associated with the Platform hierarchy. phProof

changes when the PPS changes. An shProof, used for the Storage and Endorsement hierarchies,

changes when the SPS changes.

NOTE It is possible to create objects in the Endorsement Hierarchy that are not Primary Objects. Those
Ordinary Objects are considered to belong to a specific TPM Owner. A change of the SPS indicates
a change of Owner for the TPM. Inclusion of ehProof in the protection of Ordinary Objects in the
Endorsement Hierarchy ensures that those Objects will be deleted when the Owner changes,
because ehProof also changes when the Owner changes.

A proof is a value that may be kept in permanent storage on the TPM or it may be regenerated from the

PPS or SPS on each boot or as needed. A proof value is never stored off the TPM in any form. Hierarchy

proof values are only used as an HMAC key if the result of the computation is stored off the TPM.

Examples are saved contexts and tickets. A hierarchy proof value may be used in other computations as

long as the result of the computation does not leave the TPM.

Trusted Platform Module Library Part 1: Architecture

Page 76 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The TPM should produce proof values that are the larger of either

• the size of the largest digest produced by any hash algorithm implemented on the TPM, or

• twice the size of the largest symmetric key supported by the TPM.

EXAMPLE 3 If the TPM implements SHA384 and AES256, the proof value will have a size of 512 bits.

NOTE According to SP800-57, the security strength of SHA256 in an HMAC function equals 256 bits. Since
security strength is not improved when the key size is larger than the digest size, the
recommendation for proof size provides the appropriate strength when the TPM is implementing
balanced algorithm sets. A TPM using SHA256, ECC256, and AES128 is balanced, and the proof
value is 256 bits.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 TPM Handles

15.1 Introduction

TPM resources are referenced by handles that uniquely identify a resource that occupies TPM memory —

either RAM or NV. A handle is a 32-bit value. Its most significant octet identifies the type of referenced

resource. At any given instant, its low-order 24 bits identify a unique resource of that type. The actual

resource identified by the low-order 24 bits may change with time.

A specific handle value may refer to only one TPM-resident resource at a time.

15.2 PCR Handles (MSO=0016)

To reduce confusion, PCR are assigned handles that have the same values as in previous versions of the

specification. A PCR handle is an Index into an array of PCR. A PCR’s Index and handle value are the

same.

15.3 NV Index Handles (MSO=0116)

An NV Index is associated with a persistent TPM resource created by TPM2_NV_DefineSpace().

15.4 Session Handles (MSO=0216 and 0316)

The TPM assigns session handles when an authorization session is started (TPM2_StartAuthSession()).

An HMAC session is assigned a handle with an MSO of 0216 and a policy session is assigned a handle

with an MSO of 0316. Each authorization session handle is associated with a unique context that may

exist in only one place at a time: either on the TPM in a Shielded Location, or in a saved context as a

Protected Object. The handle remains associated with the session as long as the session exists and does

not change when the session is context-saved and reloaded.

The low order 3 octets of each session handle are unique. They are assigned interchangeably to HMAC

or policy sessions but to only one at a time.

EXAMPLE 1 If a policy session has a value of 03 00 00 0116, then an HMAC session with a value of 02 00 00 0116
will not be assigned at the same time.

NOTE 1 The policy and session handles are assigned from a common pool of handle values.

When TPM2_GetCapability() is used to obtain a list of sessions that are currently loaded on the TPM, the

caller would use a handle with an MSO of 0216. While this would normally be an HMAC handle reference,

the TPM will respond with a list that includes both HMAC and policy sessions. The handles will be

returned in ascending order of the low-order three octets.

EXAMPLE 2 A list of loaded handles returned by the TPM in response to a TPM2_GetCapability(capability =
TPM_CAP_HANDLES, property = 02 00 00 0016), the TPM might return the list: 02 00 00 0216,
03 00 00 0416, and 02 00 00 0516

When TPM2_GetCapability() is used to obtain a list of sessions that are active but not on the TPM, the

caller would use a handle with an MSO of 0316 which normally would reference a policy session. The

TPM will respond with a list of session handles that are in use, but not on the TPM. Since the TPM does

not keep a record of whether the saved session context was an HMAC or policy session, all of the

handles in the list will have an MSO of 0216.

The TPM is required to maintain a list of all, currently assigned session handles as well as the correct

"version number" for any saved session contexts.

Trusted Platform Module Library Part 1: Architecture

Page 78 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 2 the "version number" is how the TPM prevents replay of an authorization.

When an authorization session is no longer needed, TPM2_FlushContext() may be used to delete all

context associated with the session from TPM memory (see 30.6). The session handle for this command

may use an upper octet of either 0216 or 0316.

NOTE 3 Flushing a session context deletes any data in the TPM relating to the context and frees the handle
associated with that context and invalidates the version number of any saved context.

NOTE 4 An alternative method of flushing a session context exists that is not available for other entities. On
the last use of the session, the caller may indicate (in one of the session attributes) that the session
is no longer needed. If the command completes successfully, the TPM will complete the response
computations for the session and delete the session context from TPM memory (see 18.6.4).

All session contexts in TPM memory are flushed on any TPM2_Startup(). The saved session contexts

remain valid until a TPM Reset.

15.5 Permanent Resource Handles (MSO=4016)

Fixed resource handles refer to Shielded Locations that are always associated with the same handle.

These resources have handles with an MSO of 4016. Examples of these resources are Owner, Platform,

and Endorsement hierarchy controls and the Lockout authorization value.

Another type of permanent resource handle is the vendor-specific authorization value. These optional

resources may be populated with authorization values that are known only by the TPM manufacturer or

some other privileged entity. The update of these authorization values is TPM-manufacturer-dependent.

If present, a vendor-specific authorization value can be used as a bind value within an authorization

session or to authorize a policy using the TPM2_PolicySecret command. In the former case, an entity that

knows the authorization value could create an auditable authorization session that only that entity could

execute. In the latter case, the entity could create and/or use TPM resources with an authorization policy

that only that entity could execute.

Since vendor-specific authorization values might be usable by an entity who knows them to identify the

TPM, the use of these authorization values is under the control of the privacy administrator. These

authorization values are only usable when the Endorsement Hierarchy is enabled as described in 13.5.

NOTE A use case for the vendor-specific authorization values is to recover in the field from a flaw in the
TPM firmware. For example, TPM vendors may provide a mechanism that updates one or more of
these authorization values based on the measurement of the TPM firmware. This update mechanism
could be used to give the manufacturer confidence that a valid, uncompromised version of the TPM
firmware is running. In this scenario, if the manufacturer wished to provide a certificate for an
endorsement key generated in the field after a field upgrade to a trusted firmware version occurred,
the manufacturer could use an auditable authorization session using the vendor-specific
authorization value to verify the properties of the endorsement key and then create a certificate for
that new endorsement key.

15.6 Transient Object Handles (MSO=8016)

The TPM assigns Object handles when an Object is loaded or when the Object’s persistence is changed

(TPM2_EvictControl()). Transient Objects in TPM RAM have handles with an MSO of 8016; they may have

a different value for the three LSOs each time the Object is used. This is because the Object’s context

may have been swapped out and the TPM assigned a new handle when the object was swapped back in.

The TRM ensures that the handle references the correct object.

All Transient Objects are flushed from TPM memory on any TPM2_Startup(). A loaded Transient Object

context may be flushed from TPM memory using TPM2_FlushContext() and indicating the handle of the

loaded context to be flushed.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.7 Persistent Object Handles (MSO=8116)

TPM2_EvictControl() may make a Transient Object into a Persistent Object. A Persistent Object, placed

in the TPM’s NV memory, is not cleared by a TPM2_Startup().

Making an Object persistent requires either Platform Authorization or Owner Authorization.

When the TPM changes a Transient Object to a Persistent Object, the caller indicates the handle to be

assigned to the Persistent Object. The MSO of the handle is required to be 8116. The next most significant

bit is required to be CLEAR if the authorization is provided using Owner Authorization and SET if the

authorization is provided using Platform Authorization. If the handle is not already in use, and space is

available, a persistent copy of the Object is created and assigned the handle provided by the caller. This

handle always references the same Persistent Object as long as it remains persistent. The handle

assigned to a Persistent Object may be assigned to a new Persistent Object if the first Object is deleted

from persistent storage.

Trusted Platform Module Library Part 1: Architecture

Page 80 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Names

The Name of an entity is its unique identifier. The handle associated with an object may change due to

context management (TPM2_ContextSave() / TPM2_ContextLoad()), but the Name of an object remains

constant. The Name associated with an NV Index will change based on changes to the attributes of the

Index.

EXAMPLE When an NV Index is initially defined, it will have a Name for an Index with TPMA_NV_WRITTEN
CLEAR. After the Index is written, the Name will change to reflect that TPMA_NV_WRITTEN is SET
for the Index.

When an NV Index becomes locked (TPMA_NV_WRITELOCKED or TPMA_NV_READLOCKED is SET),

the Name of the NV Index changes. This has two implications:

The caller should use its copy of the NV public area and calculate the Name before using it in an HMAC

authorization calculation. Otherwise, an invalid authorization may trigger the dictionary attack protection

depending on TPMA_NV_NO_DA.

The TPM must check access control before checking authorization. For example, it should reject a read to

a read locked NV Index before doing an authorization check that might trigger the dictionary attack

protection.

The method of computing the Name for an entity varies according to the entity type that is the MSO of the

handle. Table 3 shows the method and the handle’s MSO for different entity types.

When the computation of a Name uses a hash algorithm, the algorithm identifier is included in the Name

structure. If the Name is a handle, the Name is only the handle value.

Table 3 — Equations for Computing Entity Names

MSO of
Handle Entity Type Equation for Computing the Name

0016 PCR

 Name ≔ handle

No hash is performed on the handle to produce the name and the name is only
the size of the handle.

0216 HMAC Session

0316 Policy Session

4016 Permanent Values

0116 NV Index

 Name ≔ nameAlg || HnameAlg (handle→nvPublicArea)
where

nameAlg algorithm used to compute Name

HnameAlg hash using the nameAlg parameter in the NV Index

location associated with handle

nvPublicArea contents of the TPMS_NV_PUBLIC associated with

handle

8016 Transient Objects(1)
 Name ≔ nameAlg || HnameAlg (handle→publicArea)
where

nameAlg algorithm used to compute Name

HnameAlg hash using the nameAlg parameter in the object

associated with handle

publicArea contents of the TPMT_PUBLIC associated with handle

8116 Persistent Objects

NOTE 1) The Name of a sequence object is an Empty Buffer (see 32.4.5).

When an object is created, a "template" for the public area is used to define the properties for the new

object. That template has the structure of an object's public area. The Name of a public area template is

computed in the same way as the Name of a Transient Object.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 PCR Operations

17.1 Initializing PCR

All platform configuration registers (PCR) are reset to their default initial condition on TPM Reset and

TPM Restart. Some PCR may be designated as being preserved by TPM Resume. Those that are

preserved are restored to the state that they had at the last TPM2_Shutdown(STATE) operation. When

TPM2_Startup() completes successfully, PCR that are not designated as being preserved by TPM

Resume will be in their default initial condition.

If allowed by its attributes, a PCR may also be reset by TPM2_PCR_Reset() or by a Dynamic Root of

Trust (D-RTM) sequence (see 34.2). PCR attributes are defined in a platform-specific specification. They

determine the reset value of a PCR as well as the localities required to perform the reset.

The default initial condition for any PCR, other than PCR[0], is either all bits CLEAR or all bits SET. For

PCR[0], the default initial condition may all bits CLEAR, all bits SET, the locality at which TPM2_Startup()

was received, or an indicator that the first measurement came from an H-CRTM. Other platform types

may use other means of identifying the locality of the access.

A platform-specific specification may choose from the options list above.

EXAMPLE 1 A platform-specific specification may designate that the default initial condition for PCR[0-16] is all
zeros, and for PCR[17-20], it is all ones.

EXAMPLE 2 A platform-specific specification may designate that the default initial condition for PCR[0] is the
locality indicator and that PCR[1-16] have an initial condition of all zeros.

NOTE The locality indicator is an integer value between 0 and the maximum locality implemented on a
TPM. Currently, the maximum hardware locality is 4. In a TPMA_LOCALITY, a locality of four would
be represented by the octet 0001 00002. When encoded for a PCR initial value, locality 4 would be
represented by the octet 0000 01002.

EXAMPLE 3 A virtual TPM may use a unique identifier for each of the software entities that might access it. If
specific software is associated with a specific PCR, then the reset value of that PCR may be the
unique identifier of the software that is allowed to change it.

TPM2_PCR_Reset() requires that the proper authorization be provided for the operation (see 17.7).

17.2 Extend of a PCR

Other than reset, described above, the only way to change a PCR value is to Extend it. The Extend

operation on a PCR is defined as

 PCRnew ≔ Halg (PCRold || digest) (13)

After each Extend, the PCR value is unique for the specific order and combination of digest values that

were Extended.

Except for D-RTM, authorization is required to extend a PCR (see 17.7).

17.3 Using Extend with PCR Banks

TPM2_PCR_Extend() has a handle to indicate the PCR to Extend and the data to be Extended. Extended

data is a structure that contains one or more digests along with the algorithm identifier for the digest(s).

Each digest is Extended to the PCR bank that has the same algorithm. If no digest data is provided for

one of the PCR banks, no change is made to the PCR in that bank.

Trusted Platform Module Library Part 1: Architecture

Page 82 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The TPM should perform the following operation for each algorithm in which pcrNum is defined:

 PCR.digest[pcrNum][alg]new ≔ Halg (PCR.digest[pcrNum][alg]old || digest) (14)

where

Halg hash function using the algorithm associated with the PCR instance

PCR.digest digest value in a PCR

pcrNum PCR numeric selector

alg PCR algorithmic selector

digest digest part of the list entry that has the same algorithm identifier as the

PCR bank

EXAMPLE If a TPM supports three PCR banks (such as, SHA-1, SHA256, and SHA512), then an Extend to
PCR[2] with a SHA-1 digest and SHA256 digest would be Extended to PCR[2] in the SHA-1 bank,
and the SHA256 digest would be Extended to PCR[2] in the SHA256 bank. There would be no
change to any PCR in the SHA512 bank.

17.4 Recording Events

An alternative way to record log entries is to input the full log entry to the TPM rather than performing the

digests outside the TPM. This performs a hash on the log entry for each of the hash algorithms supported

by the TPM. Events no larger than 1024 octets may use TPM2_PCR_Event(). Events exceeding 1024

octets may use the sequence commands: TPM2_HashSequenceStart(), TPM2_SequenceUpdate(), and

TPM2_EventSequenceComplete()).

TPM2_PCR_Event() and TPM2_EventSequenceComplete() return a list of tagged digests. The digests

are the digests of the event data using each implemented hash algorithm.

EXAMPLE For a TPM implementing two algorithms (such as, SHA256 and SM3), the event commands return a
list of two tagged digests.

TPM2_EventSequenceComplete() requires that proper authorization be provided (see 17.7).

Recording of an event may also occur as the result of a

_TPM_Hash_Start/_TPM_Hash_Data/_TPM_Hash_End sequence (an H-CRTM Event Sequence). The

indications for the H-CRTM sequence come from the TPM interface and not through the command buffer.

On receipt of _TPM_Hash_Start, the TPM will created an Event Sequence context. If no object context

space is available when the TPM receives _TPM_Hash_Start, the TPM will flush a context (vendor's

choice) in order to create the Event Sequence context. _TPM_Hash_Data is used to update the H-CRTM

Event Sequence context and _TPM_Hash_End completes the sequence. The digest or digests computed

during the H-CRTM Event Sequence will be extended into the PCR designated by the relevant platform-

specific specification. A platform-specific specification may allow an H-CRTM Event Sequence before or

after TPM2_Startup(). An H-CRTM Event prior to TPM2_Startup() affects PCR[0]. After TPM2_Startup(),

an H-CRTM Event affects PCR[17].

17.5 Selecting Multiple PCR

TPM2_PCR_Event() implicitly selects all PCR with the same Index. Some commands allow the selection

of multiple PCR in different banks. Examples are TPM2_PCR_Read(), TPM2_Quote(), and

TPM2_PolicyPCR() that allow the caller to make arbitrary selections of PCR in multiple banks.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

When a command allows multiple PCR to be selected, a list of selectors is used. Each entry in the list

consists of an algorithm ID followed by a bit array. Each bit in the bit array corresponds to one PCR. If a

bit is SET, then the indicated PCR in the bank corresponding to the algorithm ID is selected.

The bit correspondence to PCR is that the bit corresponding to PCR[n] is the (n mod 8) bit in the

n/8 octet of the array.

EXAMPLE An array to select PCR[0] and PCR[13] in a TPM with 16 PCR would be 01 20 16. The bit for PCR[0]

is the 0 mod 8 = 0th bit in the 0/8 = 0th octet (the octet with the 0116 value) and the bit for PCR[13]

is the 13 mod 8 = 5th bit in the 13/8 = 1st octet (the octet with the 2016 value).

The list of selectors is processed in order. The selected PCR are concatenated, with the lowest numbered

PCR in the first selector being the first in the list and the highest numbered PCR in the last selector being

the last.

TPM2_PCR_Read() returns a list of PCR values that correspond to the PCR selected in the selector list.

TPM2_Quote() and TPM2_PolicyPCR() digest the concatenation of PCR.

It is not an error for the PCR selection to indicate a PCR that is not implemented in a bank. No value is

included in the concatenation of PCR for an unimplemented PCR. It is an error if the algorithm ID selects

a hash algorithm that is not implemented.

17.6 Reporting on PCR

 Reading PCR

TPM2_PCR_Read() reads the current values of a selection of PCR. For this command, the caller

indicates a list of PCR to be read using a PCR selection structure. This structure is an array of lists. Each

array entry has a hash identifier and a bit field. The hash identifier indicates the bank of PCR, and the bit

field indicates the PCR being selected in the bank.

In the response, the TPM provides a PCR selection structure and a list of PCR values. The PCR selection

structure indicates the PCR that are present in the return structure. The size of the requested return data

structure may not fit in the available TPM output buffer. In that case, the list of PCR values is truncated,

and the response PCR selection structure indicates the PCR that were returned. If the returned structure

does not contain all of the PCR, the caller may modify the selection structure and make another read

request to get additional PCR values.

Since the PCR may change between the calls to collect the full set of PCR of interest, the TPM returns a

counter that increments on most invocations of TPM2_PCR_Extend(), TPM2_PCR_Event(),

TPM2_EventSequenceComplete(), or TPM2_PCR_Reset() (see 17.9 for exemptions). If this counter

value changes between calls, the sequence may need to be repeated until the desired PCR are all

returned with no change to the counter value.

 Attesting to PCR

In some cases, it is necessary for selected PCR to be in a specific state. When indicating that state, it is

not desirable to have to list the contents of each PCR. Instead, a digest of a concatenation of PCR (a

composite PCR digest) will indicate the current contents of all of the PCR of interest.

The PCR to be included in the composite digest are selected by the same type of structure used for

TPM2_PCR_Read(). The selection structure is first filtered so that unimplemented PCR are not in the

selection structure. Then, a composite digest of all of the selected PCR is created. Finally, the filtered

selection structure and the composite digest are hashed to create the final digest value. That digest may

be compared to a required digest (TPM2_PolicyPCR()) or returned in an attestation (TPM2_Quote()).

Trusted Platform Module Library Part 1: Architecture

Page 84 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

To validate an attestation quote, a remote caller will typically use the PCR to recalculate the digest value.

The TPM 1.2 quote command returns the PCR values along with the digest. In TPM 2.0, because of hash

agility, the PCR set could have exceeded the response buffer size. Therefore, TPM2_Quote() returns only

the digest, and the PCR values must be retrieved separately.

This can lead to a race condition. The PCR values can change between the time of the quote and the

time they are read. There are several solutions. The PCR can be read before and after the quote to

ensure that they did not change. Alternatively, the quote digest can be validated locally against the PCR

before returning results to a remote caller, and the quote can be rerun until the validation succeeds.

17.7 PCR Authorizations

TPM2_PCR_Reset(), TPM2_PCR_Extend(), TPM2_PCR_Event(), and TPM2_EventSequenceComplete()

require authorization for the PCR being modified. The type of the authorization may differ based on the

PCR being modified. A PCR may be defined as having a fixed, EmptyAuth; a variable authValue; or a

variable authPolicy.

The authorization (authValue or authPolicy) for a PCR may apply to a set of PCR. That is, several PCR

may be designated as using the same authorization value so that changing the authorization value

(authValue or authPolicy) of any PCR in the set will change the value for all PCR in the set. A set of PCR

that are authorized by an authValue are in an authorization set. A set of PCR that are authorized by an

authPolicy are in a policy set.

The type of authorization associated with each PCR is fixed by a platform-specific specification. For each

set, the platform-specific specification defines the PCRs that are in the set. A PCR should not be in more

than one policy set or one authorization set.

A PCR may be in both a policy set and an authorization set. If it is in both, the only way to use the

authValue of the authorization set is with a policy that contains TPM2_PolicyAuthValue() or

TPM2_PolicyPassword().

An indication of the PCR in an authorization set may be read using TPM2_GetCapability(capability ==

TPM_CAP_PCR_PROPERTIES, property == TPM_PT_PCR_AUTH) and the PCR in a policy set may be

read using TPM2_GetCapability(capability == TPM_CAP_PCR_PROPERTIES, property ==

TPM_PT_PCR_POLICY).

NOTE 1 The reference implementation only provides support for one set of each type. If additional sets are
needed, the property types for TPM_CAP_PCR_PROPERTIES may be extended.

NOTE 2 If a PCR is in multiple policy or authorization sets, the TPM will use the policy or authorization of the
lowest numbered set. That is, the set with the lowest TPM_PT_PCR_POLICY or
TPM_PT_PCR_AUTH property.

To authorize a PCR, the correct authorization type is required, which will depend on the authorization set

of a PCR. In all cases, The EmptyAuth value may be provided in either an HMAC session using a zero-

length authValue in the HMAC calculation or as a zero length password.

 PCR Not in a Set

If the PCR is in no set, then the authorization may only be with an EmptyAuth value.

 Authorization Set

If the PCR is in an authorization set, then the authValue of the PCR is provided either with an HMAC

session or in a password. When a PCR has a fixed, EmptyAuth value, an authorization session is still

required.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

When a PCR has a variable authValue, that authValue is reset to an EmptyAuth on each

STARTUP(CLEAR). It is preserved across STARTUP(STATE). A variable authValue may be changed

using TPM2_PCR_SetAuthValue() by an entity with knowledge of the authValue.

 Policy Set

An authPolicy for a policy set has both a hash algorithm and a digest value.

If the hash algorithm for the authPolicy is TPM_ALG_NULL, the policy has not been set. This uninitialized

policy set will use an EmptyAuth.

If the digest algorithm for the policy is not TPM_ALG_NULL, then the policy set is an initialized policy set.

If the PCR is in an initialized policy set, then the authorization may only be given with a policy session.

The hash algorithm for all policy sets is set to TPM_ALG_NULL by TPM2_ChangePPS(). The algorithm

and authPolicy associated with a PCR may only be changed using TPM2_SetAuthPolicy() by an entity

with knowledge of the Platform Authorization.

If an HMAC session or a password is used for a PCR in an initialized policy set, then the TPM will return

an error (TPM_RC_AUTH_TYPE). If a policy session is used for a PCR that is not in an initialized policy

set, then the TPM will return an error (TPM_RC_POLICY_FAIL). Neither of these two failures would

cause an update of the dictionary attack protection.

 Order of Checking

When determining the correct type of authorization for a PCR, the TPM will use the authorization type. If

the authorization is a password or HMAC session, The TPM will check to see if the PCR is in an

authorization set.

17.8 PCR Allocation

A TPM may support reallocation of the PCR by the platform. To change the allocation of PCR, the

platform would use TPM2_PCR_Allocate(). The allocation structure has a PCR selection for each

implemented hash algorithm. To allocate a PCR in a bank, the corresponding bit would be SET in the

selection for that bank.

The TPM2_PCR_Allocate() changes to PCR allocation take effect upon the next _TPM_Init and persist

until the next TPM2_PCR_Allocate().

NOTE 1 Because of RAM limitations, an implementation may not allow arbitrary allocation of PCR within a
bank. This does not create a deployment issue as the platform is expected to be able to manage the
TPMs that would be attached to that platform.

An allocation may not be made for PCR if the attributes for the PCR are not defined by the platform-

specific specification of that TPM.

NOTE 2 The attributes for a PCR include the Startup() initialization value, the locality for reset, and th e
locality for extend.

There is a requirement that a bank exists for each hash algorithm but there is no requirement that the

bank have any PCR (that is, all selection PCR selection bits for the bank may be CLEAR).

It is a valid implementation for the TPM to ship with a specific PCR allocation that is not changeable. If the

TPM does not allow the changing of the allocation, it would not implement TPM2_PCR_Allocate().

Trusted Platform Module Library Part 1: Architecture

Page 86 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.9 PCR Change Tracking

To support the use of PCR in policy the TPM maintains a pcrUpdateCounter. In general, this counter is

incremented each time a PCR is modified (either extended or reset). This counter is used when a policy

requires that PCR have a specific value (see 19.7.7.6).

A platform-specific specification may designate that updates of selected PCR will not cause a change to

pcrUpdateCounter.

A bitmap of the PCR that can be updated without changing pcrUpdateCounter can be read with

TPM2_GetCapability(capability == TMP_CAP_PCR_PROPERTY, property == TPM_PT_PCR_NO_INCREMENT).

17.10 Other Uses for PCR

The PCR-related commands defined in this library cover common use cases: for example, logging of

components during boot or a runtime-switch in the TCB. Platform-specific specifications define PCR

attributes that control this behavior and describe how PCR should be used by external software.

However, PCR are designed for more generalized representation of platform state, and platform-specific

specifications may define additional PCR behaviors that capture this. Generally, a platform specification

may define a PCR to represent any value that is authoritatively known by the TPM or has been securely

communicated to the TPM. For instance, a TPM for a “trusted lock” might define a PCR that has value of

zero to indicate that a door is closed, and one to indicate that a door is open or a virtual-TPM specification

might define a PCR that has a value that represents some characteristic of the virtual machine that is

issuing the TPM command. This specification demands no particular behavior or value-semantics for

such PCR.

NOTE A PCR can "represent" a value either by having the PCR set to that value or by having the PCR
extended with the value. In the case of the " trusted lock," it is more likely that the PCR would
contain either a zero or one to represent the state of the lock than that each change to the lock be
extended to a PCR.

This does not mean that the platform-specific working groups are allowed to define new commands to

operate on PCR.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 TPM Command/Response Structure

18.1 Introduction

A command is a TPM Protected Capability that indicates an operation to be performed by the TPM. It

contains from one to five components, in the following order:

1) a command header that indicates the overall size of the command, the command code, and a tag

indicating whether the Authorization Area is present;

2) a command-dependent number (zero to three) of handles identifying the Shielded Locations with/on

which the command (Protected Capability) operates;

3) a 32-bit value indicating the size of the Authorization Area;

4) an Authorization Area containing one to three session structures; and

NOTE Components 3 and 4 always occur together. The authorization size parameter is not present if there
are no sessions in the Authorization Area.

5) a command-dependent parameter area containing qualifying information for the command.

A response contains

1) a response header that indicates the overall size of the response, the response code, and a tag

indicating whether the Authorization Area is present;

2) a command-dependent number (zero or one) of handles identifying the Shielded Locations with/on

which the command (Protected Capability) operates;

3) a 32-bit value indicating the size of the parameter area;

4) a command-dependent parameter area containing the values produced by the TPM; and

5) an Authorization Area containing one to three session structures.

NOTE Components 3 and 5 always occur together. That is, if the Authorization Area is empty, the 32 -bit
value for the parameter size will not be present.

As with the command, the formats for the remaining areas of the response are dependent on the value of

the associated command code. The session and parameter area order are reversed in a response.

The ordering of authorization structures and command-dependent parameters is intended to minimize

TPM complexity. In a command, the authorization structures are first in order that the TPM can generate

its authorization digests from the command-dependent parameters as they arrive. In a response,

command-dependent parameters are first in order that the TPM can use the output buffer to assemble the

command-dependent parameters prior to generating its authorization digests.

NOTE: In traditional implementations, all of the octets of a command are available at the same time so
skipping around in the data structure was not an issue. In some anticipated implementa tions, this
will not be the case and the processing of a command or response will need to be more linear.

For tables in this specification, the separators indicating the demarcations between the header, handle, authorization,
and parameter components are shown in Table 4.

Trusted Platform Module Library Part 1: Architecture

Page 88 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 4 — Separators

 Separator Meaning

 This type of separator is followed by one or more handles.

In a command, this type of separator is followed by a 32-bit
value indicating the number of octets in the Authorization Area.
In a response, it is followed by a 32-bit value indicating the
number of parameter octets (present only if tag for
command/response is TPM_ST_SESSIONS).

This type of separator is followed by one or more session
structures (present only if tag for command/response is
TPM_ST_SESSIONS).

 This type of separator is followed by one or more parameters

Figure 10 and Figure 11 show the basic layout of a TPM command and response (see 18.9 for a detailed

example command and 18.10 for a detailed example response).

header

{ handles }

Number of handles is command-dependent
and may be zero

{ authorizationSize }

{ Authorization Area }

One or more sessions

{ parameters }

Contents are commandCode-dependent

Figure 10 — Command Structure

header

{ handles }

Number of handles is command-dependent
and may be zero

{ parameterSize }

{ parameters }

Contents are commandCode-dependent

{ Authorization Area}

One or more sessions

Figure 11 — Response Structure

NOTE Not all sessions in the Authorization Area are required to be used for authorization. Sessions may
also be used for audit or parameter encryption.

18.2 Command/Response Header Fields

A command or response header always contains three values, displayed in Figure 12.

tag

commandSize or responseSize

commandCode or responseCode

Figure 12 — Command/Response Header Structure

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 tag

A tag is present in all commands sent to the TPM and in responses received from the TPM. The tag

indicates whether a command is formatted according to TPM 1.2 or this 2.0 specification. If the latter, the

tag indicates if any session data is present.

Table 5 lists the tag values used for commands and response defined in this specification.

NOTE The tags for commands defined in this specification indicate only whether the com mand uses one or
more sessions, and do not indicate the number of sessions present in the Authorization Area. Each
session structure that uses a variable session handle follows the same format, which may be parsed
to find the start of the next session.

Table 5 — Tag Values

Value Description

TPM_ST_NO_SESSIONS This value indicates that the command or response is formatted according
to this specification and that the Authorization Area is empty. It is used in a
response if the command used this tag or if the command did not complete
successfully.

TPM_ST_SESSIONS This value indicates that the command or response is formatted according
to this specification and that the Authorization Area contains one or more
authorizations. It indicates that the authorizationSize value is present; in a
response, it indicates that the parameterSize value is present.

 commandSize/responseSize

The commandSize/responseSize value indicates the total number of octets of this command/response,

starting with the first octet of tag.

 commandCode

The commandCode appears only in the command to the TPM. It indicates the operation that the TPM

should perform and the formats of the handle and parameter areas for the command and response. The

commandCode parameter is included in the command parameter hash (cpHash) and the response

parameter hash (rpHash).

 responseCode

The responseCode appears only in the response from the TPM. A responseCode of

TPM_RC_SUCCESS (zero) indicates that the TPM has successfully completed the command and,

depending on the command format, that the handle, parameter, and authorization components are

present.

A non-zero responseCode indicates an error or fault. In this case, tag will be TPM_ST_NO_SESSIONS,

and responseSize is 10, indicating that no octets follow the responseCode. No handle, parameter, or

session response components are present.

18.3 Handles

Handles are TPM-assigned values that let the caller indicate the TPM-resident structure that a command

is to manipulate. That is, the handle identifies the Shielded Location with/on which a Protected Capability

is to operate. Some TPM commands (such as, TPM2_Startup()) require no handles.

Trusted Platform Module Library Part 1: Architecture

Page 90 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The number of handles in the command and in the response is implied by the commandCode. It also

indicates the command handles that have an associated authorization session. Handles that require

authorization in an associated authorization session are listed ahead of handles that do not have an

associated authorization session.

EXAMPLE TPM2_ObjectChangeAuth() has two handles, one (objectHandle) that uses an authorization session,
and one (parentHandle) that does not. The standard command syntax requires that objectHandle
occur first.

A response may have handles only if the responseCode is TPM_RC_SUCCESS.

The architectural limit for the number of handles in the handle area is seven. This limit is determined by

the error-reporting scheme.

NOTE No currently defined command uses more than three handles.

18.4 Parameters

The commandCode indicates the structure of the optional handle and parameter areas. The contents of

these parameter areas differ for commands and responses. Some TPM commands (such as,

TPM2_Clear()) require no parameters.

All parameter values and the commandCode are included in the cpHash or rpHash. authorizationSize is

not included in the cpHash, and parameterSize is not included in the rpHash.

NOTE 1 If a parameter is encrypted, it is included in the cpHash/rpHash after encryption. Because audit also
uses cpHash and rpHash, audit of an encrypted session, although valid, is unlikely to be useful at
the application level.

A response may have parameters only if the responseCode is TPM_RC_SUCCESS.

The architectural limit for the number of parameters in the handle area is 15. This limit is determined by

the error-reporting scheme.

NOTE 2 This is the limit of parameters in the parameter list, not the number of values that may be in the
parameter area. If a command needs more than 15 parameters, a new structure may be defined th at
encapsulates two or more of those parameters into a single structure, which may then be
unmarshaled as a unit. The only loss is that error reporting may not provide as much detail when a
compound parameter has an error.

As described in clause 21, for a command or response parameter to be encrypted, it must be the first

parameter and it must be a TPM2B type.

NOTE 3 In order to encrypt more than one parameter, they must be encapsulated in a TPM2B making them a
single parameter.

EXAMPLE The TPM2B_SENSITIVE_CREATE is the first parameter to TPM2_CreatePrimary(). The data member,
TPMS_SENSITIVE_CREATE, has two members, a TPM2B_AUTH and a TPM2B_SENSITIVE_DATA.
The encapsulation of them in the TPM2B_SENSITIVE_CREATE permits both to be encrypted.

18.5 authorizationSize/parameterSize

These values are only present if the tag of the command/response is TPM_ST_SESSIONS.

In a command, the authorizationSize indicates the number of octets in all of the authorization structures in

the Authorization Area of the command. authorizationSize does not include the four octets of the

authorizationSize value. The minimum value for authorizationSize is 9.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 1 The maximum value depends on the size of the largest digest produced by any hash implemented on
the TPM.

NOTE 2 The driver and the TPM use the authorizationSize field to determine the number of authorizations.
After authorizationSize bytes have been processed, there are no more authorizations.

In a response, parameterSize indicates the number of octets in the parameter area of the response and

does not include the four octets of the parameterSize value. parameterSize may have a value of zero.

authorizationSize is not included in cpHash, and parameterSize is not included in the rpHash.

18.6 Authorization Area

 Introduction

The Authorization Area is present in a command only if tag for the command is TPM_ST_SESSIONS. If

present, the Authorization Area will contain:

• zero, one, or two authorizations (session or password);

• an optional session used for decrypting data sent to the TPM;

• an optional session used for encrypting data sent by the TPM; or

• an optional session used for auditing.

If tag is TPM_ST_SESSIONS, then the Authorization Area will have at least one but no more than three

authorization/session blocks. If tag is TPM_ST_NO_SESSIONS, then there is no Authorization Area.

The number of authorization sessions that a command will have is indicated in the command schematic in

TPM 2.0 Part 3. If a handle in the handle area has the "@" decoration, then an authorization session is

required be present (an authorization session being either a password, a policy session, or an HMAC

session).

The authorization sessions occur in the order of the associated entity handles. That is, the first handle

with an "@" decoration will be associated with the first session in the Authorization Area.

Other sessions may be added to the Authorization Area. Those sessions may be designated as being for

encryption, decryption, or audit; in any combination, in any order. However, in a single command, only

one session is allowed to have the encrypt attribute, one session is allowed to have the decrypt attribute,

and one session is allowed to have the audit attribute.

A single session may be used for authorization, encryption, decryption, and audit at the same time. That

is, if a session has one handle with the "@" decoration, the associated authorization session may have

the encrypt, decrypt, and audit attributes all set. A password authorization may not be used for anything

but authorization and the TPM will return an error (TPM_RC_ATTRIBUTES) if encrypt, decrypt, or audit is

SET in a password authorization.

NOTE 1 If an authorization session has encrypt, decrypt, and audit all SET, then the command can only have
one authorization session.

Trusted Platform Module Library Part 1: Architecture

Page 92 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The combinations of attributes allowed for each session are summarized in Table 6.

Table 6 — Use of Authorization/Session Blocks

Position
password

authorization(1)(6)
authorization
session(2)(6)

encryption
session(3)

decryption
session(4)

audit
session(5)

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓

NOTES:

1) a password authorization may not be used for encryption, decryption, or audit.

2) an HMAC authorization session may also be used for encryption, decryption, and audit and a policy
authorization session may also be used for encryption and decryption

3) only one session may be designated as being used for encryption

4) only one session may be designated as being used for decryption

5) password authorization sessions and policy sessions may not be used for audit

6) authorization sessions come before sessions used only for encryption, decryption, or audit

In TPM 2.0 Part 3, the schematic for each command will indicate if it has handles and if use of those

handles requires authorizations. If there is an at symbol ("@") character in front of the handle name, then

use of the TPM resource associated with the handle requires authorization and an authorization (session

or password) will be present. An authorization will be present for each TPM resource that requires

authorization (each handle with an "@"). An additional indication that a handle requires authorization is

that, in the "Description" column of the command schematic, each handle has an "Auth Index:" entry. If

that entry says "None", then no authorization is required. If that entry is followed by a number, then the

number indicates the order of the associated authorization in the list of authorizations.

NOTE 2 Currently, no command requires more than two authorizations.

If a command requires authorizations, then those authorizations will be first in the list of

authorizations/sessions. They may then be followed by other sessions used for encryption, decryption, or

audit.

If the responseCode is TPM_RC_SUCCESS, the response has the same number of sessions in the

same order as the request. Otherwise, no authorization or audit sessions are present.

 Authorization Structure

18.6.2.1 Command

In a command, each authorization structure has the format shown in Figure 13.

session handle
A four-octet value indicating the session handle associated with this
data block (will be TPM_RS_PW for a password authorization)

size field A two-octet value indicating the number of octets in nonce

nonce If present, an octet array that contains a number chosen by the caller

session attributes A single octet with bit fields that indicate session usage

size field A two-octet value indicating the number of octets in authorization

authorization
If present, an octet array that contains either an HMAC or a password,
depending on the session type

Figure 13 — Authorization Layout for Command

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.6.2.2 Response

In a response, each session structure has the format shown in Figure 14.

size field
A two-octet value indicating the number of octets in nonce (will be zero
for a password authorization)

nonce If present, an octet array that contains a number chosen by the TPM

session attributes A single octet with bit fields that indicate session usage

size field A two-octet value indicating the number of octets in acknowledgment

acknowledgment If present, an octet array that contains an HMAC

Figure 14 — Authorization Layout for Response

Clause 19.6.7 describes the methods for creating an authorization session.

 Session Handles

Session handles are described in 15.4. They identify the session being referenced by a specific session

structure.

For a given command, the handle associated with a specific HMAC or policy session may occur only once

in the Authorization Area. The handle representing a password authorization (TPM_RS_PW) can occur

multiple times.

 Session Attributes (sessionAttributes)

Each session has a sessionAttributes octet to indicate how the session is to be applied. Table 7 explains

the meaning of the fields in this octet.

If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must be SET.

Table 7 — Description of sessionAttributes

Attribute Meaning

continueSession This attribute is used to indicate to the TPM if the session is to remain 'active' when the command
completes. If this attribute is CLEAR in the command and the command completes successfully
(TPM_RC_SUCCESS), then the session will be flushed from TPM memory and the associated
session handle will be available to be assigned to new sessions.

When the TPM responds, it will echo this attribute to indicate that the session remains open (see
the exception for password authorization below).

NOTE In this context, "echo" means that the value of a session attribute will be the same in the
response as it was in the command.

The primary purpose of this attribute is to eliminate having to do explicit flushes
(TPM2_FlushContext()) of a session when it is no longer used. Having this bit CLEAR on the last
use of the session will end it and reclaim the TPM resources assigned to this session.

For a password authorization, this attribute has no effect, as there are no TPM resources
associated with a password authorization. This attribute will always be SET in a response
associated with a password authorization.

If the audit attribute is SET, then this attribute should also be SET since the audit data will be lost
if the session is flushed.

Trusted Platform Module Library Part 1: Architecture

Page 94 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Attribute Meaning

decrypt This attribute is used to indicate to the TPM that the secrets associated with the session are to be
used to decrypt the first parameter of the command (the session-based encryption scheme is
defined in clause 21). The parameter will be decrypted after the HMAC computations are
successfully completed.

This attribute may only be SET in a command that has a sized buffer as its first parameter.

This attribute is required to be CLEAR in a password session. If SET in a password session, then
the TPM will return an error because there is no session key for the decrypt operation

This attribute is echoed by the TPM in the corresponding session in the response

This attribute may only be SET in one session per command. A session with this attribute does
not need to be associated with an entity identified in the handle area. That is, the session may be
added just for using the session's secret for parameter decryption.

This attribute can be SET in combination with any other session attribute.

encrypt This attribute is used to indicate to the TPM that the secrets associated with the session are to be
used to encrypt the first parameter of the response (the session-based encryption scheme is
defined in clause 21). The parameter will be encrypted before the TPM performs the HMAC
computations for any of the sessions.

This attribute may only be SET in a response that has a sized buffer as its first parameter.

This attribute is required to be CLEAR in a password session. If SET in a password session, then
the TPM will return an error because there is no session key for the encrypt operation.

This attribute is echoed by the TPM in the corresponding session in the response.

This attribute may only be SET in one session per command. A session with this attribute does
not need to be associated with an entity identified in the handle area. That is, the session may be
added just for using the session's secret for parameter decryption.

This attribute can be SET in combination with any other session attribute.

audit This attribute indicates that the session is being used for audit. A digest is maintained in the
session context and is updated each time the session is used with a command and audit is SET.

This attribute does not need to be SET in every use of the session but the TPM will only update
the audit data when the session is used with this attribute SET.

This attribute has no meaning for a password authorization and is required to be CLEAR.

This attribute is not allowed to be SET in a policy or trial policy session. This is because the
context of the policy session would have to increase in order to hold the additional audit digest.
This is significant overhead and, rather than require the additional memory in policy sessions, use
of audit is restricted to HMAC sessions.

After an HMAC session is started (TPM2_StartAuthSession(sessionType = TPM_SE_HMAC), this
attribute may be set in any subsequent use of the session. On the first use of the session with this
attribute set, the TPM will initialize the audit digest to 0…0 and then extend the concatenation of
cpHash for the command and rpHash for the response.

This attribute will be echoed by the TPM in the response.

This attribute may be used in combination with any other session attributes but only one session
in each command may have this attribute SET.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Attribute Meaning

auditExclusive This attribute is used to restrict use of an audit session. When this attribute is SET, the TPM will
validate that the session has been used for all auditable commands since the audit sequence was
started.

NOTE An audit sequence is started when the audit digest is reset to 0…0. The audit digest is set to
0…0 when the session is first used as an audit session and when the audit digest is reset (see
the description of the auditReset attribute below).

If the session was used for all auditable commands, then it is said to be "exclusive"(see 20.2 for
explanation of exclusive audit sessions).

If this attribute is SET and the session is exclusive, then the command will execute. Otherwise,
the TPM will fail this command to indicate to the caller that some TPM actions were not included
in the audit sequence.

Evaluation of the exclusive status is done at the start of the command. A session does not obtain
the exclusive status until the end of the command (this prevents a session from becoming
exclusive if the command fails). The implication of this processing is that, if this attribute is SET in
the command that starts the audit sequence, the command will fail because the session has not
yet become exclusive.

In a response, this attribute will be SET if the session has exclusive status. When a session is first
used as an audit session this attribute will be SET in the response as no command has executed
without this session since the start of the sequence.

This attribute may only be SET when the audit attribute is SET which excludes this attribute from
being SET on a password authorization or a policy session.

auditReset This attribute allows the caller to restart an audit sequence with a session that has previously
been used for audit. If the associated command completes successfully, the TPM will initialize the
session audit hash with 0…0 before Extending the cpHash and the rpHash. The response will
have the exclusive attribute SET.

This attribute may only be SET if audit is SET.

The TPM will echo this attribute in the response.

18.7 Command Parameter Hash (cpHash)

The command parameter hash (cpHash) is used in the computation of a command authorization HMAC

and is included in the digests of session and command audits (depending on the policy, the cpHash may

also be used in the authorization). The cpHash is computed from the parameters of the command as

follows:

 cpHash ≔ HsessionAlg (commandCode {|| Name1 {|| Name2 {|| Name3 }}} {|| parameters }) (15)

where

HsessionAlg hash function using the algorithm selected for the session when it was

initialized

commandCode command code for the command

Name1 unique identity of the entity associated with the first handle

Name2 unique identity of the entity associated with the second handle

Name3 unique identity of the entity associated with the third handle

Trusted Platform Module Library Part 1: Architecture

Page 96 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

parameters remaining command parameters

18.8 Response Parameter Hash (rpHash)

The response parameter hash is used in the computation of a response acknowledgment HMAC and is

included in the digest of session and command audits. The rpHash is computed from the parameters of

the response as follows:

 rpHash ≔ HsessionAlg (responseCode || commandCode {|| parameters }) (16)

where

HsessionAlg hash function using the algorithm selected for the session when it was

initialized

responseCode command result code

commandCode the commandCode from the command

parameters response parameters

The contents of the handles area of the response are not included in the rpHash.

NOTE An rpHash needs to be computed only when the responseCode is TPM_SUCCESS, which means
that it is redundant to include the response code. It is retained for legacy reasons.

18.9 Command Example

Table 8 shows an example of a command schematic used in this specification. The command has two

object handles (handleA and handleB). The "@" on the handleA name indicates that use of the entity

associated with the handle requires authorization. The command has at least one session to authorize

use of handleA. It will not have a session for use of handleB. The Authorization Area may have an

additional audit session and a session used only for parameter encryption. Since one session is required,

tag is TPM_ST_SESSIONS, and the authorizationSize field is present.

Although they are not shown in the command schematic, the authorizationSize value and the

Authorization Area would be present in the command buffer and be located between handleB and

dataSize.

NOTE: The Authorization Area is not shown with the command schematic because no single representation
is possible.

The command and response tables have three columns.

1) Type – This column indicates the data type of the parameter passed to the TPM in a command or

received from the TPM in a response.

2) Name – This column indicates the name of the parameter. This name is referenced in the description

of the command that precedes the command table and in the detailed actions of the command that

follows the response table.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3) Description – This column provides a limited description of the parameter and indicates the possible

options for the command.

EXAMPLE 1

Table 8 — Command Layout for Example Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Example

TPM_HANDLE @handleA

handle to use for one object of the
command

Auth Index: 1

Auth Role: USER

TPM_HANDLE handleB
handle to use for the second object

Auth Index: None

UINT32 dataSize example data size

OCTET data[dataSize] example data

Table 9 illustrates all command octets for the command in Table 8. In this example, the nonce size is 20

octets and the authorization HMAC is computed using SHA256. The values in shaded cells are not shown

in the TPM 2.0 Part 3 schematic of the command but are included in the command data sent to the TPM.

EXAMPLE 2

Table 9 — Example Command Showing authorizationSize

Offset Size Parameter Value

0 2 tag TPM_ST_SESSIONS

2 4 commandSize 209 < size in octets of the command >

6 4 commandCode TPM_CC_Example

10 4 handleA < a valid TPM resource handle>

14 4 handleB < a valid TPM resource handle>

18 4 authorizationSize 61 < size of the authorization session >

22 4 authHandle < a valid TPMI_SH_AUTH_SESSION >

26 2 nonceCallerSize 20 < size of nonce >

28 20 nonceCaller < a 20-octet random value>

48 1 sessionAttributes (continueSession=1)

49 2 hmacSize 32 <size of HMAC>

51 32 HMAC
< a 32-octet HMAC value based on
SHA256>

83 2 dataSize 32 < size of the buffer >

85 124 data[dataSize] < 124 octet buffer >

209

Trusted Platform Module Library Part 1: Architecture

Page 98 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.10 Response Example

Table 10 shows an example schematic as it would appear in TPM 2.0 Part 3. The example is for a

response sent from the TPM after successful completion of the example command in Table 8. The

response has the same number of sessions in the same order as did the command.

EXAMPLE 1

Table 10 — Response Layout for Example Command

Type Name Description

TPM_ST tag TPM_ST_SESSIONS

UINT32 responseSize

TPM_RC responseCode response code of the operation

TPM_HANDLE handle not included in the rpHash

UINT32 dataSize size in octets of the following data

OCTET data[dataSize] a returned block of information

Table 11 illustrates the full response for the command in Table 8. As in the command, the nonce size is

20 octets and the acknowledgment HMAC is computed using SHA256. The values in shaded cells are not

shown in the TPM 2.0 Part 3 schematic of the response but are present in the response data from the

TPM.

EXAMPLE 2

Table 11 — Example Response Showing parameterSize

Offset Size Parameter Value

0 2 tag TPM_ST_SESSIONS

2 4 responseSize 203 < size in octets of the response >

6 4 responseCode 0 < success >

10 4 handle < a valid TPM_HANDLE >

14 4 parameterSize 128

18 4 dataSize 124

22 124 data[dataSize] < 124 octet buffer >

146 2 nonceTpmSize 20

148 20 nonceTPM < a 20-octet random value >

168 1 sessionAttributes (continueSession=1)

169 2 hmacSize 32

171 32 HMAC
< a 32-octet HMAC value based on
SHA256 >

203

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Authorizations and Acknowledgments

19.1 Introduction

Many commands to the TPM reference TPM-resident structures and use of these structures may require

authorization. This authorization is provided in structured data that follows the command data. When an

authorization is provided to a TPM, the TPM will provide an acknowledgment.

To provide flexibility in how the authorizations are given to the TPM, this specification defines three

authorization types:

1) password;

2) HMAC; and

3) policy.

Depending on the command, zero, one, or two authorizations may be required. In a command, the

authorizations follow the handles, and in a response, the authorization replies follow the response

parameters. The command definition indicates how many authorizations are required.

19.2 Authorization Roles

For each object and NV Index, there is a set of operations that can be performed on or with that object or

NV Index. The operations are divided into groups, based on the impact of the operation on the object. To

perform an operation with or on an object in a group, the authorization specific to that group must be

provided. When performing an operation in one of the groups, the caller is acting in a specific role with

respect to that object.

The TPM supports three different authorization roles. The role and attributes determine whether a

password or HMAC can be used for authorization. A policy (if not the Empty Policy) can always be used.

1) USER – this authorization role is used for the normal uses of a key (e.g., signing with a signing key,

or loading the child of a Storage Key). Methods are defined to allow USER role authorization to be

provided either with an authorization value (authValue) or a policy. If userWithAuth is SET, then

USER role authorization may be provided with a password authorization or an HMAC session. If

userWithAuth is CLEAR, then a password and HMAC authorizations may not be used to provide

USER role authorizations. A policy session that satisfies the authPolicy of the entity may be used

regardless of the setting of userWithAuth.

NOTE 1 For USER role, an authPolicy is satisfied when the policyDigest of a policy session matches the
value of the authPolicy value of the object.

NOTE 2 If use of an object is to be gated based on PCR values, a policy session is required (see 19.7). If the
intent is that different Users have access to the object but only if the PCR are correct, then it is
likely that authorization with the authValue will be disabled; otherwise, the caller could circumvent
PCR protections simply by providing the authValue.

2) ADMIN – the object Administrator controls the certification of an object (TPM2_Certify() and

TPM2_ActivateCredential()) and controls changing of the authValue of an object

(TPM2_ObjectChangeAuth()). When an action requires ADMIN role authorization, that authorization

may be provided using the authValue of the object if the adminWithPolicy attribute of the object is

CLEAR. As with USER role authorization, ADMIN role may always be provided with a policy session

as long as the policy session satisfies the authPolicy of the object.

Trusted Platform Module Library Part 1: Architecture

Page 100 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 3 For ADMIN role, an authPolicy is satisfied when policySession→policyDigest matches the value of
the authPolicy value of the object and policySession→commandCode matches commandCode for
the authorized command.

EXAMPLE If the adminWithPolicy attribute of an object is SET, and if no branch in the object's policy equa tion
contains TPM2_PolicyCommandCode(TPM_CC_Certify), then certification of that key may not occur.

3) DUP – this authorization role is only used for TPM2_Duplicate(). If duplication is allowed,

authorization must always be provided by a policy session and the authPolicy equation of the object

must contain a command that sets the policy command code to TPM_CC_Duplicate.

19.3 Physical Presence Authorization

Authorization for some commands requires that it be provided with Platform Authorization. Authorization

for some other commands allows use of either Platform Authorization or Owner Authorization (Most of

these commands cause persistent state change of the TPM). For these commands, it is possible to

require that authorization be augmented with an out-of-band method.

For commands that require Platform Authorization and commands that require a hierarchy authorization,

it is possible to require an out-of-band authorization. This may take any number of forms, such as a

dedicated pin in the TPM, a special signaling method through the TPM interface, or any desired

alternative. Whatever the form, the out-of-band authorization is referred to in this specification as Physical

Presence (PP). This does not mean that the signaling requires a human to be physically present in order

for the indication to be provided. The term is used in this specification because it was used in previous

TPM specifications to refer to a similar concept.

The TPM maintains a table of the commands that require that PP be asserted to authorize command

execution. Only certain commands may be included in this table. If, in TPM 2.0 Part 3, the schematic for a

command has TPM_RH_PLATFORM in the "Description" column for one of the handles, then that

command can be added to the list of commands that require PP. Otherwise, it may not.

NOTE 1 In the "Description" column, TPM_RH_PLATFORM will be followed by +PP if assertion of Physical
Presence is required or "+{PP}" to indicate that assertion of Physical Presence may be required if
indicated by the table.

NOTE 2 A platform-specific specification may require that the table be initialized in a specific way. It could
even require that the table have certain commands defined to require PP confirmation even though a
PP interface is not provided on the TPM. This would serve to disable the use of that command by
the platform.

When the authorization handle is TPM_RH_PLATFORM, the TPM checks the table to see if the

command requires confirmation with PP. If so, PP is checked before the TPM performs any other

authorization checks.

TPM2_PP_Commands() is used to change the contents of the table of commands that require

confirmation with PP authorization. Authorization of the command TPM2_PP_Commands() requires that

PP be asserted and TPM2_PP_Commands() may not be removed from the list of commands that require

PP.

NOTE 3 This constraint on TPM2_PP_Commands() prevents setting or modification of the table if no PP
interface exists on the TPM.

The contents of the table may be read using TPM2_GetCapability(capability ==

TPM_CAP_PP_COMMANDS).

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

19.4 Password Authorizations

A plaintext password value may be used to authorize an action when use of an authValue is allowed. A

plaintext password may be appropriate for cases in which the path between the caller and the TPM is

trusted or when the authorization value is well known. For these instances, encryption of parameters or

the hiding of authorization values in an HMAC is not required.

NOTE 1 While it may seem relatively easy for a caller to perform an HMAC, there are situations where the
caller is resource-constrained and unable to do so. This is especially true when the calling software
does not support the hash algorithms implemented in the TPM. Additionally, authentication using a
cryptographic protocol makes it difficult to provide operating system abstractions.

A reserved authorization handle (TPM_RS_PW) indicates that the authorization is a password.

TPM_RS_PW is always available, and a separate action to create an authorization session is not

required. A password authorization does not use nonces. sessionAttributes→continueSession is ignored.

A password authorization lets the caller send more or fewer octets than are present in the object’s

authorization field. The TPM truncates any octets of zero on either of the two values before they are

compared.

If present, a password authorization is always associated with a command handle that requires

authorization as there is no session context associated with a password that would allow it to be used for

encryption or command audit.

Unlike other handles for other session types, the TPM_RS_PW session handle may be used for more

than one authorization.

Password authorization data sent to the TPM has the format shown in Table 12.

Table 12 — Password Authorization of Command

Type Name Description

TPMI_SH_AUTH_SESSION authHandle
required to be the reserved authorization session
handle TPM_RS_PW

TPM2B_NONCE nonceCaller required to be an Empty Buffer

TPMA_SESSION sessionAttributes only continueSession may be SET

TPM2B_AUTH password
authorization compared to the authValue of the TPM
entity

Table 13 illustrates the format of a password authorization in a response. This structure is provided to
ensure a one-to-one correspondence between the sessions in the command and in the response.

Table 13 — Password Acknowledgment in Response

Type Name Description

TPM2B_NONCE nonceTPM zero-length for a password authorization

TPMA_SESSION sessionAttributes
copy of the flags from the password authorization in the
command, continueSession will be SET

TPM2B_AUTH hmac zero-length buffer for a password authorization

NOTE 2 This structure is used to provide symmetry between password and other response sessions.

Trusted Platform Module Library Part 1: Architecture

Page 102 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

19.5 Sessions

A session is a collection of TPM state that changes after each use of that session. When an object

context is loaded into the TPM, multiple copies of the object context may exist both on the TPM and in

saved contexts (see clause 30). When a session context is created, only one copy of that context may

exist, either on the TPM or as a saved context. The context of a session changes on each use.

A session has a handle that is assigned by the TPM when the session is created. That handle will always

refer to the same session until the session is closed. If a handle is re-assigned to a subsequently created

session, the session context data will contain a TPM-generated nonce that makes the new instance of the

session unique, even though the handle may have been used previously. This nonce will change each

time the session is used so that previous instances of the same session can be distinguished from each

other (i.e., the nonce prevents reuse of stale session contexts).

There are three uses of a session:

1) authorization – A session associated with a handle is used to authorize use of an object associated

with a handle. If it is not a password authorization, it may also be used to provide keys for encryption

of command or response parameters. A policy session used to authorize may not also be used as an

audit session. An HMAC session used to authorize may be used as an audit session.

2) audit – An audit session collects a digest of command/response parameters to provide proof that a

certain sequence of events occurred. An audit session may also be used to provide secrets for

encryption of command or response parameters and may be used for authorization of an HMAC

session.

3) encryption – A session that is not used for authorization or audit may be present for the purpose of

encrypting command or response parameters. If an encryption-only session exists, it will follow the

authorization sessions and may come before or after a session used only for audit.

A command may have as many as three authorization blocks. Password blocks may only be used for

authorization, so the maximum number of password blocks is equal to the number of authorizations

required by the command.

19.6 Session-Based Authorizations

 Introduction

Session-based authorizations are used both for protocols that require confidentiality for the authorization

value and for audit sessions that require tracking of a sequence of commands sent to the TPM. An

authorization session also provides a means of linking the uses of the session.

There are two types of session-based authorization: HMAC and policy. Both types of session are initiated

using TPM2_StartAuthSession(). That command establishes the parameters that will be used for the

authorizations. The sessionType parameter determines if the session will be an HMAC or policy session.

When the session is started, the hash algorithm and TPM nonce size used in the session are specified by

the caller. The command may include an initial caller nonce and a salt value to generate the session key.

The parameters of each session are independent from the parameters of any other session and are

limited only by the capabilities of the TPM. When TPM2_StartAuthSession() completes successfully, the

TPM returns a handle for the session as well as the initial nonceTPM value.

Once an authorization session is established, it may be used to authorize actions in multiple commands.

The session is not ended until explicitly closed or flushed.

The secret values of a session are determined by the handles used when the session is started. The

command for starting a session allows selection of up to two object handles. One handle indicates a TPM

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

object that is used to encrypt a salt value that is sent when the session is started. A second handle

indicates an object containing a shared secret. The salt value and the shared secret are combined with a

nonce provided by the caller to create the session secrets.

NOTE Using the endorsement key for which the certificate chain has been validated as the salt key can
ensure that the caller is connected to an authentic TPM.

 Authorization Session Formats

For a session-based authorization session, the authorization structure for a command is as shown in

Table 14.

Table 14 — Session-Based Authorization of Command

Type Name Description

TPMI_SH_AUTH_SESSION authHandle the handle for the authorization session

TPM2B_NONCE nonceCaller
the caller-provided session nonce; size may be
zero

TPMA_SESSION sessionAttributes the flags associated with the session

TPM2B_AUTH hmac the session HMAC digest value

In a response, the format for the acknowledgement is as shown in Table 15.

Table 15 — Session-Based Acknowledgment in Response

Type Name Description

TPM2B_NONCE nonceTPM
the TPM-provided session nonce. Size is as
specified when the session was started.

TPMA_SESSION sessionAttributes

the flags associated with the session. This
attribute should be the same as the values in the
command except continueSession may be
CLEAR.

TPM2B_AUTH hmac the session HMAC digest value

 Session Nonces

19.6.3.1 Overview

The primary use of a nonce in a session is to prevent an authorization from being reused. When the

session is started by TPM2_StartAuthSession(), the caller indicates, among other things, the size of the

nonces to be used in the authorization HMAC and an initial nonce value (nonceCaller). After establishing

the session, the TPM returns a handle to identify the session and a TPM-generated random nonce

(nonceTPM). The TPM stores this nonceTPM in the context of the session.

Each time the session is used for authorization, the caller performs an HMAC using, along with other

parameters, the last nonceTPM for the session and a new nonceCaller for the session. The TPM then

uses the received nonceCaller and the saved nonceTPM to validate the HMAC. For a response, the TPM

uses the last nonceCaller and a newly generated nonceTPM in the HMAC. The caller then uses the

received nonceTPM and the saved nonceCaller to validate the HMAC in the response.

A nonce has a size field indicating the number of octets in the nonce followed by the nonce data. The

nonce size is not included in the HMAC computation.

Trusted Platform Module Library Part 1: Architecture

Page 104 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

19.6.3.2 Session Nonce Size

When an authorization session is created, the caller provides an initial nonce (nonceCaller). The size field

of nonceCaller is retained by the TPM and used to determine the size of all nonces generated by the TPM

(nonceTPM) in the subsequent uses of the session. The minimum size for nonceCaller in

TPM2_StartAuthSession() is 16 octets.

After the initial session setup, the caller may use any size for a nonceCaller in each use of the session.

The nonceCaller size may vary from zero (0) up to the size of nonceTPM (the initial nonceCaller size).

NOTE A TPM implementation may allow larger nonce sizes but the caller should not expect a TPM to
accept a nonce size larger than the initial nonceCaller size.

The maximum size that may be requested for nonceTPM is the size of the digest produced by the

authorization session hash.

EXAMPLE For SHA-1 the maximum size for nonceTPM is 20 octets and for SHA256 it is 32 octets.

When a session nonce is used in the authorization session HMAC, the size field of the nonce is not

included in the authorization computation. If the nonce size field is zero (0), then the nonce does not

affect the authorization HMAC value.

19.6.3.3 Guidance on Nonce Size Selection

The size of the nonce should be chosen to provide a reasonable guarantee that a TPM-generated nonce

value will not be used twice with the same sessionKey. The choice of nonce size is not related to the

number of uses of a specific authorization session but is related to the number of uses of the sessionKey.

An HMAC sessionKey is derived from the authValue kept in an object and that authValue may have a

long lifetime. To prevent replay attacks on a long-lived authValue, use of large nonces is recommended.

NOTE 1 The combined nonceCaller plus nonceTPM are what determine the anti-replay protection provided
by the nonces. Making the combined size larger than the block size of the session hash is not
particularly useful. If the caller does not have a good source of entropy for an RNG, then making the
nonceTPM the size of the digest of the session hash is recommended, so that a nonceCaller size of
zero would be satisfactory.

NOTE 2 When using a session for encryption, if a parameter is encrypted in a response to on e command and
a parameter is encrypted in the request of the next command, and they both use the same session
for encryption, then the caller should provide a nonceCaller in order to prevent the use of the same
encryption key on the input and output. A nonce of length 1 with a value of zero would suffice.

19.6.3.4 Nonce Binding

A command may have sessions other than those required for authorization. One use of an extra session

is to encrypt a command or response parameter. If an extra encrypting session were removed by an

attacker, the TPM would not properly encrypt/decrypt the data and could, as a result, fail to encrypt a

response parameter. To prevent removal of extra encrypting sessions, the nonceTPM of each of these

sessions is included in the HMAC computation of the first authorization session of a command. If an extra

session is removed by an attacker, the first authorization will fail, and the command will not be executed.

To simplify the logic in the TPM, the nonceTPM of any session used for encryption of command or

response data is included in the HMAC computation for the first session even if the encrypt or decrypt

session is also an authorization session.

NOTE If the first session is a password authorization, then the path to the TPM is trusted and there is no
need to guard against the extra session being removed, also there is probably no need for
parameter encryption when a trusted path is present.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Authorization Values

19.6.4.1 Overview

An object may have a value used to authorize various actions on the object. An authorization session is

the mechanism through which a caller proves knowledge of the authorization value (authValue) needed to

allow an action.

An authValue may be sent as a password that does not provide confidentiality (see 19.4), or in an HMAC-

based authorization session that can provide confidentiality of the authValue.

19.6.4.2 authValue Size

An authValue may be as small as zero octets but not larger than the digest size of the algorithm used to

compute the Name of the object.

EXAMPLE If the Name algorithm for an object is SHA256, then the largest authValue for the object would be 32
octets.

19.6.4.3 Authorization Size Convention

When an authValue is based on a password or passphrase, then the authValue should be the

password/phrase as long as the password/phrase is no larger than the digest produced by the nameAlg

of the object.

EXAMPLE If the passphrase is “This is a sample passphrase”, and nameAlg is TPM_ALG_SHA256, then the
authValue is 27 octets long containing the value “This is a sample passphrase”.

Trailing octets of zero are to be removed from any string before it is used as an authValue.

If the password/phrase, with trailing zeros removed, is longer than the digest produced by the nameAlg of

the object, then the password/phrase – with trailing octets of zero removed – is hashed using nameAlg

and the resulting hash given to the TPM as the authValue for the object.

 HMAC Computation

The HMAC computation for all session types is the same. A sessionKey value is concatenated to an

authValue to create the key that is used in the computation of the HMAC in a command or response. If

sesssionkey and authvalue are both the Empty Buffer, see 19.6.15.

authHMAC ≔ HMACsessionAlg ((sessionKey || authValue),
(pHash || nonceNewer || nonceOlder
{ || nonceTPMdecrypt } { || nonceTPMencrypt }
|| sessionAttributes)) (17)

where

HMACsessionAlg the HMAC function using the hash algorithm specified when the session

was started

sessionKey a value that is computed in a protocol-dependent way, using KDFa().

When used in an HMAC or KDF, the size field for this value is not
included.

authValue a value that is found in the sensitive area of an entity. This value is an

EmptyAuth if the HMAC is being computed to authorize an action on the

Trusted Platform Module Library Part 1: Architecture

Page 106 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

object to which the session is bound. The size field for this value is not
included in any KDF or hash function.

NOTE 1 For policy sessions, the authValue is not included in the HMAC
calculation unless the policy session included
TPM2_PolicyAuthValue() and it was not superseded by
TPM2_PolicyPassword().

NOTE 2 Trailing zeros are always removed from an authValue before it
is used in an authorization computation.

pHash digest of the command (cpHash) or response parameters (rpHash) using

the session hash algorithm.

nonceNewer a value that is generated by the entity using the session. A new nonce is

generated on each use of the session. For a command, this will be
nonceCaller and for a response, nonceTPM. The nonce size field is not
included in the HMAC.

nonceOlder a value that was received the previous time the session was used. For a

command, this will be nonceTPM and for a response, nonceCaller. The
nonce size field is not included in the HMAC.

nonceTPMdecrypt in the HMAC computation for the first authorization session of a

command, if a different session is being used for parameter decryption,
then the nonceTPM for that session is included in the HMAC of the first
authorization session; but only in the command (see 19.6.3.4). The
nonce size field is not included in the HMAC.

NOTE 3 The decrypt session is used by the TPM to decrypt a parameter
in the command.

NOTE 4 The nonce of the decrypt session is included even if that
session is also used for authorization.

nonceTPMencrypt in the HMAC computation for the first authorization session of a

command, if a different session is being used for parameter encryption,
then the nonceTPM for that session is included in the HMAC of the first
authorization session; but only in the command (see 19.6.3.4). The
nonce size field is not included in the HMAC.

NOTE 5 The encrypt session is used by the TPM to encrypt a parameter
in the response.

NOTE 6 The nonce of the encrypt session is included even if that
session is also used for authorization.

NOTE 7 If the same session (not the first session) is used for decrypt
and encrypt, its nonceTPM is only used once. If different
sessions are used for decrypt and encrypt, both nonceTPMs are
included.

sessionAttributes an octet indicating the attributes associated with a particular use of the

session

With the exception of sessionAttributes, all the values are large numbers, typically with sizes of 20 octets

or more.

In the HMAC computation equations shown below, the possibility that the HMAC computation may

include nonceTPMdecrypt or nonceTPMencrypt is indicated by “nonceOlder*" (asterisk added).

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Note on Use of Nonces in HMAC Computations

In equation (17), and the HMAC computation equations that follow, all of the nonce values are in

TPM2B_NONCE data structures. In the HMAC computations, the nonce entries should all be read as if

they had the .buffer suffix indicating that only the data portion of a nonce is ever used in an HMAC

computation.

 Starting an Authorization Session

TPM2_StartAuthSession() is used to start an authorization session. The parameters of this command

may be chosen to produce sessions with different properties.

Table 16 — Schematic of TPM2_StartAuthSession Command

Type Name Description

TPM_ST tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey

handle of a loaded key used to encrypt salt

may be TPM_RH_NULL

Auth Index: None

TPMI_DH_ENTITY+ bind

entity providing the authValue

may be TPM_RH_NULL

Auth Index: None

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonce size for the
session

TPM_SE sessionType
indicates the type of session (HMAC or
policy)

TPM2B_ENCRYPTED_SECRET encryptedSalt

tpmKey algorithm-dependent secret

if tpmKey is TPM_RH_NULL, this shall be an
Empty Buffer

TPMT_SYM_DEF+ symmetric

the algorithm and key size for parameter
encryption

may select TPM_ALG_NULL

TPMI_ALG_HASH authHash
hash algorithm to use for the session; and
shall be a hash algorithm implemented on the
TPM and not TPM_ALG_NULL

The two values that determine the session protection values are tpmKey and bind. Both of these handles

can reference TPM_RH_NULL or a TPM entity. The tpmKey parameter references the key that is used to

encrypt a salt value that is used in the computation of the sessionKey. The bind parameter references a

TPM entity that may provide an authValue to the computation for the sessionKey. The four variations for

tpmKey and bind give sessions with different properties.

Trusted Platform Module Library Part 1: Architecture

Page 108 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 17 — Handle Parameters for TPM2_StartAuthSession

tpmKey bind session properties

TPM_RH_NULL TPM_RH_NULL Unbound session

TPM_RH_NULL TPM entity Bound session

TPM key TPM_RH_NULL Salted session

TPM key TPM entity Salted and bound session

 sessionKey Creation

A sessionKey value is used in the HMAC computation as shown in equation (17). If both tpmKey and bind

are TPM_RH_NULL, then sessionKey is set to an Empty Buffer. Otherwise, the sessionKey is created as

follows:

 sessionKey ≔ KDFa(sessionAlg, (authValue || salt), “ATH”, nonceTPM, nonceCaller, bits) (18)

where

sessionAlg a TPM_ALG_ID for a hash that was chosen by the caller when the

session was started

authValue if bind is not TPM_RH_NULL, a TPM2B_AUTH.buffer that is found in the

sensitive area of a TPM entity; otherwise, an Empty Buffer

salt if tpmKey is not TPM_RH_NULL, then the salt value recovered from

encryptedSalt; otherwise, an Empty Buffer

 “ATH” a four-octet label value (see 4.1)

nonceTPM a TPM2B_NONCE that is generated by the TPM when the session was

started

nonceCaller a TPM2B_NONCE that is provided by the caller when the session was

started.

bits the number of bits returned is the size of the digest produced by

sessionAlg

NOTE When an authorization failure occurs, the TPM will check to see if the use of the object is exempt
from dictionary attack protection. If it is exempt, the response code is changed from
TPM_RC_AUTH_FAIL to TPM_RC_BAD_AUTH and no increment of the failed authorization counter
occurs (see 19.8).

 Unbound and Unsalted Session Key Generation

In this session key generation method used by TPM2_StartAuthSession(), tpmKey and bind are both

TPM_RH_NULL. This results in the session having no sessionKey (it is an Empty Buffer). The session is

not bound to any object.

NOTE This session type is similar to the OIAP session of TPM 1.2.

A session started using this format can be used for parameter encryption while executing TPM

commands. However, during these commands, the key used to encrypt the parameter will only use the

authValue of the object being accessed by the commands in the key generation, so the strength of the

encryption will be no better than the entropy in the authValue of the object.

When computing the HMAC, the authValue of the referenced entity is used:

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

authHMAC ≔ HMACsessionAlg (authValueentity.buffer,
 (pHash || nonceNewer.buffer || nonceOlder*.buffer || sessionAttributes)) (19)

If the size of authValue is zero, then the caller may omit the HMAC from the authorization (see No HMAC

Authorization19.6.15).

Table 18 — Format to Start Unbounded, Unsalted Session

Type Name Description

TPM_ST tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey TPM_RH_NULL

TPMI_DH_ENTITY+ bind TPM_RH_NULL

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for
the session

TPM2B_ENCRYPTED_SECRET encryptedSalt 00 0016

TPM_SE sessionType
indicates the type of the session (HMAC,
policy, or trial)

TPMT_SYM_DEF+ symmetric
will normally be TPM_ALG_NULL for an
unbound and unsalted session

TPMI_ALG_HASH authHash

hash algorithm to use for the session;
required to be a hash algorithm
implemented on the TPM and not
TPM_ALG_NULL

NOTE When sessionType is TPM_SE_TRIAL, there is no benefit in using any other version of
TPM2_StartAuthSession() as a trial session is not allowed to be used for authorization. This means
that the sessionKey of the session will never be used so there is no point in having the TPM
generate it.

 Bound Session Key Generation

In this session key generation method used by TPM2_StartAuthSession(), tpmKey is TPM_RH_NULL

indicating that no salt value is present but bind references some TPM entity with an authValue.

NOTE 1 This session type has properties that are similar to an OSAP session in TPM 1.2.

The sessionKey is computed using the authValue from bind and an Empty Buffer in place of the salt

value.

 sessionKey ≔ KDFa (sessionAlg, authValuebind, “ATH”, nonceTPM, nonceCaller, bits) (20)

NOTE 2 If handle references a TPM resource that has an EmptyAuth, the sessionKey is still computed.

When performing an HMAC for authorization, the HMAC key is calculated as follows:

 When the session is an HMAC session

 If the authorization is not for the entity to which the session is bound, the HMAC key is the

concatenation of the entity's authValue to the session's sessionKey (created at

TPM2_StartAuthSession() (see equation (21).

Trusted Platform Module Library Part 1: Architecture

Page 110 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 If the authorization is for the entity to which the session is bound, the HMAC key is the session's

sessionKey (created at TPM2_StartAuthSession() (see equation (22)).

 When the session is a policy session

 If the session has isAuthValueNeeded SET (by TPM_PolicyAuthValue()), the HMAC key is the

concatenation of the entity's authValue to the session's sessionKey (see equation (21)).

 If the session has isAuthValueNeeded CLEAR, the HMAC key is the session's sessionKey

(created at TPM2_StartAuthSession() (see equation (22)).

authHMAC ≔ HMACsessionAlg (sessionKey || authValueentity) ,
(pHash || nonceNewer || nonceOlder* || sessionAttributes)) (21)

authHMAC ≔ HMACsessionAlg (sessionKey,
(pHash || nonceNewer || nonceOlder* || sessionAttributes)) (22)

NOTE 3 Binding to an entity different from the one being authorized is a way of adding entropy to the session
key. It is useful in cases where the entity being authorized has a low entropy authorization value.

The TPM is required to keep track of the entity to which the session is bound. This is nominally

accomplished when the session is started by recording, in the session context, the Name of the bind

entity. For an NV Index or persistent handle, the TPM is required to also record the authorization value

associated with the entity.

NOTE 4 In the Part 4 reference implementation , the authorization value is combined with the Name
and stored in the SESSION→boundEntity member.

NOTE 5 Recording of the NV Index authorization is required to prevent an attacker from "squatting" on an
Index. This would be accomplished by creating an NV Index that has properties that are identical to
an NV Index that is expected to be created, but with an authorization value known to the attacker.
The attacker would then start an authorization session bound to the NV Index and delete the NV
Index. When the NV Index to be attacked is created, the attacker would have an authorization
session bound to an Index with the same Name and could access to the NV Index even though the
actual authorization value is unknown.

On a command, the TPM will check to see if the authorization is being used for the entity to which it was

bound. If so, then the authValue of the bound entity is not used in the HMAC computation. The TPM will

record the fact that the authValue was not used in the HMAC computation of the authorization and not

include it in the HMAC computation on the response.

NOTE 6 This allows the session to remain bound to an NV Index for the duration of the first command that
writes to the Index even though the Name of the Index changes during the command processing.
The session will not be bound to the Index when the command completes. The session can continue
to be used, but it, in effect, is no longer bound because there is no longer a TPM entity with the
correct Name.

For a persistent object, the authorization value is included so that authorization can be revoked. If the

administrator for a persistent object changes the authorization, sessions bound to the old authorization

should no longer be valid.

NOTE 7 To change the authorization of a persistent object, TPM2_ObjectChangeAuth() would be called. It
would return a new sensitive area. The current persistent object would be deleted
(TPM2_EvictControl()) and the object with the new authorization loaded (TPM2_Lo ad()). Finally, the
loaded object would be made persistent (TPM2_EvictControl()). It is only required that the old object
be deleted if the new object is to have the same handle or if it is desired to revoke the old
authorization.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The noDA attribute of the bind object is recorded in the session context. For a description of the rationale,

see clause 19.8.7.

Table 19 — Format to Start Bound Session

Type Name Description

TPM_ST tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey TPM_RH_NULL

TPMI_DH_ENTITY bind
entity providing the authValue to which the
session is bound and not TPM_RH_NULL

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for
the session

TPM2B_ENCRYPTED_SECRET encryptedSalt 00 0016

TPM_SE sessionType
indicates the type of the session (HMAC,
policy, or trial)

TPMT_SYM_DEF+ symmetric
if the session is to be used for parameter
encryption, set this to an algorithm and key
size

TPMI_ALG_HASH authHash

hash algorithm to use for the session;
required to be a hash algorithm
implemented on the TPM and not
TPM_ALG_NULL

Trusted Platform Module Library Part 1: Architecture

Page 112 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Salted Session Key Generation

In this session key generation method used by TPM2_StartAuthSession(), bind is TPM_RH_NULL,

indicating that no entity is referenced to provide an authValue, but tpmKey is present and indicates a key

used to encrypt the salt value. The sessionKey is computed with an Empty Buffer in place of the

authValue.

 sessionKey ≔ KDFa (sessionAlg, salt, “ATH”, nonceTPM, nonceCaller, bits) (23)

Because bind is TPM_RH_NULL, the session is not bound to any entity. When the session is used to

access any entity, the HMAC will use the sessionKey and the authValue of that entity.

authHMAC ≔ HMACsessionAlg ((sessionKey || authValueentity),
(pHash || nonceNewer || nonceOlder*
|| sessionAttributes)) (24)

Table 20 — Format to Start Salted Session

Type Name Description

TPM_ST tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT tpmKey handle of a loaded key used to encrypt salt

TPMI_DH_ENTITY+ bind TPM_RH_NULL

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for
the session

TPM2B_ENCRYPTED_SECRET encryptedSalt
conveys a secret value used to generate
the sessionKey – method of conveying this
value is dependent on the type of tpmKey

TPM_SE sessionType
indicates the type of the session (HMAC,
policy, or trial)

TPMT_SYM_DEF+ symmetric
if the session is to be used for parameter
encryption, set this to an algorithm and key
size

TPMI_ALG_HASH authHash

hash algorithm to use for the session;
required to be a hash algorithm
implemented on the TPM and not
TPM_ALG_NULL

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Salted and Bound Session Key Generation

This version of TPM2_StartAuthSession() creates a session that has properties that are similar to the

OSAP session type of TPM 1.2 but also allows salting. For this version of the command, bind is used to

provide an authValue, tpmKey encrypts the salt value and the sessionKey is computed using both.

sessionKey ≔ KDFa (sessionAlg,
(authValuebind || salt), “ATH”, nonceTPM, nonceCaller, bits) (25)

If the session is an HMAC session:

• Because bind is present, the session is bound to that entity. That is, when the session is used to
authorize use of the bound entity, the HMAC will use sessionKey but not the authValue.

authHMAC ≔ HMACsessionAlg (sessionKey,
(pHash || nonceNewer || nonceOlder* || sessionAttributes)) (26)

If the session is a policy session:

• The session is not bound to that entity. That is, when the session is used to authorize use of any
entity, the HMAC (if required) will use the sessionKey and the authValue.

authHMAC ≔ HMACsessionAlg ((sessionKey || authValueentity),
(pHash || nonceNewer || nonceOlder* || sessionAttributes)) (27)

• The noDA attribute of the bind object is recorded in the session context. For a description of the
rationale, see clause 19.8.7.

Table 21 — Format to Start Salted and Bound Session

Type Name Description

TPM_ST tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey handle of a loaded key used to encrypt salt

TPMI_DH_ENTITY bind
entity providing the authValue and to which
the session is bound

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for
the session

TPM2B_ENCRYPTED_SECRET encryptedSalt
contains a secret value used to generate the
sessionKey – method of encrypting this
value is dependent on the type of tpmKey

TPM_SE sessionType
indicates the type of the session (HMAC,
policy, or trial)

TPMT_SYM_DEF+ symmetric
if the session is to be used for parameter
encryption, set this to an algorithm and key
size

TPMI_ALG_HASH authHash
hash algorithm to use for the session;
required to be a hash algorithm implemented
on the TPM and not TPM_ALG_NULL

Trusted Platform Module Library Part 1: Architecture

Page 114 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Encryption of salt

19.6.13.1 Overview

The salt parameter for TPM2_StartAuthSession() is asymmetrically encrypted using the methods

described in this clause.

The value produced by the secret exchange process using salt should be the size of the digest produced

by the authHash of the session. For ECC, the size of the seed is limited because it is an ECC point; but

for RSA, XOR, and AES, the size of salt may vary.

When the value of salt is determined, it is used in the computation of sessionKey as shown in equation

(18).

19.6.13.2 Asymmetric Encryption of Salt

The methods of encrypting the salt and producing the session secret differ for each asymmetric algorithm.

The methods are described in the algorithm-specific annexes to this specification.

 Caution on use of Unsalted Authorization Sessions

If an authValue has low entropy, confidentiality of the value may not be preserved if the authValue is used

in an unsalted authorization session. For an unbound, unsalted session, the HMAC computation for the

response from the TPM is:

authHMAC ≔ HMACsessionAlg (authValue,
(rpHash || nonceTPM || nonceCaller || sessionAttributes)) (28)

If an attacker can read the response from the TPM, then the only values unknown to the attacker are

authValue and nonceCaller. An attacker may be able to determine nonceCaller by reading the command

as it is sent to the TPM. If the attacker has all the variables but authValue, they could perform an "off-line"

attack on the authValue using trial versions of authValue until one is found that produces a matching

authHMAC.

NOTE 1 In this context, an "off-line" attack means that the attacker can perform computat ions that do not
involve the TPM meaning that the protections that the TPM provides against authValue attacks has
no effect.

It is important to note that this vulnerability only occurs if an attacker has access to both the command

and response of a successful command using the authValue. If a user has a password protecting a key

and the system is lost or stolen, the key is protected because the attacker will not be able to observe the

legitimate owner of the key perform a successful operation with the key.

For a bound session without salt, the attack is a bit more complicated. The HMAC computation for the

response is:

authHMAC ≔ HMACsessionAlg ((sessionKey || authValueentity),
(pHash || nonceNewer || nonceOlder || sessionAttributes)) (29)

If the attacker observes a TPM2_StartAuthSession() command and response and the authValue for the

bind entity has low entropy, then they would have all of the components of sessionKey except for the

authValue of the bind entity. Then, by observing another successful transaction, an attacker could know

everything but the two authValues and they could again perform an offline attack.

NOTE 2 If the successful operation is on the bind entity, then only one authValue is unknown.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

As with the unbound and unsalted session, the vulnerability for a bound session only occurs if the

attacker is able to observe successful command response sequences.

Salting provides a mechanism to allow use of low entropy authValues and still maintain confidentiality for

the authValue. It is also possible to use a high entropy authValue to protect the confidentiality of a low-

entropy value. For instance, if the bind entity authValue has high-entropy, then there would be greater

computational complexity in guessing sessionKey || authValueentity. Depending on the authValue and salt

sizes, a bound session could have a sessionKey that is as difficult to guess as does a salted session.

 No HMAC Authorization

For a session-based authorization, both HMAC and policy, an authHMAC value is computed as shown in

equation (17) and that value is used as hmac in an authorization or acknowledgement as shown in Table

14 and Table 15 respectively. If an authorization session is started with bind and tpmKey both set to

TPM_RH_NULL, then sessionKey in equation (17) will be an Empty Buffer. If the authValue in equation

(17) is also an Empty Buffer, then the HMAC key will be an Empty Buffer. When this situation exists, the

caller has the option of either providing the results of the authHMAC computation, or not.

If authHMAC is provided, it will be computed as shown in equation (17) with an Empty Buffer as the

HMAC key and the TPM will validate that the value in hmac matches the internally calculated value.

If authHMAC is not provided, the size of hmac (see Table 14) will be zero and the TPM will accept this

value of hmac as providing valid authorization for the object.

For an HMAC session, authValue in equation (17) will only be an Empty Buffer if the authValue of the

authorized object is an EmptyAuth, the session is a bind session and the authorization is for the entity to

which the session is bound, or if the session is not an authorization session.

For a policy session, two situations will result in authValue being an Empty Buffer:

1) the authValue of the authorized object is an EmptyAuth, or

2) the policy does not use the authValue of the object (that is, the evaluated policy does not contain

TPM2_PolicyAuthValue())(see 19.7.7.6).

For these two cases, if sessionKey is an Empty Buffer, hmac is allowed to be either a valid authHMAC or

an Empty Buffer. For a bound or salted policy session, sessionKey is not an Empty Buffer, and hmac

must be valid.

NOTE A policy session that does not use TPM2_PolicyAuthValue() would use a bound or salted session if
that session is also used for encryption.

For a policy session that contains TPM2_PolicyPassword(), the password takes precedence and must be

present in hmac.

The TPM will use the same formulation in the response as was in the command. This is, if hmac was non-

zero in the command, the TPM will compute authHMAC as shown in equation (17) and use the result as

hmac. If hmac was an Empty Buffer in the command, it will be an Empty Buffer in the response.

 Authorization Selection Logic for Objects

Each object has two attributes in its public structure to indicate how use of the object is authorized.

Trusted Platform Module Library Part 1: Architecture

Page 116 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1) userWithAuth – If this attribute is SET, then USER role authorization for an object may be provided

with an HMAC session or a password. If this attribute is CLEAR, then the authValue may not be used

for USER role authorization, meaning that authorization may not be done using an HMAC session or

a password. USER role authorizations with a policy are always allowed regardless of the setting of

this attribute.

2) adminWithPolicy – If this attribute is SET, then ADMIN role authorization for an object may only be

provided with a policy session. If this attribute is CLEAR, then authorization may be provided with a

policy session, with an HMAC session, or with a password.

When authorization is with a policy session and ADMIN role authorization is being provided, the

command code value of the policy session must match the command code for the command being

authorized.

For TPM_RH_OWNER, TPM_RH_ENDORSEMENT, and TPM_RH_PLATFORM); userWithAuth and

adminWithPolicy are always SET.

For an NV Index, NV Index attributes (TPMA_NV) determine authorization selection.

NOTE For TPM_RH_OWNER, TPM_RH_ENDORSEMENT, and TPM_RH_PLATFORM); userWithAuth and
adminWithPolicy do not have to be implemented as separate attributes. The code may simply
assume that the attributes are SET and act accordingly.

 Authorization Session Termination

The TPM will terminate a session (authorization or audit) and clear all associated context under the

following circumstances:

• when TPM2_FlushContext() selects the session;

• if sessionAttributes.continueSession is CLEAR in the command, the TPM will CLEAR the
continueSession flag in the response and perform TPM2_FlushContext() actions;

NOTE When sessionAttributes.continueSession is CLEAR in the command but the command does not
return success, then the session is not terminated.

• on TPM Reset, all authorization sessions are terminated; and

• on TPM Resume or TPM Restart, authorization sessions in TPM memory will be terminated but
sessions context saved off the TPM will remain active.

19.7 Enhanced Authorization

 Introduction

Enhanced authorization is a TPM capability that allows entity-creators or administrators to require specific

tests or actions to be performed before an action can be completed. The specific policy is encapsulated in

a value called an authPolicy that is associated with an entity

When an HMAC session is used for authorization, the authValue of the entity is used to determine if the

authorization is valid. When a policy session is used for authorization, the authPolicy of the entity is used.

Many TPM entities have or may have an associated authPolicy. A policy defines the conditions for use of

an entity. For example,

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• a policy may limit the use of a key unless selected PCR have specific values;

• a policy may not allow use of a key after a specific time;

• a policy may require that authorization to change an NV Index be provided by two different entities; or

• a policy may limit a particular signing key to attest to PCR values but not to certify another TPM key.

A policy may be arbitrarily complex. However, the policy is expressed as one (statistically unique) digest

called the authPolicy.

The digest representing a particular policy may be included in an Object or NV Index when the Object or

NV Index is created (the digest representing a policy is created using the methods described in

subsequent parts of this clause). In order to use the Object or Index, a policy session is created and then

the TPM is given a sequence of policy commands that modify the digest in the policy session. After

executing all of the commands of the policy, the TPM will have computed a digest value that is

characteristic of the policy. The policy session is then used as an authorization session. If the digest

accumulated in the policy session matches the policyDigest of the entity (and certain other optional

conditions are true) then the command is authorized.

After a policy session is used for authorization, policySession→nonceTPM is changed to a new, random

value; policySession→startTime is set to the current time; and the other values of the policy session

context are initialized to the state they had when the session was first created by

TPM2_StartAuthSession() (see19.7.8).

The mechanisms of policy creation and evaluation are explained in the remainder of this clause

 Policy Assertion

An assertion is a statement that something is true. In an authorization policy, an assertion is a statement

of something that must be true before the policy is satisfied. For example, an assertion may be that a set

of PCR must have specific values to allow an object to be authorized for use in a specific command. The

list of all policy assertions defined by this specification is in 19.7.7.6.

A combination of one or more assertions is used to construct an authorization policy.

 Policy AND

A policy may be expressed in an equation as a set of assertions that must all be satisfied before the

policy is valid. For example, a policy that requires that 4 assertions be true could be written as:

a & b & c & d

A possible implementation of the policy logic would be to have all the assertions evaluated at the same

time to determine if the policy is satisfied. This approach would require that the TPM resources scale with

the number of assertions that would need to be evaluated for the policy.

The alternative use in the TPM is to evaluate the expression one assertion at a time with each assertion

ANDed with the results of the previous evaluation.

 (((1 & a) & b) & c) & d

The (1 & a) term means that assertion a is ANDed with an initial TRUE. This allows each assertion to be

just the AND of a new assertion with the results of the previous assertion evaluation. A pictorial

representation of the policy evaluation is:

Trusted Platform Module Library Part 1: Architecture

Page 118 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Any number of assertions can be combined in this way using a fixed set of TPM resources.

The logic of a TPM policy cannot actually be expressed as a simple 1 or 0. For the policy to be valid, not

only does it need to evaluate to "TRUE", but it also has to be the correct policy. For example, these two

policies may both evaluate to the same logic value (TRUE), but they do not represent the same policies.

So that it can differentiate (a & b) from (x & y), the TPM will update a running digest value for each

assertion that is added to the policy. The final digest value indicates the policy that was evaluated.

The running digest value is called the policyDigest. The policyDigest is initialized to a Zero Digest (0…0)

when the policy session is started (TPM2_StartAuthSession()). Then, as each policy assertion is

evaluated, the policyDigest is updated.

 policyDigestnew := H(policyDigestold || PolicyAssertion)

NOTE 1 This should be recognizable as the Extend operation.

The policyDigest will only be updated if a policy assertion is valid (TRUE) (see 19.7.10 for exception

relating to trial policies). This gives an alternative possibility for interpreting the output of one of the policy

AND gates. Instead of simply being a 1 (TRUE) or 0 (FALSE), the output of the gate is current value of

the policyDigest. Using this perspective, the four-term policy becomes:

0...0

a b c d

D1 D2 D3 D4

a

1

b
c

d

a

1

b

x

1

y

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

where

0…0 the initial value of the policy digest

D1 H(0…0 || a)

D2 H(D1 || b)

D3 H(D2 || c)

D4 H(D3 || d)

NOTE 2 In these illustrations, the parameters for the Extend operations are simple parameters (" a", "b", etc.).
The actual parameters for the Extend are more complex but including the details in the illustrations
would add complexity without adding clarity.

 Policy OR

If the only type of policy assertion was an AND, then the policies that could be evaluated by the TPM

would be of limited value. To make the policies more flexible, an OR policy assertion is defined. As with a

logic OR gate, the OR policy assertion will be valid if any of the inputs is valid.

A simple policy using an OR might be written as:

(a & b) | (x & y)

or as:

(((0…0) & a) & b) | (((0…0) & x) & y)

Evaluating the AND branches individually, the left side evaluates to:

 Dleft ≔ H(H(0…0 || a) || b)

and the right side to:

 Dright ≔ H(H(0…0 || x) || y)

Then, the output from a 2-input policy OR operation will be defined to be

 policyDigestnew ≔ H(Dleft || Dright)

Notice that the OR operation replaces the policyDigest with a new value instead of Extending it as is done

in an AND operation.

Pictorially, a policy with an OR is:

Trusted Platform Module Library Part 1: Architecture

Page 120 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The TPM processes the OR by comparing the current value of policyDigest with a list of digest values

provided by the caller. If policyDigest is on the list, then the TPM will digest the concatenation of all of the

digests in the list. For example, to perform the OR operation above, assume that the TPM has processed

(a & b) producing Dleft. Then the TPM would be given a list of digests (Dleft, Dright). Because the

policyDigest is on the list, the TPM computes DOR ≔ H(Dleft | Dright) and replaces policyDigest. Note that if

the TPM had processed (c & d) to compute Dright and was then given the same list of digests (Dleft, Dright),

the resulting policyDigest would be the same.

When processing a policy that has an OR, only one branch of the policy needs to be evaluated. For

example, if C and D assertions were valid, then only the right branch would need to be evaluated.

The list given to the TPM for a TPM2_PolicyOR() is limited to 8 digests. However, the effective size of the

list can be expanded indefinitely by using cascading OR. Figure 15 illustrates one of the many ways to

construct a 12 input OR.

a
b

x
y

0...0

0...0
Dright

Dleft

DOR

A
B

0...0

Dleft is not computed

C
D

0...0

(Dleft, Dright)

Dright

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figure 15 — A 12-input OR Policy

When the OR list can contain 8 digests, 64 different branches can be ORed in just two levels.

The result of an OR operation may be an input to an AND assertion allowing construction of arbitrarily

complex policies.

 Order of Evaluation

Because the TPM uses digests, the order of evaluations is important. For policy evaluation, (A & B) is not

the same as (B & A). In addition, when performing an OR operation, the same list of digests (same

number in the same order) must be given to the TPM each time. The list (Dleft, Dright) will not give the same

result as (Dright, Dleft) or (Dleft, Dright, Dother).

 Policy Session Creation

TPM2_StartAuthSession(sessionType = TPM_SE_POLICY) is used to start an authorization session. The

authorization session may use any of the four options for tpmKey and bind.

NOTE 1 A policy session does not maintain a binding with a specific object. The bi nd parameter is used only
for session key creation. This allows the context space of the session that is used for the binding
value to be dedicated to other policy parameters.

The most typical use of a policy session will be with tpmKey and bind both set to TPM_RH_NULL. When

this option is selected, an HMAC computation might not be performed when the policy session is used

and the session nonce and auth values may be Empty Buffers (see TPM 2.0 Part 3,

TPM2_PolicyAuthValue).

NOTE 2 When the session is created, nonceCaller still needs to be provided and its size is required to meet
the minimum requirements of the command.

When the authorization session is to be used to authorize a command that has an encrypted command or

response parameter, then either tpmKey or bind should be used in the TPM2_StartAuthSession() that

starts the session so that a secure sessionKey is created.

(DOR.A, DOR.B, DOR.C)

DOR.B

DOR.C

DOR.A

Trusted Platform Module Library Part 1: Architecture

Page 122 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Policy Assertions (Policy Commands)

19.7.7.1 Introduction

In TPM 2.0 Part 3 of the specification the set of policy assertions are the commands with names of the

form TPM2_Policyxxx() where "xxx" is an indicator of the type of policy assertion. For example,

TPM2_PolicySigned() is a policy assertion that an authorization was signed by a specific entity; and

TPM2_PolicyPCR() is an assertion that a selected set of PCR have a specific value.

Normally, each policy command will cause the policyDigest to be changed in a different way which is why

they are different commands. In some cases, the policy command will also cause other changes to the

policy session context. For example, TPM2_PolicyLocality() modifies the policy state that indicates the

locality that is allowed when the policy session is used for authorization. TPM2_PolicyCommandCode()

changes the policy state so that the policy may only be used to authorize a specific command.

The details of the policyDigest computation performed by each policy command are provided in the

General Description section of each command found in TPM 2.0 Part 3. The description also indicates the

policy state that is modified.

The assertions fall into three different groups: immediate, deferred, and combined.

19.7.7.2 Immediate Assertions

For an immediate assertion, the input values are validated and the TPM will return a failure and not

update the policyDigest if the assertion is not valid. An example of an immediate assertion is

TPM2_PolicyNV(). For this assertion, the TPM validates the logical or arithmetic relationship between an

input value and an NV Index. If the specified relationship is not valid, the TPM returns an error and the

policyDigest is not modified. If the relationship is valid, then the policyDigest is updated with the Index

Name and the relationship that was validated.

19.7.7.3 Deferred Assertions

For a deferred assertion, the TPM will update the policyDigest based on the input values and record

some parameters in the policy session's context. These parameters are checked when the policy is used

for authorization. An example of a deferred assertion is TPM2_PolicyCommandCode(). For this assertion,

the input is a TPM command code. The policyDigest will be updated to record the fact that the

TPM2_PolicyCommandCode() was executed and the commandCode value that was specified. The TPM

also directly records the commandCode parameter in the policy session context. When the policy is used

for authorization, the TPM will verify that the command being authorized is the same as the command in

the policy and the authorization (and command) will fail if they are not the same.

19.7.7.4 Combined Assertions

For a combined assertion, the TPM will validate some condition of the input and record or modify some

parameters in the policy session's context. An example of a combined assertion is TPM2_PolicySigned().

For this assertion type, the TPM validates that the parameters of the command have been signed by the

indicated key. If so, it will update the policy session context based on the input parameters. One of the

context values that may be updated is the cpHash of the session. If the cpHash of the authorized

command is not the same as the authorized cpHash then the command will not be authorized.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

19.7.7.5 Repetition of Assertions

In general, any policy assertion may occur multiple times within a policy as long as the assertion is

compatible with previous assertions. An example of an incompatible set of assertions is two occurrences

of TPM2_PolicyCommandCode() that specify different command codes.

The TPM will return an error if an assertion is incompatible with a previous assertion. It is possible that the

failed assertion is incompatible with an assertion of a different type. For example, a

TPM2_PolicyCpHash() may be incompatible with a TPM2_PolicySigned(). If they specify different values

of policySession→cpHash, then the TPM will return an error.

NOTE When referring to an element of the policy context, the notation policySession→element is used to
denote a particular member of the policy context.

19.7.7.6 List of Assertions

The assertions listed in this clause will all update the policyDigest of the policy session being operated on

if the assertion condition is met. They may also cause a change to other policy session, context values

(the list of policy session context values is in 19.7.8) as indicated in the brief description for each

assertion.

Trusted Platform Module Library Part 1: Architecture

Page 124 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• TPM2_PolicyAuthorize() – valid if policySession→policyDigest has the value authorized by the
selected key. This is an immediate assertion and is described in more detail in 19.7.11.

• TPM2_PolicyAuthorizeNV() – valid if the specified NV Index contains a hash algorithm identifier and
a digest value that match the hash algorithm and policySession→policyDigest. This immediate
assertion changes policySession->policyDigest and is described in more detail in 19.7.11.

• TPM2_PolicyAuthValue() – valid if authValue of the authorized entity is provided when the policy
session is used for authorization. This deferred assertion will SET
policySession→isAuthValueNeeded. When the policy is used for authorization, the TPM will check
policySession→isAuthValueNeeded. If it is SET, then the TPM performs an HMAC check on the
session as if it were an HMAC session. This HMAC validation will only succeed if the caller is able to
prove knowledge of the entity's authValue by computing the correct HMAC.

• TPM2_PolicyCommandCode() – valid when the authorized command has the specified command
code. This deferred assertion sets policySession→commandCode.

• TPM2_PolicyCounterTimer() – valid when a portion of the TPM’s TPMS_TIME_INFO structure has
the desired numerical relationship with another value. This is an immediate assertion. If the selected
subset of the TPM's TPMS_TIME_INFO structure does not have the specified relationship with the
input data, then the TPM will return an error and not change the policyDigest (see 36.1 for use
cases).

• TPM2_PolicyCpHash() – valid if the cpHash of the authorized command has a specific value. This
deferred assertion modifies policySession→cpHash.

• TPM2_PolicyDuplicationSelect() – valid if the handles of the authorized command reference
specific objects and the command code is TPM2_Duplicate(). This deferred assertion modifies
policySession→cpHash and policySession→commandCode.

• TPM2_PolicyLocality() – valid if the command being authorized is being executed at one of the
allowed localities. This is a deferred assertion that modifies policySession→locality. For localities 0-4,
the input locality parameter is a bit field that indicates the allowed localities. If an execution of this
assertion would result in no locality being allowed, then the TPM will return an error. For extended
localities, policySession→locality is set to the locality parameter of the command if the
policySession→locality was not previously set. Otherwise, the locality parameter is required to be the
same as the current value of policySession→locality.

• TPM2_PolicyNameHash() – valid if the handles of the authorized command reference specific
objects. This deferred assertion modifies policySession→cpHash.

• TPM2_PolicyNV() – valid if the contents of NV have the desired relationship with another value. This
is an immediate assertion. If the selected portion of the NV Index does not have the specified
relationship with the input data, then the TPM will return an error and not change the policyDigest.

• TPM2_PolicyNvWritten() – valid when the TPMA_NV_WRITTEN attribute of the specified NV Index
has the desired value. This deferred assertion sets policySession→checkNvWritten and the state of
policySession→nvWrittenState.

• TPM2_PolicyOR() – valid if policySession→policyDigest is on a list of digests. This is an immediate
assertion. If policySession→policyDigest is not on the list of digests, then TPM returns an error.
Otherwise, policySession→policyDigest is replaced with the digest of the list.

• TPM2_PolicyPassword() – valid if the authValue of the authorized entity is provided when the
session is used for authorization. This deferred assertion will SET
policySession→isPasswordNeeded. When the policy is used for authorization, the TPM will check
policySession→isPasswordNeeded. If it is SET, then the TPM performs a password check on the
session as if it were a password session. . This password validation will only succeed if the caller is
able to prove knowledge of the entity's authValue by providing the correct value as the password.

NOTE 1 A session may use TPM2_PolicyAuthValue() and TPM2_PolicyPassword() interchangeably. If
TPM2_PolicyAuthValue() and TPM2_Policy Password() are both used, then TPM will perform
the check according to the last one used in the policy.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• TPM2_PolicyPCR() – valid if the selected PCR have the desired value. This assertion may be either
a combined or a deferred assertion. If the caller provides a digest, the TPM validates that the current
values of the PCR match the input value and return an error (TPM_RC_VALUE) if not. If this
command completes successfully, the policyDigest will have been updated with the digest of the
selected PCR. The TPM will also record that the PCR have been checked. If the PCR are changed
after they are checked but before the policy is used for authorization, then the policy will fail.

NOTE 2 The reference implementation provides this assurance by maintaining a PCR update counter
that increments each time the PCR are modified. The update counter is saved in the policy
session context. If the update counter does not change between the check of the PCR and the
use of the policy session for authorization, then the PCR are the same.

• TPM2_PolicyPhysicalPresence() – valid if the physical presence is asserted when the authorized
command is executed. This deferred assertion sets policySession→isPPRequired.

• TPM2_PolicySecret() – valid if the knowledge of a secret value is provided. This assertion is an
immediate and possibly also a deferred assertion. Based on the input parameters, this command may
modify policySession→cpHash and policySession→timeout.

NOTE 3 The secret value will be the authValue of some TPM entity.

• TPM2_PolicySigned() – valid if the parameters are properly signed. This assertion is an immediate
and possibly also a deferred assertion. Based on the input parameters, this command may modify
policySession→cpHash and policySession→timeout.

• TPM2_PolicyTemplate() – valid if the hash of the inPublic parameter of TPM2_Create(),
TPM2_CreatePrimary(), or TPM2_CreateLoaded() matches the templateHash in this command. This
deferred assertion sets policySession→cpHash.

• TPM2_PolicyTicket() – valid if the ticket is valid. This assertion is an immediate and possibly also a
deferred assertion. Based on the input parameters, this command may modify
policySession→cpHash and policySession→timeout.

 Policy Session Context Values

A policy session context contains the state and tracking information for evaluation of a policy. The context

values are set to their default values when the session is created and again each time the session is

successfully used to authorize a command.

The values may be changed by a policy assertion. The policy assertions are listed in 19.7.7.6 with an

indication of the policy session context values that they modify. The policy session context values are

described further here.

• policyDigest – digest that is updated by each assertion. The default value for policyDigest is a Zero
Digest (a buffer with a length equal to the digest size of the hash algorithm with all octets having a
value of zero).

• nonceTPM – set from the RNG and is sized according to the size of nonceCaller in
TPM2_StartAuthSession(). This value does not change during the policy evaluation. However, it
does change when the policy session is used for authorization.

• cpHash – set by an assertion that limits the authorization to a specific set of command
parameters. If an assertion would set policySession→cpHash and a previous assertion has set
policySession→cpHash to a different value, then the assertion will fail. The default for
policySession→cpHash is an Empty Buffer.

• nameHash – set by TPM2_PolicyNameHash() and indicates the combination of Name values for
a command. This context parameter occupies the same location as policySession→cpHash. If an
assertion would set policySession→cpHash and a previous assertion has set cpHash to a
different value, then the assertion will fail. The default for policySession→nameHash is an Empty
Buffer.

Trusted Platform Module Library Part 1: Architecture

Page 126 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• startTime – set to TPMS_TIME_INFO.clockInfo.clock when policySession→nonceTPM changes.
No assertion changes this value. It is updated to the current value of clock by
TPM2_StartAuthSession() and when the session is used for authorization.

• timeout – the time when the policy session expires. Its default setting is an implementation-
specific value corresponding to “never expires.” This value is updated if an assertion has a non-
zero expiration time that is sooner than the current setting of policySession→timeOut. An
assertion may only decrease the value of policySession→timeout.

• commandCode – set by an assertion that limits the policy to a specific command but does not
limit the command parameters (TPM2_PolicyCpHash() limits the command and its parameters). If
an assertion sets policySession→commandCode and a previous assertion has set
policySession→commandCode to a different value, then the TPM will return an error. The default
for policySession→commandCode is an implementation-specific value that indicates that it has
not been set.

• pcrUpdateCounter – set by TPM2_PolicyPCR(). The TPM maintains a pcrUpdateCounter that is
incremented each time a PCR changes (with a few exceptions as described in 17.9). When it
executes TPM2_PolicyPCR(), the TPM will copy pcrUpdateCounter to
policySession→pcrUpdateCounter. When the policy session is used for authorization, the TPM
will verify that policySession→pcrUpdateCounter matches pcrUpdateCounter. A match provides
assurance that the PCR values still match the values evaluated by TPM2_PolicyPCR().

• commandLocality – indicates the locality required for the command being authorized by the
policy. The default for policySession→commandLocality is any locality. Each locality that is not
enabled in TPM2_PolicyLocality(locality) is disabled in policySession→commandLocality. If the
result of this operation would result in there being no locality at which the policy would be valid,
the TPM will return an error and not change policySession→commandLocality. If
commandLocality is set to an extended locality (greater than 31), then the locality cannot be
change by subsequent TPM2_PolicyLocality().

• isPPRequired – SET by TPM2_PolicyPhysicalPresence() to indicate that presence is required to
be asserted when authorized command is executed. The default value is CLEAR.

• isAuthValueNeeded – SET by TPM2_PolicyAuthValue()to indicate that the authValue of the
authorized entity will need to be provided when the policy session is used for authorization. The
authValue is required to be included in an HMAC. The default value is CLEAR. It will also be
CLEAR by TPM2_PolicyPassword()

• isPasswordNeeded – SET by TPM2_PolicyPassword() to indicate that the authValue of the
authorized entity will need to be provided when the policy session is used for authorization. The
authValue is required to be provided as a password. The default value is CLEAR. It will also be
CLEAR by TPM2_PolicyAuthValue().

• isTrialPolicy – SET to indicate that policySession→policyDigest is to be updated even if the
assertion is not valid. The session may not be used for authorization.

• checkNvWritten – SET to indicate that the TPMA_NV_WRITTEN attribute of the authorized NV
Index must be compared with nvWrittenState.

• nvWrittenState – SET when TPMA_NV_WRITTEN is required to be SET in the NV Index being
authorized. This attribute has no meaning when checkNvWritten is not SET.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Policy Example

In TPM 1.2, the basic policy for use of a key was limited to a combination of an authorization value and

PCR state. This policy was built in to each key. In TPM 2.0 there is no built-in policy. A TPM 2.0 policy

that is the same as the TPM 1.2 policy is:

TPM2_PolicyPCR() & TPM2_PolicyAuthValue()

Note This policy could also be written as

TPM2_PolicyAuthValue() & TPM2_PolicyPCR()

 This policy would have a different policyDigest because the order of evaluation affects the digest.

To associate this policy with a key, evaluate the policy to determine the policyDigest that it would

generate. Then create the key with this digest as the authPolicy and CLEAR the userWithAuth attribute.

When userWithAuth is CLEAR, USER mode actions for the key will require use of the key's authPolicy.

 Trial Policy

The policy evaluation to determine the value for the authPolicy may be done in software that does the

same policyDigest computation as the TPM. Alternatively, a trial policy session may be used. A trial policy

session is created and used in a sequence of policy commands just like a normal policy session. The

difference is, in a trial policy, a policy assertion is always assumed to be TRUE and the policyDigest

updated accordingly. The policyDigest value computed in the trial policy can be read from the TPM and

used as an object's authPolicy. Since the assertions in the trial policy do not need to be valid, the trial

session may not be used for authorization.

 Modification of Policies

Some policies, such as those associated with the hierarchies, may be altered directly by changing the

authPolicy value. Policies associated with Objects and NV Indices may not be directly altered. The reason

that these policies may not be altered is that the policy can affect the trust that someone places in the use

of that entity. For example, a key may only be trusted if it may only be used when the PCR have a

specific set of values. If the policy could be changed, then the PCR check could be removed, and the key

would no longer be trusted. There would be no way for the trusting entity to know if a version of the key

exists where the PCR are not checked.

Even though there is no way to directly change a policy, it can be indirectly changed. The command that

allows this is TPM2_PolicyAuthorize(). When this command is included in a policy, it allows a designated

entity (an "authority") to authorize a policyDigest to be included in the policy. This is best described with

an example.

It is common to seal a data value to PCR values so that the data value can only be recovered if the

platform has booted in a known way. A problem with this is that if there is a BIOS update, the PCR will

change, and the sealed data value can no longer be retrieved, and some kind of recovery process is

necessary. The inability of a policy to accommodate changes to PCR values is called "brittleness". That

term suggests that the policy is easy to break (make unusable). This brittleness could be a problem with

TPM 2.0 if the policy was completely fixed.

Figure 16 illustrates the use of TPM2_PolicyAuthorize() to implement a flexible policy. This assertion

evaluation checks to see if the current policyDigest is authorized by a signing key – that is, did an

authorizing entity sign a digest indicating that a specific value of policyDigest represents a known set of

PCR values. If the policyDigest value was signed, then policyDigest is replaced by a digest of the Name

of the key that was used for authorization and policyRef (see 19.7.12).

Trusted Platform Module Library Part 1: Architecture

Page 128 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 1 Other information is included with the Name of the key when the new policyDigest is computed in
order to indicate that the Name was included as the result of a TPM2_PolicyAuthorized() oper ation.

NOTE 2 This example purposefully avoids using terms that would indicate that the signing entity does
anything other than indicate that the PCR values are the expected values. In particular, the signing
entity does not have to certify that the PCR values are safe. The signing entity may provide other
assurances but, in the case of PCR, it is not necessary to warrant anything other than that the PCR
values are expected.

An example of how of this assertion type may be used to avoid PCR brittleness is shown in Figure 16.

This shows the example policy in 19.7.9 but with the ability to satisfy the policy with different PCR values.

NOTE 3 The actual authPolicy in the authorized entity would contain (PolicyAuthorize & PolicyAuthValue).

As shown, a PolicyPCR assertion is followed by PolicyAuthorize(). If there is an authorization signed by

KEY for the current policyDIgest (in this case, DPCR.A), then the result of the PolicyAuthorize() will be DKEY.

This is the same output that would be produced if the input to the PolicyAuthorize() were DPCR.B and there

was an authorization sighed by KEY for DPCR.B. That is, in TPM2_PolicyAuthorize(), if the key authorized

the current policyDigest, policyDigest reset to a Zero Digest and then extended with the Name of the key.

The policyDigest value Dfinal no longer reflects the previous value (DPCR.A or DPCR.B).

Figure 16 — Use of TPM2_PolicyAuthorize() to Avoid PCR Brittleness

In the case of a BIOS update that changes PCR, the platform OEM could provide a signature for the PCR

values created by the new BIOS. Now, if the policy of the sealed data includes a TPM2_PolicyAuthorize()

from the OEM, then the BIOS can be updated, and no recovery process would be needed to deal with the

new PCR values. That is, with either authorized set of PCR, DKEY and Dfinal will be the same, even though

DPCR.A and DPCR.B are different.

An additional way to indirectly modify a policy uses TPM2_PolicyAuthorizeNV(). This command specifies

an NV Index location of a policy that will be effective for an entity, the effective policy being the policy

digest stored in the data at that NV index. When a policy is formed using TPM2_PolicyAuthorizeNV(), the

NV Index Name is specified. When the entity is to be authorized, the policy stored in the data of the

named index is satisfied, and then TPM2_PolicyAuthorizeNV() is executed. If the policy stored in that

index matches the policySession->policyDigest, then the policySession->policyDigest is replaced with

results of first setting the policySession->policyDigest to the Zero Digest, and then extending it with the

command code concatenated with the name of the NV index, which will contain the modified policy. The

0...0

PolicyPCR(A)
PolicyAuthValue

PolicyAuthorize(DPCR.A, KEY)PCR have value “A”

DPCR.A DKEY
Dfinal

0...0

PolicyPCR(B)
PolicyAuthValue

PolicyAuthorize(DPCR.B, KEY)PCR have value “B”

DPCR.B DKEY
Dfinal

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

main difference between this command and TPM2_PolicyAuthorize() is that multiple policies can satisfy

TPM2_PolicyAuthorize(), as long as they are all signed with the appropriate key. Only the policy that is

currently stored in the NV index can satisfy TPM2_PolicyAuthorizeNV().

 TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_PolicyTicket()

The set of assertions discussed in this clause have properties that enable a number of authorization

scenarios. Among these are:

• the ability to grant an authorization that can persist for a specific amount of time (because in many
protocols, access to a resource (such as, a network) is granted for some time interval); and

• the ability to associate an authorization with a policy of the authorizing entity (because in many
instances, the authorizing entity may use the same key or secret for different purposes).

TPM2_PolicySigned() and TPM2_PolicySecret() convey an authorization by signing a set of parameters

that indicate the nature of the authorization. With TPM2_PolicySigned() the signature is with a key value

(symmetric or asymmetric) and with TPM2_PolicySecret() the signature is with an HMAC using an

authValue in the HMAC key.

The policy assertions of TPM2_PolicySigned() and TPM2_PolicySecret() can be time limited. When a

policy’s authorization is time limited, it expires (is no longer valid) when TPM Time is greater than the

indicated value for the authorization. An expiration time can be expressed in two ways. A timeout is an

absolute value of Time. An expiration value is a relative value in seconds from the start Time of the policy

session to which the authorization applies.

Both TPM2_PolicySigned() and TPM2_PolicySecret() can produce tickets that enable authorizations to

be used and reused over a period of time and in different policy sessions. These tickets are used in

TPM2_PolicyTicket().

These three commands have several input parameters in common:

• nonceTPM – the value returned by TPM2_StartAuthSession() or when a session is used for an
authorization. It is used to limit the use of a policy assertion to a specific policy session. If a policy
command includes a nonceTPM, then the TPM will return an error if it does not match
policySession→nonceTPM.

• cpHashA – if the caller chooses to limit the authorization to a specific command and command
parameters, they would include this value in the signed data structure. Use of this parameter allows
the caller to provide an authorization that is similar to the HMAC authorization. That type of
authorization is only valid for a specific command and set of command parameters. If this parameter
is not part of the signed authorization, then this parameter should be set to the Empty Buffer.

• policyRef – in some circumstances, it is desirable to have an authorization convey some information
relating to the authorizing entity. For example, a fingerprint reader may have a signing key that it uses
to verify when it has recognized a fingerprint regardless of whose fingerprint it might be. This type of
authorization would be difficult to use if it were not possible to indicate whose fingerprint was
scanned. The policyRef parameter would allow the fingerprint reader to provide this indication. The
TPM includes this value in the policyDigest. In the example of the fingerprint reader, this would mean
that the policyDigest would only have the correct value if the fingerprint reader scanned a finger from
the correct person. If this parameter is not part of the signed authorization, then this parameter should
be an Empty Buffer.

NOTE 1 Because TPM2_PolicySigned() does not include the cpHashA and policyRef size in the aHash
calculation, it is recommended that the size of policyRef not be the same size as that of the entity
Name algorithm.

Trusted Platform Module Library Part 1: Architecture

Page 130 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• expiration this parameter is used to place a time limit on an authorization. It is either the number of
seconds from the last time that the nonceTPM of a policy session was changed, or the value of Time
after which a policy assertion is no longer valid.

• timeout – this indicates the value of Time after which a policy assertion is no longer valid.

If a TPM2_PolicySigned() or TPM2_PolicySecret() has a non-zero expiration parameter:

• If nonceTPM is not included, expiration is a timeout.

• If expiration is a negative number, a ticket will be produced

NOTE 2 For TPM2_PolicySecret(), if authHandle references a PIN Pass Index, then no ticket will be
produced even if expiration is negative. This prevents use of a ticket to bypass the limit count on an
PIN Pass Index.

When a policy session is started, a nonceTPM is generated and the current value of Time is copied to

policySession→startTime. When a policy assertion includes a non-zero expiration and a nonceTPM, then

policySession→startTime is added to the absolute value of expiration to determine the timeout for the

policy assertion. If a policy assertion includes a non-zero value in its expiration parameter but no

nonceTPM, then the expiration parameter is used directly as a timeout

When an assertion produces a timeout, the timeout value is placed in policySession→timeout. If

policySession→timeout has previously been set, then it will be updated with the lesser of timeout and

policySession→timeout.

When Time has a greater value than policySession→timeout, the policy session expires and cannot be

used for authorization. If the authorization used a timeout (no nonceTPM), then the authorization will also

expire on the next TPM Reset.

NOTE 3 A policy assertion includes an expiration when the expiration parameter is non-zero. A policy
assertion includes a nonceTPM when its nonceTPM parameter is not the Empty Buffer.

NOTE 4 expiration may need to be converted to milliseconds before being added to
policySession→startTime.

NOTE 5 When an expiration parameter is used directly as a timeout, expiration is the value of Time in
seconds when the assertion expires. When an assertion contains a timeout parameter (only in
TPM2_PolicyTicket()), timeout is an implementation-dependent value.

A ticket contains a digest of the command parameters of the assertion along with a ticket timeout. As long

as a ticket has not expired, its effect on a policySession→policyDigest and policySession→timeout will be

the same as the TPM2_PolicySigned() or TPM2_PolicySecret() command that generated the ticket. For

example, one may use a TPM2_PolicySigned() command with an expiration of -3600 (the negative of the

number of seconds in an hour) to return a ticket. For the next hour, that ticket can be used with

TPM2_PolicyTicket() to grant whatever other permissions were approved by the TPM2_PolicySigned()

command.

When the TPM is not able to report the passage of time (Time does not advance), accurate timing of

assertions is not possible. To prevent having a timed assertion persist past the intended timeout, a TPM

is required to invalidate any time based assertion that was created before a discontinuity in the TPM’s

measurement of time. Such a discontinuity can occur when Time does not advance or when Time is

reset. This requirement is met by having a number (a counter or a nonce) that changes each time that

there is a time discontinuity (an epoch) and by including timeEpoch in the computation of time-based

assertions. This implies that each policy session will need to:

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• record timeEpoch when the session is created (in policySession→timeEpoch);

• validate that the timeEpoch associated with a time-limited assertion is the same as
policySession→timeEpoch before the assertion is accepted; and

• when a time-limited policy is used for authorization, verify that the current TPM timeEpoch matches
policySession→timeEpoch.

If a counter is used for timeEpoch, it needs to be saved in NV memory whenever it changes. If the

number used for timeEpoch is a nonce, it can be kept in RAM and changed on each time discontinuity.

NOTE 6 A timeEpoch nonce needs to be large enough that a replay is infeasible. That is, a ticket issued with
a given nonce should not be useable after a future power cycle because the nonce values happen to
match. In the context of a specific ticket, a nonce collision is not a “birthday problem” as the nonce
has to match exactly rather than being one of a group of values that are equivalent.

 Use of TPM for authPolicy Computation

To use a policy for authorization for an object or NV Index, the creator of an object or NV Index is

required to know, at the time of creation of the Object or NV Index, the digest of the policy. The

computation of this policy requires duplication of the steps that would be performed by the TPM when it

evaluates the policy and updates the accumulated policyDigest of the session.

This computation can be done by software but would require that the policy update process for each

command be replicated by software. As an alternative, the TPM can be used to perform the computation.

To use the TPM, a policy session is created, and various policy commands are sent to the TPM as if the

policy were being evaluated in order to authorize an action. TPM2_PolicyGetDigest() may then be used to

read the final policyDigest from the TPM. That policyDigest value may then be used as the authPolicy

parameter in a new Object/NV Index.

NOTE There is no requirement that the authPolicy for each Object or NV Index be unique.

If the policy is complex and uses TPM2_PolicyOR(), it will be necessary to compute multiple policyDigest

values. The same policy session can be used for all of the computations by using TPM2_PolicyRestart()

after the policyDigest for a branch is computed. When the last branch is computed, it may be used in a

TPM2_PolicyOR that is constructed from the previously computed values.

TPM2_PolicyGetDigest() could also be used to help validate the software that is implementing the digest

computation. The value computed by the TPM can be compared to the value computed by the software

library to ensure that they are the same. If desired, TPM2_PolicyGetDigest() can be called after each

policy command.

 Trial Policy Session

If a policy requires a signed (symmetric or asymmetric) authorization for an action, that authorization may

not be available at the time that the Object/NV Index is created, and, in fact, the authorizing entity might

not be willing or able to provide the necessary authorization at the time of creation.

EXAMPLE 1 If the Object is to have a duplication authorization, the duplication authority may not provide the
authorization for the duplication when the Object is created. If they did, then the migration policy
could be computed; the policyDigest of the session read and placed in a new Object, and
immediately used for duplication of the Object. The duplication authority may not want to allow the
duplication at that time.

The TPM provides a special type of policy session to be used for the purpose of computing the policy

without enabling the use of the policy. When a session is created by TPM2_StartAuthSession(policyType

Trusted Platform Module Library Part 1: Architecture

Page 132 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

= TPM_SE_TRIAL), a policy session is created that cannot be used for authorization. Since it cannot be

used for authorization, authorizations are not needed in the computation of the policy.

EXAMPLE 2 If TPM2_PolicySigned() is called to update the digest of a trial policy session, the signature is not
validated but the policyDigest is updated as if a correct signature was provided.

 Use of TPM2_PolicySigned() and TPM2_PolicySecret() without nonceTPM

The primary purpose of including nonceTPM in TPM2_PolicySigned() and TPM2_PolicySecret()

is to restrict the use of the policy assertion to a specific policy session so that the assertion may

only be used once.

nonceTPM serves a different purpose when the assertion is structured so that a ticket is

produced. In that case, the intent is that the assertion can apply to more than one policy session,

so nonceTPM serves a different purpose – to associate the assertion with a specific TPM. That

is, a non-zero expiration causes the TPM to produce a ticket. If the signer did not include

nonceTPM, its signature could be used with any session and therefore on any TPM. Including

nonceTPM binds the signature to a specific session, and thus a specific TPM. The signer forces

the ticket to be created on a specific TPM, which ties the ticket to a timer on that TPM.

Each nonceTPM is expected to be statistically unique and not appear on any other TPM (this is

just expected to be true and not required to be true). Therefore, when an assertion includes

nonceTPM, the assertion will only be usable on one policy session on a specific TPM.

NOTE When a ticket is produced, that ticket is always restricted to use on a specific TPM because of the
use of TPM- and hierarchy-specific proof values in the ticket computation.

When the policy assertion does not include nonceTPM, then is it possible to use the assertion

with any policy session. For TPM2_PolicySecret() the assertion may still be associated with a

specific TPM if the authorization for the authObject uses an HMAC or policy session. This is because

that authorization session will be TPM specific. For TPM2_PolicySigned(), when there is no

nonceTPM in the assertion, then the assertion may be used on any policy session on any TPM

where the public part of authObject may be loaded (that is, any TPM that is compatible with this

specification). This may be suitable when an assertion is limited to performing specific actions

(through cpHash) or specific policies (though policyRef), but this capability should be used with

caution.

19.8 Dictionary Attack Protection

 Introduction

The TPM incorporates mechanisms that provide protection against guessing or exhaustive searches of

authorization values stored within the TPM.

The dictionary attack (DA) protection logic is triggered when the rate of authorization failures is too high. If

this occurs, the TPM enters Lockout mode in which the TPM will return TPM_RC_LOCKOUT for an

operation that requires use of a DA protected authValue. Depending on the settings of the configurable

parameters described below, the TPM can “self-heal” after a specified amount of time or be

programmatically reset using proof of knowledge of an authorization value or satisfaction of a policy

The authValue for an object receives DA protection unless the object's noDA attribute is SET. The

authValue for an NV Index receives DA protection unless the TPMA_NV_NO_DA attribute of the Index is

SET. The authValue associated with a permanent entity, other than TPM_RH_LOCKOUT, does not

receive DA protection. Sequence objects created by TPM2_HMAC_Start() and

TPM2_HashSequenceStart() do not receive DA protection.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 1 Authorization values associated with permanent entities, other than TPM_RH_LOCKOUT, are
expected to be high-entropy values that are managed by a computer or will be well -known values, In
either case, they will not need DA protection. While it is safer when lockoutAuth is a high-entropy
value, it is possible that lockoutAuth will be a value chosen to be remembered by a human which will
likely have less entropy than other permanent entities. As a consequence, lockoutAuth is DA
protected even though it is a permanent entity.

The reason for being able to exclude entities from DA protection is that lockout of all TPM use could make

the system unstable. The OS may have uses for the TPM that should not be blocked due to authorization

problems with keys associated with user-mode applications. The OS is expected to use a well-known or

high-entropy authValue for any entities that it manages and an authValue of neither type needs DA-

protection.

An authValue may be used for authorization in three ways:

1) a password;

2) the authValue parameter in the HMAC computation of equation (17); or

3) the authValue parameter in the computation of sessionKey for a bound session as shown in equation

(18).

All uses of a DA protected authValue receive DA protection.

NOTE 2 A TPM PIN Index provides a type of DA protection for an individual TPM entity. This is described
in37.2.8.

 Lockout Mode Configuration Parameters

The TPM uses four, 32-bit, non-volatile state variables to control the initiation and recovery from the DA-

lockout mode.

NOTE The "NV" notation indicates that these values are required to be held in persistent memory and be
updated in NV when they change

 failedTries (NV) – This counter is incremented when the TPM returns TPM_RC_AUTH_FAIL.

TPM2_Clear() will reset this counter to zero. This counter is also set to zero on a successful

invocation of TPM2_DictionaryAttackLockReset(). This counter is decremented by one after

recoveryTime seconds if:

 the TPM does not record an authorization failure of a DA-protected entity,

 there is no power interruption, and

 failedTries is not zero.

NOTE 1 If the TPM has a trusted source of time that runs when TPM power is lost, then failedTries may be
reduced when power is restored. The amount that failedTries is decremented would be dependent
on the duration of the power loss and the value of recoveryTime.

NOTE 2 The TPM may keep track of the time elapsed toward recoveryTime at shutdown and use that against
the recoveryTIme upon power up.

 maxTries (NV) – The TPM is in Lockout mode as long as failedTries equals this value. When a new

owner is installed, maxTries is set to its default value as specified in the relevant platform-specific

specification.

 recoveryTime (NV) – This value indicates, in seconds, the rate at which failedTries is decremented.

This can be set to a large value (232 - 1) which essentially inhibits automatic exit from Lockout mode.

When a new owner is installed, this value is set to its default value as specified in the relevant

platform-specific specification.

Trusted Platform Module Library Part 1: Architecture

Page 134 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 lockoutRecovery (NV) – This value indicates the delay in seconds between attempts to use

lockoutAuth. The time delay only applies after an authorization failure using lockoutAuth. A value of

zero indicates that a system reboot (TPM2_Startup(TPM_SU_CLEAR)) is required between lockout

attempts.

The parameters maxTries, recoveryTime, and lockoutRecovery are set with

TPM2_DictionaryAttackParameters(). This command requires Lockout Authorization.

 Lockout Mode

The TPM is in Lockout mode while failedTries is equal to maxTries. While in Lockout mode, any use of a

DA-protected authValue will return TPM_RC_LOCKOUT.

NOTE 1 An exception is that TPM2_DictionaryAttackLockReset() is allowed to execute even though
lockoutAuth is DA protected.

NOTE 2 If there is an authorization failure that does not increment failedTries, the TPM returns
TPM_RC_BAD_AUTH

An authorization failure may occur with a password or an HMAC. For a policy authorization, the policy is

validated before the HMAC is computed. If the policy fails, the TPM returns TPM_RC_POLICY to indicate

that dictionary attack protection was not involved.

NOTE 3 A policy authorization does not always have an associated HMAC.

 Recovering from Lockout Mode

The TPM can recover from Lockout mode in three ways.

1) TPM2_DictionaryAttackLockReset() sets failedTries to zero. This command requires Lockout

Authorization. The TPM does not have to be in Lockout mode in order to use this command.

2) The TPM decrements failedTries by one if no TPM resets are recorded during recoveryTime.

NOTE 1 If the TPM is in Lockout mode, then the TPM will always leave Lockout mode when failedTries
decrements because failedTries will no longer be equal to maxTries.

NOTE 2 The failure count is not decremented below zero.

3) failedTries is set to zero if the owner changes.

Configuration and programmatic recovery of the dictionary attack logic requires proof of knowledge of

Lockout Authorization. When the TPM owner is changed by changing the SPS, lockoutAuth is set to the

EmptyAuth and lockoutPolicy is set to the Empty Buffer

TPM2_DictionaryAttackLockReset() allows external software to reset the dictionary attack protection logic

by providing Lockout Authorization. This command can be used when the TPM is in Lockout mode.

 Authorization Failures Involving lockoutAuth

When lockoutAuth is used in an authorization and that authorization fails, the TPM enters a lockout state

intended to provide special protection for the lockoutAuth value. An authorization failure associated with

lockoutAuth causes the TPM to enter this special lockout state regardless of the setting of failedTries and

maxTries.

When in this special lockout state, the TPM will not allow use of lockoutAuth. The TPM will exit this state

when TPM2_DictionaryAttackLockReset() is used with a successful lockoutPolicy or after the TPM is

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

powered for a configurable time period (lockoutRecovery). If lockoutRecovery is set to zero, then the TPM

will not exit this state until the next TPM2_Startup() or until lockoutPolicy is used.

NOTE The design depends upon the trusted computing base to filter commands to the TPM such as
TPM2_DictionaryAttackLockReset(). This prevents a rogue application from completing a denial of
service attack on the TPM by intentionally sending the command with a bad lockoutAuth.

 Non-orderly Shutdown

A TPM may be implemented such that the command execution unit does not always have access to NV

memory (see 37.7.2). For such an implementation, it may not be possible to increment the NV copy of

failedTries when the authorization failure occurs. When the failure occurs, the TPM will return

TPM_RC_AUTH_FAIL and, until the NV version of failedTries is updated, the TPM will be in lockout.

It is possible that the TPM will be reset when a write to the NV version of failedTries is pending. If the

TPM did not handle this special case, then an attacker could try an authorization for a DA protected

object when NV writes are not possible. When the TPM restarted, the failed attempt would not be

recorded, and the attacker could try again.

To prevent this type of attack, at TPM2_Startup(), the TPM checks if it is starting after an orderly

shutdown. If not, and failedTries is not already equal to maxTries, then the TPM will increment failedTries

by one.

NOTE This check and increment of failedTries may not be necessary if it is impractical for an attacker to
prevent update of the NV version of failedTries.

An alternative implementation sets an NV flag indicating that access to a DA protected object occurred

during this boot cycle. After a non-orderly restart, if the flag is set, the TPM increments failedTries and

clears the flag. If the flag is clear, there is no need to increment failedTries.

EXAMPLE This handles the case where a platform repeatedly does a non-orderly shutdown, possibly due to a low
battery. Without the flag, failedTries would increment on each reboot and the TPM would go into
lockout.

 Justification for Lockout Due to Session Binding

When a bound session is created, the caller does not have to prove knowledge of the authValue of the

bind object. The authValue is used in the creation of the sessionKey and if the caller does not know the

authValue, they will not be able to compute the correct sessionKey and use the authorization session.

A bound authorization session may be used to authorize actions on another object. If that object does not

have DA protection, then an attacker could use binding to circumvent DA protection on the bind object.

The attack is as follows:

 An attacker creates an object (D) that has no DA protection and authValue known to the attacker.

 An attacker guesses a possible authValue for a DA protected object (object A).

 The attacker uses object A as the bind object in TPM2_StartAuthSession() to create a session (S).

 The attacker uses session S to authorize an action on object D.

 If the authorization fails, the attacker goes to step b) and tries a new value.

By retaining the DA state of object A in the session state, the attack is prevented. When the session is

used for authorization, the authorization failure counter (failedTries) is incremented if either the entity

being authorized is subject to DA protection or if the session is bound to an entity that has DA protection.

Trusted Platform Module Library Part 1: Architecture

Page 136 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE If a session is bound to a permanent entity other than TPM_RH_LOCKOUT, then the session is not
bound to an entity that has DA protection.

 Sample Configurations for Lockout Parameters

19.8.8.1 Introduction

Two common configurations are anticipated: one for enterprise-managed TPMs, and one for home users.

NOTE It is anticipated that the operating system will layer addi tional anti-hammering protection atop that
provided by the TPM so that it is unlikely that one OS user will be able to interfere with the actions
of another user or the trusted computing base (TCB).

19.8.8.2 Enterprise Use

In this use, it is expected that the TPM owner will set the lockoutAuth to a high-entropy value that is held

in a database and set the lockoutRecovery to a small, non-zero value, such as one. The enterprise will

use this value to recover the TPM when suitable non-automated validation procedures have been

performed.

The enterprise would likely set maxTries to a relatively low value (such as, 10).

For a server or data center, the recoveryTime would be set to a large value (such as, 232 -1) implying

manual recovery. For laptops, a setting of a few hours would provide adequate protection for PINs.

19.8.8.3 Home or Unmanaged Use

In this application, the lockoutAuth may be set to a random, high-entropy value that is then erased so that

programmatic lockout recovery is not possible. maxTries and recoveryTime can be set to balance security

and convenience.

NOTE If this configuration is used, the only way to execute TPM2_Clear() to change the owner is to use
Platform Authorization.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Audit Session

20.1 Introduction

An audit session allows for the auditing of a selected sequence of commands so that evidence may be

provided that the commands were executed.

Any HMAC authorization session may be designated for auditing but only one session may be used for

audit in each command. A session is designated for auditing by setting the audit attribute in the session.

When a session is first used as an audit session, the TPM will initialize the audit hash for the audit

session. The initialization value is a Zero Digest with the number of octets determined by the hash

algorithm of the session.

If the session was bound when created (see 19.6.10 and 19.6.12), the bind value is lost and any further

use of the session for authorization will require that the authValue be used in the HMAC.

Since the first use of an audit session may cause the size of the session context to change, the command

may fail due to insufficient memory. TPM-management software may save other session contexts and

retry the command.

NOTE 1 The TPM is required to have sufficient memory to allow three sessions to be simultaneous ly loaded,
one of which may be an audit session.

For all commands using a session tagged as audit (including the initial use), if the command completes

successfully, the cpHash and the rpHash are Extended to the audit session digest. When a command

fails, the audit session digest is not changed and, as is normal in the case of a command failure, the

sessions are not included in the response and session nonces are not updated.

The equation for updating the audit session digest is:

 auditDigestnew ≔ HauditAlg (auditDigestold || cpHash || rpHash) (30)

The hash algorithm is the algorithm designated in TPM2_StartAuthSession().

NOTE 2: Audit within an encrypted session will record the encrypted cpHash and/or rpHash, which is unlikely
to be useful at the application level.

Unless a command description indicates that no sessions are allowed, an audit session may be used with

any command. A command may have only one audit session.

An audit session uses the same session format as other HMAC-based sessions. The method of

computing the HMAC differs in that, if the audit session is not associated with any object handle, no

authValue is available for use in the authorization HMAC. All HMAC computations for an audit session will

set authValue to an Empty Buffer.

NOTE 3 If the sessionKey is also an Empty Buffer, then no HMAC computation is performed and the hmac
parameter of the session structure will be an Empty Buffer.

For commands that do not require authorization, a bound or salted audit session causes an HMAC based

on a shared secret to be generated. This provides assurance that the command was executed on the

TPM. A bound session allows association with a known authValue in a TPM, which can provide

assurance that the commands being audited are actually associated with a specific TPM. However, if

others know the authValue, then the unsalted audit session may have the same association issue as the

unbound session. A salted session can be associated with a key that is known to be TPM-resident, so the

audit based on a salted session can be reliably associated with a specific TPM.

Trusted Platform Module Library Part 1: Architecture

Page 138 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 4 This assurance does not require a signed audit digest to be used.

EXAMPLE TPM2_PCR_Read does not require authorization. A bound or salted audit session will cause an
HMAC to be used, and thus provide integrity for the command and response.

20.2 Exclusive Audit Sessions

An exclusive audit session permits the TPM to prove that a series of commands were executed with no

intervening commands that were not audited by the exclusive audit session.

In a response, the auditExclusive attribute of an audit session will indicate if the TPM has executed any

commands that were not audited by the session. If there was another user of the TPM, the auditExclusive

attribute will be CLEAR. If not, the audit session is exclusive and the auditExclusive attribute will be SET.

The TPM keeps track of the current exclusive session. At most, one active session may have the

auditExclusive status. A session becomes the current exclusive audit session when it is first used as an

audit session, regardless of the setting of auditReset. It may also become the current exclusive audit

session if the auditReset attribute of the session is SET in the command. In the response, the

auditExclusive attribute of the session will be SET and the session is exclusive. The session is no longer

the current exclusive audit session if it is flushed (TPM2_FlushContext()) or if an auditable command is

executed that does not use the current exclusive audit session.

NOTE 1 auditReset may only be SET if audit is also SET.

A command that is not allowed to have any sessions will not change the current exclusive audit session.

Those commands include the context management commands (TPM2_ContextSave(),

TPM2_ContextLoad(), and TPM2_Flush()), TPM2_Startup(), and TPM2_ReadClock().

NOTE 2 It is the responsibility of the TCG Software Stack (TSS) or other controlling software to preserve the
integrity of the exclusive audit session. As the purpose of the exclusive audit session is to show that
no other commands were executed during the session, the expectation is that the controlling
software would limit access to the TPM to prevent any other uses of the TPM.

20.3 Command Gating Based on Exclusivity

If the auditExclusive attribute of an audit session is SET in the command, then the TPM will return

TPM_RC_EXCLUSIVE if the audit session is not the current exclusive audit session.

NOTE 1 As with other error returns, no change is made to the state of the session and it rema ins active.

NOTE 2 auditExclusive in a command only determines whether the command is executed. It does not affect
the exclusive status of the session.

NOTE 3 auditExclusive may only be SET if audit is also SET.

20.4 Audit Session Reporting

The audit status of an audit session can be determined with TPM2_GetSessionAuditDigest(). This

command returns a data structure that includes the audit session digest. If the handle for the signing key

is not TPM_RH_NULL, the TPM returns a signature over the data structure.

In the atypical case where the TPM2_GetSessionAuditDigest() sessionHandle is the same as the handle

of the audit session, because the audit digest is signed before the audit digest is updated, the cpHash

and rpHash for a TPM2_GetSessionAuditDigest() is not included in the audit digest of the signed data

structure. Possession of the audit digest is proof that the command executed. However, the cpHash and

rpHash of TPM2_GetSessionAuditDigest() will be included in subsequent audits if the audit session

remains active.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

TPM2_GetSessionAuditDigest() requires that the indicated session be an audit session and will return

TPM_RC_TYPE if it is not. The TPM does not change internal state unless the command actions

complete successfully. This means that a session cannot become an audit session unless the command

in which it is designated as an audit session completes successfully. From this we can conclude that a

session cannot be designated as being an audit session in a TPM2_GetSessionAuditDigest() in which the

same session is the audited session.

20.5 Audit Establishment Failures

If a command is the first use of a session as an audit session, and the command fails, then the state of a

session as an audit session will not change. This means that, if a session was not an audit session before

the command was executed, it will not be an audit session after the command fails. If a session was an

audit session before the command was executed, it will be an audit session after the command fails.

If a command fails, then the exclusive status of sessions does not change. A session that was exclusive

before the command failure is exclusive after the command failure.

20.6 Audit Alternative

Both TPM2_GetSessionAuditDigest() and TPM2_GetCommandAuditDigest() require Endorsement

Authorization. If an application does not have Endorsement Authorization, it can still obtain proof that a

command was run on a particular TPM. The application must have a fixedTPM asymmetric encryption

key that is trusted to be on the TPM. This key would have similar trust properties to the signing key that

would be used with the TPM2_GetSessionAuditDigest() and TPM2_GetCommandAuditDigest()

commands. The application uses an audit session that is a salted session with the trusted key specified

as tpmKey. The salt forces an HMAC session. The HMAC verification is proof that the command was run

on that TPM.

Trusted Platform Module Library Part 1: Architecture

Page 140 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Session-based encryption

21.1 Introduction

Several commands have parameters that may need to be encrypted going to or from the TPM. An

example is the authorization data that is passed to the TPM when an object is created or when the

authorization value is changed. Session-based encryption may be used to ensure confidentiality of these

parameters.

Not all commands support parameter encryption. If session-based encryption is allowed, only the first

parameter in the parameter area of a request or response may be encrypted. That parameter must have

an explicit size field. Only the data portion of the parameter is encrypted. The TPM should support

session-based encryption using XOR obfuscation. Support for a block cipher using CFB mode is platform

specific. These two encryption methods (XOR and CFB) do not require that the data be padded for

encryption, so the encrypted data size and the plain-text data size is the same.

If the symmetric algorithm is TPM_ALG_NULL and encryption or decryption is specified, the TPM returns

TPM_RC_SYMMETRIC.

Any first parameter may be encrypted as long as the parameter has a size field.

Session-based encryption uses the algorithm parameters established when the session is started and

values that are derived from the session-specific sessionKey. The encryption values are created in a way

that is dependent on both the session type and the session encryption parameters.

If a session is also being used for authorization, sessionValue (see 21.2 and 21.3) is sessionKey ||

authValue. The binding of the session is ignored. If the session is not being used for authorization,

sessionValue is sessionKey.

NOTE 1 A policy session that is used for parameter encryption uses authValue to calculate sessionValue
even if the policy does not include TPM2_PolicyAuthValue().

If sessionAttributes.decrypt is SET in a session in a command, and the first parameter of the command is

a sized buffer, then that parameter is encrypted using the encryption parameters of the session. If

sessionAttributes.encrypt is SET in a session of a command, and the first parameter of the response is a

sized buffer, then the TPM will encrypt that parameter using the encryption parameters of the session.

The encrypt attribute may only be SET in one session that is used in a command and the decrypt attribute

may only be SET in one session per command. The attributes may be SET in different sessions or in the

same session.

Parameters in commands are encrypted before any cpHash is computed. Parameters in responses are

encrypted before any rpHash is computed.

The parameter data buffer is protected with either XOR obfuscation or CFB mode encryption. The size

field of the parameter is not protected.

When a command/response with an encrypted parameter is received, the cpHash/rpHash is computed as

required for the sessions before the parameter is decrypted.

NOTE 2 The caller may obfuscate the true size of an authorization value by adding octets of zero to the end.
The extra octets of zero will have no impact on the authorization computations and may be
discarded by the TPM.

The two methods of session-based encryption used in this specification are, by themselves, malleable.

That is, an attacker can make a controlled change (bit reversal) in the encrypted data that will result in an

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 141

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

identical change in the decrypted data. This kind of attack is mitigated by the HMAC authorization session

verification.

21.2 XOR Parameter Obfuscation

For session-based obfuscation using XOR(), the operation is:

 XOR(parameter, hashAlg, sessionValue, nonceNewer, nonceOlder) (31)

where

parameter a variable sized buffer containing the parameter to be obfuscated

hashAlg the hash algorithm associated with the session

sessionValue see 21.1

nonceNewer for commands, this will be nonceCaller and for responses it will be

nonceTPM

nonceOlder for commands, this will be nonceTPM and for responses it will be

nonceCaller

NOTE 1 The XOR() function is defined in 11.4.7.3.

NOTE 2 The obfuscated size of parameter is the same as the size of the underlying parameter. That is, if a
TPM2B_CREATE is obfuscated, the size of the obfuscated data is the same as the size of the data.

21.3 CFB Mode Parameter Encryption

When session-based encryption uses a symmetric block cipher, an encryption key and IV will be

generated from:

 KDFa (hashAlg, sessionValue, “CFB”, nonceNewer, nonceOlder, bits) (32)

where

hashAlg the hash algorithm associated with the session

sessionValue see 21.1

“CFB” label to differentiate use of KDFa() (see 4.2)

nonceNewer nonceCaller for a command and nonceTPM for a response

nonceOlder nonceTPM for a command and nonceCaller for a response

bits the number of bits required for the symmetric key plus an IV

NOTE 1 The IV size is equal to the block size of the cipher.

The most significant octets of the returned value are used as the encryption key and the remaining octets

are used as the IV. The number of octets used for the encryption key and for the IV is dependent on the

algorithm parameters of the session.

EXAMPLE For AES, the block size is 16 octets regardless of the key size. If the key size were 256 bits (32
octets), then, in the call to KDFa (), bits would be set to 48*8. The most significant 32 octets of the
returned value would be used as the key for the encryption and the next 16 octets would be used for
the IV.

Trusted Platform Module Library Part 1: Architecture

Page 142 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 2 If the key size is not an even multiple of 8 bits, the first N octets of the ret urned value will contain
the key and the remaining octets the IV. N is the smallest integer such that (N * 8) ≥ the key size.

The data portion of the parameter is then encrypted using the symmetric key and the symmetric block

cipher algorithm associated with the session.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 143

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Protected Storage

22.1 Introduction

When a Protected Object is in the TPM, it is in a Shielded Location because the only access to the

context of the object is with a Protected Capability (a TPM command). The size of TPM memory may be

limited and if the only storage for Protected Objects were the TPM Shielded Locations, the TPM’s

usefulness would be reduced. The effective memory of the TPM is expanded by using cryptographic

methods for Protected Objects when they are not in Shielded Locations.

22.2 Object Protections

The cryptographic protections for a Protected Object include encryption to prevent disclosure of the

confidential contents, and an integrity check to allow detection of modifications to the externally stored

Protected Object. The integrity check detects modifications to either the confidential or the non-

confidential portions of the Protected Object.

The integrity value is computed over the encrypted data. If the integrity check fails, then symmetric

decryption will not occur. Since the integrity value contains the digest of the associated public area (its

Name), the confidential contents of the Protected Object will not be decrypted if they are not properly

paired with a public area.

22.3 Protection Values

The protection of a sensitive area uses two keys. These values are created from a secret value

associated with an object’s Storage Parent. One of the keys is used as an HMAC key and the second is a

symmetric encryption key.

A seed value is used in the generation of the symmetric encryption key and the HMAC key. The source of

the seed is dependent on the situation. If the protections are for an object in a hierarchy, the seed is the

seedValue in the Storage Parent’s sensitive area. If the protections are for a duplication blob, the seed is

derived from a shared secret that is protected using asymmetric methods of the new parent. The

algorithm-specific annexes contain the formulations for deriving the seed when asymmetric protections

are used.

To produce the symmetric key, the seed value and object Name are used in KDFa() as shown in

equation (33). This method is used when a symmetric key is generated for the protection of sensitive

areas attached to a hierarchy or sensitive data in a duplication blob (see 23.3).

NOTE 1 This method is also used to generate the symmetric key used for the protection of credential values
(see 24.4).

To produce the HMAC key, the seed is used in KDFa() as shown in equation (35). This method is used

when an HMAC is used to protect the integrity of a sensitive area attached to a hierarchy or for sensitive

data in a duplication blob.

NOTE 2 This method is also used to generate the HMAC key for credential values (see 24.4).

When performing symmetric encryption, an IV of zero is used unless the same symmetric key is used

multiple times. The same symmetric key is used each time that the sensitive area of a child changes due

to TPM2_ObjectChangeAuth(). For encryption of a child, a random IV is generated by the TPM each time

it performs the encryption.

Trusted Platform Module Library Part 1: Architecture

Page 144 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.4 Symmetric Encryption

A symmetric key is used to encrypt the sensitive area of an object that was created by TPM2_Create() or

imported by TPM2_Import(). It is also used when re-encrypting a sensitive area when the authorization

value is changed (TPM2_ObjectChangeAuth()). The symmetric key is derived from a seed value

contained in the Storage Parent’s sensitive area and the Name of the protected object.

The block cipher used for encrypting the object's sensitive area is the symmetric cipher of the Storage

Parent.

The symmetric key for the encryption is computed by:

 symKey ≔ KDFa (pNameAlg, seedValue, “STORAGE”, name, NULL , bits) (33)

where

pNameAlg nameAlg of the object's Storage Parent

seedValue symmetric seed value in the sensitive area of the object's Storage Parent

(see 27.7.4)

“STORAGE” a value used to differentiate the uses of the KDF

name Name of the object being encrypted / decrypted

bits number of bits required for the symmetric key

When a symKey is being used to protect the sensitive area of a child object, the TPM will create a random

IV value (symIv) that is the size of an encryption block of the symmetric algorithm. This symIV is included

in the private area and in the HMAC computation of the sensitive area. A symIV of zero is used when

encrypting the sensitive area for duplication or a credential to be used in TPM2_ActivateCredential().

The symKey and symIv are used to encrypt the sensitive data.

 encSensitive ≔ CFBpSymAlg (symKey, symIv, sensitive) (34)

where

CFBpSymAlg symmetric encryption in CFB mode using the symmetric algorithm of the

Storage Parent

symKey symmetric key from (33)

symIv IV from RNG or 0

sensitive a TPM2B_SENSITIVE containing the sensitive area structure being

protected

NOTE The size and buffer fields of sensitive are encrypted.

After the data is encrypted, the TPM2B_IV containing the random symIv is placed in front of the

encrypted data in preparation for the integrity computation. If the symIV was zero, then no value is added

to the encrypted data.

22.5 Integrity

The HMAC key (HMACkey) for the integrity is computed by:

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 145

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 HMACkey ≔ KDFa (pNameAlg, seedValue, “INTEGRITY”, NULL, NULL, bits) (35)

where

pNameAlg the nameAlg of the object's Storage Parent

seedValue the symmetric seed value in the sensitive area of the object's Storage

Parent (see 27.7.4)

“INTEGRITY” a value used to differentiate the uses of the KDF

bits the number of bits in the digest produced by pNameAlg

HMACkey is then used in the integrity computation.

An HMAC is performed over the symIV and the encSensitive produced in (34).

NOTE 1 This is called an outerHMAC because it is the same HMAC process that is used when an object is
duplicated. The duplication can produce an inner and an outer HMAC.

 outerHMAC ≔ HMACpNameAlg (HMACkey, symIv || encSensitive || name.buffer) (36)

where

HMACpNameAlg the HMAC function using nameAlg of the object's Storage Parent

HMACkey a value derived from the Storage Parent’s symmetric protection value

(seedValue) according to equation (35)

symIv a marshaled TPM2B_IV containing the symmetric IV value used in (34).

Both the size and buffer fields are included in the HMAC

encSensitive encrypted TPM2B_SENSITIVE produced in (34); after encryption, the

size and buffer fields are not separable

name.buffer the Name of the object being protected (does not include a size field)

The integrity value is placed before the symmetric IV.

NOTE 2 Placement of the integrity value at the beginning of the sensitive area in preparation simplifies the
process of finding the integrity value when the protected data contains variable -sized elements.

NOTE 3 Inclusion of the Name ensures that the sensitive area is associated with the corre ct public area.

Marshal the sensitive area into a TPM2B_SENSITIVE

Create a symmetric key and IV for encryption:

symKey ≔ KDFa (pNameAlg, seed, “STORAGE”, name, NULL , bits)

symIV ≔ bits from the RNG

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

seedValue

Trusted Platform Module Library Part 1: Architecture

Page 146 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Create encSensitive by encrypting the TPM2B_SENSITIVE

encSensitive ≔ CFBpSymAlg (symKey, symIv, sensitive)

Add the symmetric IV to (a TPM2B_IV) the encrypted block

Compute the HMAC key

HMACkey ≔ KDFa (pNameAlg, seed, “INTEGRITY”, NULL, NULL, bits)

Compute the HMAC over the symmetric IV (the full TPM2B_IV), the

encSensitive from step 3, and the Name of the object being protected.

outerHMAC ≔ HMACpNameAlg (HMACkey, symIv || encSensitive || name.buffer)

NOTE An overall size field will be added to make the resulting
TPM2B_PRIVATE structure.

Marshal the outerHMAC into a TPM2B_DIGEST and append the

symmetric IV and encrypted sensitive.

NOTE An overall size field will be added to make the resulting
TPM2B_PRIVATE structure.

Figure 17 — Creating a Private Structure

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

symValue

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

symValue

symmetric IVsi
ze

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

symValue

symmetric IVsi
ze

outerHMAC

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

symValue

symmetric IVsi
ze

outerHMAC si
ze

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 147

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Protected Storage Hierarchy

23.1 Introduction

The TPM supports the creation of hierarchies of Protected Locations. A hierarchy is constructed with

Storage Keys as the connectors to which other types of objects (keys, data, and other connectors) may

be attached.

The hierarchical relationship of objects allows segregation of objects based on the system-operating

environment (established by PCR or authorizations) as well as simplifying the management of groups of

related objects.

23.2 Hierarchical Relationship between Objects

A hierarchy is rooted in a secret seed key, kept in the TPM. To create a hierarchy of keys, the seed key

(Primary Seed) is used to generate a key that uses a specific set of algorithms. If this key is a restricted

decryption key, then it is a Parent Key. If it is not a Derivation Parent, then it is a Storage Parent under

which other objects may be created or attached.

A Storage Parent provides protection for the sensitive area in another object (a child) when that object is

stored outside of the TPM. Protection is provided by symmetric encryption and HMAC-based integrity

protection of the sensitive area. There are two different cases for sensitive area encryption: storage and

duplication.

When an Ordinary Object is created (TPM2_Create() or TPM2_CreateLoaded()) the keys used for

protection of the Object’s sensitive area are derived from a seed value (seedValue) in the sensitive area

of the Storage Key. When an Object is prepared for duplication, its sensitive area is protected by a

random key and a form of Diffie-Hellman is used to convey the key to the duplication target.

The objects in a hierarchy have a parent-child relationship. A Storage Key that is protecting other objects

is a Storage Parent and the objects that it is protecting are its children. The ancestors of an object are the

parent keys that connect the object to a TPM Primary Seed. Descendants of a key are all the objects that

have that Parent as an ancestor. Unless it is intended to be used as a parent, a child object may be of

any type.

A Derived Object is a child of its Derivation Parent. Both Primary Objects and Derived Objects are derived

from seed values. For a Primary Object, the seed value is a Primary Seed and for a Derivation Object the

seed value is the secret seed value in the Derivation Parent.

The sensitive part of an object created from a seed is not stored off of the TPM except in a context blobs

(see clause 30). This means that the seed used to create the Object is not also used to generate

protection keys for the Object. When an Object is duplicated, its sensitive area is protected by a random

key, so the creation seed is not put at risk by the duplication process (see 23.3).

Trusted Platform Module Library Part 1: Architecture

Page 148 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Figure 18 — Symmetric Protection of Hierarchy

There are two classes of Storage Keys: asymmetric and symmetric. All Storage Keys contain a symmetric

protection key. An asymmetric Storage Key has a public identity that can be used as the target of an

identity-based or secret-based duplication operation. An object that is a symmetric block cipher Object

may also be a Storage Key, but may only be the target of secret-based duplication

23.3 Duplication

 Definition

Duplication is the process of allowing an object to be a child of additional Storage Parent keys. The new

parent (NP) may be in a hierarchy of the same TPM or of a different TPM.

The creator of an object controls the duplication process by selecting the duplication policy for the object.

Authorization for duplication requires a policy session. The policy sequence is required to have a

command that causes the commandCode value of the policy context to be set to TPM_CC_Duplicate.

This enables the DUP role of the policy, which is a requirement for duplication.

Duplication occurs on a loaded object and produces a new, sensitive structure that is encrypted using the

methods of the NP. This new sensitive structure may not be used until TPM2_Import() has been executed

to convert the object from "external" to "internal" protections.

NOTE 1 External protections use both asymmetric and symmetric cryptography, whereas the internal
protections only use symmetric cryptography.

An ordinary object

A storage key

Legend

Seed from which HMAC and symmetric
protection keys are derived

Color indicates the seed
used to generate the
protections and the objects
protected by that seed

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 149

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

When an Object is duplicated, its sensitive area may be protected with an outer wrapper, an inner

wrapper, or both. The outer wrapper uses Diffie-Hellman based on asymmetric keys and provides

identity-based duplication. The inner wrapper uses a symmetric key that is under control of the duplication

authority for the Object. Duplication using an inner wrapper is secret-based duplication.

NOTE 2 The duplication authority is the entity that controls the conditions under which an Object may be
duplicated.

 Protections

23.3.2.1 Introduction

In TPM2_Duplicate(), the caller may specify that the object should be protected with an inner, symmetric

encryption. That is, the sensitive area is symmetrically encrypted before it is asymmetrically encrypted

using the methods of the NP. If a symmetric inner wrapper is desired, the caller may provide a key or

allow the TPM to generate the key.

If the encryptedDuplication attribute is SET in the object being duplicated, then it is required that the

object have an inner wrapper and that the new parent not be TPM_RH_NULL. For such an object, the

TPM will return an error (TPM_RC_SYMMETRIC) if the symmetricAlg parameter in TPM2_Duplicate() is

TPM_ALG_NULL and TPM_RC_HIERARCHY if the newParentHandle parameter is TPM_RH_NULL.

Creation of a duplicate object uses two encryption phases. The first is used to apply an inner wrapper and

the second is to encrypt using the algorithms of the NP.

The encryptedDuplication attribute of all objects in a duplication group are required to have the same

setting. When an object is created with the fixedParent attribute CLEAR, then the encryptedDuplication

attribute may be SET or CLEAR if the fixedTPM attribute is SET in the Storage Parent. If the fixedTPM

attribute of a Storage Parent is not SET, then the encryptedDuplication attribute is required to be the

same in all descendant objects of that Storage Parent.

23.3.2.2 Inner Duplication Wrapper

For the first phase, the TPM computes an integrity hash over the sensitive data. This hash includes the

Name of the public area associated with this object.

 innerIntegrity ≔ HnameAlg (sensitive || name) (37)

where

HnameAlg hash function using the nameAlg of the object

sensitive a TPM2B_SENSITIVE

name the Name of the object being protected

 A TPM2B_DIGEST containing the integrity digest value is prepended to the sensitive area and the buffer

(integrity plus sensitive) is encrypted using CFB.

 encSensitive ≔ CFBpSymAlg (symKey, 0, innerIntegrity || sensitive) (38)

where

CFBsymAlg symmetric encryption in CFB mode using the algorithm specified in the

command

Trusted Platform Module Library Part 1: Architecture

Page 150 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

symKey encryptionKeyIn parameter in TPM2_Duplicate() or a value from the

RNG if no key is provided

innerIntegrity value from (37)

sensitive the sensitive value used in (37)

If no inner wrapper is specified, no integrity value is computed, and no encryption occurs in this first

phase and

 encSensitive ≔ sensitive (39)

23.3.2.3 Outer Duplication Wrapper

In the second phase, the encSensitive produced by phase 1 is encrypted and integrity checked using

processes similar to those defined in clause 22. However, the seed from which the protection keys are

derived is protected by the asymmetric algorithm of the NP. The method of generating seed is determined

by the asymmetric algorithm of the NP. The different methods are described in annexes to this TPM 2.0

Part 1, for example, B.10.3 or C.6.3. The seed is selected prior to integrity generation for encSensitive or

encryption of encSensitive.

NOTE For an RSA new parent, seed is not allowed to be larger than the size of the digest produced by the
nameAlg of the object. When the TPM creates seed, it will be exactly the size of the nameAlg of the
new parent.

Given a value for seed, a symmetric encryption key (symKey) is created by:

 symKey ≔ KDFa (npNameAlg, seed, “STORAGE”, Name, NULL , bits) (40)

where

npNameAlg the nameAlg of the new parent

seed the symmetric seed value

“STORAGE” a value used to differentiate the uses of the KDF

Name the Name of the object being encrypted or decrypted

bits the number of bits required for the symmetric key

The symKey is used to encrypt the encSensitive.

 dupSensitive ≔ CFBnpSymAlg (symKey, 0, encSensitive) (41)

where

CFBnpSymAlg symmetric encryption in CFB mode using the algorithm of the new parent

symKey symmetric key from (40)

encSensitive value from either (38) or (39)

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 151

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Next, an HMAC key is generated from seed:

 HMACkey ≔ KDFa (npNameAlg, seed, “INTEGRITY”, NULL, NULL, bits) (42)

where

npNameAlg the nameAlg of the object's new parent

seed the symmetric seed value used in (40)

“INTEGRITY” a value used to differentiate the uses of the KDF.

bits the number of bits in the digest produced by npNameAlg

An HMAC is then generated over the dupSensitive data. The Name of the associated public area is

included in the HMAC computation to ensure that the sensitive area will only be decrypted when the

proper public and private areas are used in TPM2_Import().

 outerHMAC ≔ HMACnpNameAlg (HMACkey, dupSensitive || Name) (43)

where

HMACnpNameAlg the HMAC function using nameAlg of the new parent

HMACkey a value derived from the new parent symmetric protection value

according to equation (42)

dupSensitive symmetrically encrypted sensitive area produced in (41)

Name the Name of the object being duplicated

To complete the duplication process, the TPM2B_PUBLIC and TPM2B_ENCRYPTED_SECRET

produced by TPM2_Duplicate() are used in TPM2_Import() at the TPM containing the public and private

portions of the NP. If the private area is doubly encrypted, then the symmetric key used for the inner

wrapper is also given to the TPM.

TPM2_Import() will recover the symmetric key according to the algorithm of the NP. The

TPM2B_PRIVATE is decrypted. If an inner wrapper is present, the TPM2B_PRIVATE is decrypted using

the supplied symmetric key. After symmetric decryption, the integrity value is checked.

Marshal the sensitive area into a TPM2B_SENSITIVE

NOTE If no inner or outer wrapper is applied to the object, this structure is returned as
the duplicate parameter in the response for TPM2_Duplicate().

Compute an innerIntegrity value

innerIntegrity ≔ HnameAlg (sensitive || name)

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

seedValue

si
ze innerIntegrity digest

[sensitiveType]sensitive

size

sensitiveType

se
n

si
ti

ve
A

re
a

authValue

seedValue

Trusted Platform Module Library Part 1: Architecture

Page 152 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Set the encryption key (symKey) to encryptionKeyIn or a random value produced by the TPM.

Create encSensitive by encrypting the innerIntegrity value and the

TPM2B_SENSITIVE

encSensitive ≔ CFBsymAlg (symKey, 0, innerIntegrity || sensitive)

Using methods of the asymmetric new parent, create a seed value

Create a symmetric key (symKey):

symKey ≔ KDFa (npNameAlg, seed, “STORAGE”, Name, NULL, bits)

Create dupSensitive by encrypting encSensitive

dupSensitive ≔ CFBnpSymAlg (symKey, 0, encSensitive)

Compute the HMAC key from the seed created in step 5)

HMACkey ≔ KDFa (npNameAlg, seed, “INTEGRITY”, NULL, NULL, bits)

Compute the HMAC over dupSensitive and include the object Name

outerHMAC ≔ HMACnpNameAlg (HMACkey, dupSensitive || Name)

NOTE An overall size field will be added to make the resulting TPM2B_PRIVATE
structure.

Figure 19 — Duplication Process with Inner and Outer Wrapper

si
ze innerIntegrity digest

[sensitiveType]sensitive

size

sensitiveType

se
n

si
ti

ve
A

re
a

authValue

symValue

size

innerIntegrity digest

[sensitiveType]sensitive

sensitiveType

se
n

si
ti

ve
A

re
a

authValue

symValue

si
ze

outerHMAC si
ze

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 153

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figure 20 illustrates the processing of a duplication blob when no inner wrapper is used in the sensitive

area.

Marshal the sensitive area into a TPM2B_SENSITIVE

Since there is no inner wrapper set encSensitive ≔ sensitive

Using methods of the asymmetric new parent, create a seed value

Create a symmetric key for encryption:

symKey ≔ KDFa (npNameAlg, seed, “STORAGE”, name, NULL , bits)

Create dupSensitive by encrypting encSensitive

dupSensitive ≔ CFBnpSymAlg (symKey, 0, sensitive)

Compute the HMAC key from the seed created in step 3

HMACkey ≔ KDFa (npNameAlg, seed, “INTEGRITY”, NULL, NULL, bits)

Compute the HMAC over the dupSensitive

outerHMAC ≔ HMACnpNameAlg (HMACkey, dupSensitive || name)

NOTE An overall size field will be added to make the resulting TPM2B_PRIVATE
structure.

Figure 20 — Duplication Process with Outer Wrapper and No Inner Wrapper

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

seedValue

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

symValue

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

symValue

outerHMAC si
ze

Trusted Platform Module Library Part 1: Architecture

Page 154 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Marshal the sensitive area into a TPM2B_SENSITIVE

Compute an innerIntegrity value

innerIntegrity ≔ HnameAlg (sensitive || Name)

Set the encryption key (symKey) to encryptionKeyIn or a random value produced by the TPM.

Create encSensitive by encrypting the innerIntegrity value and the

TPM2B_SENSITIVE

encSensitive ≔ CFBsymAlg (symKey, 0, innerIntegrity || sensitive)

NOTE An overall size field will be added to make the resulting TPM2B_PRIVATE
structure.

Figure 21 — Duplication Process with Inner Wrapper and TPM_RH_NULL as NP

Marshal the sensitive area into a TPM2B_SENSITIVE

NOTE An overall size field will be added to make the resulting TPM2B_PRIVATE
structure. This will result in a TPM2B_SENSITIVE being the only contents of
the TPM2B_PRIVATE buffer.

Figure 22 — Duplication Process with no Inner Wrapper and TPM_RH_NULL as NP

 Rewrap

23.3.3.1 Introduction

TPM2_Rewrap() is a primitive of an exemplar key recovery service that performs all its security-sensitive

processes on TPMs.

The effect of the recovery service is indistinguishable from duplication of a source key directly from a

source platform to a destination platform.

The advantage of the recovery service is that

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

seedValue

si
ze innerIntegrity digest

[sensitiveType]sensitive

size

sensitiveType

se
n

si
ti

ve
A

re
a

authValue

seedValue

si
ze innerIntegrity digest

[sensitiveType]sensitive

size

sensitiveType

se
n

si
ti

ve
A

re
a

authValue

symValue

size

sensitiveType

se
n

si
ti

ve
A

re
a

[sensitiveType]sensitive

authValue

seedValue

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 155

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• registration of a source key with the recovery service relies upon an operational source platform, but
not upon an operational destination platform, and

• delivery of the source key by the recovery service relies upon an operational destination platform, but
not upon an operational source platform.

The recovery service keeps a source key from a source platform, irrespective of whether the destination

platform is known. The source key is protected from the recovery service by virtue of a backup password

that must be kept hidden from the recovery service but revealed to a destination platform. When the

destination platform is revealed to the recovery service, the recovery service facilitates the installation of

the source key in the destination platform.

 While the source platform is operational, the source platform uses TPM2_Duplicate() to create a

doubly wrapped duplication BLOB using a source key TpmPrivateKey, a backup password, and the

recovery service’s public key. (Duplication BLOBs are described earlier in this subclause. Note that

the “Outer Duplication Wrapper” subclause explains that the outer wrapping is symmetric encryption

that depends on a seed generated from a public key.)

 While the source platform is operational, the source platform sends the duplication BLOB (Source

BLOB in Figure 23) to the recovery service, which stores the BLOB.

 When a destination platform is revealed to the recovery service, the recovery service uses

TPM2_Rewrap() to derive another doubly wrapped duplication BLOB using the original doubly

wrapped duplication BLOB, the recovery service’s key, and the destination platform’s public key.

 When the destination platform is operational, the recovery service sends the derived duplication

BLOB (Recovery BLOB in Figure 23) to the destination platform.

 While the destination platform is operational, the destination platform uses TPM2_Import() to create a

normal key BLOB from the derived duplication BLOB, the destination platform’s key, and the backup

password.

Figure 23 — Key Recovery Process

23.3.3.2 Creating a backed-up key

 At the source platform, a key to be backed up, sourceKey = [sourcePubKey , sourceSensitiveKey],

and the recovery service's public key recoveryServicePubKey are loaded in the source TPM.

Recovery Service Key

Backup Password

TpmPrivateKey

Destination Key

Backup Password

TpmPrivateKey

SOURCE

DESTINATION

RECOVERY
SERVICE

Source BLOB

Destination BLOB

Trusted Platform Module Library Part 1: Architecture

Page 156 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 At the source TPM, TPM2_Duplicate() is used to create the doubly wrapped duplication BLOB, which

is sourceSensitiveKey, wrapped by encryptionKeyIn, wrapped by recoveryServicePubKey. The

parameters to TPM2_Duplicate() are:

 objectHandle - references the key sourceKey to be sent to the recovery service

 newParentHandle - references the recovery service’s public key recoveryServicePubKey

 encryptionKeyIn - is the backup password (this is an optional parameter and if the caller does not

provide a value, the TPM will generate one)

 symmetricAlg – the encryption algorithm for the inner wrapper

 The TPM returns:

 encryptionKeyOut – returned only if the TPM generated the key used for the inner wrapper

 duplicate – the wrapped sensitive area of objectHandle; the Source BLOB.

 outSymSeed - a protected version of the seed used to make the symmetric key used for outer

wrapping encryption

 The duplication BLOB duplicate is sent to the recovery service

23.3.3.3 Recovering a backed-up key

 At the recovery service’s platform, the recovery service's key recoveryServiceKey

=[recoveryServicePubKey , recoveryServiceSensitiveKey], and the destination platform’s public key

destinationPubKey are loaded into the recovery service’s TPM.

 At the recovery service’s TPM, TPM2_Rewrap() is used to is used to replace the outer wrapper of the

Source BLOB with an outer wrapper tied to the Destination Key destinationPubKey. The parameters

for TPM2_Rewrap() are:

 oldParent - references the recovery service’s key recoveryServiceKey

 newParent – references the destination platform’s public key destinationPubKey

 induplicate – the Source BLOB

 inSymSeed - this is outSymSeed from the source platform. It is needed to derive the symmetric

key used by the source platform for outer wrapping encryption

 At the recovery service, the TPM will return

 outDuplicate – the rewrapped Destination BLOB

 outSymSeed - a protected version of the seed used to make the symmetric key used by the

recovery service for outer wrapping encryption

 At the destination platform, the destination platform’s key destinationKey =[destinationPubKey ,

destinationSensitiveKey] is loaded into the TPM.

 At the destination platform, TPM2_Import() is used to create outPrivate , which is a normal key BLOB

that may be loaded into the TPM on the platform. The parameters to TPM2_Import() are:

 parentHandle – a reference to the destination platform’s key (this will become the Storage Parent

for the imported object)

 encryptionKey – the backup password (encryptionKeyIn or encryptionKeyOut)

 objectPublic – the public area of the key being imported

 duplicate – the Destination BLOB outDuplicate from the recovery service

 inSymSeed is outSymSeed from the recovery service. It is needed to derive the symmetric key

used by the recovery service for outer wrapping encryption

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 157

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 At the destination platform, the TPM returns

 outPrivate – the sensitive area of the imported object

23.4 Duplication Group

The duplication process allows an object or segment of a hierarchy to be duplicated for use in another

hierarchy. This ability facilitates key distribution and backup. A duplication group is a group of objects in a

hierarchy under a duplication root. The entire duplication group may be moved to another hierarchy by

duplicating the duplication root.

When an object is created, its duplication attribute (fixedParent) is selected. If fixedParent is CLEAR, then

the object may be operated on by TPM2_Duplicate(). This command allows the sensitive area of an

object to be encrypted under a new parent so that it may be used in a different TPM hierarchy. The act of

duplicating a Storage Key has the side effect of duplicating all of its descendants regardless of the setting

of their fixedParent attribute. That is, if a Storage Parent is usable in a different hierarchy, then all the

descendants of the Storage Parent are also usable in the different hierarchy as well.

NOTE 1 No modification of the encryption of a child object is required to make it usable on another hierarchy.
This is because the Storage Key that is duplicated contains the information used to protect its
children. Duplication of the protection information has the effect of duplicating the objects protected
by that information.

NOTE 2 If a particular Storage Parent is usable in multiple hierarchies, then descendants of that Storage
Parent are usable in the same hierarchies regardless of when they are created. That is, if they are
created after the duplication of the Storage Parent, they are still usable in multiple hierarchies.

If an object has fixedParent CLEAR, it is the root of a duplication group. If the object is not a Storage Key,

then the group will have a single member. For a Storage Key, the duplication group consists of all objects

that are duplicated as a direct consequence of duplicating the group root.

Objects that have fixedParent SET cannot be directly duplicated (that is, they may not be the referenced

objectHandle in TPM2_Duplicate()). However, they can be implicitly duplicated if an ancestor has

fixedParent CLEAR and that ancestor is duplicated.

Objects that have fixedParent SET and have no ancestors with fixedParent CLEAR are the only objects

that are not part of a duplication group. These objects are identified by having their fixedTPM attribute

SET. All objects that are in a duplication group have their fixedTPM attribute CLEAR.

An object may be a member of more than one duplication group. This would occur if more than one of its

ancestor Storage Keys has fixedParent CLEAR or if an object and one of its ancestors has fixedParent

CLEAR.

Trusted Platform Module Library Part 1: Architecture

Page 158 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Figure 24 — Duplication Groups

23.5 Protection Group

The algorithms (asymmetric, symmetric, and hash) and key sizes used to protect child keys are

consistent within a protection group. The protection group is all of the descendants of a duplication root

not including other duplication roots or their descendants.

By requiring all of the non-duplicable Storage Keys to use the same algorithm, it is easier to determine

the security properties of a hierarchy. If an object’s fixedTPM attribute is SET, then all of the ancestor

keys of that object use the same set of algorithms. If an object’s fixedTPM is not SET, then the

protections are determined by the duplication authority for each of the duplication roots in the object’s

hierarchy.

The reason that the protections are determined by the duplication authority and not by the algorithms of

the key is that a duplication authority can attach a duplication root to a software-generated new parent.

Inspecting the hierarchy in which an object exists does not guarantee the protections of the object unless

the object’s fixedTPM is SET.

Change of the algorithm set at a duplication root is illustrated in Figure 25.

DR1

DR2

An object with fixedParent = SET

An object with fixedParent = CLEAR

Legend

Members of the
duplication group of
duplication root DR1

Members of the
duplication group of
duplication root DR2

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 159

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Figure 25 — Protection Groups

23.6 Summary of Hierarchy Attributes

The hierarchy attributes of an object indicate how the object is connected to the hierarchy. They indicate if

the object could be extant in other hierarchies and if the object may be duplicated directly by

TPM2_Duplicate().

Table 22 lists the possible combinations of an object’s hierarchy attributes and the interpretation of each

combination.

Table 22 — Mapping of Hierarchy Attributes

fi
x

e
d

P
a

re
n

t

fi
x

e
d

T
P

M

Description

0 0 This combination represents a duplication root.

0 1 This combination is not allowed.

1 0
This combination indicates an object that is permanently in the protection group of its Storage Parent. It
cannot be the objectHandle reference in TPM2_Duplicate().

1 1
This combination indicates an object that was created on a specific TPM and no duplicate of the object is
possible.

The crosshatch in an object
indicates the algorithms
used to protect the object.

The algorithm set

may change at a

duplication root.

Trusted Platform Module Library Part 1: Architecture

Page 160 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.7 Primary Seed Hierarchies

A Primary Object is an object that is derived from a Primary Seed value. The sensitive area of a Primary

Object is not returned in the TPM2_CreatePrimary() or TPM2_CreateLoaded() response. The Primary

Object will need to be regenerated each time it is needed, or it can be made persistent in NV memory on

the TPM (TPM2_EvictControl()).

NOTE 1 A Primary Object may be duplicated in which case its sensitive area will be stored off of the TPM.

NOTE 2 The reason for not allowing a Primary Object to be returned is to prevent certain types of power
analysis attacks on the primary seed values.

Once created, a Primary Object may be context-saved/restored.

A Primary Object may have fixedParent SET or CLEAR. If a Primary Object has fixedParent SET, then

fixedTPM is required to be SET.

Hierarchy Attributes Settings Matrix

Table 23 shows the combinations of hierarchy settings allowed for an object. In the table, the check

marks ("✓") indicate that the combination is allowed.

Table 23 — Allowed Hierarchy Settings

fixedTPM setting in Object's fixedParent

Comments parent object CLEAR SET

CLEAR CLEAR ✓ ✓ if the parent's fixedTPM attribute is CLEAR, the child's
fixedTPM is required to be CLEAR CLEAR SET

SET SET ✓ if the parent of an object has fixedTPM SET, then fixedParent
and fixedTPM must have the same setting in the child(1)(2) SET CLEAR ✓

NOTE

1) For purposes of this table, the parent of a Primary Object is considered to have a fixedTPM attribute that is always SET.

2) If the parent has fixedTPM SET, then a child may be duplicable (fixedParent == CLEAR) or not (fixedParent == SET). If the
child is not duplicable, then it is required to have the same setting of fixedTPM as its parent.

The consistency of the hierarchy settings is checked in object templates (TPM2_Create() and

TPM2_CreatePrimary()) and in public areas for loaded objects (TPM2_Load()) or duplicated objects

(TPM2_Import()).

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 161

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Credential Protection

24.1 Introduction

The TPM supports a privacy preserving protocol for distributing credentials for keys on a TPM. The

process allows a credential provider to assign a credential to a TPM object, such that the credential

provider cannot prove that the object is resident on a particular TPM, but the credential is not available

unless the object is resident on a device that the credential provider believes is an authentic TPM.

24.2 Protocol

The initiator of the credential process will provide, to a credential provider, the public area of a TPM object

for which a credential is desired along with the credentials for a TPM key (usually an EK). The credential

provider will inspect the credentials of the “EK” and the properties indicated in the public area to

determine if the object should receive a credential. If so, the credential provider will issue a credential for

the public area.

The credential provider may require that the credential only be useable if the public area is a valid object

on the same TPM as the “EK.” To ensure this, the credential provider encrypts a challenge and then

"wraps" the challenge encryption key with the public key of the “EK.”

NOTE “EK” is used to indicate that an EK is typically used for this process but any storage key may be
used. It is up to the credential provider to decide what is acceptable for an “EK.”

The encrypted challenge and the wrapped encryption key are then delivered to the initiator. The initiator

can decrypt the challenge by loading the “EK” and the object onto the TPM and asking the TPM to return

the challenge. The TPM will decrypt the challenge using the private “EK” and validate that the

credentialed object (public and private) is loaded on the TPM. If so, the TPM has validated that the

properties of the object match the properties required by the credential provider and the TPM will return

the challenge.

This process preserves privacy by allowing TPM objects to have credentials from the credential provider

that are not tied to a specific TPM. If the object is a signing key, that key may be used to sign attestations,

and the credential can assert that the signing key is on a valid TPM without disclosing the exact TPM.

A second property of this protocol is that it prevents the credential provider from proving anything about

the object for which it provided the credential. The credential provider could have produced the credential

with no information from the TPM as the TPM did not need to provide a proof-of-possession of any private

key in order for the credential provider to create the credential. The credential provider can know that the

credential for the object could not be in use unless the object was on the same TPM as the “EK”, but the

credential provider cannot prove it.

24.3 Protection of Credential

The credential blob (which typically contains the information used to decrypt the challenge) from the

credential provider contains a value that is returned by the TPM if the TPM2_ActivateCredential() is

successful. The value may be anything that the credential provider wants to place in the credential blob

but is expected to be simply a large random number.

The credential provider protects the credential value (CV) with an integrity HMAC and encryption in much

the same way as a credential blob. The difference is, when seed is generated, the label is “IDENTITY”

instead of “DUPLICATE”.

Trusted Platform Module Library Part 1: Architecture

Page 162 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.4 Symmetric Encrypt

A seed is derived from values that are protected by the asymmetric algorithm of the “EK”. The methods of

generating the seed are determined by the asymmetric algorithm of the “EK” and are described in an

annex to this TPM 2.0 Part 1. In the process of creating seed, the label is required to be “INTEGRITY.”

NOTE If a duplication blob is given to the TPM, its HMAC key will be wrong and the HMAC check will fail.

Given a value for seed, a key is created by:

 symKey ≔ KDFa (ekNameAlg, seed, “STORAGE”, name, NULL , bits) (44)

where

ekNameAlg the nameAlg of the key serving as the “EK”

seed the symmetric seed value produced using methods specific to the type of

asymmetric algorithms of the “EK”

“STORAGE” a value used to differentiate the uses of the KDF

name the Name of the object associated with the credential

bits the number of bits required for the symmetric key

The symKey is used to encrypt the CV. The IV is set to 0.

 encIdentity ≔ CFBekSymAlg (symKey, 0, CV) (45)

where

CFBekSymAlg symmetric encryption in CFB mode using the symmetric algorithm of the

key serving as “EK”

symKey symmetric key from (44)

CV the credential value (a TPM2B_DIGEST)

24.5 HMAC

A final HMAC operation is applied to the encIdentity value. This is to ensure that the TPM can properly

associate the credential with a loaded object and to prevent misuse of or tampering with the CV.

The HMAC key (HMACkey) for the integrity is computed by:

 HMACkey ≔ KDFa (ekNameAlg, seed, “INTEGRITY”, NULL, NULL, bits) (46)

where

ekNameAlg the nameAlg of the target “EK”

seed the symmetric seed value used in (44); produced using methods specific

to the type of asymmetric algorithms of the “EK”

“INTEGRITY” a value used to differentiate the uses of the KDF

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 163

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

bits the number of bits in the digest produced by ekNameAlg

NOTE Even though the same value for label is used for each integrity HMAC, seed is created in a manner

that is unique to the application. Since seed is unique to the application, the HMAC is unique to the

application.

HMACkey is then used in the integrity computation.

 identityHMAC ≔ HMACekNameAlg (HMACkey, encIdentity || Name) (47)

where

HMACekNameAlg the HMAC function using nameAlg of the “EK”

HMACkey a value derived from the “EK” symmetric protection value according to

equation (46).

encIdentity symmetrically encrypted sensitive area produced in (45)

Name the Name of the object being protected

The integrity structure is constructed by placing the identityHMAC (size and hash) in the buffer ahead of

the encIdentity.

24.6 Summary of Protection Process

Marshal the CV into a TPM2B_DIGEST

Using methods of the asymmetric “EK”, create a seed value

Create a symmetric key for encryption:

symKey ≔ KDFa (ekNameAlg, seed, “STORAGE”, Name, NULL , bits)

Create encIdentity by encrypting the CV

encIdentity ≔ CFBekSymAlg (symKey, 0, CV)

Compute the HMAC key

HMACkey ≔ KDFa (ekNameAlg, seed, “INTEGRITY”, NULL, NULL, bits)

Compute the HMAC over the encIdentity from step 4

outerHMAC ≔ HMACekNameAlg (HMACkey, encIdentity || Name)

Figure 26 — Creating a Identity Structure

Credential Valuesi
ze

Credential Valuesi
ze

Credential Valuesi
ze

outerHMACsi
ze

Trusted Platform Module Library Part 1: Architecture

Page 164 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Object Attributes

25.1 Base Attributes

 Introduction

Three attributes are used to determine how the TPM may use an object. These attributes are designated

as restricted, sign, and decrypt. The Boolean combinations of these attributes are used to express the full

range of behaviors for objects.

 Restricted Attribute

When the restricted attribute of a key is SET, the key may only operate on other objects that follow strict,

but simple, format rules. A restricted key is not usable in all commands that use a key of that type. The

restrictions on each type of key are explained in the clauses describing the sign and decrypt attributes.

The restricted attribute has no meaning when applied to an object that has both sign and decrypt CLEAR

and restricted is required to be CLEAR for those objects.

 Sign Attribute

This attribute may apply either to symmetric or asymmetric keys. A signing key uses its sensitive area key

to sign data. The signature is returned by the TPM.

An asymmetric signing key may perform signing according to the key family (such as, RSA or ECC) and

the signing method selected. An external entity may use the public portion of an asymmetric key to

validate that the information was signed by someone with knowledge of the private portion of the key.

For a symmetric cipher object, this attribute and the object’s mode determines whether the key can

encrypt or sign (SMAC).

A symmetric key that can sign is used for performing an HMAC or an SMAC computation. This signature

can be checked by another entity that knows the HMAC or SMAC secret key in order to validate the

source of the information.

A restricted signing key may only sign a digest that has been produced by the TPM. The digest may be

over externally supplied data or an internally generated structure. An internally generated structure that is

to be signed will have the characteristic TPM_GENERATED_VALUE as the first octets in the structure to

be hashed and signed. When the TPM generates a digest over externally provided data, the TPM

validates that the first octets of the data are not equal to the TPM_GENERATED_VALUE. When a digest

is signed by a restricted signing key, there is no ambiguity about whether or not the signed data was

generated by the TPM.

A restricted signing key is occasionally referred to in this specification as an Attesting or Attestation Key.

 Decrypt Attribute

An asymmetric decryption key uses the private asymmetric key in its sensitive area to decrypt data blobs

that have been encrypted using the public portion of the key. A symmetric decryption key uses the key in

its sensitive area to decrypt data that has been encrypted by that key.

A key that has both decrypt and restricted attributes SET only accepts data that has a specific structure.

The encrypted data block must have as its first element an integrity value for the remainder of the

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 165

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

structure. This integrity value is an HMAC of the encrypted data. This format allows the TPM to prevent

misuse of the restricted decryption keys that are the basis of the protected storage hierarchy.

If the sensitive data is part of a child object, the symmetric and HMAC keys are derived from the

symmetric seed value (seedValue) in the sensitive area of the Storage Parent. If the sensitive data is a

duplication or certification blob, the symmetric and HMAC keys are derived from a single use seed. That

seed is then protected using the asymmetric public key of the intended recipient of the protected blob.

When loading a protected blob, the TPM validates the integrity value before decrypting the data. The only

way that the integrity value can be correct is if it were created by some entity with access to the

unencrypted sensitive data.

NOTE The specific threat scenario that is addressed by this scheme is that an attacker will use a protect ed
blob in a command that is not appropriate for that blob. For example, an attacker may load the
sensitive portion of an asymmetric key and attempt to access the sensitive area using
TPM2_Unseal(). The TPM will unseal data, but not a key. The attacker may attempt to modify the
public area of the key in order to trick the TPM into thinking that the protected blob contains a
sealed data rather than a private key. The integrity value prevents these deceptions.

A restricted decryption key is often referred to in this specification as a Storage Key.

Trusted Platform Module Library Part 1: Architecture

Page 166 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Uses

Table 24 shows the combinations of an object’s functional attributes and describes the resulting

properties.

Table 24 — Mapping of Functional Attributes

 s
ig

n

 d
e

c
ry

p
t

 r
e

s
tr

ic
te

d

Description

0 0 0 A data blob. Can be accessed using TPM2_Unseal().

NOTE: This attribute set may only be used for a keyedHash object.

0 0 1 Not allowed. The TPM will not load or create an object with this setting.

0 1 0 A key that can be used in any operation that requires a decryption key, except that the key may not
be a storage key.

0 1 1 Indicates that only the default schemes and modes of the key may be used

In this specification, key with these properties is referred to as a Parent Key. Asymmetric keys and
symmetric keys with these attributes are Storage Parents, and keyedHash objects with these
attributes are Derivation Parents. The TPM only allows keys with these attributes to be used on
objects that have a specific structure. For Storage Parents, use includes create, load, and activate
credential.

1 0 0 Indicates a key that may be used with any signing operation including quote, certify, and sign. The
recipient of signatures generated by this key should be aware that quotes and certifications can be
forged so the trust would not be in the key but in the entity that knows the key authorization value.

If use with object type TPM_ALG_KEYEDHASH, then the key may be used for HMAC operations.

1 0 1 This combination indicates a key that can sign any digest that the TPM has created. The TPM only
signs a digest over externally provided data that did not have as its first octets
TPM_GENERATED_VALUE. This key can be used reliably for quoting, certifying, and signing. No
signing command is prohibited for this type of key.

Only the default schemes and modes of the object may be used.

1 1 0 A general-purpose key that can be used with any command that requires a key as long as the
command is compatible with the key algorithm. However, this key may not be a Storage Key (the
parent of other keys).

1 1 1 This type of key is currently not supported because use of a signing key as a storage node could
prevent an application from being able to use the TPM in a way that is compliant with FIPS.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 167

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 25 shows the correspondence between the TPM 1.2 method of identifying key properties and the

method in this specification.

Table 25 — TPM 1.2 Correspondence

TPM 1.2 Name

s
ig

n

d
e

c
ry

p
t

re
s

tr
ic

te
d

Comments

TPM_KEY_SIGNING 1 0 0
In TPM 1.2, keys had restricted schemes. In this specification, the
scheme is defined in the command.

TPM_KEY_STORAGE 0 1 1
The functional properties are nearly the same as TPM 1.2. This key
could only be used to protect and unprotect items in a Protection
hierarchy.

TPM_KEY_IDENTITY 1 0 1

In TPM 1.2, an Identity key was highly constrained and could not, for
example, sign a structure that was not produced by the TPM. In this
specification, the restricted signing key can sign (within the limits
defined in clause 25.1.3) a digest produced by the TPM. This allows,
for example, an Attestation Key to sign a PKCS#10 certificate
request.

TPM_KEY_AUTHCHANGE - - -
This is not used in this specification and its use was deprecated in
TPM 1.2. The functionality is provided by session encryption.

TPM_KEY_BIND 0 1 0
Functionality is roughly equivalent between the TPM 1.2 type and the
unrestricted decryption key. The specification would use
TPM2_RSA_Decrypt() in place of the TPM 1.2 TPM_Unbind().

TPM_KEY_LEGACY 1 1 0
Use of these keys is only constrained by the key family properties.
For example, an ECC key will not perform TPM2_RSA_Decrypt().

TPM_KEY_MIGRATE 0 1 1
A Storage Key may be the object of a re-wrap if the new parent is
allowed within the policy for the object. The policy for duplication of
the object is always visible in the public area.

Sealed Data 0 0 0 A blob containing user defined data

25.2 Other Attributes

 fixedTPM and fixedParent

These attributes are described in detail in clause 23.

 stClear

This attribute indicates an object that will need to be reloaded after any Startup(CLEAR). Objects may be

loaded into the TPM and their context saved by the TPM resource manager. Normally, these saved

contexts may be reloaded at any time before the next TPM Reset. However, if this attribute is SET, then

the saved context associated with the object will be invalidated on each TPM Restart as well as on TPM

Reset.

An object that has this attribute SET may not be made persistent.

Trusted Platform Module Library Part 1: Architecture

Page 168 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 sensitiveDataOrigin

The meaning and allowed settings for this attribute are different for Created and Derived Objects. For a

Derived Object, this attribute is required always to be CLEAR. For a Created Object, this attribute is SET

if the sensitive data of the object is to be generated by the TPM.

NOTE 1 The reason that sensitiveDataOrigin is to be CLEAR for a derived object is that it is impractical to
use it to indicate anything about the provenance of the seed value used in deriving an object. The
only case in which the sensitiveDataOrigin of the Derivation Parent might reasonably be ref lected in
the derived key is when sensitiveDataOrigin and fixedTPM are both SET in the parent. For all other
cases, there is no way for the TPM to provide any assurance about the setting of
sensitiveDataOrigin. However, for a derived key with fixedTPM SET, it is a relatively simple matter
to check the setting of this attribute in the Derivation Parent. Rather than add to the TPM the
complexity of validating that a Derivation Parent has the correct combination of attributes to allow
this attribute to be SET, it was decided to require that this attribute be CLEAR rather than ignored.
This is because this attribute does not change the way that Object derivation takes place as it does
with Object creation.

When a symmetric object (TPM_ALG_KEYEDHASH or TPM_ALG_SYMCIPHER) is created, the caller

may provide the secret data or have the TPM generate it. If the TPM is to be the source of the data, then

the caller will SET this attribute. Otherwise, this attribute will be CLEAR, and the caller-provided data will

be used.

When an asymmetric object is created, this attribute must be SET. The public part of an asymmetric

object is determined by its private key. If the caller has control over both the public and sensitive areas,

then the TPM cannot ensure that the key is statistically unique. This is not an issue unless the object also

has fixedTPM SET. One of the assumptions of a fixedTPM object is that it is statistically unique. This

would not be the case for an asymmetric key if the caller provided the data. To avoid the possibility of

creating a fixedTPM object on multiple TPMs, an asymmetric key is required to have its private key

generated by the TPM or the object may be imported. If it is imported, fixedTPM will not be SET.

“NOTE 2 The requirement that sensitiveDataOrigin be SET for asymmetric objects is enforced indirectly.
When an asymmetric key is created, the caller is not allowed to provide the sensitive data of the
key. Because the caller does not provide the sensitive data, sensitiveDataOrigin is required to be
SET. Since this relationship is only checked when the object is created, sensitiveDataOrigin is
allowed to have any setting when an object is loaded or imported.

 userWithAuth

This attribute indicates that the object's authValue may be used to provide the USER role authorizations

for the object. If this attribute is CLEAR, then USER role authorizations may only be provided by

satisfying the object's authPolicy in a policy session. A policy session may be used for USER mode

authorizations when this attribute is SET or CLEAR.

 adminWithPolicy

This attribute indicates that authorization for an action requiring the ADMIN role requires that the

authPolicy of the object be satisfied. If this attribute is CLEAR, then the authValue may be used in an

HMAC session to perform operations that require ADMIN role.

As with USER role authorizations, any ADMIN role action may be authorized with a policy session that

satisfies the authPolicy.

The primary reason for having a set of operations that require ADMIN role is to allow each of the actions

to be individually controlled. When a policy is used for an ADMIN role action, the policy must contain a

command that sets the commandCode for the policy to the specific command. This allows each ADMIN

role action to be individually enabled and controlled without having to group them.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 169

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 noDA

If this attribute is SET in an object, then authorization failures of the object will not invoke dictionary attack

protections. In addition, actions on an object with this attribute SET are not subject to lockout. This

attribute is used to ensure that access to objects used by the OS is not blocked due to actions by users.

An OS would be expected either to use objects with well-known values or to use high-entropy

authorization values. In neither case is dictionary attack protection required.

 encryptedDuplication

If this attribute is CLEAR, then an object may be duplicated with newParentHandle set to

TPM_RH_NULL, which means that there is no outer wrapper for the object. If the caller does not specify

an inner wrapper, then the object may be exported with this sensitive area in the clear.

While the entity that controls duplication is expected to be trusted to maintain the confidentiality of the

sensitive area of a key during duplication, conformance to some standards requires that the sensitive

area be encrypted when it leaves the TPM and reliance on the caller is not adequate for those standards.

This attribute provides a method of producing objects that conform to those standards.

NOTE It is understood that the duplication authority can still arrange to have access to the sensitive area of
the key by creating a software key and having the TPM duplicate to that key.

Trusted Platform Module Library Part 1: Architecture

Page 170 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Object Structure Elements

26.1 Introduction

The TPM is intended to provide a means of creating a Storage hierarchy to protect data and keys (keys

generated by the TPM or some other entity). Each of these objects (keys and data) has two components.

The first is a public area that contains the attributes of the object and a public identity. The second is the

sensitive area that contains the elements of the object that require TPM protections. These elements

include an authorization value, one or more secret key values, and, in some cases, sealed data values.

The structure definitions for both the public and sensitive areas of an object define how the information is

to be arranged when it crosses the TPM interface. The organization of these structures as they exist

within the TPM is at the discretion of the TPM vendor. However, the actions of commands in this

specification are defined in terms of these presumptive structures and any implementation will need to

produce equivalent results.

26.2 Public Area

The public area contains the information for identification of an object and its properties. The fields of the

public are listed and described in Table 26.

Table 26 — Public Area Parameters

Parameter Description

type This identifies the type of the object. An algorithm ID is used as the type identifier
because the structures contain parameters that are specific to the types of operations
that can be performed on or with the object. For example, an RSA type would contain an
RSA key pair that could be used for operations defined for RSA. An AES type would be
used for symmetric encryption or decryption.

nameAlg This is a second algorithm ID that identifies the hash algorithm used for computing the
Name of the object.

objectAttributes This contains the set of attributes of the object. These attributes are in five classes:

1) usage (sign, encrypt, restricted);

2) authorization (userWithAuth, adminWithPolicy, noDA);

3) duplication (fixedParent, fixedTPM, encryptedDuplication);

4) creation (sensitiveDataOrigin); and

5) persistence (stClear).

authPolicy This will contain the authorization policy for the object if one is defined. nameAlg is used
as the authPolicy hash algorithm,

NOTE An object that is intended to be duplicated must have an authPolicy enabling the
duplication.

[type]parameters The parameters of an object are dependent on the object type. For symmetric key object,
the parameters would indicate the size of the key and the default encryption mode. For
an asymmetric object (RSA or ECC), the parameters would indicate the key size, signing
scheme, and symmetric encryption methods associated with the key.

[type]unique The unique value of an object is also dependent on the object type. For an asymmetric
object, this will be the public key. For a symmetric object, this will be a value computed
by hashing values in the sensitive area.

26.3 Sensitive Area

The sensitive area is related to the public area and contains the data that are required to be encrypted

when not in a Shielded Location on the TPM. It contains the authorization value and the item-specific

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 171

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

information such as the private or secret portion of a key. If an object is a Storage Key, it contains the

symmetric key that is used to encrypt its child object.

The structure of the sensitive area is shown in Table 27.

Table 27 — Sensitive Area Parameters

Parameter Description

sensitiveType This identifies the type of the object for this sensitive area. This value and the type
parameter of the public area are the same.

authValue This is the authorization value for the object. It is an octet array of zero or more
octets. The authorization value for an object may not have more octets than the
digest produced by the object’s nameAlg.

seedValue This value is required for Storage Keys and is the seed used to generate the
protection values for the child objects of the Key.

This is optional for asymmetric keys that are not Storage Keys and is not used if
present.

For all other object types, this is an obfuscation value. It is hashed with the
sensitive field to produce the unique value in the public area. Including this value in
the computation obfuscates unique so that the sensitive value cannot be
determined from the unique field.

[sensitiveType]sensitive The contents of this parameter are dependent on sensitiveType.

For an asymmetric key, this will contain the private key.

For a symmetric key, this will be the key.

For an HMAC key this is the HMAC key value.

For a data object, this will be the sensitive data.

Each sensitive area created by the TPM contains some TPM-created data that makes each sensitive

area statistically unique. This will be either an asymmetric key or a large random number. The unique

values in the sensitive area are cryptographically linked to values in the public area in a way that makes

each public area statistically unique. The fact that a sensitive area is statistically unique and

cryptographically linked to a public area ensures that a TPM can detect any attempt to substitute the

sensitive area associated with a public area.

NOTE Such a substitution would allow subversion of secrets-based policy authorization. If an attacker
could use an arbitrary sensitive area with a public area with a known Name, the attacker could
perform TPM2_PolicySecret() and cause the policyDigest to be updated with the chosen Name even
though the attacker does not know the authorization value of the correct sensitive area.
Cryptographic linking of the sensitive area to the public area ensures that this type of attack is not
practical.

26.4 Private Area

When a sensitive area is not in a Shielded Location on a TPM, it is integrity-protected and symmetrically

encrypted. There is more than one format for a protected sensitive area but the loadable (TPM2_Load())

form of the protected sensitive area is called a “private” area.

NOTE 1 Another format is a saved context.

The process of converting a sensitive area to a private area requires that the sensitive area be marshaled

to its canonical form. This marshaled structure is then encrypted using a key derived from the Storage

Parent's symmetric seed (seedValue). An HMAC is performed over the data with the Name of the

associated sensitive area include in the HMAC. The combination of the HMAC and the encrypted

sensitive area is a key’s private area.

NOTE 2 Similar protections are used when an object is context saved or duplicated.

Trusted Platform Module Library Part 1: Architecture

Page 172 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

26.5 Qualified Name

The Qualified Name (QN) of an object is the digest of all of the Names of all of the ancestor keys back to

the handle of the Primary Seed at the root of the hierarchy. The QN of an object includes the Name of the

object. The QN uses the Name hash of the current object to compute the QN for the object.

EXAMPLE 1 Assuming that key A is the Storage Parent of object B, then the Qualified Name of B (QNB) is:

QNB ≔ HB (QNA || NAMEB)

The QN is not a digest of all of the entities loaded into the TPM. It is a digest of all of the entities in a

chain.

EXAMPLE 2 Assume two entities with public areas of A and B and different Name hash algorithms (HA and HB).

Also assume that they share the same parent P with a QN of QNP. The QN for A is QNA ≔ HA(QNP ||
HA(A)) and the QN for B is QNB ≔ HB(QNP || HB(B)).

The primary purpose of the Qualified Name is to supplement the environmental information relating to

object creation and object use. The environment of an object includes its hierarchy. The hierarchy starts

at a Primary Seed and includes all ancestor keys for the object. The Qualified Name of an object is

included in its creation data. The Qualified Name permits validation that a list of ancestor Names is

correct. It is then possible to determine if, for example, all ancestor keys use sufficient cryptographic

strength. The Qualified Name of an object is included in its certification to indicate that the key is being

used in a different environment (ancestry) than the one in which it was created.

Both the Name and Qualified Name for a Primary Seed are the handle of the Primary Seed. If the parent

handle is TPM_RH_NULL, Name and QN are also TPM_RH_NULL. This makes the QN of a Primary

Object or Temporary Object equal to:

 QN ≔ HnameAlg (A hierarchy handle || Primary Object Name) (48)

NOTE The creation data for an object includes both the Name and QN of the Storage Parent of that object.

26.6 Sensitive Area Encryption

When a sensitive area is in a loadable format (a private area), the symmetric encryption key is derived

from the secret seed (seedValue) of the parent.

When a sensitive area has been encrypted for duplication, the sensitive area is symmetrically encrypted

with a key that is protected using asymmetric methods associated with the new parent. Before a

duplicated object may be loaded, it must be “imported” (TPM2_Import()) and encrypted using the

symmetric key derived from the secret seed of the new parent.

NOTE Clause 30.3 describes the protections that are applied to a sensitive area when it is part of a saved
context.

All symmetric encryption of the sensitive area uses Cipher Feedback (CFB) mode.

The method of generating the encryption key and IV for the encryption is described in clause 22.

26.7 Sensitive Area Integrity

When an object is not in a Shielded Location, it is susceptible to modification through means other than

through a Protected Capability. An HMAC-based integrity scheme allows these modifications to be

detected. The integrity HMAC includes the sensitive data and some representation of the public area.

Inclusion of the public area preserves the binding between the two elements of the object.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 173

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The HMAC key is generated from the same seed that is used for generating the symmetric encryption key

and IV. The HMAC of the protected structure is required to be checked before the sensitive area is

decrypted.

Trusted Platform Module Library Part 1: Architecture

Page 174 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Object Creation

27.1 Introduction

TPM2_Create(), TPM2_CreatePrimary() and TPM2_CreateLoaded() are used to create the objects (keys

and data) that are part of a TPM’s Storage hierarchy. TPM2_CreatePrimary() is used to create Primary

Objects that are derived from a Primary Seed. TPM2_Create() is used to create Ordinary Objects that are

generated with values from the TPM RNG. TPM2_CreateLoaded() can be used to create a Primary or

Ordinary Object.

NOTE 1 TPM2_CreateLoaded() may also be used for Derived Objects. This is covered in more detail in
clause 28.

Table 28 — Creation Commands

Creation command TPM2_CreatePrimary() TPM2_Create() TPM2_CreateLoaded()

Parent Handle Type Primary Seed Storage Parent
Primary

Seed
Storage
Parent

Derivation
Parent

Created Object Type Primary Ordinary Primary Ordinary Derived

Public Area Returned yes yes yes yes yes

Sensitive Area Returned no yes no yes no

creationData Returned yes yes no no no

Table 28 compares and contrasts the creation of objects by TPM2_CreatePrimary(), TPM2_Create(), and

TPM2_CreateLoaded(). In particular, when creating keys:

• TPM2_CreatePrimary() – creates and loads Primary Objects for immediate use and provides
creationData.

• TPM2_Create() – creates Ordinary Objects for later use (via TPM2_Load()). TPM2_Create() returns a
BLOB containing the sensitive area of an Ordinary Object and provides creationData.

• TPM2_CreateLoaded()– depending on the type of the parent, generates and loads a Primary Object,
an Ordinary Object; or Derived Object.

Authorization to use the Parent is required in order to generate a child. Authorization to use a Primary

Seed is required in order to create a Primary Object.

All of the objects created by these commands are similar in most respects. For TPM2_Create() and

TPM2_CreatePrimary(), the parameters required to create an object are the same for both commands.

They are:

• a public area template,

• the sensitive values,

• optional user-provided identification data, and

• the optional creation PCR selection.

For TPM2_CreateLoaded(), the only parameters are the public area template and the sensitive values.

NOTE 2 The user-data and PCR parameters are not used for TPM2_CreateLoaded() as it does not return the
creationData used for creation certification. For objects where the creation certification is necessary,
the TPM2_Create() or TPM2_CreatePrimary() functions are available.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 175

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Any type of object that can be created with TPM2_Create() can be created with TPM2_CreatePrimary() or

TPM2_CreateLoaded().

NOTE 3 TPM2_CreateLoaded() can be used for creation of asymmetric keys but it may not be used for
derivation of certain types of asymmetric keys. This limitation is because of the variability in
algorithms for some asymmetric key types (such as RSA).

The sensitive area of an Object created from a seed does not leave the TPM except in a saved context or

by duplication. If a Primary Object is not context saved (and not persistent), it will need to be recreated

after the next TPM2_Startup(). Even if context saved, if a Primary Object is not made persistent in the

TPM (TPM2_EvictControl()), it will need to be recreated after each TPM Reset.

27.2 Public Area Template

 Introduction

A public area template describes the desired attributes of the object to be created. The TPM uses this

template to guide the creation of the new object.

The format of the template has to match the desired format of the object to be created, in all details. The

item-specific information (the unique field) will be replaced by the TPM in the creation process, but all

other fields in the created object will be identical to those in the template.

In general, the fields in the public area are checked as if the object were being loaded under the Storage

Parent indicated in the creation command.

 type

This parameter indicates the basic type of the object and determines the format of the parameters and

unique fields. The type may indicate a symmetric key, an asymmetric key, or a data value.

The allowed values for type are: TPM_ALG_SYMCIPHER, TPM_ALG_KEYEDHASH, TPM_ALG_RSA,

or TPM_ALG_ECC.

NOTE The list of types may change. If an algorithm ID is allowed for use as a public area type, it is
denoted by an "O" in the "Type" column of the TPM_ALG_ID constants table published by the TCG.

 nameAlg

The nameAlg parameter in the template is set according to the object type. If the object is a restricted-

decryption key, then the object is required to have the same nameAlg as the Storage Parent. For all other

cases, the nameAlg may be any supported hash algorithm.

In the case of TPM2_LoadExternal(), nameAlg is allowed to be TPM_ALG_NULL. When this value is

selected, the TPM does not validate the cryptographic linkage between the public and sensitive portions

of the object. Since the nameAlg is TPM_ALG_NULL, the object has no Name.

NOTE Certification of the key with no Name has no meaning as the certification will have no Name for the
certified object.

 objectAttributes

These flags must be set according to the rules appropriate for loading the object. The required settings

are found in TPM 2.0 Part 2, in the definition of TPMA_OBJECT.

Trusted Platform Module Library Part 1: Architecture

Page 176 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 authPolicy

If use of an object is to be gated by a policy (including PCR), the template will contain the policy hash.

Otherwise, this entry will be set to the Empty Policy.

 parameters

This field contains parameters that describe the details of the object indicated in type.

For a Storage Key that has fixedParent SET in its objectAttributes, these parameters will be identical to

the parameters of the Storage Parent. For other objects, these parameters may vary according to the

type and application.

 unique

The unique field of the template is the only field in the public area that is replaced by the TPM during the

object creation process. The caller may place any value in this field as long as the structure of the value is

consistent with the type field. That is, this field should be structured in the same way as the data that will

be placed in this field by the TPM. The caller may also set the size of this field to zero and the TPM will

replace it with a correctly sized structure.

27.3 Sensitive Values

 Overview

The sensitive values that are provided when the object is created allow initial setting of the authValue for

the object and may provide some other object-sensitive value. The sensitive value may be an encryption

key or sealed data.

The sensitive values provided to the TPM in TPM2_Create() and TPM2_CreatePrimary() (the inSensitive

parameter) may optionally be encrypted using standard session-based encryption techniques. Since

session-based encryption allows use of a different session for authorization and encryption, the session

used for encrypting the authorization and other sensitive data does not have to be the same as the

authorization session for the Storage Parent of the newly created object. This ensures that the entity that

controls the Storage Parent does not automatically gain access to the secret values of a child.

 userAuth

The userAuth value is the initial authValue for the created object. This value may be no larger than the

digest produced by the nameAlg of the object.

NOTE This limitation ensures that any valid authValue will be usable on any TPM that can load the key. If
this limitation were not imposed, then some TPM might not be able to load a duplicated object
because the authValue was too large for the implementation.

 data

This contains information that the caller wants to be incorporated in the sensitive part of the created

object. This may be either a symmetric key or user data. If data is an Empty Buffer, then the

sensitiveDataOrigin attribute of the template is required to be SET. If data is not empty, then

sensitiveDataOrigin is required to be CLEAR.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 177

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If the object type is TPM_ALG_KEYEDHASH and both sign and encrypt are CLEAR, then the created

object is a Sealed Data Object and the TPM will return an error (TPM_RC_SIZE) if data is an Empty

Buffer.

If the created object is an asymmetric key and not a primary key, then data is required to be an Empty

Buffer and sensitiveDataOrigin in the template is required to be SET. For a primary key, data permits

personalization of the key with private data, data that can be provided as an encrypted parameter.

NOTE If the caller were allowed to specify the private key, then for some types of asymmetric algorithms
(such as, ECC) the actions of the TPM would not determine the Name of the object. Since the TPM
has no effect on the creation of such an object, the preferred means of having such a key become
part of a hierarchy is to import it with TPM2_Import().

27.4 Creation PCR

The PCR selection that is present in TPM2_Create() or TPM2_CreatePrimary() parameters is used to

select the PCR values that will best represent the environment in which the object was created. The

selection and the PCR are hashed according to the creation data algorithm and included in the creation

data (a TPM2B_CREATION_DATA) that is returned in the command response.

NOTE When an Object is created, the TPM produces a ticket that it (the TPM) can use to verify that it
created the Object. This allows the TPM to certify that it created the Object
(TPM2_CertifyCreation()).

27.5 Public Area Creation

 Introduction

This clause describes how the TPM uses the parameters of TPM2_Create() and TPM2_CreatePrimary()

to set the values in the public area of the created object.

This clause does not describe the error conditions if the parameters are bad. That information is provided

in the description of TPM2_Create() and TPM2_CreatePrimary() in TPM 2.0 Part 3.

 type, nameAlg, objectAttributes, authPolicy, and parameters

The TPM will validate that these parameters are consistent in the template and then copy them from

template into the created structure without modification.

 unique

27.5.3.1 Introduction

This parameter will contain a type-specific structure. It is used to ensure that each object has a

statistically unique identity. The methods used to create unique ensure that it is cryptographically bound

to the contents of the sensitive area. Creation of unique from the sensitive data uses non-invertible

processes (such as, a hash) so that the unique value does not compromise the confidentiality of the

sensitive area.

The computation of unique uses one or more values in the sensitive area of the object. At least one of the

sensitive area values will be provided by the TPM to ensure that unique is, in fact, unique. For

asymmetric keys, uniqueness is provided by the public key and the public key is mathematically linked to

the private key in the sensitive area.

Trusted Platform Module Library Part 1: Architecture

Page 178 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

For symmetric objects (symmetric keys, HMAC keys, and data blobs), the key (or data) is hashed with a

TPM-generated obfuscation value and the resulting digest is used as the unique value.

There are two reasons for generating the unique parameter for symmetric objects in this way. The first is

that it protects the contents of the user-provided data. If the secret data has low entropy, then making the

unique parameter a simple digest of that data would allow an offline attack to determine what the secret

data might be. The large, random, obfuscation value generated by the TPM is not known to an attacker,

which mitigates this threat.

The second reason for this method is that it prevents an attacker from stealing an object’s identity. If the

identity were not based on the contents of the sensitive area, then an attacker could create a sensitive

structure and associate it with the public area of any symmetric object. Having the sensitive area contain

information that can cryptographically link the sensitive area to the public area prevents this kind of

substitution.

The methods for producing unique for each of the object types are described in the remainder of 27.5.3.

27.5.3.2 TPM_ALG_KEYEDHASH

This type is used for an HMAC key or data block. The computation for unique for a KeyedHash object is:

 unique ≔ HnameAlg (obfuscate || key) (49)

where

HnameAlg hash using nameAlg from the object template

obfuscate the contents of seedValue.buffer in the object's sensitive area

key the contents of sensitive.bits.buffer in the object's sensitive area; this will

be either an HMAC key, a data blob, or a symmetric key.

27.5.3.3 TPM_ALG_SYMCIPHER

This type is used for a symmetric block cipher key. The unique value is computed as shown in (49).

27.5.3.4 TPM_ALG_RSA

For an RSA key, unique is the public modulus of the key. It is computed as described in B.8.

27.5.3.5 TPM_ALG_ECC

For an ECC key, unique is the public point computed as described in C.5.

27.6 Creation Entropy

 Introduction

The reference code uses common algorithms for generating keys of a specific type. That is, there is one

algorithm for generating RSA keys, one for ECC keys, one for HMAC keys and one for symmetric keys.

NOTE RSA and ECC are “if implemented.”

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 179

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

When calling these functions, the caller is allowed to indicate where the function should get entropy for

use in the algorithm. This allows these functions to be used for Primary, Derived, and Ordinary Objects

simply by changing the source of “entropy.”

Table 29 — Deriving Object Entropy

Object Type Source of Object Entropy
Described in
Clause

Primary DRBG initialized using a hierarchy seed and the hash of the input template 27.6.3

Ordinary TPM’s default DRBG 27.6.2

Derived KDF 28.4

Table 29 compares and contrasts the methods used to create the cryptographic values of primary,

ordinary and derived keys.

• A Primary Object is intended to be created multiple times, in the absence of any other key, with the
minimum amount of persistent storage. As a result, the cryptographic values of primary keys are
created by instantiating a DRBG.

• An Ordinary Object is intended to be created exactly once and persistently stored. As a result, the
cryptographic values of ordinary objects are created by the DRBG that is used by default when a
TPM requires random data. This DRBG is seeded with entropy when the TPM was created and
topped-up with additional entropy added at intervals.

• A derived key is intended to be derived multiple times from a parent key, and not persistently stored.
As a result, the cryptographic values of derived keys are created by applying a KDF and hash
algorithm specified in the Derivation Parent to the Derivation Parent’s symmetric key, using label and
context values provided by the caller.

 Entropy for Ordinary Objects

For an Ordinary Object, the caller would pass a NULL pointer. When the key generation function needs a

random number, it would pass that NULL pointer to the random number generator. Because the pointer is

NULL, the random number generator will use the default random number generator of the TPM which

produces numbers that are as random as the TPM is able to produce.

 Entropy for Primary Objects

For a Primary Object, the caller would instantiate a deterministic random number generator (DRBG) and

seed the DRBG with a primary seed, a template hash, and a use string. The key generation function

would pass this pointer to the random number generator which would use this state instead of the TPM’s

default state. This produces a sequence of bits that have as much entropy as the primary seed and which

have a property that is required for generating a Primary Object – the DRBG state can be reinstantiated

each time the same Primary Object is created.

Choice of the entropy generation for Primary Objects is a vendor option.

NOTE The reference implementation uses a DRBG based on SP800-90A in order to minimize compliance
issues.

27.7 Sensitive Area Creation

 Introduction

This clause indicates how the TPM creates the sensitive portion of an object (a TPMT_SENSITIVE).

Trusted Platform Module Library Part 1: Architecture

Page 180 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The process for computing the contents of a sensitive area is determined by the type of the object,

indicated in the type field of template.

Some of the sensitive area fields may contain data that is provided by the caller. Some of the fields are

always provided by the TPM. When a TPM-provided field is in a Primary Object, the TPM-provided data is

always derived, in some way, from the associated Primary Seed such that the same Primary Object can

be reproduced as long as the associated Primary Seed remains unchanged. For Ordinary Objects, an

implementation may either get the TPM-provided data from the RNG or compute the fields of the object

as if it were a Primary Object, but with a random number used in place of a Primary Seed.

The performance difference between the two methods of producing asymmetric objects is negligible as

the majority of the work is in validating the choices rather than in generating them. For symmetric objects,

the difference might be worth having different methods for Primary and Ordinary Objects but there is an

added cost in development and testing that could offset the benefit of any slight performance advantage.

For Ordinary Objects, the method used for generating sensitive should be used for generating seedValue.

That is, if sensitive is generated by taking values from the RNG, then seedValue should be generated by

taking values from the RNG. If sensitive is generated by creating a random seed and using the methods

used for Primary Keys, then that same seed should be used for generating seedValue.

 type

The type parameter of the object's sensitive area is a copy of the type parameter from the object's public-

area template.

 authValue

The authValue of the object is copied from the userAuth field of the inSensitive parameter of commands

such as TPM2_Create(), TPM2_CreateLoaded, or TPM2_CreatePrimary(), or from newAuth in

commands such as TPM2_ObjectChangeAuth.

When the TPM returns a TPM2B_PRIVATE structure, the TPM pads the TPM2B_AUTH to its maximum

size.

NOTE This prevents the TPM from leaking the size of the authorization value in cases where trailing zeros
are stripped.

 seedValue

For a symmetric object, seedValue field is used as an obfuscation value. It is also used to hold the

symmetric seed value for Storage Keys.

For an asymmetric key that is not a Storage Key, seedValue is not needed and the TPM will ignore the

value if it is present.

For a Storage Key, seedValue is used as a seed for generating the integrity and confidentiality values for

protecting child objects of the key.

For all object types, when the TPM generates seedValue, it is the size of the digest produced by the

nameAlg of the object.

NOTE 1 Presuming that the protection algorithms of a Storage Key are reasonably balanced (a requirement),
then this size of seed will provide adequate entropy required for protection of the child Object.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 181

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

For an imported symmetric object, seedvalue is required to be the size of the digest produced by the

nameAlg of the object.

For an imported Storage Key, seedvalue is required to be at least to be at least half the size of the digest

produced by the nameAlg.

NOTE 2 This requirement is for backward compatibility .

For Imported asymmetric non-Storage Keys, seedValue is not required.

NOTE 3 The rationale for these requirements derive from the use of seedValue. When seedValue is used in a
hash, it must be the full size. When used in an HMAC, it can be half the size.

seedValue is generated using the “entropy” source used for the object type (see 27.6).

When creating a Primary Object in the Endorsement Hierarchy, it is required that the entropy source be

updated to reflect the current SPS. This allows the sensitiveValue to remain the same after a change of

the SPS but prevents any previously-generated Child Objects in the Endorsement Hierarchy from being

loaded after the SPS changes.

NOTE 3 In the reference implementation, this is accomplished by reseeding the DRBG state with the proof
value of the storage hierarchy.

 sensitive

27.7.5.1 Symmetric Objects

Symmetric objects have a type of TPM_ALG_SYMCIPHER or TPM_ALG_KEYEDHASH. For a symmetric

object, the sensitive object data may be provided by the caller or generated by the TPM.

If sensitiveDataOrigin attribute in the object template is CLEAR, then the sensitive data is provided by the

caller. If provided by the caller, the sensitive data will be in the data field of the inSensitive parameter of

TPM2_Create() or TPM2_CreatePrimary(). For TPM2_CreateLoaded(), if the Parent is a Derivation

Parent, then sensitiveDataOrigin is required to be CLEAR in the template.

If sensitiveDataOrigin is SET, it indicates that the TPM is the source of the sensitive data and the data

field of the inSensitive parameter is required to be an Empty Buffer.

A user provided symmetric key is required to be the size indicated by parameters.symDetail.keyBits.sym

in the template. It is the number of octets required to hold the number of bits indicated.

NOTE 1 If the key has fewer significant digits than necessary, pad octets of zero are required. The pad
octets are added to the high-order end of the key.

A user provided HMAC key is not allowed to be larger than the smaller of the block size of the hash

algorithm or 128 octets. Limiting the size to 128 octets is for compatibility of structures between TPM.

NOTE 2 The HMAC algorithm requires that keys larger than the hash block size be hashed before use. This
may result in fewer bits of entropy in the HMAC key than expected by the caller. The TPM will not
allow the caller to specify an overly large value for the HMAC key. If the caller desires to use a
larger value, they should perform the digest externally and pass the resulting digest to the TPM for
use as the HMAC key.

If not provided by the caller, sensitive is generated by the TPM. For a TPM_ALG_KEYEDHASH object,

the size is the digest size of the nameAlg of the object. For a TPM_ALG_SYMCIPHER object, the size is

equal to (parameters.symDetail.keyBits.sym + 7) / 8.

Trusted Platform Module Library Part 1: Architecture

Page 182 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

27.7.5.2 Asymmetric Objects

The sensitive field in an asymmetric key object is the private key. The key is generated in a way that is

specific to the algorithm and is described in an algorithm-specific annex of this TPM 2.0 Part 1.

EXAMPLE RSA key generation is described in B.8 and ECC key generation is described in C.5.

27.8 Creation Data and Ticket

When it creates an object, the TPM also creates a data structure that describes the environment in which

the object was created. This data includes:

• a digest of selected PCR at the time of object creation and a bit-map indicating the PCR that were
included in the list. The PCR selection is those PCR indicated in the call to TPM2_Create() and
TPM2_CreatePrimary().

• the locality at which the object was created

• the nameAlg of the Storage Parent. If the parent is a Primary Seed, then the algorithm will be
TPM _ALG_NULL.

• the Name of the Storage Parent. If the parent is a Primary Seed, then the Name will be the handle
of the seed.

• the Qualified Name of the Storage Parent. If the parent is a Primary Seed, then the Qualified
Name will be the handle of the seed.

• some additional data provided by the caller that is to be associated with the new object

In addition to these values, the TPM will create a ticket that will allow the TPM to validate that the creation

data was generated by the TPM.

The creation data will act as a form of certification of the object that is most useful when fixedTPM is

CLEAR in the created object. Without this information, it would not be possible to determine how the

object came to be in the hierarchy where it is found. When the object is moved, it would be up to the

duplication authority to provide some certification of the duplication process. If there is no creation data

indicating that the object was created in the place where it was found, and there is no certificate from the

duplication authority for the object, then it may be difficult to establish the trustworthiness of the object.

NOTE In this case, the trustworthiness of the object refers to determining that the sensitive area of the
object has only ever been accessible by trusted entities such as other TPMs.

27.9 Creation Resources

When a Primary Object is created, it is also loaded in a TPM object slot and the handle is returned. If no

free object slot is available, the TPM will return TPM_RC_OBJECT_MEMORY.

When creating an ordinary object, the TPM may use an object slot as scratch memory in which it builds

the object. If the implementation does use this scheme and no object slot is available, then the TPM will

return TPM_RC_OBJECT_MEMORY.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 183

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Object Derivation

28.1 Introduction

This section describes the differences between Object creation and Object derivation. If no difference is

stated, then there is none.

The TPM2_CreateLoaded() command is used for derivation. This command can be used to create or

derive any type of object with the type of Object determined by the type of the entity referenced by the

parentHandle parameter. If parentHandle references a Primary Seed, then a Primary Object is created; if

parentHandle references a Storage Parent, then an Ordinary Object is created; and if parentHandle

references a Derivation Parent, then a Derived Object is generated.

NOTE For a given template (inPublic), the same Primary Object is created by both TPM2_CreatePrimary()
and TPM2_CreateLoaded().

28.2 Derivation Parameters

For object derivation the TPM uses the sensitive value in a Derivation Parent as a key in a key derivation

function (KDF). The KDF that is to be used in Object derivation is a property of the Derivation Parent and

may include the hash algorithm to use in the derivation process.

NOTE KDFa (TPM_ALG_KDF1_SP800_108) is the only KDF that is currently supported by the reference

code,

Most KDFs require additional parameters in order to have different types of keys derived for different

applications. The TPM allows two additional parameters (label and context) to be provided in

TPM2_CreateLoaded(). These additional parameters can be provided in two ways: in the unique field of

the inPublic value, or in the data field of the inSensitive parameter. If provided in the unique field, the

corresponding value in the inSensitive.data field is ignored.

28.3 Public Area Template

For TPM2_CreateLoaded(), a TPM2B_TEMPLATE is used for the inPublic parameter instead of a

TPM2B_PUBLIC. The difference in parameters is to allow overloading of the unique field in the inPublic

parameter. For a TPM2B_PUBLIC, the unique field is unmarshaled based on the type of inPublic. For a

TPM2B_TEMPLATE, the inPublic is unmarshaled as a byte array and passed to the

TPM2_CreateLoaded() action code where it is unmarshaled based on the type of parent and type of

inPublic.

When using TPM2_CreateLoaded() to create a Primary or Ordinary Object, the caller should use the

same format for the unique field that would be used when creating the Object with TPM2_CreatePrimary()

or TPM2_Create(). The derivation-specific format is required when parentHandle references a Derivation

Parent.

For object creation, sensitiveDataOrigin indicates to the TPM whether the caller is providing the sensitive

data or if the TPM is to generate it. For Object Derivation, the caller provides values that influence the

derivation process, but the caller does not explicitly set the sensitive value. For this reason,

sensitiveDataOrigin is required to be CLEAR in the template for a Derived Object.

Trusted Platform Module Library Part 1: Architecture

Page 184 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

28.4 Entropy for Derived Objects

 Conceptual Description

The ‘entropy’ for a Derived Object is provided by a protected value in the sensitive area of the derivation

parent (the sensitive value). That entropy, along with caller-provided values, is used in a KDF to spread

the entropy across values in the derived object. Those derived values are the sensitive and seedValues.

The remainder of the Derived Object is provided by the template or computed from the two derived

values.

KDFa is used for the derivation. The parameters for the derivation are:

 KDFa (hashAlg, sensitive, [label,] [context,] 0, 8192) (1)

where:

hashAlg the nameAlg of the derivation parent

sensitive the sensitive value in the sensitive area of the derivation parent

label an optional string provided by the caller

context an optional string provided by the caller

KDFa has a counter and a bits parameter that are set, as shown above, to 0 and 8192 respectively.

NOTE In order to be compliant with SP800-108, the KDFa function will increment counter to 1 before using
it in the generation of the first HMAC block.

This call will cause the KDF to generate 1024 bytes of data, with the results of the first digest being the

most significant bytes.

During the derivation process, the data is removed from the 1024-byte buffer as needed for each use.

The data is used from most significant byte to least significant byte with no bytes skipped. For most key

generations, a deterministic number of bytes will be removed for each of the derived fields (sensitive and

seedValue).

Example 1 For a 128-bit AES key in a SYMCIPHER object having SHA-256 as its nameAlg, the most significant
16 bytes of the KDF data are used for the AES key and the next -most-significant 32 bytes are used
for the seedValue.

Example 2 For ECC, the TPM uses the method of FIPS 186-4 B.4.1 Key Pair Generation Using Extra Random
Bits. For a 256-bit ECC key, the most-significant 40 bytes are used to generate the private key and,
if the nameAlg of the derived object is SHA-256, the next-most-significant 32 bytes will be used for
the seedValue.

In some cases, the number of bytes used for the sensitive value is indeterminate. This is because some

of the generated values are unsuitable for the application and may need to be discarded. In such cases,

bytes are taken from the 1024-byte buffer until suitable values for sensitive have been found and the next

most significant bytes are used for seedValue.

Example 3 Not all 64-bit values are suitable for use as DES keys. When the derivation process produces on e of
these values, the key will be discarded, and the next most significant bytes are taken from the 1024-
byte KDF buffer.

When suitable values for both sensitive and seedValue have been extracted from the 1024-byte KDF

buffer, the remaining bytes are discarded.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 185

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Implementation Alternatives

There are various ways to produce an implementation that is compatible with the conceptual description

above without actually having to generate 1024 bytes of data. Some examples are given here:

• An implementation may compute the number of bytes that will be needed to produce the sensitive
and seedValue and the KDF would only need to generate that number of bytes. The bits
parameter in the call to generate the data would still need to be 8192. In order to facilitate this
type of implementation, the CryptKDFa() function in the reference code has a blocks parameter
that limits the number of returned blocks, regardless of the size of the sizeInBits parameter.

• An implementation may generate blocks on a demand basis. This is fairly complex but allows the
derivation process to be used as if it were any other RBG. To implement this process, the calling
parameters of the KDF are saved in a structure so that they are available for multiple calls. This
structure is passed to the functions that use a random number generator. When random bits are
needed, the generator checks the type of the random number generator context and, if it contains
KDF parameters, they are used in a call to the KDF. After each call, the counter value is
incremented so that the net effect of generating one block at a time is the same as generating all
of them at the same time. The additional complexity of this implementation is that it is required
that all of the bytes from the KDF be used in order, with none skipped. In order to deal with a call
that does not use a full block, a buffer is added to the KDF structure in which residual bytes are
saved. When a call is made to fetch bytes from the KDF, the residual buffer is checked first and
any bytes in that buffer are returned before the KDF is called to produce additional bytes. If the
KDF produces a block and not all bytes are returned, the residual bytes are placed in the buffer.
This provides continuity of bytes as required by 28.4.1.

28.5 Derivation Process

The derivation process is required to be the same for all TPMs. That is, with the same inputs, all TPMs

will generate the same Derived Objects.

When generating a Derived Object, the TPM will create the entropy structure for a KDF and pass a

pointer to the structure to the function that creates Objects. The algorithm for generating an Object is as

described in clause 27.7.

NOTE The method of generating RSA keys is highly variable and is normally chosen according to the
constraints of the application. In some cases, compliance is the overriding factor and in others,
performance may be the determining factor. Since no single algorithm seems to be optimum for all
the constraints and it would not be acceptable to require that TPMs implement one RSA key
generation for compliance and one for interoperability, the TCG has chosen not to support derivation
for RSA keys.

Trusted Platform Module Library Part 1: Architecture

Page 186 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Object Loading

29.1 Introduction

An object is either a key or data that can be loaded into the TPM for use. An object must be loaded before

the TPM can use or modify the object. Loading may require that the USER role authorization for the

Storage Parent be provided

29.2 Load of an Ordinary Object

It is possible to load just the public portion of an object into the TPM (TPM2_LoadExternal()) or to load

both the public and private portions (TPM2_Load()). If the sensitive area is to be manipulated or used,

then both portions are required to be loaded.

When loading an object, multiple consistency checks are performed. Among these checks:

 Is the HMAC of the encrypted private area correct – this ensures that the sensitive area was not

modified, that the sensitive area and the provided public area are matched, and that the object is a

descendant of the Storage Parent.

 Is the unique parameter of the public area cryptographically bound to the sensitive data – this is

required to prevent improper association of a public area with a sensitive area. If this check were not

done, an attacker could use a public area that had a Name that is the same as a different object and

associate a different sensitive area with the public area. If the object were used in

TPM2_PolicySecret(), the attacker could get the TPM to create a policyDigest with any desired hash

value.

EXAMPLE A legitimate policy uses signature validation of a key with Name1. An attacker could create an
object with Name1 (copy the data from the legitimate key) and then create a sensitive area that
had an authValue known to the attacker, instead of using TPM2_Pol icySigned() to create the
policy.

 Are the attributes consistent – these values need to be checked even if the integrity check indicates

that the values were not modified. This is because the object may have been created by software

using inconsistent values. The integrity may be good, but the values may be wrong.

 If fixedTPM is SET, fixedTPM must also be SET in the Storage Parent.

NOTE If fixedTPM is properly SET, then the other checks need not be made because the object is
verified to have been created on the TPM that loaded the object, so the other attributes are
known to be correct.

 If fixedParent is CLEAR, then fixedTPM must also be CLEAR.

 If restricted is SET, only one of sign or decrypt may be SET.

29.3 Public-only Load

There are several cases, such as duplication or signature verification, when only the public portion of an

asymmetric key can be loaded. The public-only load of an object requires that the caller associate the

object with one of the hierarchies. This association is needed when the key is used for signature

verification so that the TPM can determine which proof value to use in the ticket.

A public-only load occurs when the inPrivate parameter to TPM2_LoadExternal() has a size of zero.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 187

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

29.4 External Object Load

External Objects allow the cryptographic processes of the TPM to be used on keys that are not part of a

TPM hierarchy. The public portion of an asymmetric key may be loaded so that the TPM can be used to

validate a signature. A symmetric key may be loaded so that the symmetric engines of the TPM may be

used to encrypt or decrypt data.

TPM2_LoadExternal() is used to load an External Object. When only the public portion is loaded, the

attributes of the object are arbitrary, but the structures are required to be consistent with the type. That is,

if an RSA signing key is loaded, the signing scheme must be a valid scheme for an RSA key.

When the sensitive portion of the object is loaded (such as, a symmetric key), the sensitive area is not

encrypted by a Storage Parent but may be encrypted using parameter encryption. The fixedParent and

fixedTPM attributes are required to be CLEAR when both parts are loaded. This check allows the object

to be used in any command that is valid for the type including certification.

NOTE If an entity has access to both the public and sensitive portions of a key, then the entity could import
the key and then certify it.

An external object can be associated with a hierarchy when it is loaded. This allows creation of tickets

that are specific to a hierarchy in commands such as TPM2_VerifySignature().

If the hierarchy with which an External object is associated is disabled, the object will be flushed. If the

associated hierarchy is disabled when TPM2_LoadExternal() is called, the object will not load.

Trusted Platform Module Library Part 1: Architecture

Page 188 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Context Management

30.1 Introduction

To allow the TPM to be shared among many applications, the TPM supports context management. The

objects, sequence objects, and sessions used by an application may be loaded into the TPM when

needed and saved when a different application is using the TPM. The TPM Resource Manager (TRM) is

responsible for swapping the contexts so that the necessary resources are present in the TPM when

needed.

There are two types of contexts: those associated with Transient Objects, and those associated with

authorization sessions.

The four commands used to manage the contexts are

1) TPM2_ContextSave() – the TPM integrity protects, encrypts, and returns the context associated with

a handle,

2) TPM2_ContextLoad() – allows a previously saved context to be loaded to TPM RAM and have a

handle assigned,

3) TPM2_FlushContext() – the context information associated with the specified handle is erased from

TPM RAM, and

4) TPM2_EvictControl() – allows the owner or the platform firmware to designate objects that are to

remain TPM-resident over TPM2_Startup() events. This command will return a new handle.

A saved context is cryptographically bound to a specific TPM so that it may not be loaded on a different

TPM. This binding is provided by using a statistically unique proof value in the generation of the

protection values for a context (see 30.3 and 30.3.2). When the proof value of a hierarchy changes,

saved object contexts belonging to that context can no longer be loaded into the TPM. The proof value for

a context will change when its Primary Seed changes. Additionally, ehProof will change when either the

SPS or EPS changes.

NOTE 1 In the reference implementation, ehProof is a non-volatile value from the RNG. It is allowed that the
ehProof be generated by a KDF using both the EPS and SPS as inputs. If generated with a KDF, the
ehProof can be generated on an as-needed basis or made a non-volatile value.

Saved contexts for all objects and sessions are invalidated on a TPM Reset. In the reference

implementation, the encryption keys for contexts are changed by TPM Reset so previously saved

contexts may no longer be loaded. Saved session contexts remain valid until the session is closed, or

TPM Reset. If the stClear attribute of an object is SET, then saved contexts for the object are invalidated

on either TPM Reset or TPM Restart (that is, any time the TPM does a Startup(CLEAR). If the stClear

attribute of an object is CLEAR, then the saved contexts for that object are valid and may be loaded into

the TPM until the next TPM Reset.

NOTE 2 In the reference design, when an object context is saved, the current value of clearCount is placed
in the context. When the context is loaded, if the object is a stClear object, the value in the object is
compared to the current value of clearCount. If they are not the same, then the context load fails.

Objects and sessions are not retained in TPM memory after a TPM2_Startup() and it is necessary for the

TRM to save the contexts for any session or object that is to be useable after TPM Restart or TPM

Resume.

NOTE 3 The TPM might lose power between a TPM2_Shutdown(TPM_SU_STATE) and the subsequent
TPM2_Startup(). With respect to context preservation, the TPM behavior is defined to be the same
whether the TPM loses power or not.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 189

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The structure of a saved context TPM2B_CONTEXT_DATA may be defined by the vendor, but a saved

context is required to have its integrity and confidentiality protected by cryptographic means. Parts 3 and

4 of this specification implement the normative requirements for providing confidentiality and integrity

protection for saved contexts. These protections are described in more detail in subsequent parts of this

clause 30.

NOTE 4 The algorithms chosen for integrity and confidentiality protection of a saved context are vendor
specific. However, the cryptographic strengths of the algorithms used are required to be the highest
of any algorithm of the same type implemented on the TPM.

30.2 Context Data

 Introduction

The data structure TPMS_CONTEXT returned by TPM2_ContextSave contains context metadata as well

as the actual context TPM2B_CONTEXT_DATA. The context metadata contains:

• a sequence number,

• a handle, savedHandle, and

NOTE For Transient Objects, this savedHandle in a saved context data structure is not the same as the
handle used by the TPM to reference loaded objects and by TPM commands to describe the object
being operated on.

• a hierarchy selector.

The actual context contains:

• an integrity HMAC, and

• an encrypted data blob.

The structure of the metadata is normative. The internal structure TPMS_CONTEXT_DATA of the actual

context is vendor specific. The encrypted data blob contains the data necessary to reconstruct the full

object or session context in the TPM. The other fields are defined in the remainder of this clause 30.2.

The structure of the context contains both confidential and non-confidential data. This specification

requires encryption of the confidential data. The TPMS_CONTEXT structure is normative. The structure

of the enclosed TPMS_CONTEXT_DATA is vendor-specific, and its confidential data must be encrypted.

 Sequence Number

New protection values are generated each time a context is saved. The protection values are an HMAC

key, a symmetric key, and an initial value. The values are made unique by including a counter value in

the generation process (see 30.3 and 30.3.2). The counter value used for the context is stored in the

sequence number field of the context structure. Two counters are used for generating the sequence

numbers. One counter is used for transient and sequence object contexts. A second counter is used for

session contexts.

There are two counters used to provide sequence numbers. The counter (objectContextID) provides

sequence numbers for Transient Objects. This counter is incremented each time an object context is

saved. The counter (contextCounter) is used to provide sequence numbers for sessions and increments

when a session context is created or loaded (its behavior is described in more detail in 30.5). When

creating the context structure, the TPM sets the sequence parameter to the value of the counter used in

the generation of the protection values for the context.

Trusted Platform Module Library Part 1: Architecture

Page 190 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When a context is loaded, (TPM2_ContextLoad()), the TPM checks that the sequence parameter is in a

viable range before starting the operation. For an object, the viable range is any number that is less than

the current value of the object sequence counter. For a session, the sequence number must also be less

than the session sequence number, but it must also be greater that the sequence number minus the

allowable range for session sequence number.

In the reference implementation, objectContextID is a 64-bit counter that is initialized to zero at startup

and is expected to never overflow. The size is platform-specific.

EXAMPLE For purposes of this example, assume that the sequence counter value is only 16 bits and that the
session counter indicates the last assigned session context had a value of 10 1016. It would then be
an error if the sequence parameter in a loaded session context is greater than 10 1016. Assume
further that the TPM only allows a range of 256 between session values (explanation in 30.5). Then
it would be an error if the sequence parameter of the session in TPM2_ContextLoad() is less than
10 1016 – 01 0016 = 0F 1016; and the TPM will not load the context.

 Handle

The savedHandle number for a context indicates the type of the context (object or authorization session).

The type of the context is used to determine how to reconstruct the protection values for validation of the

context. If the savedHandle value in the context is changed by software, the context will not load.

For a session, the same handle is assigned to the context whether the context is loaded in the TPM or in

a saved context. That is, savedHandle is the same as the handle the TPM uses to refer to the session. A

session handle will have an MSO of TPM_HT_HMAC_SESSION (0216) or TPM_HT_POLICY_SESSION

(0316). The range of values in the handle index (the low-order three octets of the handle) is TPM

dependent. In the reference implementation, the low order bits of the session context handles fall within a

range from 0 to MAX_ACTIVE_SESSIONS – 1 and the TPM will generate an error and do no further

processing of the context if the handle is outside of this range.

A savedHandle MSO of TPM_HT_TRANSIENT (8016), indicates that the context is an Object or sequence

object. For an object, the savedHandle parameter of the context structure does not indicate the handle

value used by the TPM to reference the object (when a Transient Object context is not on the TPM, the

TPM retains no information about that context). Therefore, the savedHandle value is not used for

Transient Object contexts in the same way that it is used for session contexts. Instead, the savedHandle

is used to indicate the type of the Transient Object context.

Three savedHandle values are defined for Transient Object contexts:

1) 00 00 0016 – indicates a Transient Object that does not have the stateClear property;

NOTE An Object has the stateClear property when stClear is SET in the Object or in any of its ancestor
keys.

2) 00 00 0116 – indicates a sequence Object (see 32.4.5); and

3) 00 00 0216 – indicates a Transient Object that has the stateClear property.

EXAMPLE A sequence Object will have a 32-bit handle value of 80 00 00 0116.

If the savedHandle type is TPM_HT_TRANSIENT, the TPM will not generate or load a context with any

other value besides the three values described above for the handle’s index.

Objects that have the stateClear property are invalidated by Startup(CLEAR). To enforce this, the TPM

will include clearCount in the integrity value of the Object.

TPM processing of contexts with savedHandle values of 80 00 00 0016 or 80 00 00 0116 is the same. The

reason for differentiating sequence Objects is to identify the context for the convenience of the TPM

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 191

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

resource manager (TRM). The TRM needs to manage sequence objects differently from other Transient

Objects. Because the context of a sequence object changes each time the sequence is updated, the

context needs to be saved each time the context is used. The context of a Transient Object does not

change on use. Therefore, the TRM can optimize by saving the Transient Object context only once.

 Hierarchy

The hierarchy parameter of the context indicates which of the hierarchy proof values are used in the

creation of the protection values for the context. For objects, this value is determined by the hierarchy of

the object and may be TPM_RH_NULL for a Temporary Object. Sequence objects and sessions are in

the Null hierarchy.

30.3 Context Protections

 Context Confidentiality Protection

A symmetric block cipher is used to protect the confidentiality of a saved context. The algorithm is

selected by the TPM vendor but is required to have the highest security strength of any symmetric block

cipher implemented on the TPM.

When the context is created by TPM2_ContextSave(), the value of sequence is stored in the

TPM2B_CONTEXT_SENSITIVE context before it is encrypted. When the context is loaded, the value of

sequence is compared to the value in the loaded TPM2B_CONTEXT_SENSITIVE context after it is

decrypted. If the values are not the same, then the TPM will enter failure mode as this is symptomatic of a

specific type of power analysis attack.

The symmetric key and IV are regenerated when a context is loaded. It is required that the symmetric key

and IV not be generated until the context integrity has been validated.

NOTE 1 This restriction prevents simultaneous power-analysis attacks on the integrity and encryption values
of a context. Since the integrity is checked first, no attempt is made to create the symmetric key if
the integrity check fails.

KDFa() is used to generate the symmetric encryption key and IV for context encryption. The parameters

of the call are:

 (symKey, symIv) ≔ KDFa (hashAlg, hProof, vendorString, sequence, handle, bits) (50)

where

hashAlg a hash algorithm chosen by the vendor

hProof the proof value associated with the hierarchy associated with the context

vendorString a value used to differentiate the uses of the KDF

sequence the sequence parameter of the TPMS_CONTEXT

handle the handle parameter of the TPMS_CONTEXT

bits the number of bits needed for a symmetric key and IV for the context

encryption

NOTE 2 The value of vendorString is required to be different from any other label string used in a KDFa()

call. The reference implementation uses “CONTEXT_ENCRYPT”

NOTE 3 The nullProof is used as the hProof value for a context in the Null hierarchy so that the encryption
keys do not repeat and so that they change on each TPM Reset.

Trusted Platform Module Library Part 1: Architecture

Page 192 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The key and IV produced in (50) are used to encrypt the object or session context

 encContext ≔ CFBsymAlg (symKey, symIv, context) (51)

where

CFBsymAlg symmetric encryption in CFB mode using a symmetric algorithm chosen

by the TPM vendor

symKey symmetric key from (50)

symIv IV from (50)

context the context being protected (a TPM2B_CONTEXT_DATA)

NOTE 4 The size field and the buffer field of context are encrypted.

 Context Integrity Protection

The integrity of a saved context is protected by an HMAC using a hash algorithm selected by the TPM

vendor. The hash algorithm chosen is required to have the highest security strength of any hash

algorithm implemented on the TPM (see the description of TPM_PT_CONTEXT_HASH in TPM 2.0 Part

2).

The HMAC is constructed using the proof value associated with the hierarchy to which the object belongs.

Since the proof value changes when the associated Primary Seed changes, HMAC validation for a

previously saved context will fail when the associated Primary Seed changes; and that context may no

longer be loaded. Other values in the HMAC computation serve to invalidate other context subsets

without necessarily invalidating them all.

EXAMPLE The clearCount value is included in the HMAC of a context for an object with the stClear attribute so
that the context will be invalidated on each TPM Restart as well as each TPM Reset.

The only TPM state change that invalidates all saved contexts is TPM Reset.

Sessions, Sequences, and Temporary Objects are in the “null” hierarchy.

The HMAC integrity computation for a saved context is:

contextHMAC ≔ HMACvendorAlg (hProof, resetValue { || clearCount}
|| sequence || handle || encContext) (52)

where

HMACvendorAlg HMAC using a vendor-defined hash algorithm

hProof the hierarchy proof as selected by the hierarchy parameter of the
TPMS_CONTEXT

resetValue either a counter value that increments on each TPM Reset and is not
reset over the lifetime of the TPM; or a random value that changes on
each TPM Reset and has the size of the digest produced by vendorAlg

clearCount a counter value that is incremented on each TPM Resume and may be
incremented or set to zero on TPM Reset. This value is only included if
the handle value is 80 00 00 0216.

NOTE the handle value is 80 00 00 0216 when the stClear attribute of the object is SET or when the stClear
attribute is set in one of the object's ancestor keys.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 193

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

sequence the sequence parameter of the TPMS_CONTEXT

handle the handle parameter of the TPMS_CONTEXT

encContext the encrypted context blob

30.4 Object Context Management

When an object’s context is saved, a copy of the object context is integrity protected, encrypted, and

returned to the caller. The original context remains in the TPM and the TPM retains its handle. A saved

object context may be reloaded into the TPM with TPM2_ContextLoad(). If the TPM has sufficient

memory available, it will load the object and assign a handle. If other copies of the same object are in

TPM memory, they are unaffected. An object context is only removed from TPM memory with

TPM2_FlushContext(), deletion of the associated hierarchy seed, or TPM2_Startup().

The handle assigned to an object when it is loaded may not be assigned to any other TPM resource,

object, or session. When the object is flushed from TPM memory, its handle may be assigned to another

TPM resource when it is loaded or created.

Software may create as many copies of an object context as desired. When an object is not in TPM

memory, it has no associated handle. If an object context is saved and subsequently reloaded, it is likely

that a different handle will be assigned to the object.

When the Primary Seed is changed for the hierarchy associated with an object, all objects associated

with that hierarchy are flushed from TPM memory. The TPM will no longer load saved contexts

associated with the previous Primary Seed.

When an attempt is made to load an object or an object context (TPM2_Load(), TPM2_CreatePrimary(),

TPM2_LoadExternal() or TPM2_ContextLoad()) and the TPM does not have sufficient RAM to hold the

object, the TPM will return TPM _RC_OBJECT_MEMORY or TPM _RC_MEMORY. This warning code is

normally handled by the TRM. It indicates that an object or a session needs to be unloaded from TPM

memory before the command can complete. If the TPM returns TPM_RC_OBJECT_MEMORY, it

indicates that an object must be flushed from TPM memory. If the TPM returns TPM_RC_MEMORY, then

it is possible that removal from TPM RAM of either an object or a session would allow the command to

complete.

When a command references a persistent object, the TPM may move the object from NV into an object

slot. If no slot is available, the TPM will return TPM_RC_OBJECT_MEMORY.

An implementation is allowed to use an object slot for temporary memory in execution of TPM2_Import()

and return TPM_RC_OBJECT_MEMORY if a slot is not available.

If the TPM uses an object slot for temporary memory, the slot will be freed at the end of the command in

which the slot was allocated.

If a TPM receives Shutdown(STATE) before the _TPM_Init, then the saved object contexts will continue

to be usable after a TPM Restart or TPM Resume. An exception is that an object may be created with the

stClear attribute. If this attribute is SET in an object or an ancestor of an object, then the saved context

will be invalidated on TPM Restart. All saved object contexts are invalidated by TPM Reset.

30.5 Session Context Management

A session context is created by TPM2_StartAuthSession(). The context associated with a session is

unique. That is, the data describing the session’s state may be either on the TPM or saved off the TPM,

but not both. Further, a saved session context may only be loaded once. These limitations on the session

context are intended to prevent possible attacks based on replay of authorizations.

Trusted Platform Module Library Part 1: Architecture

Page 194 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The handle associated with a session does not change as long as the session is active. The session is

active until closed by the continueSession flag being FALSE or until the session context is flushed from

the TPM by TPM2_FlushContext().

The nominal implementation uses a volatile counter (contextCounter) that increments each time a session

is created or context loaded. This count value is assigned to the created or loaded session context and

serves as a version number for the session context. If the session context is saved and reloaded, it is

assigned a new version number. contextCounter is saved by Shutdown(STATE) and reset on TPM Reset.

The TPM maintains a database of concurrent sessions so that it can validate that a reloaded session

context is the most recent version. It is required that the TPM be able to ensure that the restored context

is the correct context regardless of the number of contexts created.

The size of contextCounter affects the size of the memory required for tracking each of the contexts. It is

therefore desirable that the counter only be large enough for the majority of applications, meaning that it

will not be large enough for all applications. In those applications, a method is required to handle counter

rollover.

One scheme for handling rollover is to maintain an even/odd interval. If, for example, a nonce were being

used for each interval, then the TPM could maintain two nonces, one to be used when the MSb of the

volatile counter is 0 and the other when the MSb is 1. When the counts of all the sessions have the same

MSb, then a new nonce can be created for use when the MSb changes. This scheme works unless a

session has a long lifetime. That is, if the session is created when the MSb is 0, and the session is still

active when the counter reaches its maximum value with all bits equal 1, then the context with an MSb of

0 will need to be discarded.

Rather than have the old session be automatically flushed, the TPM provides an indication that it is

reaching its limit and that one or more saved session contexts need to have their sequence number

updated to the current interval in preparation for the context counter rollover.

The indication that the context counter is approaching its limit is provided when an authorization session

is created or loaded. If the creation or loading of a session would make it impossible for the TPM to bring

all contexts into the current interval, then it would return an error (TPM_RC_CONTEXT_GAP) and not

create or load the new session. On receiving this error, the management software either would explicitly

flush old session contexts or would load the old session contexts to update their associated counter

values.

When the TPM returns TPM_RC_CONTEXT_GAP, it will not allow an authorization session to be created

and it will only allow the oldest authorization session to be loaded. When the oldest session is loaded, its

sequence number is updated. It may be used or saved with its new sequence number.

NOTE The TPM must provide the indication of the session-tracking limit being reached before the
maximum count is reached. If there are three sessions in the ‘odd’ interval and the end of the ‘even’
interval is being reached, then the TPM must indicate the limit while there are still three available
session sequence numbers in the ‘even’ interval. This allows the sessions in the ‘odd’ interval to be
loaded and saved with an ‘even’ interval session sequence number and with no session in the ‘odd’
interval so that a new ‘odd’ interval identi fier can be created.

Session contexts in TPM RAM are flushed on any TPM2_Startup(). Saved session contexts are not

invalidated and may be reloaded after a TPM Restart or TPM Resume. Saved session contexts are

invalidated on a TPM Reset.

30.6 Eviction

Eviction is the process of removing the context associated with an object or session from TPM RAM to

allow for other sessions or objects to be loaded or created. Saving a session context removes the

majority of the session context from TPM RAM. Saving an object context does not remove it from TPM

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 195

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

memory. When applied to an object, TPM2_FlushContext() will remove it from the TPM RAM but not

invalidate the saved contexts of that object. When applied to a session, TPM2_FlushContext() will

invalidate the session whether its context is in TPM RAM or saved.

An object may be copied to persistent TPM NV memory with TPM2_EvictControl(). When made

persistent, TPM2_FlushContext() and TPM2_Startup(TPM_SU_CLEAR) have no effect on the persistent

copy of the object.

A session may not be made persistent.

Use of TPM2_EvictControl() requires either Owner Authorization or Platform Authorization. An object

made persistent using ownerAuth may be evicted from persistent memory using either Owner

Authorization or Platform Authorization. An object made persistent using Platform Authorization may only

be evicted from persistent memory using Platform Authorization.

30.7 Incidental Use of Object Slots

In most cases, the TRM will explicitly load and unload (flush) objects from the TPM’s object memory. In

three cases, the TPM will make use of object slots as a side effect and the TRM needs to deal with

potential resource issues that may arise. The three cases are: TPM2_Import(), use of persistent objects,

and _TPM_Hash_Start.

TPM2_Import() allows an implementation to use an object slot for its “scratch” memory while operating on

the import blob. When the command completes the slot will be available. An implementation that uses this

option may return TPM_RC_OBJECT_MEMORY if a needed slot is not available. This return code is in

the group of response codes that are expected to be handled by the resource manager.

When a handle references a persistent object, a TPM implementation is allowed to return

TPM_RC_OBJECT_MEMORY if an object slot is not available. This allows the TPM to keep the

persistent image of the object in a compressed form and decompress it into an object slot for efficient

processing. The version of the persistent object held in an object slot will be removed when the command

completes.

When the TPM receives _TPM_Hash_Start, it will unconditionally create an Event Sequence context. If

an object slot is available, the TPM will use the available slot. If an object slot is not available, the TPM

will flush an arbitrary object context and use that slot. At the end of the event sequence

(_TPM_Hash_End), the slot used for the Event Sequence will be vacant. The TRM should be aware that

the _TPM_Hash_Start sequence may cause loss of a loaded object.

Trusted Platform Module Library Part 1: Architecture

Page 196 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Attestation

31.1 Introduction

Attestation is the action of having the TPM sign some internal TPM data. Confidence in the attestation is

related to the confidence in the key that is used to sign. The highest confidence is provided by a

fixedTPM, restricted signing key that is created on a TPM with a certificate from the TPM manufacturer.

The TPM may be used to attest to several different types of data:

• PCR data – TPM2_Quote()

• Clock and Time data – TPM2_GetTime()

• Audit digests – TPM2_GetCommmandAuditDigest() and TPM2_GetSessionAuditDigest()

• Other TPM Objects – TPM2_Certify()

For all of these commands, the TPM produces a standard attestation structure and appends the

command-specific data. The resulting data block is then hashed and signed by the selected signing key.

The selected key may be any key that has the sign attribute SET. If the signing key is unrestricted, then

the caller may indicate the signing scheme to be used. If the signing key is restricted, the TPM will return

an error (TPM_RC_SCHEME) unless the scheme selector in the attestation command is

TPM_ALG_NULL.

31.2 Standard Attestation Structure

The contents of the standard attestation structure are described in Table 30.

Table 30 — Standard Attestation Structure

Parameter Type Description

magic TPM_GENERATED This unique value (TPM_GENERATED_VALUE) occurs as the first
octets in any TPM-generated attestation structure. This field is used to
prevent use of a restricted signing key to sign a forgery of an attestation.
A TPM will not allow a restricted signing key to sign any external data if
that data starts with this unique value. The way that the TPM enforces
this restriction is that a TPM will not use a restricted key to sign a digest
that the TPM did not produce. Since the TPM produced the digest, it can
ensure that any external data did not start with this value.

type TPMI_ST_ATTEST This identifies the type of the attestation structure and indicates the
contents of the attested parameter.

qualifiedSigner TPM2B_NAME This is the Qualified Name of the key used to sign the attestation data. A
key that can be duplicated may be signing in different locations and this
Qualified Name allows the Verifier to determine the environment in which
the signature was produced.

extraData TPM2B_DATA external info supplied by caller (often in qualifyingData parameter)

NOTE A TPM2B_DATA structure provides room for a digest and a method
indicator to indicate the components of the digest. The definition of
this method indicator is outside the scope of this specification.

clockInfo TPMS_CLOCK_INFO The values of Clock, resetCount, restartCount, and Safe

firmwareVersion UINT64 This TPM-vendor-defined value changes when the firmware on the TPM
changes, if that change is meaningful to the security of the TPM.

[type]attested TPMU_ATTEST the type-specific attestation information

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 197

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.3 Privacy

The attestation block contains information that could allow cross correlation of attestation values. The

combination of a firmwareVersion and clockInfo could be used to identify that two attestations were

signed by keys on the same TPM. This correlation is possible because the combination of resetCount,

restartCount, and firmwareVersion could be unique. Even if the combination is not unique for all TPM, an

imperfect correlation may be adequate for certain types of activity tracking.

The TPM prevents such tracking by adding obfuscation values to the reported values of resetCount,

restartCount, and firmwareVersion. This obfuscation value is different for each key and TPM (see 36.7).

Although the values are obfuscated, they do not lose any of their usefulness for indicating changes to the

values. While the absolute values are not visible in the attestation, it is still possible to look at attestations

signed by the same key and determine how many times the TPM was reset or restarted between the

attestations and to see the delta in the firmware version number (if any).

It is sometimes necessary to have the non-obfuscated values of the clockInfo and firmwareVersion

included in an attestation. Support for this is provided by allowing signing keys in the Endorsement

hierarchy. When a key in the Endorsement hierarchy signs an attestation, no obfuscation is applied. The

underlying presumption is that the TPM’s Privacy Administrator controls the Endorsement hierarchy and it

is possible, through policy, to limit the use of keys in that hierarchy so that authorization from the Privacy

Administrator is always required.

31.4 Qualifying Data

Each of the attestation commands has a parameter called qualifyingData. This parameter is not

interpreted by the TPM and may contain any data chosen by the caller. The most common use of this

parameter is expected to be as a nonce to ensure "freshness" of an attestation.

31.5 Anonymous Signing

If an anonymous scheme (TPM_ALG_ECDAA) is used for signing in any attestation command, the

qualifiedSigner parameter will be an Empty Buffer.

NOTE 1 If the qualifiedSigner field was properly populated (not the Empty Buffer), then the unique identity of
the signing key would be disclosed.

For TPM2_Certify() using an anonymous signing scheme, both the qualifiedSigner and qualifiedName of

the certified key are set to an Empty Buffer.

NOTE 2 If the qualifiedName field was not cleared, then it would be possible to establish a hierarchical
relationship between to certified objects. This is not desirable for an anonymous scheme.

31.6 X.509 Certificate Signing

TPM2_CertifyX509() signs an X.509-formatted certificate. Prior to constructing and signing an X.509

certificate, TPM2_CertifyX509() verifies that the key-to-be-certified is loaded in the TPM, and that some of

the permissions in the key’s proposed X.509 certificate are compatible with the key-to-be-certified.

A typical use of TPM2_CertifyX509() is the enrollment of any TPM key into an X.509 Public Key

Infrastructure. TPM2_CertifyX509() signs an X.509 formatted certificate describing the TPM key, rather

than enabling the TPM key to self-certify by creating an X.509 formatted Certificate Signing Request

(CSR). This is because a CSR doesn’t provide a way for a TPM to communicate to a Certification

Authority that the TPM key is protected by a TPM, or the restraints on the TPM key that are enforced by

the TPM. The X.509 formatted certificate signed by the TPM is inspected by a Certification Authority prior

to the CA signing its own certificate describing the operations on the key that are approved by the CA. A

simpler CA will use conventional X.509 methods to just verify the TPM’s certificate and verify the X.509

Trusted Platform Module Library Part 1: Architecture

Page 198 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

certificate of the key that signed the TPM’s certificate. A more sophisticated CA that understands TPMs

will also interpret the TPM certificate’s Extensions element, which describes the certified key’s detailed

TPMA_OBJECT attributes and indicates precisely what operations a TPM can and cannot perform on the

certified key.

In a typical usage of TPM2_CertifyX509():

• First, the CA (or its proxy) loads a certifying signing key in the TPM. The certifying signing key is

typically a key with the x509Sign attribute SET.

• Next, the CA uses the certifying key with TPM2_CertifyX509() to certify a TPM key . The DER-

encoded partialCertificate parameter for TPM2_CertifyX509() describes the validity time for the certificate

as well as the X.509 Name for the certifying and certified keys. Additionally, partialCertificate is required

to contain a KeyUsage in the Extension field and may contain a TPMA_OBJECT Extension.

TPM2_CertifyX509() verifies that the key is compatible with approved operations, constructs a complete

X.509 RFC 5280-defined certificate, and signs that complete certificate.

• TPM2_CertifyX509() returns the part of the complete X.509 certificate that was constructed by the

TPM, plus the TPM’s signature over the complete certificate. This data and partialCertificate are

assembled outside the TPM into a complete X.509 RFC 5280-defined signed certificate for inspection by

the Certification Authority using conventional X.509 tools.

• Finally, the Certification Authority recertifies the TPM key using the CA’s normal certifying key, for

consumption by entities that trust the CA.

Certification Authorities should be wary of certificates signed by TPM2_CertifyX509() with keys that do not

have the x509sign attribute SET, because an X.509 certificate can be signed using TPM2_Sign(). In that

case, the TPM will not have verified that the certified key is loaded in the TPM and will not have verified

that the certified key is compatible with the X.509 certificate. Nevertheless, an X.509 certificate signed by

TPM2_CertifyX509() with an ordinary signing key or a restricted signing key may be acceptable when the

CA trusts the entity controlling usage of that signing key: the CA itself may have exclusive control over the

signing key, for example.

An x509sign key is even more restricted than a restricted key: a restricted key won’t use TPM2_Sign() to

sign any data that starts with the “magic” parameter, and an x509sign key won’t use TPM2_Sign() to sign

any data at all. Hence the command TPM2_CertifyX509() is the only way that an x509sign key can sign

an X.509 certificate. An x509sign key will also sign any of the non-X.509 certification commands (e.g.,

TPM2_Certify, TPM2_CertifyCreation, TPM2_NV_Certify), which sign data that start with the TCG

“magic” value. This enables an x509sign key to be an Attestation Key with a certificate proving that the

x509sign key is bound to a single TPM and is safe because none of the certification commands sign data

that could masquerade as a fraudulent certificate.

TPM2_CertifyX509() verifies that a key-to-be-certified is compatible with permissions granted by the

X.509 certificate. Broadly speaking, the TPM verifies that the private key can decrypt if the certificate says

the key is approved for decryption and verifies that the private key can sign if the certificate says the key

is approved for signing. The TPM verifies that a key has its fixedTPM attribute SET if the certificate

approves the key for nonrepudiation/contentCommitment operations, because only the TPM that has a

particular fixedTPM key can use that particular key.

TPM2_CertifyX509() cannot guarantee that a key will perform only the operations approved by an X.509

certificate. A TPM cannot control operations on the public part of a key and doesn’t usually know why is

key is being used, whereas a certificate can approve operations on the public part of a key and can

approve the objective of operations on a key. Relying parties are cautioned that not all of the information

in a certificate signed using TPM2_CertifyX509() is validated by the TPM. The TPM validates the public

key of the target, the KeyUsage, and the TPMA_OBJECT extended attributes.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 199

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Some partialCertificate inputs to TPM2_CertifyX509 cannot be verified by the TPM but must be present

because they are necessary to create a signature over an X.509 certificate. One such input is the

certifying signing scheme OIDs that are necessary to create the signature. The caller does not need to

supply OIDs if the TPM is able to generate the OIDs for the certifying signing scheme. However, there are

so many OIDs that the TPM is unable to generate all possible OIDs, and some OIDs have not yet been

assigned. Thus, the caller must supply the OIDs for the certifying signing scheme if the TPM is unable to

generate them. Should the caller supply OIDs, they take precedence over any OIDs that the TPM would

have assigned.

Trusted Platform Module Library Part 1: Architecture

Page 200 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Cryptographic Support Functions

32.1 Introduction

In TPM 1.2, the cryptographic primitives were not exposed for general purpose use. For example, the

RSA engine could not be used for exponentiation. This specification provides commands that allow

access to the primitive cryptographic processes of the TPM.

One assumption in TPM 1.2 was that the host processor usually had much greater performance than the

processor used for the TPM so there was no point in having the TPM do something that the host could do

much faster. In addition, TPM 1.2 was a passive device with limited bandwidth. While it is true that the

host processor will usually have more capability than the TPM, this will not be true in all cases. In fact, on

some systems, the main processor will be able to switch execution environments and perform the TPM

operations. In others, the TPM may be built around a cryptographic coprocessor that has significantly

greater processing capability for cryptographic operations than the host. These higher performance

implementations will not be performance-limited by being attached to the system with a low-bandwidth

interface. These performance differences mean that exposure of the cryptographic primitives of TPM 2.0

makes more sense that it did in TPM 1.2.

Another reason to make the cryptographic primitives available is that not all software will implement all the

algorithms that may be in the TPM. For example, a BIOS may not implement the RSA algorithm but would

want to check the RSA signature of some code.

This clause describes the commands and methods that may be provided by a TPM compliant to this

specification.

32.2 Hash

TPM2_Hash() will create a digest of a block of data using the indicated hash algorithm. If the amount of

data to be hashed exceeds that input buffer size of the TPM, then a hash sequence is used (see 32.4).

If the data used to create the digest does not have TPM_GENERATED_VALUE as its first octets, then

the response to TPM2_Hash() or TPM2_SequenceComplete() will contain a ticket indicating that the

digest may be signed with a restricted signing key.

NOTE The creation of the ticket may be suppressed by using TPM_RH_NULL as the hierarchy parameter in
TPM2_Hash() or TPM2_SequenceComplete().

32.3 HMAC

TPM2_HMAC() will compute an HMAC over a block of data using a TPM-resident value for the HMAC

key. In this command, the handle parameter is required to reference an object with a type of

TPM_ALG_KEYEDHASH with the sign attribute SET.

32.4 Hash, MAC, and Event Sequences

 Introduction

When the amount of data to be included in a digest cannot or will not be sent to the TPM in one of the

atomic hash/HMAC commands (TPM2_Hash(), or TPM2_HMAC()) then a sequence of commands may

be used to provide incremental updates to the digest.

A sequence is started with either TPM2_HashSequenceStart() or TPM2_HMAC_Start(); increments of

data are added to the sequence digest(s) using TPM2_SequenceUpdate(); and

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 201

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

TPM2_SequenceComplete() or TPM2_EventSequenceComplete() is used to complete a sequence.

TPM2_SequenceComplete() and TPM2_EventSequenceComplete() may also provide the last data to be

included in the sequence digest(s).

Three types of sequences are defined:

1) hash

2) Event

3) HMAC

 Hash Sequence

In a hash sequence, the TPM will perform a hash over all the data in the sequence using the selected

algorithm.

TPM2_SequenceComplete() completes the hash sequence and returns a digest of the data. Additionally,

if the data used to create the digest did not start with TPM_GENERATED_VALUE, then a ticket is

produced indicating that the digest may be signed with a restricted key.

A hash sequence is:

 TPM2_HashSequenceStart() (hashAlg is a supported hash algorithm), followed by

 TPM2_SequenceUpdate() (zero or more), followed by

 TPM2_SequenceComplete()

 Event Sequence

For an Event Sequence, the TPM will potentially create multiple digests over the data (a digest for each

PCR bank). TPM2_EventSequenceComplete() is used to complete the sequence and return a list of

digests; and, If a PCR handle is provided, each digest is extended into the corresponding PCR bank.

EXAMPLE If a TPM implements both a SHA1 and a SHA256 bank, then the list will contain two digests.

An Event Sequence is:

 TPM2_HashSequenceStart() (hashAlg is TPM_ALG_NULL), followed by

 TPM2_SequenceUpdate() (zero or more) followed by

 TPM2_EventSequenceComplete() (will do an Extend if pcrHandle is a PCR and not TPM_RH_NULL)

 HMAC Sequence

For an HMAC sequence, the TPM will use the indicated key as the HMAC key and perform an HMAC

computation over the data of the sequence using the specified hash algorithm.

TPM2_SequenceComplete() completes the HMAC sequence and returns the HMAC value.

NOTE The response for TPM2_SequenceComplete() also has a validation parameter. This parameter is
used for a hash sequence to indicate if the digest is safe to sign with a restricted key. This
parameter is not used for an HMAC sequence so the TPM will set the validation parameter to a NUL
Ticket

An HMAC sequence is:

Trusted Platform Module Library Part 1: Architecture

Page 202 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 TPM2_HMAC_Start() (hashAlg is a supported hash algorithm), followed by

 TPM2_SequenceUpdate() (zero or more) followed by

 TPM2_SequenceComplete()

 Sequence Contexts

Sequences involve hashing of data and the intermediate hash state must be retained by the TPM in a

protected location. This intermediate state is kept in a vendor-specific structure that may occupy an object

slot on the TPM.

A sequence context is assigned a handle so that it may be saved and restored like any Transient Object.

Its properties are not identical to other Objects because the sequence context is updated on each use. In

addition, unlike other Objects, the public portion of a sequence is not readable with TPM2_ReadPublic().

A sequence context can be replayed if one has the authorization for the sequence.

If an authorization or audit for a sequence object requires computation of a cpHash and an rpHash, the

Name associated with sequenceHandle will be the Empty Buffer.

When TPM2_EventSequenceComplete() or TPM2_SequenceComplete() completes successfully, the

sequence context is flushed from the TPM.

A sequence is exempt from dictionary attack protection and authorization failures will not cause the TPM

to enter lockout.

32.5 Symmetric Encryption

TPM2_EncryptDecrypt() is defined for symmetric encryption and decryption of blocks of data. Support for

this command in a TPM may cause the TPM to be subject to different jurisdictions' legal import/export

controls than would apply to a TPM without these commands.

The command supports chaining of encryption so that the encryption/decryption may be done

incrementally as the data arrives or to handle the cases where the block of data is larger than will fit into a

single TPM buffer.

32.6 Asymmetric Encryption and Signature Operations

The annexes to this TPM 2.0 Part 1 contain descriptions of the cryptographic encryption/decryption and

signature primitives that are defined for each of the asymmetric algorithms supported by the specification.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 203

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Locality

In some systems, accesses to the TPM are segregated by privilege level. The interface to the TPM may

be able to discriminate the different privilege levels and provide an indication to the TPM when the access

is at a privilege level other than the default level.

The indication of privilege level can be used in access control policy to ensure that the operation on an

object is occurring at the right level. The privilege level of a command is called its Locality.

The method by which the TPM interface determines the Locality of an access is system-dependent. The

TPM interface provides a Locality indication to the TPM each time the TPM is accessed. The contents of

the command or response buffer are not changed by the Locality indication.

The definition of the modifier is platform-specific. Depending on the platform, the modifier could be a

special bus cycle or additional input pins on the TPM. One example would be special cycles on the Low

Pin Count (LPC) bus that inform the TPM it is under the control of a process on the PC platform. The

assumption is that spoofing the modifier to the TPM requires more than just a simple hardware attack and

would require expertise and possibly special hardware.

The locality value is represented as a byte and locality values have two separate representations.

Localities 0 through 4 are represented as bits in the byte with 0000 00012 representing locality 0 and

0001 00002 representing locality 4. This representation allows multiple localities to be represented in a

single byte as long as the localities are in the range of 0-4. This representation of locality is compatible

with previous versions of this specification.

A second representation is for localities above 4. These are called extended localities. For extended

localities, the locality byte is an integer value representing the locality. Because of the format for localities

0-4, the first extended locality is 32. The range of extended localities is 32-255. The locality value may

indicate only one extended locality at a time.

NOTE Locality 5 through 31 cannot be selected.

Trusted Platform Module Library Part 1: Architecture

Page 204 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Hardware Core Root of Trust Measurement (H-CRTM) Event Sequence

34.1 Introduction

A process that puts the system in a known state running known code creates the starting point for a chain

of trust. A computer system reset puts the processor and chipset into a known state, and the processor

(the root of trust for measurement) begins executing code provided by the platform manufacturer. This

initial code is the core root of trust for measurement (CRTM). It is code that must be trusted as there is no

way to tell what that code is other than to rely on the manufacturer. Usually, one of the actions of the

CRTM is to extend a PCR with a value that represents the identity of the CRTM. This boot process starts

the chain of trust with two different roots that are usually from different sources: the RTM from a CPU

vendor and a CRTM from a platform manufacture.

Some system implementations support an alternative method of starting a chain of trust that makes the

CPU the CRTM. For this method, the CPU is placed in a known state and measures the code that it will

run. Before being measured, this code is protected so that it cannot be tampered with and there is

assurance that the code that is measured is the code that is executed. Since the CPU is both executing

the measured code and measuring it, it is both the RTM and the CRTM. This is called a hardware-based

core root of trust for measurement or H-CRTM.

The TPM supports an H-CRTM by providing special interface indications that allow the TPM to determine

when it is receiving data from the RTM acting as CRTM. These indications are:

• _TPM_Hash_Start – sent by the RTM to indicate the start of a H-CRTM Event Sequence. The TPM
will initialize an H-CRTM Event Sequence context. The H-CRTM Event Sequence context contains
hash state for each bank of PCR. This indication is only allowed from the RTM when it has been put
into a known "good" state as defined by the RTM manufacturer. There is only one _TPM_Hash_Start
per H-CRTM Event Sequence.

• _TPM_Hash_Data – sent by the RTM to update the digests in the H-CRTM Event Sequence contexts
with H-CRTM data. An H-CRTM Event Sequence may have zero or more _TPM_Hash_Data
indications.

• _TPM_Hash_End – sent by the RTM to indicate the end of the H-CRTM Event Sequence. On receipt
of this indication, the TPM will take actions that are dependent on whether the H-CRTM occurred
before or after TPM2_Startup(). The actions taken as the result of this indication will always include
initialization of at least one PCR followed by a PCR being extended with the H-CRTM data.

During an H-CRTM sequence, if any indication other the _TPM_Hash_Data occurs between the

_TPM_Hash_Start and _TPM_Hash_End indications (including receipt of a command), then the H-CRTM

Event Sequence is abandoned, the H-CRTM Event Sequence context is flushed, and no change to any

PCR occurs.

NOTE The interface may be designed such that it is not possible to interrupt this sequence.

34.2 Dynamic Root of Trust Measurement

When an H-CRTM occurs after TPM2_Startup() it is called the dynamic root of trust for measurement (D-

RTM).

NOTE There is no special designation for when the H-CRTM occurs before TPM2_Startup()

NOTE The D-RTM sequence may be repeated one or more times after TPM2_Startup. On each invocation
of the D-RTM sequence, the RTM must be in the same known state.

For D-RTM, the TPM will initialize one or more PCR to zero and then extend PCR[17] in each bank with

the H-CRTM data accumulated in the H-CRTM Event Sequence.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 205

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 PCR[17][hashAlg] ≔ HhashAlg (0…0 || HhashAlg (hash_data)) (53)

Where

hash_data all the octets of data received in _TPM_Hash_Data indications

The PCR that are initialized and extended as a result of a D-RTM event are specified in a platform-

specific TPM specification.

34.3 H-CRTM before TPM2_Startup() and TPM2_Startup() without H-CRTM

If the H-CRTM sequence occurs before TPM2_Startup(), then only PCR[0] will be affected. When

_TPM_Hash_End is received, the TPM will complete the Event Sequence digests. It will then initialize

PCR[0] to 4 and Extend the H-CRTM Event Sequence data. The value 0…4 represents evidence that the

initial measurement was from an H-CRTM.

 PCR[0][hashAlg] ≔ HhashAlg (0…04 || HhashAlg (hash_data)) (54)

where

0…04 denotes a numeric value of 4 with high-order bits of 0 to make the value
the size of a digest computed with hashAlg

hash_data all the octets of data received in _TPM_Hash_Data indications

If PCR[0] is initialized by an H-CRTM event before TPM2_Startup(), then TPM2_Startup(CLEAR) will not

change the value of PCR[0]. Otherwise, TPM2_Startup(CLEAR) will set PCR[0] to the locality of the

TPM2_Startup() command.

If there is an H-CRTM event before a TPM2_Startup(CLEAR), there must be an H-CRTM event before a

subsequent TPM2_Startup(STATE). The locality of the TPM2_Startup(STATE) is not checked against the

locality of the previous TPM2_Startup(CLEAR)

If there is no H-CRTM event before TPM2_Startup(CLEAR), there must be no H-CRTM event before a

subsequent TPM2_Startup(STATE) and the TPM2_Startup(STATE) must have the same locality as the

previous TPM2_Startup(CLEAR).

Trusted Platform Module Library Part 1: Architecture

Page 206 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command Audit

The command audit mechanism allows the TPM owner to create a verifiable log of each execution of

selected commands.

TPM2_SetCommandCodeAuditStatus() is used either to change the list of commands being audited or to

change the audit hash algorithm (it cannot change both in the same command). This command requires

either Platform Authorization or Owner Authorization. The selection may change at any time.

NOTE 1 It is anticipated that a small number of commands will be selected for audit, most likely those
commands that provide identities and control of the TPM. However, there are few restrictions on
which commands may be audited.

The audit log, the list of executed TPM commands and responses, is maintained outside the TPM by an

untrusted party. Enabling the audit function of a TPM does not guarantee that the log will be properly

maintained. The TPM audit function simply provides a means to determine if the log was properly

maintained.

It is not necessary to continuously maintain the audit log in order to use the audit capability. When an

audit log is started, the current contents of the audit digest register can be read to establish the starting

value for the log. At the end of the audit interval, the audit digest register can be read again and the

contents of the audit log over the audit interval can be verified.

An audit can be used to track use of keys and, therefore, is potentially privacy sensitive. For this reason,

the privacy administrator of the TPM must authorize access to the audit digest register. Authorization from

the privacy administrator is expressed using Endorsement Authorization.

The update of the audit digest register occurs when the command completes successfully and the

response has been created. The command audit update is:

 auditnew ≔ HauditAlg (auditold || cpHash || rpHash) (55)

where

HauditAlg hash function using the currently selected audit hash algorithm

auditold the previously computed audit digest

cpHash the command parameter hash using the audit hash

rpHash the response parameter hash using the audit hash

NOTE 2 Clause 18.7 describes the process for computing cpHash and clause 0 describes the process for
computing the rpHash.

The audit mechanism uses two components: an audit digest register and an audit counter. The audit

counter is a non-volatile register that counts the number of audit logs that are created. If the audit digest

register contains all octets of zero when an audit event is recorded, then a new audit log is being created

and the audit counter is incremented.

An audit log ends and the audit digest is cleared when the command TPM2_GetCommandAuditDigest()

returns a signature.

NOTE 3 The audit counter is incremented when the new log starts so that a miss ing log cannot be dismissed
as being irrelevant. Because a new audit log is started only when an auditable event occurs, any
missing log is suspect.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 207

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The audit counter is non-volatile and is reset to zero by TPM2_Clear(). The audit digest register is reset

when an unanticipated power event occurs (that is, loss of TPM power without an orderly shutdown). The

audit digest is preserved over any orderly shutdown.

The audit digest register is reset by a TPM2_SetCommandCodeAuditStatus() that changes the audit

digest algorithm auditAlg.

An audit report structure contains the current value of the audit digest register and the value of the audit

counter.

NOTE 4 The signed audit structure is a TPM2B_ATTEST structure that contains other qualifying information
about the signing environment.

Because the audit mechanism utilizes NV memory, endurance may be a factor. The endurance

requirements of the audit mechanism are platform-specific.

NOTE 5 The command audit session counter is incremented on the first auditable command in a session.
This should be infrequent so the endurance of the counter is not likely to be a major issue.

When the TPM is in Failure mode, command audit is not functional and command audit of

TPM2_GetTestResult() and TPM2_GetCapability() will not occur.

TPM2_SetCommandAuditStatus() is audited when it changes the list of audited commands. It is not

possible to disable audit of this command. If TPM2_SetCommandAuditStatus() is used to change the

audit hash algorithm, then the command is not audited and evidence of this operation is provided by the

change in the hash algorithm reported when the command audit value is read.

Trusted Platform Module Library Part 1: Architecture

Page 208 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Timing Components

36.1 Introduction

The TPM has timing components for use in time-stamping of attestations and for gating policy

Time is a free-running hardware value that is not under software control. Time advances when the Time

circuit is powered and is reset to zero when power to the Time hardware is lost.

NOTE 1 Typically, the Time hardware will be powered down when the rest of the TPM is powered down.

Clock is a value that is derived from Time and advances as Time advances. Clock may be advanced in

order to bring it into alignment with real time. However, Clock may not be set back except by installing a

new owner.

The resetCount and restartCount values allow detection of power loss that could cause discontinuities in

the time recorded by Clock. The Safe flag indicates whether Clock might have been wound backwards, in

which case the current Clock value would be unsafe. The timing components are exposed through

commands that:

• read the value of Clock, Time, resetCount, and restartCount (TPM2_GetTime());

• time-stamp externally provided data using a signature key and Clock, resetCount, and
restartCount (TPM2_GetTime(), TPM2_Quote(), TPM2_Certify(), and other restricted signing
operations);

NOTE 2 TPM2_ReadClock() returns uncertified (not signed) values. TPM2_GetTime() returns a structure and
an optional signature over the data. TPM2_ReadClock() is used by the OS to manage the timing
resources of the TPM and TPM2_GetTime() is for attestation of time and is under control of the
privacy administrator.

• allow Clock to be adjusted forward (TPM2_SetClock());

• allow the rate of advance of Clock to be adjusted (TPM2_ClockRateAdjust()); and

• allow objects to be lifetime-limited using authorization policy expressions that reference Safe,
Clock, Time, resetCount, and restartCount (TPM2_PolicyCounterTimer()).

Potential use cases for the TPM timing components include:

• lifetime limits for keys when certificate revocation is impossible or undesirable;

• time-limited delegation of rights (such as, the right to use or duplicate a key for 1 hour);

• time-stamping of security event logs to ensure that events cannot be forged in the past;

• boot-counter stamping of event logs to ensure that a log associated with a particular reboot
cannot be deleted without leaving a trace;

• boot-counter/PCR-counter stamping of keys to indicate they were created during OS installation;

• time-stamping of attestation values as an alternative to the use of a nonce in online protocols; and

• indication of whether a TPM/platform has rebooted since last checked.

Clock is not designed to be a replacement for other online or local time sources and is not appropriate for

all uses. Later clauses describe the behavior of timing resources and their specific security properties.

Implementers and relying parties should understand the limitations before using these features.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 209

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

36.2 Time

Time is a 64-bit value that contains the time in milliseconds that the circuit providing Time has been

powered.

NOTE Depending on the frequency of the TPM oscillator and the setting of the frequency divisor
(TPM2_ClockRateAdjust()), the rate at which Time advances may be in error by as much as 32.5%.

Time is unaffected by TPM2_ClockSet().

The circuit providing Time may be powered independently from the rest of the TPM. However, Time must

be powered whenever the TPM is powered. The Time hardware needs to provide a reliable indication that

it has lost power or has been reset. Time should not be reset unless the TPM requires a _TPM_Init

indication before resuming operation.

Time need not advance continuously when powered. The Time hardware is required to provide a reliable

indication if Time has stopped advancing.

36.3 Clock

 Introduction

Clock is a time value that can be advanced but never rolled back. It may increment in volatile memory. If

so, it is periodically written to NV memory.

A non-orderly shutdown may cause a write to NV memory to be missed. Other values that are written to

NV on an orderly shutdown will be advanced to a known safe value on the next startup. However, Clock

is not advanced because power outages would cause the clock to be advanced to a time in the future and

it could not be adjusted back to an accurate value. To indicate that a value reported in Clock may be a

repeat of a previously reported value, a flag (safe) is CLEAR after a non-orderly shutdown. After the next

NV update of Clock, safe is SET to indicate that Clock is not a repeat.

Clock is a volatile value that advances at the rate that Time advances. A non-volatile value (NV Clock) is

updated periodically from Clock. NV Clock will always move forward as Clock advances. However,

because of unexpected power loss, it is possible that the same value of Clock will be reported more than

once. The mitigations for this are described in subsequent parts of this clause (36.3).

The accuracy of Clock is approximate. The causes of inaccuracy are

• the TPM’s time reference may not be accurate, and

• the TPM must rely on external software to provide initial or periodic adjustments to Clock settings.

The interpretation of the time-origin (t=0) is out of the scope of this specification, although Coordinated

Universal Time (UTC) is expected to be a common convention.

The value of Clock may be set forward by external software (TPM2_ClockSet()) to compensate for power

interruptions or clock slew, but, except for changes in ownership (TPM2_Clear()), the TPM will not allow

external software to set Clock backward.

The value of Clock may be advanced by TPM2_ClockSet() using either platform or owner authorization.

NOTE The value of Clock may not be advanced beyond FF FF 00 00 00 00 00 0016. This restriction
prevents any possibility of Clock rolling over during its lifetime and simplifies use of Clock in
policies.

Trusted Platform Module Library Part 1: Architecture

Page 210 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The TPM may be driven by an imprecise internal or external frequency source. To compensate, the TPM

allows external software with a more reliable time source to make limited (+/-15%) adjustments to the rate

of advancement of Clock.

 Clock Implementation

The technology used for non-volatile storage may make the update rate for NV Clock an endurance

issue. To mitigate this, the interval between updates of NV Clock from Clock are allowed to be as long as

once per 222 milliseconds.

NOTE If NV Clock is implemented in a technology that allows millisecond updates and has no endurance
issues, then Clock and NV Clock may be the same.

Since NV Clock may be updated at a low rate, a power event may cause the value in Clock to appear to

go backward. For example, assume that the update interval for NV Clock is the maximum allowed value

(222 milliseconds or approximately 70 minutes). Power may be removed from the TPM and Time just

before an update of NV Clock. Then, when power is restored, Clock will be restored from NV Clock and

Clock may have a value that is more than an hour older than the last reported value of Clock. This

illustrates that the values of Clock reported by the TPM for the first hour of operation may have a lower

value than values returned before the power outage.

The Safe flag in the TPMS_TIME_INFO structure is used to indicate if the reported value of Clock is

guaranteed not to be a repeat of a previously reported value. The Safe flag is described in more detail in

the following clause.

 Orderly Shutdown of Clock

In order to reduce the amount of time that must pass before Safe is SET, the TPM supports an orderly

shutdown. TPM2_Shutdown() is used to indicate to the TPM that software anticipates the loss of TPM

power and that the appropriate state should be preserved. When the TPM receives TPM2_Shutdown(), it

will copy all of the bits of Clock to NV Clock. After an orderly shutdown, the TPM will SET a non-volatile

flag to indicate that an orderly shutdown has occurred.

NOTE 1 To allow the NV Clock to only have to record the upper bits of Clock, an alternate implementation is
to keep Clock in memory that has a copy saved on an orderly shutdown and to restore Clock from
that memory on the next power up.

After an orderly shutdown, Clock continues to count and NV Clock will be updated at the normal rate.

Any time a command is executed that uses the value of Clock, the flag indicating orderly shutdown will be

CLEAR even if this command occurs subsequent to TPM2_Shutdown(). This flag may be SET when NV

Clock is updated from Clock.

NOTE 2 It is possible for the TPM to perform multiple shutdowns before TPM power is actually lost.

If Safe is not SET when TPM2_Shutdown() is received, then NV Clock must not be set from Clock and

Safe must not be SET on the subsequent startup.

It is permitted for the low-order 10 bits of Clock to come from Time and for NV Clock not to implement

those bits. That is, NV Clock does not maintain resolution to better than 210 milliseconds. If an

implementation uses this option, then Safe will be CLEAR at least for the first 210 milliseconds of TPM

operation.

Clock remains safe as long as Time is powered. That is, if there is a non-Orderly shutdown and the TPM

is powered down but Time is powered, then Clock will be updated the next time the TPM starts. Since

time is not lost, Clock will not appear to go backwards and Safe can be SET. During the time that the

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 211

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

TPM is powered down it is not necessary for Time to advance, it simply needs not to be set to a lower

time value.

 Clock Initialization at TPM2_Startup()

On any TPM2_Startup() or _TPM_Init (vendor's choice), Clock is loaded from NV Clock and Clock begins

incrementing at a one millisecond rate. NV Clock is then updated, no less frequently than the update

interval. It is anticipated that the first update of NV Clock will occur when some number of low-order bits of

the volatile Clock become zero, indicating the passage of the update interval. For example, assuming that

the NV Clock update interval is 212 (approximately every 4 seconds), the TPM may perform an update of

NV Clock whenever the low-order 12 bits of volatile Clock are zero.

NOTE 1 If the TPM had an orderly shutdown, the low-order bits of the NV Clock will likely not be zero, so the
first update of NV Clock after the _TPM_Init will occur in less than the normal update interval.

NOTE 2 If the TPM received TPM2_Shutdown() and a subsequent command that used Clock, then the NV
value of Clock will likely be non-zero, but Safe will be CLEAR.

 Setting Clock

The value in the volatile Clock may be set forward using TPM2_ClockSet(). The newTime parameter of

TPM2_ClockSet() is required to have a greater value than the volatile Clock. So that policies that rely on

Clock do not have to contend with the possibility of the value of Clock wrapping, newTime may not be

greater than FF FF 00 00 00 00 00 0016.

If TPM2_ClockSet() causes the volatile and non-volatile versions of Clock to differ by more than the

implementation-dependent update interval, then NV Clock will be updated before TPM2_ClockSet()

returns.

NOTE 1 It is not necessary that all the bits of NV Clock be updated. Only the bits of NV Clock that are
updated in the normal update process need to be changed.

EXAMPLE Assume the update of NV Clock occurs every 212 milliseconds (00 00 10 0016), that the low-order 32
bits of NV Clock are 00 00 00 0016 and Clock are 00 00 0F 0016, and that a newTime advances Clock
to 00 00 11 0016. Since this makes the difference between Clock and NV Clock more than the update
interval (212), NV Clock is updated to 00 00 11 0016.

The expected management for Clock is for a coarse (large) update to be made after TPM2_Startup() in

order to recover the time lost when the TPM was not powered. After that single large change, Clock is

expected to be updated with relatively small values to keep it synchronized with real time. If software

manages Clock in this manner, TPM2_ClockSet() will not have to be throttled in order to avoid NV wear-

out.

NOTE 2 System software may purposely cause the rate of Clock advance to be slower than real time and just
make minor adjustments when an attestation of some sort is required. If managed in this way,
TPM2_ClockSet() may be executed many times between update intervals. Because update of the NV
portion of Clock is not allowed unless the difference between the two versions is at least as large as
the update interval, TPM2_ClockSet() will not need throttling to avoid wear -out.

NOTE 3 The specification could have been written so that TPM2_ClockSet() would never invoke NV
throttling. That is, the value for newTime could have been set such that the rate of NV Clock update
would be at an acceptable rate or TPM2_ClockSet() would fail. This logic is complex, and under
normal circumstances, redundant. As a consequence, the specification does not place restrictions
on the values of newTime other than those listed above. The fact that TPM2_ClockSet() requires
Owner Authorization or Platform Authorization should provide some level of protection against an
attacker using TPM2_ClockSet() for a wear-out attack on the TPM. TPMs may implement wear-
protection if extraordinary rates of update are observed.

Trusted Platform Module Library Part 1: Architecture

Page 212 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Clock Periodicity

The TPM clock may be driven by an internal or external frequency source or be derived from a time

source supplied by its operating environment. TPM profiles shall specify the time source to be used and

the required accuracy.

External software may make limited adjustments to the rate of advance of Clock to provide a better

approximation to real time.

This specification requires that the nominal rate of advance of Clock when powered is within 15% of the

rate of UTC. If the external clock is not reliable, the TPM must provide its own clock with the necessary

accuracy. External software may indicate that Clock is not advancing at the rate of UTC and that the rate

needs to be increased or decreased. The command to adjust the clock rate is TPM2_ClockRateAdjust().

The newRate parameter of this command allows fine or coarse upward or downward adjustments to the

current counting rate. This specification does not define coarse or fine adjustment percentages, and

software that manages the TPM must infer this from observed behavior.

The range of adjustment of the rate is dependent on the design of the TPM. It is required that the

variation in the rate be large enough that it will allow software to adjust the rate of Clock advance to be

the same as UTC. The TPM should not allow rate adjustments that are larger than the design tolerance of

the TPM.

EXAMPLE 1 A TPM is designed to have a nominal internal oscillator frequency of 10 MHz wi th a tolerance of +/-
15% and a presettable counter that is used to count the oscillator clocks and generate an output
every second that is used to advance Clock. To cover the tolerance of the oscillator, the preset for
the counter would have to be between 8,500,000 and 11,500,000.

EXAMPLE 2 A TPM is designed as above but with the additional ability to accept an outside frequency reference
as long as that reference is at least +/-15%. If the external source is more accurate than +/ -15%,
then the TPM may still allow an adjustment over the 8,500,000 to 11,500,000 range.

NOTE 1 In the worst case, an attacker who knows either the Platform Authorization or Owner Authorization
value may be able to make the TPM run 32.5% (1.152) fast or slow. However, an attacker who knows
the Platform Authorization or Owner Authorization could also set Clock arbitrarily far into the future.

An error is returned if external software tries to adjust the clock rate outside specified bounds.

The TPM may store adjustments to the nominal clock rate in volatile memory. If it does, then adjustment

should only be stored on an orderly shutdown and not during the actions of TPM2_ClockRateAdjust().

That is, the adjustment value should be in volatile memory and only saved to nonvolatile memory on an

orderly shutdown.

NOTE 2 This constraint on TPM2_ClockRateAdjust() is so that software may make changes to the rate at
arbitrarily high rates without causing an NV event that might require throttling.

36.4 resetCount

The resetCount is a non-volatile, 32-bit counter that is incremented on a successful TPM Reset. It may be

read using TPM2_ReadClock() and be used in an authorization policy (TPM2_PolicyCounterTimer()).

Additionally, the contents of the resetCount are included in the attestation data for any of the attestation

commands.

NOTE 1 Depending on the hierarchy of the signing key, the value of resetCount may be obfuscated so that a
verifier can tell that the counter has changed but cannot know the absolute value of the counter.

The purposes of resetCount are to indicate when the static trust state of the platform may have changed

and to indicate a possible discontinuity in Clock.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 213

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

EXAMPLE Without the resetCount, the sequence - (1) attest to trusted values (2) transition to an untrusted state
(3) perform a transaction (4) TPM Reset (5) attest to trusted value - would hide the fact that the
transaction may have occurred during an untrusted state.

NOTE 2 Since the volatile Clock is reloaded from the NV Clock on each _TPM_Init, the volatile Clock will
lose some time in nearly all circumstances.

resetCount is incremented whenever the TPM starts up and all previous state is lost (i.e., on a TPM

Reset). resetCount is set to zero in TPM2_Clear().

36.5 restartCount

In addition to TPM Reset, other events may cause a discontinuity in TPM-recorded time or in the Root of

Trust for Reporting (RTR). A suspend-resume cycle will cause a time discontinuity. _TPM_Hash_Start

can cause an RTR discontinuity in the dynamic Root of Trust for Measurement (D-RTM) PCR. The

restartCount is used to provide an indication of these discontinuities.

The restartCount is a non-volatile, 32-bit counter that increments when the TPM executes TPM Resume,

TPM Restart, or _TPM_Hash_Start. Since resetCount increments on each TPM Reset, the combination of

resetCount and restartCount accounts for the cases when a discontinuity may occur, allowing TPM Time

to fall behind real time.

NOTE When software sets Clock forward, that is a positive time discontinuity under control of software.
The negative discontinuities of Clock are due to hardware actions that may be outside of the control
of software.

The combination of resetCount and restartCount also accounts for the discontinuities of the RTR. A

change in resetCount indicates a discontinuity in the static RTR, and a change in restartCount indicates a

change in the dynamic RTR.

restartCount is reset to 0 on TPM Reset – when resetCount is incremented. This does not cause a loss of

information about the dynamic RTR because a change to resetCount also implies a change to the

dynamic RTR.

36.6 Note on the Accuracy and Reliability of Clock

Clock is designed to allow a managed environment, such as enterprise, to maintain a small deviation

between Clock and real time. If the platform is not managed, if the platform falls into the hands of an

adversary, or if the platform is controlled by malware, then accuracy of Clock is diminished. This note

addresses considerations that influence the applicability of Clock for time-stamping and for time-limited

objects.

This analysis assumes that the TPM is not physically attacked, but that adversaries may manipulate

external software and local clocks like the CMOS clock on PC platforms.

It is assumed that, under normal operation, external software adjusts Clock at platform startup and

subsequently makes occasional additional rate and forwarding adjustments to ensure that Clock remains

within acceptable tolerances. Enterprise management servers or web services may occasionally request

time-stamped nonces to check that Clock meets network policy.

If Clock is used to time-stamp event log entries, then server software should ensure that Clock is accurate

(as described above), and client software may occasionally record TPM Time values counter-signed by

external authoritative time-stamping services to provide fiduciary time markers. These services may

include the Clock and Time values as well as the initialization counters (resetCount and restartCount).

The minimal security guarantees provided by the TPM in this case are

Trusted Platform Module Library Part 1: Architecture

Page 214 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• proper ordering of events logged at times greater than 1 millisecond apart (apart from when
associated with discontinuities in the resetCount and restartCount), and

• that time stamps can never be forged to indicate a time in the past. If the value of Clock could be
“stale,” Safe will indicate as much. If Clock has occasionally been reported to other authorities or
has been counter-signed, then the accuracy of the other time stamps can be interpolated more
accurately.

If Clock is used to lifetime-limit objects, then when the platform is properly managed, objects will become

inaccessible with temporal accuracy related to the precision of clock management and the update interval

of NV Clock. If the lifetime has the granularity of NV Clock update, then once it becomes inaccessible, it

cannot be recovered because, at that granularity, Clock will not move backward. If the granularity of the

lifetime needs to be shorter than the update interval of Clock, then the Safe flag can be checked to see if

the value of Clock may be “stale” or not.

If the platform falls into adversarial hands, the attacker will never be able to recover already revoked

objects. However, for objects with lifetimes in the future, an adversary may effectively stop the passage of

time so that objects never expire.

EXAMPLE To make TPM Time “stop,” the platform should only be turned on briefly to access the time -limited
object and then turned off in a way that prevents an orderly shutdown of the TPM. If the TPM is left
on for less than the update interval and the platform does not have an orderly shutdown, Clock will
continue to repeat values within the range of an update interval. In a managed environment, a
platform with a Clock that has a value that is substantially different from real time will likely be
denied further network services. For a system in an unmanaged environment, a more complex policy
using resetCount and Time may be used to limit access to objects even if time does not advance (for
example, the policy may allow access for 20 minutes or 2 reboots).

When the owner of the platform changes (new SPS generated) Clock is reset to zero. Using Clock to do

time stamping with a non-duplicable key does not constitute a vulnerability because the signing key also

becomes inaccessible when the owner changes, so no new events can be created. If the time-stamping

key is duplicable, then a more detailed security analysis is needed — for instance, examination of the

Qualified Name in the signing structure.

If Clock is used in other policy settings, similar considerations apply. If an object is destroyed when the

owner is changed, then Clock reset is benign. However, if an object survives an owner change (such as,

an NV Index created by the platform), then use of Clock in its access policy may not be appropriate.

36.7 Privacy Aspects of Clock

The attestation structures return several values that, when taken together, may be sufficiently unique to

identity a specific platform. For example, the difference between Clock and Time is, during the interval of

a boot, likely to be somewhat unique for a platform. When combined with resetCount and restartCount,

the values can become very indicative of a specific platform. If these values allow signatures from two

keys to be correlated, then those keys remain correlated as long as they are in use. The TPM uses

authorizations and obfuscation values to prevent this type of unwanted correlation.

All attestations contain a TPMS_CLOCK_INFO structure. That structure contains Clock, resetCount,

restartCount, and Safe. The attestation structure also contains a 64-bit value that is indicative of the

firmware version number. When these values are going to be signed by a key that is not in the Platform or

Endorsement hierarchy, resetCount, restartCount, and firmware version number have a key-specific value

added to them before they are put into the attestation structure. The addition allows the determination of

change in values but prevents disclosure of the exact value.

Each Attestation Key has a different 128-bit obfuscation value that is constant for the lifetime of the key. It

is computed by:

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 215

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

obfuscation ≔ KDFa (signHandle→nameAlg, shProof, “OBFUSCATE”,
signHandle→QN, 0, 128) (56)

Trusted Platform Module Library Part 1: Architecture

Page 216 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 NV Memory

37.1 Introduction

Each TPM is required to have some non-volatile memory. This memory is used to retain values across

power events. The NV memory is used to hold:

• NV Index values,

• objects made persistent by TPM2_EvictControl,

• state saved by TPM2_Shutdown(), and

• Persistent NV data.

37.2 NV Indices

 Definition

An NV Index is space that is defined by a user of the TPM. The Index is identified by a unique handle

value. An NV Index handle has an MSO of TPM_HT_NV_INDEX.

The NV Index structure has:

• An identifying handle – this handle is assigned by the caller when the Index is defined and is used
to reference the Index. The handle associated with an Index has an MSO of
TPM_HT_NV_INDEX.

• A nameAlg – this parameter indicates the hash algorithm used in the computation of the Name of
the Index (see clause 16).

• An authorization policy – this parameter is optional and is the digest of the policy for the NV Index.
For the policy to apply to an operation, the corresponding TPMA_NV_POLICY_READ,
TPMA_NV_POLICY_WRITE, or TPMA_NV_POLICY_DELETE attribute needs to be SET.
Different policies for read, write, and delete can be achieved using policy OR terms and
TPM2_PolicyCommandCode().

• A set of NV Index attributes – this parameter determines the nature of the Index and who may
manipulate or read the Index.

• An authorization value that is no larger than the size of the digest produced by the nameAlg of
the NV Index.

• A value indicating the size of the Index data – this parameter indicates the number of octets that
are required to hold the NV data. For some Index types, the size is fixed.

• The NV Index data that may be modified according to the type of the NV Index.

All the parts of the NV Index structure, except for the authValue and Index data, constitute the public

portion of the Index. They are hashed using the nameAlg to produce the Name of the Index.

The public area of the Index may be read using TPM2_NV_ReadPublic().

NOTE TPM2_NV_ReadPublic() also returns the Name of the NV Index.

An NV Index can be designated as a hybrid Index. A hybrid Index is intended for applications where

frequent updates are expected. High frequency updates are generally not compatible with the technology

currently used for nonvolatile storage on a TPM. A hybrid Index maintains a volatile (RAM) and a non-

volatile copy of its Index data. A write to an ordinary Index is immediately written to NV memory but a

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 217

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

write to a hybrid Index may only update the copy of the Index data in RAM. The non-volatile copy of a

hybrid NV Index is updated on TPM2_Shutdown().

If an NV Index has TPMA_NV_ORDERY SET, then it is a hybrid Index.

NOTE 1 The user of a hybrid NV Index must understand that data may be lost if the TPM does not shut down
in an orderly fashion so that the volatile data can be written to NV memory.

Whether or not NV Index is a hybrid, when an NV Index is defined (TPM2_NV_DefineSpace()), the

persistent values of the NV Index are written to NV if the command completes successfully.

Any NV Index type can be defined as a hybrid. The conditions under which the write to NV memory occur

vary and are described below.

NOTE 2 An implementation is not required to support an arbitrary number of hybrid indices and is not
required to support any ordinary hybrid Index wi th a size of more than eight octets.

 NV Index Allocation

An NV Index is allocated with TPM2_NV_DefineSpace(). Either Platform Authorization or Owner

Authorization is required in order to allocate an Index. The caller indicates the NV Index to assign to the

NV location, the access controls for the Index, and the type and or size of the data buffer that should be

reserved for writing. While the allocation process does write the meta-data for the Index to NV, it does not

write to the data area of the Index data and a read of the NV location before it is written will return an

error (TPM_RC_NV_UNINITIALIZED).

When an NV Index is defined (TPM2_NV_DefineSpace), its TPMA_NV_WRITTEN attribute will be

CLEAR. Until the Index is written by a party that can satisfy the write policy, the Index is defined but has

no data, and TPM2_PolicyNV() and TPM2_NV_Read() will fail.

TPMA_NV_WRITTEN is SET when an authorized party first writes the Index. This permits a relying party

to know that the value in the Index was written by an authorized party. It is not simply a default value that

was present when the Index was defined (or deleted and redefined to attempt a roll back.)

A replying party can read the Index attributes and policy, which are public, to determine the authorized

party.

NOTE The meta-data of an NV Index is the data relating to the NV Index description (Index number, policy,
attributes, data size, and authValue) along with any additional information that the TPM needs to
manage the NV Index memory.

Different types of NV Index may be supported.

• Ordinary – an Index with an NV Index type of TPM_NT_ORDINARY contains data that is opaque to
the TPM that is modified using TPM2_NV_Write().

• Counter – an Index with an NV Index type of TPM_NT_COUNTER contains a 64-bit counter that is
modified using TPM2_NV_Increment().

• Bit field – an Index with an NV Index type of TPM_NT_BITS contains 64 bits that are initialized to 0
and are modified using TPM2_NV_SetBits().

• Extend – an Index with an NV Index type of TPM_NT_EXTEND contains a value that has behavior
similar to a PCR and is modified using TPM2_NV_Extend().

• PIN Fail - an Index with an NV Index type of TPM_NT_PIN_FAIL that contains a
TPMS_NV_PIN_COUNTER_PARAMETERS structure that is modified using TPM2_NV_Write() or by
using the authValue of the Index. pinCount is reset when an authorization attempt using authValue
succeeds. pinCount is incremented after an authorization attempt using authValue fails. pinCount

Trusted Platform Module Library Part 1: Architecture

Page 218 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

cannot increment beyond pinLimit because authValue authorization is locked out if pinCount >=
pinLimit. A Pin Fail Index can be modified with TPM2_NV_Write.

• PIN Pass - an Index with an NV Index type of TPM_NT_PIN_PASS that contains a
TPMS_NV_PIN_COUNTER_PARAMETERS structure that is modified using TPM2_NV_Write() or by
using the authValue of the Index. pinCount is incremented after an authorization attempt using
authValue succeeds. pinCount cannot increment beyond pinLimit because authValue authorization is
locked out if pinCount >= pinLimit. A Pin Pass Index can be modified with TPM2_NV_Write.

TPM2_NV_DefineSpace() can fail if an Index with the requested handle already exists or if there is

insufficient NV memory for the allocation. Creation of a hybrid Index will fail if there is insufficient RAM

available for the allocation. The command will fail if an Index type is not supported.

EXAMPLE If the TPM does not implement TPM2_NV_Extend(), then the TPM will not allow creation of an NV
Index that has the TPMA_NV_EXTEND attribute.

If the Index to be created has its TPMA_NV_POLICY_DELETE attribute SET, then platform authorization

is required for allocation. This attribute is only allowed to be selected if

TPM2_NV_UndefineSpaceSpecial() is implemented on the TPM.

NOTE This attribute indicates that a policy is required to delete the Index. It permits creation of an Index
that can never be deleted, for example, by specifying an Empty Policy. Requiring platform
authorization protects against the current TPM owner creating such an Index.

 NV Index Deletion

An NV Index can be removed using either TPM2_NV_UndefineSpace() or

TPM2_NV_UndefineSpaceSpecial().

If the TPMA_NV_POLICY_DELETE attribute is SET, then the Index can only be deleted if ADMIN role

authorization is provided. ADMIN role authorization is provided by a policy session with the

commandCode of the policy set to TPM2_NV_UndefineSpaceSpecial().

TPM2_NV_UndefineSpace is used to delete other Indices from the NV. The authorization given for

deleting the Index is required to be the same as the authorization given to allocate the Index.

TPM2_Clear() will remove any NV Index that used Owner Authorization to define the Index.

TPM2_Clear() uses either TPM_RH_LOCKOUT or TPM_RH_PLATFORM.

TPM2_ChangePPS() does not cause any NV Index to be removed.

NOTE To comply with FIPS-140, the data contents and authorization value must be zeroized when the NV
Index is deleted.

 High-Endurance (Hybrid) Indices

37.2.4.1 Description

Some applications need the ability to make frequent updates to non-volatile values such as monotonic

counters. A high update rate is generally not compatible with the technology currently used for non-

volatile storage on a TPM. To allow the TPM to support high-update rates while protecting the endurance

of the NV memory, a hybrid Index type is defined.

When an NV Index is defined with the TPMA_NV_ORDERLY attribute SET, the TPM will allocate the

required NV memory as well as space in TPM RAM for the data value. During normal operation, updates

to the Index will modify the RAM copy of the Index data with updates to the NV on Shutdown() or

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 219

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

whenever the RAM copy of a counter is divisible by a set modulus. In some cases, the data write may

never occur.

NOTE The value of the modulus is implementation specific and can be accessed using
TPM2_GetCapability(capability == TPM_CAP_TPM_PROPERTY, property ==
TPM_PT_ORDERLY_COUNT). The returned value is the modulus – 1. This value is referred to as
MAX_ORDERLY_COUNT.

If the TPMA_NV_ORDERLY attribute of an Index is SET, the TPM will perform special processing on the

Index at TPM2_Startup(). The processing is dependent on the type of the Index.

37.2.4.2 Hybrid Indices Other than Counter Indices

For hybrid Indices that are not Counters, the NV Index data in volatile memory is copied to non-volatile

memory on a Shutdown(STATE), The data need not be copied to non-volatile memory on

Shutdown(CLEAR).

 On TPM Resume, the non-volatile copy of the Index data is copied into the volatile version of the NV

Index data.

 On TPM Reset, the TPMA_NV_WRITTEN attribute will be initialized to CLEAR. On a subsequent

update of the Index, it will be initialized before it is updated.

 On TPM Restart, if TPMA_NV_CLEAR_STCLEAR is SET, the NV Index is initialized as in b) above. If

TPMA_NV_CLEAR_STCLEAR is CLEAR, then the NV Index is initialized as in a) above.

NOTE TPMA_NV_CLEAR_STCLEAR may not be SET if the NV Index type is TPMA_NV_COUNTER.
Counters are either restored (on an orderly startup) or set to a higher value (on a non-orderly
startup).

37.2.4.3 Counter Hybrid Indices

The hybrid counter Index is designed so that it will be monotonically increasing and not miss an increment

command regardless of the type of shutdown or startup.

For a Counter NV Index with the TPMA_NV_ORDERLY attribute, Index data in non-volatile memory is

written to NV on any Shutdown().

NOTE 1 For a Counter (or any other Index) that has TPMA_NV_ORDERLY CLEAR, non-volatile memory is
written on any update of the NV Index.

On any orderly startup of the TPM (TPM2_Startup() following an orderly shutdown), the NV value of a

hybrid counter Index will be copied to the RAM version. The count will be able to continue without any

discontinuity.

On a non-orderly startup, the value of the counter in NV is adjusted before it is copied to RAM. A counter

is adjusted by logical OR of the value of MAX_ORDERLY_COUNT to the NV value. This sets the RAM

version of the counter to the maximum value it could have had before being updated due to the modulus

test. This ensures that the RAM counter value is no less than any previously used counter value.

EXAMPLE Assume that MAX_ORDERLY_COUNT contains 0F FF16 and that the TPM lost power without an
orderly shutdown. On a startup, if an orderly counter is found to have a value of
00 00 00 00 00 01 73 A116, then the RAM version is updated to 00 00 00 00 00 01 7F FF16.

NOTE 2 When the RAM version of the counter is set this way, it is not necessary to immediately update the
counter to NV. If the counter is incremented, then it will be automatically saved to NV when the low
bits become zero.

Trusted Platform Module Library Part 1: Architecture

Page 220 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 3 If the RAM counter were initialized so that the low bits were zero and a subsequent un-orderly
shutdown occurred, the counter would have to be advanced again, whether it had been incremented
or not. By setting the counter to the maximum value before NV update, there is no need to advance
the count on a subsequent unorderly shutdown unless the counter was used.

 Reading an NV Index

Read access to an NV Index is provided with TPM2_NV_Read(), TPM2_NV_Certify(), and

TPM2_PolicyNV(). For all of these commands, read authorization is required. The attributes of the Index

determine what authorizations are allowed. TPMA_NV_PPREAD allows the Index to be read using

Platform Authorization; TPMA_NV_OWNERREAD allows the Index to be read using Owner Authorization;

TPMA_NV_AUTHREAD allows the Index to be read using the authValue of the Index; and

TPMA_NV_POLICYREAD allows the Index to be read if the authPolicy of the Index is satisfied.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD or

TPMA_NV_POLICYREAD needs to be SET or the TPM will not allocate the Index.

An access control (TPMA_NV_READ_STCLEAR) allows reading of the Index to be temporarily blocked.

When this attribute is SET, TPM2_NV_ReadLock() may be used to temporarily disable read access to the

Index. When the Index has been locked for read, the TPMA_NV_READLOCKED attribute of the Index will

be SET. TPMA_NV_READLOCKED will be CLEAR on the next TPM Reset or TPM Restart. If the

TPMA_NV_READLOCKED attribute is SET when the Index is read, the TPM returns

TPM_RC_NV_LOCKED.

The authPolicy of the NV Index may be constructed such that it only applies for reading or for writing. It

may be constructed to allow general reading and limited writing or general writing and limited reading. If

reading or writing of the Index is to be restricted based on PCR values, then read authorization needs to

use authPolicy.

 Updating an Index

37.2.6.1 Introduction

The command used to update an Index is determined by the NV Index type. TPM2_NV_Write() is used to

modify an Ordinary Index or a PIN Index, TPM2_NV_Increment() is used to modify a Counter Index,

TPM2_NV_SetBits() is used to modify a Bit Field Index, and TPM2_NV_Extend() is used to modify an

Extend Index. For all of these commands, write authorization is required.

The attributes of the Index determine what authorizations are allowed. TPMA_NV_PPWRITE allows the

Index to be modified using Platform Authorization; TPMA_NV_OWNERWRITE allows the Index to be

modified using Owner Authorization; TPMA_NV_AUTHWRITE allows the Index to be modified using the

authValue of the Index; and TPMA_NV_POLICYWRITE allows the Index to be modified if the authPolicy

of the Index is satisfied.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE or

TPMA_NV_POLICYWRITE needs to be SET or the TPM will not allocate the Index. For a PIN Index,

TPMA_NV_AUTHWRITE may not be SET and at least one of the other three write methods is required to

be selected.

NOTE 1 A method other than TPMA_NV_AUTHWRITE is required for a PIN Index because the authValue of
a PIN Index is not accessible until the Index is written.

If the access control attribute TPMA_NV_WRITEDEFINE is SET, TPM2_NV_WriteLock() or

TPM2_NV_GlobalWriteLock() may be used to permanently disable modify access to the Index. When the

Index has been locked for modify, the TPMA_NV_WRITELOCKED attribute of the Index will be SET. This

attribute will remain SET until the Index is deleted (TPM2_NV_UndefineSpace()).

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 221

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If TPMA_NV_WRITEDEFINE is CLEAR, the TPMA_NV_WRITELOCKED attribute can be SET using

TPM2_NV_WriteLock() if TPMA_NV_WRITE_STCLEAR is SET or TPM2_NV_GlobalWriteLock() if

TPMA_NV_GLOBALLOCK is SET. In this case, TPMA_NV_WRITELOCKED will be CLEAR on the next

TPM Reset or TPM Restart.

NOTE If TPMA_NV_WRITELOCKED is SET, but TPMA_NV_WRITTEN is CLEAR, then
TPMA_NV_WRITELOCKED is CLEAR by TPM Reset or TPM Restar t. This is true even if the
TPMA_NV_WRITEDEFINE attribute is set. It prevents an NV Index from being defined that can
never be written and permits a use case where an Index is defined, but the user wants to prohibit
writes until after a reboot.

If the TPMA_NV_WRITELOCKED attribute is SET when an attempt is made to modify the Index, the TPM

returns TPM_RC_NV_LOCKED.

For a PIN Fail Index, the TPM will return TPM_RC_NC_ATTRIBUTES if TPMA_NV_NO_DA is CLEAR.

37.2.6.2 NV Ordinary Index Update

TPM2_NV_Write() is used to modify the contents of an ordinary Index. The modification may be to the

entire Index or, if the Index attributes allow (TPMA_NV_WRITE_ALL CLEAR), the size of the data to write

can be as small as zero octets.

When a partial write is allowed, the offset parameter of TPM2_NV_Write() may be non-zero or the size of

the data parameter may be less than the size of the Index. The TPM checks the TPMA_NV_WRITTEN

attribute. If it is CLEAR, then the TPM will initialize the remainder of the Index to either all zero or all one.

Alternatively, the TPM can initialize the entire Index at the time the Index is defined.

If the sum of the size of the data parameter and the offset parameter in TPM2_NV_Write() is greater than

the size of the Index, then the TPM will not perform the write and will return an error.

On any TPM2_NV_Write() (including a size of zero), if the modification is successful, then the

TPMA_NV_WRITTEN attribute of the Index will be SET. Any octets not initialized by the first write will

have a value of all zero or all one.

EXAMPLE If the Index is defined to contain 2 octets, and the first write of the Index is a single octet of 55 16, to
offset 0, then the next read of the full Index will return 55 0016.

If the Ordinary Index has the TPMA_NV_ORDERLY attribute, then only the RAM version of the Index is

written. The data is preserved on a Shutdown(STATE).

37.2.6.3 NV Counter Index

When an Index has the TPMA_NV_COUNTER attribute, it behaves as a monotonic counter and may only

be modified using TPM2_NV_Increment().

When an NV counter is created, it has no value and the TPMA_NV_WRITTEN attribute will be CLEAR.

On each TPM2_NV_Increment() the TPM checks the TPMA_NV_WRITTEN attribute of the Index. If it is

CLEAR, then the TPM will initialize the 8-octet counter value such that the first increment will set a value

that is greater than any value that a counter Index with the same Name has had over the lifetime of the

TPM. The TPMA_NV_WRITTEN attribute will be SET.

NOTE 1 This check ensures that an Index cannot be deleted and another Index with the same Name defined
with a lower value.

NOTE 2 The reference implementation implements this by tracking and using the largest count of any deleted
NV Counter. An alternative implementation could track the largest count of any NV Counter, deleted
or currently defined.

Trusted Platform Module Library Part 1: Architecture

Page 222 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

After checking TPMA_NV_WRITTEN and performing any required initialization operations, the TPM will

increment the Counter.

NOTE 3 The TPM will need to maintain a largest-count value. It is not necessary to update this value except
when a NV Index is deleted. If the NV Index being deleted has the largest value held by an NV
Index, then this value would be copied to the largest-count value. The value of an NV Counter Index
after the first increment is larger than the largest-count value.

NOTE 4 Since no counter can ever repeat a previous value ever contained in any NV Counter Index, a
counter with a particular Name cannot be rolled back by deleting it and redefining it.

If the TPMA_NV_ORDERLY attribute is CLEAR, the increment will occur on the NV version of the counter

(no RAM version exists). If the TPMA_NV_ORDERLY attribute is SET, the increment will occur on the

RAM version of the counter, and if this causes a rollover, the NV version of the counter is updated.

However, if TPMA_NV_WRITTEN is CLEAR, the NV version of the counter is also written. Once SET,

TPMA_NV_WRITTEN of a counter is never CLEAR.

An Index may be defined with the TPMA_NV_ORDERLY attribute to indicate that the Index is expected to

be modified at a high frequency and that the data is only required to persist when the TPM goes through

an orderly shutdown process. For a counter, it also means that it will be written to NV when the counter

has reached some threshold value. The threshold value for counters (MAX_ORDERLY_COUNT) is

implementation dependent and can be read using TPM2_GetCapability(capability = TPM_CAP_PT,

property = TPM_PT_ORDERLY_COUNT). This property has one of 32 values that can be expressed as

(2N-1) where N is between 1 and 32.

EXAMPLE If MAX_ORDERLY_COUNT is 00 00 0F FF16, then whenever the RAM version of a counter is
incrementing, causing the low-order 12 bits to be zero, the NV version of the counter is updated.

The meaning of this threshold value is that when the counter is incremented such that the counter value

ANDed with MAX_ORDERLY_COUNT is zero, then the NV version of the counter will be updated.

NOTE 5 Another way to express this is to simply say that the NV version of the counter will be updated when
the low order bits of the counter “roll -over”.

The TPM is required to ensure that, when an NV Counter is read, its value is not less than a previously

reported value of the counter. That is, it may not go backward. If the shutdown was orderly, then,

regardless of the type of the NV Counter, the NV value of a counter will not be less than the last reported

value. If the shutdown was not orderly and the NV Counter has the TPMA_NV_ORDERLY attribute, then

a value of the Counter may have been read from the RAM version of the counter but the NV version may

not have been updated. To handle this case, if the TPMA_NV_ORDERLY attribute of an NV Counter is

SET, and the TPM shutdown was not orderly, then, at TPM2_Startup() the TPM will OR the value of

MAX_ORDERLY_COUNT to the contents of the non-volatile counter and set that as the current count in

the RAM version of the counter.

NOTE 6 The TPM must prevent a rollback attack caused by a counter being deleted and then being recreated
with a lower value. To do this, the TPM may keep track of the value of the highest count of a deleted
counter using a phantom counter. When a counter is deleted, the current value of the counte r is
compared to the current phantom counter and other counters. If the value is larger than the phantom
counter and other counters, the phantom counter is updated. When a new NV counter is created, it
starts with the highest value of all the counters, inc luding the phantom counter.

For a Counter with the TPMA_NV_ORDERLY attribute SET, the NV copy of the data will be updated

whenever a specified number of low order bits of the RAM copy become all zeros. That number of low

order bits is TPM implementation-dependent. The setting for a TPM may be found using

TPM2_GetCapability(TPM_CAP_TPM_PROPERTIES, TPM_PT_ORDERLY_COUNT). That capability is

MAX_ORDERLY_COUNT.

The TPMA_NV_CLEAR_STCLEAR attribute has no effect on an NV Counter Index and it may be SET or

CLEAR in the template.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 223

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

37.2.6.4 NV Bit Field Index

When an Index has the TPMA_NV_BITS attribute it may only be modified by TPM2_NV_SetBits().

When an NV Bit Field Index is created, it has no value and the TPMA_NV_WRITTEN attribute will be

CLEAR.

On each TPM2_NV_SetBits(), the TPM will check the TPMA_NV_WRITTEN attribute of the Index. If it is

CLEAR, the TPM will set the 64 bits of the Index to zero. The TPM will then SET the

TPMA_NV_WRITTEN attribute for the Index.

After checking TPMA_NV_WRITTEN and doing any necessary initialization, the TPM will OR the bits

parameter to the Index.

If the TPMA_NV_ORDERLY attribute is not SET, the NV value of the Index is written with the modified

value. If no bits were SET in the bits, the NV Index data will only be updated if TPMA_NV_WRITTEN was

CLEAR when the command execution was started.

If TPMA_NV_ORDERLY is SET, the RAM version of the Bit Field data is updated but it is not written to

NV. The data is only preserved to NV on a Shutdown(STATE), and on TPM Reset, the

TPMA_NV_WRITTEN attribute of the Index will be CLEAR.

37.2.6.5 NV Extend Index

When an Index has the TPMA_NV_EXTEND attribute, it may only be modified by TPM2_NV_Extend().

When an NV Extend Index is created, it has no value and the TPMA_NV_WRITTEN attribute will be

CLEAR.

On each TPM2_NV_Extend(), the TPM will check the TPMA_NV_WRITTEN attribute of the Index. If it is

CLEAR, the TPM will initialize the Index to a Zero Digest that is the size of the digest produced by the

nameAlg of the Index. The TPM will then SET the TPMA_NV_WRITTEN attribute for the Index.

After checking TPMA_NV_WRITTEN and doing any necessary initialization, the TPM will extend the

Index using:

 nvIndex→datanew ≔ HnameAlg (nvIndex→dataold || data.buffer) (57)

where

HnameAlg the hash algorithm indicated in nvIndex→nameAlg

nvIndex→data the value of the data field in the Index

data.buffer the data buffer of the command parameter

If the TPMA_NV_ORDERLY attribute is not SET, the NV value of the Index is written with the modified

value.

If TPMA_NV_ORDERLY is SET, the RAM version of the Index is updated but it is not written to NV. The

data is only preserved on a Shutdown(STATE), and on TPM Reset, the TPMA_NV_WRITTEN attribute of

the Index will be CLEAR..

Trusted Platform Module Library Part 1: Architecture

Page 224 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

37.2.6.6 NV PIN Index

TPM2_NV_Write() is used to modify the contents of a PIN Index. The modification may be to the entire

Index or, if the Index attributes allow (TPMA_NV_WRITE_ALL CLEAR), the size of the data to write can

be as small as zero octets.

When a partial write is allowed, the offset parameter of TPM2_NV_Write() may be non-zero or the size of

the data parameter may be less than the size of the Index. The TPM checks the TPMA_NV_WRITTEN

attribute. If it is CLEAR, then the TPM will initialize the remainder of the Index to either all zero or all one.

Alternatively, the TPM can initialize the entire Index at the time the Index is defined.

If the sum of the size of the data parameter and the offset parameter in TPM2_NV_Write() is greater than

the size of the Index, then the TPM will not perform the write and will return an error.

On any TPM2_NV_Write() (including a size of zero), if the modification is successful, then the

TPMA_NV_WRITTEN attribute of the Index will be SET. Any octets not initialized by the first write will

have a value of zero.

EXAMPLE If the Index is defined to contain 2 octets, and the first write of the Index is a single octet of 55 16, to
offset 0, then the next read of the full Index will return 55 00 16.

If the Index has the TPMA_NV_ORDERLY attribute SET, then only the RAM version of the Index is

written. The data is only preserved to NV on a Shutdown(STATE), and on TPM Reset, the

TPMA_NV_WRITTEN attribute of the Index will be CLEAR.

If the authValue of an PIN Index is used for authorization, then the authorization will fail if the pinCount

field of the Index is not less than the pinLimit field or if the TPMA_NV_WRITTEN attribute of the Index is

CLEAR.

When the authValue of a PIN Index is used for authorization and the authorization succeeds, the

pinCount field is set to zero if the Index is PIN Fail and incremented if the Index is PIN Pass. If the

authorization fails, pinCount is incremented for a PIN Fail Index and left unchanged for a PIN Pass Index.

 NV Index in a Policy

TPM2_PolicyNV() may be used to include the contents of an NV Index in a policy command.

TPM2_PolicyNV() allows various comparisons of the value of the NV data with a reference value.

TPM2_PolicyNV() is an immediate assertion (see 19.7.7.2). If the comparison succeeds, the TPM will

update the policyDigest with the comparison values and the access controls on the referenced Index,

including the authPolicy. Inclusion of the update policy of the Index provides a means of identifying the

update properties of the Index. To make effective use of this command, writing of the Index should be

dependent on authPolicy. If the policy must be met in order to write the Index, then it is possible to ensure

that only the correct entity may recreate the Index. If other write authorizations are allowed, then it is not

possible to know if the Index was written by a known entity.

If an NV Index is used in TPM2_PolicyNV() after it is defined but before it is first written, then the TPM will

return an error.

The nominal use of a PIN Index is to reference the Index in an entity’s policy in TPM2_PolicySecret(). The

TPM2_PolicySecret() will succeed if pinCount is less than pinLimit and the caller is able to provide the

authValue of the Index in the authorization. If the rest of the policy is satisfied, access to the PIN-

protected entity will be allowed.

NOTE 1 A PIN Fail Index provides a form of individual Dictionary Attack defense that is not affected by the
TPM's global Dictionary Attack mechanism. In particular, it can be used to allow the TPM to emulate
the behavior of a smart card.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 225

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 2 A PIN Pass Index allows count-limited use of a TPM object. An example use would be to only allow
access to a decryption key for protected content.

 PIN Index Considerations

37.2.8.1 Restricting the number of uses of an object with PIN Pass

It is possible to limit the number of authValue (PIN) authorizations of a particular key or entity.

A key or object has a limited number of authorizations when its policy has a TPM2_PolicySecret assertion

pointing to a PIN Pass NV Index.

A PIN Pass's pinLimit is the number of correct authorization attempts that are permitted before

authorization via authValue is locked out. If pinCount is less than its pinLimit, pinCount is incremented

immediately by the TPM after authValue authorization succeeds. There is no automatic reset or

decrement method for pinCount. Once pinCount equals pinLimit, an administrator must reduce pinCount

and/or increase pinLimit using TPM2_NV_Write or delete the Index.

37.2.8.2 Localized Dictionary Attack protection with PIN Fail

It is possible to authorize a particular key or object via an authValue (PIN) that has its own individual

Dictionary Attack defense and does not use (and is not affected by) the TPM's global Dictionary Attack

defense mechanism. This may be useful when a TPM is used to emulate a smartcard, for example.

A key or object has localized Dictionary Attack protection if its policy has a TPM2_PolicySecret assertion

pointing to an PIN Fail NV Index.

A PIN Fail's pinLimit is the number of incorrect authorization attempts that are permitted before

authorization via authValue is locked out. If pinCount is less than its pinLimit, pinCount is incremented

immediately by the TPM after authValue authorization fails. pinCount is reset to zero by the TPM

whenever authValue authorization succeeds.

37.2.8.3 PIN Index Attributes

A PIN Index may be read or write locked. If read or write locked, the Index may still be referenced by

TPM2_PolicySecret(). An Index disabled using phEnableNV (if platform created) or shEnable (if owner

created) cannot be used in a policy. If a policy points to an unwritten PIN Pass or PIN Fail Index, the

Index’s authorization check must fail because pinLimit is not written.

NOTE 1 Allowing a PIN Index to be used when write locked allows it to be used as a PIN but prevents writing
of the pinLimit.

TPMA_NV_ORDERLY may be SET or CLEAR, however, if SET the Index will revert to unwritten on TPM

Reset and possibly on TPM Restart (depending on TPMA_NV_CLEAR_STCLEAR). This will cause the

Index to not be usable for PIN authorization until it is reinitialized.

TPM2_PolicyAuthValue() and TPM2_PolicyPassword() cannot be used in the policy that does the initial

write to a PIN Index. This is because these policy commands require that the authValue of the PIN Index

to be used and the authValue of a PIN Index cannot be used until it is first written. Therefore, it may be

desirable that TPMA_NV_POLICYWRITE is SET so that the PIN Index value may be initialized.

If TPMA_NV_POLICYREAD, TPMA_NV_PPREAD, or TPMA_NV_OWNERREAD is SET then the Index

may read using TPM2_NV_Read (with those authorizations) without affecting the contents of the Index. If

TPMA_NV_AUTHREAD is the only method of reading the Index, then the act of reading the Index could

change its pinCount.

Trusted Platform Module Library Part 1: Architecture

Page 226 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 2 Using the NV Index authorization value for the read would consume a PIN Pass Index authorization
or reset the PIN Fail pinCount. In addition, authValue can't be used for authorization once pinCount
>= pinLimit.

NOTE 3 In a PIN Fail Index, it may be desirable that TPMA_NV_AUTHREAD is SET, so pinCount can be
reset by reading the NV Index with valid authValue authorization.

 TPMA_NV_AUTHREAD is SET, so pinCount can be reset by reading the NV Index with valid authValue authorization.

It is recommended that the Index have a policy that includes a PolicySigned assertion, to unambiguously

identify the Index and the entity authorized to initialize the Index.

NOTE 4 This prevents covert attacks where an Index is secretly deleted and replaced.

If the authObject parameter of TPM2_PolicySecret() references a PIN Pass Index, then the command

may succeed, but a NULL ticket will be returned. The reason is that the ticket could allow more accesses

to a count limited object than allowed by the PIN Pass Index.

NOTE 5 Without this restriction, a caller could get a ticket for a count limited object and use the ticket instead
of using the PIN Pass Index. This could, potentially, allow unlimited access to a PIN Pass entity.

If a PIN Pass or PIN Fail Index is referenced as a bind object, the TPM must return TPM_RC_HANDLE.

Otherwise, the sequence in which the TPM processes authorizations would enable a hammering attack

on the Index.

Restrictions on PIN Pass and PIN Fail Indexes are specified in Part 3 TPM2_NV_DefineSpace.

37.3 Owner and Platform Evict Objects

In some applications, it is desirable for an object to be made persistent in the TPM so that it is always

available. An example of when this would be useful is for a Primary Key. Having the Primary Key be

always available avoids the time penalty of re-computing the Primary Key after each TPM Reset.

TPM2_EvictControl() is used to make a loaded object persistent by saving it to the TPM’s NV memory.

This command is also used to remove a persistent object.

To be made persistent, an object needs to have both public and private portions loaded; the object cannot

be in the NULL hierarchy, the object cannot have the stClear attribute SET, and the object cannot be a

descendant of a key with the stClear attribute SET.

The type of the objectHandle parameter of TPM2_EvictControl() determines if the Object is to be made

persistent or to be removed from persistent memory. If objectHandle is a Transient Object, it is made

persistent and, if objectHandle is a persistent object, it is deleted. The Transient Object is not affected.

When making a Transient Object persistent, the persistentHandle parameter of TPM2_EvictControl()

indicates which handle is to be assigned to the persistent version of the object. The TPM will not allow

assignment of a persistent handle if that handle is already assigned to a persistent object.

If objectHandle is a Transient Object in the Platform Hierarchy, Platform Authorization must be provided.

If objectHandle is in the Endorsement or Storage Hierarchy, Owner Authorization is required.

The persistent handle space is divided evenly between the Platform and the Owner. The persistent

handles that may be assigned when Owner Authorization is provided are in the range 81 00 00 0016 to

81 7F FF FF16. Handles in the range 81 80 00 0016 to 81 FF FF FF16 may be assigned when Platform

Authorization is provided. When removing a persistent object, the authorization used to persist the object

is required to remove it.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 227

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

37.4 State Saved by TPM2_Shutdown()

 Background

TPM2_Shutdown() is used for an orderly shutdown of the TPM. When doing an orderly shutdown, the

TPM will save some state to NV memory. In the reference implantation, the state saved is separated into

three groups:

1) NV Orderly Data – data that is saved on any Shutdown and is not reset,

2) NV Clear Data – data that is saved on Shutdown(STATE) and is reset on TPM Restart or TPM Reset

(such as, PCR), and

3) NV Reset Data – data that is saved on Shutdown(STATE) and is reset on TPM Reset (such as

session context tracking information).

 NV Orderly Data

The data in this structure is saved to NV on any Shutdown type and restored on any Startup. It may have

special initialization performed if the Startup is not orderly. In the reference implementation, this data is

collected into a special data structure (ORDERLY_DATA) the contents of which are illustrated in Table

31.

Table 31 — Contents of the ORDERLY_DATA Structure

Parameter Description Changed By:

clock This is the version of Clock that is updated on any
Shutdown and on any rollover of the RAM version of
Clock.

TPM2_Clear(),

TPM2_Startup(),

passage of time

clockSafe used to determine the Safe value reported in the
TPMS_CLOCK_INFO structure. This value is CLEAR
when a Startup is not orderly and once CLEAR, is not
SET until the RAM value of Clock rolls over.

TPM2_Clear(),

TPM2_Startup(),

passage of time

 NV Clear Data

Data in this structure is saved to NV on any Shutdown(STATE) but is set to its default initialization value if

the subsequent Startup is either TPM Reset or TPM Restart. In the reference implementation, data of this

type is collected into a single data structure (STATE_CLEAR_DATA) as illustrated in Table 32.

NOTE The default reset value is applied on either TPM Reset or TPM Restart. These change conditions are
not listed in the “Changed By” column.

Trusted Platform Module Library Part 1: Architecture

Page 228 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 32 — Contents of the STATE_CLEAR_DATA Structure

Parameter Description Changed By

shEnable the enable for the storage hierarchy. The default
initialization value is SET.

TPM2_HierarchyControl()

ehEnable the enable for the endorsement hierarchy. The default
initialization value is SET.

TPM2_HierarchyControl()

phEnableNV the enable for the platform hierarchy NV indices. The
default initialization value is SET.

TPM2_HierarchyControl()

platformAlg the hash algorithm used for platformPolicy. The default
initialization value is TPM_ALG_NULL

TPM2_SetPrimaryPolicy()

platformPolicy the policy used if the authorization session is a policy
session and the authorized handle is
TPM_RH_PLATFORM. The default initialization value is
an Empty Buffer.

TPM2_SetPrimaryPolicy()

platformAuth the authorization value used if the authorization handle
is TPM_RH_PLATFORM and the authorization is
provided by password or an HMAC session. . The
default initialization value is an Empty Buffer.

TPM2_HierarchyChangeAuth()

pcrSave a data structure that holds the PCR that are preserved
across Startup(STATE). The PCR in this structure are
determined by a platform-specific TPM specification. .
The default initialization value for each PCR is
determined by the relevant platform-specific
specification but is normally a Zero Digest for each PCR
in the structure.

TPM2_PCR_Extend(),
TPM2_PCR_Event()

 NV Reset Data

Data in this structure is saved to NV on any Shutdown(STATE) and restored by a subsequent Startup of

any type. In the case of a TPM Reset, the values are set to their specified initialization value. In the

reference implementation, data of this type is collected into a single data structure

(STATE_RESET_DATA) as illustrated in Table 33.

Table 33 — Contents of the STATE_RESET_DATA Structure

Parameter Description Changed By(1)

nullProof proof value used with entities associated with the
TPM_RH_NULL hierarchy (including all session
contexts, sequences, and Temporary Objects);
initialization value is from the RNG

nullSeed seed value used for creating Temporary Objects with
TPM_RH_NULL as a parent; initialization value is
from the RNG

clearCount a value that is incremented each time the TPM
performs a TPM Restart; used to tag contexts for
stClear objects so that they may not be reloaded after
a TPM Restart; initialization value is zero

TPM2_Startup(CLEAR)

objectContextID counter that is incremented each time an object is
context saved; used to ensure that the encryption key
and IV for each saved object is unique; initialization
value is zero

TPM2_ContextSave()

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 229

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Parameter Description Changed By(1)

contextArray an array for keeping the version numbers of the
associated saved session contexts; used to prevent
replay of authorization sessions; each element is
initialized to zero indicating that it is not assigned

TPM2_ContextLoad(),

TPM2_ContextSave(),

TPM2_StartAuthSession()

contextCount the value used to set the version number for each
saved context; initialization value is 0.

TPM2_ContextSave(),

TPM2_StartAuthSession()

commandAuditDigest the current command code audit digest; initialization
value is an Empty Digest.

Any audited command,
TPM2_GetCommandAuditDigest()

restartCount counts the number of TPM Resume, TPM Restart, or
D-RTM events. Initialization value is zero.

TPM2_Startup(),

_TPM_Hash_End

pcrUpdateCounter counts the number of changes to PCR; because this
value is used in policy sessions, it is not reset until
the context protections for saved session contexts are
changed. Initialization value is zero

TPM2_PCR_Extend(),

TPM2_PCR_Event(),

TPM2_PCR_Reset()

commitCounter the number of times TPM2_Commit() is executed;
initialization value is zero.

TPM2_Commit()

commitNonce value used to create the pseudo-random values used
in two-phase signing operations; initialization value is
from the random number generator.

commitArray bit vector used to indicate that only one first phase of
a two phase signing operation has occurred;
initialization value is all bits CLEAR.

sign-phase of two-phase sign,
TPM2_Commit()

NOTE (1) The default reset value is applied on each TPM Reset. This change condition is not listed in the “Changed By”
column.

37.5 Persistent NV Data

The data in this category is data that is always present in the TPM. This does not mean that the data

cannot be changed, but that there is always a value associated with the location. The data can be

changed by a Protected Capability.

In the reference implementation, the persistent NV data is in the PERSISTENT_DATA structure. It

contents are listed in Table 34. While this table shows the context of the structure in the reference

implementation, it is only illustrative. An implementation may change the contents in order to satisfy the

requirements of the implementation.

Table 34 — Contents of the PERSISTENT_DATA Structure

Parameter Description Changed By

disableClear This value is CLEAR if TPM_RH_OWNER is
allowed for authorization of TPM2_Clear().

TPM2_ClearControl(), TPM2_Clear()

ownerAlg the hash algorithm used for the ownerPolicy TPM2_SetPrimaryPolicy(),
TPM2_Clear()

ownerPolicy the policy used if the authorization session is a
policy session and the authorized handle is
TPM_RH_OWNER

TPM2_SetPrimaryPolicy(),
TPM2_Clear()

endorsementAlg the hash algorithm used for the endorsementPolicy TPM2_SetPrimaryPolicy(),
TPM2_Clear()

endorsementPolicy the policy used if the authorization session is a
policy session and the authorized handle is
TPM_RH_ENDORSEMENT

TPM2_SetPrimaryPolicy(),
TPM2_Clear()

Trusted Platform Module Library Part 1: Architecture

Page 230 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Parameter Description Changed By

ownerAuth the authorization value used if the authorization
handle is TPM_RH_OWNER and the authorization
is provided by password or an HMAC session

TPM2_HierarchyChangeAuth(),
TPM2_Clear()

endorsementAuth the authorization value used if the authorization
handle is TPM_RH_ENDORSEMENT and the
authorization is provided by password or an HMAC
session

TPM2_HierarchyChangeAuth(),
TPM2_Clear()

lockoutAuth the authorization value used if the authorization
handle is TPM_RH_LOCKOUT and the
authorization is provided by password or an HMAC
session

TPM2_HierarchyChangeAuth(),
TPM2_Clear()

lockoutAlg the hash algorithm used for the lockoutPolicy TPM2_SetPrimaryPolicy(),
TPM2_Clear()

lockoutPolicy the policy used if the authorization session is a
policy session and the authorized handle is
TPM_RH_LOCKOUT

TPM2_SetPrimaryPolicy(),
TPM2_Clear()

epSeed the seed value for the Endorsement Hierarchy TPM2_ChangeEPS()

ehProof the proof value for the Endorsement Hierarchy. It is
used to tag tickets and saved object contexts for
objects in the Endorsement Hierarchy.

TPM2_ChangeEPS()

TPM2_Clear()

spSeed the seed value for the Storage Hierarchy TPM2_Clear()

shProof the proof value for the Storage Hierarchy. It is used
to tag tickets and saved object contexts for objects
in the Storage Hierarchy.

TPM2_Clear()

ppSeed the seed value for the Platform Hierarchy TPM2_ChangePPS()

phProof the proof value for the Platform Hierarchy. It is used
to tag tickets and saved object contexts for objects
in the Platform Hierarchy.

TPM2_ChangePPS()

resetCount a counter that increments on each TPM Reset TPM Reset,

TPM2_Clear()

totalResetCount a value that increments on each TPM Reset. This
value is used as resetValue in equation (52) to tag
saved contexts.

TPM Reset

pcrPolicies This structure is used when a platform-specific
specification requires that update of certain PCR
requires policy authorization.

TPM2_PCR_SetAuthPolicy()

pcrAuthValues This structure is used when a platform-specific
specification requires that update of certain PCR
requires HMAC or password authorization

TPM2_PCR_SetAuthValue()

pcrAllocated This structure is used when a platform-specific
specification requires support for
TPM2_PCR_Allocate() to change the algorithms
used for PCR and the population of the PCR in
each bank.

TPM2_PCR_Allocate()

ppList In the reference implementation, this is an array of
bits that is used to indicate the commands that
require assertion of Physical Presence when
TPM_RH_PLATFORM is used for authorization.

TPM2_PP_Commands()

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 231

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Parameter Description Changed By

failedTries count of the number of authorization failures for
objects that are subject to Dictionary Attack
protection. This value can count down if no
authorization failures occur for lockoutRecovery
time.

TPM2_DictionaryAttackLockReset(),
authorization failures,

passage of time (recoveryTime)

maxTries the maximum value for failedTries before the TPM
enters lockout

TPM2_DictionaryAttackParameters()

recoveryTime the time that must pass before failedTries is
decremented

TPM2_DictionaryAttackParameters()

lockoutRecovery the time that must pass after an authorization
failure using TPM_RH_LOCKOUT

TPM2_DictionaryAttackParameters()

lockoutAuthEnabled when CLEAR, TPM_RH_LOCKOUT may not be
used for authorization

TPM_RH_LOCKOUT auth failure,
passage of time (lockoutRecovery)

orderlyState between a TPM2_Shutdown() and _TPM_Init, no
TPM command caused a change to the TPM’s
state to make the state in NV inconsistent with the
state in TPM RAM

many

auditCommands in the reference implementation, a bit array
indicating which commands are audited

TPM2_SetCommandCodeAuditStatus()

auditHashAlg the hash algorithm used for the command audit TPM2_SetCommandCodeAuditStatus()

auditCounter a counter that increments on the first audited
command following a reset of the command audit
digest. The count is only incremented if the
command completes with TPM_RC_SUCCESS.

audited command

algorithmSet this is a vendor-specific value that indicates the
algorithm set that is in use on the TPM. This value
may be used selectively to disable algorithms
implemented in the TPM.

TPM2_SetAlgorithmSet()

firmwareV1 the more significant 32-bits of the vendor-assigned,
firmware revision

TPM2_FieldUpgradeStart(),
TPM2_FieldUpdradeData()

firmwareV2 the less significant 32-bits of the vendor-assigned,
firmware revision

TPM2_FieldUpgradeStart(),
TPM2_FieldUpdradeData()

37.6 NV Rate Limiting

The TPM is allowed to limit the rate at which updates are made to NV memory. An update occurs when

an NV Index is defined or undefined, when an NV Index is modified, and when the persistence of an

object is changed with TPM2_EvictControl(). An NV modification is allowed for other commands in an

implementation dependent way. The rate for limiting the updates is TPM dependent.

When the TPM will prevent execution of a command because it is rate-limiting NV updates, the TPM will

return TPM_RC_NV_RATE. This code is in the group of warning return codes meaning that the command

might succeed if retried later.

NOTE 1 Checking to see if the NV is being rate limited may occur at any part of the command execution.
This means that the TPM may return TPM_RC_NV_RATE before it has validated all of the
parameters of the command. As a consequence, when the command is retried when the TPM is not
rate limiting, it may fail due to incorrect parameters.

Trusted Platform Module Library Part 1: Architecture

Page 232 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

TPM2_GetCapability() with capability = TPM_CAP_PROPERTIES and property =

TPM_PT_NV_WRITE_RECOVERY will provide an estimate of the number of milliseconds before the

TPM will be able to accept a command that will modify the TPM NV.

NOTE 2 After TPM2_Shutdown(), any command is allowed to cause a change of the TPM’s orderly shutdown
state and the TPM may return TPM_RC_NV_RATE in response to commands that are not normally
allowed to make modifications to the TPM NV state.

37.7 NV Other Considerations

 Power Interruption

A TPM is not required to maintain the integrity of the data in an NV Index if a power loss interrupts the

write. After the interruption, the TPM should indicate that the Index no longer exists. The interruption of a

write to one Index is not allowed to affect the integrity of other Indices.

 External NV

37.7.2.1 Introduction

An implementation is allowed to use an external device for storing non-volatile TPM data. This may

include all application defined NV (NV Indices and persistent objects) as well as all TPM state data. When

stored in an external device, the data is required to be encrypted, integrity checked, and rollback

protected using algorithms that have the highest security strength of any algorithm implemented on the

TPM.

The encryption keys used to encrypt the data in the NV shall be protected in a manner which is defined

by the TPM profile which is being implemented. The level and manner of protection for these keys shall

also be specified and shall be at least as strong as the keys themselves. For a chip-based

implementation, the encryption keys used to encrypt the data stored in NV are not allowed to be exposed

outside of the TPM, even if encrypted.

The protection keys used to protect external NV data will be contained in or derived from a persistent

value that does not leave the physical TPM. That persistent value must not be a global secret.

NOTE In many implementations, it is expected that the persistent va lues will be stored in fuses.

37.7.2.2 Access Interruptions

When an external device is used for non-volatile storage, that device may not always be accessible to the

TPM command execution engine. When the memory is not accessible, operations that require update of

NV will return TPM_RC_NV_UNAVAILABLE.

NOTE When updates to NV are being rate limited (but the NV is accessible), the TPM will return
TPM_RC_NV_RATE.

During the time when NV is not available for update, Clock should not advance and Safe should be NO

when accessed.

When NV is not available, the implementation may or may not advance Clock. If Clock is not being

advanced, the TPM will return TPM_RC_NV_UNAVAILABLE for commands that do comparisons to Clock

or adjustments of Clock. These commands are:

• TPM2_PolicySigned() or TPM2_PolicySecret() with a non-zero expiration;

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 233

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• TPM2_PolicyTicket(); and

• TPM2_PolicyCounterTimer() if any part of TPMS_TIME_INFO.clockInfo.clock is used in the
operation.

When NV is not available, the implementation may or may not advance Time. If Time is not being

advanced, then TPM2_PolicyCounterTimer() will return TPM_RC_NV_UNAVAILABLE if any part of

TPMS_TIME_INFO.time is used in the operation.

 PCR in NV

If a TPM implementation places PCR in NV space, it should also use a caching scheme to prevent NV

wearout.

Trusted Platform Module Library Part 1: Architecture

Page 234 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Multi-Tasking

An implementation of the TPM may use cycles of a host processor for execution. The operating system

on the host processor may not be able to operate properly if the TPM uses large blocks of time to

complete execution of a command. In such systems, the TPM may be designed to yield after completion

of a portion of the command so that the command may be resumed later.

When the TPM yields before completion of a command, it may return TPM_RC_YIELDED. This code

indicates that the exact command that the TPM was executing may be resubmitted later. If the next

command to the TPM is not the yielded command, the TPM may lose any state associated with the

command that yielded so that when the yielded command is restarted, it may restart from the beginning.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 235

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Errors and Response Codes

39.1 Error Reporting

When a command fails, the TPM will return a 10-octet response that indicates the response code. No

auxiliary information is provided by an error other than what may be inferred from the context of the error.

39.2 TPM State After an Error

When the TPM returns an error that is related to command execution, the TPM is required to preserve the

TPM state. Except for the possible effect on the dictionary attack logic, it should be as though the

command had not been received.

In some cases, an otherwise asynchronous operation may cause the TPM to create an error. For

example, if the TPM is doing self-test of functions on an as-needed basis, the TPM may return an error

due to failure of the self-test. The TPM should preserve the fact that it has failed the self-test but it should

not preserve any command-specific results.

When a command modifies NV RAM, the action of writing the NV may fail and it may not be recoverable.

If the TPM cannot recover from the NV write failure, then it should disable the NV so that the affected NV

locations cannot be accessed.

39.3 Resource Exhaustion Warnings

 Introduction

The executable specification has been optimized for comprehension and correctness. In particular, the

reference implementation has been designed to minimize the locations in the code where resource

exhaustion can occur, so that recovery from these situations is simplified. This is known not to achieve an

efficient use of limited RAM resources, and other implementations may choose methods that are more

aggressive in their use of memory. These implementations will invariably have error conditions that are

not covered in the normative clauses of the reference implementation. This clause describes the methods

that are recommended for reporting of these errors.

Allocated resources are classified by their persistence relative to a command’s execution. A transient

resource is one that can be moved to or from TPM memory using a context management command

(TPM2_ContextLoad(), TPM2_ContextSave()). These resources may continue to occupy TPM memory

after completion of a command. A temporary resource is used in the processing of a command but is

disposed of before the command completes. The following two clauses describe the expected behavior of

the TPM when it is unable to create either of these resource types.

 Transient Resources

The TPM reference implementation allocates space for a configuration-defined number of transient

resources of the maximum size supported by the configuration parameters. This allocation occurs during

the compilation process of the reference implementation. The maximum size of the objects is determined

by the structure definitions in TPM 2.0 Part 2. The reference implementation presumes that, if a resource

slot is available, then any object that might be stored in that slot will fit.

A practical consequence of this approach is that the only resource allocation failure for a transient

resource occurs when all the dedicated slots of the appropriate type (object, sequence object, or session)

are full. For objects, the number of available slots determines when the resources are all used. For

sessions, there are two slot resources: handles and session contexts.

Trusted Platform Module Library Part 1: Architecture

Page 236 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When the TPM is out of object slots, it returns TPM_RC_OBJECT_MEMORY. When out of session

context slots, it returns TPM_RC_SESSION_MEMORY. When the TPM is out of handle slots for

sessions, the response code is TPM_RC_SESSION_HANDLES.

For a system using dynamic allocation of memory for transient resources, the TPM should return an error

response code that indicates the type of resource that needs to be removed from the TPM for the

command to complete. If removal of either an object or a session from TPM memory would free memory

for the command, then the TPM may return TPM_RC_MEMORY. If removal of a specific resource is

required, the TPM should return a code that indicates the specific resource

(TPM_RC_OBJECT_MEMORY or TPM_RC_SESSION_MEMORY).

 Temporary Resources

The TPM reference implementation is designed so that temporary resources are allocated on the

execution stack. Static analysis of the code allows the maximum size of the stack to be determined so

that resource exhaustion for a temporary resource cannot occur.

This construction vastly simplifies the control flow of the normative command actions, since no additional

memory management code is required. However, other memory management schemes for temporary

resources are allowed. Error handling for these implementations is complex and beyond the scope of this

specification. However, the TPM is required to follow the standard error reporting rules.

• If the TPM returns an error, the state of the TPM is required to be restored to the state that existed
before the command execution began.

NOTE 1 One exception is state that would change even if a command were not executed, such as Clock,
Time, dictionary attack lockout recovery, and related state. Another exception is state deliberately
changed as a result of the error, such as the count of authorization failures and NV PIN Fail index
values.

• The TPM will return TPM_RC_MEMORY if removal of one or more transient resources will allow
the command to complete.

NOTE 2 If the TPM requires the removal of a specific type of resource, then it should return the specific
response code (TPM_RC_SESSION_MEMORY or TPM_RC_OBJECT_MEMORY) rather than the
non-specific TPM_RC_MEMORY response.

• If a session must be flushed before a new session can be created, the TPM will return
TPM_RC_SESSION_HANDLES.

The consequence of these requirements is that the TPM is required to be able to return the memory

allocation to the same state that existed before the command execution began. It is also required that no

change to NV memory be made before all temporary resources required for completion of the command

have been allocated.

39.4 Response Code Details

The response code from the TPM is a 32-bit value but the TPM only uses the low-order 12 bits to

communicate its warnings or errors, leaving the remaining 20 bits for use by software.

The response codes are encoded so that certain errors can be associated with the component in which

the error occurred, and the specific element of the component. In cases where the error cannot be

associated with a specific parameter of the command, the response code will be sufficiently differentiated

to allow determination of the cause of the error.

EXAMPLE 1 If the second handle in the handle area was the wrong type for the command, the TPM would return
TPM_RC_VALUE + TPM_RC_H + TPM_RC_2.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 237

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

EXAMPLE 2 If the TPM can determine that the error was in the handle area but not the handle in error, the TPM
would return TPM_RC_VALUE + TPM_RC_H.

The design of the response codes was constrained so that the response codes returned for commands

defined in this specification would be different from the response codes defined by the previous version of

the specification, TPM 1.2. This constraint leads to a layout that satisfies the requirements but is not

intuitive.

An algorithm for evaluating the response code to determine the nature of the error and the command

handle, session, or parameter value in error is shown in the Figure 27 flow chart.

S R R 0

Bit
1
1

1
0

0 C C C C C C C

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

S V R 1

Bit
1
1

1
0

0 C C C C C C C

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P P P P

Bit
1
1

1
0

1 1 C C C C C C

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Bits 8:7 == 00b

Bit 7 ?

TPM 1.2 Response
Code

Bit 10 ?
Vendor Defined

Code

Bit 11 ?

Error Code in
Bits[06:00]

Warning Code in
Bits[06:00]

Bit 6 ?
Error Code in Bits[05:00]
Parameter Number in Bits[11:08]

0 H H H

Bit
1
1

1
0

1 0 C C C C C C

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Bit 11 ?
Error Code in Bits[05:00]
Handle Number in Bits[10:08]

Note: Values in Bits[06:00] above have different
meanings from the values in Bits[05:00] below
even if the numeric values are the same.

1 S S S

Bit
1
1

1
0

1 0 C C C C C C

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Error Code in Bits[05:00]
Session Number in Bits[10:08]

0

1

0

1

0

1

Y

N

1

1

0

0

Figure 27 — Response Code Evaluation

Trusted Platform Module Library Part 1: Architecture

Page 238 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 General Purpose I/O

A TPM may have one or more I/O pins that inputs or outputs a logic state. TPM2_NV_Read and

TPM2_NV_Write may be used to access the value of GPIO using normal access controls.

A platform-specific specification defines the mapping of NV Indices to individual General Purpose I/O

(GPIO). Whether the TPM reserves any NV storage for the indicated GPIO is platform specific.

This specification does not require the NV Indices associated with GPIO pins to be pre-allocated. When

one of the Indices reserved for GPIO pins is defined, it is automatically associated with the corresponding

GPIO pin.

NOTE 1 The owner and platform space are segregated and it is expected that the GPIO pins will be assigned
to Index values in the Index space reserved for the platform.

NOTE 2 The TCG maintains a registry of reserved NV Index values.

The controls that let the GPIO pin be used either as an input or an output are vendor or platform specific.

For outputs, if the Index has the TPMA_NV_ORDERLY attribute SET, the output state is volatile, and

becomes non-volatile on an orderly shutdown. If the TPMA_NV_ORDERLY attribute is CLEAR, the

output state is non-volatile.

For inputs, a read of the Index returns TPMI_YES_NO, where YES indicates a logic 1 and NO indicates a

logic 0 on the input pin.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 239

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Minimums

41.1 Introduction

This clause lists the minimums for specific functional blocks where a minimum is needed to ensure proper

TPM operation.

Platform-specific TPM specifications may impose other minimums but those minimums are not allowed to

be less than the minimums in this specification.

41.2 Authorization Sessions

An active authorization session is a session that is currently loaded into TPM memory and can be

addressed with a session handle in a command. A concurrent session is an authorization session that

either is loaded on the TPM or has its context saved.

A command may require no more than three sessions divided according to the needs of the command.

The TPM is required to be able to support execution of a command with three authorization sessions.

The management of sessions is different from the management of objects. Management software can

keep the contexts for an indefinite number of objects and load them as required. The number of

concurrent sessions, however, is limited by the resources that the TPM can devote to tracking those

sessions.

The TPM should support a minimum of 64 concurrent sessions. Fewer sessions would impair the ability of

the TPM to conduct concurrent operations with multiple users.

41.3 Transient Objects

In order to be able to execute all commands, the TPM needs to have two active, loaded objects of any

type. A Transient Object is an object that occupies TPM memory and may be referenced by handle. The

number of Transient Objects that the TPM supports does not include those objects that have been placed

in persistent TPM memory.

NOTE A TPM implementation may copy an object from persistent storage into a Transient Object slot in
order to speed up access to the object data.

41.4 NV Counters and Bit Fields

All TPM implementations should allow at least one NV Index to be allocated for use as a monotonic

counter (TPMA_NV_COUNTER) or bit field (TPMA_NV_BITS). The number of these Index types

determines how many different policies may include revocation as part of their logic. When the number of

these Index types is too small, the software complexity of handling revocation becomes too complex to

manage.

NOTE 1 This minimum (1) may be adequate for a TPM in a simple embedded system but is too low for a TPM
in a complex system such as a PC. Platform-specific specifications for more complex systems
should mandate support for at least sixteen (16) counter or bit field Indices.

NOTE 2 The requirement that a TPM support the TPMA_NV_COUNTER or TPMA_NV_BITS attribute implies
that the TPM is required to implement either TPM2_NV_Increment() or TPM2_NV_SetBits().

Trusted Platform Module Library Part 1: Architecture

Page 240 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Attached Components

42.1 Introduction

 Purpose

The TPM has an extensive set of commands that allow implementation of flexible access control for

objects contained in the Shielded Locations of the TPM. The pair of commands TPM2_AC_Send() and

TPM2_Policy_AC_SendSelect() enable the access control mechanisms of a TPM to be used to manage

sensitive data (such as keys) for other components (called the Attached Components) that are attached

to the TPM.

Examples of Attached Components are encrypting disk controllers, crypto accelerators, and network

adapters with crypto capabilities.

 Concept

An Attached Component (AC) is physically connected to a TPM through a data channel other than the

TPM’s command and response buffer (the details of the TPM-to-AC data channel are beyond the scope

of this document). A properly authorized TPM2_AC_Send() will cause the TPM to copy the selected TPM

Object to a selected AC over the provided data channel. This avoids having to “bounce” the Object via an

out of band transfer from the TPM through memory then to the component. Object data is, therefore,

duplicated outside the TPM’s “Shielded Location”. The platform manufacturer provisions the connection

between the TPM and the Attached Component, and hence determines the protection of an object in

transit from the TPM to the Attached Component.

TPM2_AC_Send() uses the DUP auth role that requires authorization with a policy with

policySesssion→commandCode set to TPM_CC_AC_Send.

NOTE TPM2_AC_Send() will only send objects that are constructed with a policy that allows
TPM2_AC_Send().

42.2 TPM2_AC_Send()

TPM2_AC_Send() instructs the TPM to copy portions (possibly all) of the Object referenced by

sendObject to the Attached Component referenced by ac. The methods used to send the Object and the

properties of the Attached Component are outside the scope of this specification. The command does not

cause the referenced object to be flushed.

The applications using this TPM and the creators of the TPM’s objects are expected to understand the

properties of the Attached Component and the connection between the TPM and the Attached

Component.

The use of Enhanced Authorization allows the object creator to restrict sending the object using any

combination of Policies. For example, the policy may only allow an Object to be sent when PCR and

Locality have specific values. TPM2_AC_Send() requires DUP role authorization for the sendObject. This

means that sendObject authorization requires a policy session that has policySession→commandCode

set to TPM_CC_AC_Send. This requirement ensures that TPM2_AC_Send() is only used on Objects that

are intended to be sent to an Attached Component.

The acDataIn parameter allows TPM2_AC_Send() to send qualifying data to an Attached Component

along with the Object. For example, acDataIn may be used to identify a key slot in the AC into which the

Object is to be loaded.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 241

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

An Attached Component optionally returns acDataOut information to the caller. A possible use of

acDataOut would be for the AC to indicate the key slot into which it has placed the Object.

After TPM2_AC_Send() completes, the Object in the TPM may be flushed without effecting the values in

the AC. Similarly, the AC may modify (or delete) the Object data from its memory without affecting any

Object in TPM Shielded Locations.

42.3 Send Object Types

The TPM does not restrict the type of Object that may be sent to an AC. However, an AC may not be able

to process all types of TPM Objects. The AC may be designed to reject unknown Object types or it may

be the responsibility of system software to ensure that only the proper Object types be sent to an AC.

42.4 Send Object Attributes

The sendObject shall have fixedTPM, fixedParent and encryptedDuplication CLEAR.

42.5 Attached Component Authorization

TPM2_AC_Send() requires authorization for the Object to be sent and for the AC that is the target of the

send operation.

EXAMPLE If an Attached Component is an encrypting disk controller, unauthorized software, such as
ransomware, cannot set the encryption key without getting access to the proper authorization. Use
of the PCR as part of the policy for the object can ensure that the disk encryption key can only be
set early in the boot phase.

Proper authorization to send to an AC is determined by the presence of an aliased NV Index. The range

of AC handles is AC_FIRST to AC_LAST. The range for aliased AC Indexes is NV_AC_FIRST to

NV_AC_LAST. If the Owner or Platform creates an NV Index in the range AC Indexes and a

corresponding AC exists in the AC handle range, then the write authorization settings of the AC Index

(TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and

TPMA_NV_POLICYWRITE) determine how the send may be authorized. If no aliased AC Index exists,

then either Owner Authorization or Platform Authorization may be used to allow the send to the AC.

The Platform and Owner may use TPM2_NV_DefineSpace() to delegate the rights to access a specific

AC The Platform or Owner may change the access rights to the AC by calling

TPM2_NV_UndefineSpace() and then TPM2_NV_DefineSpace() with new parameters.

TPM2_NV_ChangeAuth() allows the current key and object manager to change the authValue by using

the current AC authorization policy.

The following is a summary of states and allowed actions:

 Attached Component has no aliased NV Index defined

 Can use TPM2_AC_Send() to send objects to the Attached Component with ownerAuth or

platformAuth

 Can use TPM2_AC_GetCapability() to get optional information about the AC

 Attached Component has an aliased NV Index

 Can use TPM2_AC_Send() to send objects to the Attached Component with the write

authorization types allowed by the aliased Index.

 Can change authorization using ADMIN role (TPM2_NV_ChangeAuth()).

Trusted Platform Module Library Part 1: Architecture

Page 242 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

TPM2_Clear will delete any AC Index alias defined by the Owner but not by the Platform.

42.6 Attached Component Object Management

 Discovery

Applications may use information from the platform manufacturer (for example, a platform certificate) to

determine whether a platform has an Attached Component. Software may also discover the number of

attached components by calling TPM2_GetCapability(TPM_CAP_HANDLES) with a TPM_HT_AC

Property Type to find available AC handles.

Specific information about each Attached Component may be provided by calling the

TPM2_AC_GetCapability() command. In response to this command, the TPM returns vendor-specific

information about a specific Attached Component. For example, capabilitiesData may be used to return a

pairing value that can be also obtained from the AC itself by an AC-specific API (see Part 2, Attached

Component Structures).

The association between ACs and AC handle is vendor specific, but the association is required to be

constant during the platform’s lifetime. If an AC is replaced, the new AC should have the same AC handle

as the AC that was replaced.

After reboot or other TPM power state changes, TPM2_GetCapability() should be used to obtain the list of

the available ACs.

NOTE 1 It is suggested that no handle be associated with a defective AC. However, it is also all owed that a
defective AC be reported using TPM2_AC_GetCapability().

TPM2_GetCapability() can be used at any time to determine the current AC configuration.

NOTE 2 There is no mechanism for the TPM to proactively signal the change in state of an AC. However , a
platform may have a method for the AC to signal software and for that indication to trigger an
enumeration process.

 Setup

The AC’s configuration should be performed by the AC’s Manufacturer. AC configuration is out of scope

of the TCG.

 Sending

If the desired Object is not already loaded, the application (such as a key manager) may load it using an

existing TPM2 command such as TPM2_Load(). This removes the wrapping of the object and returns an

object handle. However, if an object is evicted and then re-loaded, there is no assurance the TPM will

assign the object the same object handle. For this reason, applications should not associate the TPM’s

assigned object handle with the object when sent to the Attached Component, or when the object is within

the Attached Component’s domain. Key and object managers using the TPM2_AC_Send() command

may assign, if necessary, a handle for the transferred object within the Attached Component domain

using the acDataIn parameter. Therefore, in common usages there is no association between the TPM

generated object handle assigned to the object and any handle for that object within the Attached

Component’s domain. Any association between the TPM’s object and the Attached Component’s object is

done by the application or the application’s resource and object manager external to the TPM.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 243

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

42.7 Power States

The AC authorization values and policies that are setup by TPM2_NV_DefineSpace() are persistent

across all TPM power state changes, like the authorization values and policies of other NV Indexes.

TPM power state changes have no effect on the Attached Component’s copy of objects, because that

copy of the object is no longer in the TPM’s “Shielded Location”.

42.8 Attached Component Format

The format and security properties of the connection between the TPM and the Attached Component are

outside the scope of the TPM Library Specification. A vendor may provide a proprietary connection

between the TPM and an Attached Component where the format and the security properties are defined

by that vendor. A TCG platform-specific Working Group may define a data format that may include a key

exchange method so that independently manufactured Attached Components can interoperate with

different TPMs.

Trusted Platform Module Library Part 1: Architecture

Page 244 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Authenticated Countdown Timer (ACT)

43.1 Introduction

The functionality and commands described in this clause enable the TPM to manage multiple

authenticated countdown timers (ACT).

43.2 Description

An ACT is a 32-bit counter that, when not already zero, will decrement by one each second that the TPM

is powered.

The countdown timers are used to trigger events on a platform when they count down to zero, at which

point they are said to timeout or expire. TPM2_ACT_SetTimeout() is used to set an ACT to a non-zero

value and begin the timeout. On TPM Reset or TPM Restart, all ACT timeouts are set to zero with no side

effects (no event triggered). ACT timeouts are preserved across TPM Resume.

The ACT timeouts are saved by TPM2_Shutdown(STATE). On TPM2_Startup(STATE), if the TPM

shutdown was orderly, the saved ACT values are restored and the ACT resumes counting. If an ACT

startTimeout has been written (TPM2_ACT_SetTimeout()) since the last TPM2_Startup(), then the current

timeout of the ACT is saved by TPM2_Shutdown(STATE); otherwise, the saved value is one half of the

current ACT timeout. If a TPM2_ACT_SetTimeout() occurs after the TPM2_Shutdown(), then the TPM

state is no longer orderly, and a subsequent TPM2_Startup(STATE) will fail.

An ACT has an authValue and an authPolicy. The authValue is the same as the current platformAuth and

can only be used if phEnable is SET. The authPolicy is ACT-specific and is neither enabled nor disabled

by phEnable. Each ACT has its own authPolicy.

NOTE 1 A system might continue to operate after a TPM2_Shutdown(STATE). Therefore, saving half the
timeout prevents an attacker from continually extending the timeout by doing
TPM2_Shutdown(STATE) immediately after TPM2_Startup(STATE), and then restarting the system
(TPM Resume) just before the timer expires.

TPM2_ACT_SetTimeout() must be properly authorized. Authorization may be provided either by

platformAuth or by an ACT-specific authPolicy. The startTimeout parameter in TPM2_ACT_SetTimeout()

is an integer number of seconds.

The authPolicy for an ACT can be changed by TPM2_SetPrimaryPolicy() using either platformAuth or the

ACT-specific authPolicy.

The authPolicy of an ACT is initialized to an Empty Policy by TPM Reset or TPM Restart but is preserved

during TPM Resume.

NOTE 2 After TPM Reset or TPM Restart, phEnable is SET, allowing the platform to initialize any ACT
authPolicy.

43.3 Typical Use

A typical example for the use of an ACT is as a watchdog timer that will cause a platform reset when the

timer reaches zero (expires). In a system using an ACT, a periodic platform action outside the TPM

indicates that the timeout should be set anew using TPM2_ACT_SetTimeout(). The most common reason

why timeout is not set anew is that the local system is not behaving properly because of some type of

corruption (either inadvertent or malicious). The intent of the timer is that, in the absence of a properly

authorized timeout extension, the platform would be reset, putting it back into a known state with the

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 245

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

expectation that the corruption can be removed. The reason for having an authenticated timeout is to

allow an external entity to make a decision about the health of the system.

The example above is not the only one supported by an ACT. In fact, this specification does not mandate

that any specific platform behavior occur as a result of a timer expiring. The action on timer expiration

may be chosen by a platform-specific specification or be vendor specific.

Because platformAuth may be used to change the authPolicy or set a startTimeout for any ACT, the

platform firmware has ultimate control of the ACT. On each TPM Reset or TPM Restart, the platform

firmware is expected to set the authPolicy for all ACT using platformAuth. This specification mandates no

specific policy for any ACT, but it is expected that, in most cases, the platform firmware will either:

 Initialize an ACT authPolicy with a policy that can only be satisfied by an entity trusted by the platform

manufacturer; or

 Initialize the ACT authPolicy so that the authPolicy can be changed using ownerAuth.

In case a), the platform firmware may set an initial timeout to ensure that some corrective action will occur

if malware prevents the trusted entity from setting the ACT.

NOTE 1 This is how the platform would typically initialize a watchdog timer

In case b), the system software is expected to take control of the ACT. The platform would not set an

initial timeout as it is possible that the ACT will not be used by the system software.

NOTE 2 If the platform firmware does not initialize the ACT authPolicy before phEnable CLEAR, then the
ACT cannot be used.

43.4 Failure Mode

If the TPM enters failure mode, the ACT should continue to count down and trigger the specified event

should it expire.

NOTE 1 If the failure mode was caused by a timer failure or affects functionality which is required for the
platform-specific event, the ACT might not trigger reliably.

TPM2_ACT_SetTimeout() shall not be usable while a TPM is in Failure Mode. This means that the

timeout cannot be extended and that timed events will occur if the TPM is not powered down or Reset

before the ACT expires. A platform-specific specification may specify that an event will have no effect if

the TPM is in Failure Mode.

A TPM may allow reading of the remaining ACT time (TPM2_GetCapability(capability = TPM_CAP_ACT)

when the TPM is in Failure Mode.

43.5 Field Upgrade

The behaviour of a TPM during Field Upgrade is undefined. However, it is preferred that ACT continue to

operate normally during Field Upgrade except that the ACT may not be changed by

TPM2_ACT_SetTimeout().

NOTE Since platformAuth is required to start a Field Upgrade, platformAuth can be used to set the
startTimeout for any active ACT to a value that is sufficient to allow a Field Upgrade to complete.

Trusted Platform Module Library Part 1: Architecture

Page 246 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

43.6 Typical ACT authPolicy

This clause describes a typical ACT authorization policy that authorizes setting of startTimeout with an

authentication credential (key). The signature created by the authentication key is used as a

cryptographically protected deferral ticket for the ACT.

The ACT authPolicy is constructed using TPM2_PolicySigned() and may include other policy

components. Authorization by multiple entities can be achieved by combining multiple

TPM2_PolicySigned() commands using AND or OR terms.

The deferral ticket is provided to the TPM in TPM2_PolicySigned() as the auth parameter (the signed

authorization). The signature verification key, the authObject in TPM2_PolicySigned(), may be a

symmetric or asymmetric key.

NOTE The advantage of an asymmetric signing key is that only the public key needs to be provisioned into
the TPM. In the case of a symmetric HMAC key, the HMAC key’s authPolicy should restrict the key
to be used only for TPM2_PolicySigned() and not for other commands like TPM2_HMAC() (i.e. the
TPM should not be able to issue its own deferral tickets).

For the nonceTPM and expiration parameters of TPM2_PolicySigned(), the following is recommended:

 nonceTPM present and not an Empty Buffer

 expiration > 0

Both settings ensure that a deferral ticket is single-use. The presence of nonceTPM in

TPM2_PolicySigned() prevents the same signature being used multiple times within a policy session to

defer the ACT indefinitely.

NOTE The nonceTPM for the policy session changes at the end of TPM2_ACT_SetTimeout(). This
invalidates the previous signature and prevents replay of TPM2_ACT_SetTimeout() without getting a
new signature from the authorized entity.

The non-negative expiration prevents TPM2_PolicySigned() creating a policy ticket which may be reused

with TPM2_PolicyTicket() over a period of time to defer the ACT.

The ability to change startTimeout of TPM2_ACT_SetTimeout() should be limited by including cpHash in

the ACT authPolicy. This can be achieved in two ways:

1) The ACT authorization policy includes TPM2_PolicyCpHash(). In this case, the entity setting the policy

determines the startTimeout value.

2) The ACT authorization policy includes TPM2_PolicySigned() with cpHashA set. In this case, the signer

(of the deferral tickets) determines the startTimeout value.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 247

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Annex A
(informative)

Policy Examples

A.1 Introduction

This clause compares authorization between TPM 1.2 and this specification.

A.2 TPM 1.2 Compatible Authorization

A TPM 1.2 key may have its use gated by PCR and authValue. To select this authorization, the key would

be created with a pcrSelection with at least one bit SET and the digestAtRelease set to indicate the digest

of the selected PCR. Additionally, the key’s TPM_AUTH_DATA_USAGE would be set to

TPM_AUTH_ALWAYS. To perform the authorization, an authorization session is created and used to

prove knowledge of the authValue in the authorization HMAC. If the HMAC check is successful and the

digest of the selected PCR matches the digestAtRelease, the action is approved.

For a TPM compatible with this specification, use of PCR for access control requires a policy. The policy

should be created at the time of object creation so that the policy requires selected PCR to have a

specific value. This is similar to determining the digestAtRelease in TPM 1.2. The policy will use two

factors: PCR and an authValue. The first policy command will be TPM2_PolicyPCR() and it will modify the

policyDigest by:

 policyDigest1 ≔ HcontextAlg (policyDigest0 || TPM_CC_Policy_PCR || PCR Selection || PCR digest) (58)

where

HcontextAlg hash function using the context hash algorithm

policyDigest0 an array of octets of zero equal in length to the size of the policy digest

TPM_CC_Policy_PCR a constant indicating the command modifying the policyDigest

PCR Selection a TPML_PCR_SELECTION that indicates the PCR that will be included

in the PCR digest

PCR digest the expected digest of the PCR selected by the PCR Selection; the PCR

are hashed using the hash algorithm of the policy session

To cause the TPM to compute an HMAC using the authValue of the object, a TPM2_PolicyAuthValue()

would be included in the policy. It would modify the policyDigest as:

 policyDigest2 ≔ HcontextAlg (policyDigest1 || TPM_CC_PolicyAuthValue) (59)

where

HcontextAlg hash function using the context hash algorithm

policyDigest1 the result of performing the operation in equation (58) above

TPM_CC_PolicyAuthValue the command code for TPM2_PolicyAuthValue()

The value of policyDigest2 would be included in the template of the object in the authPolicy parameter.

To use the object, a policy authorization session would be started using TPM2_StartAuthSession(). Then

a TPM2_PolicyPCR() and TPM2_PolicyAuthSession() would be executed using the handle of the

authorization session. If the PCR were the same as those used when performing the operation of

Trusted Platform Module Library Part 1: Architecture

Page 248 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

equation (58), then the policyDigest of the policy session will match the authPolicy of the object. Because

the policy sequence contained TPM2_PolicyAuthValue(), the TPM will check that the HMAC in the

authorization indicates that the caller knows the authValue of the object (same computation as performed

on an HMAC session). If both checks succeed, the object is properly authorized.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 249

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Annex B
(normative/informative)

RSA

B.1 Introduction

The RSA asymmetric algorithm is used for digital signatures, secret sharing, and encryption.

A TPM that supports RSA should support a public modulus size of at least 2,048 bits. Support for other

key sizes is permitted.

NOTE 1 The reference implementation supports key sizes of 1024, 2048, and 3072.

When the size (k) of the public modulus (n) of an RSA key is given, then log2n = (k – 1). Additionally, for

a two-prime system, the primes (p and q) satisfy log2(p2) = (k – 1) and log2(q2) = (k – 1).

The RSA algorithm requires the methods of encryption and signing defined in IETF RFC 8017. This

includes support for RSAES-OAEP, RSAES-PKCS1-v1.5, RSASSA-PKCS1-v1.5, and RSASSA-PSS.

The RSA structures in this specification support only public keys that are the product of two primes.

Support for other numbers of primes is allowed, but it is performed in a vendor-specific manner and thus

beyond the scope of this specification.

A TPM is required only to support a public exponent (e) of 216+1. Support for other exponents is allowed

but discouraged.

NOTE 2 The reference implementation does not support an exponent size smaller than 7 nor does it allow
keys to be created on the TPM with a public exponent less than 2 16 + 1.

When loading an RSA key, the TPM validates that its public and private portions are properly paired by

dividing the public modulus by the single private prime and requiring that the remainder be zero. The TPM

does not validate whether input values are primes.

NOTE 3 Validating the pairing of the public and private key portions need not be performed when the key is
being loaded. However, this check is performed before the authorization value of the key or the
private portion of the asymmetric key may be used.

The TPM will also validate that the provided and computed prime factors are in an acceptable range. To

be acceptable, the square of the prime is required to have the same number of significant bits as the

public modulus.

Trusted Platform Module Library Part 1: Architecture

Page 250 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2 RSAEP

This is the RSA public key primitive defined in IETF RFC 8017, clause 5.1.1. It is a modular

exponentiation of a message (m) with the public exponent (e), modulo the public modulus (n) to produce

the cipher text (c). This is expressed as:

 c ≔ me (mod n) (60)

where

c the encrypted message

m a value 0 < m < n to be encrypted

e the public exponent (default is 216 + 1)

n the public modulus

B.3 RSADP

This is the RSA private key primitive defined in PSCS#1v2.1, clause 5.1.2. This clause describes the

private key in two forms: as a pair and as a quintuple. The reference implementation uses the pair form

with a private exponent (d). Using this form, the RSADP operation recovers a message from a cipher text

by:

 m ≔ cd (mod n) (61)

NOTE The reference implementation also supports use of the CRT form of the private exponent.

B.4 RSAES_OAEP

This encryption scheme is defined in IETF RFC 8017. It is the only scheme used with an RSA-restricted

decryption key. The algorithm identifier for this scheme is TPM_ALG_OAEP.

For RSA keys protecting a secret value (such as, an encryption key or a session secret), the L parameter

is a byte stream, the last byte of which must be zero, indicating the intended use of the encrypted value.

A command that accepts or creates an RSA-encrypted secret indicates the value of the string to use for

L. The RSA key's scheme hash algorithm (or, if it is TPM_ALG_NULL, the RSA key’s Name algorithm) is

used to compute lhash := H(L), and the null termination octet is included in the digest.

MGF1 (as defined in IEEE Std 1363TM-2000) computes dbMask and seedMask. The mask-generation

function uses the Name algorithm of the RSA key as the hash algorithm.

B.5 RSAES_PKCSV1_5

This encryption scheme is defined in IETF RFC 8017. It has no parameters. The algorithm identifier for

this scheme is TPM_ALG_RSAES.

B.6 RSASSA_PKCS1v1_5

This signing scheme is defined in IETF RFC 8017. The algorithm identifier for this scheme is

TPM_ALG_RSASSA.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 251

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

An RSA-restricted signing key may use either this algorithm or RSASSA_PSS, but not both. An

unrestricted signing key may select as its default either this algorithm or RSASSA_PSS. If

TPM_ALG_NULL is selected, the caller will specify the scheme in the signing command.

This signature scheme prepends an OID to a digest before signing with the private key. It may be used in

any command that allows an asymmetric signing operation.

For signing commands that use restricted signing keys, the TPM provides the OID that corresponds to the

digest algorithm, and the OID provided by the caller is discarded.

For commands that use unrestricted signing keys, the TPM uses the caller-provided OID.

NOTE 1 If the command does not provide a parameter for the OID, then the TPM provides the OID even if
the key is not restricted.

For hash algorithms where the TCG defines a TPM_ALG_ID, the TCG provides the OID to use with

restricted signing keys. Currently, the defined values are:

• SHA1

 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 1416

• SHA256

 30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 2016

• SHA384

 30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00 04 3016

• SHA512

 30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 4016

NOTE 2 These values are from IETF RFC 8017.

NOTE 3 The listing above is not normative. TCG maintains the normative list.

B.7 RSASSA_PSS

This signing scheme is defined in IETF RFC 8017. The algorithm identifier for this scheme is

TPM_ALG_RSAPSS.

A restricted signing key may use either this algorithm or RSASSA_PKCS1v15, but not both. An

unrestricted signing key may use either this algorithm, RSASSA_PKCS1v15, or TPM_ALG_NULL. If

TPM_ALG_NULL is selected, the caller can specify the signing scheme in the signing command.

When used with a restricted signing key, the hash algorithms for messages (M) and M’ are the same.

When used with an unrestricted signing key, the hash algorithm for M and M’ can differ.

For both restricted and unrestricted signing keys, the random salt length will be the largest size allowed

by the key size and message digest size.

NOTE If the TPM implementation is required to be compliant with FIPS 186-4, then the random salt length
will be the largest size allowed by that specification.

Trusted Platform Module Library Part 1: Architecture

Page 252 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.8 RSA Key Generation

B.8.1 Background

The implementation of the RSA key-generation function should meet the requirements of the intended

market. The methods in FIPS 186-3 are recommended.

In the reference implementation, the primes used for the key are generated using the methods of FIPS

186-3, B.3.3 "Generation of Random Primes that are Probably Prime."

NOTE FIPS 186-3 only allows this method to be used for primes of 1024 bits or larger. For smaller primes,
the methods described in B.3.5 "Generation of Probable Primes with Conditions Based on Auxiliary
Provable Primes" or B.3.6 "Generation of Probable Primes with Conditions Based on Auxiliary
Probable Primes" can be used if FIPS compliance is required.

B.8.2 Large Prime Generation

For generating a prime the reference implementation has two different implementations: one using testing

of candidates and the other using a number sieve. The process for testing of candidates is described in

this clause.

The inputs are:

• primeSize – this is the number of bits in the prime to be generated. It should be half the number of

bits in the public modulus to be generated

• e – the public exponent

NOTE 1 In the reference implementation, the exponent is required to be a prime number > 2 16

• a random number generation function according to the type of key being generated (see 27.6.2 and
27.6.3)

NOTE 2 Derivation of RSA keys is not supported.

The prime generation process is:

 set prime candidate p to the next primeSize number of bits from the provided random number

generation function

 adjust p so that the high-order two bits and the low order bit are one

NOTE 3 In the reference implementation, when a prime is generated, the upper two octets for prime
candidates are verified to be B5 0516 or greater. This forces the prime to be greater than

0.7071075439453125 * 2(n/2) where n is the number of bits in the public modulus. This is

slightly larger than the required value of √2/2 * 2(n/2). This value ensures that the MSb of the

product of these to prime will be SET. Setting of the two most significant bits would also ensure
that the magnitude of the product is large enough but reduced the range of allowed primes by
small factor (about 4.3%).

 test p to determine if it is probably prime

 Using a greatest common divisor (GCD()) function, see if p shares any common factors with a

composite number that is the product of the first 1024 primes and if so, go to a).

 do N rounds of Miller-Rabin where N is determined by the size of the prime and if the test fails on

any round, go to a)

NOTE 4 The value for N may be found in FIPS 186-3, Table C.2.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 253

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 5 The witness values used by Miller-Rabin are from the same random number function used
to generate the prime candidate.

 return p

B.8.3 RSA Key Generation Algorithm

The key generation process is:

 initialize the values of the algorithm

 Set securityStrength according to the size of the public modulus of the key to be generated as

specified in SP800-57 part 1.

 primeSize ≔ 1/2 the size of the RSA modulus (inPublic.parameters.keyBits of the template)

 find a first prime (p) using the method in B.8.2

 find a second prime (q) using the method in B.8.2:

 If |p – q| < 2100, go to b)

 compute the public modulus n ≔ p • q

NOTE 1 Depending on the starting values the algorithm could take many iterations to find two suitable
primes.

 compute the private exponent d ≔ e-1 (mod (p – 1)(q – 1))

NOTE 2 The reference implementation also provides an option to use the CRT form of the private exponent

d.

 if d < 2nLen/2 where nLen is the number of bits in the public modulus (n), then go to step b)

NOTE 3 If required, a random value is encrypted with the public exponent and decrypted with the private
exponent to validate that the key can be used for signing and signature verification.

 return n, p and d

B.9 RSA Cryptographic Primitives

B.9.1 Introduction

When RSA is implemented on a TPM, it may provide these additional commands to support cryptographic

operations. The command description in TPM 2.0 Part 3 indicates the restrictions on the types of keys

that may be used with each of the commands.

B.9.2 TPM2_RSA_Encrypt()

TPM2_RSA_Encrypt() may be used to perform encryption according to the methods described in IETF

RFC 8017. If the scheme of the key is TPM_ALG_NULL, then the encryption scheme may be specified in

the command. Otherwise, the scheme specified in the key will be used. The scheme options are:

• TPM_ALG_NULL – selects RSAEP as described in B.2

• TPM_ALG_OAEP – selects RSAES_OAEP as described in B.4

• TPM_ALG_RSAES – selects RSAES_PKCSV1_5 as described in B.5

Trusted Platform Module Library Part 1: Architecture

Page 254 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.9.3 TPM2_RSA_Decrypt()

TPM2_RSA_Decrypt() performs the decryption operations defined in IETF RFC 8017, clause 7.1.2. The

handle used in this command is required to have the decrypt attribute SET. If the scheme of the key is

TPM_ALG_NULL, then the encryption scheme may be specified in the command. Otherwise, the scheme

specified in the key will be used. The scheme options are:

• TPM_ALG_NULL – selects RSADP as described in B.3

• TPM_ALG_OAEP – selects RSAES_OAEP as described in B.4

• TPM_ALG_RSAES – selects RSAES_PKCSV1_5 as described in B.5

B.10 Secret Sharing

B.10.1 Overview

When data is to be delivered securely to the TPM a secret sharing mechanism is required. There are

three cases when RSA is used for secret sharing:

1) injecting a salt value for an authorization session,

2) exchanging protection values for object duplication, and

3) exchanging protection values for identity credentials.

For each of these uses, a secret value is OAEP encrypted as described in B.4.

The size of the secret value is limited to the size of the digest produced by the scheme hash algorithm (or

nameAlg if the scheme hash algorithm is TPM_ALG_NULL) of the object that is associated with the public

key used for OAEP encryption.

B.10.2 RSA Encryption of Salt

In TPM2_StartAuthSession(), when tpmKey is an RSA key, the secret value (salt) is encrypted using

OAEP as described in B.4. The string “SECRET” (see 4.5) is used as the L. The data value in OAEP-

encrypted blob (salt) is used to compute sessionKey.

B.10.3 RSA Secret Sharing for Duplication

When the new parent for a duplicated object is an RSA key, a random seed value is created and used in

the KDF operations to generate a symmetric encryption key and IV according to equation (33) and an

HMAC key according to equation (35). The seed value will be OAEP encrypted to the public key of the

new parent as described in B.4 using “DUPLICATE” as the L parameter. The seed size will be the size of

a digest produced by the OAEP hash algorithm of the new parent.

On TPM2_Import() the private key of the new parent is used to decrypt the key protector containing the

seed value. If the label value in the OAEP encrypted blob is not “DUPLICATE”, then the decryption

routine should generate an error. The error should cause the seed value to be set to an invalid value so

that the error will not be reported until the integrity HMAC is validated.

NOTE This is to ensure consistency in behavior with ECC and to minimize the information available to an
attacker.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 255

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.10.4 RSA Secret Sharing for Credentials

When a credential is protected (such as TPM2_MakeCredential() and TPM2_ActivateCredential()), a

random seed value is created and used as described in B.10.3. The only difference is that the label value

used for the KDF will be “IDENTITY” instead of “DUPLICATE”

Trusted Platform Module Library Part 1: Architecture

Page 256 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex C
(normative/informative)

ECC

C.1 Introduction

The ECC algorithm is used for digital signatures and for secret sharing.

NOTE 1 As implemented in a TPM, ECC is not used directly for encryption of data . Rather, ECDH secret
sharing is used to establish a symmetric key, and then a symmetric algorithm is used for the actual
data encryption.

A TPM should support prime modulus ECC.

If the ECC algorithm is supported, the TPM is required to support ECDSA and ECDH (SP800-56A,

Clause 6.2.2.2 “One-Pass Diffie-Hellman, C(1, 1, ECC CDH)”).

The TPM should support ECC key sizes of at least 256 bits. Support for other key sizes is allowed.

NOTE 2 It is anticipated that the recommended ECC key size will increase over t ime in revisions to this
specification.

The TPM does not check the security of ECC curve parameters. It does check that the public and private

keys are properly paired.

NOTE 3 Validating the pairing of the key’s public and private portions need not be performed when the key is
being loaded. However, this check is required to be performed before the authorization value of the
key or the private portion of the asymmetric key may be used.

C.2 Split Operations

C.2.1 Introduction

Several of the EC schemes us two-phase protocols in which the TPM generates an ephemeral key pair in

the first phase and uses that ephemeral key in the second phase. These protocols require that the

ephemeral key only be used once. Ordinary TPM keys have context that may be saved and restored by

TPM context management. This clause describes the methods used to implement the required single use

ephemeral keys.

C.2.2 Commit Random Value

A split operation requires two TPM commands the first of which is TPM2_Commit(). It uses a TPM-

generated, random value in the commit computation. A second command (such as, any of the signing

commands) completes the split signing operation and uses the same commit value. The random commit

value is required to:

• have at least the number of bits equal to the security strength of the signing key;

• not be known outside of the TPM; and

• only be used once.

Because the random value is not allowed to be known outside of the TPM, the TPM is required to store

the random value between the two commands in split sequence. To allow more than one split sequence

to be in process at a time, the TPM may have an array of values and return a count value as one of the

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 257

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

response parameters of the TPM2_Commit() indicating the array entry being used for the sequence. This

count value is an input to the TPM in the command that completes the split sequence.

NOTE The number of split sequences supported by the TPM may be found using
TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property = TPM_PT_SPLIT_MAX).

To minimize the size of the array used for storing these values, a TPM may generate pseudo-random

values instead.

If using pseudo-random values, the TPM creates the value using KDFa(), a counter (commitCount), and

a random value (commitRandom). On each TPM Reset, the TPM will select a new random value for

commitRandom and reset commitCount to zero. On TPM2_Commit(), the TPM would use the current

value of the commitCounter to generate the pseudo-random value (r) by

 r ≔ KDFa (vendorAlg, commitRandom, “ECDAA Commit”, name, commitCount, bits) (62)

where

nameAlg the nameAlg of the signing key (signHandle)

commitRandom the current value of commitRandom

“ECDAA Commit” value used to differentiate uses of KDFa()

name the Name of signHandle

commitCount the current value of commitCount

bits the number of bits in the order of the curve of the signing key

(signHandle)

NOTE: When the number of bits is not a multiple of 8, it is rounded up to be a
multiple of 8.

To track the usage of the commitCount, the TPM maintains a bit array (A[]) that has a power of 2 number

of bits (N) (that is, the bits indexes of A[] are from 0 to 2N-1). After computing the value of r, the low-order

N bits of commitCount are used to index A[] and the corresponding bit is SET. The low-order 16 bits of

commitCount are returned as the counter parameter.

C.2.3 TPM2_Commit()

TPM2_Commit() performs the first part of a split operation. The TPM will perform the point multiplications

on the provided points and return intermediate signing values. Alternatively, the TPM will simply return a

public ephemeral key based on a commit private value. The signHandle parameter refers to an ECC key.

TPM2_Commit() has the following parameters, all of which are optional.

P1 point on the curve used by signHandle (a TPM2B_ECC_POINT)

s2 octet array used to derive x-coordinate of a base point (a

TPM2B_ECC_PARAMETER)

y2 y-coordinate of the point associated with s2 (a

TPM2B_ECC_PARAMETER)

NOTE 1 P1 is a TPM2B_ECC_POINT, a sized buffer containing a TPMS_ECC_POINT. It is not a sized buffer
containing an array of bytes. A size of zero for the TPM2B_ECC_POINT will create an unmarshaling
error because the minimum size for P1 is 4 (two ECC parameters, both of which are Empty Buffers).
If P1 is an Empty Buffer, the TPM returns TPM_RC_INSUFFICIENT regardless of s2 and y2. If P1 is
an Empty Point and s2 and y2 are Empty Buffers, then the TPM will set E := [r]G where r is the
commit random value and G is the generator point for the curve.

Trusted Platform Module Library Part 1: Architecture

Page 258 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

In the algorithm below, the following additional values are used in addition to the command parameters:

HnameAlg hash function using the nameAlg of the key associated with signHandle

p field modulus of the curve associated with signHandle

n order of the curve associated with signHandle

ds private key associated with signHandle

G generator of the curve associated with signHandle

c counter that increments each time TPM2_Commit() is executed

A[i] array of bits used to indicate when a value of c has been used in a

signing operation; the values of i are 0 to 2N-1.

N log2 of the number of values in A

k nonce that is set to a random value each on each TPM Reset; the nonce

size is twice the security strength of any ECDAA key supported by the
TPM

The commit algorithm is:

 Validate that s2 and y2 are either both Empty Buffers or both not Empty Buffers (TPM_RC_SIZE)

 If s2 is an Empty Buffer, skip to step e)

 compute x2 ≔ HnameAlg (s2) mod p

 if (x2, y2) is not a point on the curve of signHandle, return TPM_RC_ECC_POINT

 if p1 is not an Empty Point and p1 is not a point on the curve of signHandle, return

TPM_RC_ECC_POINT

 set K, L, and E to be Empty Buffers

 generate or derive r (see C.2.2)

 set r ≔ r mod n

 if s2 is not an Empty Buffer, set K ≔ [ds] (x2, y2) and L ≔ [r] (x2, y2)

 if p1 is not an Empty Point, set E ≔ [r] (p1)

 if p1 is an Empty Point and s2 is an Empty Buffer, set E ≔ [r] G

 if K, L, or E is the point at infinity, return TPM_RC_NO_RESULT

 set counter ≔ commitCount

 set commitCount ≔ commitCount + 1

NOTE 2 Depending on the method of generating r, it may be necessary to update the tracking array here.

 output K, L, E and counter

NOTE 3 Depending on the input parameters, K and L or E may be Empty Points

C.2.4 TPM2_EC_Ephemeral()

TPM2_EC_Ephemeral() is similar to TPM2_Commit() in that it uses the commit random value to generate

an ephemeral key for use in a two-phase operation. However, TPM2_EC_Ephemeral() only used the

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 259

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

random value r to generate a corresponding public key Q ≔ [r]G where G is the generator point for a

specified curve.

As with TPM2_Commit(), a counter value is returned. This value needs to be used in a subsequent

command in order to complete the two-phase operation.

C.2.5 Recovering the Private Ephemeral Key

To complete a split or two-phase operation, the TPM uses the same random or pseudo-random value

generated in TPM2_Commit(). The random or pseudo-random value is determined by the counter field

provided as an input parameter for the command that is the second phase of the split operation.

If the values are stored in an array, counter is used to index the array and, after the value is used in the

signing operation, the value is erased. If using the pseudo-random method, the following algorithm is

used to reconstruct the random value.

 set t ≔ low-order 16 bits of commitCount

 verify that t – 2N < counter < t; else return TPM_RC_RANGE

 set i ≔ low-order N bits of counter

 if A[i] is CLEAR, return TPM_RC_VALUE

 set c ≔ commitCount - t

 if counter ≥ t; c ≔ c – 216

 c ≔ c + counter

 compute r as in equation (62) using c in place of commitCount

 if the command completes successfully set A[i] ≔ 0

C.3 ECC-Based Secret Sharing

An ECC key protects a secret in two cases: object duplication and seeding of a session. In both cases,

the method for generating the required key uses KDFe(), as described in 11.4.10.3.

C.4 EC Signing

C.4.1 ECDSA

For a TPM compliant with this specification, the default ECC signing scheme (DSA) is as defined ISO/IEC

14888-3.

C.4.2 ECDAA

 Introduction

If a TPM supports ECC, it is recommended that it also support the ECDAA scheme described in this

clause C.4.2.

Direct Anonymous Attestation based on ECC (ECDAA) is a TPM signature scheme that provides

anonymous signatures (meaning that different signatures from the same signer cannot be correlated), or

pseudonymous signatures (meaning that different signatures from the same signer can be correlated but

Trusted Platform Module Library Part 1: Architecture

Page 260 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

the identity of the signer is still unknown). Multiple ECDAA schemes are supported in this TPM

implementation.

The TPM signs data with an ECDAA key in an unconventional way. A Verifier verifies signature values

using data equivalent to a public key, and verifies the public key using data equivalent to a certificate

(which is also called a credential) supplied by an Issuer. However, the public key and the credential are

randomized by the TPM and the TPM’s Host platform before they are sent to the Verifier. This prevents

both the Verifier and the Issuer from identifying the TPM that created the signature value.

It is anticipated that the most common use of ECDAA will be to certify (TPM2_Certify()) a TPM object

(usually a key). A credential issuer will provide a certificate for an ECDAA key. This certificate will validate

that the ECDAA key belongs to a valid TPM without disclosing the ECDAA key. That ECDAA key may

then be used to certify other TPM objects. These certificates prove that the certified object belongs to a

valid TPM without disclosing the identity of that TPM. If the certified key is a signing key, it may then be

used to attest to various TPM states, without disclosing the identity of the TPM to which it belongs.

This scheme is substantially different from the AIK scheme in 1.2 in that the ECDAA key may be used to

provide the anonymity for keys rather than having to send each new attestation key to a privacy certificate

authority (PCA) in order to have an anonymizing certificate produced. After a certificate has been

obtained for an ECDAA key, it may be used to produce anonymized certificates for many TPM keys

without requiring additional interaction with a privacy CA.

An ECDAA key may be used in any command that produces a signature. The TPM may not be used to

verify an ECDAA signature.

 ECDAA Key Generation on the TPM

While any signing key may be an ECDAA key, it is most useful as a Primary Key in the Endorsement

hierarchy. This ensures that a TPM will normally produce the same ECDAA keys and receive the same

credentials from a given Issuer, no matter how many times the credentialing process is performed, and no

matter how many owners the TPM has had. This property is desirable because an Issuer should only give

credentials to a platform after verifying that the platform has the architecture of a trusted platform. The

Issuer would give replacement (different) credentials only when it is necessary to retire the old

credentials. Replacement credentials erase the previous DAA history of the platform, at least as far as the

credentials from that issuer are concerned. Replacement might be desirable, as when a platform changes

hands, for example, in order to eliminate any association via DAA between the seller and the buyer. On

the other hand, replacement might be undesirable, since it enables a rogue to rejoin a community from

which it has been barred. Replacement is done by submitting a different TPMT_PUBLIC.unique field

value to the TPM when the key is created (TPM2_Create() or TPM2_CreatePrimary()). Software may use

any value of TPMT_PUBLIC.unique field at any time, in any order, but the Issuer can detect when a

request uses a different value from the previous request and could reject the request.

The cryptographic parameters of the curve are indicated by the template in the command

(TPM2_Create() or TPM2_CreatePrimary()) that creates the curve. The curve ID depends on the Issuer

who is expected to provide a credential for the DAA key (different Issuers may require different curves).

The TPM generates a private key (ds) and a public key (Qs). The non-cryptographic parameters in the

template (that is, object attributes and signing scheme) are chosen by the entity that calls the command

to create the DAA key. Inappropriate choice of the non-cryptographic parameters will cause the Issuer to

reject an application for a DAA credential.

The security strength of an ECDAA key is the same as an ECC key of the same size. The key size is

determined by the order of the curve (n) and the cofactor (h).

If the Endorsement Primary Seed is used as the DAA seed, then, like other EK, an ECDAA key will

change whenever the EPS is changed.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 261

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The process for generating an ECDAA key is identical to the process used for any ECC key.

For the TCG defined ECDAA protocol, the curve described by p, n, and b is a Barreto-Naehrig (BN)

elliptic curve. BN curves are of the form y2=x3+b as defined in [ISO/IEC 15946-5 : 2008 Clause 7.3 “BN

curve”], which is equivalent to [IEEE P1363.3 (Draft 2) Clause A.11.5 BN Curves].

NOTE The linear term (a) of generic ECC curves (curves with the form y2=x3+ax+b) is zero in BN curves.

All BN curves are suitable but some are less efficient than others. The BN curves recommended in
this version of DAA were chosen by the DAA designers.

The cryptographic value of the public key in the resultant TPM key structure is Qs, which is used by the

Issuer when computing the membership credential on the DAA private key ds. Qs is not used to verify the

DAA signatures produced by the TPM and corresponding host platform.

 ECDAA Sign Operation

The ECDAA scheme may be used in any command that uses a signing key. These are, the attestation

group and TPM2_Sign().

For an attestation command using the ECDAA scheme, both the qualifiedSigner and extraData fields in

the attestation block (a TPMS_ATTEST) are set to be the Empty Buffer before the data is hashed. The

attestation data is then marshaled and hashed. The resulting hash data is then concatenated to the first

hash to produce the value to sign (P).

 P ≔ HschemeHash(qualifyingData || HschemeHash(TPMS_ATTEST)) (63)

For TPM2_Sign(), the value to sign is the input digest and

 P ≔ digest (64)

To complete the ECDAA sign operation, the TPM uses the same random or pseudo-random value (r)

used in TPM2_Commit(). The value is determined by the counter field in the scheme parameter of the

signing command. This parameter is used in the process defined inC.2.5.

The signature is created using a modified Schnorr signature using the P and r values described above:

 set k to a random value such that 0 < k < n

 compute T ≔ H(k || P)(mod n)

 compute integer s ≔ (r + Tds)(mod n)

 if s = 0, output failure (negligible probability)

The signature is the tuple (k , s).

NOTE The k value is returned in the R parameter of the TPMT_SIGNATURE structure.

C.4.3 EC Schnorr

 Introduction

If a TPM supports ECC, it should support the TPM_ALG_ECSCHNORR scheme.

The scheme description uses the following values:

Trusted Platform Module Library Part 1: Architecture

Page 262 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

G generator point for the curve of the signing key

dS private value of the signing key

QS public point of the signing key (QS ≔ [dS]G)

n order of G

HschemeHash hash algorithm specified in the signing scheme

 EC Schnorr Sign

An EC Schnorr signature is generated when the signing scheme for a key is TPM_ALG_ECSCHNORR.

The scheme many be used in any signing operation

To sign a digest P

 set k to a random value such that 0 < k < n

 compute E ≔ (xE, yE) ≔ [k]G

 if E is the point at infinity, go to a)

 compute r ≔ TRUNC(HschemeHash(FE2BS(xE) || P) ,n)

NOTE 1 xE is a field element with the same number of bits as the curve order n

NOTE 2 TRUNC() is a function that reduces the number of octets in the first argument until it has no more

octets than the second argument. Truncation occurs from the less significant end of the number. If

the digest produced by HschemeHash has the same number of octets as the curve order n, then no

truncation occurs.

NOTE 3 FE2BS() is a function that converts the number xE (a field element) into a canonical value (octet or

byte string) with the same number of octets as the field order n. This may result in a value with

leading octets of zero. As xE is computed (mod p) the value may be greater than n

 compute integer s ≔ (k + rdS) (mod n)

NOTE 4 This is the same computation as step c) in C.4.2.3.

 if s = 0 or s = k go to a)

NOTE 5 The s = k check is to eliminate the possibility that 0 = r (mod n). Optionally, an implementation

could check after d) that 0 ≠ r (mod n).

The signature is the tuple (r, s).

 EC Schnorr Signature Validate

To validate a Schnorr signature (r, s) over digest P

 verify that 0 < s < n

 compute (xE, yE) ≔ [s]G + [-r]QS

 compute r' ≔ TRUNC(HschemeHash(FE2BS(xE) || P) ,n)

 the signature is valid if r' = r

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 263

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE The comparison of r’ and r is done assuming that both values are numeric and not octet strings.

This reduces the chance of interoperability problems due to padding performed on r.

C.5 ECC Key Generation

For an ECC key, the method of FIPS 186-4, Annex B.4.1 Key Pair Generation Using Extra Random is

used. The caller provides a random number generation function according to the type of key being

generated (see 27.6.2, 27.6.3, and 28.4) and that function is called when random bits are required by the

generation process. The key generation process is:

 obtain a random value c of length(n) + 64 bits where n is the order of the curve

 set d ≔ (c mod(n-1)) + 1

 compute Q ≔ (xQ, yQ) ≔ [d]G

 return d and Q

C.6 Secret Sharing

C.6.1 ECDH

For secret sharing with an ECC key, the One-Pass Diffie-Hellman, C(1, 1, ECC CDH) method from

SP800-56A is used.

Using the notation of SP800-56A, the initiator generates an ephemeral key pair (de,U, Qe,U) from the curve

parameters. The public point of the ephemeral key(Qe,U) is used by the recipient to recover the shared

secret.

The initiator uses the private portion of the ephemeral key (de,U) and the public portion (Qs,V) of an ECC

key of the recipient and computes the point P ≔ h [de,U]Qs,V. Then it will set Z ≔ xP where xP is the x-

coordinate of P.

The recipient may compute P ≔ h [ds,V]Qe,U and Z ≔ xP.

The Z value is used in KDFe to generate a value for seed that is appropriate for the use of the seed. The

seed will be the size of the digest produced by the hashAlg used in the KDF. Seed is computed by:

 seed ≔ KDFe(hashAlg, Z, label, PartyUInfo, PartyVInfo, bits) (65)

where

hashAlg the nameAlg of the recipient key

Z the x coordinate (xP) of the product (P) of a public point and a private key

(P ≔ h [d] Q)

label an application-dependent value

PartyUInfo the x-coordinate of the secret exchange value (Qe,U)

PartyVInfo the x-coordinate of a public key (Qs,V)

bits the number of bits in the digest of hashAlg

Trusted Platform Module Library Part 1: Architecture

Page 264 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.6.2 ECDH Encryption of Salt

In TPM2_StartAuthSession(), when tpmKey is an ECC key, a seed value is produced as described in

C.6.1 with the label parameter set to “SECRET”. This seed value is then used as the session secret.

C.6.3 ECC Secret Sharing for Duplication

When the new parent for a duplicated object is an ECC key, an ephemeral key is created and used to

generate a seed value as described in C.6.1. When creating the seed, the label parameter is set to

“DUPLICATE”. The seed value is then used to generate the encryption and integrity values for the

duplication blob as described in clause 22.

C.6.4 ECC Secret Sharing for Credentials

When the decryption key for an identity blob is an ECC key, an ephemeral key is created and used to

generate a seed value as described in C.6.1. When creating the seed, the label parameter is set to

“IDENTITY”. The seed value is then used to generate the encryption and integrity values for the identity

blob as described in clause 22.

C.7 ECC Primitive Operations

C.7.1 Introduction

When ECC is implemented on a TPM, it may provide these additional commands to support

cryptographic operations with unrestricted ECC keys.

C.7.2 TPM2_ECDH_KeyGen()

TPM2_ECDH_KeyGen produces an ephemeral key pair. It multiplies the private ephemeral key with the

public point of a loaded TPM key to produce the Diffie-Hellman shared secret.

This function can be performed by software as the public key and parameters are known. The function

would be provided by the TPM as a service.

Since the operation can be performed by software, no authorization is required to use the public portion of

the key and the key attributes are not checked.

C.7.3 TPM2_ECDH_ZGen()

TPM2_ECDH_ZGen performs the ECDH primitive function with one static and one ephemeral key as

defined in SP800-56A, clause 6.2.2. The input point (Qe) is multiplied by the private coordinate (ds) to

produce the point Z = (xZ, yZ) ≔ hdsQe.

Since this operation used the private portion of an ECC key, authorization is required. To prevent

inadvertent compromise of a signing key, sign and restricted are required to be CLEAR in the referenced

key.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 265

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.7.4 Two-phase Key Exchange

 Introduction

Various key exchange protocols use an ephemeral key from each party. For these protocols, each party

generates an ephemeral key and that key is sent to the other party along with other information. The

other party then uses the key material from the other party along with its own ephemeral key to generate

the key-exchange values.

These protocols require two phases. In the first phase, the TPM generates an ephemeral key to be sent

to the other party. In the second phase, the TPM combines data from the other party with the ephemeral

key generated in the first phase. The protocols require that the ephemeral key generated by the TPM only

be used once and be discarded after the key exchange is complete. This property of this key is the same

as required for ECDAA.

TPM2_EC_Ephemeral() uses the commit mechanism to generate a random value (r) and a public key P
≔ [r]G. The value of P is returned to the caller along with the counter value associated with r.

TPM2_ZGen_2Phase() is used to complete the second phase of the key exchange. The counter value

returned by TPM2_EC_Ephemeral() is provided from which the TPM recreates r and regenerates the

associated public key. When TPM2_ZGen_2Phase() completes successfully, the TPM will "retire" the r

value so that it may not be used again.

One of the parameters of TPM2_ZGen_2Phase() is a scheme selector (inScheme). This indicates to the

TPM which of the supported schemes is to be used. This annex describes two of the allowed schemes.

They are the two EC schemes from SP800-56A that require two ephemeral and two static keys. The

schemes are described in SP800-56A in 6.1.1.2 Full Unified Model, C(2, 2, ECC CDH) and 6.1.1.4 Full

MQV, C(2, 2, ECC MQV). These schemes use the following terms:

ds,A the private part of a TPM-resident ECC key referenced by the keyA

parameter

Qs,A the public point of the key referenced by keyA equal to [ds,A]G with

coordinates (xs,A, ys,A)

de,A a private ephemeral key generated by the TPM (the value of r

associated with counter parameter)

Qe,A the public ephemeral key associated with counter equal to [de,A]G or [r]G
with coordinates (xe,A, ye,A)

Qs,B the inQsB parameter – a point on the curve of keyA assumed to be a

static public key associated with the other party in the key exchange with

coordinates (xs,B, ys,B)

Qe,B the inQeB parameter – a point on the curve of keyA assumed to be an

ephemeral public key associated with the other party in the key

exchange with coordinates (xe,B, ye,B)

 Full Unified Model

When this scheme is selected for TPM2_ZGen_2Phase(), the TPM will:

 set outZ1 ≔ [ds,A]Qs,B

 set outZ2 ≔ [de,A]Qe,B

Trusted Platform Module Library Part 1: Architecture

Page 266 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE If outZ1 or outZ2 is the point at infinity, then both coordinate values of the point will be Empty
Buffers.

 Full MQV

This scheme uses an associated value function (avf()) that is defines as:

Inputs:

Q = (x, y) a public key

n the modulus of the curve containing Q

Process:

Process:

 Set f ≔ (log2(n)/ 2)

 Set x' = 2f + (x mod 2f)

 return x'

The MQV computation is:

 validate that Qs,B and Qe,B are on the curve associated with ds,A

 using counter, recover de,A = r as described in C.2.5

 set Qe,A ≔ [de,A]G where G is the generator point for the curve of ds,A

 set tA ≔ (de,A + ds,A · avf(Qe,A)) (mod n)

 set outZ1 ≔ [h · tA] (Qe,B + [avf(Qe,B)](Qs,B))

NOTE 1 if outZ1 is the point at infinity both the coordinate values of outZ1 will be Empty Buffers

NOTE 2 This protocol may be susceptible to unknown key-share (UKS) attacks.

C.8 ECC Point Padding

To provide consistent behavior across all TPM implementations this clause specifies the padding

requirements for ECC parameters. An ECC point returned by the TPM is composed of x and y ECC

parameters, both of which are required to be the size of their associated curve (e.g., 32 bytes for NIST P-

256). If necessary, leading bytes of zero will be added to these point values. When the ECC parameters

are returned by the command TPM2_ECC_Parameters(), the numeric values will be as specified in the

TCG Algorithm registry. However, the size of values, other than the x and y of the generator point, may

not be the same as the registry because values may or may not be zero padded.

To ensure interoperability, an ECC point that is part of a TPM2B_PUBLIC should be padded with zeros to

be the size of the order of the curve that defines the key.

When an ECC point is input to the TPM, the padding is required as described above for TPM output of an

ECC point.

NOTE: The reason for requiring padding on the input of an ECC point is that an ECC point makes up the
unique field of an ECC key. The Name of the key is computed by hashing the key’s public area as
input to the TPM. If the ECC point in the unique field is not properly padded, the Name would not be
consistent.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 267

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

An intermediate ECC point, such as the result of an ECC point multiplication or the public key of an

ephemeral ECC key, is required to be padded if used as input to the KDFe() function.

NOTE This ensures that the secret derived from KDFe(), which is used e.g. as salt in
TPM2_StartAuthSession(), or as protection seed of the outer wrapper in TPM2_Duplicate(), is the
same on different implementations.

Revision 1.16 of this specification also required the ECC private key in duplicate of TPM2_Import() to be

padded.

Trusted Platform Module Library Part 1: Architecture

Page 268 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex D
(normative/informative)

Support for SMx Family of Algorithms

D.1 Introduction

This section provides additional information for implementation of the SM2, SM3, and SM4 algorithms

published by State Encryption Management Bureau, China.

D.2 SM2

D.2.1 Introduction

SM2 is contains information relating to ECC cryptography and is in five parts.

• Part 1: General – "provides necessary basics of mathematics and related cryptographic techniques
used in public key cryptographic algorithm SM2 based on elliptic curves." The methods of this part
are compatible with the EC methods in other standards and no special considerations are necessary
to accommodate this standard

[GM/T 0003.1-2012 Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, part1: General

Protocol, published by State Encryption Management Bureau, China]

• Part 2: Digital Signature Algorithm – defines the process for generation and verification of a digital
signature using the methods described in Part 1. The signing method in this part of the standard
require addition of a new signing scheme and methods. These are described in this annex. .

[GM/T 0003.2-2012 Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, part2: Digital

Signature Algorithm, published by State Encryption Management Bureau, China]

• Part 3: Key Exchange Protocol – defines a two phase key exchange protocol using the methods of
Part 1. The method in this part of the SM2 standard is supported by addition of a key exchange
command (TPM2_ZGen_2Phase()). The algorithm is fully described in TPM 2.0 Part 3 of this TPM
specification.

[GM/T 0003.3-2012 Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, part3: Key

Exchange Protocol, published by State Encryption Management Bureau, China]

• Part 4: Public Key Encryption Algorithm – defines an encryption method using single pass EC Diffie-
Hellman to exchange a key that is then used to generate a stream cipher. The TPM does not use this
method.

[GM/T 0003.4-2012 Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, part4: Public Key

Encryption Algorithm, published by State Encryption Management Bureau, China.]

• Part5: Parameter definition – defines the parameters for a 256-bit ECC curve.

[GM/T 0003.5-2012 Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, part5: Parameter

definition, published by State Encryption Management Bureau, China]

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 269

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.2.2 SM2 Digital Signature Algorithm

 SM2 Sign

The SM2 signing scheme has an algorithm ID of TPM_ALG_SM2. If the TPM implements this algorithm,

then any structure that allows an ECC-based signing scheme may use this algorithm ID.

The TPM only implements a portion of the full SM2 signing scheme. That portion is the part that uses the

private key to sign a digest.

The inputs to the algorithm are:

e a digest to sign

ds a private ECC key

n the modulus of the curve for ds

The computation implemented in the TPM is:

 set k to a random value such that 1 ≤ k ≤ n-1

 compute P1 ≔ (x1, y1) ≔ [k]G

 compute r ≔ e + x1 (mod n)

 if r equals 0 or (r + k) equals n, go to 0

 compute s ≔ ((1 + ds)-1 · (k – r · ds)) (mod n)

 if s equals 0, go to 0

 the signature is the tuple (r, s)

 SM2 Signature Verification

For verification (TPM2_VerifySignature() and TPM2_PolicySigned()), the inputs are:

e the digest that was signed

(r, s) the signature tuple

P a public ECC key

G the generator point for the curve of P

n the modulus of the curve for ds

 The verification computation performed by the TPM is:

 verify that r and s are in the inclusive interval 1 to (n – 1)

 compute t ≔ (r + s) (mod n)

 verify that 0 < t

 compute (x, y) ≔ [s]G + [t]P

 compute r' ≔ (e + x) (mod n)

 verify that r' = r

If any of the verification steps fails, then the signature is not valid.

Trusted Platform Module Library Part 1: Architecture

Page 270 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Implementation Issues

In the SM2 standard, the message to sign is combined with key-specific data to produce an e value that is

signed using the algorithm shown above. The computation for e uses a value ZA that, according to the

SM2 standard, is computed by:

 ZA ≔ H(ENTLA || IDA || a || b || xG || yG || xA || yA) (66)

where

ENTLA two octets containing the length of IDA in octets

IDA octet string containing information that can identify an entity’s identity

unambiguously (see ISO/IEC 15946-3 3.9)

a coefficient for the linear term of the equation for the curve of the signing

key

b coefficient for the constant term of the equation for the curve of the

signing key

xG the x coordinate of the generator point for the curve of the signing key

yG the x coordinate of the generator point for the curve of the signing key

xA the x coordinate of the public key of the signing key

yA the y coordinate of the public key of the signing key

Using ZA and a message (M) the digest to sign (e) is computed by:

 e ≔ H(ZA || M) (67)

Since the TPM does not do the operation in equation (67), the caller may need to modify the input

message before using the TPM to sign the digest. If the application requires it, the caller would need to do

the computation of e before giving the value to the TPM to sign.

One consequence of this is that attestation operations will not create a signature that is in all details,

compliant with SM2 Part 2. Instead, the attestation signatures will be TPM specific. The reason that

attestations do not sign using the full scheme are:

• There is no infrastructure for the distribution of IDA values

• Requiring the use of an IDA value in a signature could allow correlation of a user and void the privacy

assurances of the attestation

• Ensuring that an external digest does not match a valid attestation becomes intractable.

The reason that the attestation problem becomes intractable is that, using ZA with an attestation means

that the first bytes that were used to form the digest of the signed value (e) would vary with each key used

to sign. An attacker could perform a hash using the key specific values followed by message data that

has all the characteristics of an attestation. The TPM will not be able to discern the transition from ZA data

to the false attestation data.

To prevent this kind of attack without adding excessive complexity to the TPM, the attestation is done

without including ZA. Since the use of ZA does not improve the security of the SM2 signature, leaving it out

does not compromise the value of the SM2 signing process for attestations. Also, since an attestation

only has meaning in the context of a TPM, having TPM-specific verification of a signature over an

attestation block should not create an issue.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 271

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

TPM2_Sign() may be used with the TPM_ALG_SM2 scheme identifier to create a full SM2-compatible

signature. To do an SM2 signature, the application would compute ZA, and then use the resulting digest

as the first data in one of the TPM hash commands (which could be a TPM2_HashSequenceStart()); with

the ZA value followed by the message data (M). The digest of H(ZA || M) would then be used as the digest

parameter for TPM2_Sign().

NOTE Since ZA is a constant value for a key, an application might choose to keep ZA as part of the meta-

data for the key so that it would not need to be recomputed each time the key is used for an SM2
signature.

D.2.3 SM2 Key Exchange

 Introduction

The key exchange algorithm in GM/T 0003.3-2012 is a two-phase algorithm. It is similar to the scheme

described in C.7.4.3.

NOTE This protocol may be susceptible to unknown key-share (UKS) attacks.

This SM2 key exchange computations use an associated value function (avfSM2()) that is similar to the

function defined in SP800-56A with the only differencing being that the result is one bit less than the value

defined in SP800-56A. The avfSM2() function is:

Inputs:

Q = (x, y) a public key

n the modulus of the curve containing Q

Process:

 set f ≔ (log2(n)/ 2) − 1

 set x' ≔ 2f + (x (mod 2f))

 return x'

NOTE This function is similar to the function in SP800-56A except that, in the formulation in GM/T 0002-

2012 as shown in a) above, the value of f is one less than the equivalent in SP800-56A.

 SM2 Key Exchange Protocol

The key exchange protocol is between two entities, A and B. The TPM performs computations as party A.

Since the protocol is symmetric, both party A and party B may be TPMs and they will both perform the

same operations, using the values from the other TPM as party B values.

The caller must use TPM2_EC_Ephemeral() to have the TPM generate a single-use ephemeral key. The

ephemeral public key is sent to the other party as Qe,B.

The inputs to the key exchange computation are:

counter the counter parameter from TPM2_Commit()

Qs,B a public EC key from party B; usually, the public part of a static key

Qe,B a public EC key; usually, the public part of an ephemeral key

ds,A a private EC key (an unrestricted decryption key)

Trusted Platform Module Library Part 1: Architecture

Page 272 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The protocol:

 validate that Qs,B and Qe,B are on the curve associated with ds,A

 using counter, recover r as described in C.2.5

 set Qe,A ≔ [r]G where G is the generator point for the curve of ds,A

 set tA ≔ (ds,A + de,A · avfSM2(Qe,A)) (mod n)

 set Z ≔ [h · tA] (Qs,B + [avfSM2(Qe,B)](Qe,B))

 if Z is the point at infinity, return failure

D.3 SM3

[GM/T 0004-2012 Cryptographic Hash Algorithm SM3, published by State Encryption Management

Bureau, China]

SM3 is a hash algorithm that uses a 512-bit block and produces a digest of 256 bits.

If the TPM implements this algorithm, then the algorithm ID for SM3 (TPM_ALG_SM3_256) may be used

in any structure that allows a hash algorithm.

D.4 SM4

[GM/T 0002-2012 Block Cipher Algorithm SM4, published by State Encryption Management Bureau,

China]

SM4 is a symmetric block cipher with a key and block size of 128 bits.

If the TPM implements this algorithm, then the algorithm ID for SM4 (TPM_ALG_SM4) may be used in

any structure that allows a symmetric block cipher.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 273

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Annex E
(normative/informative)

TDES

E.1 TDES Key Parity Generation

A TDES key is generated by getting 24 bytes from the random number generator appropriate for the type

of key generation (such as a KDF for a derived key). The 24 bytes are treated as 3, 64-bit values in

canonical TPM form (big-endian bytes). The odd parity is then generated for each byte with the parity

replacing the least significant bit in each byte to create 3 DES keys. The resulting three DES keys are

then validated to make sure that none of them is on the list of prohibited DES key values. If any of the

generated key values is prohibited, then the TPM will repeat the key generating process by generating 24

new bytes.

Trusted Platform Module Library Part 1: Architecture

Page 274 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex F
(informative)

Library Profile Guide

F.1 Introduction

This annex provides guidance to TPM platform specific work groups when developing platform specific

TPM specifications. The platform specific specification must specify these items. It aggregates platform

specific information from other parts of this specification.

F.2 Platform Specific Constants

• Constants returned by TPM2_GetCapability with the capability prefix TPM_PT_PS. See Part 2.

• The manufacturer, vendor strings, and firmware version.

F.3 PCR

• Number of PCR.

• The minimum size of a selection structure.

• Number of banks.

• Supported hash algorithms.

• PCR authorization, authorization groups, and locality.

• Which can be reset, under what conditions, and what the reset value is.

• Whether the PCR is preserved on resume.

• Which PCR increment the PCR update counter.

• DRTM and H-CRTM behavior, and PCR values at _TPM2_Init().

F.4 Algorithms

Define algorithms. See the TCG algorithm registry.

• Hash, asymmetric, and symmetric algorithms.

• For elliptic curve, the curves.

• Key sizes.

• Padding modes.

• Endorsement key certificate provisioning, and the NV attributes for the certificates.

• Algorithms and modes for parameter encryption.

F.5 Commands

See Part 2 and note that some commands have prerequisites or are implemented as a set.

• Mandatory, optional, and forbidden commands.

• Whether firmware upgrade is required, and whether the library specification or a vendor specific

method is permitted.

Part 1: Architecture Trusted Platform Module Library

Family “2.0” TCG Published Page 275

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

F.6 Buffers

• The minimum for the maximum size of an NV Index.

• The minimum size for the input and output buffers.

F.7 NV Storage

• Specify as much as possible the NV storage capacity. Since NV Indexes has varying meta-data
requirements, the value may not be exact.

• The types of NV Indexes supported. This is linked to the supported TPM2_NV commands.

• Whether NV Indexes and persistent keys may or may not come from the same NV memory pool.

• A minimum number of total Indexes, and minimums for certain Index types, such as counters.

• Whether both orderly and non-orderly indexes are supported.

• The minimum number of persistent key slots.

F.8 Sessions and Objects

• The minimum number of loaded and active sessions.

• The minimum number of loaded objects.

F.9 Physical Presence

• If physical presence is implemented, specify the table of commands that require physical

presence.

F.10 Dictionary Attack Lockout

• The default value for maxTries and recoveryTime.

F.11 Self Test

• Whether TPM2_SelfTest() can be blocking or non-blocking.

F.12 ACT

• The number of supported ACT instances (usually 0 or 1).

• Trigger event when the ACT times out.

• Whether TPM2_ClockRateAdjust() may affect the ACT rate, and maximum adjustment.

• The ACT behavior if TPM is in a low power state (sleep mode) (typically, ACT must advance).

• Whether the ACT state must be preserved over a power cycle (setting of the preserveSignaled

attribute).

• Whether clearing or setting the signaled attribute must also clear or set the associated trigger

event (e.g. when ACT signaling is turned off, or ACT signaling is preserved across TPM

Resume).

Trusted Platform Module Library Part 1: Architecture

Page 276 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• Whether the remaining ACT timeout must be retrievable in TPM Failure Mode.

TCG

Trusted Platform Module Library

Part 2: Structures

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published

Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 2: Structures

Page ii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

CONTENTS

1 Scope .. 1

2 Terms and definitions .. 1

3 Symbols and abbreviated terms .. 1

4 Notation ... 1

4.1 Introduction .. 1
4.2 Named Constants .. 2
4.3 Data Type Aliases (typedefs) .. 3
4.4 Enumerations... 3
4.5 Interface Type .. 4
4.6 Arrays .. 5
4.7 Structure Definitions .. 6
4.8 Conditional Types .. 7
4.9 Unions .. 9

4.9.1 Introduction.. 9
4.9.2 Union Definition ... 9
4.9.3 Union Instance .. 10
4.9.4 Union Selector Definition ... 11

4.10 Bit Field Definitions .. 12
4.11 Parameter Limits ... 13
4.12 Algorithm Macros ... 14

4.12.1 Introduction.. 14
4.12.2 Algorithm Token Semantics .. 15
4.12.3 Algorithm Tokens in Unions .. 15
4.12.4 Algorithm Tokens in Interface Types .. 16
4.12.5 Algorithm Tokens for Table Replication .. 16

4.13 Size Checking .. 18
4.14 Data Direction .. 18
4.15 Structure Validations ... 20
4.16 Name Prefix Convention .. 20
4.17 Data Alignment .. 21
4.18 Parameter Unmarshaling Errors .. 21

5 Base Types ... 23

5.1 Primitive Types .. 23
5.2 Specification Logic Value Constants ... 23
5.3 Miscellaneous Types ... 24

6 Constants .. 25

6.1 TPM_SPEC (Specification Version Values) .. 25
6.2 TPM_GENERATED ... 25
6.3 TPM_ALG_ID .. 26
6.4 TPM_ECC_CURVE ... 30
6.5 TPM_CC (Command Codes) .. 30

6.5.1 Format ... 30
6.5.2 TPM_CC Listing .. 31

6.6 TPM_RC (Response Codes) ... 35

6.6.1 Description .. 35
6.6.2 Response Code Formats .. 35
6.6.3 TPM_RC Values ... 38

6.7 TPM_CLOCK_ADJUST ... 43
6.8 TPM_EO (EA Arithmetic Operands) .. 43
6.9 TPM_ST (Structure Tags) ... 44
6.10 TPM_SU (Startup Type) .. 46

Trusted Platform Module Library Part 2: Structures

Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.11 TPM_SE (Session Type) ... 47
6.12 TPM_CAP (Capabilities) .. 48
6.13 TPM_PT (Property Tag) .. 49
6.14 TPM_PT_PCR (PCR Property Tag) .. 54
6.15 TPM_PS (Platform Specific) .. 56

7 Handles ... 57

7.1 Introduction .. 57
7.2 TPM_HT (Handle Types) ... 57
7.3 Persistent Handle Sub-ranges ... 58
7.4 TPM_RH (Permanent Handles)... 59
7.5 TPM_HC (Handle Value Constants) ... 60

8 Attribute Structures .. 63

8.1 Description ... 63
8.2 TPMA_ALGORITHM ... 63
8.3 TPMA_OBJECT (Object Attributes) .. 64

8.3.1 Introduction.. 64
8.3.2 Structure Definition .. 64
8.3.3 Attribute Descriptions .. 65

8.3.3.1 Introduction .. 65
8.3.3.2 Bit[1] – fixedTPM ... 66
8.3.3.3 Bit[2] – stClear ... 66
8.3.3.4 Bit[4] – fixedParent .. 66
8.3.3.5 Bit[5] – sensitiveDataOrigin ... 66
8.3.3.6 Bit[6] – userWithAuth ... 67
8.3.3.7 Bit[7] – adminWithPolicy.. 67
8.3.3.8 Bit[10] – noDA ... 68
8.3.3.9 Bit[11] – encryptedDuplication .. 68
8.3.3.10 Bit[16] – restricted ... 69
8.3.3.11 Bit[17] – decrypt .. 69
8.3.3.12 Bit[18] – sign / encrypt ... 70
8.3.3.13 Bit[19] – x509sign .. 70

8.4 TPMA_SESSION (Session Attributes) .. 71
8.5 TPMA_LOCALITY (Locality Attribute) ... 73
8.6 TPMA_PERMANENT .. 74
8.7 TPMA_STARTUP_CLEAR .. 75
8.8 TPMA_MEMORY .. 76
8.9 TPMA_CC (Command Code Attributes) ... 77

8.9.1 Introduction.. 77
8.9.2 Structure Definition .. 77
8.9.3 Field Descriptions .. 77

8.9.3.1 Bits[15:0] – commandIndex ... 77
8.9.3.2 Bit[22] – nv .. 77
8.9.3.3 Bit[23] – extensive ... 78
8.9.3.4 Bit[24] – flushed ... 78
8.9.3.5 Bits[27:25] – cHandles .. 78
8.9.3.6 Bit[28] – rHandle .. 78
8.9.3.7 Bit[29] – V .. 78
8.9.3.8 Bits[31:30] – Res ... 79

8.10 TPMA_MODES.. 79
8.11 TPMA_X509_KEY_USAGE .. 80
8.12 TPMA_ACT.. 81

9 Interface Types .. 82

9.1 Introduction .. 82
9.2 TPMI_YES_NO ... 82

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3 TPMI_DH_OBJECT ... 82
9.4 TPMI_DH_PARENT .. 83
9.5 TPMI_DH_PERSISTENT .. 83
9.6 TPMI_DH_ENTITY .. 84
9.7 TPMI_DH_PCR ... 84
9.8 TPMI_SH_AUTH_SESSION ... 85
9.9 TPMI_SH_HMAC .. 85
9.10 TPMI_SH_POLICY .. 85
9.11 TPMI_DH_CONTEXT .. 85
9.12 TPMI_DH_SAVED ... 86
9.13 TPMI_RH_HIERARCHY .. 86
9.14 TPMI_RH_ENABLES .. 86
9.15 TPMI_RH_HIERARCHY_AUTH .. 87
9.16 TPMI_RH_HIERARCHY_POLICY .. 87
9.17 TPMI_RH_PLATFORM ... 87
9.18 TPMI_RH_OWNER ... 88
9.19 TPMI_RH_ENDORSEMENT ... 88
9.20 TPMI_RH_PROVISION ... 88
9.21 TPMI_RH_CLEAR ... 89
9.22 TPMI_RH_NV_AUTH .. 89
9.23 TPMI_RH_LOCKOUT ... 89
9.24 TPMI_RH_NV_INDEX ... 90
9.25 TPMI_RH_AC .. 90
9.26 TPMI_RH_ACT .. 91
9.27 TPMI_ALG_HASH ... 91
9.28 TPMI_ALG_ASYM (Asymmetric Algorithms) .. 91
9.29 TPMI_ALG_SYM (Symmetric Algorithms) .. 92
9.30 TPMI_ALG_SYM_OBJECT ... 92
9.31 TPMI_ALG_SYM_MODE .. 92
9.32 TPMI_ALG_KDF (Key and Mask Generation Functions) .. 93
9.33 TPMI_ALG_SIG_SCHEME ... 93
9.34 TPMI_ECC_KEY_EXCHANGE ... 93
9.35 TPMI_ST_COMMAND_TAG ... 94
9.36 TPMI_ALG_MAC_SCHEME ... 94
9.37 TPMI_ALG_CIPHER_MODE .. 94

10 Structure Definitions .. 95

10.1 TPMS_EMPTY .. 95
10.2 TPMS_ALGORITHM_DESCRIPTION .. 95
10.3 Hash/Digest Structures .. 95

10.3.1 TPMU_HA (Hash) ... 95
10.3.2 TPMT_HA.. 96

10.4 Sized Buffers ... 96

10.4.1 Introduction.. 96
10.4.2 TPM2B_DIGEST ... 97
10.4.3 TPM2B_DATA ... 97
10.4.4 TPM2B_NONCE ... 97
10.4.5 TPM2B_AUTH .. 97
10.4.6 TPM2B_OPERAND .. 98
10.4.7 TPM2B_EVENT .. 98
10.4.8 TPM2B_MAX_BUFFER .. 98
10.4.9 TPM2B_MAX_NV_BUFFER ... 98
10.4.10 TPM2B_TIMEOUT .. 99
10.4.11 TPM2B_IV ... 99

10.5 Names ... 99

10.5.1 Introduction.. 99
10.5.2 TPMU_NAME .. 99

Trusted Platform Module Library Part 2: Structures

Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.5.3 TPM2B_NAME .. 100

10.6 PCR Structures .. 100

10.6.1 TPMS_PCR_SELECT ... 100
10.6.2 TPMS_PCR_SELECTION .. 101

10.7 Tickets ... 101

10.7.1 Introduction.. 101
10.7.2 A NULL Ticket ... 102
10.7.3 TPMT_TK_CREATION ... 102
10.7.4 TPMT_TK_VERIFIED ... 103
10.7.5 TPMT_TK_AUTH .. 104
10.7.6 TPMT_TK_HASHCHECK ... 105

10.8 Property Structures .. 105

10.8.1 TPMS_ALG_PROPERTY ... 105
10.8.2 TPMS_TAGGED_PROPERTY ... 105
10.8.3 TPMS_TAGGED_PCR_SELECT ... 106
10.8.4 TPMS_TAGGED_POLICY .. 106
10.8.5 TPMS_ACT_DATA ... 106

10.9 Lists ... 107

10.9.1 TPML_CC.. 107
10.9.2 TPML_CCA ... 107
10.9.3 TPML_ALG.. 107
10.9.4 TPML_HANDLE .. 108
10.9.5 TPML_DIGEST ... 108
10.9.6 TPML_DIGEST_VALUES ... 109
10.9.7 TPML_PCR_SELECTION ... 109
10.9.8 TPML_ALG_PROPERTY .. 109
10.9.9 TPML_TAGGED_TPM_PROPERTY .. 110
10.9.10 TPML_TAGGED_PCR_PROPERTY .. 110
10.9.11 TPML_ECC_CURVE .. 110
10.9.12 TPML_TAGGED_POLICY .. 111
10.9.13 TPML_ACT_DATA .. 111

10.10 Capabilities Structures ... 111

10.10.1 TPMU_CAPABILITIES .. 112
10.10.2 TPMS_CAPABILITY_DATA .. 112

10.11 Clock/Counter Structures .. 113

10.11.1 TPMS_CLOCK_INFO ... 113
10.11.2 Clock ... 114
10.11.3 ResetCount ... 114
10.11.4 RestartCount ... 114
10.11.5 Safe ... 114
10.11.6 TPMS_TIME_INFO ... 114

10.12 TPM Attestation Structures .. 115

10.12.1 Introduction.. 115
10.12.2 TPMS_TIME_ATTEST_INFO ... 115
10.12.3 TPMS_CERTIFY_INFO .. 115
10.12.4 TPMS_QUOTE_INFO ... 115
10.12.5 TPMS_COMMAND_AUDIT_INFO .. 116
10.12.6 TPMS_SESSION_AUDIT_INFO ... 116
10.12.7 TPMS_CREATION_INFO ... 116
10.12.8 TPMS_NV_CERTIFY_INFO ... 116
10.12.9 TPMS_NV_DIGEST_CERTIFY_INFO .. 117
10.12.10 TPMI_ST_ATTEST ... 117
10.12.11 TPMU_ATTEST .. 117
10.12.12 TPMS_ATTEST .. 118
10.12.13 TPM2B_ATTEST .. 119

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page vii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.13 Authorization Structures .. 119

10.13.1 Introduction.. 119
10.13.2 TPMS_AUTH_COMMAND ... 119
10.13.3 TPMS_AUTH_RESPONSE .. 119

11 Algorithm Parameters and Structures ... 120

11.1 Symmetric .. 120

11.1.1 Introduction.. 120
11.1.2 TPMI_!ALG.S_KEY_BITS ... 120
11.1.3 TPMU_SYM_KEY_BITS ... 120
11.1.4 TPMU_SYM_MODE ... 121
11.1.5 TPMU_SYM_DETAILS ... 121
11.1.6 TPMT_SYM_DEF ... 122
11.1.7 TPMT_SYM_DEF_OBJECT ... 122
11.1.8 TPM2B_SYM_KEY ... 122
11.1.9 TPMS_SYMCIPHER_PARMS .. 123
11.1.10 TPM2B_LABEL ... 123
11.1.11 TPMS_DERIVE ... 123
11.1.12 TPM2B_DERIVE ... 124
11.1.13 TPMU_SENSITIVE_CREATE... 124
11.1.14 TPM2B_SENSITIVE_DATA .. 124
11.1.15 TPMS_SENSITIVE_CREATE ... 125
11.1.16 TPM2B_SENSITIVE_CREATE ... 125
11.1.17 TPMS_SCHEME_HASH ... 125
11.1.18 TPMS_SCHEME_ECDAA .. 126
11.1.19 TPMI_ALG_KEYEDHASH_SCHEME ... 126
11.1.20 HMAC_SIG_SCHEME .. 126
11.1.21 TPMS_SCHEME_XOR ... 126
11.1.22 TPMU_SCHEME_KEYEDHASH .. 127
11.1.23 TPMT_KEYEDHASH_SCHEME ... 127

11.2 Asymmetric .. 128

11.2.1 Signing Schemes .. 128

11.2.1.1 Introduction .. 128
11.2.1.2 RSA Signature Schemes... 128
11.2.1.3 ECC Signature Schemes .. 128
11.2.1.4 TPMU_SIG_SCHEME ... 129
11.2.1.5 TPMT_SIG_SCHEME ... 129

11.2.2 Encryption Schemes ... 129

11.2.2.1 Introduction .. 129
11.2.2.2 RSA Encryption Schemes ... 129
11.2.2.3 ECC Key Exchange Schemes .. 130

11.2.3 Key Derivation Schemes ... 130

11.2.3.1 Introduction .. 130
11.2.3.2 TPMU_KDF_SCHEME .. 130
11.2.3.3 TPMT_KDF_SCHEME .. 130
11.2.3.4 TPMI_ALG_ASYM_SCHEME ... 131
11.2.3.5 TPMU_ASYM_SCHEME... 131
11.2.3.6 TPMT_ASYM_SCHEME ... 131

11.2.4 RSA ... 132

11.2.4.1 TPMI_ALG_RSA_SCHEME .. 132
11.2.4.2 TPMT_RSA_SCHEME .. 132
11.2.4.3 TPMI_ALG_RSA_DECRYPT .. 132
11.2.4.4 TPMT_RSA_DECRYPT .. 132
11.2.4.5 TPM2B_PUBLIC_KEY_RSA ... 133
11.2.4.6 TPMI_RSA_KEY_BITS ... 133
11.2.4.7 TPM2B_PRIVATE_KEY_RSA .. 133

Trusted Platform Module Library Part 2: Structures

Page viii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.2.5 ECC ... 134

11.2.5.1 TPM2B_ECC_PARAMETER .. 134
11.2.5.2 TPMS_ECC_POINT .. 134
11.2.5.3 TPM2B_ECC_POINT .. 134
11.2.5.4 TPMI_ALG_ECC_SCHEME ... 135
11.2.5.5 TPMI_ECC_CURVE .. 135
11.2.5.6 TPMT_ECC_SCHEME .. 135
11.2.5.7 TPMS_ALGORITHM_DETAIL_ECC ... 136

11.3 Signatures .. 136

11.3.1 TPMS_SIGNATURE_RSA .. 136
11.3.2 TPMS_SIGNATURE_ECC .. 137
11.3.3 TPMU_SIGNATURE ... 137
11.3.4 TPMT_SIGNATURE ... 137

11.4 Key/Secret Exchange .. 138

11.4.1 Introduction.. 138
11.4.2 TPMU_ENCRYPTED_SECRET ... 138
11.4.3 TPM2B_ENCRYPTED_SECRET ... 138

12 Key/Object Complex .. 139

12.1 Introduction .. 139
12.2 Public Area Structures ... 139

12.2.1 Description .. 139
12.2.2 TPMI_ALG_PUBLIC ... 139
12.2.3 Type-Specific Parameters ... 140

12.2.3.1 Description .. 140
12.2.3.2 TPMU_PUBLIC_ID .. 140
12.2.3.3 TPMS_KEYEDHASH_PARMS ... 141
12.2.3.4 TPMS_ASYM_PARMS ... 141
12.2.3.5 TPMS_RSA_PARMS .. 142
12.2.3.6 TPMS_ECC_PARMS .. 143
12.2.3.7 TPMU_PUBLIC_PARMS .. 143
12.2.3.8 TPMT_PUBLIC_PARMS ... 144

12.2.4 TPMT_PUBLIC ... 144
12.2.5 TPM2B_PUBLIC ... 144
12.2.6 TPM2B_TEMPLATE ... 145

12.3 Private Area Structures ... 145

12.3.1 Introduction.. 145
12.3.2 Sensitive Data Structures .. 145

12.3.2.1 Introduction .. 145
12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC ... 145
12.3.2.3 TPMU_SENSITIVE_COMPOSITE .. 146
12.3.2.4 TPMT_SENSITIVE .. 146

12.3.3 TPM2B_SENSITIVE ... 146
12.3.4 Encryption ... 147
12.3.5 Integrity .. 147
12.3.6 _PRIVATE ... 147
12.3.7 TPM2B_PRIVATE ... 147

12.4 Identity Object .. 148

12.4.1 Description .. 148
12.4.2 TPMS_ID_OBJECT .. 148
12.4.3 TPM2B_ID_OBJECT .. 148

13 NV Storage Structures .. 149

13.1 TPM_NV_INDEX ... 149
13.2 TPM_NT .. 150

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page ix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

13.3 TPMS_NV_PIN_COUNTER_PARAMETERS ... 150
13.4 TPMA_NV (NV Index Attributes) ... 150
13.5 TPMS_NV_PUBLIC ... 154
13.6 TPM2B_NV_PUBLIC ... 154

14 Context Data ... 155

14.1 Introduction .. 155
14.2 TPM2B_CONTEXT_SENSITIVE... 155
14.3 TPMS_CONTEXT_DATA .. 155
14.4 TPM2B_CONTEXT_DATA .. 155
14.5 TPMS_CONTEXT ... 156
14.6 Parameters of TPMS_CONTEXT .. 157

14.6.1 sequence ... 157
14.6.2 savedHandle ... 157
14.6.3 hierarchy.. 158

14.7 Context Protection ... 158

14.7.1 Context Integrity .. 158
14.7.2 Context Confidentiality .. 158

15 Creation Data .. 159

15.1 TPMS_CREATION_DATA .. 159
15.2 TPM2B_CREATION_DATA .. 159

16 Attached Component Structures ... 160

16.1 TPM_AT ... 160
16.2 TPM_AE .. 160
16.3 TPMS_AC_OUTPUT ... 160
16.4 TPML_AC_CAPABILITIES .. 161

Trusted Platform Module Library Part 2: Structures

Page x TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Tables

Table 1 — Name Prefix Convention ... 20

Table 2 — Unmarshaling Errors ... 22

Table 3 — Definition of Base Types ... 23

Table 4 — Defines for Logic Values ... 23

Table 5 — Definition of Types for Documentation Clarity ... 24

Table 6 — Definition of (UINT32) TPM_SPEC Constants <> ... 25

Table 7 — Definition of (UINT32) TPM_GENERATED Constants <O> ... 25

Table 8 — Legend for TPM_ALG_ID Table .. 26

Table 9 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S> ... 27

Table 10 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT> 30

Table 11 — TPM Command Format Fields Description ... 30

Table 12 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S> 31

Table 13 — Format-Zero Response Codes .. 36

Table 14 — Format-One Response Codes .. 37

Table 15 — Response Code Groupings ... 37

Table 16 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT> .. 38

Table 17 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN> ... 43

Table 18 — Definition of (UINT16) TPM_EO Constants <IN/OUT> ... 43

Table 19 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S> ... 45

Table 20 — Definition of (UINT16) TPM_SU Constants <IN> .. 47

Table 21 — Definition of (UINT8) TPM_SE Constants <IN> .. 47

Table 22 — Definition of (UINT32) TPM_CAP Constants .. 48

Table 23 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S> ... 49

Table 24 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S> ... 54

Table 25 — Definition of (UINT32) TPM_PS Constants <OUT> .. 56

Table 26 — Definition of Types for Handles ... 57

Table 27 — Definition of (UINT8) TPM_HT Constants <S> ... 57

Table 28 — Definition of (TPM_HANDLE) TPM_RH Constants <S> ... 59

Table 29 — Definition of (TPM_HANDLE) TPM_HC Constants <S> ... 61

Table 30 — Definition of (UINT32) TPMA_ALGORITHM Bits .. 63

Table 31 — Definition of (UINT32) TPMA_OBJECT Bits ... 64

Table 32 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT> .. 71

Table 33 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT> .. 73

Table 34 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT> .. 74

Table 35 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT> .. 75

Table 36 — Definition of (UINT32) TPMA_MEMORY Bits <Out> .. 76

Table 37 — Definition of (TPM_CC) TPMA_CC Bits <OUT> ... 77

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page xi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 38 — Definition of (UINT32) TPMA_MODES Bits <Out> ... 79

Table 39 — Definition of (UINT32) TPMA_ACT Bits .. 81

Table 40 — Definition of (BYTE) TPMI_YES_NO Type ... 82

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type.. 82

Table 42 — Definition of (TPM_HANDLE) TPMI_DH_PARENT Type ... 83

Table 43 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type ... 83

Table 44 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN> .. 84

Table 45 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN> ... 84

Table 46 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT> 85

Table 47 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT> .. 85

Table 48 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT> 85

Table 49 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type .. 85

Table 50 — Definition of (TPM_HANDLE) TPMI_DH_SAVED Type.. 86

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type .. 86

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES Type ... 86

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN> 87

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_POLICY Type <IN> 87

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN> ... 87

Table 56 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN> ... 88

Table 57 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN> 88

Table 58 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN> ... 88

Table 59 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN> ... 89

Table 60 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN> .. 89

Table 61 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN> ... 89

Table 62 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT> 90

Table 63 — Definition of (TPM_HANDLE) TPMI_RH_AC Type <IN> .. 90

Table 64 — Definition of (TPM_HANDLE) TPMI_RH_ACT Type ... 91

Table 65 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type.. 91

Table 66 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type ... 91

Table 67 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type .. 92

Table 68 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type ... 92

Table 69 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type ... 92

Table 70 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type .. 93

Table 71 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type .. 93

Table 72 — Definition of (TPM_ALG_ID){ECC} TPMI_ECC_KEY_EXCHANGE Type 93

Table 73 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type .. 94

Table 74 — Definition of (TPM_ALG_ID) TPMI_ALG_MAC_SCHEME Type .. 94

Table 75 — Definition of (TPM_ALG_ID) TPMI_ALG_CIPHER_MODE Type ... 94

Table 76 — Definition of TPMS_EMPTY Structure <IN/OUT> ... 95

Trusted Platform Module Library Part 2: Structures

Page xii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 77 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT> 95

Table 78 — Definition of TPMU_HA Union <IN/OUT > .. 95

Table 79 — Definition of TPMT_HA Structure <IN/OUT> .. 96

Table 80 — Definition of TPM2B_DIGEST Structure ... 97

Table 81 — Definition of TPM2B_DATA Structure ... 97

Table 82 — Definition of Types for TPM2B_NONCE ... 97

Table 83 — Definition of Types for TPM2B_AUTH .. 97

Table 84 — Definition of Types for TPM2B_OPERAND .. 98

Table 85 — Definition of TPM2B_EVENT Structure ... 98

Table 86 — Definition of TPM2B_MAX_BUFFER Structure .. 98

Table 87 — Definition of TPM2B_MAX_NV_BUFFER Structure ... 98

Table 88 — Definition of TPM2B_TIMEOUT Structure .. 99

Table 89 — Definition of TPM2B_IV Structure <IN/OUT> .. 99

Table 90 — Definition of TPMU_NAME Union <> .. 99

Table 91 — Definition of TPM2B_NAME Structure .. 100

Table 92 — Definition of TPMS_PCR_SELECT Structure ... 101

Table 93 — Definition of TPMS_PCR_SELECTION Structure ... 101

Table 94 — Values for proof Used in Tickets ... 102

Table 95 — General Format of a Ticket .. 102

Table 96 — Definition of TPMT_TK_CREATION Structure .. 103

Table 97 — Definition of TPMT_TK_VERIFIED Structure .. 103

Table 98 — Definition of TPMT_TK_AUTH Structure .. 104

Table 99 — Definition of TPMT_TK_HASHCHECK Structure .. 105

Table 100 — Definition of TPMS_ALG_PROPERTY Structure <OUT> ... 105

Table 101 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT> ... 105

Table 102 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT> 106

Table 103 — Definition of TPMS_TAGGED_POLICY Structure <OUT> ... 106

Table 104 — Definition of TPMS_ACT_DATA Structure <OUT> ... 106

Table 105 — Definition of TPML_CC Structure .. 107

Table 106 — Definition of TPML_CCA Structure <OUT> ... 107

Table 107 — Definition of TPML_ALG Structure .. 107

Table 108 — Definition of TPML_HANDLE Structure <OUT> .. 108

Table 109 — Definition of TPML_DIGEST Structure .. 108

Table 110 — Definition of TPML_DIGEST_VALUES Structure ... 109

Table 111 — Definition of TPML_PCR_SELECTION Structure ... 109

Table 112 — Definition of TPML_ALG_PROPERTY Structure <OUT> ... 110

Table 113 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT> 110

Table 114 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT> 110

Table 115 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT> ... 110

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page xiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 116 — Definition of TPML_TAGGED_POLICY Structure <OUT> .. 111

Table 117 — Definition of TPML_ACT_DATA Structure <OUT> ... 111

Table 118 — Definition of TPMU_CAPABILITIES Union <OUT>... 112

Table 119 — Definition of TPMS_CAPABILITY_DATA Structure <OUT> ... 112

Table 120 — Definition of TPMS_CLOCK_INFO Structure .. 113

Table 121 — Definition of TPMS_TIME_INFO Structure ... 114

Table 122 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT> ... 115

Table 123 — Definition of TPMS_CERTIFY_INFO Structure <OUT> .. 115

Table 124 — Definition of TPMS_QUOTE_INFO Structure <OUT> .. 115

Table 125 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT> 116

Table 126 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT> .. 116

Table 127 — Definition of TPMS_CREATION_INFO Structure <OUT> .. 116

Table 128 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT> ... 116

Table 129 — Definition of TPMS_NV_DIGEST_CERTIFY_INFO Structure <OUT> 117

Table 130 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT> .. 117

Table 131 — Definition of TPMU_ATTEST Union <OUT> ... 117

Table 132 — Definition of TPMS_ATTEST Structure <OUT> .. 118

Table 133 — Definition of TPM2B_ATTEST Structure <OUT> .. 119

Table 134 — Definition of TPMS_AUTH_COMMAND Structure <IN> ... 119

Table 135 — Definition of TPMS_AUTH_RESPONSE Structure <OUT> .. 119

Table 136 — Definition of {!ALG.S} (TPM_KEY_BITS) TPMI_!ALG.S_KEY_BITS Type 120

Table 137 — Definition of TPMU_SYM_KEY_BITS Union ... 120

Table 138 — Definition of TPMU_SYM_MODE Union ... 121

Table 139 —xDefinition of TPMU_SYM_DETAILS Union .. 121

Table 140 — Definition of TPMT_SYM_DEF Structure .. 122

Table 141 — Definition of TPMT_SYM_DEF_OBJECT Structure .. 122

Table 142 — Definition of TPM2B_SYM_KEY Structure .. 123

Table 143 — Definition of TPMS_SYMCIPHER_PARMS Structure .. 123

Table 144 — Definition of TPM2B_LABEL Structure ... 123

Table 145 — Definition of TPMS_DERIVE Structure ... 123

Table 146 — Definition of TPM2B_DERIVE Structure ... 124

Table 147 — Definition of TPMU_SENSITIVE_CREATE Union <> ... 124

Table 148 — Definition of TPM2B_SENSITIVE_DATA Structure .. 124

Table 149 — Definition of TPMS_SENSITIVE_CREATE Structure <IN> .. 125

Table 150 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S> .. 125

Table 151 — Definition of TPMS_SCHEME_HASH Structure ... 125

Table 152 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure .. 126

Table 153 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type 126

Table 154 — Definition of Types for HMAC_SIG_SCHEME .. 126

Trusted Platform Module Library Part 2: Structures

Page xiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 155 — Definition of TPMS_SCHEME_XOR Structure ... 126

Table 156 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT > 127

Table 157 — Definition of TPMT_KEYEDHASH_SCHEME Structure ... 127

Table 158 — Definition of {RSA} Types for RSA Signature Schemes ... 128

Table 159 — Definition of {ECC} Types for ECC Signature Schemes ... 128

Table 160 — Definition of TPMU_SIG_SCHEME Union <IN/OUT >.. 129

Table 161 — Definition of TPMT_SIG_SCHEME Structure ... 129

Table 162 — Definition of Types for {RSA} Encryption Schemes .. 129

Table 163 — Definition of Types for {ECC} ECC Key Exchange ... 130

Table 164 — Definition of Types for KDF Schemes ... 130

Table 165 — Definition of TPMU_KDF_SCHEME Union <IN/OUT>.. 130

Table 166 — Definition of TPMT_KDF_SCHEME Structure .. 130

Table 167 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <IO> 131

Table 168 — Definition of TPMU_ASYM_SCHEME Union .. 131

Table 169 — Definition of TPMT_ASYM_SCHEME Structure <> .. 132

Table 170 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type 132

Table 171 — Definition of {RSA} TPMT_RSA_SCHEME Structure ... 132

Table 172 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type 132

Table 173 — Definition of {RSA} TPMT_RSA_DECRYPT Structure ... 132

Table 174 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure .. 133

Table 175 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type 133

Table 176 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure .. 133

Table 177 — Definition of TPM2B_ECC_PARAMETER Structure ... 134

Table 178 — Definition of {ECC} TPMS_ECC_POINT Structure ... 134

Table 179 — Definition of {ECC} TPM2B_ECC_POINT Structure ... 134

Table 180 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type 135

Table 181 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type 135

Table 182 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure 135

Table 183 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT> 136

Table 184 — Definition of {RSA} TPMS_SIGNATURE_RSA Structure ... 136

Table 185 — Definition of Types for {RSA} Signature .. 136

Table 186 — Definition of {ECC} TPMS_SIGNATURE_ECC Structure ... 137

Table 187 — Definition of Types for {ECC} TPMS_SIGNATURE_ECC .. 137

Table 188 — Definition of TPMU_SIGNATURE Union <IN/OUT> ... 137

Table 189 — Definition of TPMT_SIGNATURE Structure .. 137

Table 190 — Definition of TPMU_ENCRYPTED_SECRET Union ... 138

Table 191 — Definition of TPM2B_ENCRYPTED_SECRET Structure .. 138

Table 192 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type .. 139

Table 193 — Definition of TPMU_PUBLIC_ID Union <IN/OUT> .. 140

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page xv

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 194 — Definition of TPMS_KEYEDHASH_PARMS Structure.. 141

Table 195 — Definition of TPMS_ASYM_PARMS Structure <> .. 141

Table 196 — Definition of {RSA} TPMS_RSA_PARMS Structure .. 142

Table 197 — Definition of {ECC} TPMS_ECC_PARMS Structure ... 143

Table 198 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT> .. 143

Table 199 — Definition of TPMT_PUBLIC_PARMS Structure ... 144

Table 200 — Definition of TPMT_PUBLIC Structure .. 144

Table 201 — Definition of TPM2B_PUBLIC Structure .. 144

Table 202 — Definition of TPM2B_TEMPLATE Structure .. 145

Table 203 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure 145

Table 204 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT> 146

Table 205 — Definition of TPMT_SENSITIVE Structure .. 146

Table 206 — Definition of TPM2B_SENSITIVE Structure <IN/OUT> .. 146

Table 207 — Definition of _PRIVATE Structure <> .. 147

Table 208 — Definition of TPM2B_PRIVATE Structure <IN/OUT> .. 147

Table 209 — Definition of TPMS_ID_OBJECT Structure <> .. 148

Table 210 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT> ... 148

Table 211 — Definition of (UINT32) TPM_NV_INDEX Bits <> ... 149

Table 212 — Definition of TPM_NT Constants ... 150

Table 213 — Definition of TPMS_NV_PIN_COUNTER_PARAMETERS Structure 150

Table 214 — Definition of (UINT32) TPMA_NV Bits .. 152

Table 215 — Definition of TPMS_NV_PUBLIC Structure ... 154

Table 216 — Definition of TPM2B_NV_PUBLIC Structure ... 154

Table 217 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT> 155

Table 218 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT> .. 155

Table 219 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT> .. 155

Table 220 — Definition of TPMS_CONTEXT Structure ... 156

Table 221 — Context Handle Values .. 157

Table 222 — Definition of TPMS_CREATION_DATA Structure <OUT> ... 159

Table 223 — Definition of TPM2B_CREATION_DATA Structure <OUT> ... 159

Table 224 — Definition of (UINT32) TPM_AT Constants ... 160

Table 225 — Definition of (UINT32) TPM_AE Constants <OUT> .. 160

Table 226 — Definition of TPMS_AC_OUTPUT Structure <OUT> .. 160

Table 227 — Definition of TPML_AC_CAPABILITIES Structure <OUT> ... 161

Trusted Platform Module Library Part 2: Structures

Page xvi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Figures

Figure 1 — Command Format .. 30

Figure 2 — Format-Zero Response Codes ... 36

Figure 3 — Format-One Response Codes ... 36

Figure 4 — TPM 1.2 TPM_NV_INDEX ... 149

Figure 5 — TPM 2.0 TPM_NV_INDEX ... 149

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library

Part 2: Structures

1 Scope

This part of the Trusted Platform Module Library specification contains the definitions of the constants,

flags, structure, and union definitions used to communicate with the TPM. Values defined in this

document are used by the TPM commands defined in TPM 2.0 Part 3: Commands and by the functions in

TPM 2.0 Part 4: Supporting Routines.

NOTE The structures in this document are the canonical form of the structures on the interface. All structures
are "packed" with no octets of padding between structure elements. The TPM-internal form of the
structures is dependent on the processor and compiler for the TPM implementation.

2 Terms and definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

4 Notation

4.1 Introduction

The information in this document is formatted so that it may be converted to standard computer-language

formats by an automated process. The purpose of this automated process is to minimize the transcription

errors that often occur during the conversion process.

For the purposes of this document, the conventions given in TPM 2.0 Part 1 apply.

In addition, the conventions and notations in clause 4 describe the representation of various data so that

it is both human readable and amenable to automated processing.

When a table row contains the keyword “reserved” (all lower case) in columns 1 or 2, the tools will not

produce any values for the row in the table.

NOTE The unmarshaling code examples are the actual code that would be produced by the automatic code
generator used in the construction of the reference code. The actual code contains additi onal parameter
checking that is omitted for clarity of the principle being illustrated. Actual examples of the code are found
in TPM 2.0 Part 4.

Trusted Platform Module Library Part 2: Structures

Page 2 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.2 Named Constants

A named constant is a numeric value to which a name has been assigned. In the C language, this is done
with a #define statement. In this specification, a named constant is defined in a table that has a title that

starts with “Definition” and ends with “Constants.”

The table title will indicate the name of the class of constants that are being defined in the table. When

applicable, the title will include the data type of the constants in parentheses.

The table in Example 1 names a collection of 16-bit constants and Example 2 shows the C code that

might be produced from that table by an automated process.

NOTE A named constant (#define) has no data type in C and an enumeration would be a better choice for

many of the defined constants. However, the C language does not allow an enumerated type to have a
storage type other than int so the method of using a combination of typedef and #define is used.

EXAMPLE 1

Table xx — Definition of (UINT16) COUNTING Constants

Parameter Value Description

first 1 decimal value is implicitly the size of the

second 0x0002 hex value will match the number of bits in the constant

third 3

fourth 0x0004

EXAMPLE 2

/* The C language equivalent of the constants from the table above */

typedef UINT16 COUNTING;

#define first 1

#define second 0x0002

#define third 3

#define fourth 0x0004

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.3 Data Type Aliases (typedefs)

When a group of named items is assigned a type, it is placed in a table that has a title starting with

“Definition of Types.” In this specification, defined types have names that use all upper-case characters.

The table in Example 1 shows how typedefs would be defined in this specification and Example 2 shows

the C-compatible code that might be produced from that table by an automated process.

EXAMPLE 1

Table xx — Definition of Types for Some Purpose

Type Name Description

unsigned short UINT16

UINT16 SOME_TYPE

unsigned long UINT32

UINT32 LAST_TYPE

EXAMPLE 2

/* C language equivalent of the typedefs from the table above */

typedef unsigned short UINT16;

typedef UINT16 SOME_TYPE;

typedef unsigned long UINT32;

typedef UINT32 LAST_TYPE;

4.4 Enumerations

A table that defines an enumerated data type will start with the word “Definition” and end with “Values.”

A value in parenthesis will denote the intrinsic data size of the value and may have the values "INT8",

"UINT8", "INT16", “UINT16”, "INT32", and “UINT32.” If this value is not present, “UINT16” is assumed.

Most C compilers set the type of an enumerated value to be an integer on the machine – often 16 bits –

but this is not always consistent. To ensure interoperability, the enumeration values may not exceed

32,384.

The table in Example 1 shows how an enumeration would be defined in this specification. Example 2

shows the C code that might be produced from that table by an automated process.

EXAMPLE 1

Table xx — Definition of (UINT16) CARD_SUIT Values

Suit Names Value Description

CLUBS 0x0000

DIAMONDS 0x000D

HEARTS 0x001A

SPADES 0x0027

EXAMPLE 2

/* C language equivalent of the structure defined in the table above */

typedef enum {

 CLUBS = 0x0000,

 DIAMONDS = 0x000D,

 HEARTS = 0x001A,

 SPADES = 0x0027

} CARD_SUIT;

Trusted Platform Module Library Part 2: Structures

Page 4 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.5 Interface Type

An interface type is used for an enumeration that is checked by the unmarshaling code. This type is

defined for purposes of automatic generation of the code that will validate the type. The title will start with

the keyword “Definition” and end with the keyword “Type.” A value in parenthesis indicates the base type

of the interface. The table may contain an entry that is prefixed with the “#” character to indicate the

response code if the validation code determines that the input parameter is the wrong type.

EXAMPLE 1

Table xx — Definition of (CARD_SUIT) RED_SUIT Type

Values Comments

HEARTS

DIAMONDS

#TPM_RC_SUIT response code returned when the unmarshaling of this type fails

NOTE TPM_RC_SUIT is an example and no such response
code is actually defined in this specification.

EXAMPLE 2

/* Validation code that might be automatically generated from table above */

if((*target != HEARTS) && (*target != DIAMONDS))

 return TPM_RC_SUIT;

In some cases, the allowed values are numeric values with no associated mnemonic. In such a case, the

list of numeric values may be given a name. Then, when used in an interface definition, the name would

have a "$" prefix to indicate that a named list of values should be substituted.

To illustrate, assume that the implementation only supports two sizes (1024 and 2048 bits) for keys

associated with some algorithm (MY algorithm).

EXAMPLE 3

Table xx — Defines for MY Algorithm Constants

Name Value Comments

MY_KEY_SIZES_BITS {1024, 2048} braces because this is a list value

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Then, whenever an input value would need to be a valid MY key size for the implementation, the value

$MY_KEY_SIZES_BITS could be used. Given the definition for MY_KEY_SIZES_BITS in example 3

above, the tables in example 4 and 5 below, are equivalent.

EXAMPLE 4

Table xx — Definition of (UINT16) MY_KEY_BITS Type

Parameter Description

{1024, 2048} the number of bits in the supported key

EXAMPLE 5

Table xx — Definition of (UINT16) MY_KEY_BITS Type

Parameter Description

$MY_KEY_SIZES_BITS the number of bits in the supported key

4.6 Arrays

Arrays are denoted by a value in square brackets (“[]”) following a parameter name. The value in the

brackets may be either an integer value such as “[20]” or the name of a component of the same structure

that contains the array.

The table in Example 1 shows how a structure containing fixed and variable-length arrays would be

defined in this specification. Example 2 shows the C code that might be produced from that table by an

automated process.

 EXAMPLE 1

Table xx — Definition of A_STRUCT Structure

Parameter Type Description

array1[20] UINT16 an array of 20 UINT16s

a_size UINT16

array2[a_size] UINT32 an array of UINT32 values that has a
number of elements determined by
a_size above

EXAMPLE 2

/* C language equivalent of the typedefs from the table above */

typedef struct {

 UINT16 array1[20];

 UINT16 a_size;

 UINT32 array2[];

} A_STRUCT;

Trusted Platform Module Library Part 2: Structures

Page 6 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.7 Structure Definitions

The tables used to define structures have a title that starts with the word “Definition” and ends with

“Structure.” The first column of the table will denote the reference names for the structure members; the

second column the data type of the member; and the third column a synopsis of the use of the element.

The table in Example 1 shows an example of how a structure would be defined in this specification and

Example 2 shows the C code that might be produced from the table by an automated process. Example 3

illustrates the type of unmarshaling code that could be generated using the information available in the

table.

EXAMPLE 1

Table xx — Definition of SIMPLE_STRUCTURE Structure

Parameter Type Description

tag TPM_ST

value1 INT32

value2 INT32

EXAMPLE 2

/* C language equivalent of the structure defined in the table above */

typedef struct {

 TPM_ST tag;

 INT32 value1

 INT32 value2;

} SIMPLE_STRUCTURE;

EXAMPLE 3

TPM_RC SIMPLE_STRUCTURE_Unmarshal(SIMPLE_STRUCTURE *target, BYTE **buffer, INT32 *size)

{

 TPM_RC rc;

 // If unmarshal of tag succeeds

 rc = TPM_ST_Unmarshal((TPM_ST *)&(target->tag), buffer, size

 If(rc == TPM_RC_SUCCESS)

 {

 // then unmarshal value1,

 rc = INT32_Unmarshal((INT32 *)&(target->value1, buffer, size);

 // and if that succeeds...

 if(rc == TPM_RC_SUCCESS)

 {

 // then unmarshal the value 2

 rc = INT32_Unmarshal((INT32 *)&(target->value2, buffer, size);

 }

 }

 return rc;

}

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

A table may have a term in {}. This indicates that the table is conditionally compiled. It is commonly used

when a table's inclusion is based on the implementation of a cryptographic algorithm. See, for example,

Table 172 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type, which is dependent

on the RSA algorithm.

4.8 Conditional Types

An interface type may have a conditional value. This value is indicated by a “+” prepended to the name of

the value. When this type is referenced in a structure, a “+” appended to the reference indicates that the

instance allows the conditional value to be returned. If the reference does not has an appended “+”, then

the conditional type is not allowed.

EXAMPLE 1 Table 65 defining TPMI_ALG_HASH indicates that TPM_ALG_NULL is a conditional type.
TPMI_ALG_HASH is a member of the TPMS_SCHEME_XOR structure and that reference is
TPMI_ALG_HASH+, indicating that TPM_ALG_NULL is an allowed value for hashAlg. TPMI_ALG_HASH
is also referenced in TPMS_PCR_SELECTION. In that structure the TPMI_ALG_HASH does not have an
appended “+”, so TPM_ALG_NULL would not be an allowed value for hash.

NOTE In many cases, the input values are algorithm IDs. When two collections of algorithm IDs differ only
because one collection allows TPM_ALG_NULL and the other does not, it is preferred that there not be
two completely different enumerations because this leads to many casts. To avoid this, the “+” can be
added to a TPM_ALG_NULL value in the table defining the type. When the use of that type allows
TPM_ALG_NULL to be in the set, the use would append a “+” to the instance .

When a type with a conditional value is referenced within a structure or union and the type reference has

a “+” prepended to the type, it allows the references to that structure to treat it as if it had a conditional

type. That means that a reference to that structure may have a “+” appended to the type. When the “+” is

present in the structure/union reference, then the conditional value of the conditional type within the

structure/union is allowed.

EXAMPLE 2 Table 141 — Definition of TPMT_SYM_DEF_OBJECT Structure defines the TPMT_SYM_DEF_OBJECT.
The algorithm element of that structure is a TPMI_ALG_SYM_OBJECT with a “+” prepended. This means
that when a TPMT_SYM_DEF_OBJECT is referenced, the reference may have an appended “+” as it
does in the definition of the symmetric parameter of TPMS_ASYM_PARMS. The “+” in
TPMA_ASYM_PARMS means that the algorithm parameter in the TPMT_SYM_DEF_OBJECT may have
the conditional value (TPM_ALG_NULL).

EXAMPLE 3

Table xx — Definition of (CARD_SUIT) TPMI_CARD_SUIT Type

Values Comments

SPADES

HEARTS

DIAMONDS

CLUBS

+JOKER an optional value that may be allowed

#TPM_RC_SUIT response code returned when the input value is not one of
the values above

Trusted Platform Module Library Part 2: Structures

Page 8 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

EXAMPLE 4

Table xx — Definition of POKER_CARD Structure

Parameter Type Description

suit TPMI_CARD_SUIT+ allows joker

number UINT8 the card value

EXAMPLE 5

Table xx — Definition of BRIDGE_CARD Structure

Parameter Type Description

suit TPMI_CARD_SUIT does not allow joker

number UINT8 the card value

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.9 Unions

4.9.1 Introduction

A union allows a structure to contain a variety of structures or types. The union has members, only one of

which is present at a time. Three different tables are required to fully characterize a union so that it may

be communicated on the TPM interface and used by the TPM:

• union definition;

• union instance; and

• union selector definition.

4.9.2 Union Definition

The table in Example 1 illustrates a union definition. The title of a union definition table starts with

“Definition” and ends with “Union.” The “Parameter” column of a union definition lists the different names

that are used when referring to a specific type. The “Type” column identifies the data type of the member.

The “Selector” column identifies the value that is used by the marshaling and unmarshaling code to

determine which case of the union is present.

If a parameter is the keyword “null” or the type is empty, then this denotes a selector with no contents.

The table in Example 1 illustrates a union in which a conditional null selector is allowed to indicate an

empty union member.

Example 2 shows how the table would be converted into C-compatible code.

The expectation is that the unmarshaling code for the union will validate that the selector for the union is

one of values in the selector list.

EXAMPLE 1

Table xx — Definition of NUMBER_UNION Union

Parameter Type Selector Description

a_byte BYTE BYTE_SELECT

an_int int INT_SELECT

a_float float FLOAT_SELECT

+null NULL_SELECT the empty branch

EXAMPLE 2

// C-compatible version of the union defined in the table above

typedef union {

 BYTE a_byte;

 int an_int;

 float a_float;

} NUMBER_UNION;

Trusted Platform Module Library Part 2: Structures

Page 10 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

EXAMPLE 3

// Possible auto-generated code to unmarshal a union in Example 2 based on the

// input value of selector

TPM_RC NUMBER_UNION_Unmarshal(NUMBER_UNION *target, BYTE **buffer,

 INT32 *size, UINT32 selector)

{

 switch (selector) {

 case BYTE_SELECT:

 return BYTE_Unmarshal((BYTE *)&(target->a_byte), buffer, size);

 case INT_SELECT:

 return INT_Unmarshal((int *)&(target->an_int), buffer, size);

 case FLOAT_SELECT:

 return FLOAT_Unmarshal((float *)&(target->a_float), buffer, size);

 case NULL_SELECT:

 return TPM_RC_SUCCESS;

}

A table may have a type with no selector. This is used when the first part of the structure for all union

members is identical. This type is a programming convenience, allowing code to reference the common

members without requiring a case statement to determine the specific structure. In object oriented

programming terms, this type is a superclass and the types with selectors are subclasses. Since there is

no selector, this union member cannot be marshaled or unmarshaled.

EXAMPLE 4 Table 188 has an 'any' parameter with no selector. Any of the other union members may be cast to
TPMS_SCHEME_HASH, since all begin with TPMI_ALG_HASH.

4.9.3 Union Instance

When a union is used in a structure that is sent on the interface, the structure will minimally contain a

selector and a union. The selector value indicates which of the possible union members is present so that

the unmarshaling code can unmarshal the correct type. The selector may be any of the parameters that

occur in the structure before the union instance. To denote the structure parameter that is used as the

selector, its name is in brackets (“[]”) placed before the parameter name associated with the union.

The table in Example 1 shows the definition of a structure that contains a union and a selector. Example 2

shows how the table would be converted into C-compatible code and Example 3 shows how the

unmarshaling code would handle the selector.

EXAMPLE 1

Table xx — Definition of STRUCTURE_WITH_UNION Structure

Parameter Type Description

select NUMBER_SELECT a value indicating the type in number

[select] number NUMBER_UNION a union as shown in 4.9.2

EXAMPLE 2

// C-compatible version of the union structure in the table above

typedef struct {

 NUMBER_SELECT select;

 NUMBER_UNION number;

} STRUCT_WITH_UNION;

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

EXAMPLE 3

// Possible unmarshaling code for the structure above

TPM_RC STRUCT_WITH_UNION_Unmarshal(STRUCT_WITH_UNION *target, BYTE **buffer, INT32 *size)

{

 TPM_RC rc;

 // Unmarshal the selector value

 rc = NUMBER_SELECT_Unmarshal((NUMBER_SELECT *)&target->select, buffer, size)

 if(rc != TPM_RC_SUCCESS)

 return rc;

 // Use the unmarshaled selector value to indicate to the union unmarshal

 // function which unmarshaling branch to follow.

 return(NUMBER_UNION_Unmarshal((NUMBER_UNION *)&(target->number),

 buffer, size, (UINT32)target->select);

}

4.9.4 Union Selector Definition

The selector definition limits the values that are used in unmarshaling a union. Two different selector sets

applied to the same union define different types.

For the union in 4.9.2, a selector definition should be limited to no more than four values, one for each of

the union members. The selector definition could have fewer than four values.

In Example 1, the table defines a value for each of the union members.

EXAMPLE 1

Table xx — Definition of (INT8) NUMBER_SELECT Values <IN>

Name Value Comments

BYTE_SELECT 3

INT_SELECT 2

FLOAT_SELECT 1

NULL_SELECT 0

The unmarshaling code would limit the input values to the defined values. When the NUMBER_SELECT

is used in the union instance of 4.9.3, any of the allowed union members of NUMBER_UNION could be

present.

A different selection could be used to limit the values in a specific instance. To get the different selection,

a new structure is defined with a different selector. The table in example 2 illustrates a way to subset the

union. The base type of the selection is NUMBER_SELECT so a NUMBER_SELECT will be unmarshaled

before the checks are made to see if the value is in the correct range for JUST_INTEGERS types. If the

base type had been UINT8, then no checking would occur prior to checking that the value is in the

allowed list. In this particular case, the effect is the same in either case since the only values that will be

accepted by the unmarshaling code for JUST_INTEGER are BYTE_SELECT and INT_SELECT.

EXAMPLE 2

Table xx — Definition of (NUMBER_SELECT) AN_INTEGER Type <IN>

Values Comments

{BYTE_SELECT, INT_SELECT} list of allowed values

NOTE Since NULL_SELECT is not in the list of values accepted as a JUST_INTEGER, the “+” modifier will have
no effect if used for a JUST_INTEGERS type shown in Example 3.

Trusted Platform Module Library Part 2: Structures

Page 12 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The selector in Example 2 can then be used in a subset union as shown in Example 3.

EXAMPLE 3

Table xx — Definition of JUST_INTEGERS Structure

Parameter Type Description

select AN_INTEGER a value indicating the type in number

[select] number NUMBER_UNION a union as shown in 4.9.2

4.10 Bit Field Definitions

A table that defines a structure containing bit fields has a title that starts with “Definition” and ends with

“Bits.” A type identifier in parentheses in the title indicates the size of the datum that contains the bit

fields.

When the bit fields do not occupy consecutive locations, a spacer field is defined with a name of

“Reserved.” Bits in these spaces are reserved and shall be zero.

The table in Example 1 shows how a structure containing bit fields would be defined in this specification.

Example 2 shows the C code that might be produced from that table by an automated process.

When a field has more than one bit, the range is indicated by a pair of numbers separated by a colon (“:”).

The numbers will be in high:low order.

EXAMPLE1

 Table xx — Definition of (UINT32) SOME_ATTRIBUTE Bits

Bit Name Action

0 zeroth_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

1 first_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

6:2 Reserved A placeholder that spans 5 bits

7 third_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

31:8 Reserved Placeholder to fill 32 bits

EXAMPLE 2

/* C language equivalent of the attributes structure defined in the table above */

typedef struct {

 int zeroth_bit : 1;

 int first_bit : 1;

 int Reserved3 : 5;

 int third_bit : 1;

 int Reserved7 : 24;

} SOME_ATTRIBUTE;

NOTE The packing of bit fields into an integer is compiler and tool chain dependent. This C language equivalent
is valid for a compiler that packs bit fields from the least significant bit to the most significant bit. It is likely
to be correct for a little endian processor and l ikely to be incorrect for a big endian processor.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.11 Parameter Limits

A parameter used in a structure may be given a set of values that can be checked by the unmarshaling

code. The allowed values for a parameter may be included in the definition of the parameter by

appending the values and delimiting them with braces (“{ }”). The values are comma-separated

expressions. A range of numbers may be indicated by separating two expressions with a colon (“:”). The

first number is an expression that represents the minimum allowed value and the second number

indicates the maximum. If the minimum or maximum value expression is omitted, then the range is open-

ended.

Lower limits expressed using braces apply only to inputs to the TPM. The lower limit for a value returned

by the TPM is determined by input parameters and the TPM implementation. Upper limits expressed

using braces apply to both inputs to and outputs from the TPM.

NOTE In many cases, the upper limits are dependent on the TPM implementation. The values fo r these limits
can be determined by accessing the TPM’s capabilities.

Trusted Platform Module Library Part 2: Structures

Page 14 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The maximum size of an array may be indicated by putting a “{}” delimited expression following the

square brackets (“[]”) that indicate that the value is an array.

EXAMPLE

Table xx — Definition of B_STRUCT Structure

Parameter Type Description

value1 {20:25} UINT16 a parameter that must have a value between
20 and 25, inclusive

value2 {20} UINT16 a parameter that must have a value of 20

value3 {:25} INT16 a parameter that may be no larger than 25

Since the parameter is signed, the minimum
value is the largest negative integer that may
be expressed in 16 bits.

value4 {20:} a parameter that must be at least 20

value5 {1,2,3,5} UINT16 a parameter that may only have one of the
four listed values

value6 {1, 2, 10:(10+10)} UINT32 a parameter that may have a value of 1, 2, or
be between 10 and 20

array1[value1] BYTE Because the index refers to value1, which is a
value limited to be between 20 and 25
inclusive, array1 is an array that may have
between 20 and 25 octets. This is not the
preferred way to indicate the upper limit for an
array as it does not indicate the upper bound
of the size.

NOTE This is a limitation of the current
parser. A different parser could
associate the range of value1 with this
value and compute the maximum size
of the array.

array2[value4]{:25} BYTE an array that may have between 20 and 25
octets

This arrangement is used to allow the
automatic code generation to allocate 25
octets to store the largest array2 that can be
unmarshaled. The code generation can
determine from this expression that value4
shall have a value of 25 or less. From the
definition of value4 above, it can determine
that value4 must have a value of at least 20.

4.12 Algorithm Macros

4.12.1 Introduction

This specification is intended to be algorithm agile in two different ways. In the first, agility is provided by

allowing different subsets of the algorithms listed in the TCG registry. In the second, agility is provided by

allowing the list of algorithms in the TCG registry to change without requiring changes to this

specification.

This second form of algorithm agility is accomplished by using placeholder tokens that represent all of the

algorithms of a particular type. The type of the algorithm is indicated by the letters in the Type column of

the TPM_ALG_ID table in the TCG registry.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The use of these tokens is described in the remainder of this clause 4.12.

4.12.2 Algorithm Token Semantics

The string “!ALG” or “!alg” indicates the algorithm token. This token may be followed by an algorithm type

selection. The presence of the type selection is indicated by a period (“.”) following the token. The

selection is all alphanumeric characters following the period.

NOTE In this selection context, the underscore character (“_”) is not considered an alphanumeric character.

The selection is either an exclusive selection or an inclusive selection. An exclusive selection is one for

which the Type entry for the algorithm is required to exactly match the type selection of the token. An

inclusive selection is one where the Type entry for the algorithm is required to contain all of the characters

of the selection but may contain additional attributes.

EXAMPLE 1 The “!ALG.AX” token would select those algorithms that only have the ‘A’ and ‘X’ types (that is, an
asymmetric signing algorithm). The “!ALG.ax” token would select those algorithms that at least have ‘A’
and ‘X’ types but would include algorithms with other types such as ‘ANX’ (asymmetric signing and
anonymous asymmetric signing).

When a replacement is made, the token will be replaced by an algorithm root identifier using either upper

or lower case. If the algorithm token is part of another word, then the replacement uses upper case

characters, otherwise, lower case is used.

NOTE The root identifier of an algorithm is the name in the TPM_ALG_ID table with “TPM_ALG_” removed. For
example TPM_ALG_SHA1 has “SHA1” as its root.

The typical use of these tokens follows.

4.12.3 Algorithm Tokens in Unions

 A common place for algorithm tokens is in a union of values that are dependent on the type of the

algorithm

EXAMPLE 1 An algorithm token indicating all hashes would be “!ALG.H” and could be used in a table to indicate that a
union contains all defined hashes.

Table A — Definition of TPMU_HA Union

Parameter Type Selector Description

!ALG.H [!ALG_DIGEST_SIZE] BYTE TPM_ALG_!ALG all hashes

null TPM_ALG_NULL

 If the TCG registry only contained SHA1, SHA256, and the SM3_256 hash algorithm identifiers, then the
table above would be semantically equivalent to:

Trusted Platform Module Library Part 2: Structures

Page 16 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table xx — Definition of TPMU_HA Union

Parameter Type Selector Description

sha1 [SHA1_DIGEST_SIZE] BYTE TPM_ALG_SHA1

sha256 [SHA256_DIGEST_SIZE] BYTE TPM_ALG_SHA256

sm3_256 [SM3_256_DIGEST_SIZE] BYTE TPM_ALG_SM3_256

null TPM_ALG_NULL

As shown in table A, the case of the replacement is determined by context. When !ALG is not an element

of a longer name, then lower case characters are used. When !ALG is part of a longer name (indicated by

leading or trailing underscore (“_”), then upper case is used for the replacement.

Only one occurrence of the algorithm type (such as !ALG.H) is required for a line. If a line contains

multiple list selections they are required to be identical.

If a table contains multiple lines with algorithm tokens, then each line is expanded separately.

4.12.4 Algorithm Tokens in Interface Types

An interface type is often used with a union to create a tagged structure – the structure contains a union

and a tag to indicate which of the union elements is actually present. The interface type for a tagged

structure will usually contain the same elements as the union.

EXAMPLE If SHA1, SHA256, and SM3_256 are the only defined hash algorithms, then an interface type to select a
hash would be:

Table xx — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_SHA1 example

TPM_ALG_SHA256 example

TPM_ALG_SM3_256 example

+TPM_ALG_NULL

#TPM_RC_HASH

 An equivalent table may be represented using an algorithm macro.

Table xx — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_!ALG.H all hash algorithms defined by the TCG

+TPM_ALG_NULL

#TPM_RC_HASH

4.12.5 Algorithm Tokens for Table Replication

When a table is used to define an algorithm-specific value, that table may be replicated using the

algorithm replacement token to create a table with values specific to the algorithm type. This type of

replication is indicated by using an algorithm token in the name of the table.

EXAMPLE If AES and SM4 are the only defined symmetric block ciphers, then:

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table xx — Definition of {!ALG.S} (TPM_KEY_BITS) TPMI_!ALG_KEY_BITS Type

Parameter Description

$!ALG_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

 has the same meaning as:

Table xx — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS Type

Parameter Description

$AES_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

Table xx — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type

Parameter Description

$SM4_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

Trusted Platform Module Library Part 2: Structures

Page 18 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.13 Size Checking

In some structures, a size field is present to indicate the number of octets in some subsequent part of the

structure. In the B_STRUCT table in 4.11, value4 indicates how many octets to unmarshal for array2. This

semantic applies when the size field determines the number of octets to unmarshal. However, in some

cases, the subsequent structure is self-defining. If the size precedes a parameter that is not an octet

array, then the unmarshaled size of that parameter is determined by its data type. The table in Example 1

shows a structure where the size parameter would nominally indicate the number of octets in the

remainder of the structure.

EXAMPLE 1

Table xx — Definition of C_STRUCT Structure

Parameter Type Comments

size UINT16 the expected size of the remainder of the
structure

anInteger UINT32 a 4-octet value

In this particular case, the value of size would be incorrect if it had any value other than 4. So that the

table parser is able to know that the purpose of the size parameter is to define the number of octets

expected in the remainder of the structure, an equal sign (“=”) is appended to the parameter name.

In the example below, the size= causes the parser to generate validation code that will check that the

unmarshaled size of someStructure and someData adds to the value unmarshaled for size. When the “=”

decoration is present, a value of zero is not allowed for the size.

EXAMPLE 2

 Table xx — Definition of D_STRUCT Structure

Parameter Type Comments

size= UINT16 the size of a structure

The “=” indicates that the TPM is required to
validate that the remainder of the D_STRUCT
structure is exactly the value in size. That is,
the number of bytes in the input buffer used
to successfully unmarshal someStructure
must be the same as size.

someStructure A_STRUCT a structure to be unmarshaled

The size of the structure is computed when it
is unmarshaled. Because an “=” is present on
the definition of size, the TPM is required to
validate that the unmarshaled size exactly
matches size.

someData UINT32 a value

4.14 Data Direction

A structure or union may be input (IN), output (OUT), or internal. An input structure is sent to the TPM and

is unmarshaled by the TPM. An output structure is sent from the TPM and is marshaled by the TPM. An

internal structure is not used outside of the TPM except that it may be included in a saved context.

By default, structures are assumed to be both IN and OUT and the code generation tool will generate

both marshaling and unmarshaling code for the structure. This default may be changed by using values

enclosed in angle brackets (“<>”) as part of the table title. If the angle brackets are empty, then the

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

structure is internal and neither marshaling nor unmarshaling code is generated. If the angle brackets

contain the letter “I” (such as in “IN” or “in” or “i”), then the structure is input and unmarshaling code will be

generated. If the angle brackets contain the letter “O” (such as in “OUT” or “out” or “o”), then the structure

is output and marshaling code will be generated.

EXAMPLE 1 Both of the following table titles would indicate a structure that is used in both input and output

Table xx — Definition of TPMS_A Structure

Table xx — Definition of TPMS_A Structure <IN/OUT>

EXAMPLE 2 The following table title would indicate a structure that is used only for input

Table xx — Definition of TPMS_A Structure <IN>

EXAMPLE 3 The following table title would indicate a structure that is used only for output

Table xx — Definition of TPMS_A Structure <OUT>

Trusted Platform Module Library Part 2: Structures

Page 20 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.15 Structure Validations

By default, when a structure is used for input to the TPM, the code generation tool will generate the

unmarshaling code for that structure. Auto-generation may be suppressed by adding an “S” within the

angle brackets.

EXAMPLE The following table titles indicate a structure for which the auto-generation of the validation code is to be
suppressed.

Table xx — Definition of TPMT_A Structure <S>

Table xx — Definition of TPMT_A Structure <IN, S>

Table xx — Definition of TPMT_A Structure <IN/OUT, S>

4.16 Name Prefix Convention

Parameters are constants, variables, structures, unions, and structure members. Structure members are

given a name that is indicative of its use, with no special prefix. The other parameter types are named

according to their type with their name starting with “TPMx_”, where “x” is an optional character to indicate

the data type.

In some cases, additional qualifying characters will follow the underscore. These are generally used when

dealing with an enumerated data type.

Table 1 — Name Prefix Convention

Prefix Description

TPM an indication/signal from the TPM’s system interface

TPM_ a constant or an enumerated type

TPM2_ a command defined by this specification

TPM2B_ a structure that is a sized buffer where the size of the buffer is contained in a 16-bit, unsigned
value

The first parameter is the size in octets of the second parameter. The second parameter may be
any type.

TPMA_ a structure where each of the fields defines an attribute and each field is usually a single bit

All the attributes in an attribute structure are packed with the overall size of the structure
indicated in the heading of the attribute description (UINT8, UINT16, or UINT32).

TPM_ALG_ an enumerated type that indicates an algorithm

A TPM_ALG_ is often used as a selector for a union.

TPMI_ an interface type

The value is specified for purposes of dynamic type checking when unmarshaled.

TPML_ a list length followed by the indicated number of entries of the indicated type

This is an array with a length field.

TPMS_ a structure that is not a size buffer or a tagged buffer or a list

TPMT_ a structure with the first parameter being a structure tag, indicating the type of the structure that
follows

A structure tag may be either a TPM_ST_ or TPM_ALG_ depending on context.

TPMU_ a union of structures, lists, or unions

If a union exists, there will normally be a companion TPMT_ that is the expression of the union
in a tagged structure, where the tag is the selector indicating which member of the union is
present.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Prefix Description

TPM_xx_ an enumeration value of a particular type

The value of “xx” will be indicative of the use of the enumerated type. A table of “TPM_xx”
constant definitions will exist to define each of the TPM_xx_ values.

EXAMPLE 1 TPM_CC_ indicates that the type is used for a commandCode. The

allowed enumeration values will be found in the table defining the TPM_CC constants

(

Table 12)

EXAMPLE 2 TPM_RC_ indicates that the type is used for a responseCode. The allowed enumeration
values are in Table 16.

4.17 Data Alignment

The data structures in this TPM 2.0 Part 2 use octet alignment for all structures. When used in a table to
indicate a maximum size, the sizeof() function returns the octet-aligned size of the structure, with no

padding.

4.18 Parameter Unmarshaling Errors

The TPM commands are defined in TPM 2.0 Part 3. The command definition includes C code that details

the actions performed by that command. The code is written assuming that the parameters of the

command have been unmarshaled.

NOTE 1 An implementation is not required to process parameters in this manner or to separate the parameter
parsing from the command actions. This method was chosen for the specification so that the normative
behavior described by the detailed actions would be clear and unencumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the

parameters for use by the command-specific action code. No data movement need take place but it is

required that the TPM validate that the parameters meet the requirements of the expected data type as

defined in this TPM 2.0 Part 2.

When an error is encountered while unmarshaling a command parameter, an error response code is

returned and no command processing occurs. A table defining a data type may have response codes

embedded in the table to indicate the error returned when the input value does not match the parameters

of the table.

EXAMPLE 1

Table 12 has a listing of TPM command code values. The last row in the table contains "#TPM_RC_COMMAND_CODE"
indicating the response code that is returned if the TPM is unmarshaling a value that it expects to be a
TPM_CC and the input value is not in the table.

NOTE 2 In the reference implementation, a parameter number is added to the response code so that the offending
parameter can be isolated.

Trusted Platform Module Library Part 2: Structures

Page 22 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 2.

Table 2 — Unmarshaling Errors

Response code Usage

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_RESERVED_BITS a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_VALUE A parameter does not have one of its allowed values

TPM_RC_TAG A parameter that should be a structure tag has a value that is not supported by
the TPM

In some commands, a parameter may not be used because of various options of that command.

However, the unmarshaling code is required to validate that all parameters have values that are allowed

by the TPM 2.0 Part 2 definition of the parameter type even if that parameter is not used in the command

actions.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5 Base Types

5.1 Primitive Types

The types listed in Table 3 are the primitive types on which all of the other types and structures are

based. The values in the “Type” column should be edited for the compiler and computer on which the

TPM is implemented. The values in the “Name” column should remain the same because these values

are used in the remainder of the specification.

NOTE The types are compatible with the C99 standard and should be defined in stdint.h that is provide d with a
C99-compliant compiler;

The parameters in the Name column should remain in the order shown.

Table 3 — Definition of Base Types

Type Name Description

uint8_t UINT8 unsigned, 8-bit integer

uint8_t BYTE unsigned 8-bit integer

int8_t INT8 signed, 8-bit integer

int BOOL a bit in an int

This is not used across the interface but is used in many places in the code. If
the type were sent on the interface, it would have to have a type with a specific
number of bytes.

uint16_t UINT16 unsigned, 16-bit integer

int16_t INT16 signed, 16-bit integer

uint32_t UINT32 unsigned, 32-bit integer

int32_t INT32 signed, 32-bit integer

uint64_t UINT64 unsigned, 64-bit integer

int64_t INT64 signed, 64-bit integer

5.2 Specification Logic Value Constants

Table 4 — Defines for Logic Values

Name Value Description

TRUE 1

FALSE 0

YES 1

NO 0

SET 1

CLEAR 0

Trusted Platform Module Library Part 2: Structures

Page 24 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.3 Miscellaneous Types

These types are defined either for compatibility with previous versions of this specification or for clarity of

this specification.

Table 5 — Definition of Types for Documentation Clarity

Type Name Description

UINT32 TPM_ALGORITHM_ID this is the 1.2 compatible form of the TPM_ALG_ID

UINT32 TPM_MODIFIER_INDICATOR

UINT32 TPM_AUTHORIZATION_SIZE the authorizationSize parameter in a command

UINT32 TPM_PARAMETER_SIZE the parameterSize parameter in a command

UINT16 TPM_KEY_SIZE a key size in octets

UINT16 TPM_KEY_BITS a key size in bits

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6 Constants

6.1 TPM_SPEC (Specification Version Values)

These values are readable with TPM2_GetCapability() (see 6.13 for the format).

NOTE 1 This table will require editing when the specification is updated.

NOTE 2 The year and day of year are those of this specification if the TPM does not implement errata. If the TPM
implements errata, the values indicate the release date of the errata document. There is no provision for
indicating that not all errata are implemented.

Table 6 — Definition of (UINT32) TPM_SPEC Constants <>

Name Value Comments

TPM_SPEC_FAMILY 0x322E3000 ASCII “2.0” with null terminator

TPM_SPEC_LEVEL 00 the level number for the specification

TPM_SPEC_VERSION 159 the version number of the spec (001.59 * 100)

TPM_SPEC_YEAR 2019 the year of the version

TPM_SPEC_DAY_OF_YEAR 312 the day of the year (November 8)

6.2 TPM_GENERATED

This constant value differentiates TPM-generated structures from non-TPM structures.

Table 7 — Definition of (UINT32) TPM_GENERATED Constants <O>

Name Value Comments

TPM_GENERATED_VALUE 0xff544347 0xFF ‘TCG’ (FF 54 43 4716)

Trusted Platform Module Library Part 2: Structures

Page 26 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.3 TPM_ALG_ID

The TCG maintains a registry of all algorithms that have an assigned algorithm ID. That registry is the

definitive list of algorithms that may be supported by a TPM.

NOTE Inclusion of an algorithm does NOT indicate that the necessary claims of the algorithm are available
under reasonable and non-discriminatory (RAND) terms from a TCG member.

Table 9 is an informative example of a TPM_ALG_ID constants table in the TCG Algorithm registry. Table

9 is provided for illustrative purposes only.

An algorithm ID is often used like a tag to determine the type of a structure in a context-sensitive way.

The values for TPM_ALG_ID shall be in the range of 00 0016 – 7F FF16. Other structure tags will be in the

range 80 0016 – FF FF16.

NOTE In TPM 1.2, these were defined as 32-bit constants. This specification limits the future size of the
algorithm ID to 16 bits. The TPM_ALGORITHM_ID data type will continue to be a 32-bit number.

An algorithm shall not be assigned a value in the range 00 C116 – 00 C616 in order to prevent any overlap

with the command structure tags used in TPM 1.2.

The implementation of some algorithms is dependent on the presence of other algorithms. When there is

a dependency, the algorithm that is required is listed in column labeled "D" (dependent) in Table 9.

EXAMPLE Implementation of TPM_ALG_RSASSA requires that the RSA algorithm be implemented.

TPM_ALG_KEYEDHASH and TPM_ALG_NULL are required of all TPM implementations.

Table 8 — Legend for TPM_ALG_ID Table

Column Title Comments

Algorithm Name the mnemonic name assigned to the algorithm

Value the numeric value assigned to the algorithm

Type The allowed values are:

A – asymmetric algorithm with a public and private key

S – symmetric algorithm with only a private key

H – hash algorithm that compresses input data to a digest value or indicates a
method that uses a hash

X – signing algorithm

N – an anonymous signing algorithm

E – an encryption algorithm

M – a method such as a mask generation function

O – an object type

C (Classification) The allowed values are:

A – Assigned

S – TCG Standard

L – TCG Legacy

Dep (Dependent) Indicates which other algorithm is required to be implemented if this
algorithm is implemented

Reference the reference document that defines the algorithm

Comments clarifying information

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 9 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>

Algorithm Name Value Type Dep C Reference Comments

TPM_ALG_ERROR 0x0000 should not occur

TPM_ALG_RSA 0x0001 A O S IETF RFC 8017 the RSA algorithm

TPM_ALG_TDES 0x0003 S A ISO/IEC 18033-3 block cipher with various key
sizes (Triple Data Encryption
Algorithm, commonly called
Triple Data Encryption
Standard)

TPM_ALG_SHA 0x0004 H S ISO/IEC 10118-3 the SHA1 algorithm

TPM_ALG_SHA1 0x0004 H S ISO/IEC 10118-3 redefinition for documentation
consistency

TPM_ALG_HMAC 0x0005 H X S ISO/IEC 9797-2 Hash Message
Authentication Code (HMAC)
algorithm

TPM_ALG_AES 0x0006 S S ISO/IEC 18033-3 the AES algorithm with
various key sizes

TPM_ALG_MGF1 0x0007 H M S IEEE Std 1363TM-
2000

IEEE Std 1363a™-
2004

hash-based mask-generation
function

TPM_ALG_KEYEDHASH 0x0008 H O S TCG TPM 2.0 library
specification

an object type that may use
XOR for encryption or an
HMAC for signing and may
also refer to a data object that
is neither signing nor
encrypting

TPM_ALG_XOR 0x000A H S S TCG TPM 2.0 library
specification

the XOR encryption algorithm

TPM_ALG_SHA256 0x000B H S ISO/IEC 10118-3 the SHA 256 algorithm

TPM_ALG_SHA384 0x000C H A ISO/IEC 10118-3 the SHA 384 algorithm

TPM_ALG_SHA512 0x000D H A ISO/IEC 10118-3 the SHA 512 algorithm

TPM_ALG_NULL 0x0010 S TCG TPM 2.0 library
specification

Null algorithm

TPM_ALG_SM3_256 0x0012 H A GM/T 0004-2012 SM3 hash algorithm

TPM_ALG_SM4 0x0013 S A GM/T 0002-2012 SM4 symmetric block cipher

TPM_ALG_RSASSA 0x0014 A X RSA S IETF RFC 8017 a signature algorithm defined
in section 8.2 (RSASSA-
PKCS1-v1_5)

TPM_ALG_RSAES 0x0015 A E RSA S IETF RFC 8017

a padding algorithm defined
in section 7.2 (RSAES-
PKCS1-v1_5)

TPM_ALG_RSAPSS 0x0016 A X RSA S IETF RFC 8017 a signature algorithm defined
in section 8.1 (RSASSA-PSS)

TPM_ALG_OAEP 0x0017 A E H RSA S IETF RFC 8017

a padding algorithm defined
in section 7.1
(RSAES_OAEP)

TPM_ALG_ECDSA 0x0018 A X ECC S ISO/IEC 14888-3 signature algorithm using
elliptic curve cryptography
(ECC)

Trusted Platform Module Library Part 2: Structures

Page 28 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Algorithm Name Value Type Dep C Reference Comments

TPM_ALG_ECDH 0x0019 A M ECC S NIST SP800-56A secret sharing using ECC

Based on context, this can be
either One-Pass Diffie-
Hellman, C(1, 1, ECC CDH)
defined in 6.2.2.2 or Full
Unified Model C(2, 2, ECC
CDH) defined in 6.1.1.2

TPM_ALG_ECDAA 0x001A A X N ECC S TCG TPM 2.0 library
specification

elliptic-curve based,
anonymous signing scheme

TPM_ALG_SM2 0x001B A X ECC A GM/T 0003.1–2012

GM/T 0003.2–2012

GM/T 0003.3–2012

GM/T 0003.5–2012

SM2 – depending on context,
either an elliptic-curve based,
signature algorithm or a key
exchange protocol

NOTE 1 Type listed as
signing but, other uses are
allowed according to context.

TPM_ALG_ECSCHNORR 0x001C A X ECC S TCG TPM 2.0 library
specification

elliptic-curve based Schnorr
signature

TPM_ALG_ECMQV 0x001D A M ECC A NIST SP800-56A two-phase elliptic-curve key
exchange – C(2, 2, ECC
MQV) section 6.1.1.4

TPM_ALG_KDF1_SP800_56A 0x0020 H M ECC S NIST SP800-56A concatenation key derivation
function (approved alternative
1) section 5.8.1

TPM_ALG_KDF2 0x0021 H M A IEEE Std 1363a-2004 key derivation function KDF2
section 13.2

TPM_ALG_KDF1_SP800_108 0x0022 H M S NIST SP800-108 a key derivation method

Section 5.1 KDF in Counter
Mode

TPM_ALG_ECC 0x0023 A O S ISO/IEC 15946-1 prime field ECC

TPM_ALG_SYMCIPHER 0x0025 O S S TCG TPM 2.0 library
specification

the object type for a
symmetric block cipher

TPM_ALG_CAMELLIA 0x0026 S A ISO/IEC 18033-3 Camellia is symmetric block
cipher. The Camellia
algorithm with various key
sizes

TPM_ALG_SHA3_256 0x0027 H A NIST PUB FIPS 202 Hash algorithm producing a
256-bit digest

TPM_ALG_SHA3_384 0x0028 H A NIST PUB FIPS 202 Hash algorithm producing a
384-bit digest

TPM_ALG_SHA3_512 0x0029 H A NIST PUB FIPS 202 Hash algorithm producing a
512-bit digest

TPM_ALG_CTR 0x0040 S E A ISO/IEC 10116 Counter mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Algorithm Name Value Type Dep C Reference Comments

TPM_ALG_OFB 0x0041 S E A ISO/IEC 10116 Output Feedback mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_CBC 0x0042 S E A ISO/IEC 10116 Cipher Block Chaining mode
– if implemented, all
symmetric block ciphers (S
type) implemented shall be
capable of using this mode.

TPM_ALG_CFB 0x0043 S E S ISO/IEC 10116 Cipher Feedback mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_ECB 0x0044 S E A ISO/IEC 10116 Electronic Codebook mode –
if implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

NOTE 2 This mode is not
recommended for uses unless
the key is frequently rotated such
as in video codecs

reserved 0x00C1
through
0x00C6

 0x00C1 – 0x00C6 are
reserved to prevent any
overlap with the command
structure tags used in TPM
1.2

reserved 0x8000
through
0xFFFF

 reserved for other structure
tags

Trusted Platform Module Library Part 2: Structures

Page 30 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.4 TPM_ECC_CURVE

The TCG maintains a registry of all curves that have an assigned curve identifier. That registry is the

definitive list of curves that may be supported by a TPM.

Table 10 is a copy of the TPM_ECC_CURVE constants table in the TCG registry as of the date of

publication of this specification. Table 10 is provided for illustrative purposes only.

Table 10 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT>

Name Value Comments

+TPM_ECC_NONE 0x0000

TPM_ECC_NIST_P192 0x0001

TPM_ECC_NIST_P224 0x0002

TPM_ECC_NIST_P256 0x0003

TPM_ECC_NIST_P384 0x0004

TPM_ECC_NIST_P521 0x0005

TPM_ECC_BN_P256 0x0010 curve to support ECDAA

TPM_ECC_BN_P638 0x0011 curve to support ECDAA

TPM_ECC_SM2_P256 0x0020

#TPM_RC_CURVE

6.5 TPM_CC (Command Codes)

6.5.1 Format

A command is a 32-bit structure with fields assigned as shown in Figure 1. If V is SET, the command is

vendor specific. If V is CLEAR, the command is not vendor specific.

3

1

3

0

2

9

2

8

1

6

1

5

0

0

Res V Reserved Command Index

Figure 1 — Command Format

Table 11 — TPM Command Format Fields Description

Bit Name Definition

15:0 Command Index the index of the command

28:16 Reserved shall be zero

29 V vendor specific

31:30 Res shall be zero

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.5.2 TPM_CC Listing

Table 12 lists the command codes assigned to each command name. The Dep column indicates whether

the command has a dependency on the implementation of a specific algorithm.

Table 12 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S>

Name Command Code Dep Comments

TPM_CC_FIRST 0x0000011F
 Compile variable. May decrease based

on implementation.

TPM_CC_NV_UndefineSpaceSpecial 0x0000011F

TPM_CC_EvictControl 0x00000120

TPM_CC_HierarchyControl 0x00000121

TPM_CC_NV_UndefineSpace 0x00000122

TPM_CC_ChangeEPS 0x00000124

TPM_CC_ChangePPS 0x00000125

TPM_CC_Clear 0x00000126

TPM_CC_ClearControl 0x00000127

TPM_CC_ClockSet 0x00000128

TPM_CC_HierarchyChangeAuth 0x00000129

TPM_CC_NV_DefineSpace 0x0000012A

TPM_CC_PCR_Allocate 0x0000012B

TPM_CC_PCR_SetAuthPolicy 0x0000012C

TPM_CC_PP_Commands 0x0000012D

TPM_CC_SetPrimaryPolicy 0x0000012E

TPM_CC_FieldUpgradeStart 0x0000012F

TPM_CC_ClockRateAdjust 0x00000130

TPM_CC_CreatePrimary 0x00000131

TPM_CC_NV_GlobalWriteLock 0x00000132

TPM_CC_GetCommandAuditDigest 0x00000133

TPM_CC_NV_Increment 0x00000134

TPM_CC_NV_SetBits 0x00000135

TPM_CC_NV_Extend 0x00000136

TPM_CC_NV_Write 0x00000137

TPM_CC_NV_WriteLock 0x00000138

TPM_CC_DictionaryAttackLockReset 0x00000139

TPM_CC_DictionaryAttackParameters 0x0000013A

TPM_CC_NV_ChangeAuth 0x0000013B

Trusted Platform Module Library Part 2: Structures

Page 32 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Command Code Dep Comments

TPM_CC_PCR_Event 0x0000013C PCR

TPM_CC_PCR_Reset 0x0000013D PCR

TPM_CC_SequenceComplete 0x0000013E

TPM_CC_SetAlgorithmSet 0x0000013F

TPM_CC_SetCommandCodeAuditStatus 0x00000140

TPM_CC_FieldUpgradeData 0x00000141

TPM_CC_IncrementalSelfTest 0x00000142

TPM_CC_SelfTest 0x00000143

TPM_CC_Startup 0x00000144

TPM_CC_Shutdown 0x00000145

TPM_CC_StirRandom 0x00000146

TPM_CC_ActivateCredential 0x00000147

TPM_CC_Certify 0x00000148

TPM_CC_PolicyNV 0x00000149 Policy

TPM_CC_CertifyCreation 0x0000014A

TPM_CC_Duplicate 0x0000014B

TPM_CC_GetTime 0x0000014C

TPM_CC_GetSessionAuditDigest 0x0000014D

TPM_CC_NV_Read 0x0000014E

TPM_CC_NV_ReadLock 0x0000014F

TPM_CC_ObjectChangeAuth 0x00000150

TPM_CC_PolicySecret 0x00000151 Policy

TPM_CC_Rewrap 0x00000152

TPM_CC_Create 0x00000153

TPM_CC_ECDH_ZGen 0x00000154 ECC

TPM_CC_HMAC 0x00000155 !CMAC See NOTE 1

TPM_CC_MAC 0x00000155 CMAC See NOTE 1

TPM_CC_Import 0x00000156

TPM_CC_Load 0x00000157

TPM_CC_Quote 0x00000158

TPM_CC_RSA_Decrypt 0x00000159 RSA

TPM_CC_HMAC_Start 0x0000015B !CMAC See NOTE 1

TPM_CC_MAC_Start 0x0000015B CMAC See NOTE 1

TPM_CC_SequenceUpdate 0x0000015C

TPM_CC_Sign 0x0000015D

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Name Command Code Dep Comments

TPM_CC_Unseal 0x0000015E

TPM_CC_PolicySigned 0x00000160 Policy

TPM_CC_ContextLoad 0x00000161 Context

TPM_CC_ContextSave 0x00000162 Context

TPM_CC_ECDH_KeyGen 0x00000163 ECC

TPM_CC_EncryptDecrypt 0x00000164

TPM_CC_FlushContext 0x00000165 Context

TPM_CC_LoadExternal 0x00000167

TPM_CC_MakeCredential 0x00000168

TPM_CC_NV_ReadPublic 0x00000169 NV

TPM_CC_PolicyAuthorize 0x0000016A Policy

TPM_CC_PolicyAuthValue 0x0000016B Policy

TPM_CC_PolicyCommandCode 0x0000016C Policy

TPM_CC_PolicyCounterTimer 0x0000016D Policy

TPM_CC_PolicyCpHash 0x0000016E Policy

TPM_CC_PolicyLocality 0x0000016F Policy

TPM_CC_PolicyNameHash 0x00000170 Policy

TPM_CC_PolicyOR 0x00000171 Policy

TPM_CC_PolicyTicket 0x00000172 Policy

TPM_CC_ReadPublic 0x00000173

TPM_CC_RSA_Encrypt 0x00000174 RSA

TPM_CC_StartAuthSession 0x00000176

TPM_CC_VerifySignature 0x00000177

TPM_CC_ECC_Parameters 0x00000178 ECC

TPM_CC_FirmwareRead 0x00000179

TPM_CC_GetCapability 0x0000017A

TPM_CC_GetRandom 0x0000017B

TPM_CC_GetTestResult 0x0000017C

TPM_CC_Hash 0x0000017D

TPM_CC_PCR_Read 0x0000017E PCR

TPM_CC_PolicyPCR 0x0000017F Policy

TPM_CC_PolicyRestart 0x00000180

TPM_CC_ReadClock 0x00000181

TPM_CC_PCR_Extend 0x00000182

TPM_CC_PCR_SetAuthValue 0x00000183

Trusted Platform Module Library Part 2: Structures

Page 34 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Command Code Dep Comments

TPM_CC_NV_Certify 0x00000184

TPM_CC_EventSequenceComplete 0x00000185

TPM_CC_HashSequenceStart 0x00000186

TPM_CC_PolicyPhysicalPresence 0x00000187 Policy

TPM_CC_PolicyDuplicationSelect 0x00000188 Policy

TPM_CC_PolicyGetDigest 0x00000189 Policy

TPM_CC_TestParms 0x0000018A

TPM_CC_Commit 0x0000018B ECC

TPM_CC_PolicyPassword 0x0000018C Policy

TPM_CC_ZGen_2Phase 0x0000018D ECC

TPM_CC_EC_Ephemeral 0x0000018E ECC

TPM_CC_PolicyNvWritten 0x0000018F Policy

TPM_CC_PolicyTemplate 0x00000190 Policy

TPM_CC_CreateLoaded 0x00000191

TPM_CC_PolicyAuthorizeNV 0x00000192 Policy

TPM_CC_EncryptDecrypt2 0x00000193

TPM_CC_AC_GetCapability 0x00000194

TPM_CC_AC_Send 0x00000195

TPM_CC_Policy_AC_SendSelect 0x00000196 Policy

TPM_CC_CertifyX509 0x00000197

TPM_CC_ACT_SetTimeout 0x00000198

TPM_CC_LAST 0x00000198
 Compile variable. May increase based

on implementation.

CC_VEND 0x20000000

TPM_CC_Vendor_TCG_Test CC_VEND+0x0000 Used for testing of command dispatch

#TPM_RC_COMMAND_CODE

NOTE 1 A TPM may implement either TPM2_HMAC()/TPM2_HMAC_Start() or TPM2_MAC()/TPM2_MAC_Start()
but not both, as they have the same command code and there is no way to distinguish them. A TPM that
supports TPM2_MAC()/TPM2_MAC_Start() will support any code that was written to use
TPM2_HMAC()/TPM2_HMAC_Start(), but a TPM that supports TPM2_HMAC()/TPM2_HMAC_Start() will
not support a MAC based on symmetric block ciphers.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.6 TPM_RC (Response Codes)

6.6.1 Description

Each return from the TPM has a 32-bit response code. The TPM will always set the upper 20 bits (31:12)

of the response code to 0 00 0016 and the low-order 12 bits (11:00) will contain the response code.

When a command succeeds, the TPM shall return TPM_RC_SUCCESS (0 0016) and will update any

authorization-session nonce associated with the command.

When a command fails to complete for any reason, the TPM shall return

• a TPM_ST (UINT16) with a value of TPM_TAG_RSP_COMMAND or TPM_ST_NO_SESSIONS,
followed by

• a UINT32 (responseSize) with a value of 10, followed by

• a UINT32 containing a response code with a value other than TPM_RC_SUCCESS.

Commands defined in this specification will use a tag of either TPM_ST_NO_SESSIONS or

TPM_ST_SESSIONS. Error responses will use a tag value of TPM_ST_NO_SESSIONS and the

response code will be as defined in this specification. Commands that use tags defined in the TPM 1.2

specification will use TPM_TAG_RSP_COMMAND in an error and a response code defined in TPM 1.2.

If the tag of the command is not a recognized command tag, the TPM error response will differ depending

on TPM 1.2 compatibility. If the TPM supports 1.2 compatibility, the TPM shall return a tag of

TPM_TAG_RSP_COMMAND and an appropriate TPM 1.2 response code (TPM_BADTAG =

00 00 00 1E16). If the TPM does not have compatibility with TPM 1.2, the TPM shall return

TPM_ST_NO_SESSION and a response code of TPM_RC_TAG.

When a command fails, the TPM shall not update the authorization-session nonces associated with the

command and will not close the authorization sessions used by the command. Audit digests will not be

updated on an error. Unless noted in the command actions, a command that returns an error shall leave

the state of the TPM as if the command had not been attempted. The exception to this principle is that a

failure due to an authorization failure may update the dictionary-attack protection values.

6.6.2 Response Code Formats

The response codes for this specification are defined such that there is no overlap between the response

codes used for this specification and those assigned in previous TPM specifications.

The formats defined in this clause only apply when the tag for the response is TPM_ST_NO_SESSIONS.

The response codes use two different format groups. One group contains the TPM 1.2 compatible

response codes and the response codes for this specification that are not related to command

parameters. The second group contains the errors that may be associated with a command parameter,

handle, or session.

Trusted Platform Module Library Part 2: Structures

Page 36 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Figure 2 shows the format for the response codes when bit 7 is zero.

bit

1

1

1

0

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

 S T r V F E

Figure 2 — Format-Zero Response Codes

The field definitions are:

Table 13 — Format-Zero Response Codes

Bit Name Definition

06:00 E the error number

The interpretation of this field is dependent on the setting of the F and S fields.

07 F format selector

CLEAR when the format is as defined in this Table 13 or when the response code is
TPM_RC_BAD_TAG.

08 V version

SET (1): The error number is defined in this specification and is returned when the response tag
is TPM_ST_NO_SESSIONS.

CLEAR (0): The error number is defined by a previous TPM specification. The error number is
returned when the response tag is TPM_TAG_RSP_COMMAND.

NOTE In any error number returned by a TPM, the F (bit 7) and V (bit 8) attributes shall be CLEAR
when the response tag is TPM_TAG_RSP_COMMAND value used in TPM 1.2.

09 Reserved shall be zero.

10 T TCG/Vendor indicator

SET (1): The response code is defined by the TPM vendor.

CLEAR (0): The response code is defined by the TCG (a value in this specification).

NOTE This attribute does not indicate a vendor-specific code unless the F attribute (bit[07]) is CLEAR.

11 S severity

SET (1): The response code is a warning and the command was not necessarily in error. This
command indicates that the TPM is busy or that the resources of the TPM have to be adjusted in
order to allow the command to execute.

CLEAR (0): The response code indicates that the command had an error that would prevent it
from running.

When the format bit (bit 7) is SET, then the error occurred during the unmarshaling or validation of an

input parameter to the TPM. Figure 3 shows the format for the response codes when bit 7 is one.

bit
1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 N 1 P E

Figure 3 — Format-One Response Codes

There are 64 errors with this format. The errors can be associated with a parameter, handle, or session.

The error number for this format is in bits[05:00]. When an error is associated with a parameter,

TPM_RC_P (0 4016) is added and N is set to the parameter number.

NOTE 1 In the reference implementation, for a RC_FMT1 response code, a constant of the form
RC_Command_parameterName is the one based parameter number (TPM_RC_n) plus TPM_RC_P.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Example RC_Startup_startupType is the first parameter, TPM_RC_1 (0x100) plus TPM_RC_P (0x40) or 0x140.
TPM_RC_VALUE (RC_FMT1 (0x080) + 0x004) + RC_Startup_startupType is thus 0x080 + 0x004 + 0x140
= 0x1c4.

For an error associated with a handle, a parameter number (1 to 7) is added to the N field. For an error

associated with a session, a value of 8 plus the session number (1 to 7) is added to the N field. In other

words, if P is clear, then a value of 0 to 7 in the N field will indicate a handle error, and a value of 8 – 15

will indicate a session error.

NOTE 2 If an implementation is not able to designate the handle, session, or parameter in error, then P and N will
be zero.

The field definitions are:

Table 14 — Format-One Response Codes

Bit Name Definition

05:00 E the error number

The error number is independent of the other settings.

06 P SET (1): The error is associated with a parameter.

CLEAR (0): The error is associated with a handle or a session.

07 F the response code format selector

This field shall be SET for the format in this table.

11:08 N the number of the handle, session, or parameter in error. The number is one based. See
TPM_RC_1 through TPM_RC_F.

If P is SET, then this field is the parameter in error.

If P is CLEAR, then this field indicates the handle or session in error. Handles use values of N
between 00002 and 01112. Sessions use values between 10002 and 11112.

NOTE Bit 11 distinguishes between handles and sessions. Bits 10:8 0002 indicate that the number is
unspecified.

The groupings of response codes are determined by bits 08, 07, and 06 of the response code as

summarized in Table 15.

Table 15 — Response Code Groupings

Bit

Definition
0
8

0
7

0
6

0 0 x a response code defined by TPM 1.2

NOTE An “x” in a column indicates that this may be either 0 or 1 and not affect the grouping of the response
code.

1 0 x a response code defined by this specification with no handle, session, or parameter number modifier

x 1 0 a response code defined by this specification with either a handle or session number modifier

x 1 1 a response code defined by this specification with a parameter number modifier

Trusted Platform Module Library Part 2: Structures

Page 38 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.6.3 TPM_RC Values

In general, response codes defined in TPM 2.0 Part 2 will be unmarshaling errors and will have the F

(format) bit SET. Codes that are unique to TPM 2.0 Part 3 will have the F bit CLEAR but the V (version)

attribute will be SET to indicate that it is a TPM 2.0 response code. See Response Code Details in TPM

2.0 Part 1.

NOTE The constant RC_VER1 is used to indicate that the V attribute is SET and the constant RC_FMT1 is used
to indicate that the F attribute is SET and that the return code is variable based on handle, session, and
parameter modifiers.

Table 16 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT>

Name Value Description

TPM_RC_SUCCESS 0x000

TPM_RC_BAD_TAG 0x01E defined for compatibility with TPM 1.2

RC_VER1 0x100 set for all format 0 response codes

TPM_RC_INITIALIZE RC_VER1 + 0x000
TPM not initialized by TPM2_Startup or already
initialized

TPM_RC_FAILURE RC_VER1 + 0x001

commands not being accepted because of a TPM
failure

NOTE This may be returned by
TPM2_GetTestResult() as the testResult
parameter.

TPM_RC_SEQUENCE RC_VER1 + 0x003 improper use of a sequence handle

TPM_RC_PRIVATE RC_VER1 + 0x00B not currently used

TPM_RC_HMAC RC_VER1 + 0x019 not currently used

TPM_RC_DISABLED RC_VER1 + 0x020 the command is disabled

TPM_RC_EXCLUSIVE RC_VER1 + 0x021
command failed because audit sequence required
exclusivity

TPM_RC_AUTH_TYPE RC_VER1 + 0x024 authorization handle is not correct for command

TPM_RC_AUTH_MISSING RC_VER1 + 0x025
command requires an authorization session for
handle and it is not present.

TPM_RC_POLICY RC_VER1 + 0x026
policy failure in math operation or an invalid
authPolicy value

TPM_RC_PCR RC_VER1 + 0x027 PCR check fail

TPM_RC_PCR_CHANGED RC_VER1 + 0x028 PCR have changed since checked.

TPM_RC_UPGRADE RC_VER1 + 0x02D

for all commands other than
TPM2_FieldUpgradeData(), this code indicates
that the TPM is in field upgrade mode; for
TPM2_FieldUpgradeData(), this code indicates
that the TPM is not in field upgrade mode

TPM_RC_TOO_MANY_CONTEXTS RC_VER1 + 0x02E context ID counter is at maximum.

TPM_RC_AUTH_UNAVAILABLE RC_VER1 + 0x02F
authValue or authPolicy is not available for
selected entity.

TPM_RC_REBOOT RC_VER1 + 0x030
a _TPM_Init and Startup(CLEAR) is required
before the TPM can resume operation.

TPM_RC_UNBALANCED RC_VER1 + 0x031

the protection algorithms (hash and symmetric) are
not reasonably balanced. The digest size of the
hash must be larger than the key size of the
symmetric algorithm.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Name Value Description

TPM_RC_COMMAND_SIZE RC_VER1 + 0x042

command commandSize value is inconsistent with
contents of the command buffer; either the size is
not the same as the octets loaded by the hardware
interface layer or the value is not large enough to
hold a command header

TPM_RC_COMMAND_CODE RC_VER1 + 0x043 command code not supported

TPM_RC_AUTHSIZE RC_VER1 + 0x044
the value of authorizationSize is out of range or the
number of octets in the Authorization Area is
greater than required

TPM_RC_AUTH_CONTEXT RC_VER1 + 0x045
use of an authorization session with a context
command or another command that cannot have
an authorization session.

TPM_RC_NV_RANGE RC_VER1 + 0x046 NV offset+size is out of range.

TPM_RC_NV_SIZE RC_VER1 + 0x047 Requested allocation size is larger than allowed.

TPM_RC_NV_LOCKED RC_VER1 + 0x048 NV access locked.

TPM_RC_NV_AUTHORIZATION RC_VER1 + 0x049
NV access authorization fails in command actions
(this failure does not affect lockout.action)

TPM_RC_NV_UNINITIALIZED RC_VER1 + 0x04A
an NV Index is used before being initialized or the
state saved by TPM2_Shutdown(STATE) could not
be restored

TPM_RC_NV_SPACE RC_VER1 + 0x04B insufficient space for NV allocation

TPM_RC_NV_DEFINED RC_VER1 + 0x04C NV Index or persistent object already defined

TPM_RC_BAD_CONTEXT RC_VER1 + 0x050 context in TPM2_ContextLoad() is not valid

TPM_RC_CPHASH RC_VER1 + 0x051 cpHash value already set or not correct for use

TPM_RC_PARENT RC_VER1 + 0x052 handle for parent is not a valid parent

TPM_RC_NEEDS_TEST RC_VER1 + 0x053 some function needs testing.

TPM_RC_NO_RESULT RC_VER1 + 0x054

returned when an internal function cannot process
a request due to an unspecified problem. This
code is usually related to invalid parameters that
are not properly filtered by the input unmarshaling
code.

TPM_RC_SENSITIVE RC_VER1 + 0x055

the sensitive area did not unmarshal correctly after
decryption – this code is used in lieu of the other
unmarshaling errors so that an attacker cannot
determine where the unmarshaling error occurred

RC_MAX_FM0 RC_VER1 + 0x07F largest version 1 code that is not a warning

 New Subsection

RC_FMT1 0x080

This bit is SET in all format 1 response codes

The codes in this group may have a value added to
them to indicate the handle, session, or parameter
to which they apply.

TPM_RC_ASYMMETRIC RC_FMT1 + 0x001 asymmetric algorithm not supported or not correct

TPM_RC_ATTRIBUTES RC_FMT1 + 0x002 inconsistent attributes

TPM_RC_HASH RC_FMT1 + 0x003 hash algorithm not supported or not appropriate

TPM_RC_VALUE RC_FMT1 + 0x004
value is out of range or is not correct for the
context

Trusted Platform Module Library Part 2: Structures

Page 40 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Value Description

TPM_RC_HIERARCHY RC_FMT1 + 0x005
hierarchy is not enabled or is not correct for the
use

TPM_RC_KEY_SIZE RC_FMT1 + 0x007 key size is not supported

TPM_RC_MGF RC_FMT1 + 0x008 mask generation function not supported

TPM_RC_MODE RC_FMT1 + 0x009 mode of operation not supported

TPM_RC_TYPE RC_FMT1 + 0x00A the type of the value is not appropriate for the use

TPM_RC_HANDLE RC_FMT1 + 0x00B the handle is not correct for the use

TPM_RC_KDF RC_FMT1 + 0x00C
unsupported key derivation function or function not
appropriate for use

TPM_RC_RANGE RC_FMT1 + 0x00D value was out of allowed range.

TPM_RC_AUTH_FAIL RC_FMT1 + 0x00E
the authorization HMAC check failed and DA
counter incremented

TPM_RC_NONCE RC_FMT1 + 0x00F invalid nonce size or nonce value mismatch

TPM_RC_PP RC_FMT1 + 0x010 authorization requires assertion of PP

TPM_RC_SCHEME RC_FMT1 + 0x012 unsupported or incompatible scheme

TPM_RC_SIZE RC_FMT1 + 0x015 structure is the wrong size

TPM_RC_SYMMETRIC RC_FMT1 + 0x016
unsupported symmetric algorithm or key size, or
not appropriate for instance

TPM_RC_TAG RC_FMT1 + 0x017 incorrect structure tag

TPM_RC_SELECTOR RC_FMT1 + 0x018 union selector is incorrect

TPM_RC_INSUFFICIENT RC_FMT1 + 0x01A
the TPM was unable to unmarshal a value
because there were not enough octets in the input
buffer

TPM_RC_SIGNATURE RC_FMT1 + 0x01B the signature is not valid

TPM_RC_KEY RC_FMT1 + 0x01C key fields are not compatible with the selected use

TPM_RC_POLICY_FAIL RC_FMT1 + 0x01D a policy check failed

TPM_RC_INTEGRITY RC_FMT1 + 0x01F integrity check failed

TPM_RC_TICKET RC_FMT1 + 0x020 invalid ticket

TPM_RC_RESERVED_BITS RC_FMT1 + 0x021 reserved bits not set to zero as required

TPM_RC_BAD_AUTH RC_FMT1 + 0x022 authorization failure without DA implications

TPM_RC_EXPIRED RC_FMT1 + 0x023 the policy has expired

TPM_RC_POLICY_CC RC_FMT1 + 0x024

the commandCode in the policy is not the
commandCode of the command or the command
code in a policy command references a command
that is not implemented

TPM_RC_BINDING RC_FMT1 + 0x025
public and sensitive portions of an object are not
cryptographically bound

TPM_RC_CURVE RC_FMT1 + 0x026 curve not supported

TPM_RC_ECC_POINT RC_FMT1 + 0x027 point is not on the required curve.

 New Subsection

RC_WARN 0x900 set for warning response codes

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Name Value Description

TPM_RC_CONTEXT_GAP RC_WARN + 0x001 gap for context ID is too large

TPM_RC_OBJECT_MEMORY RC_WARN + 0x002 out of memory for object contexts

TPM_RC_SESSION_MEMORY RC_WARN + 0x003 out of memory for session contexts

TPM_RC_MEMORY RC_WARN + 0x004
out of shared object/session memory or need
space for internal operations

TPM_RC_SESSION_HANDLES RC_WARN + 0x005
out of session handles – a session must be flushed
before a new session may be created

TPM_RC_OBJECT_HANDLES RC_WARN + 0x006

out of object handles – the handle space for
objects is depleted and a reboot is required

NOTE 1 This cannot occur on the reference
implementation.

NOTE 2 There is no reason why an implementation
would implement a design that would deplete
handle space. Platform specifications are
encouraged to forbid it.

TPM_RC_LOCALITY RC_WARN + 0x007 bad locality

TPM_RC_YIELDED RC_WARN + 0x008

the TPM has suspended operation on the
command; forward progress was made and the
command may be retried

See TPM 2.0 Part 1, “Multi-tasking.”

NOTE This cannot occur on the reference
implementation.

TPM_RC_CANCELED RC_WARN + 0x009 the command was canceled

TPM_RC_TESTING RC_WARN + 0x00A TPM is performing self-tests

TPM_RC_REFERENCE_H0 RC_WARN + 0x010
the 1st handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H1 RC_WARN + 0x011
the 2nd handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H2 RC_WARN + 0x012
the 3rd handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H3 RC_WARN + 0x013
the 4th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H4 RC_WARN + 0x014
the 5th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H5 RC_WARN + 0x015
the 6th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H6 RC_WARN + 0x016
the 7th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_S0 RC_WARN + 0x018
the 1st authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S1 RC_WARN + 0x019
the 2nd authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S2 RC_WARN + 0x01A
the 3rd authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S3 RC_WARN + 0x01B
the 4th authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S4 RC_WARN + 0x01C
the 5th session handle references a session that is
not loaded

Trusted Platform Module Library Part 2: Structures

Page 42 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Value Description

TPM_RC_REFERENCE_S5 RC_WARN + 0x01D
the 6th session handle references a session that is
not loaded

TPM_RC_REFERENCE_S6 RC_WARN + 0x01E
the 7th authorization session handle references a
session that is not loaded

TPM_RC_NV_RATE RC_WARN + 0x020
the TPM is rate-limiting accesses to prevent
wearout of NV

TPM_RC_LOCKOUT RC_WARN + 0x021
authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in
DA lockout mode

TPM_RC_RETRY RC_WARN + 0x022 the TPM was not able to start the command

TPM_RC_NV_UNAVAILABLE RC_WARN + 0x023
the command may require writing of NV and NV is
not current accessible

TPM_RC_NOT_USED RC_WARN + 0x7F
this value is reserved and shall not be returned by
the TPM

 Additional Defines

TPM_RC_H 0x000 add to a handle-related error

TPM_RC_P 0x040 add to a parameter-related error

TPM_RC_S 0x800 add to a session-related error

TPM_RC_1 0x100
add to a parameter-, handle-, or session-related
error

TPM_RC_2 0x200
add to a parameter-, handle-, or session-related
error

TPM_RC_3 0x300
add to a parameter-, handle-, or session-related
error

TPM_RC_4 0x400
add to a parameter-, handle-, or session-related
error

TPM_RC_5 0x500
add to a parameter-, handle-, or session-related
error

TPM_RC_6 0x600
add to a parameter-, handle-, or session-related
error

TPM_RC_7 0x700
add to a parameter-, handle-, or session-related
error

TPM_RC_8 0x800 add to a parameter-related error

TPM_RC_9 0x900 add to a parameter-related error

TPM_RC_A 0xA00 add to a parameter-related error

TPM_RC_B 0xB00 add to a parameter-related error

TPM_RC_C 0xC00 add to a parameter-related error

TPM_RC_D 0xD00 add to a parameter-related error

TPM_RC_E 0xE00 add to a parameter-related error

TPM_RC_F 0xF00 add to a parameter-related error

TPM_RC_N_MASK 0xF00 number mask

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.7 TPM_CLOCK_ADJUST

A TPM_CLOCK_ADJUST value is used to change the rate at which the TPM internal oscillator is divided.

A change to the divider will change the rate at which Clock and Time change.

NOTE The recommended adjustments are approximately 1% for a course adjustment, 0.1% for a medium
adjustment, and the minimum possible on the implementation for the fine adjustment (e.g., one count of
the pre-scalar if possible).

Table 17 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN>

Name Value Comments

TPM_CLOCK_COARSE_SLOWER -3 Slow the Clock update rate by one coarse adjustment step.

TPM_CLOCK_MEDIUM_SLOWER -2 Slow the Clock update rate by one medium adjustment step.

TPM_CLOCK_FINE_SLOWER -1 Slow the Clock update rate by one fine adjustment step.

TPM_CLOCK_NO_CHANGE 0 No change to the Clock update rate.

TPM_CLOCK_FINE_FASTER 1 Speed the Clock update rate by one fine adjustment step.

TPM_CLOCK_MEDIUM_FASTER 2 Speed the Clock update rate by one medium adjustment step.

TPM_CLOCK_COARSE_FASTER 3 Speed the Clock update rate by one coarse adjustment step.

#TPM_RC_VALUE

6.8 TPM_EO (EA Arithmetic Operands)

Table 18 — Definition of (UINT16) TPM_EO Constants <IN/OUT>

Operation Name Value Comments

TPM_EO_EQ 0x0000 A = B

TPM_EO_NEQ 0x0001 A ≠ B

TPM_EO_SIGNED_GT 0x0002 A > B signed

TPM_EO_UNSIGNED_GT 0x0003 A > B unsigned

TPM_EO_SIGNED_LT 0x0004 A < B signed

TPM_EO_UNSIGNED_LT 0x0005 A < B unsigned

TPM_EO_SIGNED_GE 0x0006 A ≥ B signed

TPM_EO_UNSIGNED_GE 0x0007 A ≥ B unsigned

TPM_EO_SIGNED_LE 0x0008 A ≤ B signed

TPM_EO_UNSIGNED_LE 0x0009 A ≤ B unsigned

TPM_EO_BITSET 0x000A All bits SET in B are SET in A. ((A&B)=B)

TPM_EO_BITCLEAR 0x000B All bits SET in B are CLEAR in A. ((A&B)=0)

#TPM_RC_VALUE Response code returned when unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures

Page 44 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.9 TPM_ST (Structure Tags)

Structure tags are used to disambiguate structures. They are 16-bit values with the most significant bit

SET so that they do not overlap TPM_ALG_ID values. A single exception is made for the value

associated with TPM_ST_RSP_COMMAND (0x00C4), which has the same value as the

TPM_TAG_RSP_COMMAND tag from earlier versions of this specification. This value is used when the

TPM is compatible with a previous TPM specification and the TPM cannot determine which family of

response code to return because the command tag is not valid.

Many of the structures defined in this document have parameters that are unions of other structures. That

is, a parameter may be one of several structures. The parameter will have a selector value that indicates

which of the options is actually present.

In order to allow the marshaling and unmarshaling code to determine which of the possible structures is

allowed, each selector will have a unique interface type and will constrain the number of possible tag

values.

Table 19 defines the structure tags values. The definition of many structures is context-sensitive using an

algorithm ID. In cases where an algorithm ID is not a meaningful way to designate the structure, the

values in this table are used.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 19 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>

Name Value Comments

TPM_ST_RSP_COMMAND 0x00C4 tag value for a response; used when there is an error
in the tag. This is also the value returned from a TPM
1.2 when an error occurs. This value is used in this
specification because an error in the command tag
may prevent determination of the family. When this tag
is used in the response, the response code will be
TPM_RC_BAD_TAG (0 1E16), which has the same
numeric value as the TPM 1.2 response code for
TPM_BADTAG.

NOTE In a previously published version of this
specification, TPM_RC_BAD_TAG was
incorrectly assigned a value of 0x030 instead of
30 (0x01e). Some implementations my return the
old value instead of the new value.

TPM_ST_NULL 0X8000 no structure type specified

TPM_ST_NO_SESSIONS 0x8001 tag value for a command/response for a command
defined in this specification; indicating that the
command/response has no attached sessions and no
authorizationSize/parameterSize value is present

If the responseCode from the TPM is not
TPM_RC_SUCCESS, then the response tag shall
have this value.

TPM_ST_SESSIONS 0x8002 tag value for a command/response for a command
defined in this specification; indicating that the
command/response has one or more attached
sessions and the authorizationSize/parameterSize
field is present

reserved 0x8003 When used between application software and the TPM
resource manager, this tag indicates that the
command has no sessions and the handles are using
the Name format rather than the 32-bit handle format.

NOTE 1 The response to application software will have a
tag of TPM_ST_NO_SESSIONS.

Between the TRM and TPM, this tag would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has no associated sessions.

NOTE 2 This tag is not used by all TPM or TRM
implementations.

reserved 0x8004 When used between application software and the TPM
resource manager, this tag indicates that the
command has sessions and the handles are using the
Name format rather than the 32-bit handle format.

NOTE 1 If the command completes successfully, the
response to application software will have a tag
of TPM_ST_SESSIONS.

Between the TRM and TPM, would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has authorization sessions.

NOTE 2 This tag is not used by all TPM or TRM
implementations.

TPM_ST_ATTEST_NV 0x8014 tag for an attestation structure

TPM_ST_ATTEST_COMMAND_AUDIT 0x8015 tag for an attestation structure

TPM_ST_ATTEST_SESSION_AUDIT 0x8016 tag for an attestation structure

Trusted Platform Module Library Part 2: Structures

Page 46 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Value Comments

TPM_ST_ATTEST_CERTIFY 0x8017 tag for an attestation structure

TPM_ST_ATTEST_QUOTE 0x8018 tag for an attestation structure

TPM_ST_ATTEST_TIME 0x8019 tag for an attestation structure

TPM_ST_ATTEST_CREATION 0x801A tag for an attestation structure

reserved 0x801B do not use

NOTE This was previously assigned to
TPM_ST_ATTEST_NV. The tag is changed
because the structure has changed

TPM_ST_ATTEST_NV_DIGEST 0x801C tag for an attestation structure

TPM_ST_CREATION 0x8021 tag for a ticket type

TPM_ST_VERIFIED 0x8022 tag for a ticket type

TPM_ST_AUTH_SECRET 0x8023 tag for a ticket type

TPM_ST_HASHCHECK 0x8024 tag for a ticket type

TPM_ST_AUTH_SIGNED 0x8025 tag for a ticket type

TPM_ST_FU_MANIFEST 0x8029 tag for a structure describing a Field Upgrade Policy

6.10 TPM_SU (Startup Type)

These values are used in TPM2_Startup() to indicate the shutdown and startup mode. The defined

startup sequences are:

a) TPM Reset – Two cases:

1) Shutdown(CLEAR) followed by Startup(CLEAR)

2) Startup(CLEAR) with no Shutdown()

b) TPM Restart – Shutdown(STATE) followed by Startup(CLEAR)

c) TPM Resume – Shutdown(STATE) followed by Startup(STATE)

TPM_SU values of 80 0016 and above are reserved for internal use of the TPM and may not be assigned

values.

NOTE In the reference code, a value of FF FF16 indicates that the startup state has not been set. If this was
defined in this table to be, say, TPM_SU_NONE, then TPM_SU_NONE would be a valid input value but
the caller is not allowed to indicate the that the startup type is TPM_SU_NONE so the reserved value is
defined in the implementation as required for internal TPM uses.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 20 — Definition of (UINT16) TPM_SU Constants <IN>

Name Value Description

TPM_SU_CLEAR 0x0000 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Reset).

on TPM2_Startup(), indicates that the TPM should perform
TPM Reset or TPM Restart

TPM_SU_STATE 0x0001 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Restart or TPM Resume)

on TPM2_Startup(), indicates that the TPM should restore the
state saved by TPM2_Shutdown(TPM_SU_STATE)

#TPM_RC_VALUE response code when incorrect value is used

6.11 TPM_SE (Session Type)

This type is used in TPM2_StartAuthSession() to indicate the type of the session to be created.

Table 21 — Definition of (UINT8) TPM_SE Constants <IN>

Name Value Description

TPM_SE_HMAC 0x00

TPM_SE_POLICY 0x01

TPM_SE_TRIAL 0x03 The policy session is being used to compute the policyHash and
not for command authorization.

This setting modifies some policy commands and prevents
session from being used to authorize a command.

#TPM_RC_VALUE response code when incorrect value is used

Trusted Platform Module Library Part 2: Structures

Page 48 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.12 TPM_CAP (Capabilities)

The TPM_CAP values are used in TPM2_GetCapability() to select the type of the value to be returned.

The format of the response varies according to the type of the value.

Table 22 — Definition of (UINT32) TPM_CAP Constants

Capability Name Value Property Type Return Type

TPM_CAP_FIRST 0x00000000

TPM_CAP_ALGS 0x00000000 TPM_ALG_ID(1) TPML_ALG_PROPERTY

TPM_CAP_HANDLES 0x00000001 TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS 0x00000002 TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS 0x00000003 TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS 0x00000004 TPM_CC TPML_CC

TPM_CAP_PCRS 0x00000005 reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES 0x00000006 TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES 0x00000007 TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

TPM_CAP_ECC_CURVES 0x00000008 TPM_ECC_CURVE(1) TPML_ECC_CURVE

TPM_CAP_AUTH_POLICIES 0x00000009 TPM_HANDLE(2)(3) TPML_TAGGED_POLICY

TPM_CAP_ACT 0x0000000A TPM_HANDLE(2(4)) TPML_ACT_DATA

TPM_CAP_LAST 0x0000000A

TPM_CAP_VENDOR_PROPERTY 0x00000100 manufacturer specific manufacturer-specific values

#TPM_RC_VALUE

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

(2) The TPM will return TPM_RC_VALUE if the handle does not reference the range for permanent handles.

(3) TPM_CAP_AUTH_POLICIES was added in revision 01.32.

(4) TPM_CAP_ACT was added in revision 01.57.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.13 TPM_PT (Property Tag)

The TPM_PT constants are used in TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES) to

indicate the property being selected or returned.

The values in the fixed group (PT_FIXED) are not changeable through programmatic means other than a

firmware update. The values in the variable group (PT_VAR) may be changed with TPM commands but

should be persistent over power cycles and only changed when indicated by the detailed actions code.

Table 23 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>

Capability Name Value Comments

TPM_PT_NONE 0x00000000 indicates no property type

PT_GROUP 0x00000100 The number of properties in each group.

NOTE The first group with any properties is group 1
(PT_GROUP * 1). Group 0 is reserved.

PT_FIXED PT_GROUP * 1 the group of fixed properties returned as
TPMS_TAGGED_PROPERTY

The values in this group are only changed due to a
firmware change in the TPM.

TPM_PT_FAMILY_INDICATOR PT_FIXED + 0 a 4-octet character string containing the TPM Family value
(TPM_SPEC_FAMILY)

TPM_PT_LEVEL PT_FIXED + 1 the level of the specification

NOTE 1 For this specification, the level is zero.

NOTE 2 The level is on the title page of the specification.

TPM_PT_REVISION PT_FIXED + 2 the specification Revision times 100

EXAMPLE Revision 01.01 would have a value of 101.

NOTE The Revision value is on the title page of the
specification.

TPM_PT_DAY_OF_YEAR PT_FIXED + 3 the specification day of year using TCG calendar

EXAMPLE November 15, 2010, has a day of year value of 319
(00 00 01 3F16).

NOTE The specification date is on the title page of the
specification or errata (see 6.1).

TPM_PT_YEAR PT_FIXED + 4 the specification year using the CE

EXAMPLE The year 2010 has a value of 00 00 07 DA16.

NOTE The specification date is on the title page of the
specification or errata (see 6.1).

TPM_PT_MANUFACTURER PT_FIXED + 5 the vendor ID unique to each TPM manufacturer

TPM_PT_VENDOR_STRING_1 PT_FIXED + 6 the first four characters of the vendor ID string

NOTE When the vendor string is fewer than 16 octets, the
additional property values do not have to be present.
A vendor string of 4 octets can be represented in one
32-bit value and no null terminating character is
required.

TPM_PT_VENDOR_STRING_2 PT_FIXED + 7 the second four characters of the vendor ID string

TPM_PT_VENDOR_STRING_3 PT_FIXED + 8 the third four characters of the vendor ID string

TPM_PT_VENDOR_STRING_4 PT_FIXED + 9 the fourth four characters of the vendor ID sting

TPM_PT_VENDOR_TPM_TYPE PT_FIXED + 10 vendor-defined value indicating the TPM model

TPM_PT_FIRMWARE_VERSION_1 PT_FIXED + 11 the most-significant 32 bits of a TPM vendor-specific value
indicating the version number of the firmware. See
10.12.2 and 10.12.12.

Trusted Platform Module Library Part 2: Structures

Page 50 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Capability Name Value Comments

TPM_PT_FIRMWARE_VERSION_2 PT_FIXED + 12 the least-significant 32 bits of a TPM vendor-specific value
indicating the version number of the firmware. See
10.12.2 and 10.12.12.

TPM_PT_INPUT_BUFFER PT_FIXED + 13 the maximum size of a parameter (typically, a
TPM2B_MAX_BUFFER)

TPM_PT_HR_TRANSIENT_MIN PT_FIXED + 14 the minimum number of transient objects that can be held
in TPM RAM

NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification
to which the TPM is built.

TPM_PT_HR_PERSISTENT_MIN PT_FIXED + 15 the minimum number of persistent objects that can be
held in TPM NV memory

NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification
to which the TPM is built.

TPM_PT_HR_LOADED_MIN PT_FIXED + 16 the minimum number of authorization sessions that can
be held in TPM RAM

 NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification
to which the TPM is built.

TPM_PT_ACTIVE_SESSIONS_MAX PT_FIXED + 17 the number of authorization sessions that may be active at
a time

A session is active when it has a context associated with
its handle. The context may either be in TPM RAM or be
context saved.

NOTE This value shall be no less than the minimum value
required by the platform-specific specification to
which the TPM is built.

TPM_PT_PCR_COUNT PT_FIXED + 18 the number of PCR implemented

NOTE This number is determined by the defined
attributes, not the number of PCR that are populated.

TPM_PT_PCR_SELECT_MIN PT_FIXED + 19 the minimum number of octets in a
TPMS_PCR_SELECT.sizeOfSelect

NOTE This value is not determined by the number of PCR
implemented but by the number of PCR required by
the platform-specific specification with which the TPM
is compliant or by the implementer if not adhering to
a platform-specific specification.

TPM_PT_CONTEXT_GAP_MAX PT_FIXED + 20 the maximum allowed difference (unsigned) between the
contextID values of two saved session contexts

This value shall be 2n-1, where n is at least 16.

 PT_FIXED + 21 skipped

TPM_PT_NV_COUNTERS_MAX PT_FIXED + 22 the maximum number of NV Indexes that are allowed to
have the TPM_NT_COUNTER attribute

NOTE 1 It is allowed for this value to be larger than the
number of NV Indexes that can be defined. This
would be indicative of a TPM implementation that did
not use different implementation technology for
different NV Index types.

NOTE 2 The value zero indicates that there is no fixed
maximum. The number of counter indexes is
determined by the available NV memory pool.

TPM_PT_NV_INDEX_MAX PT_FIXED + 23 the maximum size of an NV Index data area

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Capability Name Value Comments

TPM_PT_MEMORY PT_FIXED + 24 a TPMA_MEMORY indicating the memory management
method for the TPM

TPM_PT_CLOCK_UPDATE PT_FIXED + 25 interval, in milliseconds, between updates to the copy of
TPMS_CLOCK_INFO.clock in NV

TPM_PT_CONTEXT_HASH PT_FIXED + 26 the algorithm used for the integrity HMAC on saved
contexts and for hashing the fuData of
TPM2_FirmwareRead()

TPM_PT_CONTEXT_SYM PT_FIXED + 27 TPM_ALG_ID, the algorithm used for encryption of saved
contexts

TPM_PT_CONTEXT_SYM_SIZE PT_FIXED + 28 TPM_KEY_BITS, the size of the key used for encryption
of saved contexts

TPM_PT_ORDERLY_COUNT PT_FIXED + 29 the modulus - 1 of the count for NV update of an orderly
counter

The returned value is MAX_ORDERLY_COUNT.

This will have a value of 2N – 1 where 1 ≤ N ≤ 32

NOTE 1 An “orderly counter” is an NV Index with an TPM_NT
of TPM_NV_COUNTER and TPMA_NV_ORDERLY
SET.

NOTE 2 When the low-order bits of a counter equal this value,
an NV write occurs on the next increment.

TPM_PT_MAX_COMMAND_SIZE PT_FIXED + 30 the maximum value for commandSize in a command

TPM_PT_MAX_RESPONSE_SIZE PT_FIXED + 31 the maximum value for responseSize in a response

TPM_PT_MAX_DIGEST PT_FIXED + 32 the maximum size of a digest that can be produced by the
TPM

TPM_PT_MAX_OBJECT_CONTEXT PT_FIXED + 33 the maximum size of an object context that will be
returned by TPM2_ContextSave

TPM_PT_MAX_SESSION_CONTEXT PT_FIXED + 34 the maximum size of a session context that will be
returned by TPM2_ContextSave

TPM_PT_PS_FAMILY_INDICATOR PT_FIXED + 35 platform-specific family (a TPM_PS value)(see Table 25)

NOTE The platform-specific values for the TPM_PT_PS
parameters are in the relevant platform-specific
specification. In the reference implementation, all of
these values are 0.

TPM_PT_PS_LEVEL PT_FIXED + 36 the level of the platform-specific specification

TPM_PT_PS_REVISION PT_FIXED + 37 a platform specific value

TPM_PT_PS_DAY_OF_YEAR PT_FIXED + 38 the platform-specific TPM specification day of year using
TCG calendar

EXAMPLE November 15, 2010, has a day of year value of 319
(00 00 01 3F16).

TPM_PT_PS_YEAR PT_FIXED + 39 the platform-specific TPM specification year using the CE

EXAMPLE The year 2010 has a value of 00 00 07 DA16.

TPM_PT_SPLIT_MAX PT_FIXED + 40 the number of split signing operations supported by the
TPM

TPM_PT_TOTAL_COMMANDS PT_FIXED + 41 total number of commands implemented in the TPM

TPM_PT_LIBRARY_COMMANDS PT_FIXED + 42 number of commands from the TPM library that are
implemented

TPM_PT_VENDOR_COMMANDS PT_FIXED + 43 number of vendor commands that are implemented

TPM_PT_NV_BUFFER_MAX PT_FIXED + 44 the maximum data size in one NV write, NV read, NV
extend, or NV certify command

Trusted Platform Module Library Part 2: Structures

Page 52 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Capability Name Value Comments

TPM_PT_MODES PT_FIXED + 45 a TPMA_MODES value, indicating that the TPM is
designed for these modes.

TPM_PT_MAX_CAP_BUFFER PT_FIXED + 46 the maximum size of a TPMS_CAPABILITY_DATA
structure returned in TPM2_GetCapability().

 Intentionally left empty

PT_VAR PT_GROUP * 2 the group of variable properties returned as
TPMS_TAGGED_PROPERTY

The properties in this group change because of a
Protected Capability other than a firmware update. The
values are not necessarily persistent across all power
transitions.

TPM_PT_PERMANENT PT_VAR + 0 TPMA_PERMANENT

TPM_PT_STARTUP_CLEAR PT_VAR + 1 TPMA_STARTUP_CLEAR

TPM_PT_HR_NV_INDEX PT_VAR + 2 the number of NV Indexes currently defined

TPM_PT_HR_LOADED PT_VAR + 3 the number of authorization sessions currently loaded into
TPM RAM

TPM_PT_HR_LOADED_AVAIL PT_VAR + 4 the number of additional authorization sessions, of any
type, that could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
loaded. Any command that changes the RAM memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one authorization session would fit into RAM.

TPM_PT_HR_ACTIVE PT_VAR + 5 the number of active authorization sessions currently
being tracked by the TPM

This is the sum of the loaded and saved sessions.

TPM_PT_HR_ACTIVE_AVAIL PT_VAR + 6 the number of additional authorization sessions, of any
type, that could be created

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
created. Any command that changes the RAM memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one authorization session could be created.

TPM_PT_HR_TRANSIENT_AVAIL PT_VAR + 7 estimate of the number of additional transient objects that
could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one object of any type may be loaded. Any
command that changes the memory allocation can make
this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one transient object would fit into RAM.

TPM_PT_HR_PERSISTENT PT_VAR + 8 the number of persistent objects currently loaded into
TPM NV memory

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Capability Name Value Comments

TPM_PT_HR_PERSISTENT_AVAIL PT_VAR + 9 the number of additional persistent objects that could be
loaded into NV memory

This value is an estimate. If this value is at least 1, then at
least one object of any type may be made persistent. Any
command that changes the NV memory allocation can
make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one persistent object would fit into NV memory.

TPM_PT_NV_COUNTERS PT_VAR + 10 the number of defined NV Indexes that have NV the
TPM_NT_COUNTER attribute

TPM_PT_NV_COUNTERS_AVAIL PT_VAR + 11 the number of additional NV Indexes that can be defined
with their TPM_NT of TPM_NV_COUNTER and the
TPMA_NV_ORDERLY attribute SET

This value is an estimate. If this value is at least 1, then at
least one NV Index may be created with a TPM_NT of
TPM_NV_COUNTER and the TPMA_NV_ORDERLY
attributes. Any command that changes the NV memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one NV counter could be defined.

TPM_PT_ALGORITHM_SET PT_VAR + 12 code that limits the algorithms that may be used with the
TPM

TPM_PT_LOADED_CURVES PT_VAR + 13 the number of loaded ECC curves

TPM_PT_LOCKOUT_COUNTER PT_VAR + 14 the current value of the lockout counter (failedTries)

TPM_PT_MAX_AUTH_FAIL PT_VAR + 15 the number of authorization failures before DA lockout is
invoked

TPM_PT_LOCKOUT_INTERVAL PT_VAR + 16 the number of seconds before the value reported by
TPM_PT_LOCKOUT_COUNTER is decremented

TPM_PT_LOCKOUT_RECOVERY PT_VAR + 17 the number of seconds after a lockoutAuth failure before
use of lockoutAuth may be attempted again

TPM_PT_NV_WRITE_RECOVERY PT_VAR + 18 number of milliseconds before the TPM will accept
another command that will modify NV

This value is an approximation and may go up or down
over time.

TPM_PT_AUDIT_COUNTER_0 PT_VAR + 19 the high-order 32 bits of the command audit counter

TPM_PT_AUDIT_COUNTER_1 PT_VAR + 20 the low-order 32 bits of the command audit counter

Trusted Platform Module Library Part 2: Structures

Page 54 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.14 TPM_PT_PCR (PCR Property Tag)

The TPM_PT_PCR constants are used in TPM2_GetCapability() to indicate the property being selected

or returned. The PCR properties can be read when capability == TPM_CAP_PCR_PROPERTIES. If there

is no property that corresponds to the value of property, the next higher value is returned, if it exists.

Table 24 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S>

Capability Name Value Comments

TPM_PT_PCR_FIRST 0x00000000 bottom of the range of TPM_PT_PCR properties

TPM_PT_PCR_SAVE 0x00000000 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
saved and restored by TPM_SU_STATE

TPM_PT_PCR_EXTEND_L0 0x00000001 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 0

This property is only present if a locality other than 0 is
implemented.

TPM_PT_PCR_RESET_L0 0x00000002 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 0

TPM_PT_PCR_EXTEND_L1 0x00000003 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 1

This property is only present if locality 1 is implemented.

TPM_PT_PCR_RESET_L1 0x00000004 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 1

This property is only present if locality 1 is implemented.

TPM_PT_PCR_EXTEND_L2 0x00000005 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 2

This property is only present if localities 1 and 2 are
implemented.

TPM_PT_PCR_RESET_L2 0x00000006 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 2

This property is only present if localities 1 and 2 are
implemented.

TPM_PT_PCR_EXTEND_L3 0x00000007 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 3

This property is only present if localities 1, 2, and 3 are
implemented.

TPM_PT_PCR_RESET_L3 0x00000008 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 3

This property is only present if localities 1, 2, and 3 are
implemented.

TPM_PT_PCR_EXTEND_L4 0x00000009 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

TPM_PT_PCR_RESET_L4 0x0000000A a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Capability Name Value Comments

reserved 0x0000000B –
0x00000010

the values in this range are reserved

They correspond to values that may be used to describe
attributes associated with the extended localities (32-
255).synthesize additional software localities. The meaning of
these properties need not be the same as the meaning for the
Extend and Reset properties above.

TPM_PT_PCR_NO_INCREMENT 0x00000011 a SET bit in the TPMS_PCR_SELECT indicates that
modifications to this PCR (reset or Extend) will not increment
the pcrUpdateCounter

TPM_PT_PCR_DRTM_RESET 0x00000012 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
reset by a D-RTM event

These PCR are reset to -1 on TPM2_Startup() and reset to 0 on
a _TPM_Hash_End event following a _TPM_Hash_Start event.

TPM_PT_PCR_POLICY 0x00000013 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by policy

This property is only present if the TPM supports policy control
of a PCR.

TPM_PT_PCR_AUTH 0x00000014 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by an authorization value

This property is only present if the TPM supports authorization
control of a PCR.

reserved 0x00000015 reserved for the next (2nd) TPM_PT_PCR_POLICY set

reserved 0x00000016 reserved for the next (2nd) TPM_PT_PCR_AUTH set

reserved 0x00000017 –
0x00000210

reserved for the 2nd through 255th TPM_PT_PCR_POLICY and
TPM_PT_PCR_AUTH values

reserved 0x00000211 reserved to the 256th, and highest allowed,
TPM_PT_PCR_POLICY set

reserved 0x00000212 reserved to the 256th, and highest allowed,
TPM_PT_PCR_AUTH set

reserved 0x00000213 new PCR property values may be assigned starting with this
value

TPM_PT_PCR_LAST 0x00000014 top of the range of TPM_PT_PCR properties of the
implementation

If the TPM receives a request for a PCR property with a value
larger than this, the TPM will return a zero length list and set the
moreData parameter to NO.

NOTE This is an implementation-specific value. The value shown
reflects the reference code implementation.

Trusted Platform Module Library Part 2: Structures

Page 56 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.15 TPM_PS (Platform Specific)

The platform values in Table 25 are used for the TPM_PT_PS_FAMILY_INDICATOR.

Table 25 is an informative example of a TPM_PS constants table in the TCG Registry of Reserved TPM

2.0 Handles and Localities. It is provided for illustrative purposes only.

NOTE Values below six (6) have the same values as the purview assignments in TPM 1.2.

Table 25 — Definition of (UINT32) TPM_PS Constants <OUT>

Capability Name Value Comments

TPM_PS_MAIN 0x00000000 not platform specific

TPM_PS_PC 0x00000001 PC Client

TPM_PS_PDA 0x00000002 PDA (includes all mobile devices that are not specifically cell
phones)

TPM_PS_CELL_PHONE 0x00000003 Cell Phone

TPM_PS_SERVER 0x00000004 Server WG

TPM_PS_PERIPHERAL 0x00000005 Peripheral WG

TPM_PS_TSS 0x00000006 TSS WG (deprecated)

TPM_PS_STORAGE 0x00000007 Storage WG

TPM_PS_AUTHENTICATION 0x00000008 Authentication WG

TPM_PS_EMBEDDED 0x00000009 Embedded WG

TPM_PS_HARDCOPY 0x0000000A Hardcopy WG

TPM_PS_INFRASTRUCTURE 0x0000000B Infrastructure WG (deprecated)

TPM_PS_VIRTUALIZATION 0x0000000C Virtualization WG

TPM_PS_TNC 0x0000000D Trusted Network Connect WG (deprecated)

TPM_PS_MULTI_TENANT 0x0000000E Multi-tenant WG (deprecated)

TPM_PS_TC 0x0000000F Technical Committee (deprecated)

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7 Handles

7.1 Introduction

Handles are 32-bit values used to reference shielded locations of various types within the TPM.

Table 26 — Definition of Types for Handles

Type Name Description

UINT32 TPM_HANDLE

Handles may refer to objects (keys or data blobs), authorization sessions (HMAC and policy), NV

Indexes, permanent TPM locations, and PCR.

7.2 TPM_HT (Handle Types)

The 32-bit handle space is divided into 256 regions of equal size with 224 values in each. Each of these

ranges represents a handle type.

The type of the entity is indicated by the MSO of its handle. The values for the MSO and the entity

referenced are shown in Table 27.

Table 27 — Definition of (UINT8) TPM_HT Constants <S>

Name Value Comments

TPM_HT_PCR 0x00 PCR – consecutive numbers, starting at 0, that reference the PCR
registers

A platform-specific specification will set the minimum number of PCR
and an implementation may have more.

TPM_HT_NV_INDEX 0x01 NV Index – assigned by the caller

TPM_HT_HMAC_SESSION 0x02 HMAC Authorization Session – assigned by the TPM when the
session is created

TPM_HT_LOADED_SESSION 0x02 Loaded Authorization Session – used only in the context of
TPM2_GetCapability

This type references both loaded HMAC and loaded policy
authorization sessions.

TPM_HT_POLICY_SESSION 0x03 Policy Authorization Session – assigned by the TPM when the
session is created

TPM_HT_SAVED_SESSION 0x03 Saved Authorization Session – used only in the context of
TPM2_GetCapability

This type references saved authorization session contexts for which
the TPM is maintaining tracking information.

TPM_HT_PERMANENT 0x40 Permanent Values – assigned by this specification in Table 28

TPM_HT_TRANSIENT 0x80 Transient Objects – assigned by the TPM when an object is loaded
into transient-object memory or when a persistent object is converted
to a transient object

TPM_HT_PERSISTENT 0x81 Persistent Objects – assigned by the TPM when a loaded transient
object is made persistent

TPM_HT_AC 0x90 Attached Component – handle for an Attached Component.

Trusted Platform Module Library Part 2: Structures

Page 58 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When a transient object is loaded, the TPM shall assign a handle with an MSO of TPM_HT_TRANSIENT.

The object may be assigned a different handle each time it is loaded. The TPM shall ensure that handles

assigned to transient objects are unique and assigned to only one transient object at a time.

EXAMPLE 1 If a TPM is only able to hold 4 transient objects in internal memory, it might choose to assign handles to
those objects with the values 80 00 00 0016 – 80 00 00 0316.

When a transient object is converted to a persistent object (TPM2_EvictControl()), the TPM shall validate

that the handle provided by the caller has an MSO of TPM_HT_PERSISTENT and that the handle is not

already assigned to a persistent object.

A handle is assigned to a session when the session is started. The handle shall have an MSO equal to

TPM_HT_SESSION and remain associated with that session until the session is closed or flushed. The

TPM shall ensure that a session handle is only associated with one session at a time. When the session

is loaded into the TPM using TPM2_LoadContext(), it will have the same handle each time it is loaded.

EXAMPLE 2 If a TPM is only able to track 64 active sessions at a time, it could number those sessions using the
values xx 00 01 0016 – xx 00 01 3F16 where xx is either 0216 or 0316 depending on the session type.

7.3 Persistent Handle Sub-ranges

Persistent handles are assigned by the caller of TPM2_EvictControl(). Owner Authorization or Platform

Authorization is required to authorize allocation of space for a persistent object. These entities are given

separate ranges of persistent handles so that they do not have to allocate from a common range of

handles.

NOTE While this “namespace” allocation of the handle ranges could have been handled by convention, TPM
enforcement is used to prevent errors by the OS or malicious software from affecting the platform’s use of
the NV memory.

The Owner is allocated persistent handles in the range of 81 00 00 0016 to 81 7F FF FF16 inclusive and

the TPM will return an error if Owner Authorization is used to attempt to assign a persistent handle

outside of this range.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.4 TPM_RH (Permanent Handles)

Table 28 lists the architecturally defined handles that cannot be changed. The handles include

authorization handles, and special handles.

Table 28 — Definition of (TPM_HANDLE) TPM_RH Constants <S>

Name Value Type Comments

TPM_RH_FIRST 0x40000000 R

TPM_RH_SRK 0x40000000 R not used1

TPM_RH_OWNER 0x40000001 K, A, P
handle references the Storage Primary Seed (SPS), the
ownerAuth, and the ownerPolicy

TPM_RH_REVOKE 0x40000002 R not used1

TPM_RH_TRANSPORT 0x40000003 R not used1

TPM_RH_OPERATOR 0x40000004 R not used1

TPM_RH_ADMIN 0x40000005 R not used1

TPM_RH_EK 0x40000006 R not used1

TPM_RH_NULL 0x40000007 K, A, P
a handle associated with the null hierarchy, an EmptyAuth
authValue, and an Empty Policy authPolicy.

TPM_RH_UNASSIGNED 0x40000008 R
value reserved to the TPM to indicate a handle location that
has not been initialized or assigned

TPM_RS_PW 0x40000009 S
authorization value used to indicate a password
authorization session

TPM_RH_LOCKOUT 0x4000000A A
references the authorization associated with the dictionary
attack lockout reset

TPM_RH_ENDORSEMENT 0x4000000B K, A, P
references the Endorsement Primary Seed (EPS),
endorsementAuth, and endorsementPolicy

TPM_RH_PLATFORM 0x4000000C K, A, P
references the Platform Primary Seed (PPS), platformAuth,
and platformPolicy

TPM_RH_PLATFORM_NV 0x4000000D C for phEnableNV

TPM_RH_AUTH_00 0x40000010 A

Start of a range of authorization values that are vendor-
specific. A TPM may support any of the values in this range
as are needed for vendor-specific purposes.

Disabled if ehEnable is CLEAR.

NOTE “Any” includes “none”.

TPM_RH_AUTH_FF 0x4000010F A End of the range of vendor-specific authorization values.

TPM_RH_ACT_0 0x40000110 A,P Start of the range of authenticated timers

TPM_RH_ACT_F 0x4000011F A,P End of the range of authenticated timers

TPM_RH_LAST 0x4000011F R

the top of the reserved handle area

This is set to allow TPM2_GetCapability() to know where to
stop. It may vary as implementations add to the permanent
handle area.

Trusted Platform Module Library Part 2: Structures

Page 60 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Value Type Comments

Type definitions:

R – a reserved value

K – a Primary Seed

A – an authorization value

P – a policy value

S – a session handle

C - a control

Note 1 The handle is only used in a TPM that is compatible with a previous version of this specification. It is not used in any
command defined in this version of the specification.

7.5 TPM_HC (Handle Value Constants)

The definitions in Table 29 are used to define many of the interface data types.

These values, that indicate ranges, are informative and may be changed by an implementation. The TPM

will always return the correct handle type as described in 7.2 Table 27:

• HMAC_SESSION_FIRST—HMAC_SESSION_LAST,

• LOADED_SESSION_FIRST—LOADED_SESSION_LAST,

• POLICY_SESSION_FIRST—POLICY_SESSION_LAST,

• TRANSIENT_FIRST—TRANSIENT_LAST,

• ACTIVE_SESSION_FIRST—ACTIVE_SESSION_LAST,

• PCR_FIRST—PCR_LAST

These values are input by the caller. The TPM implementation should support the entire range:

• PERSISTENT_FIRST—PERSISTENT_LAST,

• PLATFORM_PERSISTENT—PLATFORM_PERSISTENT+0x007FFFFF,

• NV_INDEX_FIRST—NV_INDEX_LAST,

• PERMANENT_FIRST—PERMANENT_LAST

NOTE PCR0 is architecturally defined to have a handle value of 0.

For the reference implementation, the handle range for sessions starts at the lowest allowed value for a

session handle. The highest value for a session handle is determined by how many active sessions are

allowed by the implementation. The MSO of the session handle will be set according to the session type.

A similar approach is used for transient objects with the first assigned handle at the bottom of the range

defined by TPM_HT_TRANSIENT and the top of the range determined by the implementation-dependent

value of MAX_LOADED_OBJECTS.

The first assigned handle for evict objects is also at the bottom of the allowed range defined by

TPM_HT_PERSISTENT and the top of the range determined by the implementation-dependent value of

MAX_EVICT_OBJECTS.

NOTE The values in Table 29 are intended to facilitate the process of making the handle larger than 32 bits in
the future. It is intended that HR_MASK and HR_SHIFT are the only values that need change to resize
the handle space.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 29 — Definition of (TPM_HANDLE) TPM_HC Constants <S>

Name Value Comments

HR_HANDLE_MASK 0x00FFFFFF to mask off the HR

HR_RANGE_MASK 0xFF000000 to mask off the variable
part

HR_SHIFT 24

HR_PCR (TPM_HT_PCR << HR_SHIFT)

HR_HMAC_SESSION (TPM_HT_HMAC_SESSION << HR_SHIFT)

HR_POLICY_SESSION (TPM_HT_POLICY_SESSION << HR_SHIFT)

HR_TRANSIENT (TPM_HT_TRANSIENT << HR_SHIFT)

HR_PERSISTENT (TPM_HT_PERSISTENT << HR_SHIFT)

HR_NV_INDEX (TPM_HT_NV_INDEX << HR_SHIFT)

HR_PERMANENT (TPM_HT_PERMANENT << HR_SHIFT)

PCR_FIRST (HR_PCR + 0) first PCR

PCR_LAST (PCR_FIRST + IMPLEMENTATION_PCR-1) last PCR

HMAC_SESSION_FIRST (HR_HMAC_SESSION + 0) first HMAC session

HMAC_SESSION_LAST (HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1) last HMAC session

LOADED_SESSION_FIRST HMAC_SESSION_FIRST used in GetCapability

LOADED_SESSION_LAST HMAC_SESSION_LAST used in GetCapability

POLICY_SESSION_FIRST (HR_POLICY_SESSION + 0) first policy session

POLICY_SESSION_LAST (POLICY_SESSION_FIRST + MAX_ACTIVE_SESSIONS-1) last policy session

TRANSIENT_FIRST (HR_TRANSIENT + 0) first transient object

ACTIVE_SESSION_FIRST POLICY_SESSION_FIRST used in GetCapability

ACTIVE_SESSION_LAST POLICY_SESSION_LAST used in GetCapability

TRANSIENT_LAST (TRANSIENT_FIRST+MAX_LOADED_OBJECTS-1) last transient object

PERSISTENT_FIRST (HR_PERSISTENT + 0) first persistent object

PERSISTENT_LAST (PERSISTENT_FIRST + 0x00FFFFFF) last persistent object

PLATFORM_PERSISTENT (PERSISTENT_FIRST + 0x00800000) first platform persistent
object

NV_INDEX_FIRST (HR_NV_INDEX + 0) first allowed NV Index

NV_INDEX_LAST (NV_INDEX_FIRST + 0x00FFFFFF) last allowed NV Index

PERMANENT_FIRST TPM_RH_FIRST

PERMANENT_LAST TPM_RH_LAST

HR_NV_AC ((TPM_HT_NV_INDEX << HR_SHIFT) + 0xD00000) AC aliased NV Index

NV_AC_FIRST (HR_NV_AC + 0) first NV Index aliased
to Attached Component

NV_AC_LAST (HR_NV_AC + 0x0000FFFF) last NV Index aliased to
Attached Component

HR_AC (TPM_HT_AC << HR_SHIFT) AC Handle

AC_FIRST (HR_AC + 0) first Attached
Component

Trusted Platform Module Library Part 2: Structures

Page 62 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Name Value Comments

AC_LAST (HR_AC + 0x0000FFFF) last Attached
Component

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8 Attribute Structures

8.1 Description

Attributes are expressed as bit fields of varying size. An attribute field structure may be 1, 2, or 4 octets in

length.

The bit numbers for an attribute structure are assigned with the number 0 assigned to the least-significant

bit of the structure and the highest number assigned to the most-significant bit of the structure.

The least significant bit is determined by treating the attribute structure as an integer. The least-significant

bit would be the bit that is set when the value of the integer is 1.

When any reserved bit in an attribute is SET, the TPM shall return TPM_RC_RESERVED_BITS. This

response code is not shown in the tables for attributes.

8.2 TPMA_ALGORITHM

This structure defines the attributes of an algorithm.

Each algorithm has a fundamental attribute: asymmetric, symmetric, or hash. In some cases (e.g.,

TPM_ALG_RSA or TPM_ALG_AES), this is the only attribute.

A mode, method, or scheme may have an associated asymmetric, symmetric, or hash algorithm.

NOTE A hash algorithm that can be used directly is one that has only the hash attribute SET.

EXAMPLE A PCR bank or an object Name can only use an algorithm that has only the hash attribute SET.

Table 30 — Definition of (UINT32) TPMA_ALGORITHM Bits

Bit Name Definition

0 asymmetric SET (1): an asymmetric algorithm with public and private portions

CLEAR (0): not an asymmetric algorithm

1 symmetric SET (1): a symmetric block cipher

CLEAR (0): not a symmetric block cipher

2 hash SET (1): a hash algorithm

CLEAR (0): not a hash algorithm

3 object SET (1): an algorithm that may be used as an object type

CLEAR (0): an algorithm that is not used as an object type

7:4 Reserved

8 signing SET (1): a signing algorithm. The setting of asymmetric, symmetric, and hash
will indicate the type of signing algorithm.

CLEAR (0): not a signing algorithm

9 encrypting SET (1): an encryption/decryption algorithm. The setting of asymmetric,
symmetric, and hash will indicate the type of encryption/decryption algorithm.

CLEAR (0): not an encryption/decryption algorithm

10 method SET (1): a method such as a key derivative function (KDF)

CLEAR (0): not a method

31:11 Reserved

Trusted Platform Module Library Part 2: Structures

Page 64 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.3 TPMA_OBJECT (Object Attributes)

8.3.1 Introduction

This attribute structure indicates an object’s use, its authorization types, and its relationship to other

objects.

The state of the attributes is determined when the object is created and they are never changed by the

TPM. Additionally, the setting of these structures is reflected in the integrity value of the private area of an

object in order to allow the TPM to detect modifications of the Protected Object when stored off the TPM.

8.3.2 Structure Definition

Table 31 — Definition of (UINT32) TPMA_OBJECT Bits

Bit Name Definition

0 Reserved shall be zero

1 fixedTPM SET (1): The hierarchy of the object, as indicated by its Qualified Name, may
not change.

CLEAR (0): The hierarchy of the object may change as a result of this object or
an ancestor key being duplicated for use in another hierarchy.

NOTE fixedTPM does not indicate that key material resides on a single TPM (see
sensitiveDataOrigin).

2 stClear SET (1): Previously saved contexts of this object may not be loaded after
Startup(CLEAR).

CLEAR (0): Saved contexts of this object may be used after a
Shutdown(STATE) and subsequent Startup().

3 Reserved shall be zero

4 fixedParent SET (1): The parent of the object may not change.

CLEAR (0): The parent of the object may change as the result of a
TPM2_Duplicate() of the object.

5 sensitiveDataOrigin SET (1): Indicates that, when the object was created with TPM2_Create() or
TPM2_CreatePrimary(), the TPM generated all of the sensitive data other than
the authValue.

CLEAR (0): A portion of the sensitive data, other than the authValue, was
provided by the caller.

6 userWithAuth SET (1): Approval of USER role actions with this object may be with an HMAC
session or with a password using the authValue of the object or a policy
session.

CLEAR (0): Approval of USER role actions with this object may only be done
with a policy session.

7 adminWithPolicy SET (1): Approval of ADMIN role actions with this object may only be done with
a policy session.

CLEAR (0): Approval of ADMIN role actions with this object may be with an
HMAC session or with a password using the authValue of the object or a policy
session.

9:8 Reserved shall be zero

10 noDA SET (1): The object is not subject to dictionary attack protections.

CLEAR (0): The object is subject to dictionary attack protections.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Bit Name Definition

11 encryptedDuplication SET (1): If the object is duplicated, then symmetricAlg shall not be
TPM_ALG_NULL and newParentHandle shall not be TPM_RH_NULL.

CLEAR (0): The object may be duplicated without an inner wrapper on the
private portion of the object and the new parent may be TPM_RH_NULL.

15:12 Reserved shall be zero

16 restricted SET (1): Key usage is restricted to manipulate structures of known format; the
parent of this key shall have restricted SET.

CLEAR (0): Key usage is not restricted to use on special formats.

17 decrypt SET (1): The private portion of the key may be used to decrypt.

CLEAR (0): The private portion of the key may not be used to decrypt.

18 sign / encrypt SET (1): For a symmetric cipher object, the private portion of the key may be
used to encrypt. For other objects, the private portion of the key may be used to
sign.

CLEAR (0): The private portion of the key may not be used to sign or encrypt.

19 x509sign SET (1): An asymmetric key that may not be used to sign with TPM2_Sign()

CLEAR (0): A key that may be used with TPM2_Sign() if sign is SET

NOTE: This attribute only has significance if sign is SET.

31:20 Reserved shall be zero

8.3.3 Attribute Descriptions

8.3.3.1 Introduction

The following remaining paragraphs in 8.3.3 describe the use and settings for each of the

TPMA_OBJECT attributes. The description includes checks that are performed on the objectAttributes

when an object is created, when it is loaded, and when it is imported. In these descriptions:

Creation indicates settings for the template parameter in TPM2_Create() or

TPM2_CreatePrimary()

Load indicates settings for the inPublic parameter in TPM2_Load()

Import indicates settings for the objectPublic parameter in TPM2_Import()

External indicates settings that apply to the inPublic parameter in TPM2_LoadExternal() if both the

public and sensitive portions of the object are loaded

NOTE For TPM2_LoadExternal() when only the public portion of the object is loaded, the only attribute checks
are the checks in the validation code following Table 31 and the reserved attributes check.

For any consistency error of attributes in TPMA_OBJECT, the TPM shall return TPM_RC_ATTRIBUTES.

Trusted Platform Module Library Part 2: Structures

Page 66 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.3.3.2 Bit[1] – fixedTPM

When SET, the object cannot be duplicated for use on a different TPM, either directly or indirectly and the

Qualified Name of the object cannot change. When CLEAR, the object’s Qualified Name may change if

the object or an ancestor is duplicated.

NOTE This attribute is the logical inverse of the migratable attribute in 1.2. That is, when this attribute is CLEAR,
it is the equivalent to a 1.2 object with migratable SET.

Creation If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be

set to the same value in template. If fixedTPM is CLEAR in the parent, this attribute shall

also be CLEAR in template.

NOTE For a Primary Object, the parent is considered to have fixedTPM SET.

Load If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be

set to the same value. If fixedTPM is CLEAR in the parent, this attribute shall also be

CLEAR.

Import shall be CLEAR

External shall be CLEAR if both the public and sensitive portions are loaded or if fixedParent is

CLEAR, otherwise may be SET or CLEAR

8.3.3.3 Bit[2] – stClear

If this attribute is SET, then saved contexts of this object will be invalidated on

TPM2_Startup(TPM_SU_CLEAR). If the attribute is CLEAR, then the TPM shall not invalidate the saved

context if the TPM received TPM2_Shutdown(TPM_SU_STATE). If the saved state is valid when checked

at the next TPM2_Startup(), then the TPM shall continue to be able to use the saved contexts.

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import may be SET or CLEAR

External may be SET or CLEAR

8.3.3.4 Bit[4] – fixedParent

If this attribute is SET, the object’s parent may not be changed. That is, this object may not be the object

of a TPM2_Duplicate(). If this attribute is CLEAR, then this object may be the object of a

TPM2_Duplicate().

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import shall be CLEAR

External shall be CLEAR if both the public and sensitive portions are loaded; otherwise it may be

SET or CLEAR

8.3.3.5 Bit[5] – sensitiveDataOrigin

This attribute is SET for any key that was generated by TPM in TPM2_Create() or

TPM2_CreatePrimary(). If CLEAR, it indicates that the sensitive part of the object (other than the

obfuscation value) was provided by the caller.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE 1 If the fixedTPM attribute is SET, then this attribute is authoritative and accurately reflects the source of
the sensitive area data. If the fixedTPM attribute is CLEAR, then validation of this attribute requires
evaluation of the properties of the ancestor keys.

Creation If inSensitive.sensitive.data.size is zero, then this attribute shall be SET in the template;

otherwise, it shall be CLEAR in the template.

NOTE 2 The inSensitive.sensitive.data.size parameter is required to be zero for an asymmetric key so
sensitiveDataOrigin is required to be SET.

NOTE 3 The inSensitive.sensitive.data.size parameter may not be zero for a data object so sensitiveDataOrigin is
required to be CLEAR. A data object has type = TPM_ALG_KEYEDHASH and its sign and decrypt
attributes are CLEAR.

Load may be SET or CLEAR

Import may be SET or CLEAR

External may be SET or CLEAR

8.3.3.6 Bit[6] – userWithAuth

If SET, authorization for operations that require USER role authorization may be given if the caller

provides proof of knowledge of the authValue of the object with an HMAC authorization session or a

password.

If this attribute is CLEAR, then HMAC or password authorizations may not be used for USER role

authorizations.

NOTE 1 Regardless of the setting of this attribute, authorizations for operations that require USER role
authorizations may be provided with a policy session that satisfies the object's authPolicy.

NOTE 2 Regardless of the setting of this attribute, the authValue may be referenced in a policy session or used to
provide the bind value in TPM2_StartAuthSession(). However, if userWithAuth is CLEAR, then the object
may be used as the bind object in TPM2_StartAuthSession() but the session cannot be used to authorize
actions on the object. If this were allowed, then the userWithAuth control could be circumvented simply by
using the object as the bind object.

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import may be SET or CLEAR

External may be SET or CLEAR

8.3.3.7 Bit[7] – adminWithPolicy

If CLEAR, authorization for operations that require ADMIN role may be given if the caller provides proof of

knowledge of the authValue of the object with an HMAC authorization session or a password.

If this attribute is SET, then then HMAC or password authorizations may not be used for ADMIN role

authorizations.

NOTE 1 Regardless of the setting of this attribute, operations that require ADMIN role authorization may be
provided by a policy session that satisfies the object's authPolicy.

NOTE 2 This attribute is similar to userWithAuth but the logic is a bit different. When userWithAuth is CLEAR, the
authValue may not be used for USER mode authorizations. When adminWithPolicy is CLEAR, it means
that the authValue may be used for ADMIN role. Policy may always be used regardless of the setting of
userWithAuth or adminWithPolicy.

Trusted Platform Module Library Part 2: Structures

Page 68 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Actions that always require policy (TPM2_Duplicate()) are not affected by the setting of this attribute.

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import may be SET or CLEAR

External may be SET or CLEAR

8.3.3.8 Bit[10] – noDA

If SET, then authorization failures for the object do not affect the dictionary attack protection logic and

authorization of the object is not blocked if the TPM is in lockout.

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import may be SET or CLEAR

External may be SET or CLEAR

8.3.3.9 Bit[11] – encryptedDuplication

If SET, then when the object is duplicated, the sensitive portion of the object is required to be encrypted

with an inner wrapper and the new parent shall be an asymmetric key and not TPM_RH_NULL

NOTE 1 Enforcement of these requirements in TPM2_Duplicate() is by not allowing symmetricAlg to be
TPM_ALG_NULL and not allowing newParentHandle to be TPM_RH_NULL.

This attribute shall not be SET in any object that has fixedTPM SET.

NOTE 2 This requirement means that encryptedDuplication may not be SET if the object cannot be directly or
indirectly duplicated.

If an object's parent has fixedTPM SET, and the object is duplicable (fixedParent == CLEAR), then

encryptedDuplication may be SET or CLEAR in the object.

NOTE 3 This allows the object at the boundary between duplicable and non-duplicable objects to have either
setting.

If an object's parent has fixedTPM CLEAR, then the object is required to have the same setting of

encryptedDuplication as its parent.

NOTE 4 This requirement forces all duplicable objects in a duplication group to have the same
encryptedDuplication setting.

Creation shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have

the same value as its parent unless fixedTPM is SET in the object's parent, in which

case, it may be SET or CLEAR.

Load shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have

the same value as its parent, unless fixedTPM is SET the parent, in which case, it may

be SET or CLEAR.

Import if fixedTPM is SET in the object's new parent, then this attribute may be SET or CLEAR,

otherwise, it shall have the same setting as the new parent.

External may be SET or CLEAR.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.3.3.10 Bit[16] – restricted

This this attribute modifies the decrypt and sign attributes of an object.

NOTE A key with this object CLEAR may not be a parent for another object.

Creation shall be CLEAR in template if neither sign nor decrypt is SET in template.

Load shall be CLEAR if neither sign nor decrypt is SET in the object

Import may be SET or CLEAR

External shall be CLEAR

8.3.3.11 Bit[17] – decrypt

When SET, the private portion of this key can be used to decrypt an external blob. If restricted is SET,

then the TPM will return an error if the external decrypted blob is not formatted as appropriate for the

command.

NOTE 1 Since TPM-generated keys and sealed data will contain a hash and a structure tag, the TPM can ensure
that it is not being used to improperly decrypt and return sensitive data that should not be returned. The
only type of data that may be returned after decryption is a Sealed Data Object (a keyedHash object with
decrypt and sign CLEAR).

When restricted is CLEAR, there are no restrictions on the use of the private portion of the key for

decryption and the key may be used to decrypt and return any structure encrypted by the public portion of

the key.

NOTE 2 A key with this attribute SET may be a parent for another object if restricted is SET and sign is CLEAR.

If decrypt is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an

XOR encryption key.

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import may be SET or CLEAR

External may be SET or CLEAR

Trusted Platform Module Library Part 2: Structures

Page 70 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.3.3.12 Bit[18] – sign / encrypt

When SET, the private portion of this key may be used to sign a digest if the key is an asymetric key or to

encrypt a block of data if the key is a symmetric key. If restricted is SET, then the asymmetric key may

only be used to sign a digest that was computed by the TPM. A restricted symmetric key may only be

used to encrypt a data block. If a structure is generated by the TPM, it will begin with

TPM_GENERATED_VALUE and the TPM may sign the digest of that structure. If the data is externally

supplied and has TPM_GENERATED_VALUE as its first octets, then the TPM will not sign a digest of

that data with a restricted signing key.

If restricted is CLEAR, then the key may be used to sign any digest or encrypt any data block, whether

generated by the TPM or externally provided.

NOTE 1 Some asymmetric algorithms may not support both sign and decrypt being SET in the same key.

If sign is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an

HMAC key.

NOTE 2 A key with this attribute SET may not be a parent for another object.

Creation shall not be SET if decrypt and restricted are both SET

Load shall not be SET if decrypt and restricted are both SET

Import shall not be SET if decrypt and restricted are both SET

External shall not be SET if decrypt and restricted are both SET

8.3.3.13 Bit[19] – x509sign

When SET, the private portion of the asymmetric key may not be used as the signing key in

TPM2_Sign(). This restriction is to ensure that the only digest signed by this key is a digest of a strucure

that is specific to the TPM or an x509 certiticate.

NOTE 1 This attribute does not limit the use of the key in any command other than TPM2_Sign().

NOTE 2 This attribute was added in revision 01.53.

This attribute may not be SET if the object is not an asymmetric key or if sign is CLEAR.

Creation shall not be SET if sign is CLEAR or if the object is not an asymmetric key

Load shall not be SET if sign is CLEAR or if the object is not an asymmetric key

Import shall not be SET if sign is CLEAR or if the object is not an asymmetric key

External shall not be SET if sign is CLEAR or if the object is not an asymmetric key

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.4 TPMA_SESSION (Session Attributes)

This octet in each session is used to identify the session type, indicate its relationship to any handles in

the command, and indicate its use in parameter encryption.

If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must be SET.

In this revision, if audit is CLEAR, auditExclusive must be CLEAR in the command and will be CLEAR in

the response. In a future, revision, this bit may have a different meaning if audit is CLEAR. See "Exclusive

Audit Session" clause in TPM 2.0 Part 1.

In this revision, if audit is CLEAR, auditReset must be clear in the command and will be CLEAR in the

response. In a future, revision, this bit may have a different meaning if audit is CLEAR.

decrypt may only be SET in one session per command. It may only be SET if the first parameter of the

command is a sized buffer (TPM2B_).

encrypt may only be SET in one session per command. It may only be SET if the first parameter of the

response is a sized buffer (TPM2B_).

audit may only be SET in one session per command or response.

Table 32 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT>

Bit Name Meaning

0 continueSession SET (1): In a command, this setting indicates that the session is to remain active
after successful completion of the command. In a response, it indicates that the
session is still active. If SET in the command, this attribute shall be SET in the
response.

CLEAR (0): In a command, this setting indicates that the TPM should close the
session and flush any related context when the command completes successfully. In
a response, it indicates that the session is closed and the context is no longer active.

This attribute has no meaning for a password authorization and the TPM will allow
any setting of the attribute in the command and SET the attribute in the response.

This attribute will only be CLEAR in one response for a logical session. If the attribute
is CLEAR, the context associated with the session is no longer in use and the space
is available. A session created after another session is ended may have the same
handle but logically is not the same session.

This attribute has no effect if the command does not complete successfully.

1 auditExclusive SET (1): In a command, this setting indicates that the command should only be
executed if the session is exclusive at the start of the command. In a response, it
indicates that the session is exclusive. This setting is only allowed if the audit
attribute is SET (TPM_RC_ATTRIBUTES).

CLEAR (0): In a command, indicates that the session need not be exclusive at the
start of the command. In a response, indicates that the session is not exclusive.

2 auditReset SET (1): In a command, this setting indicates that the audit digest of the session
should be initialized and the exclusive status of the session SET. This setting is only
allowed if the audit attribute is SET (TPM_RC_ATTRIBUTES).

CLEAR (0): In a command, indicates that the audit digest should not be initialized.

This bit is always CLEAR in a response.

4:3 Reserved shall be CLEAR

Trusted Platform Module Library Part 2: Structures

Page 72 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Bit Name Meaning

5 decrypt SET (1): In a command, this setting indicates that the first parameter in the command
is symmetrically encrypted using the parameter encryption scheme described in TPM
2.0 Part 1. The TPM will decrypt the parameter after performing any HMAC
computations and before unmarshaling the parameter. In a response, the attribute is
copied from the request but has no effect on the response.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may be SET in combination with any other session attributes.

6 encrypt SET (1): In a command, this setting indicates that the TPM should use this session to
encrypt the first parameter in the response. In a response, it indicates that the
attribute was set in the command and that the TPM used the session to encrypt the
first parameter in the response using the parameter encryption scheme described in
TPM 2.0 Part 1.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

7 audit SET (1): In a command or response, this setting indicates that the session is for audit
and that auditExclusive and auditReset have meaning. This session may also be
used for authorization, encryption, or decryption. The encrypted and encrypt fields
may be SET or CLEAR.

CLEAR (0): Session is not used for audit.

If SET in the command, then this attribute will be SET in the response.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.5 TPMA_LOCALITY (Locality Attribute)

In a TPMS_CREATION_DATA structure, this structure is used to indicate the locality of the command that

created the object. No more than one of the locality attributes shall be set in the creation data.

When used in TPM2_PolicyLocality(), this structure indicates which localities are approved by the policy.

When a policy is started, all localities are allowed. If TPM2_PolicyLocality() is executed, it indicates that

the command may only be executed at specific localities. More than one locality may be selected.

EXAMPLE 1 TPM_LOC_TWO would indicate that only locality 2 is authorized.

EXAMPLE 2 TPM_LOC_ONE + TPM_LOC_TWO would indicate that locality 1 or 2 is authorized.

EXAMPLE 3 TPM_LOC_FOUR + TPM_LOC_THREE would indicate that localities 3 or 4 are authorized.

EXAMPLE 4 A value of 2116 would represent a locality of 33.

NOTE Locality values of 5 through 31 are not selectable.

If Extended is non-zero, then an extended locality is indicated and the TPMA_LOCALITY contains an

integer value.

Table 33 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>

Bit Name Definition

0 TPM_LOC_ZERO

1 TPM_LOC_ONE

2 TPM_LOC_TWO

3 TPM_LOC_THREE

4 TPM_LOC_FOUR

7:5 Extended If any of these bits is set, an extended locality is indicated

Trusted Platform Module Library Part 2: Structures

Page 74 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.6 TPMA_PERMANENT

The attributes in this structure are persistent and are not changed as a result of _TPM_Init or any

TPM2_Startup(). Some of the attributes in this structure may change as the result of specific Protected

Capabilities. This structure may be read using TPM2_GetCapability(capability =

TPM_CAP_TPM_PROPERTIES, property = TPM_PT_PERMANENT).

Table 34 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT>

Bit Parameter Description

0 ownerAuthSet SET (1): TPM2_HierarchyChangeAuth() with ownerAuth has been executed
since the last TPM2_Clear().

CLEAR (0): ownerAuth has not been changed since TPM2_Clear().

1 endorsementAuthSet SET (1): TPM2_HierarchyChangeAuth() with endorsementAuth has been
executed since the last TPM2_Clear().

CLEAR (0): endorsementAuth has not been changed since TPM2_Clear().

2 lockoutAuthSet SET (1): TPM2_HierarchyChangeAuth() with lockoutAuth has been executed
since the last TPM2_Clear().

CLEAR (0): lockoutAuth has not been changed since TPM2_Clear().

7:3 Reserved

8 disableClear SET (1): TPM2_Clear() is disabled.

CLEAR (0): TPM2_Clear() is enabled.

NOTE See “TPM2_ClearControl” in TPM 2.0 Part 3 for details on changing this
attribute.

9 inLockout SET (1): The TPM is in lockout, when failedTries is equal to maxTries.

10 tpmGeneratedEPS SET (1): The EPS was created by the TPM.

CLEAR (0): The EPS was created outside of the TPM using a manufacturer-
specific process.

31:11 Reserved

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.7 TPMA_STARTUP_CLEAR

This structure may be read using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES,

property = TPM_PT_STARTUP_CLEAR).

phEnable is SET on any TPM2_Startup. shEnable, ehEnable, and phEnableNV are SET on TPM Reset

or TPM_Restart and preserved by TPM Resume.

Some of attributes may be changed as the result of specific Protected Capabilities.

Table 35 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT>

Bit Parameter Description

0 phEnable SET (1): The platform hierarchy is enabled and platformAuth or platformPolicy
may be used for authorization.

CLEAR (0): platformAuth and platformPolicy may not be used for authorizations,
and objects in the platform hierarchy, including persistent objects, cannot be used.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this
attribute.

1 shEnable SET (1): The Storage hierarchy is enabled and ownerAuth or ownerPolicy may be
used for authorization. NV indices defined using owner authorization are
accessible.

CLEAR (0): ownerAuth and ownerPolicy may not be used for authorizations, and
objects in the Storage hierarchy, persistent objects, and NV indices defined using
owner authorization cannot be used.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this
attribute.

2 ehEnable SET (1): The EPS hierarchy is enabled and Endorsement Authorization may be
used to authorize commands.

CLEAR (0): Endorsement Authorization may not be used for authorizations, and
objects in the endorsement hierarchy, including persistent objects, cannot be
used.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this
attribute.

3 phEnableNV SET (1): NV indices that have TPMA_NV_PLATFORMCREATE SET may be read
or written. The platform can create define and undefine indices.

CLEAR (0): NV indices that have TPMA_NV_PLATFORMCREATE SET may not
be read or written (TPM_RC_HANDLE). The platform cannot define
(TPM_RC_HIERARCHY) or undefined (TPM_RC_HANDLE) indices.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this
attribute.

NOTE

read refers to these commands: TPM2_NV_Read, TPM2_NV_ReadPublic,
TPM_NV_Certify, TPM2_PolicyNV

write refers to these commands: TPM2_NV_Write, TPM2_NV_Increment,
TPM2_NV_Extend, TPM2_NV_SetBits

NOTE The TPM must query the index TPMA_NV_PLATFORMCREATE attribute to
determine whether phEnableNV is applicable. Since the TPM will return
TPM_RC_HANDLE if the index does not exist, it also returns this error code if
the index is disabled. Otherwise, the TPM would leak the existence of an index
even when disabled.

30:4 Reserved shall be zero

Trusted Platform Module Library Part 2: Structures

Page 76 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Bit Parameter Description

31 orderly SET (1): The TPM received a TPM2_Shutdown() and a matching TPM2_Startup().

CLEAR (0): TPM2_Startup(TPM_SU_CLEAR) was not preceded by a
TPM2_Shutdown() of any type.

NOTE A shutdown is orderly if the TPM receives a TPM2_Shutdown() of any type
followed by a TPM2_Startup() of any type. However, the TPM will return an error
if TPM2_Startup(TPM_SU_STATE) was not preceded by
TPM2_Shutdown(TPM_SU_STATE).

8.8 TPMA_MEMORY

This structure of this attribute is used to report the memory management method used by the TPM for

transient objects and authorization sessions. This structure may be read using

TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property = TPM_PT_MEMORY).

If the RAM memory is shared, then context save of a session may make it possible to load an additional

transient object.

Table 36 — Definition of (UINT32) TPMA_MEMORY Bits <Out>

Bit Name Definition

0 sharedRAM SET (1): indicates that the RAM memory used for authorization session
contexts is shared with the memory used for transient objects

CLEAR (0): indicates that the memory used for authorization sessions is not
shared with memory used for transient objects

1 sharedNV SET (1): indicates that the NV memory used for persistent objects is shared
with the NV memory used for NV Index values

CLEAR (0): indicates that the persistent objects and NV Index values are
allocated from separate sections of NV

2 objectCopiedToRam SET (1): indicates that the TPM copies persistent objects to a transient-
object slot in RAM when the persistent object is referenced in a command.
The TRM is required to make sure that an object slot is available.

CLEAR (0): indicates that the TPM does not use transient-object slots when
persistent objects are referenced

31:3 Reserved shall be zero

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.9 TPMA_CC (Command Code Attributes)

8.9.1 Introduction

This structure defines the attributes of a command from a context management perspective. The fields of

the structure indicate to the TPM Resource Manager (TRM) the number of resources required by a

command and how the command affects the TPM’s resources.

This structure is only used in a list returned by the TPM in response to TPM2_GetCapability(capability =

TPM_CAP_COMMANDS).

For a command to the TPM, only the commandIndex field and V attribute are allowed to be non-zero.

8.9.2 Structure Definition

Table 37 — Definition of (TPM_CC) TPMA_CC Bits <OUT>

Bit Name Definition

15:0 commandIndex indicates the command being selected

21:16 Reserved shall be zero

22 nv SET (1): indicates that the command may write to NV

CLEAR (0): indicates that the command does not write to NV

23 extensive SET (1): This command could flush any number of loaded contexts.

CLEAR (0): no additional changes other than indicated by the flushed
attribute

24 flushed SET (1): The context associated with any transient handle in the command
will be flushed when this command completes.

CLEAR (0): No context is flushed as a side effect of this command.

27:25 cHandles indicates the number of the handles in the handle area for this command

28 rHandle SET (1): indicates the presence of the handle area in the response

29 V SET (1): indicates that the command is vendor-specific

CLEAR (0): indicates that the command is defined in a version of this
specification

31:30 Res allocated for software; shall be zero

8.9.3 Field Descriptions

8.9.3.1 Bits[15:0] – commandIndex

This is the command index of the command in the set of commands. The two sets are defined by the V

attribute. If V is zero, then the commandIndex shall be in the set of commands defined in a version of this

specification. If V is one, then the meaning of commandIndex is as determined by the TPM vendor.

8.9.3.2 Bit[22] – nv

If this attribute is SET, then the TPM may perform an NV write as part of the command actions. This write

is independent of any write that may occur as a result of dictionary attack protection. If this attribute is

CLEAR, then the TPM shall not perform an NV write as part of the command actions.

Trusted Platform Module Library Part 2: Structures

Page 78 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.9.3.3 Bit[23] – extensive

If this attribute is SET, then the TPM may flush many transient objects as a side effect of this command.

In TPM 2.0 Part 3, a command that has this attribute is indicated by using a “{E}” decoration in the

“Description” column of the commandCode parameter.

EXAMPLE See “TPM2_Clear” in TPM 2.0 Part 3.

NOTE The “{E}” decoration may be combined with other decorations such as “{NV}” in which case the decoration
would be “{NV E}.”

8.9.3.4 Bit[24] – flushed

If this attribute is SET, then the TPM will flush transient objects as a side effect of this command. Any

transient objects listed in the handle area of the command will be flushed from TPM memory. Handles

associated with persistent objects, sessions, PCR, or other fixed TPM resources are not flushed.

NOTE The TRM is expected to use this value to determine how many objects are loaded into transient TPM
memory.

NOTE The “{F}” decoration may be combined with other decorations such as “{NV}” in which case the decoration
would be “{NV F}.”

If this attribute is SET for a command, and the handle of the command is associated with a hierarchy

(TPM_RH_PLATFORM, TPM_RH_OWNER, or TPM_RH_ENDORSEMENT), all loaded objects in the

indicated hierarchy are flushed.

The TRM is expected to know the behaviour of TPM2_ContextSave(), and sessions are flushed when

context saved, but objects are not. The flushed attribute for that command shall be CLEAR.

In TPM 2.0 Part 3, a command that has this attribute is indicated by using a “{F}” decoration in the

“Description” column of the commandCode parameter.

EXAMPLE See “TPM2_SequenceComplete” in TPM 2.0 Part 3.”

8.9.3.5 Bits[27:25] – cHandles

This field indicates the number of handles in the handle area of the command. This number allows the

TRM to enumerate the handles in the handle area and find the position of the authorizations (if any).

8.9.3.6 Bit[28] – rHandle

If this attribute is SET, then the response to this command has a handle area. This area will contain no

more than one handle. This field is necessary to allow the TRM to locate the parameterSize field in the

response, which is then used to locate the authorizations.

NOTE The TRM is expected to “virtualize” the handle value for any returned handle.

A TPM command is only allowed to have one handle in the response handle area.

8.9.3.7 Bit[29] – V

When this attribute is SET, it indicates that the command operation is defined by the TPM vendor. When

CLEAR, it indicates that the command is defined by a version of this specification.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.9.3.8 Bits[31:30] – Res

This field is reserved for system software. This field is required to be zero for a command to the TPM.

8.10 TPMA_MODES

This structure of this attribute is used to report that the TPM is designed for these modes. This structure

may be read using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property =

TPM_PT_MODES).

NOTE: To determine the certification status of a TPM with the FIPS_140_2 attribute SET, consult the NIST
Module Validation List at http://csrc.nist.gov/groups/STM/cmvp/validation.html.

Table 38 — Definition of (UINT32) TPMA_MODES Bits <Out>

Bit Name Definition

0 FIPS_140_2 SET (1): indicates that the TPM is designed to comply with all of the FIPS
140-2 requirements at Level 1 or higher.

31:1 Reserved shall be zero

Trusted Platform Module Library Part 2: Structures

Page 80 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.11 TPMA_X509_KEY_USAGE

These attributes are as specified in clause 4.2.1.3. of RFC 5280 Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile. For TPM2_CertifyX509, when a caller provides a

DER encoded Key Usage in partialCertificate, the TPM will validate that the key to be certified meets the

requirements of Key Usage.

RFC 5280 describes these attributes in terms of how the public key in the certificate should be used. The

TPM needs to check that the attributes of the key allow the private part of the key to be used for a

purpose that is complimentary to the use of the public key. That is, if the public key should be used to

verify signatures, the private key needs to be able to create the signatures (have sign SET).

This structure is defined to provide labels of the attributes for use by the TPM code that validates the

attributes. This structure is input to the TPM as a DER encoded structure and not in the normal, TPM-

canonical form.

This structure is only input to the TPM in a DER-encoded structure and is not present on the interface in

canonical TPM format.

Table 39 — Definition of (UINT32) TPMA_X509_KEY_USAGE Bits<>

Bit Atrribute Requirements

22:0 Reserved

23 decipherOnly Attributes.Decrypt SET

24 encipherOnly Attributes.Decrypt SET

25 cRLSign Attributes.sign SET

26 keyCertSign Attributes.sign SET

27 keyAgreement Attributes.Decrypt SET

28 dataEncipherment Attributes.Decrypt SET

29 keyEncipherment asymmetric key with decrypt and restricted SET – key has the
attributes of a parent key

30 nonrepudiation/contentCommitment fixedTPM SET in Subject Key (objectHandle)

31 digitalSignature sign SET in Subject Key (objectHandle)

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.12 TPMA_ACT

This attribute is used to report the ACT state. This attribute may be read using

TPM2_GetCapability(capability = TPM_CAP_ACT, property = TPM_RH_ACT_”x” where “x” is the ACT

number (0-F)). The signaled value must be preserved across TPM Resume or if the TPM has not lost

power. The signaled value may be preserved over a power cycle of a TPM.

NOTE: The ACT signaled value is reset to zero when the ACT is next accessed by TPM2_ACT_SetTimeout() with
a non-zero startTimeout.

Table 39 — Definition of (UINT32) TPMA_ACT Bits

Bit Name Definition

0 signaled SET (1): The ACT has signaled

CLEAR (0): The ACT has not signaled

1 preserveSignaled SET (1): The ACT signaled bit is preserved over a power cycle

CLEAR (0): The ACT signaled bit is not preserved over a power cycle

31:2 Reserved shall be zero

Trusted Platform Module Library Part 2: Structures

Page 82 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9 Interface Types

9.1 Introduction

Clause 8.11 contains definitions for interface types. An interface type is type checked when it is

unmarshaled. These types are based on an underlying type that is indicated in the table title by the value

in parentheses. When an interface type is used, the base type is unmarshaled and then checked to see if

it has one of the allowed values.

9.2 TPMI_YES_NO

This interface type is used in place of a Boolean type in order to eliminate ambiguity in the handling of a

octet that conveys a single bit of information. This type only has two allowed values, YES (1) and NO (0).

NOTE This list is not used as input to the TPM.

Table 40 — Definition of (BYTE) TPMI_YES_NO Type

Value Description

NO a value of 0

YES a value of 1

#TPM_RC_VALUE

9.3 TPMI_DH_OBJECT

The TPMI_DH_OBJECT interface type is a handle that references a loaded object. The handles in this

set are used to refer to either transient or persistent object. The range of these values would change

according to the TPM implementation.

NOTE These interface types should not be used by system software to qualify the keys produced by the TPM.
The value returned by the TPM shall be used to reference the object.

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments

{TRANSIENT_FIRST:TRANSIENT_LAST} allowed range for transient objects

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

+TPM_RH_NULL the conditional value

#TPM_RC_VALUE

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.4 TPMI_DH_PARENT

The TPMI_DH_PARENT interface type is a handle that references an object that can be the parent of

another object. The handles in this set may refer to either transient or persistent object or to Primary

Seeds.

Table 42 — Definition of (TPM_HANDLE) TPMI_DH_PARENT Type

Values Comments

{TRANSIENT_FIRST:TRANSIENT_LAST} allowed range for transient objects

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL no hierarchy

#TPM_RC_VALUE

9.5 TPMI_DH_PERSISTENT

The TPMI_DH_PERSISTENT interface type is a handle that references a location for a transient object.

This type is used in TPM2_EvictControl() to indicate the handle to be assigned to the persistent object.

Table 43 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type

Values Comments

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

#TPM_RC_VALUE

Trusted Platform Module Library Part 2: Structures

Page 84 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.6 TPMI_DH_ENTITY

The TPMI_DH_ENTITY interface type is TPM-defined values that are used to indicate that the handle

refers to an authValue. The range of these values would change according to the TPM implementation.

Table 44 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN>

Values Comments

TPM_RH_OWNER

TPM_RH_ENDORSEMENT

TPM_RH_PLATFORM

TPM_RH_LOCKOUT

{TRANSIENT_FIRST : TRANSIENT_LAST} range of object handles

{PERSISTENT_FIRST : PERSISTENT_LAST}

{NV_INDEX_FIRST : NV_INDEX_LAST}

{PCR_FIRST : PCR_LAST}

{TPM_RH_AUTH_00 : TPM_RH_AUTH_FF} range of vendor-specific authorization values

+TPM_RH_NULL conditional value

#TPM_RC_VALUE

9.7 TPMI_DH_PCR

This interface type consists of the handles that may be used as PCR references. The upper end of this

range of values would change according to the TPM implementation.

NOTE 1 Typically, the 0th PCR will have a handle value of zero.

NOTE 2 The handle range for PCR is defined to be the same as the handle range for PCR in previous versions of
TPM specifications.

Table 45 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN>

Values Comments

{PCR_FIRST:PCR_LAST}

+TPM_RH_NULL conditional value

#TPM_RC_VALUE

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.8 TPMI_SH_AUTH_SESSION

The TPMI_SH_AUTH_SESSION interface type is TPM-defined values that are used to indicate that the

handle refers to an authorization session.

Table 46 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT>

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST} range of HMAC authorization session handles

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles

+TPM_RS_PW a password authorization

#TPM_RC_VALUE error returned if the handle is out of range

9.9 TPMI_SH_HMAC

This interface type is used for an authorization handle when the authorization session uses an HMAC.

Table 47 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT>

Values Comments

{HMAC_SESSION_FIRST: HMAC_SESSION_LAST} range of HMAC authorization session handles

#TPM_RC_VALUE error returned if the handle is out of range

9.10 TPMI_SH_POLICY

This interface type is used for a policy handle when it appears in a policy command.

Table 48 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT>

Values Comments

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles

#TPM_RC_VALUE error returned if the handle is out of range

9.11 TPMI_DH_CONTEXT

This type defines the handle values that may be used in TPM2_ContextSave() or TPM2_Flush().

Table 49 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST}

{POLICY_SESSION_FIRST:POLICY_SESSION_LAST}

{TRANSIENT_FIRST:TRANSIENT_LAST}

#TPM_RC_VALUE

Trusted Platform Module Library Part 2: Structures

Page 86 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.12 TPMI_DH_SAVED

This type defines the handle values that may be used in TPM2_ContextSave() or TPM2_FlushContext().

Table 50 — Definition of (TPM_HANDLE) TPMI_DH_SAVED Type

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST} an HMAC session context

{POLICY_SESSION_FIRST:POLICY_SESSION_LAST} a policy session context

0x80000000 an ordinary transient object

0x80000001 a sequence object

0x80000002 a transient object with the stClear attribute SET

#TPM_RC_VALUE

9.13 TPMI_RH_HIERARCHY

The TPMI_RH_HIERARCHY interface type is used as the type of a handle in a command when the

handle is required to be one of the hierarchy selectors.

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL no hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.14 TPMI_RH_ENABLES

The TPMI_RH_ENABLES interface type is used as the type of a handle in a command when the handle

is required to be one of the hierarchy or NV enables.

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES Type

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_PLATFORM_NV Platform NV

+TPM_RH_NULL no hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.15 TPMI_RH_HIERARCHY_AUTH

This interface type is used as the type of a handle in a command when the handle is required to be one of

the hierarchy selectors or the Lockout Authorization.

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN>

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_LOCKOUT Lockout Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.16 TPMI_RH_HIERARCHY_POLICY

This interface type is used as the type of a handle in a command when the handle is required to be one of

the hierarchy selectors, the Lockout Authorization, or an ACT. This type is used in

TPM2_SetPrimaryPolicy().

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_POLICY Type <IN>

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_LOCKOUT Lockout Authorization

{TPM_RH_ACT_0:TPM_RH_ACT_F} Authenticated Countdown Timer

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.17 TPMI_RH_PLATFORM

The TPMI_RH_PLATFORM interface type is used as the type of a handle in a command when the only

allowed handle is TPM_RH_PLATFORM indicating that Platform Authorization is required.

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN>

Values Comments

TPM_RH_PLATFORM Platform hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures

Page 88 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.18 TPMI_RH_OWNER

This interface type is used as the type of a handle in a command when the only allowed handle is

TPM_RH_OWNER indicating that Owner Authorization is required.

Table 56 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN>

Values Comments

TPM_RH_OWNER Owner hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.19 TPMI_RH_ENDORSEMENT

This interface type is used as the type of a handle in a command when the only allowed handle is

TPM_RH_ENDORSEMENT indicating that Endorsement Authorization is required.

Table 57 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN>

Values Comments

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.20 TPMI_RH_PROVISION

The TPMI_RH_PROVISION interface type is used as the type of the handle in a command when the only

allowed handles are either TPM_RH_OWNER or TPM_RH_PLATFORM indicating that either Platform

Authorization or Owner Authorization are allowed.

In most cases, either Platform Authorization or Owner Authorization may be used to authorize the

commands used for management of the resources of the TPM and this interface type will be used.

Table 58 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN>

Value Comments

TPM_RH_OWNER handle for Owner Authorization

TPM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.21 TPMI_RH_CLEAR

The TPMI_RH_CLEAR interface type is used as the type of the handle in a command when the only

allowed handles are either TPM_RH_LOCKOUT or TPM_RH_PLATFORM indicating that either Platform

Authorization or Lockout Authorization are allowed.

This interface type is normally used for performing or controlling TPM2_Clear().

Table 59 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN>

Value Comments

TPM_RH_LOCKOUT handle for Lockout Authorization

TPM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.22 TPMI_RH_NV_AUTH

This interface type is used to identify the source of the authorization for access to an NV location. The

handle value of a TPMI_RH_NV_AUTH shall indicate that the authorization value is either Platform

Authorization, Owner Authorization, or the authValue. This type is used in the commands that access an

NV Index (commands of the form TPM2_NV_xxx) other than TPM2_NV_DefineSpace() and

TPM2_NV_UndefineSpace().

Table 60 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN>

Value Comments

TPM_RH_PLATFORM Platform Authorization is allowed

TPM_RH_OWNER Owner Authorization is allowed

{NV_INDEX_FIRST:NV_INDEX_LAST} range for NV locations

#TPM_RC_VALUE response code returned when unmarshaling of this type fails

9.23 TPMI_RH_LOCKOUT

The TPMI_RH_LOCKOUT interface type is used as the type of a handle in a command when the only

allowed handle is TPM_RH_LOCKOUT indicating that Lockout Authorization is required.

Table 61 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN>

Value Comments

TPM_RH_LOCKOUT handle for Lockout Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures

Page 90 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.24 TPMI_RH_NV_INDEX

This interface type is used to identify an NV location. This type is used in the NV commands.

Table 62 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT>

Value Comments

{NV_INDEX_FIRST:NV_INDEX_LAST} Range of NV Indexes

#TPM_RC_VALUE error returned if the handle is out of range

9.25 TPMI_RH_AC

This interface type is used to identify an attached component. This type is used in the AC commands.

Table 63 — Definition of (TPM_HANDLE) TPMI_RH_AC Type <IN>

Value Comments

{AC_FIRST:AC_LAST} Range of AC handles

#TPM_RC_VALUE error returned if the handle is out of range

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.26 TPMI_RH_ACT

This interface type is used to identify the ACT instance used in TPM2_ACT_SetTimeout().

Table 64 — Definition of (TPM_HANDLE) TPMI_RH_ACT Type

Value Comments

{TPM_RH_ACT_0:TPM_RH_ACT_F} handles for the Authenticated Countdown Timers

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.27 TPMI_ALG_HASH

A TPMI_ALG_HASH is an interface type of all the hash algorithms implemented on a specific TPM. The

selector in Table 65 indicates all of the hash algorithms that have an algorithm ID assigned by the TCG

and does not indicate the algorithms that will be accepted by a TPM.

NOTE When implemented, each of the algorithm entries is delimited by #ifdef and #endif so that, if the algorithm
is not implemented in a specific TPM, that algorithm is not included in the interface type.

Table 65 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_!ALG.H all hash algorithms defined by the TCG

+TPM_ALG_NULL

#TPM_RC_HASH

9.28 TPMI_ALG_ASYM (Asymmetric Algorithms)

A TPMI_ALG_ASYM is an interface type of all the asymmetric algorithms implemented on a specific TPM.

Table 66 lists each of the asymmetric algorithms that have an algorithm ID assigned by the TCG.

Table 66 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type

Values Comments

TPM_ALG_!ALG.AO all asymmetric object types

+TPM_ALG_NULL

#TPM_RC_ASYMMETRIC

Trusted Platform Module Library Part 2: Structures

Page 92 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.29 TPMI_ALG_SYM (Symmetric Algorithms)

A TPMI_ALG_SYM is an interface type of all the symmetric algorithms that have an algorithm ID assigned

by the TCG and are implemented on the TPM.

NOTE The validation code produced by an example script will produce a CASE statement with a case for each of
the values in the “Values” column. The case for a value is delimited by a #ifdef/#endif pair so that if the
algorithm is not implemented on the TPM, then the case for the algorithm is not generated, and use of the
algorithm will cause a TPM error (TPM_RC_SYMMETRIC).

Table 67 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type

Values Comments

TPM_ALG_!ALG.S all symmetric block ciphers

TPM_ALG_XOR required

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

9.30 TPMI_ALG_SYM_OBJECT

A TPMI_ALG_SYM_OBJECT is an interface type of all the TCG-defined symmetric algorithms that may

be used as companion symmetric encryption algorithm for an asymmetric object. All algorithms in this list

shall be block ciphers usable in Cipher Feedback (CFB).

NOTE TPM_ALG_XOR is not allowed in this list.

Table 68 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type

Values Comments

TPM_ALG_!ALG.S all symmetric block ciphers

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

9.31 TPMI_ALG_SYM_MODE

A TPMI_ALG_SYM_MODE is an interface type of all the TCG-defined block-cipher modes of operation.

Table 69 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type

Values Comments

TPM_ALG_!ALG.SE all symmetric block cipher encryption/decryption modes

TPM_ALG_!ALG.SX all symmetric block cipher MAC modes

+TPM_ALG_NULL

#TPM_RC_MODE

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.32 TPMI_ALG_KDF (Key and Mask Generation Functions)

A TPMI_ALG_KDF is an interface type of all the key derivation functions implemented on a specific TPM.

Table 70 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type

Values Comments

TPM_ALG_!ALG.HM all defined hash-based key and mask generation functions

+TPM_ALG_NULL

#TPM_RC_KDF

9.33 TPMI_ALG_SIG_SCHEME

This is the definition of the interface type for any signature scheme.

Table 71 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type

Values Comments

TPM_ALG_!ALG.ax all asymmetric signing schemes including anonymous schemes

TPM_ALG_HMAC present on all TPM

+TPM_ALG_NULL

#TPM_RC_SCHEME response code when a signature scheme is not correct

9.34 TPMI_ECC_KEY_EXCHANGE

This is the definition of the interface type for an ECC key exchange scheme.

NOTE Because of the “{ECC}” in the table title, the only values in this table will be those that are dependent on
ECC being implemented, even if they otherwise have the correct type attributes.

Table 72 — Definition of (TPM_ALG_ID){ECC} TPMI_ECC_KEY_EXCHANGE Type

Values Comments

TPM_ALG_!ALG.AM any ECC key exchange method

TPM_ALG_SM2 SM2 is typed as signing but may be used as a key-exchange protocol

+TPM_ALG_NULL

#TPM_RC_SCHEME response code when a key exchange scheme is not correct

Trusted Platform Module Library Part 2: Structures

Page 94 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.35 TPMI_ST_COMMAND_TAG

This interface type is used for the command tags.

The response code for a bad command tag has the same value as the TPM 1.2 response code

(TPM_BAD_TAG). This value is used in case the software is not compatible with this specification and an

unexpected response code might have unexpected side effects.

Table 73 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type

Values Comments

TPM_ST_NO_SESSIONS

TPM_ST_SESSIONS

#TPM_RC_BAD_TAG

9.36 TPMI_ALG_MAC_SCHEME

A TPMI_ALG_MAC_SCHEME is an interface type of all the TCG-defined symmetric algorithms that may

be used as companion symmetric! signing algorithm.

Table 74 — Definition of (TPM_ALG_ID) TPMI_ALG_MAC_SCHEME Type

Values Comments

TPM_ALG_!ALG.SX all symmetric block cipher MAC algorithms

TPM_ALG_!ALG.H all hash algorithms defined by the TCG

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

9.37 TPMI_ALG_CIPHER_MODE

A TPMI_ALG_CIPHER_MODE is an interface type of all the symmetric block cipher,

encryption/decryption modes that are listed in the TCG algorithm registry.

Table 75 — Definition of (TPM_ALG_ID) TPMI_ALG_CIPHER_MODE Type

Values Comments

TPM_ALG_!ALG.SE all symmetric block cipher algorithms

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_MODE

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10 Structure Definitions

10.1 TPMS_EMPTY

This structure is used as a placeholder. In some cases, a union will have a selector value with no data to

unmarshal when that type is selected. Rather than leave the entry empty, TPMS_EMPTY may be

selected.

NOTE The tool chain will special case this structure and create the marshaling and unmarshaling code for this
structure but not create a type definition. The unmarshaling code for this structure will return
TPM_RC_SUCCESS and the marshaling code will return 0.

Table 76 — Definition of TPMS_EMPTY Structure <IN/OUT>

Parameter Type Description

 a structure with no member

10.2 TPMS_ALGORITHM_DESCRIPTION

This structure is a return value for a TPM2_GetCapability() that reads the installed algorithms.

Table 77 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>

Parameter Type Description

alg TPM_ALG_ID an algorithm

attributes TPMA_ALGORITHM the attributes of the algorithm

10.3 Hash/Digest Structures

10.3.1 TPMU_HA (Hash)

A TPMU_HA is a union of all the hash algorithms implemented on a TPM.

NOTE 1 The !ALG.H and !ALG.H values represent all algorithms defined in the TCG registry as being type “H”.

NOTE 2 If processed by an automated tool, each entry of the table should be qualified (with #ifdef/#endif) so that if
the hash algorithm is not implemented on the TPM, the parameter associated with that hash is not
present. This will keep the union from being larger than the largest digest of a hash implemented on that
TPM.

Table 78 — Definition of TPMU_HA Union <IN/OUT >

Parameter Type Selector Description

!ALG.H [!ALG.H_DIGEST_SIZE] BYTE TPM_ALG_!ALG.H all hashes

null TPM_ALG_NULL

Trusted Platform Module Library Part 2: Structures

Page 96 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.3.2 TPMT_HA

Table 79 shows the basic hash-agile structure used in this specification. To handle hash agility, this

structure uses the hashAlg parameter to indicate the algorithm used to compute the digest and, by

implication, the size of the digest.

When transmitted, only the number of octets indicated by hashAlg is sent.

NOTE In the reference code, when a TPMT_HA is allocated, the digest field is large enough to support the
largest hash algorithm in the TPMU_HA union.

Table 79 — Definition of TPMT_HA Structure <IN/OUT>

Parameter Type Description

hashAlg +TPMI_ALG_HASH selector of the hash contained in the digest that implies the
size of the digest

NOTE The leading “+” on the type indicates that this structure
should pass an indication to the unmarshaling function for
TPMI_ALG_HASH so that TPM_ALG_NULL will be
allowed if a use of a TPMT_HA allows TPM_ALG_NULL.

[hashAlg] digest TPMU_HA the digest data

10.4 Sized Buffers

10.4.1 Introduction

The “TPM2B_” prefix is used for a structure that has a size field followed by a data buffer with the

indicated number of octets. The size field is 16 bits.

When the type of the second parameter in a TPM2B_ structure is BYTE, the TPM shall unmarshal the

indicated number of octets, which may be zero.

When the type of the second parameter in the TPM2B_ structure is not BYTE, the value of the size field

shall either be zero indicating that no structure is to be unmarshaled; or it shall be identical to the number

of octets unmarshaled for the second parameter.

NOTE 1 If the TPM2B_ defines a structure and not an array of octets, then the structure is self -describing and the
TPM will be able to determine how many octets are in the structure when it is unmarshaled. If that number
of octets is not equal to the size parameter, then it is an error.

NOTE 2 The reason that a structure may be put into a TPM2B_ is that the parts of the structure may be handled
as separate opaque blocks by the application/system software. Rather than require that all of the
structures in a command or response be marshaled or unmarshaled sequentially, the size field allows the
structure to be manipulated as an opaque block. Placing a structure in a TPM2B_ also makes it possible
to use parameter encryption on the structure.

If a TPM2B_ is encrypted, the TPM will encrypt/decrypt the data field of the TPM2B_ but not the size

parameter. The TPM will encrypt/decrypt the number of octets indicated by the size field.

NOTE 3 In the reference implementation, a TPM2B type is defined that is a 16-bit size field followed by a single
byte of data. The TPM2B_ is then defined as a union that contains a TPM2B (union member ‘b’) and the
structure in the definition table (union member ‘t’). This union is used for internally generated structures
so that there is a way to define a structure of the correct size (forced by the ‘t’ member) while giving a way
to pass the structure generically as a ‘b’. Most function calls use the 't' membe r so that the compiler will
generate a warning if there is a type error (a TPM2B_ of the wrong type). Having the type checked helps
avoid many issues with buffer overflow caused by a too small buffer being passed to a function.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.4.2 TPM2B_DIGEST

This structure is used for a sized buffer that cannot be larger than the largest digest produced by any

hash algorithm implemented on the TPM.

As with all sized buffers, the size is checked to see if it is within the prescribed range. If not, the response

code is TPM_RC_SIZE.

NOTE For any structure, like the one below, that contains an implied size check, it is implied that TPM_RC_SIZE
is a possible response code and the response code will not be listed in the table.

Table 80 — Definition of TPM2B_DIGEST Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMU_HA)} BYTE the buffer area that can be no larger than a digest

10.4.3 TPM2B_DATA

This structure is used for a data buffer that is required to be no larger than the size of the Name of an

object.

Table 81 — Definition of TPM2B_DATA Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMT_HA)} BYTE

10.4.4 TPM2B_NONCE

Table 82 — Definition of Types for TPM2B_NONCE

Type Name Description

TPM2B_DIGEST TPM2B_NONCE size limited to the same as the digest structure

10.4.5 TPM2B_AUTH

This structure is used for an authorization value and limits an authValue to being no larger than the

largest digest produced by a TPM. In order to ensure consistency within an object, the authValue may be

no larger than the size of the digest produced by the object’s nameAlg. This ensures that any TPM that

can load the object will be able to handle the authValue of the object.

Table 83 — Definition of Types for TPM2B_AUTH

Type Name Description

TPM2B_DIGEST TPM2B_AUTH size limited to the same as the digest structure

Trusted Platform Module Library Part 2: Structures

Page 98 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.4.6 TPM2B_OPERAND

This type is a sized buffer that can hold an operand for a comparison with an NV Index location. The

maximum size of the operand is implementation dependent but a TPM is required to support an operand

size that is at least as big as the digest produced by any of the hash algorithms implemented on the TPM.

Table 84 — Definition of Types for TPM2B_OPERAND

Type Name Description

TPM2B_DIGEST TPM2B_OPERAND size limited to the same as the digest structure

10.4.7 TPM2B_EVENT

This type is a sized buffer that can hold event data.

Table 85 — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 size of the operand buffer

buffer [size] {:1024} BYTE the operand

10.4.8 TPM2B_MAX_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for commands that use a large data

buffer such as TPM2_Hash(), TPM2_SequenceUpdate(), or TPM2_FieldUpgradeData().

NOTE The above list is not comprehensive and other commands may use this buffer type.

MAX_DIGEST_BUFFER is TPM-dependent but is required to be at least 1,024.

Table 86 — Definition of TPM2B_MAX_BUFFER Structure

Parameter Type Description

size UINT16 size of the buffer

buffer [size] {:MAX_DIGEST_BUFFER} BYTE the operand

10.4.9 TPM2B_MAX_NV_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for NV data commands such as

TPM2_NV_Read(), TPM2_NV_Write(), and TPM2_NV_Certify().

Table 87 — Definition of TPM2B_MAX_NV_BUFFER Structure

Parameter Type Description

size UINT16 size of the buffer

buffer [size] {:MAX_NV_BUFFER_SIZE} BYTE the operand

NOTE MAX_NV_BUFFER_SIZE is TPM-
dependent

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.4.10 TPM2B_TIMEOUT

This TPM-dependent structure is used to provide the timeout value for an authorization. The size shall be

8 or less.

Table 88 — Definition of TPM2B_TIMEOUT Structure

Type Name Description

size UINT16 size of the timeout value

buffer[size]{:sizeof(UINT64)} BYTE the timeout value

NOTE In the reference implementation the MSb is used as a flag to indicate whether a ticket expires on TPM
Reset or TPM Restart.

10.4.11 TPM2B_IV

This structure is used for passing an initial value for a symmetric block cipher to or from the TPM. The

size is set to be the largest block size of any implemented symmetric cipher implemented on the TPM.

Table 89 — Definition of TPM2B_IV Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the IV value

This value is fixed for a TPM implementation.

buffer[size]{:MAX_SYM_BLOCK_SIZE} BYTE the IV value

10.5 Names

10.5.1 Introduction

The Name of an entity is used in place of the handle in authorization computations. The substitution

occurs in cpHash and policyHash computations.

For an entity that is defined by a public area (objects and NV Indexes), the Name is the hash of the public

structure that defines the entity. The hash is done using the nameAlg of the entity.

NOTE For an object, a TPMT_PUBLIC defines the entity. For an NV Index, a TPMS_NV_PUBLIC defines the
entity.

For entities not defined by a public area, the Name is the handle that is used to refer to the entity.

10.5.2 TPMU_NAME

Table 90 — Definition of TPMU_NAME Union <>

Parameter Type Selector Description

digest TPMT_HA when the Name is a digest

handle TPM_HANDLE when the Name is a handle

Trusted Platform Module Library Part 2: Structures

Page 100 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.5.3 TPM2B_NAME

This buffer holds a Name for any entity type.

The type of Name in the structure is determined by context and the size parameter. If size is four, then

the Name is a handle. If size is zero, then no Name is present. Otherwise, the size shall be the size of a

TPM_ALG_ID plus the size of the digest produced by the indicated hash algorithm.

Table 91 — Definition of TPM2B_NAME Structure

Parameter Type Description

size UINT16 size of the Name structure

name[size]{:sizeof(TPMU_NAME)} BYTE the Name structure

10.6 PCR Structures

10.6.1 TPMS_PCR_SELECT

This structure provides a standard method of specifying a list of PCR.

PCR numbering starts at zero.

pcrSelect is an array of octets. The octet containing the bit corresponding to a specific PCR is found by

dividing the PCR number by 8.

EXAMPLE 1 The bit in pcrSelect corresponding to PCR 19 is in pcrSelect [2] (19/8 = 2).

The least significant bit in a octet is bit number 0. The bit in the octet associated with a PCR is the

remainder after division by 8.

EXAMPLE 2 The bit in pcrSelect [2] corresponding to PCR 19 is bit 3 (19 mod 8). If sizeofSelect is 3, then the
pcrSelect array that would specify PCR 19 and no other PCR is 00 00 0816.

Each bit in pcrSelect indicates whether the corresponding PCR is selected (1) or not (0). If the pcrSelect

is all zero bits, then no PCR is selected.

sizeofSelect indicates the number of octets in pcrSelect. The allowable value for sizeofSelect is

determined by the number of PCR required by the applicable platform-specific specification and the

number of PCR implemented in the TPM. The minimum value for sizeofSelect is:

 PCR_SELECT_MIN ≔ (PLATFORM_PCR + 7) / 8 (1)

where

PLATFORM_PCR the number of PCR required by the platform-specific specification

The maximum value for sizeofSelect is:

 PCR_SELECT_MAX ≔ (IMPLEMENTATION_PCR + 7) / 8 (2)

where

IMPLEMENTATION_PCR the number of PCR implemented on the TPM

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If the TPM implements more PCR than there are bits in pcrSelect, the additional PCR are not selected.

EXAMPLE 3 If the applicable platform-specific specification requires that the TPM have a minimum of 24 PCR but the
TPM implements 32, then a PCR select of 3 octets would imply that PCR 24-31 are not selected.

Table 92 — Definition of TPMS_PCR_SELECT Structure

Parameter Type Description

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of selected PCR

#TPM_RC_VALUE

10.6.2 TPMS_PCR_SELECTION

Table 93 — Definition of TPMS_PCR_SELECTION Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm associated with the
selection

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of selected PCR

#TPM_RC_VALUE

10.7 Tickets

10.7.1 Introduction

Tickets are evidence that the TPM has previously processed some information. A ticket is an HMAC over

the data using a secret key known only to the TPM. A ticket is a way to expand the state memory of the

TPM. A ticket is only usable by the TPM that produced it.

The formulations for tickets shown in 10.7 are to be used by a TPM that is compliant with this

specification.

The method of creating the ticket data is:

 HMACcontexAlg(proof, (ticketType || param { || param {…})) (3)

where

HMACcontexAlg() an HMAC using the hash used for context integrity

proof a TPM secret value (depends on hierarchy)

ticketType a value to differentiate the tickets

param one or more values that were checked by the TPM

Trusted Platform Module Library Part 2: Structures

Page 102 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The proof value used for each hierarchy is shown in Table 94.

Table 94 — Values for proof Used in Tickets

Hierarchy proof Description

Null nullProof a value that changes with every TPM Reset

Platform phProof a value that changes with each change of the PPS

Owner shProof a value that changes with each change of the SPS

Endorsement ehProof a value that changes with each change of either the EPS or SPS

The format for a ticket is shown in Table 95. This is a template for the tickets shown in the remainder of

this clause 10.7.

Table 95 — General Format of a Ticket

Parameter Type Description

tag TPM_ST structure tag indicating the type of the ticket

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the proof value

digest TPM2B_DIGEST the HMAC over the ticket-specific data

10.7.2 A NULL Ticket

When a command requires a ticket and no ticket is available, the caller is required to provide a structure

with a ticket tag that is correct for the context. The hierarchy shall be set to TPM_RH_NULL, and digest

shall be the Empty Buffer (a buffer with a size field of zero). This construct is the NULL Ticket. When a

response indicates that a ticket is returned, the TPM may return a NULL Ticket.

NOTE Because each use of a ticket requires that the structure tag for the ticket be appropriate for the use, there
is no single representation of a NULL Ticket that will work in all circumstances. Minimally, a NULL ticket
will have a structure type that is appropriate for the context.

10.7.3 TPMT_TK_CREATION

This ticket is produced by TPM2_Create() or TPM2_CreatePrimary(). It is used to bind the creation data

to the object to which it applies. The ticket is computed by

 HMACcontextAlg(proof, (TPM_ST_CREATION || name || HnameAlg(TPMS_CREATION_DATA))) (4)

where

HMACcontextAlg() an HMAC using the context integrity hash algorithm

proof a TPM secret value associated with the hierarchy associated with name

TPM_ST_CREATION a value used to ensure that the ticket is properly used

name the Name of the object to which the creation data is to be associated

HnameAlg() hash using the nameAlg of the created object

TPMS_CREATION_DATA the creation data structure associated with name

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 96 — Definition of TPMT_TK_CREATION Structure

Parameter Type Description

tag {TPM_ST_CREATION} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_CREATION

hierarchy TPMI_RH_HIERARCHY+ the hierarchy containing name

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Creation Ticket is the tuple <TPM_ST_CREATION, TPM_RH_NULL, 0x0000>.

10.7.4 TPMT_TK_VERIFIED

This ticket is produced by TPM2_VerifySignature(). This formulation is used for multiple ticket uses. The

ticket provides evidence that the TPM has validated that a digest was signed by a key with the Name of

keyName. The ticket is computed by

 HMACcontextAlg(proof, (TPM_ST_VERIFIED || digest || keyName)) (5)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy associated with

keyName

TPM_ST_VERIFIED a value used to ensure that the ticket is properly used

digest the signed digest

keyName Name of the key that signed digest

Table 97 — Definition of TPMT_TK_VERIFIED Structure

Parameter Type Description

tag {TPM_ST_VERIFIED} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_VERIFIED

hierarchy TPMI_RH_HIERARCHY+ the hierarchy containing keyName

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Verified Ticket is the tuple <TPM_ST_VERIFIED, TPM_RH_NULL, 0x0000>.

Trusted Platform Module Library Part 2: Structures

Page 104 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.7.5 TPMT_TK_AUTH

This ticket is produced by TPM2_PolicySigned() and TPM2_PolicySecret() when the authorization has an

expiration time. If nonceTPM was provided in the policy command, the ticket is computed by

HMACcontextAlg(proof, (TPM_ST_AUTH_xxx || cpHash || policyRef || authName
|| timeout || [timeEpoch] || [resetCount])) (6)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy of the object

associated with authName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET; used to
ensure that the ticket is properly used

cpHash optional hash of the authorized command

policyRef optional reference to a policy value

authName Name of the object that signed the authorization

timeout implementation-specific value indicating when the authorization expires

timeEpoch implementation-specific representation of the timeEpoch at the time the

ticket was created

NOTE 1 Not included if timeout is zero.

resetCount implementation-specific representation of the TPM’s totalResetCount

NOTE 2 Not included it timeout is zero or if nonceTPM was include in the authorization.

Table 98 — Definition of TPMT_TK_AUTH Structure

Parameter Type Description

tag {TPM_ST_AUTH_SIGNED, TPM_ST_AUTH_SECRET} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is
not TPM_ST_AUTH

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the object
used to produce the ticket

digest TPM2B_DIGEST This shall be the HMAC
produced using a proof
value of hierarchy.

EXAMPLE A NULL Auth Ticket is the tuple <TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000> or the tuple
<TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000>

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.7.6 TPMT_TK_HASHCHECK

This ticket is produced by TPM2_SequenceComplete() or TPM2_Hash() when the message that was

digested did not start with TPM_GENERATED_VALUE. The ticket is computed by

 HMACcontexAlg(proof, (TPM_ST_HASHCHECK || digest)) (7)

where

HMACcontexAlg () an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy indicated by the

command

TPM_ST_HASHCHECK a value used to ensure that the ticket is properly used

digest the digest of the data

Table 99 — Definition of TPMT_TK_HASHCHECK Structure

Parameter Type Description

tag {TPM_ST_HASHCHECK} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when is not TPM_ST_HASHCHECK

hierarchy TPMI_RH_HIERARCHY+ the hierarchy

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

10.8 Property Structures

10.8.1 TPMS_ALG_PROPERTY

This structure is used to report the properties of an algorithm identifier. It is returned in response to a

TPM2_GetCapability() with capability = TPM_CAP_ALG.

Table 100 — Definition of TPMS_ALG_PROPERTY Structure <OUT>

Parameter Type Description

alg TPM_ALG_ID an algorithm identifier

algProperties TPMA_ALGORITHM the attributes of the algorithm

10.8.2 TPMS_TAGGED_PROPERTY

This structure is used to report the properties that are UINT32 values. It is returned in response to a

TPM2_GetCapability().

Table 101 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT>

Parameter Type Description

property TPM_PT a property identifier

value UINT32 the value of the property

Trusted Platform Module Library Part 2: Structures

Page 106 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.8.3 TPMS_TAGGED_PCR_SELECT

This structure is used in TPM2_GetCapability() to return the attributes of the PCR.

Table 102 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT>

Parameter Type Description

tag TPM_PT_PCR the property identifier

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of PCR with the identified property

10.8.4 TPMS_TAGGED_POLICY

This structure is used in TPM2_GetCapability() to return the policy associated with a permanent handle.

Table 103 — Definition of TPMS_TAGGED_POLICY Structure <OUT>

Parameter Type Description

handle TPM_HANDLE a permanent handle

policyHash TPMT_HA the policy algorithm and hash

10.8.5 TPMS_ACT_DATA

This structure is used in TPM2_GetCapability() to return the ACT data.

Table 104 — Definition of TPMS_ACT_DATA Structure <OUT>

Parameter Type Description

handle TPM_HANDLE a permanent handle

timeout UINT32 the current timeout of the ACT

attributes TPMA_ACT the state of the ACT

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.9 Lists

10.9.1 TPML_CC

A list of command codes may be input to the TPM or returned by the TPM depending on the command.

Table 105 — Definition of TPML_CC Structure

Parameter Type Description

count UINT32 number of commands in the commandCode list;
may be 0

commandCodes[count]{:MAX_CAP_CC} TPM_CC a list of command codes

The maximum only applies to a command code
list in a command. The response size is limited
only by the size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

10.9.2 TPML_CCA

This list is only used in TPM2_GetCapability(capability = TPM_CAP_COMMANDS).

The values in the list are returned in TPMA_CC->commandIndex order (see Table 37) with vendor-

specific commands returned after other commands. Because of the other attributes, the commands may

not be returned in strict numerical order.

Table 106 — Definition of TPML_CCA Structure <OUT>

Parameter Type Description

count UINT32 number of values in the commandAttributes list;
may be 0

commandAttributes[count]{:MAX_CAP_CC} TPMA_CC a list of command codes attributes

10.9.3 TPML_ALG

This list is returned by TPM2_IncrementalSelfTest().

Table 107 — Definition of TPML_ALG Structure

Parameter Type Description

count UINT32 number of algorithms in the algorithms list; may be 0

algorithms[count]{:MAX_ALG_LIST_SIZE} TPM_ALG_ID a list of algorithm IDs

The maximum only applies to an algorithm list in a
command. The response size is limited only by the
size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

Trusted Platform Module Library Part 2: Structures

Page 108 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.9.4 TPML_HANDLE

This structure is used when the TPM returns a list of loaded handles when the capability in

TPM2_GetCapability() is TPM_CAP_HANDLE.

NOTE 1 MAX_CAP_HANDLES = (MAX_CAP_DATA / sizeof(TPM_HANDLE))

NOTE 2 This list is not used as input to the TPM.

Table 108 — Definition of TPML_HANDLE Structure <OUT>

Name Type Description

count UINT32 the number of handles in the list

may have a value of 0

handle[count]{: MAX_CAP_HANDLES} TPM_HANDLE an array of handles

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

10.9.5 TPML_DIGEST

This list is used to convey a list of digest values. This type is used in TPM2_PolicyOR() and in

TPM2_PCR_Read().

Table 109 — Definition of TPML_DIGEST Structure

Parameter Type Description

count {2:} UINT32 number of digests in the list, minimum is two for
TPM2_PolicyOR().

digests[count]{:8} TPM2B_DIGEST a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE response code when count is not at least two or is
greater than eight

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.9.6 TPML_DIGEST_VALUES

This list is used to convey a list of digest values. This type is returned by TPM2_PCR_Event() and

TPM2_EventSequenceComplete() and is an input for TPM2_PCR_Extend().

NOTE 1 This construct limits the number of hashes in the list to the number of digests implemented in the TPM
rather than the number of PCR banks. This allows extra values to appear in a call to
TPM2_PCR_Extend().

NOTE 2 The digest for an unimplemented hash algorithm may not be in a list because the TPM may not recognize
the algorithm as being a hash and it may not know the digest size.

Table 110 — Definition of TPML_DIGEST_VALUES Structure

Parameter Type Description

count UINT32 number of digests in the list

digests[count]{:HASH_COUNT} TPMT_HA a list of tagged digests

#TPM_RC_SIZE response code when count is greater than the possible
number of banks

10.9.7 TPML_PCR_SELECTION

This list is used to indicate the PCR that are included in a selection when more than one PCR value may

be selected.

This structure is an input parameter to TPM2_PolicyPCR() to indicate the PCR that will be included in the

digest of PCR for the authorization. The structure is used in TPM2_PCR_Read() command to indicate the

PCR values to be returned and in the response to indicate which PCR are included in the list of returned

digests. The structure is an output parameter from TPM2_Create() and indicates the PCR used in the

digest of the PCR state when the object was created. The structure is also contained in the attestation

structure of TPM2_Quote().

When this structure is used to select PCR to be included in a digest, the selected PCR are concatenated

to create a “message” containing all of the PCR, and then the message is hashed using the context-

specific hash algorithm.

Table 111 — Definition of TPML_PCR_SELECTION Structure

Parameter Type Description

count UINT32 number of selection structures

A value of zero is allowed.

pcrSelections[count]{:HASH_COUNT} TPMS_PCR_SELECTION list of selections

#TPM_RC_SIZE response code when count is greater
than the possible number of banks

10.9.8 TPML_ALG_PROPERTY

This list is used to report on a list of algorithm attributes. It is returned in a TPM2_GetCapability().

NOTE MAX_CAP_ALGS = MAX_CAP_DATA / sizeof(TPMS_ALG_PROPERTY).

Trusted Platform Module Library Part 2: Structures

Page 110 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 112 — Definition of TPML_ALG_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of algorithm properties structures

A value of zero is allowed.

algProperties[count]{:MAX_CAP_ALGS} TPMS_ALG_PROPERTY list of properties

10.9.9 TPML_TAGGED_TPM_PROPERTY

This list is used to report on a list of properties that are TPMS_TAGGED_PROPERTY values. It is

returned by a TPM2_GetCapability().

NOTE MAX_TPM_PROPERTIES = MAX_CAP_DATA / sizeof(TPMS_TAGGED_PROPERTY).

Table 113 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties

A value of zero is allowed.

tpmProperty[count]{:MAX_TPM_PROPERTIES} TPMS_TAGGED_PROPERTY an array of tagged properties

10.9.10 TPML_TAGGED_PCR_PROPERTY

This list is used to report on a list of properties that are TPMS_PCR_SELECT values. It is returned by a

TPM2_GetCapability().

NOTE MAX_PCR_PROPERTIES = MAX_CAP_DATA / sizeof(TPMS_TAGGED_PCR_SELECT).

Table 114 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties

A value of zero is allowed.

pcrProperty[count]{:MAX_PCR_PROPERTIES} TPMS_TAGGED_PCR_SELECT a tagged PCR selection

10.9.11 TPML_ECC_CURVE

This list is used to report the ECC curve ID values supported by the TPM. It is returned by a

TPM2_GetCapability().

NOTE MAX_ECC_CURVES = MAX_CAP_DATA / sizeof(TPM_ECC_CURVE).

Table 115 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT>

Parameter Type Description

count UINT32 number of curves

A value of zero is allowed.

eccCurves[count]{:MAX_ECC_CURVES} TPM_ECC_CURVE array of ECC curve identifiers

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.9.12 TPML_TAGGED_POLICY

This list is used to report the authorization policy values for permanent handles. This is list may be

generated by TPM2_GetCapabiltiy(). A permanent handle that cannot have a policy is not included in the

list.

NOTE MAX_TAGGED_POLICIES = MAX_CAP_DATA / sizeof(TPMS_TAGGED_POLICY).

Table 116 — Definition of TPML_TAGGED_POLICY Structure <OUT>

Parameter Type Description

count UINT32 number of tagged policies

A value of zero is allowed.

policies[count]{:MAX_TAGGED_POLICIES} TPMS_TAGGED_POLICY array of tagged policies

10.9.13 TPML_ACT_DATA

This list is used to report the timeout and state for the ACT. This list may be generated by

TPM2_GetCapabilty(). Only implemented ACT are present in the list

NOTE MAX_ACT_DATA = MAX_CAP_DATA / sizeof(TPMS_ACT_DATA).

Table 117 — Definition of TPML_ACT_DATA Structure <OUT>

Parameter Type Description

count UINT32 number of ACT instances

A value of zero is allowed.

actData[count]{:MAX_ACT_DATA} TPMS_ACT_DATA array of ACT data

10.10 Capabilities Structures

It is required that each parameter in this union be a list (TPML).

The number of returned elements in each list is determined by the size of each list element and the

maximum size set by the vendor as the capability buffer (MAX_CAP_BUFFER in

TPM_PT_MAX_CAP_BUFFER). The maximum number of bytes in a list is:

 MAX_CAP_DATA = (MAX_CAP_BUFFER – sizeof(TPM_CAP) – sizeof(UINT32) (8)

The maximum number of entries is then the number of complete list elements that will fit in

MAX_CAP_DATA.

EXAMPLE For a 1024-octet MAX_CAP_BUFFER a response containing a TPML_HANDLE could have (1024 - 4 – 4)
/ 4 = 254 handles.

Trusted Platform Module Library Part 2: Structures

Page 112 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.10.1 TPMU_CAPABILITIES

Table 118 — Definition of TPMU_CAPABILITIES Union <OUT>

Parameter Type Selector Description

algorithms TPML_ALG_PROPERTY TPM_CAP_ALGS

handles TPML_HANDLE TPM_CAP_HANDLES

command TPML_CCA TPM_CAP_COMMANDS

ppCommands TPML_CC TPM_CAP_PP_COMMANDS

auditCommands TPML_CC TPM_CAP_AUDIT_COMMANDS

assignedPCR TPML_PCR_SELECTION TPM_CAP_PCRS

tpmProperties TPML_TAGGED_TPM_PROPERTY TPM_CAP_TPM_PROPERTIES

pcrProperties TPML_TAGGED_PCR_PROPERTY TPM_CAP_PCR_PROPERTIES

eccCurves TPML_ECC_CURVE TPM_CAP_ECC_CURVES TPM_ALG_ECC

authPolicies TPML_TAGGED_POLICY TPM_CAP_AUTH_POLICIES

actData TPML_ACT_DATA TPM_CAP_ACT

10.10.2 TPMS_CAPABILITY_DATA

This data area is returned in response to a TPM2_GetCapability().

Table 119 — Definition of TPMS_CAPABILITY_DATA Structure <OUT>

Parameter Type Description

capability TPM_CAP the capability

[capability]data TPMU_CAPABILITIES the capability data

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.11 Clock/Counter Structures

10.11.1 TPMS_CLOCK_INFO

This structure is used in each of the attestation commands.

Table 120 — Definition of TPMS_CLOCK_INFO Structure

Parameter Type Description

clock UINT64 time value in milliseconds that advances while the TPM is powered

NOTE The interpretation of the time-origin (clock=0) is out of the
scope of this specification, although Coordinated Universal
Time (UTC) is expected to be a common convention. This
structure element is used to report on the TPM's Clock value.

This value is reset to zero when the Storage Primary Seed is
changed (TPM2_Clear()).

This value may be advanced by TPM2_ClockSet().

resetCount UINT32 number of occurrences of TPM Reset since the last TPM2_Clear()

restartCount UINT32 number of times that TPM2_Shutdown() or _TPM_Hash_Start have
occurred since the last TPM Reset or TPM2_Clear().

safe TPMI_YES_NO no value of Clock greater than the current value of Clock has been
previously reported by the TPM. Set to YES on TPM2_Clear().

Trusted Platform Module Library Part 2: Structures

Page 114 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.11.2 Clock

Clock is a monotonically increasing counter that advances whenever power is applied to the TPM. The

value of Clock may be set forward with TPM2_ClockSet() if Owner Authorization or Platform Authorization

is provided. The value of Clock is incremented each millisecond.

TPM2_Clear() will set Clock to zero.

Clock will be non-volatile but may have a volatile component that is updated every millisecond with the

non-volatile component updated at a lower rate. The reference for the millisecond timer is the TPM

oscillator. If the implementation uses a volatile component, the non-volatile component shall be updated

no less frequently than every 222 milliseconds (~69.9 minutes). The update rate of the non-volatile portion

of Clock shall be reported by a TPM2_GetCapability() with capability = TPM_CAP_TPM_PROPERTIES

and property = TPM_PT_CLOCK_UPDATE.

10.11.3 ResetCount

This counter shall increment on each TPM Reset. This counter shall be reset to zero by TPM2_Clear().

10.11.4 RestartCount

This counter shall increment by one for each TPM Restart or TPM Resume. The restartCount shall be

reset to zero on a TPM Reset or TPM2_Clear().

10.11.5 Safe

This parameter is set to YES when the value reported in Clock is guaranteed to be greater than any

previous value for the current Owner. It is set to NO when the value of Clock may have been reported in a

previous attestation or access.

EXAMPLE 1 If Safe was NO at TPM2_Shutdown() and Clock does not update unless a command is received, Safe will be
NO if a TPM2_Startup() was preceded by TPM2_Shutdown() with no intervening commands. If Clock updates
independent of commands, the non-volatile bits of Clock can be updated, so Safe can be YES at
TPM2_Startup().

EXAMPLE 2 This parameter will be YES after the non-volatile bits of Clock have been updated at the end of an update
interval.

If a TPM implementation does not implement Clock, Safe shall always be NO and

TPMS_CLOCK_INFO.clock shall always be zero.

This parameter will be set to YES by TPM2_Clear().

10.11.6 TPMS_TIME_INFO

This structure is used in, e.g., the TPM2_GetTime() attestation and TPM2_ReadClock().

The Time value reported in this structure is reset whenever power to the Time circuit is reestablished. If

required, an implementation may reset the value of Time any time before the TPM returns after

TPM2_Startup(). The value of Time shall increment continuously while power is applied to the TPM.

Table 121 — Definition of TPMS_TIME_INFO Structure

Parameter Type Description

time UINT64 time in milliseconds since the TIme circuit was last reset

This structure element is used to report on the TPM's Time value.

clockInfo TPMS_CLOCK_INFO a structure containing the clock information

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.12 TPM Attestation Structures

10.12.1 Introduction

Clause 10.12 describes the structures that are used when a TPM creates a structure to be signed. The

signing structures follow a standard format TPM2B_ATTEST with case-specific information embedded.

10.12.2 TPMS_TIME_ATTEST_INFO

This structure is used when the TPM performs TPM2_GetTime.

Table 122 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT>

Parameter Type Description

time TPMS_TIME_INFO the Time, Clock, resetCount, restartCount, and Safe indicator

firmwareVersion UINT64 a TPM vendor-specific value indicating the version number of the
firmware

10.12.3 TPMS_CERTIFY_INFO

This is the attested data for TPM2_Certify().

Table 123 — Definition of TPMS_CERTIFY_INFO Structure <OUT>

Parameter Type Description

name TPM2B_NAME Name of the certified object

qualifiedName TPM2B_NAME Qualified Name of the certified object

10.12.4 TPMS_QUOTE_INFO

This is the attested data for TPM2_Quote().

Table 124 — Definition of TPMS_QUOTE_INFO Structure <OUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION information on algID, PCR selected and digest

pcrDigest TPM2B_DIGEST digest of the selected PCR using the hash of the signing key

Trusted Platform Module Library Part 2: Structures

Page 116 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.12.5 TPMS_COMMAND_AUDIT_INFO

This is the attested data for TPM2_GetCommandAuditDigest().

Table 125 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT>

Parameter Type Description

auditCounter UINT64 the monotonic audit counter

digestAlg TPM_ALG_ID hash algorithm used for the command audit

auditDigest TPM2B_DIGEST the current value of the audit digest

commandDigest TPM2B_DIGEST digest of the command codes being audited using digestAlg

10.12.6 TPMS_SESSION_AUDIT_INFO

This is the attested data for TPM2_GetSessionAuditDigest().

Table 126 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT>

Parameter Type Description

exclusiveSession TPMI_YES_NO current exclusive status of the session

TRUE if all of the commands recorded in the sessionDigest were
executed without any intervening TPM command that did not use
this audit session

sessionDigest TPM2B_DIGEST the current value of the session audit digest

10.12.7 TPMS_CREATION_INFO

This is the attested data for TPM2_CertifyCreation().

Table 127 — Definition of TPMS_CREATION_INFO Structure <OUT>

Parameter Type Description

objectName TPM2B_NAME Name of the object

creationHash TPM2B_DIGEST creationHash

10.12.8 TPMS_NV_CERTIFY_INFO

This structure contains the Name and contents of the selected NV Index that is certified by

TPM2_NV_Certify().

Table 128 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT>

Parameter Type Description

indexName TPM2B_NAME Name of the NV Index

offset UINT16 the offset parameter of TPM2_NV_Certify()

nvContents TPM2B_MAX_NV_BUFFER contents of the NV Index

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.12.9 TPMS_NV_DIGEST_CERTIFY_INFO

This structure contains the Name and hash of the contents of the selected NV Index that is certified by

TPM2_NV_Certify(). The data is hashed using hash of the signing scheme.

NOTE This structure was added in revision 01.53 to support alternate TPM2_NV_Certify() behavior.

Table 129 — Definition of TPMS_NV_DIGEST_CERTIFY_INFO Structure <OUT>

Parameter Type Description

indexName TPM2B_NAME Name of the NV Index

nvDigest TPM2B_DIGEST hash of the contents of the index

10.12.10 TPMI_ST_ATTEST

Table 130 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>

Value Description

TPM_ST_ATTEST_CERTIFY generated by TPM2_Certify()

TPM_ST_ATTEST_QUOTE generated by TPM2_Quote()

TPM_ST_ATTEST_SESSION_AUDIT generated by TPM2_GetSessionAuditDigest()

TPM_ST_ATTEST_COMMAND_AUDIT generated by TPM2_GetCommandAuditDigest()

TPM_ST_ATTEST_TIME generated by TPM2_GetTime()

TPM_ST_ATTEST_CREATION generated by TPM2_CertifyCreation()

TPM_ST_ATTEST_NV generated by TPM2_NV_Certify()

TPM_ST_ATTEST_NV_DIGEST generated by TPM2_NV_Certify()

10.12.11 TPMU_ATTEST

Table 131 — Definition of TPMU_ATTEST Union <OUT>

Parameter Type Selector

certify TPMS_CERTIFY_INFO TPM_ST_ATTEST_CERTIFY

creation TPMS_CREATION_INFO TPM_ST_ATTEST_CREATION

quote TPMS_QUOTE_INFO TPM_ST_ATTEST_QUOTE

commandAudit TPMS_COMMAND_AUDIT_INFO TPM_ST_ATTEST_COMMAND_AUDIT

sessionAudit TPMS_SESSION_AUDIT_INFO TPM_ST_ATTEST_SESSION_AUDIT

time TPMS_TIME_ATTEST_INFO TPM_ST_ATTEST_TIME

nv TPMS_NV_CERTIFY_INFO TPM_ST_ATTEST_NV

nvDigest TPMS_NV_DIGEST_CERTIFY_INFO TPM_ST_ATTEST_NV_DIGEST

Trusted Platform Module Library Part 2: Structures

Page 118 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.12.12 TPMS_ATTEST

This structure is used on each TPM-generated signed structure. The signature is over this structure.

When the structure is signed by a key in the Storage hierarchy, the values of clockInfo.resetCount,

clockInfo.restartCount, and firmwareVersion are obfuscated with a per-key obfuscation value.

Table 132 — Definition of TPMS_ATTEST Structure <OUT>

Parameter Type Description

magic TPM_GENERATED the indication that this structure was created by a TPM (always
TPM_GENERATED_VALUE)

type TPMI_ST_ATTEST type of the attestation structure

qualifiedSigner TPM2B_NAME Qualified Name of the signing key

extraData TPM2B_DATA external information supplied by caller

NOTE A TPM2B_DATA structure provides room for a digest and a
method indicator to indicate the components of the digest.
The definition of this method indicator is outside the scope
of this specification.

clockInfo TPMS_CLOCK_INFO Clock, resetCount, restartCount, and Safe

firmwareVersion UINT64 TPM-vendor-specific value identifying the version number of the
firmware

[type]attested TPMU_ATTEST the type-specific attestation information

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.12.13 TPM2B_ATTEST

This sized buffer to contain the signed structure. The attestationData is the signed portion of the structure.

The size parameter is not signed.

Table 133 — Definition of TPM2B_ATTEST Structure <OUT>

Parameter Type Description

size UINT16 size of the attestationData structure

attestationData[size]{:sizeof(TPMS_ATTEST)} BYTE the signed structure

10.13 Authorization Structures

10.13.1 Introduction

The structures in 10.13 are used for all authorizations. One or more of these structures will be present in

a command or response that has a tag of TPM_ST_SESSIONS.

10.13.2 TPMS_AUTH_COMMAND

This is the format used for each of the authorizations in the session area of a command.

Table 134 — Definition of TPMS_AUTH_COMMAND Structure <IN>

Parameter Type Description

sessionHandle TPMI_SH_AUTH_SESSION+ the session handle

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer

sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

10.13.3 TPMS_AUTH_RESPONSE

This is the format for each of the authorizations in the session area of the response. If the TPM returns

TPM_RC_SUCCESS, then the session area of the response contains the same number of authorizations

as the command and the authorizations are in the same order.

Table 135 — Definition of TPMS_AUTH_RESPONSE Structure <OUT>

Parameter Type Description

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer

sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC or an EmptyAuth

Trusted Platform Module Library Part 2: Structures

Page 120 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11 Algorithm Parameters and Structures

11.1 Symmetric

11.1.1 Introduction

Clause 11.1 defines the parameters and structures for describing symmetric algorithms.

11.1.2 TPMI_!ALG.S_KEY_BITS

This interface type defines the supported key sizes for a symmetric algorithm. This type is used to allow

the unmarshaling routine to generate the proper validation code for the supported key sizes. An

implementation that supports different key sizes would have a different set of selections.

Each implemented algorithm would have a value for the implemented key sizes for that implemented

algorithm. That value would have a name in the form !ALG_KEY_SIZES_BITS where “!ALG” would

represent the characteristic name of the algorithm (such as “AES).

NOTE 1 Key size is expressed in bits.

Table 136 — Definition of {!ALG.S} (TPM_KEY_BITS) TPMI_!ALG.S_KEY_BITS Type

Parameter Description

$!ALG.S_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

11.1.3 TPMU_SYM_KEY_BITS

This union is used to collect the symmetric encryption key sizes.

The xor entry is a hash algorithms selector and not a key size in bits. This overload is used in order to

avoid an additional level of indirection with another union and another set of selectors.

The xor entry is only selected in a TPMT_SYM_DEF, which is used to select the parameter encryption

value.

Table 137 — Definition of TPMU_SYM_KEY_BITS Union

Parameter Type Selector Description

!ALG.S TPMI_!ALG.S_KEY_BITS TPM_ALG_!ALG.S all symmetric algorithms

sym TPM_KEY_BITS this entry is used by the reference
code to refer to the key bits field in a
way that is independent of the
symmetric algorithm

xor TPMI_ALG_HASH TPM_ALG_XOR overload for using xor

NOTE TPM_ALG_NULL is not
allowed

null TPM_ALG_NULL

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.1.4 TPMU_SYM_MODE

This is the union of all modes for all symmetric algorithms.

NOTE This union definition allows the mode value in a TPMT_SYM_DEF to be empty when the selector is
TPM_ALG_XOR because the XOR algorithm does not have a mode.

Table 138 — Definition of TPMU_SYM_MODE Union

Parameter Type Selector Description

!ALG.S TPMI_ALG_SYM_MODE+ TPM_ALG_!ALG.S

sym TPMI_ALG_SYM_MODE+ this entry is used by the reference
code to refer to the mode field in a
way that is independent of the
symmetric algorithm

xor TPM_ALG_XOR no mode selector

null TPM_ALG_NULL no mode selector

11.1.5 TPMU_SYM_DETAILS

This union allows additional parameters to be added for a symmetric cipher. Currently, no additional

parameters are required for any of the symmetric algorithms.

NOTE The “x” character in the table title will suppress generation of this type as the parser is not, at this time,
able to generate the proper values (a union of all empty data types). When an algorithm is added that
requires additional parameterization, the Type column will contain a value and the “x” may be removed.

Table 139 —xDefinition of TPMU_SYM_DETAILS Union

Parameter Type Selector Description

!ALG.S TPM_ALG_!ALG

sym this entry is used by the reference
code to refer to the details field in a
way that is independent of the
symmetric algorithm

xor TPM_ALG_XOR

null TPM_ALG_NULL

Trusted Platform Module Library Part 2: Structures

Page 122 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.1.6 TPMT_SYM_DEF

The TPMT_SYM_DEF structure is used to select an algorithm to be used for parameter encryption in

those cases when different symmetric algorithms may be selected.

Table 140 — Definition of TPMT_SYM_DEF Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM indicates a symmetric algorithm

[algorithm]keyBits TPMU_SYM_KEY_BITS a supported key size

[algorithm]mode TPMU_SYM_MODE the mode for the key

//[algorithm]details TPMU_SYM_DETAILS contains additional algorithm details

NOTE This is commented out at this time as the parser
may not produce the proper code for a union if none of the
selectors produces any data.

11.1.7 TPMT_SYM_DEF_OBJECT

This structure is used when different symmetric block cipher (not XOR) algorithms may be selected. If the

Object can be an ordinary parent (not a derivation parent), this must be the first field in the Object's

parameter (see 12.2.3.7) field.

Table 141 — Definition of TPMT_SYM_DEF_OBJECT Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM_OBJECT selects a symmetric block cipher

When used in the parameter area of a parent object,
this shall be a supported block cipher and not
TPM_ALG_NULL

[algorithm]keyBits TPMU_SYM_KEY_BITS the key size

[algorithm]mode TPMU_SYM_MODE default mode

When used in the parameter area of a parent object,
this shall be TPM_ALG_CFB.

//[algorithm]details TPMU_SYM_DETAILS contains the additional algorithm details, if any

NOTE This is commented out at this time as the parser
may not produce the proper code for a union if none of the
selectors produces any data.

11.1.8 TPM2B_SYM_KEY

This structure is used to hold a symmetric key in the sensitive area of an asymmetric object.

The number of bits in the key is in keyBits in the public area. When keyBits is not an even multiple of 8

bits, the unused bits of buffer will be the most significant bits of buffer[0] and size will be rounded up to

the number of octets required to hold all bits of the key.

NOTE MAX_SYM_KEY_BYTES will be the larger of the largest symmetric key supported by the TPM and the
largest digest produced by any hashing algorithm implemented on the TPM.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 142 — Definition of TPM2B_SYM_KEY Structure

Parameter Type Description

size UINT16 size, in octets, of the buffer containing the key; may be
zero

buffer [size] {:MAX_SYM_KEY_BYTES} BYTE the key

11.1.9 TPMS_SYMCIPHER_PARMS

This structure contains the parameters for a symmetric block cipher object.

Table 143 — Definition of TPMS_SYMCIPHER_PARMS Structure

Parameter Type Description

sym TPMT_SYM_DEF_OBJECT a symmetric block cipher

11.1.10 TPM2B_LABEL

This buffer holds a label or context value. For interoperability and backwards compatibility,

LABEL_MAX_BUFFER is the minimum of the largest digest on the device and the largest ECC parameter

(MAX_ECC_KEY_BYTES) but no more than 32 bytes.

All implementations are required to support at least one hash algorithm that produces a digest of 32 bytes

or larger; and any implementation that supports ECC is required to support at least one curve with a key

size of 32-bytes or larger.

NOTE Although the maximum size allowed for a label or context is 32 bytes, the object data structure needs to
be sized to allow a 32-byte value.

Table 144 — Definition of TPM2B_LABEL Structure

Parameter Type Description

size UINT16

buffer[size]{:LABEL_MAX_BUFFER} BYTE symmetric data for a created object or the
label and context for a derived object

11.1.11 TPMS_DERIVE

This structure contains the label and context fields for a derived object. These values are used in the

derivation KDF. The values in the unique field of inPublic area template take precedence over the values

in the inSensitive parameter.

Table 145 — Definition of TPMS_DERIVE Structure

Parameter Type Description

label TPM2B_LABEL

context TPM2B_LABEL

Trusted Platform Module Library Part 2: Structures

Page 124 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.1.12 TPM2B_DERIVE

Table 146 — Definition of TPM2B_DERIVE Structure

Parameter Type Description

size UINT16

buffer[size]{: sizeof(TPMS_DERIVE)} BYTE symmetric data for a created object or the
label and context for a derived object

11.1.13 TPMU_SENSITIVE_CREATE

This structure allows a TPM2B_SENSITIVE_CREATE structure to carry either a

TPM2B_SENSITVE_DATA or a TPM2B_DERIVE structure. The contents of the union are determined by

context. When an object is being derived, the derivation values are present.

For interoperability, MAX_SYM_DATA should be 128.

NOTE No marshaling code is automatically generated for this union as it has no selectors that would allow the
code to know the context and which member to unmarshal.

Table 147 — Definition of TPMU_SENSITIVE_CREATE Union <>

Parameter Type Selector Description

create[MAX_SYM_DATA] BYTE sensitive data for a created
symmetric Object

derive TPMS_DERIVE label and context for a derived
Object

11.1.14 TPM2B_SENSITIVE_DATA

This buffer wraps the TPMU_SENSITIVE_CREATE structure.

Table 148 — Definition of TPM2B_SENSITIVE_DATA Structure

Parameter Type Description

size UINT16

buffer[size]{: sizeof(TPMU_SENSITIVE_CREATE)} BYTE symmetric data for a created object or the
label and context for a derived object

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.1.15 TPMS_SENSITIVE_CREATE

This structure defines the values to be placed in the sensitive area of a created object. This structure is

only used within a TPM2B_SENSITIVE_CREATE structure.

NOTE When sent to the TPM or unsealed, data is usually encrypted using parameter encryption.

If data.size is not zero, and the object is not a keyedHash, data.size must match the size indicated in the

keySize of public.parameters. If the object is a keyedHash, data.size may be any value up to the

maximum allowed in a TPM2B_SENSITIVE_DATA.

For an asymmetric object, data shall be an Empty Buffer and sensitiveDataOrigin shall be SET.

Table 149 — Definition of TPMS_SENSITIVE_CREATE Structure <IN>

Parameter Type Description

userAuth TPM2B_AUTH the USER auth secret value

data TPM2B_SENSITIVE_DATA data to be sealed, a key, or derivation values

11.1.16 TPM2B_SENSITIVE_CREATE

This structure contains the sensitive creation data in a sized buffer. This structure is defined so that both

the userAuth and data values of the TPMS_SENSITIVE_CREATE may be passed as a single parameter

for parameter encryption purposes.

Table 150 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S>

Parameter Type Description

size= UINT16 size of sensitive in octets (may not be zero)

NOTE The userAuth and data parameters in this buffer
may both be zero length but the minimum size of
this parameter will be the sum of the size fields of
the two parameters of the
TPMS_SENSITIVE_CREATE.

sensitive TPMS_SENSITIVE_CREATE data to be sealed or a symmetric key value.

11.1.17 TPMS_SCHEME_HASH

This structure is the scheme data for schemes that only require a hash to complete their definition.

Table 151 — Definition of TPMS_SCHEME_HASH Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

Trusted Platform Module Library Part 2: Structures

Page 126 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.1.18 TPMS_SCHEME_ECDAA

This definition is for split signing schemes that require a commit count.

Table 152 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

count UINT16 the counter value that is used between TPM2_Commit() and the sign
operation

11.1.19 TPMI_ALG_KEYEDHASH_SCHEME

This is the list of values that may appear in a keyedHash as the scheme parameter.

Table 153 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type

Values Comments

TPM_ALG_HMAC the "signing" scheme

TPM_ALG_XOR the "obfuscation" scheme

+TPM_ALG_NULL

#TPM_RC_VALUE

11.1.20 HMAC_SIG_SCHEME

Table 154 — Definition of Types for HMAC_SIG_SCHEME

Type Name Description

TPMS_SCHEME_HASH TPMS_SCHEME_HMAC

11.1.21 TPMS_SCHEME_XOR

This structure is for the XOR encryption scheme.

NOTE Prior to revision 01.47, the TPM_ALG_NULL hash algorithm was permitted. This produced a zero length
key. The TPM_ALG_NULL hashAlg now returns TPM_RC_HASH.

Table 155 — Definition of TPMS_SCHEME_XOR Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

kdf TPMI_ALG_KDF+ the key derivation function

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.1.22 TPMU_SCHEME_KEYEDHASH

Table 156 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT >

Parameter Type Selector Description

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the "signing" scheme

xor TPMS_SCHEME_XOR TPM_ALG_XOR the "obfuscation" scheme

null TPM_ALG_NULL

11.1.23 TPMT_KEYEDHASH_SCHEME

This structure is used for a hash signing object.

Table 157 — Definition of TPMT_KEYEDHASH_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KEYEDHASH_SCHEME selects the scheme

[scheme]details TPMU_SCHEME_KEYEDHASH the scheme parameters

Trusted Platform Module Library Part 2: Structures

Page 128 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.2 Asymmetric

11.2.1 Signing Schemes

11.2.1.1 Introduction

These structures are used to define the method in which the signature is to be created. These schemes

would appear in an object’s public area and in commands where the signing scheme is variable.

Every scheme is required to indicate a hash that is used in digesting the message.

11.2.1.2 RSA Signature Schemes

These are the RSA schemes that only need a hash algorithm as a scheme parameter.

For the TPM_ALG_RSAPSS signing scheme, the same hash algorithm is used for digesting TPM-

generated data (an attestation structure) and in the KDF used for the masking operation. The salt size is

always the largest salt value that will fit into the available space.

Table 158 — Definition of {RSA} Types for RSA Signature Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_SIG_SCHEME_!ALG.AX

11.2.1.3 ECC Signature Schemes

Most of the ECC signature schemes only require a hash algorithm to complete the definition and can be

typed as TPMS_SCHEME_HASH. Anonymous algorithms also require a count value so they are typed to

be TPMS_SCHEME_ECDAA.

Table 159 — Definition of {ECC} Types for ECC Signature Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_SIG_SCHEME_!ALG.AX all asymmetric signing schemes

TPMS_SCHEME_ECDAA TPMS_SIG_SCHEME_!ALG.AXN schemes that need a hash and a count

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.2.1.4 TPMU_SIG_SCHEME

This is the union of all of the signature schemes.

NOTE The TPMS_SIG_SCHEME_!ALG is determined by Table 158 or Table 159 and will be either a
TPMS_SCHEME_HASH or a TPMS_SCHEME_ECDAA.

Table 160 — Definition of TPMU_SIG_SCHEME Union <IN/OUT >

Parameter Type Selector Description

!ALG.ax TPMS_SIG_SCHEME_!ALG TPM_ALG_!ALG all signing schemes including
anonymous schemes

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the HMAC scheme

any TPMS_SCHEME_HASH selector that allows access to
digest for any signing scheme

null TPM_ALG_NULL no scheme or default

11.2.1.5 TPMT_SIG_SCHEME

Table 161 — Definition of TPMT_SIG_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_SIG_SCHEME scheme selector

[scheme]details TPMU_SIG_SCHEME scheme parameters

11.2.2 Encryption Schemes

11.2.2.1 Introduction

These structures are used to indicate the algorithm used for the encrypting process. These schemes

would appear in an object’s public area.

NOTE With ECC, the only encryption is with a key exchange of a symmetric key or seed.

11.2.2.2 RSA Encryption Schemes

These are the RSA encryption schemes that only need a hash algorithm as a controlling parameter.

NOTE: These types do not appear in the reference code in the specification but are used in the unmarshaling
code.

Table 162 — Definition of Types for {RSA} Encryption Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_ENC_SCHEME_!ALG.AEH schemes that only need a hash

TPMS_EMPTY TPMS_ENC_SCHEME_!ALG.AE schemes that need nothing

Trusted Platform Module Library Part 2: Structures

Page 130 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.2.2.3 ECC Key Exchange Schemes

These are the ECC schemes that only need a hash algorithm as a controlling parameter.

NOTE: These types do not appear in the reference code in the specification but are used in the unmarshaling
code.

Table 163 — Definition of Types for {ECC} ECC Key Exchange

Type Name Description

TPMS_SCHEME_HASH TPMS_KEY_SCHEME_!ALG.AM schemes that need a hash

11.2.3 Key Derivation Schemes

11.2.3.1 Introduction

These structures are used to define the key derivation for symmetric secret sharing using asymmetric

methods. A secret sharing scheme is required in any asymmetric key with the decrypt attribute SET.

These schemes would appear in an object’s public area and in commands where the secret sharing

scheme is variable.

Each scheme includes a symmetric algorithm and a KDF selection.

The qualifying value for each of the KDF schemes is the hash algorithm.

NOTE: These types do not appear in the reference code in the specification but are used in the unmarshaling
code.

Table 164 — Definition of Types for KDF Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_SCHEME_!ALG.HM hash-based key- or mask-generation functions

11.2.3.2 TPMU_KDF_SCHEME

Table 165 — Definition of TPMU_KDF_SCHEME Union <IN/OUT>

Parameter Type Selector Description

!ALG.HM TPMS_SCHEME_!ALG.HM TPM_ALG_!ALG.HM

null TPM_ALG_NULL

11.2.3.3 TPMT_KDF_SCHEME

Table 166 — Definition of TPMT_KDF_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KDF scheme selector

[scheme]details TPMU_KDF_SCHEME scheme parameters

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.2.3.4 TPMI_ALG_ASYM_SCHEME

List of all of the scheme types for any asymmetric algorithm.

NOTE 1 This is the selector value used to define TPMT_ASYM_SCHEME.

NOTE 2 Most tokens are exclusive in order to filter out SM2 and other multi -protocol algorithm identifiers. The
inclusive token “ax” will include those algorithms.

Table 167 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <IO>

Values Comments

TPM_ALG_!ALG.am key exchange methods

TPM_ALG_!ALG.ax all signing including anonymous

TPM_ALG_!ALG.ae encrypting schemes

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.3.5 TPMU_ASYM_SCHEME

This union of all asymmetric schemes is used in each of the asymmetric scheme structures. The actual

scheme structure is defined by the interface type used for the selector (TPMI_ALG_ASYM_SCHEME).

EXAMPLE The TPMT_RSA_SCHEME structure uses the TPMU_ASYM_SCHEME union but the selector type is
TPMI_ALG_RSA_SCHEME. This means that the only elements of the union that can be selected for the
TPMT_RSA_SCHEME are those that are in TPMI_RSA_SCHEME.

Table 168 — Definition of TPMU_ASYM_SCHEME Union

Parameter Type Selector Description

!ALG.am TPMS_KEY_SCHEME_!ALG TPM_ALG_!ALG

!ALG.ax TPMS_SIG_SCHEME_!ALG TPM_ALG_!ALG signing and anonymous signing

!ALG.ae TPMS_ENC_SCHEME_!ALG TPM_ALG_!ALG schemes with no hash

anySig TPMS_SCHEME_HASH

null TPM_ALG_NULL no scheme or default

This selects the NULL Signature.

11.2.3.6 TPMT_ASYM_SCHEME

This structure is defined to allow overlay of all of the schemes for any asymmetric object. This structure is

not sent on the interface. It is defined so that common functions may operate on any similar scheme

structure.

EXAMPLE Since many schemes have a hash algorithm as their defining parameter, a common function can use the
digest selector to select the hash of the scheme without a need to cast or use a large switch statement.

Trusted Platform Module Library Part 2: Structures

Page 132 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 169 — Definition of TPMT_ASYM_SCHEME Structure <>

Parameter Type Description

scheme +TPMI_ALG_ASYM_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

11.2.4 RSA

11.2.4.1 TPMI_ALG_RSA_SCHEME

The list of values that may appear in the scheme parameter of a TPMS_RSA_PARMS structure.

Table 170 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type

Values Comments

TPM_ALG_!ALG.ae.ax encrypting and signing algorithms

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.4.2 TPMT_RSA_SCHEME

Table 171 — Definition of {RSA} TPMT_RSA_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_RSA_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

11.2.4.3 TPMI_ALG_RSA_DECRYPT

The list of values that are allowed in a decryption scheme selection as used in TPM2_RSA_Encrypt() and

TPM2_RSA_Decrypt().

Table 172 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type

Values Comments

TPM_ALG_!ALG.ae all RSA encryption algorithms

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.4.4 TPMT_RSA_DECRYPT

Table 173 — Definition of {RSA} TPMT_RSA_DECRYPT Structure

Parameter Type Description

scheme +TPMI_ALG_RSA_DECRYPT scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.2.4.5 TPM2B_PUBLIC_KEY_RSA

This sized buffer holds the largest RSA public key supported by the TPM.

NOTE The reference implementation only supports key sizes of 1,024 and 2,048 bits.

Table 174 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure

Parameter Type Description

size UINT16 size of the buffer

The value of zero is only valid for create.

buffer[size] {: MAX_RSA_KEY_BYTES} BYTE Value

11.2.4.6 TPMI_RSA_KEY_BITS

This holds the value that is the maximum size allowed for an RSA key.

NOTE 1 An implementation is allowed to provide limited support for smaller RSA key sizes. That is, a TPM may be
able to accept a smaller RSA key size in TPM2_LoadExternal() when only the public area is loaded but
not accept that smaller key size in any command that loads both the public and private portions of an RSA
key. This would allow the TPM to validate signatures using the smaller key but would prevent the TPM
from using the smaller key size for any other purpose.

NOTE 2 The definition for RSA_KEY_SIZES_BITS used in the reference implementation is found in TPM 2.0 Part
4, Implementation.h

Table 175 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type

Parameter Description

$RSA_KEY_SIZES_BITS the number of bits in the supported key

#TPM_RC_VALUE error when key size is not supported

11.2.4.7 TPM2B_PRIVATE_KEY_RSA

This sized buffer holds the largest RSA prime number supported by the TPM.

NOTE 1 All primes are required to have exactly half the number of significant bits as the public modulus, and the
square of each prime is required to have the same number of significant bits as the public modulus.

NOTE 2 RSA_PRIVATE_SIZE is a vendor specific value that can be (MAX_RSA_KEY_BYTES / 2) or
((MAX_RSA_KEY_BYTES * 5) ./ 2. The larger size would only apply to keys that have fixedTPM parents.
The larger size was added in revision 01.53.

Table 176 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure

Parameter Type Description

size UINT16

buffer[size]{:RSA_PRIVATE_SIZE } BYTE

Trusted Platform Module Library Part 2: Structures

Page 134 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.2.5 ECC

11.2.5.1 TPM2B_ECC_PARAMETER

This sized buffer holds the largest ECC parameter (coordinate) supported by the TPM.

Table 177 — Definition of TPM2B_ECC_PARAMETER Structure

Parameter Type Description

size UINT16 size of buffer

buffer[size] {:MAX_ECC_KEY_BYTES} BYTE the parameter data

11.2.5.2 TPMS_ECC_POINT

This structure holds two ECC coordinates that, together, make up an ECC point.

Table 178 — Definition of {ECC} TPMS_ECC_POINT Structure

Parameter Type Description

x TPM2B_ECC_PARAMETER X coordinate

y TPM2B_ECC_PARAMETER Y coordinate

11.2.5.3 TPM2B_ECC_POINT

This structure is defined to allow a point to be a single sized parameter so that it may be encrypted.

NOTE If the point is to be omitted, the X and Y coordinates need to be individually set to Empty Buffers. The
minimum value for size will be four. It is checked indirectly by unmarshaling of the TPMS_ECC_POINT. If
the type of point were BYTE, then size could have been zero. However, this would complicate the process
of marshaling the structure.

Table 179 — Definition of {ECC} TPM2B_ECC_POINT Structure

Parameter Type Description

size= UINT16 size of the remainder of this structure

point TPMS_ECC_POINT coordinates

#TPM_RC_SIZE error returned if the unmarshaled size of point is
not exactly equal to size

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.2.5.4 TPMI_ALG_ECC_SCHEME

Table 180 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type

Values Comments

TPM_ALG_!ALG.ax the ecc signing schemes

TPM_ALG_!ALG.am key exchange methods

+TPM_ALG_NULL

#TPM_RC_SCHEME

11.2.5.5 TPMI_ECC_CURVE

This type enumerates the ECC curves implemented by the TPM.

Table 181 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type

Parameter Description

$ECC_CURVES the list of implemented curves

#TPM_RC_CURVE error when curve is not supported

11.2.5.6 TPMT_ECC_SCHEME

Table 182 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_ECC_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

Trusted Platform Module Library Part 2: Structures

Page 136 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

This structure is used to report on the curve parameters of an ECC curve. It is returned by

TPM2_ECC_Parameters().

Table 183 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT>

Parameter Type Description

curveID TPM_ECC_CURVE identifier for the curve

keySize UINT16 Size in bits of the key

kdf TPMT_KDF_SCHEME+ if not TPM_ALG_NULL, the required KDF and hash algorithm
used in secret sharing operations

sign TPMT_ECC_SCHEME+ If not TPM_ALG_NULL, this is the mandatory signature
scheme that is required to be used with this curve.

p TPM2B_ECC_PARAMETER Fp (the modulus)

a TPM2B_ECC_PARAMETER coefficient of the linear term in the curve equation

b TPM2B_ECC_PARAMETER constant term for curve equation

gX TPM2B_ECC_PARAMETER x coordinate of base point G

gY TPM2B_ECC_PARAMETER y coordinate of base point G

n TPM2B_ECC_PARAMETER order of G

h TPM2B_ECC_PARAMETER cofactor (a size of zero indicates a cofactor of 1)

11.3 Signatures

11.3.1 TPMS_SIGNATURE_RSA

Table 184 — Definition of {RSA} TPMS_SIGNATURE_RSA Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used to digest the message

TPM_ALG_NULL is not allowed.

sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.

Table 185 — Definition of Types for {RSA} Signature

Type Name Description

TPMS_SIGNATURE_RSA TPMS_SIGNATURE_!ALG.ax

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.3.2 TPMS_SIGNATURE_ECC

Table 186 — Definition of {ECC} TPMS_SIGNATURE_ECC Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used in the signature process

TPM_ALG_NULL is not allowed.

signatureR TPM2B_ECC_PARAMETER

signatureS TPM2B_ECC_PARAMETER

Table 187 — Definition of Types for {ECC} TPMS_SIGNATURE_ECC

Type Name Description

TPMS_SIGNATURE_ECC TPMS_SIGNATURE_!ALG.ax

11.3.3 TPMU_SIGNATURE

A TPMU_SIGNATURE_COMPOSITE is a union of the various signatures that are supported by a

particular TPM implementation. The union allows substitution of any signature algorithm wherever a

signature is required in a structure.

NOTE All TPM are required to support a hash algorithm and the HMAC algorithm.

When a symmetric algorithm is used for signing, the signing algorithm is assumed to be an HMAC based

on the indicated hash algorithm. The HMAC key will either be referenced as part of the usage or will be

implied by context.

Table 188 — Definition of TPMU_SIGNATURE Union <IN/OUT>

Parameter Type Selector Description

!ALG.ax TPMS_SIGNATURE_!ALG.ax TPM_ALG_!ALG.ax all asymmetric signatures

hmac TPMT_HA TPM_ALG_HMAC HMAC signature (required to
be supported)

any TPMS_SCHEME_HASH used to access the hash

null TPM_ALG_NULL the NULL signature

11.3.4 TPMT_SIGNATURE

Table 189 shows the basic algorithm-agile structure when a symmetric or asymmetric signature is

indicated. The sigAlg parameter indicates the algorithm used for the signature. This structure is output

from commands such as the attestation commands and TPM2_Sign, and is an input to commands such

as TPM2_VerifySignature(), TPM2_PolicySigned(), and TPM2_FieldUpgradeStart().

Table 189 — Definition of TPMT_SIGNATURE Structure

Parameter Type Description

sigAlg +TPMI_ALG_SIG_SCHEME selector of the algorithm used to construct the signature

[sigAlg]signature TPMU_SIGNATURE This shall be the actual signature information.

Trusted Platform Module Library Part 2: Structures

Page 138 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

11.4 Key/Secret Exchange

11.4.1 Introduction

The structures in 11.4 are used when a key or secret is being exchanged. The exchange may be in

• TPM2_StartAuthSession() where the secret is injected for salting the session,

• TPM2_Duplicate(), TPM2_Import, or TPM2_Rewrap() where the secret is the symmetric encryption
key for the outer wrapper of a duplication blob, or

• TPM2_ActivateIdentity() or TPM2_CreateIdentity() where the secret is the symmetric encryption key
for the credential blob.

Particulars are described in TPM 2.0 Part 1.

11.4.2 TPMU_ENCRYPTED_SECRET

This structure is used to hold either an ephemeral public point for ECDH, an OAEP-encrypted block for

RSA, or a symmetrically encrypted value. This structure is defined for the limited purpose of determining

the size of a TPM2B_ENCRYPTED_SECRET.

The symmetrically encrypted value may use either CFB or XOR encryption.

NOTE Table 190 is illustrative. It would be modified depending on the algorithms supported in the TPM.

Table 190 — Definition of TPMU_ENCRYPTED_SECRET Union

Parameter Type Selector Description

ecc[sizeof(TPMS_ECC_POINT)] BYTE TPM_ALG_ECC

rsa[MAX_RSA_KEY_BYTES] BYTE TPM_ALG_RSA

symmetric[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_SYMCIPHER

keyedHash[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_KEYEDHASH Any symmetrically encrypted
secret value will be limited to
be no larger than a digest.

11.4.3 TPM2B_ENCRYPTED_SECRET

Table 191 — Definition of TPM2B_ENCRYPTED_SECRET Structure

Parameter Type Description

size UINT16 size of the secret value

secret[size] {:sizeof(TPMU_ENCRYPTED_SECRET)} BYTE secret

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12 Key/Object Complex

12.1 Introduction

An object description requires a TPM2B_PUBLIC structure and may require a TPMT_SENSITIVE

structure. When the structure is stored off the TPM, the TPMT_SENSITIVE structure is encrypted within a

TPM2B_PRIVATE structure.

When the object requires two components for its description, those components are loaded as separate

parameters in the TPM2_Load() command. When the TPM creates an object that requires both

components, the TPM will return them as separate parameters from the TPM2_Create() operation.

The TPM may produce multiple different TPM2B_PRIVATE structures for a single TPM2B_PUBLIC

structure. Creation of a modified TPM2B_PRIVATE structure requires that the full structure be loaded with

the TPM2_Load() command, modification of the TPMT_SENSITIVE data, and output of a new

TPM2B_PRIVATE structure.

12.2 Public Area Structures

12.2.1 Description

Clause 12.2 defines the TPM2B_PUBLIC structure and the higher-level substructure that may be

contained in a TPM2B_PUBLIC. The higher-level structures that are currently defined for inclusion in a

TPM2B_PUBLIC are the

• structures for asymmetric keys,

• structures for symmetric keys, and

• structures for sealed data.

12.2.2 TPMI_ALG_PUBLIC

Table 192 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type

Values Comments

TPM_ALG_!ALG.o All object types

#TPM_RC_TYPE response code when a public type is not supported

Trusted Platform Module Library Part 2: Structures

Page 140 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.2.3 Type-Specific Parameters

12.2.3.1 Description

The public area contains two fields (parameters and unique) that vary by object type. The parameters

field varies according to the type of the object but the contents may be the same across multiple

instances of a particular type. The unique field format also varies according to the type of the object and

will also be unique for each instance.

For a symmetric key (type == TPM_ALG_SYMCIPHER), HMAC key (type == TPM_ALG_KEYEDHASH)

or data object (also, type == TPM_ALG_KEYEDHASH), the contents of unique shall be computed from

components of the sensitive area of the object as follows:

 unique ≔ HnameAlg(seedValue || sensitive) (9)

where

HnameAlg() the hash algorithm used to compute the Name of the object

seedValue the digest-sized obfuscation value in the sensitive area of a symmetric

key or symmetric data object found in a
TPMT_SENSITIVE.seedValue.buffer

sensitive the secret key/data of the object in the

TPMT_SENSITIVE.sensitive.any.buffer

12.2.3.2 TPMU_PUBLIC_ID

This is the union of all values allowed in in the unique field of a TPMT_PUBLIC.

NOTE The derive member cannot be unmarshaled in a TPMU_PUBLIC_ID. It is placed in this structure so that
the maximum size of a TPM2B_TEMPLATE will be computed correctly.

Table 193 — Definition of TPMU_PUBLIC_ID Union <IN/OUT>

Parameter Type Selector Description

keyedHash TPM2B_DIGEST TPM_ALG_KEYEDHASH

sym TPM2B_DIGEST TPM_ALG_SYMCIPHER

rsa TPM2B_PUBLIC_KEY_RSA TPM_ALG_RSA

ecc TPMS_ECC_POINT TPM_ALG_ECC

derive TPMS_DERIVE only allowed for TPM2_CreateLoaded
when parentHandle is a Derivation
Parent.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 141

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.2.3.3 TPMS_KEYEDHASH_PARMS

This structure describes the parameters that would appear in the public area of a KEYEDHASH object.

NOTE Although the names are the same, the types of the structures are not the same as for asymmetric
parameter lists.

Table 194 — Definition of TPMS_KEYEDHASH_PARMS Structure

Parameter Type Description

scheme TPMT_KEYEDHASH_SCHEME+ Indicates the signing method used for a keyedHash signing
object. This field also determines the size of the data field for a
data object created with TPM2_Create() or
TPM2_CreatePrimary().

12.2.3.4 TPMS_ASYM_PARMS

This structure contains the common public area parameters for an asymmetric key. The first two

parameters of the parameter definition structures of an asymmetric key shall have the same two first

components.

NOTE The sign parameter may have a different type in order to allow different schemes to be selected for each
asymmetric type but the first parameter of each scheme definition shall be a TPM_ALG_ID for a valid
signing scheme.

Table 195 — Definition of TPMS_ASYM_PARMS Structure <>

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ the companion symmetric algorithm for a restricted
decryption key and shall be set to a supported symmetric
algorithm

This field is optional for keys that are not decryption keys
and shall be set to TPM_ALG_NULL if not used.

scheme TPMT_ASYM_SCHEME+ for a key with the sign attribute SET, a valid signing
scheme for the key type

for a key with the decrypt attribute SET, a valid key
exchange protocol

for a key with sign and decrypt attributes, shall be
TPM_ALG_NULL

Trusted Platform Module Library Part 2: Structures

Page 142 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.2.3.5 TPMS_RSA_PARMS

A TPM compatible with this specification and supporting RSA shall support two primes and an exponent

of zero. An exponent of zero indicates that the exponent is the default of 216 + 1. Support for other values

is optional. Use of other exponents in duplicated keys is not recommended because the resulting keys

would not be interoperable with other TPMs.

NOTE Implementations are not required to check that exponent is the default exponent. They may fail to load the
key if exponent is not zero. The reference implementation allows the values listed in the table.

Table 196 — Definition of {RSA} TPMS_RSA_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a
supported symmetric algorithm, key size, and mode.

if the key is not a restricted decryption key, this field
shall be set to TPM_ALG_NULL.

scheme TPMT_RSA_SCHEME+ scheme.scheme shall be:

for an unrestricted signing key, either
TPM_ALG_RSAPSS TPM_ALG_RSASSA or
TPM_ALG_NULL

for a restricted signing key, either TPM_ALG_RSAPSS
or TPM_ALG_RSASSA

for an unrestricted decryption key, TPM_ALG_RSAES,
TPM_ALG_OAEP, or TPM_ALG_NULL unless the
object also has the sign attribute

for a restricted decryption key, TPM_ALG_NULL

NOTE When both sign and decrypt are SET, restricted
shall be CLEAR and scheme shall be
TPM_ALG_NULL.

keyBits TPMI_RSA_KEY_BITS number of bits in the public modulus

exponent UINT32 the public exponent

A prime number greater than 2.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 143

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.2.3.6 TPMS_ECC_PARMS

This structure contains the parameters for prime modulus ECC.

Table 197 — Definition of {ECC} TPMS_ECC_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a supported
symmetric algorithm, key size. and mode.

if the key is not a restricted decryption key, this field shall be
set to TPM_ALG_NULL.

scheme TPMT_ECC_SCHEME+ If the sign attribute of the key is SET, then this shall be a valid
signing scheme.

NOTE If the sign parameter in curveID indicates a mandatory
scheme, then this field shall have the same value.

If the decrypt attribute of the key is SET, then this shall be a
valid key exchange scheme or TPM_ALG_NULL.

If the key is a Storage Key, then this field shall be
TPM_ALG_NULL.

curveID TPMI_ECC_CURVE ECC curve ID

kdf TPMT_KDF_SCHEME+ an optional key derivation scheme for generating a symmetric
key from a Z value

If the kdf parameter associated with curveID is not
TPM_ALG_NULL then this is required to be NULL.

NOTE There are currently no commands where this parameter
has effect and, in the reference code, this field needs to be set to
TPM_ALG_NULL.

12.2.3.7 TPMU_PUBLIC_PARMS

Table 198 defines the possible parameter definition structures that may be contained in the public portion

of a key. If the Object can be a parent, the first field must be a TPMT_SYM_DEF_OBJECT. See 11.1.7.

Table 198 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT>

Parameter Type Selector Description(1)

keyedHashDetail TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH sign | decrypt | neither(2)

symDetail TPMS_SYMCIPHER_PARMS TPM_ALG_SYMCIPHER sign | decrypt | neither(2)

rsaDetail TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign(2)

eccDetail TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign(2)

asymDetail TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTES

1) Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT.sign may be set.

2) “+” indicates that both may be set but one shall be set. “|” indicates the optional settings.

Trusted Platform Module Library Part 2: Structures

Page 144 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.2.3.8 TPMT_PUBLIC_PARMS

This structure is used in TPM2_TestParms() to validate that a set of algorithm parameters is supported by

the TPM.

Table 199 — Definition of TPMT_PUBLIC_PARMS Structure

Parameter Type Description

type TPMI_ALG_PUBLIC the algorithm to be tested

[type]parameters TPMU_PUBLIC_PARMS the algorithm details

12.2.4 TPMT_PUBLIC

Table 200 defines the public area structure. The Name of the object is nameAlg concatenated with the

digest of this structure using nameAlg.

Table 200 — Definition of TPMT_PUBLIC Structure

Parameter Type Description

type TPMI_ALG_PUBLIC “algorithm” associated with this object

nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object

NOTE The "+" indicates that the instance of a TPMT_PUBLIC may have
a "+" to indicate that the nameAlg may be TPM_ALG_NULL.

objectAttributes TPMA_OBJECT attributes that, along with type, determine the manipulations of this
object

authPolicy TPM2B_DIGEST optional policy for using this key

The policy is computed using the nameAlg of the object.

NOTE Shall be the Empty Policy if no authorization policy is present.

[type]parameters TPMU_PUBLIC_PARMS the algorithm or structure details

[type]unique TPMU_PUBLIC_ID the unique identifier of the structure

For an asymmetric key, this would be the public key.

12.2.5 TPM2B_PUBLIC

This sized buffer is used to embed a TPMT_PUBLIC in a load command and in any response that returns

a public area.

Table 201 — Definition of TPM2B_PUBLIC Structure

Parameter Type Description

size= UINT16 size of publicArea

NOTE The “=” will force the TPM to try to unmarshal a
TPMT_PUBLIC and check that the unmarshaled size
matches the value of size. If all the required fields of
a TPMT_PUBLIC are not present, the TPM will return
an error (generally TPM_RC_SIZE) when attempting
to unmarshal the TPMT_PUBLIC.

publicArea +TPMT_PUBLIC the public area

NOTE The “+” indicates that the caller may specify that use
of TPM_ALG_NULL is allowed for nameAlg.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 145

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.2.6 TPM2B_TEMPLATE

This sized buffer is used to embed a TPMT_TEMPLATE for TPM2_CreateLoaded().

Unmarshaling of this structure is fairly complex due to requirements for backwards compatibility. Unlike a

TPM2B_PUBLIC, this structure is unmarshaled as an array of bytes that is passed to the action code.

The action code will then unmarshal the embedded structure.

If the parent is not a derivation parent, this structure is unmarshaled normally. If the parent is a derivation

parent, unique is unmarshaled as a TPMS_DERIVE structure (label and context). See 12.2.3.2.

Table 202 — Definition of TPM2B_TEMPLATE Structure

Parameter Type Description

size UINT16 size of publicArea

buffer[size]{:sizeof(TPMT_PUBLIC)} BYTE the public area

12.3 Private Area Structures

12.3.1 Introduction

The structures in 12.2.6 define the contents and construction of the private portion of a TPM object. A

TPM2B_PRIVATE along with a TPM2B_PUBLIC are needed to describe a TPM object.

A TPM2B_PRIVATE area may be encrypted by different symmetric algorithms or, in some cases, not

encrypted at all.

12.3.2 Sensitive Data Structures

12.3.2.1 Introduction

The structures in 12.3.2 define the presumptive internal representations of the sensitive areas of the

various entities. A TPM may store the sensitive information in any desired format but when constructing a

TPM_PRIVATE, the formats in 12.3.2 shall be used.

12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC

This structure is defined for coding purposes. For IO to the TPM, the sensitive portion of the key will be in

a canonical form. For an RSA key, this will be one of the prime factors of the public modulus. After

loading, it is typical that other values will be computed so that computations using the private key will not

need to start with just one prime factor. This structure can be used to store the results of such vendor-

specific calculations.

The value for PRIVATE_VENDOR_SPECIFIC_BYTES is determined by the vendor.

Table 203 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure

Parameter Type Description

size UINT16

buffer[size]{:PRIVATE_VENDOR_SPECIFIC_BYTES} BYTE

Trusted Platform Module Library Part 2: Structures

Page 146 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.3.2.3 TPMU_SENSITIVE_COMPOSITE

Table 204 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT>

Parameter Type Selector Description

rsa TPM2B_PRIVATE_KEY_RSA TPM_ALG_RSA a prime factor of the public
key

ecc TPM2B_ECC_PARAMETER TPM_ALG_ECC the integer private key

bits TPM2B_SENSITIVE_DATA TPM_ALG_KEYEDHASH the private data

sym TPM2B_SYM_KEY TPM_ALG_SYMCIPHER the symmetric key

any TPM2B_PRIVATE_VENDOR_SPECIFIC vendor-specific size for key
storage

12.3.2.4 TPMT_SENSITIVE

authValue shall not be larger than the size of the digest produced by the nameAlg of the object.

seedValue shall be the size of the digest produced by the nameAlg of the object.

Table 205 — Definition of TPMT_SENSITIVE Structure

Parameter Type Description

sensitiveType TPMI_ALG_PUBLIC identifier for the sensitive area

This shall be the same as the type parameter of the
associated public area.

authValue TPM2B_AUTH user authorization data

The authValue may be a zero-length string.

seedValue TPM2B_DIGEST for a parent object, the optional protection seed; for
other objects, the obfuscation value

[sensitiveType]sensitive TPMU_SENSITIVE_COMPOSITE the type-specific private data

12.3.3 TPM2B_SENSITIVE

The TPM2B_SENSITIVE structure is used as a parameter in TPM2_LoadExternal(). It is an unencrypted

sensitive area but it may be encrypted using parameter encryption.

NOTE 1 When this structure is unmarshaled, the sensitiveType determines what type of value is unmarshaled.
Each value of sensitiveType is associated with a TPM2B. It is the maximum size for each of the TPM2B
values that will determine if the unmarshal operation is successful. Since there is no selector for the any
or vendor options for the union, the maximum input and output sizes for a TPM2B_SENSITIVE are not
affected by the sizes of those parameters.

NOTE 2 The unmarshaling function validates that size equals the size of the value that is unmarshaled.

Table 206 — Definition of TPM2B_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the private structure

sensitiveArea TPMT_SENSITIVE an unencrypted sensitive area

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 147

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.3.4 Encryption

A TPMS_SENSITIVE is the input to the encryption process. All TPMS_ENCRYPT structures are CFB-

encrypted using a key and Initialization Vector (IV) that are derived from a seed value.

The method of generating the key and IV is described in “Protected Storage” subclause “Symmetric

Encryption.” in TPM 2.0 Part 1.

12.3.5 Integrity

The integrity computation is used to ensure that a protected object is not modified when stored in memory

outside of the TPM.

The method of protecting the integrity of the sensitive area is described in “Protected Storage” subclause

“Integrity” in TPM 2.0 Part 1.

12.3.6 _PRIVATE

This structure is defined to size the contents of a TPM2B_PRIVATE. This structure is not directly

marshaled or unmarshaled.

For TPM2_Duplicate() and TPM2_Import(), the TPM2B_PRIVATE may contain multiply encrypted data

and two integrity values. In some cases, the sensitive data is not encrypted and the integrity value is not

present.

For TPM2_Load() and TPM2_Create(), integrityInner is always present.

If integrityInner is present, it and sensitive are encrypted as a single block.

When an integrity value is not needed, it is not present and it is not represented by an Empty Buffer.

Table 207 — Definition of _PRIVATE Structure <>

Parameter Type Description

integrityOuter TPM2B_DIGEST

integrityInner TPM2B_DIGEST could also be a TPM2B_IV

sensitive TPM2B_SENSITIVE the sensitive area

12.3.7 TPM2B_PRIVATE

The TPM2B_PRIVATE structure is used as a parameter in multiple commands that create, load, and

modify the sensitive area of an object.

When the TPM returns a TPM2B_PRIVATE structure, the TPM pads the TPM2B_AUTH to its maximum

size.

Table 208 — Definition of TPM2B_PRIVATE Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the private structure

buffer[size] {:sizeof(_PRIVATE)} BYTE an encrypted private area

Trusted Platform Module Library Part 2: Structures

Page 148 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.4 Identity Object

12.4.1 Description

An identity object is used to convey credential protection value (CV) to a TPM that can load the object

associated with the object. The CV is encrypted to a storage key on the target TPM, and if the credential

integrity checks and the proper object is loaded in the TPM, then the TPM will return the CV.

12.4.2 TPMS_ID_OBJECT

This structure is used for sizing the TPM2B_ID_OBJECT.

Table 209 — Definition of TPMS_ID_OBJECT Structure <>

Parameter Type Description

integrityHMAC TPM2B_DIGEST HMAC using the nameAlg of the storage key on the target
TPM

encIdentity TPM2B_DIGEST credential protector information returned if name matches the
referenced object

All of the encIdentity is encrypted, including the size field.

NOTE The TPM is not required to check that the size is not larger
than the digest of the nameAlg. However, if the size is larger, the ID
object may not be usable on a TPM that has no digest larger than
produced by nameAlg.

12.4.3 TPM2B_ID_OBJECT

This structure is an output from TPM2_MakeCredential() and is an input to TPM2_ActivateCredential().

Table 210 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the credential structure

credential[size]{:sizeof(TPMS_ID_OBJECT)} BYTE an encrypted credential area

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 149

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

13 NV Storage Structures

13.1 TPM_NV_INDEX

A TPM_NV_INDEX is used to reference a defined location in NV memory. The format of the Index is

changed from TPM 1.2 in order to include the Index in the reserved handle space. Handles in this range

use the digest of the public area of the Index as the Name of the entity in authorization computations

The 32-bit TPM 1.2 NV Index format is shown in Figure 4. In order to allow the Index to fit into the 24 bits

available in the reserved handle space, the Index value format is changed as shown in Figure 5.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

1
6

1
5

0
0

T P U D reserved Purview Index

Figure 4 — TPM 1.2 TPM_NV_INDEX

3
1

2
4

2
3

0
0

TPM_HT_NV_INDEX Index

Figure 5 — TPM 2.0 TPM_NV_INDEX

NOTE This TPM_NV_INDEX format does not retain the Purview field and the D bit is not a part of an Index
handle as in TPM 1.2. The TPMA_NV_PLATFORMCREATE attribute is a property of an Index that
provides functionality similar to the D bit.

A valid Index handle will have an MSO of TPM_HT_NV_INDEX.

NOTE This structure is not used. It is defined here to indicate how the fields of the handle are assigned. The
exemplary unmarshaling code unmarshals a TPM_HANDLE and validates that it is in the range for a
TPM_NV_INDEX.

Table 211 — Definition of (UINT32) TPM_NV_INDEX Bits <>

Bit Name Definition

23:00 index The Index of the NV location

31:24 RH_NV constant value of TPM_HT_NV_INDEX indicating the NV Index range

Trusted Platform Module Library Part 2: Structures

Page 150 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Some prior versions of this specification contained a table here (Options for space Field of

TPM_NV_INDEX) that assigned subsets of the index field to different entities. Since this assignment was

a convention and not an architectural element of the TPM, the table was removed and the information is

now contained in a registry document that is maintained by the TCG.

13.2 TPM_NT

This table lists the values of the TPM_NT field of a TPMA_NV. See Table 214 for usage.

Table 212 — Definition of TPM_NT Constants

Name Value Description

TPM_NT_ORDINARY 0x0 Ordinary – contains data that is opaque to the TPM that can only be
modified using TPM2_NV_Write().

TPM_NT_COUNTER 0x1 Counter – contains an 8-octet value that is to be used as a counter
and can only be modified with TPM2_NV_Increment()

TPM_NT_BITS 0x2 Bit Field – contains an 8-octet value to be used as a bit field and can
only be modified with TPM2_NV_SetBits().

TPM_NT_EXTEND 0x4 Extend – contains a digest-sized value used like a PCR. The Index
can only be modified using TPM2_NV_Extend(). The extend will use
the nameAlg of the Index.

TPM_NT_PIN_FAIL 0x8 PIN Fail - contains pinCount that increments on a PIN authorization
failure and a pinLimit

TPM_NT_PIN_PASS 0x9 PIN Pass - contains pinCount that increments on a PIN authorization
success and a pinLimit

All other TPM_NT values are reserved and TPM2_NV_DefineSpace() returns TPM_RC_ATTRIBUTES.

NOTE 1 These values are compatible with previous versions of this specification, which used a bit map for this
field.

NOTE 2 This field described by Table 212 is 4 bits.

13.3 TPMS_NV_PIN_COUNTER_PARAMETERS

This is the data that can be written to and read from a TPM_NT_PIN_PASS or TPM_NT_PIN_FAIL non-

volatile index. pinCount is the most significant octets. pinLimit is the least significant octets.

Table 213 — Definition of TPMS_NV_PIN_COUNTER_PARAMETERS Structure

Parameter Type Description

pinCount UINT32 This counter shows the current number of successful
authValue authorization attempts to access a
TPM_NT_PIN_PASS index or the current number of
unsuccessful authValue authorization attempts to access a
TPM_NT_PIN_FAIL index.

pinLimit UINT32 This threshold is the value of pinCount at which the
authValue authorization of the host TPM_NT_PIN_PASS or
TPM_NT_PIN_FAIL index is locked out.

13.4 TPMA_NV (NV Index Attributes)

This structure allows the TPM to keep track of the data and permissions to manipulate an NV Index.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 151

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The platform controls (TPMA_NV_PPWRITE and TPMA_NV_PPREAD) and owner controls

(TPMA_NV_OWNERWRITE and TPMA_NV_OWNERREAD) give the platform and owner access to NV

Indexes using Platform Authorization or Owner Authorization rather than the authValue or authPolicy of

the Index.

If access to an NV Index is to be restricted based on PCR, then an appropriate authPolicy shall be

provided.

NOTE platformAuth or ownerAuth can be provided in any type of authorization session or as a password.

If TPMA_NV_AUTHREAD is SET, then the Index may be read if the Index authValue is provided. If

TPMA_NV_POLICYREAD is SET, then the Index may be read if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or

TPMA_NV_POLICYREAD shall be SET.

If TPMA_NV_AUTHWRITE is SET, then the Index may be written if the Index authValue is provided. If

TPMA_NV_POLICYWRITE is SET, then the Index may be written if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE TPMA_NV_AUTHWRITE, or

TPMA_NV_POLICYWRITE shall be SET.

If TPMA_NV_WRITELOCKED is SET, then the Index may not be written. If TPMA_NV_WRITEDEFINE is

SET, TPMA_NV_WRITELOCKED may not be CLEAR except by deleting and redefining the Index. If

TPMA_NV_WRITEDEFINE is CLEAR, then TPMA_NV_WRITELOCKED will be CLEAR on the next

TPM2_Startup(TPM_SU_CLEAR).

NOTE If TPMA_NV_WRITELOCKED is SET, but TPMA_NV_WRITTEN is CLEAR, then
TPMA_NV_WRITELOCKED is CLEAR by TPM Reset or TPM Restart. This action occurs even if the
TPMA_NV_WRITEDEFINE attribute is SET. This action prevents an NV Index from being defined that can
never be written, and permits a use case where an Index is defined, but the user wants to prohibit writes
until after a reboot.

If TPMA_NV_READLOCKED is SET, then the Index may not be read. TPMA_NV_READLOCKED will be

CLEAR on the next TPM2_Startup(TPM_SU_CLEAR).

NOTE The TPM is expected to maintain indicators to indicate that the Index is temporarily locked. The state of
these indicators is reported in the TPMA_NV_READLOCKED and TPMA_NV_WRITELOCKED attributes.

If the TPM_NT is TPM_NT_EXTEND, then writes to the Index will cause an update of the Index using the

extend operation with the nameAlg used to create the digest.

If TPM_NT is TPM_NT_PIN_FAIL, TPMA_NV_NO_DA must be SET. This removes ambiguity over which

Dictionary Attack defense protects a TPM_NV_PIN_FAIL's authValue.

When the Index is created (TPM2_NV_DefineSpace()), TPMA_NV_WRITELOCKED,

TPMA_NV_READLOCKED, and TPMA_NV_WRITTEN shall all be CLEAR in the parameter that defines

the attributes of the created Index.

Trusted Platform Module Library Part 2: Structures

Page 152 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 214 — Definition of (UINT32) TPMA_NV Bits

Bit Name Description

0 TPMA_NV_PPWRITE SET (1): The Index data can be written if Platform Authorization is
provided.

CLEAR (0): Writing of the Index data cannot be authorized with
Platform Authorization.

1 TPMA_NV_OWNERWRITE SET (1): The Index data can be written if Owner Authorization is
provided.

CLEAR (0): Writing of the Index data cannot be authorized with
Owner Authorization.

2 TPMA_NV_AUTHWRITE SET (1): Authorizations to change the Index contents that require
USER role may be provided with an HMAC session or password.

CLEAR (0): Authorizations to change the Index contents that require
USER role may not be provided with an HMAC session or password.

3 TPMA_NV_POLICYWRITE SET (1): Authorizations to change the Index contents that require
USER role may be provided with a policy session.

CLEAR (0): Authorizations to change the Index contents that require
USER role may not be provided with a policy session.

NOTE TPM2_NV_ChangeAuth() always requires that authorization be
provided in a policy session.

7:4 TPM_NT The type of the index.

NOTE A TPM is not required to support all TPM_NT values

9:8 Reserved shall be zero

reserved for future use

10 TPMA_NV_POLICY_DELETE SET (1): Index may not be deleted unless the authPolicy is satisfied
using TPM2_NV_UndefineSpaceSpecial().

CLEAR (0): Index may be deleted with proper platform or owner
authorization using TPM2_NV_UndefineSpace().

NOTE An Index with this attribute and a policy that cannot be
satisfied (e.g., an Empty Policy) cannot be deleted.

11 TPMA_NV_WRITELOCKED SET (1): Index cannot be written.

CLEAR (0): Index can be written.

12 TPMA_NV_WRITEALL SET (1): A partial write of the Index data is not allowed. The write
size shall match the defined space size.

CLEAR (0): Partial writes are allowed. This setting is required if the
.dataSize of the Index is larger than NV_MAX_BUFFER_SIZE for the
implementation.

13 TPMA_NV_WRITEDEFINE SET (1): TPM2_NV_WriteLock() may be used to prevent further
writes to this location.

CLEAR (0): TPM2_NV_WriteLock() does not block subsequent
writes if TPMA_NV_WRITE_STCLEAR is also CLEAR.

14 TPMA_NV_WRITE_STCLEAR SET (1): TPM2_NV_WriteLock() may be used to prevent further
writes to this location until the next TPM Reset or TPM Restart.

CLEAR (0): TPM2_NV_WriteLock() does not block subsequent
writes if TPMA_NV_WRITEDEFINE is also CLEAR.

15 TPMA_NV_GLOBALLOCK SET (1): If TPM2_NV_GlobalWriteLock() is successful,
TPMA_NV_WRITELOCKED is set.

CLEAR (0): TPM2_NV_GlobalWriteLock() has no effect on the
writing of the data at this Index.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 153

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Bit Name Description

16 TPMA_NV_PPREAD SET (1): The Index data can be read if Platform Authorization is
provided.

CLEAR (0): Reading of the Index data cannot be authorized with
Platform Authorization.

17 TPMA_NV_OWNERREAD SET (1): The Index data can be read if Owner Authorization is
provided.

CLEAR (0): Reading of the Index data cannot be authorized with
Owner Authorization.

18 TPMA_NV_AUTHREAD SET (1): The Index data may be read if the authValue is provided.

CLEAR (0): Reading of the Index data cannot be authorized with the
Index authValue.

19 TPMA_NV_POLICYREAD SET (1): The Index data may be read if the authPolicy is satisfied.

CLEAR (0): Reading of the Index data cannot be authorized with the
Index authPolicy.

24:20 Reserved shall be zero

reserved for future use

25 TPMA_NV_NO_DA SET (1): Authorization failures of the Index do not affect the DA logic
and authorization of the Index is not blocked when the TPM is in
Lockout mode.

CLEAR (0): Authorization failures of the Index will increment the
authorization failure counter and authorizations of this Index are not
allowed when the TPM is in Lockout mode.

26 TPMA_NV_ORDERLY SET (1): NV Index state is only required to be saved when the TPM
performs an orderly shutdown (TPM2_Shutdown()).

CLEAR (0): NV Index state is required to be persistent after the
command to update the Index completes successfully (that is, the NV
update is synchronous with the update command).

27 TPMA_NV_CLEAR_STCLEAR SET (1): TPMA_NV_WRITTEN for the Index is CLEAR by TPM
Reset or TPM Restart.

CLEAR (0): TPMA_NV_WRITTEN is not changed by TPM Restart.

NOTE This attribute may only be SET if TPM_NT is not
TPM_NT_COUNTER.

28 TPMA_NV_READLOCKED SET (1): Reads of the Index are blocked until the next TPM Reset or
TPM Restart.

CLEAR (0): Reads of the Index are allowed if proper authorization is
provided.

29 TPMA_NV_WRITTEN SET (1): Index has been written.

CLEAR (0): Index has not been written.

30 TPMA_NV_PLATFORMCREATE SET (1): This Index may be undefined with Platform Authorization but
not with Owner Authorization.

CLEAR (0): This Index may be undefined using Owner Authorization
but not with Platform Authorization.

The TPM will validate that this attribute is SET when the Index is
defined using Platform Authorization and will validate that this
attribute is CLEAR when the Index is defined using Owner
Authorization.

31 TPMA_NV_READ_STCLEAR SET (1): TPM2_NV_ReadLock() may be used to SET
TPMA_NV_READLOCKED for this Index.

CLEAR (0): TPM2_NV_ReadLock() has no effect on this Index.

Trusted Platform Module Library Part 2: Structures

Page 154 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13.5 TPMS_NV_PUBLIC

This structure describes an NV Index.

Table 215 — Definition of TPMS_NV_PUBLIC Structure

Name Type Description

nvIndex TPMI_RH_NV_INDEX the handle of the data area

nameAlg TPMI_ALG_HASH hash algorithm used to compute the name of the
Index and used for the authPolicy. For an extend
index, the hash algorithm used for the extend.

attributes TPMA_NV the Index attributes

authPolicy TPM2B_DIGEST optional access policy for the Index

The policy is computed using the nameAlg

NOTE Shall be the Empty Policy if no authorization
 policy is present.

dataSize{:MAX_NV_INDEX_SIZE} UINT16 the size of the data area

The maximum size is implementation-
dependent. The minimum maximum size is
platform-specific.

#TPM_RC_SIZE response code returned when the requested size
is too large for the implementation

13.6 TPM2B_NV_PUBLIC

This structure is used when a TPMS_NV_PUBLIC is sent on the TPM interface.

Table 216 — Definition of TPM2B_NV_PUBLIC Structure

Name Type Description

size= UINT16 size of nvPublic

nvPublic TPMS_NV_PUBLIC the public area

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 155

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14 Context Data

14.1 Introduction

Clause 14 defines the contents of the TPM2_ContextSave() response parameters and

TPM2_ContextLoad() command parameters.

If the parameters provided by the caller in TPM2_ContextLoad() do not match the values returned by the

TPM when the context was saved, the integrity check of the TPM2B_CONTEXT will fail and the object or

session will not be loaded.

14.2 TPM2B_CONTEXT_SENSITIVE

This structure holds the object or session context data. When saved, the full structure is encrypted.

NOTE This is an informative table that is included in the specification only to allow calculation of the maximum
size for TPM2B_CONTEXT_DATA.

Table 217 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size]{:MAX_CONTEXT_SIZE} BYTE the sensitive data

14.3 TPMS_CONTEXT_DATA

This structure holds the integrity value and the encrypted data for a context.

NOTE This is an informative table that is included in the specification only to allow calculation of the maximum
size for TPM2B_CONTEXT_DATA.

Table 218 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT>

Parameter Type Description

integrity TPM2B_DIGEST the integrity value

encrypted TPM2B_CONTEXT_SENSITIVE the sensitive area

14.4 TPM2B_CONTEXT_DATA

This structure is used in a TPMS_CONTEXT.

Table 219 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size] {:sizeof(TPMS_CONTEXT_DATA)} BYTE

Trusted Platform Module Library Part 2: Structures

Page 156 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.5 TPMS_CONTEXT

This structure is used in TPM2_ContextLoad() and TPM2_ContextSave(). If the values of the

TPMS_CONTEXT structure in TPM2_ContextLoad() are not the same as the values when the context

was saved (TPM2_ContextSave()), then the TPM shall not load the context.

Saved object contexts shall not be loaded as long as the associated hierarchy is disabled.

Saved object contexts are invalidated when the Primary Seed of their hierarchy changes. Objects in the

Endorsement hierarchy are invalidated when either the EPS or SPS is changed.

When an object has the stClear attribute, it shall not be possible to reload the context or any descendant

object after a TPM Reset or TPM Restart.

NOTE 1 The reference implementation prevents reloads after TPM Restart by including the current value of a
clearCount in the saved object context. When an object is loaded, this value is compared with the current
value of the clearCount if the object has the stClear attribute. If the values are not the same, then the
object cannot be loaded.

A sequence value is contained within contextBlob, the integrity-protected part of the saved context. The

sequence value is repeated in the sequence parameter of the TPMS_CONTEXT structure. The sequence

parameter, along with other values, is used in the generation the protection values of the context.

NOTE 2 The reference implementation prepends the sequence value to the contextBlob before, for example, the
SESSION structure for sessions or the OBJECT structure for transient objects.

If the integrity value of the context is valid, but the sequence value of the decrypted context does not

match the value in the sequence parameter, then TPM shall enter the failure mode because this is

indicative of a specific type of attack on the context values.

NOTE 3 If the integrity value is correct, but the decryption fails and produces the wrong value for sequence, this
implies that either the TPM is faulty or an external entity is able to forge an integrity value for the context
but they have insufficient information to know the encryption key of the context. Since the TPM ge nerated
the valid context, then there is no reason for the sequence value in the context to be decrypted incorrectly
other than the TPM is faulty or the TPM is under attack. In either case, it is appropriate for the TPM to
enter failure more.

Table 220 — Definition of TPMS_CONTEXT Structure

Name Type Description

sequence UINT64 the sequence number of the context

NOTE Transient object contexts and session
contexts used different counters.

savedHandle TPMI_DH_SAVED a handle indicating if the context is a session,
object, or sequence object (see Table 221 —
Context Handle Values

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the context

contextBlob TPM2B_CONTEXT_DATA the context data and integrity HMAC

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 157

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14.6 Parameters of TPMS_CONTEXT

14.6.1 sequence

The sequence parameter is used to differentiate the contexts and to allow the TPM to create a different

encryption key for each context. Objects and sessions use different sequence counters. The sequence

counter for objects (transient and sequence) is incremented when an object context is saved, and the

sequence counter for sessions increments when a session is created or when it is loaded

(TPM2_ContextLoad()). The session sequence number is the contextID counter.

For a session, the sequence number also allows the TRM to find the “older” contexts so that they may be

refreshed if the contextID are too widely separated.

If an input value for sequence is larger than the value used in any saved context, the TPM shall return an

error (TPM_RC_VALUE) and do no additional processing of the context.

If the context is a session context and the input value for sequence is less than the current value of

contextID minus the maximum range for sessions, the TPM shall return an error (TPM_RC_VALUE) and

do no additional processing of the context.

14.6.2 savedHandle

For a session, this is the handle that was assigned to the session when it was created. For a transient

object, the handle will have one of the values shown in Table 221.

If the handle type for savedHandle is TPM_HT_TRANSIENT, then the low order bits are used to

differentiate static objects from sequence objects.

If an input value for handle is outside of the range of values used by the TPM, the TPM shall return an

error (TPM_RC_VALUE) and do no additional processing of the context.

Table 221 — Context Handle Values

Value Description

0x02xxxxxx an HMAC session context

0x03xxxxxx a policy session context

0x80000000 an ordinary transient object

0x80000001 a sequence object

0x80000002 a transient object with the stClear attribute SET

Trusted Platform Module Library Part 2: Structures

Page 158 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.6.3 hierarchy

This is the hierarchy (TPMI_RH_HIERARCHY) for the saved context and determines the proof value used

in the construction of the encryption and integrity values for the context. For session and sequence

contexts, the hierarchy is TPM_RC_NULL. The hierarchy for a transient object may be TPM_RH_NULL

but it is not required.

14.7 Context Protection

14.7.1 Context Integrity

The integrity of the context blob is protected by an HMAC. The integrity value is constructed such that

changes to the component values will invalidate the context and prevent it from being loaded.

Previously saved contexts for objects in the Platform hierarchy shall not be loadable after the PPS is

changed.

Previously saved contexts for objects in the Storage hierarchy shall not be loadable after the SPS is

changed.

Previously saved contexts for objects in the Endorsement hierarchy shall not be loadable after either the

EPS or SPS is changed.

Previously saved sessions shall not be loadable after the SPS changes.

Previously saved contexts for objects that have their stClear attribute SET shall not be loadable after a

TPM Restart. If a Storage Key has its stClear attribute SET, the descendants of this key shall not be

loadable after TPM Restart.

Previously saved contexts for a session and objects shall not be loadable after a TPM Reset.

A saved context shall not be loaded if its HMAC is not valid. The equation for computing the HMAC for a

context is found in “Context Integrity Protection” in TPM 2.0 Part 1.

14.7.2 Context Confidentiality

The context data of sessions and objects shall be protected by symmetric encryption using CFB. The

method for computing the IV and encryption key is found in “Context Confidentiality Protection” in TPM

2.0 Part 1.

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 159

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15 Creation Data

15.1 TPMS_CREATION_DATA

This structure provides information relating to the creation environment for the object. The creation data

includes the parent Name, parent Qualified Name, and the digest of selected PCR. These values

represent the environment in which the object was created. Creation data allows a relying party to

determine if an object was created when some appropriate protections were present.

When the object is created, the structure shown in Table 222 is generated and a ticket is computed over

this data.

If the parent is a permanent handle (TPM_RH_OWNER, TPM_RH_PLATFORM,

TPM_RH_ENDORSEMENT, or TPM_RH_NULL), then parentName and parentQualifiedName will be set

to the parent handle value and parentNameAlg will be TPM_ALG_NULL.

Table 222 — Definition of TPMS_CREATION_DATA Structure <OUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION list indicating the PCR included in pcrDigest

pcrDigest TPM2B_DIGEST digest of the selected PCR using nameAlg of the object for
which this structure is being created

pcrDigest.size shall be zero if the pcrSelect list is empty.

locality TPMA_LOCALITY the locality at which the object was created

parentNameAlg TPM_ALG_ID nameAlg of the parent

parentName TPM2B_NAME Name of the parent at time of creation

The size will match digest size associated with parentNameAlg
unless it is TPM_ALG_NULL, in which case the size will be 4
and parentName will be the hierarchy handle.

parentQualifiedName TPM2B_NAME Qualified Name of the parent at the time of creation

Size is the same as parentName.

outsideInfo TPM2B_DATA association with additional information added by the key
creator

This will be the contents of the outsideInfo parameter in
TPM2_Create() or TPM2_CreatePrimary().

15.2 TPM2B_CREATION_DATA

This structure is created by TPM2_Create() and TPM2_CreatePrimary(). It is never entered into the TPM

and never has a size of zero.

Table 223 — Definition of TPM2B_CREATION_DATA Structure <OUT>

Parameter Type Description

size= UINT16 size of the creation data

creationData TPMS_CREATION_DATA

Trusted Platform Module Library Part 2: Structures

Page 160 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

16 Attached Component Structures

16.1 TPM_AT

These constants are used in TPM2_AC_GetCapability() to indicate the first tagged value returned from an

attached component.

TPM_AT values of 0x80000000 through 0xFFFFFFFF are reserved for vendor-specific values.

Table 224 — Definition of (UINT32) TPM_AT Constants

Name Value Comments

TPM_AT_ANY 0x00000000 in a command, a non-specific request for AC information;
in a response, indicates that outputData is not meaningful

TPM_AT_ERROR 0x00000001 indicates a TCG defined, device-specific error

TPM_AT_PV1 0x00000002 indicates the most significant 32 bits of a pairing value for
the AC

TPM_AT_VEND 0x80000000 value added to a TPM_AT to indicate a vendor-specific tag
value

16.2 TPM_AE

These constants are the TCG-defined error values returned by an AC.

Table 225 — Definition of (UINT32) TPM_AE Constants <OUT>

Name Value Comments

TPM_AE_NONE 0x00000000 in a command, a non-specific request for AC information;
in a response, indicates that outputData is not meaningful

16.3 TPMS_AC_OUTPUT

TPMS_AC_OUTPUT is used to return information about an AC. The tag structure parameter indicates the

type of the data value.

Table 226 — Definition of TPMS_AC_OUTPUT Structure <OUT>

Parameter Type Description

tag TPM_AT tag indicating the contents of data

data UINT32 the data returned from the AC

Part 2: Structures Trusted Platform Module Library

Family “2.0” TCG Published Page 161

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

16.4 TPML_AC_CAPABILITIES

This list is only used in TPM2_AC_GetCapability().

The values in the list are returned in TPM_AT order (see Table 224) with vendor-specific values returned

after TCG defined values.

NOTE MAX_AC_CAPABILITIES = MAX_CAP_DATA / sizeof(TPMS_AC_OUTPUT)

Table 227 — Definition of TPML_AC_CAPABILITIES Structure <OUT>

Parameter Type Description

count UINT32 number of values in the
acCapabilities list; may be 0

acCapabilities[count] {:MAX_AC_CAPABILITIES} TPMS_AC_OUTPUT a list of AC values

TCG

Trusted Platform Module Library

Part 3: Commands

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Page ii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

CONTENTS

1 Scope .. 1
2 Terms and Definitions ... 1
3 Symbols and abbreviated terms .. 1
4 Notation ... 2

4.1 Introduction ... 2
4.2 Table Decorations ... 2
4.3 Handle and Parameter Demarcation .. 3
4.4 AuthorizationSize and ParameterSize .. 3
4.5 Return Code Alias ... 4

5 Command Processing ... 4

5.1 Introduction ... 4
5.2 Command Header Validation .. 4
5.3 Mode Checks .. 5
5.4 Handle Area Validation ... 5
5.5 Session Area Validation .. 6
5.6 Authorization Checks .. 7
5.7 Parameter Decryption ... 9
5.8 Parameter Unmarshaling .. 9
5.9 Command Post Processing .. 11

6 Response Values .. 12

6.1 Tag .. 12
6.2 Response Codes .. 12

7 Implementation Dependent ... 15
8 Detailed Actions Assumptions ... 16

8.1 Introduction ... 16
8.2 Pre-processing .. 16
8.3 Post Processing .. 16

9 Start-up .. 17

9.1 Introduction ... 17
9.2 _TPM_Init .. 17
9.3 TPM2_Startup ... 19
9.4 TPM2_Shutdown .. 27

10 Testing ... 31

10.1 Introduction ... 31
10.2 TPM2_SelfTest ... 32
10.3 TPM2_IncrementalSelfTest .. 35
10.4 TPM2_GetTestResult ... 38

11 Session Commands .. 41

11.1 TPM2_StartAuthSession .. 41
11.2 TPM2_PolicyRestart ... 47

12 Object Commands ... 50

12.1 TPM2_Create.. 50

Part 3: Commands Trusted Platform Module Library

Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.2 TPM2_Load .. 56
12.3 TPM2_LoadExternal ... 60
12.4 TPM2_ReadPublic .. 65
12.5 TPM2_ActivateCredential ... 68
12.6 TPM2_MakeCredential ... 72
12.7 TPM2_Unseal ... 75
12.8 TPM2_ObjectChangeAuth .. 78
12.9 TPM2_CreateLoaded ... 81

13 Duplication Commands ... 86

13.1 TPM2_Duplicate ... 86
13.2 TPM2_Rewrap .. 90
13.3 TPM2_Import .. 94

14 Asymmetric Primitives ... 100

14.1 Introduction ... 100
14.2 TPM2_RSA_Encrypt ... 100
14.3 TPM2_RSA_Decrypt .. 104
14.4 TPM2_ECDH_KeyGen ... 108
14.5 TPM2_ECDH_ZGen ... 111
14.6 TPM2_ECC_Parameters .. 114
14.7 TPM2_ZGen_2Phase ... 117

15 Symmetric Primitives ... 121

15.1 Introduction ... 121
15.2 TPM2_EncryptDecrypt .. 123
15.3 TPM2_EncryptDecrypt2 .. 127
15.4 TPM2_Hash .. 130
15.5 TPM2_HMAC .. 133
15.6 TPM2_MAC .. 137

16 Random Number Generator .. 140

16.1 TPM2_GetRandom ... 140
16.2 TPM2_StirRandom ... 143

17 Hash/HMAC/Event Sequences ... 146

17.1 Introduction ... 146
17.2 TPM2_HMAC_Start .. 146
17.3 TPM2_MAC_Start ... 150
17.4 TPM2_HashSequenceStart .. 153
17.5 TPM2_SequenceUpdate .. 156
17.6 TPM2_SequenceComplete ... 160
17.7 TPM2_EventSequenceComplete ... 164

18 Attestation Commands .. 168

18.1 Introduction ... 168
18.2 TPM2_Certify .. 170
18.3 TPM2_CertifyCreation .. 173
18.4 TPM2_Quote... 177
18.5 TPM2_GetSessionAuditDigest ... 180
18.6 TPM2_GetCommandAuditDigest ... 183

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.7 TPM2_GetTime... 187
18.8 TPM2_CertifyX509 ... 189

19 Ephemeral EC Keys .. 197

19.1 Introduction ... 197
19.2 TPM2_Commit .. 198
19.3 TPM2_EC_Ephemeral .. 203

20 Signing and Signature Verification .. 206

20.1 TPM2_VerifySignature .. 206
20.2 TPM2_Sign ... 209

21 Command Audit ... 213

21.1 Introduction ... 213
21.2 TPM2_SetCommandCodeAuditStatus ... 214

22 Integrity Collection (PCR) .. 217

22.1 Introduction ... 217
22.2 TPM2_PCR_Extend ... 218
22.3 TPM2_PCR_Event ... 221
22.4 TPM2_PCR_Read .. 224
22.5 TPM2_PCR_Allocate .. 227
22.6 TPM2_PCR_SetAuthPolicy .. 230
22.7 TPM2_PCR_SetAuthValue ... 233
22.8 TPM2_PCR_Reset ... 236
22.9 _TPM_Hash_Start .. 239
22.10 _TPM_Hash_Data .. 241
22.11 _TPM_Hash_End ... 243

23 Enhanced Authorization (EA) Commands .. 246

23.1 Introduction ... 246
23.2 Signed Authorization Actions .. 247
23.3 TPM2_PolicySigned ... 251
23.4 TPM2_PolicySecret .. 257
23.5 TPM2_PolicyTicket ... 261
23.6 TPM2_PolicyOR ... 265
23.7 TPM2_PolicyPCR ... 268
23.8 TPM2_PolicyLocality .. 273
23.9 TPM2_PolicyNV .. 277
23.10 TPM2_PolicyCounterTimer ... 281
23.11 TPM2_PolicyCommandCode ... 285
23.12 TPM2_PolicyPhysicalPresence .. 288
23.13 TPM2_PolicyCpHash .. 291
23.14 TPM2_PolicyNameHash ... 295
23.15 TPM2_PolicyDuplicationSelect ... 299
23.16 TPM2_PolicyAuthorize ... 303
23.17 TPM2_PolicyAuthValue .. 307
23.18 TPM2_PolicyPassword ... 310
23.19 TPM2_PolicyGetDigest ... 313
23.20 TPM2_PolicyNvWritten ... 316
23.21 TPM2_PolicyTemplate .. 319

Part 3: Commands Trusted Platform Module Library

Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.22 TPM2_PolicyAuthorizeNV .. 323

24 Hierarchy Commands .. 327

24.1 TPM2_CreatePrimary ... 327
24.2 TPM2_HierarchyControl ... 331
24.3 TPM2_SetPrimaryPolicy ... 335
24.4 TPM2_ChangePPS .. 339
24.5 TPM2_ChangeEPS .. 342
24.6 TPM2_Clear .. 345
24.7 TPM2_ClearControl .. 349
24.8 TPM2_HierarchyChangeAuth ... 352

25 Dictionary Attack Functions ... 355

25.1 Introduction ... 355
25.2 TPM2_DictionaryAttackLockReset ... 355
25.3 TPM2_DictionaryAttackParameters.. 358

26 Miscellaneous Management Functions ... 361

26.1 Introduction ... 361
26.2 TPM2_PP_Commands ... 361
26.3 TPM2_SetAlgorithmSet .. 364

27 Field Upgrade .. 367

27.1 Introduction ... 367
27.2 TPM2_FieldUpgradeStart ... 369
27.3 TPM2_FieldUpgradeData ... 372
27.4 TPM2_FirmwareRead ... 375

28 Context Management .. 378

28.1 Introduction ... 378
28.2 TPM2_ContextSave .. 378
28.3 TPM2_ContextLoad .. 383
28.4 TPM2_FlushContext ... 388
28.5 TPM2_EvictControl ... 391

29 Clocks and Timers ... 396

29.1 TPM2_ReadClock ... 396
29.2 TPM2_ClockSet .. 399
29.3 TPM2_ClockRateAdjust .. 402

30 Capability Commands ... 405

30.1 Introduction ... 405
30.2 TPM2_GetCapability ... 405
30.3 TPM2_TestParms ... 413

31 Non-volatile Storage .. 416

31.1 Introduction ... 416
31.2 NV Counters ... 417
31.3 TPM2_NV_DefineSpace ... 418
31.4 TPM2_NV_UndefineSpace ... 424
31.5 TPM2_NV_UndefineSpaceSpecial ... 427
31.6 TPM2_NV_ReadPublic ... 430

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page vii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.7 TPM2_NV_Write ... 433
31.8 TPM2_NV_Increment ... 437
31.9 TPM2_NV_Extend .. 441
31.10 TPM2_NV_SetBits .. 445
31.11 TPM2_NV_WriteLock ... 448
31.12 TPM2_NV_GlobalWriteLock ... 451
31.13 TPM2_NV_Read ... 454
31.14 TPM2_NV_ReadLock ... 457
31.15 TPM2_NV_ChangeAuth ... 460
31.16 TPM2_NV_Certify ... 463

32 Attached Components ... 467

32.1 Introduction ... 467
32.2 TPM2_AC_GetCapability .. 468
32.3 TPM2_AC_Send ... 471
32.4 TPM2_Policy_AC_SendSelect ... 475

33 Authenticated Countdown Timer ... 479

33.1 Introduction ... 479
33.2 TPM2_ACT_SetTimeout ... 479

34 Vendor Specific ... 482

34.1 Introduction ... 482
34.2 TPM2_Vendor_TCG_Test .. 482

Part 3: Commands Trusted Platform Module Library

Page viii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Tables

Table 1 — Command Modifiers and Decoration ... 2

Table 2 — Separators ... 3

Table 3 — Unmarshaling Errors ... 10

Table 4 — Command-Independent Response Codes .. 13

Table 5 — TPM2_Startup Command .. 22

Table 6 — TPM2_Startup Response .. 22

Table 7 — TPM2_Shutdown Command ... 28

Table 8 — TPM2_Shutdown Response .. 28

Table 9 — TPM2_SelfTest Command .. 33

Table 10 — TPM2_SelfTest Response .. 33

Table 11 — TPM2_IncrementalSelfTest Command ... 36

Table 12 — TPM2_IncrementalSelfTest Response ... 36

Table 13 — TPM2_GetTestResult Command .. 39

Table 14 — TPM2_GetTestResult Response... 39

Table 15 — TPM2_StartAuthSession Command ... 43

Table 16 — TPM2_StartAuthSession Response .. 43

Table 17 — TPM2_PolicyRestart Command .. 48

Table 18 — TPM2_PolicyRestart Response .. 48

Table 19 — TPM2_Create Command .. 53

Table 20 — TPM2_Create Response ... 53

Table 21 — TPM2_Load Command ... 57

Table 22 — TPM2_Load Response .. 57

Table 23 — TPM2_LoadExternal Command .. 62

Table 24 — TPM2_LoadExternal Response .. 62

Table 25 — TPM2_ReadPublic Command ... 66

Table 26 — TPM2_ReadPublic Response ... 66

Table 27 — TPM2_ActivateCredential Command .. 69

Table 28 — TPM2_ActivateCredential Response .. 69

Table 29 — TPM2_MakeCredential Command .. 73

Table 30 — TPM2_MakeCredential Response .. 73

Table 31 — TPM2_Unseal Command .. 76

Table 32 — TPM2_Unseal Response .. 76

Table 33 — TPM2_ObjectChangeAuth Command ... 79

Table 34 — TPM2_ObjectChangeAuth Response ... 79

Table 35 — TPM2_CreateLoaded Command .. 82

Table 36 — TPM2_CreateLoaded Response ... 82

Table 37 — TPM2_Duplicate Command .. 87

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page ix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 38 — TPM2_Duplicate Response ... 87

Table 39 — TPM2_Rewrap Command ... 91

Table 40 — TPM2_Rewrap Response ... 91

Table 41 — TPM2_Import Command ... 96

Table 42 — TPM2_Import Response ... 96

Table 43 — Padding Scheme Selection ... 100

Table 44 — Message Size Limits Based on Padding ... 101

Table 45 — TPM2_RSA_Encrypt Command.. 102

Table 46 — TPM2_RSA_Encrypt Response .. 102

Table 47 — TPM2_RSA_Decrypt Command ... 105

Table 48 — TPM2_RSA_Decrypt Response .. 105

Table 49 — TPM2_ECDH_KeyGen Command .. 109

Table 50 — TPM2_ECDH_KeyGen Response .. 109

Table 51 — TPM2_ECDH_ZGen Command .. 112

Table 52 — TPM2_ECDH_ZGen Response .. 112

Table 53 — TPM2_ECC_Parameters Command ... 115

Table 54 — TPM2_ECC_Parameters Response ... 115

Table 55 — TPM2_ZGen_2Phase Command .. 118

Table 56 — TPM2_ZGen_2Phase Response .. 118

Table 57 — Symmetric Chaining Process .. 122

Table 58 — TPM2_EncryptDecrypt Command... 124

Table 59 — TPM2_EncryptDecrypt Response ... 124

Table 60 — TPM2_EncryptDecrypt2 Command... 128

Table 61 — TPM2_EncryptDecrypt2 Response ... 128

Table 62 — TPM2_Hash Command ... 131

Table 63 — TPM2_Hash Response ... 131

Table 64 — TPM2_HMAC Command ... 134

Table 65 — TPM2_HMAC Response ... 134

Table 66 — TPM2_MAC Command ... 138

Table 67 — TPM2_MAC Response .. 138

Table 68 — TPM2_GetRandom Command .. 141

Table 69 — TPM2_GetRandom Response .. 141

Table 70 — TPM2_StirRandom Command .. 144

Table 71 — TPM2_StirRandom Response ... 144

Table 72 — Hash Selection Matrix ... 146

Table 73 — TPM2_HMAC_Start Command ... 147

Table 74 — TPM2_HMAC_Start Response ... 147

Table 75 — Algorithm Selection Matrix ... 150

Table 76 — TPM2_MAC_Start Command .. 151

Part 3: Commands Trusted Platform Module Library

Page x TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 77 — TPM2_MAC_Start Response .. 151

Table 78 — TPM2_HashSequenceStart Command ... 154

Table 79 — TPM2_HashSequenceStart Response ... 154

Table 80 — TPM2_SequenceUpdate Command ... 157

Table 81 — TPM2_SequenceUpdate Response .. 157

Table 82 — TPM2_SequenceComplete Command ... 161

Table 83 — TPM2_SequenceComplete Response .. 161

Table 84 — TPM2_EventSequenceComplete Command .. 165

Table 85 — TPM2_EventSequenceComplete Response ... 165

Table 86 — TPM2_Certify Command ... 171

Table 87 — TPM2_Certify Response ... 171

Table 88 — TPM2_CertifyCreation Command ... 174

Table 89 — TPM2_CertifyCreation Response .. 174

Table 90 — TPM2_Quote Command ... 178

Table 91 — TPM2_Quote Response .. 178

Table 92 — TPM2_GetSessionAuditDigest Command .. 181

Table 93 — TPM2_GetSessionAuditDigest Response .. 181

Table 94 — TPM2_GetCommandAuditDigest Command .. 184

Table 95 — TPM2_GetCommandAuditDigest Response ... 184

Table 96 — TPM2_GetTime Command ... 188

Table 97 — TPM2_GetTime Response .. 188

Table 98 — TPM2_CertifyX509 Command .. 192

Table 99 — TPM2_CertifyX509 Response ... 192

Table 100 — TPM2_Commit Command ... 199

Table 101 — TPM2_Commit Response ... 199

Table 102 — TPM2_EC_Ephemeral Command ... 204

Table 103 — TPM2_EC_Ephemeral Response ... 204

Table 104 — TPM2_VerifySignature Command... 207

Table 105 — TPM2_VerifySignature Response ... 207

Table 106 — TPM2_Sign Command .. 210

Table 107 — TPM2_Sign Response .. 210

Table 108 — TPM2_SetCommandCodeAuditStatus Command .. 215

Table 109 — TPM2_SetCommandCodeAuditStatus Response .. 215

Table 110 — TPM2_PCR_Extend Command .. 219

Table 111 — TPM2_PCR_Extend Response ... 219

Table 112 — TPM2_PCR_Event Command .. 222

Table 113 — TPM2_PCR_Event Response ... 222

Table 114 — TPM2_PCR_Read Command ... 225

Table 115 — TPM2_PCR_Read Response ... 225

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page xi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 116 — TPM2_PCR_Allocate Command ... 228

Table 117 — TPM2_PCR_Allocate Response ... 228

Table 118 — TPM2_PCR_SetAuthPolicy Command ... 231

Table 119 — TPM2_PCR_SetAuthPolicy Response ... 231

Table 120 — TPM2_PCR_SetAuthValue Command ... 234

Table 121 — TPM2_PCR_SetAuthValue Response .. 234

Table 122 — TPM2_PCR_Reset Command .. 237

Table 123 — TPM2_PCR_Reset Response ... 237

Table 124 — TPM2_PolicySigned Command .. 253

Table 125 — TPM2_PolicySigned Response ... 253

Table 126 — TPM2_PolicySecret Command ... 258

Table 127 — TPM2_PolicySecret Response .. 258

Table 128 — TPM2_PolicyTicket Command .. 262

Table 129 — TPM2_PolicyTicket Response .. 262

Table 130 — TPM2_PolicyOR Command .. 266

Table 131 — TPM2_PolicyOR Response ... 266

Table 132 — TPM2_PolicyPCR Command .. 270

Table 133 — TPM2_PolicyPCR Response .. 270

Table 134 — TPM2_PolicyLocality Command ... 274

Table 135 — TPM2_PolicyLocality Response .. 274

Table 136 — TPM2_PolicyNV Command ... 278

Table 137 — TPM2_PolicyNV Response ... 278

Table 138 — TPM2_PolicyCounterTimer Command ... 282

Table 139 — TPM2_PolicyCounterTimer Response .. 282

Table 140 — TPM2_PolicyCommandCode Command .. 286

Table 141 — TPM2_PolicyCommandCode Response ... 286

Table 142 — TPM2_PolicyPhysicalPresence Command ... 289

Table 143 — TPM2_PolicyPhysicalPresence Response ... 289

Table 144 — TPM2_PolicyCpHash Command... 292

Table 145 — TPM2_PolicyCpHash Response ... 292

Table 146 — TPM2_PolicyNameHash Command.. 296

Table 147 — TPM2_PolicyNameHash Response .. 296

Table 148 — TPM2_PolicyDuplicationSelect Command .. 300

Table 149 — TPM2_PolicyDuplicationSelect Response .. 300

Table 150 — TPM2_PolicyAuthorize Command .. 304

Table 151 — TPM2_PolicyAuthorize Response ... 304

Table 152 — TPM2_PolicyAuthValue Command ... 308

Table 153 — TPM2_PolicyAuthValue Response ... 308

Table 154 — TPM2_PolicyPassword Command .. 311

Part 3: Commands Trusted Platform Module Library

Page xii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 155 — TPM2_PolicyPassword Response .. 311

Table 156 — TPM2_PolicyGetDigest Command.. 314

Table 157 — TPM2_PolicyGetDigest Response .. 314

Table 158 — TPM2_PolicyNvWritten Command .. 317

Table 159 — TPM2_PolicyNvWritten Response .. 317

Table 160 — TPM2_PolicyTemplate Command... 320

Table 161 — TPM2_PolicyTemplate Response ... 320

Table 162 — TPM2_PolicyAuthorizeNV Command ... 324

Table 163 — TPM2_PolicyAuthorizeNV Response .. 324

Table 164 — TPM2_CreatePrimary Command .. 328

Table 165 — TPM2_CreatePrimary Response .. 328

Table 166 — TPM2_HierarchyControl Command .. 332

Table 167 — TPM2_HierarchyControl Response .. 332

Table 168 — TPM2_SetPrimaryPolicy Command .. 336

Table 169 — TPM2_SetPrimaryPolicy Response .. 336

Table 170 — TPM2_ChangePPS Command ... 340

Table 171 — TPM2_ChangePPS Response .. 340

Table 172 — TPM2_ChangeEPS Command ... 343

Table 173 — TPM2_ChangeEPS Response .. 343

Table 174 — TPM2_Clear Command ... 346

Table 175 — TPM2_Clear Response ... 346

Table 176 — TPM2_ClearControl Command ... 350

Table 177 — TPM2_ClearControl Response ... 350

Table 178 — TPM2_HierarchyChangeAuth Command .. 353

Table 179 — TPM2_HierarchyChangeAuth Response .. 353

Table 180 — TPM2_DictionaryAttackLockReset Command .. 356

Table 181 — TPM2_DictionaryAttackLockReset Response .. 356

Table 182 — TPM2_DictionaryAttackParameters Command .. 359

Table 183 — TPM2_DictionaryAttackParameters Response ... 359

Table 184 — TPM2_PP_Commands Command .. 362

Table 185 — TPM2_PP_Commands Response .. 362

Table 186 — TPM2_SetAlgorithmSet Command ... 365

Table 187 — TPM2_SetAlgorithmSet Response.. 365

Table 188 — TPM2_FieldUpgradeStart Command .. 370

Table 189 — TPM2_FieldUpgradeStart Response .. 370

Table 190 — TPM2_FieldUpgradeData Command .. 373

Table 191 — TPM2_FieldUpgradeData Response .. 373

Table 192 — TPM2_FirmwareRead Command.. 376

Table 193 — TPM2_FirmwareRead Response .. 376

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page xiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 194 — TPM2_ContextSave Command ... 379

Table 195 — TPM2_ContextSave Response ... 379

Table 196 — TPM2_ContextLoad Command ... 384

Table 197 — TPM2_ContextLoad Response ... 384

Table 198 — TPM2_FlushContext Command .. 389

Table 199 — TPM2_FlushContext Response .. 389

Table 200 — TPM2_EvictControl Command .. 393

Table 201 — TPM2_EvictControl Response .. 393

Table 202 — TPM2_ReadClock Command .. 397

Table 203 — TPM2_ReadClock Response .. 397

Table 204 — TPM2_ClockSet Command ... 400

Table 205 — TPM2_ClockSet Response ... 400

Table 206 — TPM2_ClockRateAdjust Command... 403

Table 207 — TPM2_ClockRateAdjust Response ... 403

Table 208 — TPM2_GetCapability Command.. 409

Table 209 — TPM2_GetCapability Response .. 409

Table 210 — TPM2_TestParms Command .. 414

Table 211 — TPM2_TestParms Response .. 414

Table 212 — TPM2_NV_DefineSpace Command ... 420

Table 213 — TPM2_NV_DefineSpace Response .. 420

Table 214 — TPM2_NV_UndefineSpace Command ... 425

Table 215 — TPM2_NV_UndefineSpace Response .. 425

Table 216 — TPM2_NV_UndefineSpaceSpecial Command .. 428

Table 217 — TPM2_NV_UndefineSpaceSpecial Response .. 428

Table 218 — TPM2_NV_ReadPublic Command .. 431

Table 219 — TPM2_NV_ReadPublic Response .. 431

Table 220 — TPM2_NV_Write Command .. 434

Table 221 — TPM2_NV_Write Response .. 434

Table 222 — TPM2_NV_Increment Command .. 438

Table 223 — TPM2_NV_Increment Response... 438

Table 224 — TPM2_NV_Extend Command ... 442

Table 225 — TPM2_NV_Extend Response ... 442

Table 226 — TPM2_NV_SetBits Command ... 446

Table 227 — TPM2_NV_SetBits Response ... 446

Table 228 — TPM2_NV_WriteLock Command .. 449

Table 229 — TPM2_NV_WriteLock Response... 449

Table 230 — TPM2_NV_GlobalWriteLock Command .. 452

Table 231 — TPM2_NV_GlobalWriteLock Response .. 452

Table 232 — TPM2_NV_Read Command .. 455

Part 3: Commands Trusted Platform Module Library

Page xiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 233 — TPM2_NV_Read Response .. 455

Table 234 — TPM2_NV_ReadLock Command .. 458

Table 235 — TPM2_NV_ReadLock Response .. 458

Table 236 — TPM2_NV_ChangeAuth Command .. 461

Table 237 — TPM2_NV_ChangeAuth Response .. 461

Table 238 — TPM2_NV_Certify Command .. 464

Table 239 — TPM2_NV_Certify Response .. 464

Table 240 — TPM2_AC_GetCapability Command .. 469

Table 241 — TPM2_AC_GetCapability Response ... 469

Table 242 — TPM2_AC_Send Command .. 472

Table 243 — TPM2_AC_Send Response .. 472

Table 244 — TPM2_Policy_AC_SendSelect Command .. 476

Table 245 — TPM2_Policy_AC_SendSelect Response .. 476

Table 246 — TPM2_ACT_SetTimeout Command ... 480

Table 247 — TPM2_ACT_SetTimeout Response .. 480

Table 248 — TPM2_Vendor_TCG_Test Command ... 483

Table 249 — TPM2_Vendor_TCG_Test Response ... 483

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library
Part 3: Commands

1 Scope

This TPM 2.0 Part 3 of the Trusted Platform Module Library specification contains the definitions of the

TPM commands. These commands make use of the constants, flags, structures, and union definitions

defined in TPM 2.0 Part 2.

The detailed description of the operation of the commands is written in the C language with extensive

comments. The behavior of the C code in this TPM 2.0 Part 3 is normative but does not fully describe the

behavior of a TPM. The combination of this TPM 2.0 Part 3 and TPM 2.0 Part 4 is sufficient to fully

describe the required behavior of a TPM.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,

firmware update), it is not possible to provide a compliant implementation. In those cases, any

implementation provided by the vendor that meets the general description of the function provided in TPM

2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this

specification require that a TPM meet any particular level of conformance.

2 Terms and Definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

Part 3: Commands Trusted Platform Module Library

Page 2 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4 Notation

4.1 Introduction

For the purposes of this document, the notation given in TPM 2.0 Part 1 applies.

Command and response tables use various decorations to indicate the fields of the command and the

allowed types. These decorations are described in this clause.

4.2 Table Decorations

The symbols and terms in the Notation column of Table 1 are used in the tables for the command

schematics. These values indicate various qualifiers for the parameters or descriptions with which they

are associated.

Table 1 — Command Modifiers and Decoration

Notation Meaning

+ A Type decoration – When appended to a value in the Type column of a command, this symbol
indicates that the parameter is allowed to use the “null” value of the data type (see in TPM 2.0
Part 2, Conditional Types). The null value is usually TPM_RH_NULL for a handle or
TPM_ALG_NULL for an algorithm selector.

NOTE This decoration is not appended to response parameters.

@ A Name decoration – When this symbol precedes a handle parameter in the “Name” column, it
indicates that an authorization session is required for use of the entity associated with the handle.
If a handle does not have this symbol, then an authorization session is not allowed.

+PP A Description modifier – This modifier may follow TPM_RH_PLATFORM in the “Description”
column to indicate that Physical Presence is required when platformAuth/platformPolicy is
provided.

+{PP} A Description modifier – This modifier may follow TPM_RH_PLATFORM to indicate that Physical
Presence may be required when platformAuth/platformPolicy is provided. The commands with this
notation may be in the setList or clearList of TPM2_PP_Commands().

{NV} A Description modifier – This modifier may follow the commandCode in the “Description” column
to indicate that the command may result in an update of NV memory and be subject to rate
throttling by the TPM. If the command code does not have this notation, then a write to NV
memory does not occur as part of the command actions.

NOTE Any command that uses authorization may cause a write to NV if there is an authorization
failure. A TPM may use the occasion of command execution to update the NV copy of clock.

{F} A Description modifier – This modifier indicates that the “flushed” attribute will be SET in the
TPMA_CC for the command. The modifier may follow the commandCode in the “Description”
column to indicate that any transient handle context used by the command will be flushed from the
TPM when the command completes. This may be combined with the {NV} modifier but not with the
{E} modifier.

EXAMPLE 1 {NV F}

EXAMPLE 2 TPM2_SequenceComplete() will flush the context associated with the sequenceHandle.

{E} A Description modifier – This modifier indicates that the “extensive” attribute will be SET in the
TPMA_CC for the command. This modifier may follow the commandCode in the “Description”
column to indicate that the command may flush many objects and re-enumeration of the loaded
context likely will be required. This may be combined with the {NV} modifier but not with the {F}
modifier.

EXAMPLE 1 {NV E}

EXAMPLE 2 TPM2_Clear() will flush all contexts associated with the Storage hierarchy and the
Endorsement hierarchy.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Notation Meaning

Auth Index: A Description modifier – When a handle has a “@” decoration, the “Description” column will
contain an “Auth Index:” entry for the handle. This entry indicates the number of the authorization
session. The authorization sessions associated with handles will occur in the session area in the
order of the handles with the “@” modifier. Sessions used only for encryption/decryption or only for
audit will follow the handles used for authorization.

Auth Role: A Description modifier – This will be in the “Description” column of a handle with the “@”
decoration. It may have a value of USER, ADMIN or DUP.

If the handle has the Auth Role of USER and the handle is an Object, the type of authorization is
determined by the setting of userWithAuth in the Object's attributes. If the handle is
TPM_RH_OWNER, TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if
userWithAuth is SET. If the handle references an NV Index, then the allowed authorizations are
determined by the settings of the attributes of the NV Index as described in TPM 2.0 Part 2,
"TPMA_NV (NV Index Attributes)."

If the Auth Role is ADMIN and the handle is an Object, the type of authorization is determined by
the setting of adminWithPolicy in the Object's attributes. If the handle is TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if adminWithPolicy is SET.
If the handle is an NV index, operation is as if adminWithPolicy is SET (see 5.6 e)2)).

If the DUP role is selected, authorization may only be with a policy session (DUP role only applies
to Objects).

When either ADMIN or DUP role is selected, a policy command that selects the command being
authorized is required to be part of the policy.

EXAMPLE TPM2_Certify requires the ADMIN role for the first handle (objectHandle). The policy
authorization for objectHandle is required to contain
TPM2_PolicyCommandCode(commandCode == TPM_CC_Certify). This sets the state of the
policy so that it can be used for ADMIN role authorization in TPM2_Certify().

4.3 Handle and Parameter Demarcation

The demarcations between the header, handle, and parameter parts are indicated by:

Table 2 — Separators

 Separator Meaning

 the values immediately following are in the handle area

 the values immediately following are in the parameter area

4.4 AuthorizationSize and ParameterSize

Authorization sessions are not shown in the command or response schematics. When the tag of a

command or response is TPM_ST_SESSIONS, then a 32-bit value will be present in the

command/response buffer to indicate the size of the authorization field or the parameter field. This value

shall immediately follow the handle area (which may contain no handles). For a command, this value

(authorizationSize) indicates the size of the Authorization Area and shall have a value of 9 or more. For a

response, this value (parameterSize) indicates the size of the parameter area and may have a value of

zero.

If the authorizationSize field is present in the command, parameterSize will be present in the response,

but only if the responseCode is TPM_RC_SUCCESS.

When authorization is required to use the TPM entity associated with a handle, then at least one session

will be present. To indicate this, the command tag Description field contains TPM_ST_SESSIONS.

Addional sessions for audit, encrypt, and decrypt may be present.

Part 3: Commands Trusted Platform Module Library

Page 4 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When the command tag Description field contains TPM_ST_NO_SESSIONS, then no sessions are

allowed and the authorizationSize field is not present.

When a command allows use of sessions when not required, the command tag Description field will

indicate the types of sessions that may be used with the command.

4.5 Return Code Alias

For the RC_FMT1 return codes that may add a parameter, handle, or session number, the prefix

TPM_RCS_ is an alias for TPM_RC_.

TPM_RC_n is added, where n is the parameter, handle, or session number. In addition, TPM_RC_H is

added for handle, TPM_RC_P for parameter, and TPM_RC_S for session errors.

NOTE TPM_RCS_ is a programming convention. Programmers should only add numbers to
TPM_RCS_ return codes, never TPM_RC_ return codes. Only return codes that can have a
number added have the TPM_RCS_ alias defined. Attempting to use a TPM_RCS_ return code
that does not have the TPM_RCS_ alias will cause a compiler error.

EXAMPLE 1 Since TPM_RC_VALUE can have a number added, TPM_RCS_VALUE is defined. A
program can use the construct "TPM_RCS_VALUE + number". Since TPM_RC_SIGNATURE
cannot have a number added, TPM_RCS_SIGNATURE is not defined. A program using the
construct "TPM_RCS_SIGNATURE + number" will not compile, alerting the programmer that the
construct is incorrect.

By convention, the number to be added is of the form RC_CommandName_ParameterName where

CommmandName is the name of the command with the TPM2_ prefix removed. The parameter name

alone is insufficient because the same parameter name could be in a different position in different

commands.

EXAMPLE 2 TPM2_HMAC_Start with parameters that result in TPM_ALG_NULL as the hash algorithm will
returns TPM_RC_VALUE plus the parameter number. Since hashAlg is the second parameter,
This code results:

#define RC_HMAC_Start_hashAlg (TPM_RC_P + TPM_RC_2)

return TPM_RCS_VALUE + RC_HMAC_Start_hashAlg;

5 Command Processing

5.1 Introduction

This clause defines the command validations that are required of any implementation and the response

code returned if the indicated check fails. Unless stated otherwise, the order of the checks is not

normative and different TPM may give different responses when a command has multiple errors.

In the description below, some statements that describe a check may be followed by a response code in

parentheses. This is the normative response code should the indicated check fail. A normative response

code may also be included in the statement.

5.2 Command Header Validation

Before a TPM may begin the actions associated with a command, a set of command format and

consistency checks shall be performed. These checks are listed below and should be performed in the

indicated order.

 The TPM shall successfully unmarshal a TPMI_ST_COMMAND_TAG and verify that it is either

TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS (TPM_RC_BAD_TAG).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 The TPM shall successfully unmarshal a UINT32 as the commandSize. If the TPM has an interface

buffer that is loaded by some hardware process, the number of octets in the input buffer for the

command reported by the hardware process shall exactly match the value in commandSize

(TPM_RC_COMMAND_SIZE).

NOTE A TPM may have direct access to system memory and unmarshal directly from that memory.

 The TPM shall successfully unmarshal a TPM_CC and verify that the command is implemented

(TPM_RC_COMMAND_CODE).

5.3 Mode Checks

The following mode checks shall be performed in the order listed:

 If the TPM is in Failure mode, then the commandCode is TPM_CC_GetTestResult or

TPM_CC_GetCapability (TPM_RC_FAILURE) and the command tag is TPM_ST_NO_SESSIONS

(TPM_RC_FAILURE).

NOTE 1 In Failure mode, the TPM has no cryptographic capability and processing of sessions is not
supported.

 The TPM is in Field Upgrade mode (FUM), the commandCode is TPM_CC_FieldUpgradeData

(TPM_RC_UPGRADE).

 If the TPM has not been initialized (TPM2_Startup()), then the commandCode is TPM_CC_Startup

(TPM_RC_INITIALIZE).

NOTE 2 The TPM may enter Failure mode during _TPM_Init processing, before TPM2_Startup(). Since
the platform firmware cannot know that the TPM is in Failure mode without accessing it, and
since the first command is required to be TPM2_Startup(), the expected sequence will be that
platform firmware (the CRTM) will issue TPM2_Startup() and receive TPM_RC_FAILURE
indicating that the TPM is in Failure mode.

There may be failures where a TPM cannot record that it received TPM2_Startup(). In those
cases, a TPM in failure mode may process TPM2_GetTestResult(), TPM2_GetCapability(), or
the field upgrade commands. As a side effect, that TPM may process TPM2_GetTestResult(),
TPM2_GetCapability() or the field upgrade commands before TPM2_Startup().

This is a corner case exception to the rule that TPM2_Startup() must be the first command.

The mode checks may be performed before or after the command header validation.

5.4 Handle Area Validation

After successfully unmarshaling and validating the command header, the TPM shall perform the following

checks on the handles and sessions. These checks may be performed in any order.

NOTE 1 A TPM is required to perform the handle area validation before the authorization checks because an
authorization cannot be performed unless the authorization values and attributes for the referenced
entity are known by the TPM. For them to be known, the referenced entity must be in the TPM and
accessible.

 The TPM shall successfully unmarshal the number of handles required by the command and validate

that the value of the handle is consistent with the command syntax. If not, the TPM shall return

TPM_RC_VALUE.

NOTE 2 The TPM may unmarshal a handle and validate that it references an entity on the TPM before
unmarshaling a subsequent handle.

NOTE 3 If the submitted command contains fewer handles than required by the syntax of the command,
the TPM may continue to read into the next area and attempt to interpret the data as a handle.

Part 3: Commands Trusted Platform Module Library

Page 6 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 For all handles in the handle area of the command, the TPM will validate that the referenced entity is

present in the TPM.

1) If the handle references a transient object, the handle shall reference a loaded object

(TPM_RC_REFERENCE_H0 + N where N is the number of the handle in the command).

NOTE 4 If the hierarchy for a transient object is disabled, then the transient objects will be flushed
so this check will fail.

2) If the handle references a persistent object, then

i) the hierarchy associated with the object (platform or storage, based on the handle value) is

enabled (TPM_RC_HANDLE);

ii) the handle shall reference a persistent object that is currently in TPM non-volatile memory

(TPM_RC_HANDLE);

iii) if the handle references a persistent object that is associated with the endorsement hierarchy,

that the endorsement hierarchy is not disabled (TPM_RC_HANDLE); and

NOTE 5 The reference implementation keeps an internal attribute, passed down from a primary
key to its descendents, indicating the object's hierarchy.

iv) if the TPM implementation moves a persistent object to RAM for command processing then

sufficient RAM space is available (TPM_RC_OBJECT_MEMORY).

3) If the handle references an NV Index, then

i) an Index exists that corresponds to the handle (TPM_RC_HANDLE); and

ii) the hierarchy associated with the existing NV Index is not disabled (TPM_RC_HANDLE).

iii) If the command requires write access to the index data then TPMA_NV_WRITELOCKED is

not SET (TPM_RC_NV_LOCKED)

iv) If the command requires read access to the index data then TPMA_NV_READLOCKED is

not SET (TPM_RC_NV_LOCKED)

4) If the handle references a session, then the session context shall be present in TPM memory

(TPM_RC_REFERENCE_H0 + N).

5) If the handle references a primary seed for a hierarchy (TPM_RH_ENDORSEMENT,

TPM_RH_OWNER, or TPM_RH_PLATFORM) then the enable for the hierarchy is SET

(TPM_RC_HIERARCHY).

6) If the handle references a PCR, then the value is within the range of PCR supported by the TPM

(TPM_RC_VALUE)

NOTE 6 In the reference implementation, this TPM_RC_VALUE is returned by the unmarshaling
code for a TPMI_DH_PCR.

5.5 Session Area Validation

 If the tag is TPM_ST_SESSIONS and the command requires TPM_ST_NO_SESSIONS, the TPM will

return TPM_RC_AUTH_CONTEXT.

 If the tag is TPM_ST_NO_SESSIONS and the command requires TPM_ST_SESSIONS, the TPM will

return TPM_RC_AUTH_MISSING.

 If the tag is TPM_ST_SESSIONS, the TPM will attempt to unmarshal an authorizationSize and return

TPM_RC_AUTHSIZE if the value is not within an acceptable range.

1) The minimum value is (sizeof(TPM_HANDLE) + sizeof(UINT16) + sizeof(TPMA_SESSION) +

sizeof(UINT16)).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2) The maximum value of authorizationSize is equal to commandSize – (sizeof(TPM_ST) +

sizeof(UINT32) + sizeof(TPM_CC) + (N * sizeof(TPM_HANDLE)) + sizeof(UINT32)) where N is

the number of handles associated with the commandCode and may be zero.

NOTE 1 (sizeof(TPM_ST) + sizeof(UINT32) + sizeof(TPM_CC)) is the size of a command header.
The last UINT32 contains the authorizationSize octets, which are not counted as being in
the authorization session area.

 The TPM will unmarshal the authorization sessions and perform the following validations:

1) If the session handle is not a handle for an HMAC session, a handle for a policy session, or,

TPM_RS_PW then the TPM shall return TPM_RC_HANDLE.

2) If the session is not loaded, the TPM will return the warning TPM_RC_REFERENCE_S0 + N

where N is the number of the session. The first session is session zero, N = 0.

NOTE 2 If the HMAC and policy session contexts use the same memory, the type of the context
must match the type of the handle.

3) If the maximum allowed number of sessions have been unmarshaled and fewer octets than

indicated in authorizationSize were unmarshaled (that is, authorizationSize is too large), the TPM

shall return TPM_RC_AUTHSIZE.

4) The consistency of the authorization session attributes is checked.

i) Only one session is allowed for:

(a) session auditing (TPM_RC_ATTRIBUTES) – this session may be used for encrypt or

decrypt but may not be a session that is also used for authorization;

(b) decrypting a command parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions, or the audit session, or a session may be added for the single

purpose of decrypting a command parameter, as long as the total number of sessions

does not exceed three; and

(c) encrypting a response parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions, or the audit session if present, ora session may be added for the

single purpose of encrypting a response parameter, as long as the total number of

sessions does not exceed three.

NOTE 3 A session used for decrypting a command parameter may also be used for
encrypting a response parameter.

ii) If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must

be SET. (TPM_RC_ATTRIBUTES).

5) An authorization session is present for each of the handles with the “@” decoration

(TPM_RC_AUTH_MISSING).

5.6 Authorization Checks

After unmarshaling and validating the handles and the consistency of the authorization sessions, the

authorizations shall be checked. Authorization checks only apply to handles if the handle in the command

schematic has the “@” decoration. Authorization checks must be performed in this order.

 The public and sensitive portions of the object shall be present on the TPM

(TPM_RC_AUTH_UNAVAILABLE).

 If the associated handle is TPM_RH_PLATFORM, and the command requires confirmation with

physical presence, then physical presence is asserted (TPM_RC_PP).

 If the object or NV Index is subject to DA protection, and the authorization is with an HMAC or

password, then the TPM is not in lockout (TPM_RC_LOCKOUT).

Part 3: Commands Trusted Platform Module Library

Page 8 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 1 An object is subject to DA protection if its noDA attribute is CLEAR. An NV Index is subject to
DA protection if its TPMA_NV_NO_DA attribute is CLEAR.

NOTE 2 An HMAC or password is required in a policy session when the policy contains
TPM2_PolicyAuthValue() or TPM2_PolicyPassword().

 If the command requires a handle to have DUP role authorization, then the associated authorization

session is a policy session (TPM_RC_AUTH_TYPE).

 If the command requires a handle to have ADMIN role authorization:

1) If the entity being authorized is an object and its adminWithPolicy attribute is SET, or a hierarchy,

then the authorization session is a policy session (TPM_RC_AUTH_TYPE).

NOTE 3 If adminWithPolicy is CLEAR, then any type of authorization session is allowed.

2) If the entity being authorized is an NV Index, then the associated authorization session is a policy

session.

NOTE 4 The only commands that are currently defined that require use of ADMIN role authorization
are commands that operate on objects and NV Indices.

 If the command requires a handle to have USER role authorization:

1) If the entity being authorized is an object and its userWithAuth attribute is CLEAR, then the

associated authorization session is a policy session (TPM_RC_POLICY_FAIL).

NOTE 5 There is no check for a hierarchy, because a hierarchy operates as if use rWithAuth is SET.

2) If the entity being authorized is an NV Index;

i) if the authorization session is a policy session;

(a) the TPMA_NV_POLICYWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_POLICYREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE);

ii) if the authorization is an HMAC session or a password;

(a) the TPMA_NV_AUTHWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_AUTHREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE).

 If the authorization is provided by a policy session, then:

1) if policySession→timeOut has been set, the session shall not have expired

(TPM_RC_EXPIRED);

2) if policySession→cpHash has been set, it shall match the cpHash of the command

(TPM_RC_POLICY_FAIL);

3) if policySession→commandCode has been set, then commandCode of the command shall match

(TPM_RC_POLICY_CC);

4) policySession→policyDigest shall match the authPolicy associated with the handle

(TPM_RC_POLICY_FAIL);

5) if policySession→pcrUpdateCounter has been set, then it shall match the value of

pcrUpdateCounter (TPM_RC_PCR_CHANGED);

6) if policySession→commandLocality has been set, it shall match the locality of the command

(TPM_RC_LOCALITY),

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7) if policySession→cpHash contains a template, and the command is TPM2_Create(),

TPM2_CreatePrimary(), or TPM2_CreateLoaded(), then the inPublic parmeter matches the

contents of policySession→cpHash; and

8) if the policy requires that an authValue be provided in order to satisfy the policy, then

session.hmac is not an Empty Buffer.

 If the authorization uses an HMAC, then the HMAC is properly constructed using the authValue

associated with the handle and/or the session secret (TPM_RC_AUTH_FAIL or

TPM_RC_BAD_AUTH).

NOTE 6 A policy session may require proof of knowledge of the authValue of the object being
authorized.

 If the authorization uses a password, then the password matches the authValue associated with the

handle (TPM_RC_AUTH_FAIL or TPM_RC_BAD_AUTH).

If the TPM returns an error other than TPM_RC_AUTH_FAIL then the TPM shall not alter any TPM state.

If the TPM return TPM_RC_AUTH_FAIL, then the TPM shall not alter any TPM state other than

lockoutCount.

NOTE 7 The TPM may decrease failedTries regardless of any other processing performed by the TPM. That
is, the TPM may exit Lockout mode, regardless of the return code.

5.7 Parameter Decryption

If an authorization session has the TPMA_SESSION.decrypt attribute SET, and the command does not

allow a command parameter to be encrypted, then the TPM will return TPM_RC_ATTRIBUTES.

Otherwise, the TPM will decrypt the parameter using the values associated with the session before

parsing parameters.

NOTE The size of the parameter to be encrypted can be zero.

5.8 Parameter Unmarshaling

 Introduction

The detailed actions for each command assume that the input parameters of the command have been

unmarshaled into a command-specific structure with the structure defined by the command schematic.

Additionally, a response-specific output structure is assumed which will receive the values produced by

the detailed actions.

NOTE An implementation is not required to process parameters in this manner or to separate the
parameter parsing from the command actions. This method was chosen for the specification so that
the normative behavior described by the detailed actions would be clear and une ncumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the

parameters for use by the command-specific action code. No data movement need take place but it is

required that the TPM validate that the parameters meet the requirements of the expected data type as

defined in TPM 2.0 Part 2.

Part 3: Commands Trusted Platform Module Library

Page 10 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Unmarshaling Errors

When an error is encountered while unmarshaling a command parameter, an error response code is

returned and no command processing occurs. A table defining a data type may have response codes

embedded in the table to indicate the error returned when the input value does not match the parameters

of the table.

NOTE In the reference implementation, a parameter number is added to the response code so that the
offending parameter can be isolated. This is optional.

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 3.

Table 3 — Unmarshaling Errors

Response Code Meaning

TPM_RC_ASYMMETRIC a parameter that should be an asymmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_BAD_TAG a parameter that should be a command tag selection has a value that is not
supported by the TPM

TPM_RC_COMMAND_CODE a parameter that should be a command code does not have a value that is
supported by the TPM

TPM_RC_HASH a parameter that should be a hash algorithm selection does not have a value that
is supported by the TPM

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_KDF a parameter that should be a key derivation scheme (KDF) selection does not
have a value that is supported by the TPM

TPM_RC_KEY_SIZE a parameter that is a key size has a value that is not supported by the TPM

TPM_RC_MODE a parameter that should be a symmetric encryption mode selection does not have
a value that is supported by the TPM

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SCHEME a parameter that should be signing or encryption scheme selection does not have
a value that is supported by the TPM

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_SYMMETRIC a parameter that should be a symmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_TAG a parameter that should be a structure tag has a value that is not supported by
the TPM

TPM_RC_TYPE The type parameter of a TPMT_PUBLIC or TPMT_SENSITIVE has a value that is
not supported by the TPM

TPM_RC_VALUE a parameter does not have one of its allowed values

In some commands, a parameter may not be used because of various options of that command.

However, the unmarshaling code is required to validate that all parameters have values that are allowed

by the TPM 2.0 Part 2 definition of the parameter type even if that parameter is not used in the command

actions.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.9 Command Post Processing

When the code that implements the detailed actions of the command completes, it returns a response

code. If that code is not TPM_RC_SUCCESS, the post processing code will not update any session or

audit data and will return a 10-octet response packet.

If the command completes successfully, the tag of the command determines if any authorization sessions

will be in the response. If so, the TPM will encrypt the first parameter of the response if indicated by the

authorization attributes. The TPM will then generate a new nonce value for each session and, if

appropriate, generate an HMAC.

If authorization HMAC computations are performed on the response, the HMAC keys used in the

response will be the same as the HMAC keys used in processing the HMAC in the command.

NOTE 1 This primarily affects authorizations associated with a first write to an NV Index using a bound
session. The computation of the HMAC in the response is performed as if the Name o f the Index did
not change as a consequence of the command actions. The session binding to the NV Index will not
persist to any subsequent command.

NOTE 2 The authorization attributes were validated during the session area validation to ensure that only
one session was used for parameter encryption of the response and that the command allowed
encryption in the response.

NOTE 3 No session nonce value is used for a password authorization but the session data is present.

Additionally, if the command is being audited by Command Audit, the audit digest is updated with the

cpHash of the command and rpHash of the response.

Part 3: Commands Trusted Platform Module Library

Page 12 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6 Response Values

6.1 Tag

When a command completes successfully, the tag parameter in the response shall have the same value

as the tag parameter in the command (TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS). When a

command fails (the responseCode is not TPM_RC_SUCCESS), then the tag parameter in the response

shall be TPM_ST_NO_SESSIONS.

A special case exists when the command tag parameter is not an allowed value (TPM_ST_SESSIONS or

TPM_ST_NO_SESSIONS). For this case, it is assumed that the system software is attempting to send a

command formatted for a TPM 1.2 but the TPM is not capable of executing TPM 1.2 commands. So that

the TPM 1.2 compatible software will have a recognizable response, the TPM sets tag to

TPM_ST_RSP_COMMAND, responseSize to 00 00 00 0A16 and responseCode to TPM_RC_BAD_TAG.

This is the same response as the TPM 1.2 fatal error for TPM_BADTAG.

6.2 Response Codes

The normal response for any command is TPM_RC_SUCCESS. Any other value indicates that the

command did not complete and the state of the TPM is unchanged. An exception to this general rule is

that the logic associated with dictionary attack protection is allowed to be modified when an authorization

failure occurs.

Commands have response codes that are specific to that command, and those response codes are

enumerated in the detailed actions of each command. The codes associated with the unmarshaling of

parameters are documented Table 3. Another set of response code values are not command specific and

indicate a problem that is not specific to the command. That is, if the indicated problem is remedied, the

same command could be resubmitted and may complete normally.

The response codes that are not command specific are listed and described in

Table 4.

The reference code for the command actions may have code that generates specific response codes

associated with a specific check but the listing of responses may not have that response code listed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 4 — Command-Independent Response Codes

Response Code Meaning

TPM_RC_CANCELED

This response code may be returned by a TPM that supports command cancel.
When the TPM receives an indication that the current command should be
cancelled, the TPM may complete the command or return this code. If this code
is returned, then the TPM state is not changed and the same command may be
retried.

TPM_RC_CONTEXT_GAP

This response code can be returned for commands that manage session
contexts. It indicates that the gap between the lowest numbered active session
and the highest numbered session is at the limits of the session tracking logic.
The remedy is to load the session context with the lowest number so that its
tracking number can be updated.

TPM_RC_LOCKOUT
This response indicates that authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in DA lockout mode. The remedy
is to wait or to exeucte TPM2_DictionaryAttackLockoutReset().

TPM_RC_MEMORY

A TPM may use a common pool of memory for objects, sessions, and other
purposes. When the TPM does not have enough memory available to perform
the actions of the command, it may return TPM_RC_MEMORY. This indicates
that the TPM resource manager may flush either sessions or objects in order to
make memory available for the command execution. A TPM may choose to
return TPM_RC_OBJECT_MEMORY or TPM_RC_SESSION_MEMORY if it
needs contexts of a particular type to be flushed.

TPM_RC_NV_RATE

This response code indicates that the TPM is rate-limiting writes to the NV
memory in order to prevent wearout. This response is possible for any command
that explicity writes to NV or commands that incidentally use NV such as a
command that uses authorization session that may need to update the dictionary
attack logic.

TPM_RC_NV_UNAVAILABLE

This response code is similar to TPM_RC_NV_RATE but indicates that access to
NV memory is currently not available and the command is not allowed to proceed
until it is. This would occur in a system where the NV memory used by the TPM
is not exclusive to the TPM and is a shared system resource.

TPM_RC_OBJECT_HANDLES

This response code indicates that the TPM has exhausted its handle space and
no new objects can be loaded unless the TPM is rebooted. This does not occur in
the reference implementation because of the way that object handles are
allocated. However, other implementations are allowed to assign each object a
unique handle each time the object is loaded. A TPM using this implementation
would be able to load 224 objects before the object space is exhausted.

TPM_RC_OBJECT_MEMORY

This response code can be returned by any command that causes the TPM to
need an object 'slot'. The most common case where this might be returned is
when an object is loaded (TPM2_Load, TPM2_CreatePrimary(), or
TPM2_ContextLoad()). However, the TPM implementation is allowed to use
object slots for other reasons. In the reference implementation, the TPM copies a
referenced persistent object into RAM for the duration of the commannd. If all the
slots are previously occupied, the TPM may return this value. A TPM is allowed
to use object slots for other purposes and return this value. The remedy when
this response is returned is for the TPM resource manager to flush a transient
object.

TPM_RC_REFERENCE_Hx

This response code indicates that a handle in the handle area of the command is
not associated with a loaded object. The value of 'x' is in the range 0 to 6 with a
value of 0 indicating the 1st handle and 6 representing the 7th. Upper values are
provided for future use. The TPM resource manager needs to find the correct
object and load it. It may then adjust the handle and retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

Part 3: Commands Trusted Platform Module Library

Page 14 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Response Code Meaning

TPM_RC_REFERENCE_Sx

This response code indicates that a handle in the session area of the command
is not associated with a loaded session. The value of 'x' is in the range 0 to 6 with
a value of 0 indicating the 1st session handle and 6 representing the 7th. Upper
values are provided for future use. The TPM resource manager needs to find the
correct session and load it. It may then retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

TPM_RC_RETRY the TPM was not able to start the command

TPM_RC_SESSION_HANDLES

This response code indicates that the TPM does not have a handle to assign to a
new session. This respose is only returned by TPM2_StartAuthSession(). It is
listed here because the command is not in error and the TPM resource manager
can remedy the situation by flushing a session (TPM2_FlushContext().

TPM_RC_SESSION_MEMORY

This response code can be returned by any command that causes the TPM to
need a session 'slot'. The most common case where this might be returned is
when a session is loaded (TPM2_StartAuthSession() or TPM2_ContextLoad()).
However, the TPM implementation is allowed to use object slots for other
purposes. The remedy when this response is returned is for the TPM resource
manager to flush a transient object.

TPM_RC_SUCCESS

Normal completion for any command. If the responseCode is
TPM_RC_SUCCESS, then the rest of the response has the format indicated in
the response schematic. Otherwise, the response is a 10 octet value indicating
an error.

TPM_RC_TESTING
This response code indicates that the TPM is performing tests and cannot
respond to the request at this time. The command may be retried.

TPM_RC_YIELDED

the TPM has suspended operation on the command; forward progress was made
and the command may be retried.

See TPM 2.0 Part 1, “Multi-tasking.”

NOTE This cannot occur on the reference implementation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7 Implementation Dependent

The actions code for each command makes assumptions about the behavior of various sub-systems.

There are many possible implementations of the subsystems that would achieve equivalent results. The

actions code is not written to anticipate all possible implementations of the sub-systems. Therefore, it is

the responsibility of the implementer to ensure that the necessary changes are made to the actions code

when the sub-system behavior changes.

Part 3: Commands Trusted Platform Module Library

Page 16 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8 Detailed Actions Assumptions

8.1 Introduction

The C code in the Detailed Actions for each command is written with a set of assumptions about the

processing performed before the action code is called and the processing that will be done after the

action code completes.

8.2 Pre-processing

Before calling the command actions code, the following actions have occurred.

• Verification that the handles in the handle area reference entities that are resident on the TPM.

• NOTE If a handle is in the parameter portion of the command, the associated entity does not
have to be loaded, but the handle is required to be the correct type.

• If use of a handle requires authorization, the Password, HMAC, or Policy session associated with the
handle has been verified.

• If a command parameter was encrypted using parameter encryption, it was decrypted before being
unmarshaled.

• If the command uses handles or parameters, the calling stack contains a pointer to a data structure
(in) that holds the unmarshaled values for the handles and command parameters. If the response has
handles or parameters, the calling stack contains a pointer to a data structure (out) to hold the
handles and response parameters generated by the command.

• All parameters of the in structure have been validated and meet the requirements of the parameter
type as defined in TPM 2.0 Part 2.

• Space set aside for the out structure is sufficient to hold the largest out structure that could be
produced by the command

8.3 Post Processing

When the function implementing the command actions completes,

• response parameters that require parameter encryption will be encrypted after the command actions
complete;

• audit and session contexts will be updated if the command response is TPM_RC_SUCCESS; and

• the command header and command response parameters will be marshaled to the response buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9 Start-up

9.1 Introduction

This clause contains the commands used to manage the startup and restart state of a TPM.

9.2 _TPM_Init

 General Description

_TPM_Init initializes a TPM.

Initialization actions include testing code required to execute the next expected command. If the TPM is in

FUM, the next expected command is TPM2_FieldUpgradeData(); otherwise, the next expected command

is TPM2_Startup().

NOTE 1 If the TPM performs self-tests after receiving _TPM_Init() and the TPM enters Failure mode before
receiving TPM2_Startup() or TPM2_FieldUpgradeData(), then the TPM may be able to accept
TPM2_GetTestResult() or TPM2_GetCapability().

The means of signaling _TPM_Init shall be defined in the platform-specific specifications that define the

physical interface to the TPM. The platform shall send this indication whenever the platform starts its boot

process and only when the platform starts its boot process.

There shall be no software method of generating this indication that does not also reset the platform and

begin execution of the CRTM.

NOTE 2 In the reference implementation, this signal causes an internal flag (s_initialized) to be CLEAR.
While this flag is CLEAR, the TPM will only accept the next expected command described above.

Part 3: Commands Trusted Platform Module Library

Page 18 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "_TPM_Init_fp.h"

3 // This function is used to process a _TPM_Init indication.

4 LIB_EXPORT void

5 _TPM_Init(

6 void

7)

8 {

9 g_powerWasLost = g_powerWasLost | _plat__WasPowerLost();

10

11 #if SIMULATION && DEBUG

12 // If power was lost and this was a simulation, put canary in RAM used by NV

13 // so that uninitialized memory can be detected more easily

14 if(g_powerWasLost)

15 {

16 memset(&gc, 0xbb, sizeof(gc));

17 memset(&gr, 0xbb, sizeof(gr));

18 memset(&gp, 0xbb, sizeof(gp));

19 memset(&go, 0xbb, sizeof(go));

20 }

21 #endif

22

23 #if SIMULATION

24 // Clear the flag that forces failure on self-test

25 g_forceFailureMode = FALSE;

26 #endif

27

28 // Disable the tick processing

29 _plat__ACT_EnableTicks(FALSE);

30

31 // Set initialization state

32 TPMInit();

33

34 // Set g_DRTMHandle as unassigned

35 g_DRTMHandle = TPM_RH_UNASSIGNED;

36

37 // No H-CRTM, yet.

38 g_DrtmPreStartup = FALSE;

39

40 // Initialize the NvEnvironment.

41 g_nvOk = NvPowerOn();

42

43 // Initialize cryptographic functions

44 g_inFailureMode = (CryptInit() == FALSE);

45 if(!g_inFailureMode)

46 {

47 // Load the persistent data

48 NvReadPersistent();

49

50 // Load the orderly data (clock and DRBG state).

51 // If this is not done here, things break

52 NvRead(&go, NV_ORDERLY_DATA, sizeof(go));

53

54 // Start clock. Need to do this after NV has been restored.

55 TimePowerOn();

56 }

57 return;

58 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3 TPM2_Startup

 General Description

TPM2_Startup() is always preceded by _TPM_Init, which is the physical indication that TPM initialization

is necessary because of a system-wide reset. TPM2_Startup() is only valid after _TPM_Init. Additional

TPM2_Startup() commands are not allowed after it has completed successfully. If a TPM requires

TPM2_Startup() and another command is received, or if the TPM receives TPM2_Startup() when it is not

required, the TPM shall return TPM_RC_INITIALIZE.

NOTE 1 See 9.2.1 for other command options for a TPM supporting field upgrade mode.

NOTE 2 _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are not commands and a platform -
specific specification may allow these indications between _TPM_Init and TPM2_Startup().

If in Failure mode, the TPM shall accept TPM2_GetTestResult() and TPM2_GetCapability() even if

TPM2_Startup() is not completed successfully or processed at all.

A platform-specific specification may restrict the localities at which TPM2_Startup() may be received.

A Shutdown/Startup sequence determines the way in which the TPM will operate in response to

TPM2_Startup(). The three sequences are:

1) TPM Reset – This is a Startup(CLEAR) preceded by either Shutdown(CLEAR) or no
TPM2_Shutdown(). On TPM Reset, all variables go back to their default initialization state.

NOTE 3 Only those values that are specified as having a default initialization state are changed by TPM
Reset. Persistent values that have no default initialization state are not changed by this
command. Values such as seeds have no default initialization state and only change due to
specific commands.

2) TPM Restart – This is a Startup(CLEAR) preceded by Shutdown(STATE). This preserves much of the
previous state of the TPM except that PCR and the controls associated with the Platform hierarchy
are all returned to their default initialization state;

3) TPM Resume – This is a Startup(STATE) preceded by Shutdown(STATE). This preserves the
previous state of the TPM including the static Root of Trust for Measurement (S-RTM) PCR and the
platform controls other than the phEnable.

If a TPM receives Startup(STATE) and that was not preceded by Shutdown(STATE), the TPM shall return

TPM_RC_VALUE.

If, during TPM Restart or TPM Resume, the TPM fails to restore the state saved at the last

Shutdown(STATE), the TPM shall enter Failure Mode and return TPM_RC_FAILURE.

On any TPM2_Startup(),

• phEnable shall be SET;

• all transient contexts (objects, sessions, and sequences) shall be flushed from TPM memory;

NOTE 4 See Part 1 Time for a description of the TPMS_TIME_INFO. time behaviour.

• use of lockoutAuth shall be enabled if lockoutRecovery is zero.

Additional actions are performed based on the Shutdown/Startup sequence.

Part 3: Commands Trusted Platform Module Library

Page 20 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

On TPM Reset:

• platformAuth and platformPolicy shall be set to the Empty Buffer,

• For each NV Index with TPMA_NV_WRITEDEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

• For each NV Index with TPMA_NV_ORDERLY SET, TPMA_NV_WRITTEN shall be CLEAR unless
the type is TPM_NT_COUNTER,

• On a disorderly reset, advance the orderly counters,

• For each NV Index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be CLEAR,

• tracking data for saved session contexts shall be set to its initial value,

• the object context sequence number is reset to zero,

• a new context encryption key shall be generated,

• TPMS_CLOCK_INFO.restartCount shall be reset to zero,

• TPMS_CLOCK_INFO.resetCount shall be incremented,

• the PCR Update Counter shall be clear to zero,

NOTE 5 Because the PCR update counter may be incremented when a PCR is reset, the PCR resets
performed as part of this command can result in the PCR update counter being non -zero at the
end of this command.

• phEnableNV, shEnable and ehEnable shall be SET, and

• PCR in all banks are reset to their default initial conditions as determined by the relevant platform-
specific specification and the H-CRTM state (for exceptions, see TPM 2.0 Part 1, H-CRTM before
TPM2_Startup() and TPM2_Startup without H-CRTM),

• For each ACT the timeout is reset to zero, the signaled attribute is set to CLEAR (if preserveSignaled
is CLEAR), and the authPolicy is set to the Empty Buffer and its hashAlg is set to TPM_ALG_NULL.

NOTE 6 PCR may be initialized any time between _TPM_Init and the end of TPM2_Startup(). PCR that
are preserved by TPM Resume will need to be restored during TPM2_Startup().

NOTE 7 See "Initializing PCR" in TPM 2.0 Part 1 for a description of the default initial conditions for a
PCR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

On TPM Restart:

• TPMS_CLOCK_INFO.restartCount shall be incremented,

• phEnableNV, shEnable and ehEnable shall be SET,

• platformAuth and platformPolicy shall be set to the Empty Buffer,

• For each NV index with TPMA_NV_WRITEDEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

• For each NV index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be CLEAR,
and

• PCR in all banks are reset to their default initial conditions.

• If an H-CRTM Event Sequence is active, extend the PCR designated by the platform-specific
specification.

• For each ACT the timeout is reset to zero, the signaled attribute is set to CLEAR (if preserveSignaled
is CLEAR), and the authPolicy is set to the Empty Buffer and its hashAlg is set to TPM_ALG_NULL.

On TPM Resume:

• the H-CRTM startup method is the same for this TPM2_Startup() as for the previous TPM2_Startup();
(TPM_RC_LOCALITY)

• TPMS_CLOCK_INFO.restartCount shall be incremented; and

• PCR that are specified in a platform-specific specification to be preserved on TPM Resume are
restored to their saved state and other PCR are set to their initial value as determined by a platform-
specific specification. For constraints, see TPM 2.0 Part 1, H-CRTM before TPM2_Startup() and
TPM2_Startup without H-CRTM.

• The ACT timeout, the ACT signaled attribute and the ACT specific authPolicy values are preserved.

Other TPM state may change as required to meet the needs of the implementation.

If the startupType is TPM_SU_STATE and the TPM requires TPM_SU_CLEAR, then the TPM shall return

TPM_RC_VALUE.

NOTE 8 The TPM will require TPM_SU_CLEAR when no shutdown was performed or after
Shutdown(CLEAR).

NOTE 9 If startupType is neither TPM_SU_STATE nor TPM_SU_CLEAR, then the unmarshaling code returns
TPM_RC_VALUE.

Part 3: Commands Trusted Platform Module Library

Page 22 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 5 — TPM2_Startup Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Startup {NV}

TPM_SU startupType TPM_SU_CLEAR or TPM_SU_STATE

Table 6 — TPM2_Startup Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Startup_fp.h"

3 #if CC_Startup // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY a Startup(STATE) does not have the same H-CRTM state as the
previous Startup() or the locality of the startup is not 0 pr 3

TPM_RC_NV_UNINITIALIZED the saved state cannot be recovered and a Startup(CLEAR) is
required.

TPM_RC_VALUE start up type is not compatible with previous shutdown sequence

4 TPM_RC

5 TPM2_Startup(

6 Startup_In *in // IN: input parameter list

7)

8 {

9 STARTUP_TYPE startup;

10 BYTE locality = _plat__LocalityGet();

11 BOOL OK = TRUE;

12 //

13 // The command needs NV update.

14 RETURN_IF_NV_IS_NOT_AVAILABLE;

15

16 // Get the flags for the current startup locality and the H-CRTM.

17 // Rather than generalizing the locality setting, this code takes advantage

18 // of the fact that the PC Client specification only allows Startup()

19 // from locality 0 and 3. To generalize this probably would require a

20 // redo of the NV space and since this is a feature that is hardly ever used

21 // outside of the PC Client, this code just support the PC Client needs.

22

23 // Input Validation

24 // Check that the locality is a supported value

25 if(locality != 0 && locality != 3)

26 return TPM_RC_LOCALITY;

27 // If there was a H-CRTM, then treat the locality as being 3

28 // regardless of what the Startup() was. This is done to preserve the

29 // H-CRTM PCR so that they don't get overwritten with the normal

30 // PCR startup initialization. This basically means that g_StartupLocality3

31 // and g_DrtmPreStartup can't both be SET at the same time.

32 if(g_DrtmPreStartup)

33 locality = 0;

34 g_StartupLocality3 = (locality == 3);

35

36 #if USE_DA_USED

37 // If there was no orderly shutdown, then their might have been a write to

38 // failedTries that didn't get recorded but only if g_daUsed was SET in the

39 // shutdown state

40 g_daUsed = (gp.orderlyState == SU_DA_USED_VALUE);

41 if(g_daUsed)

42 gp.orderlyState = SU_NONE_VALUE;

43 #endif

44

45 g_prevOrderlyState = gp.orderlyState;

46

47 // If there was a proper shutdown, then the startup modifiers are in the

48 // orderlyState. Turn them off in the copy.

49 if(IS_ORDERLY(g_prevOrderlyState))

50 g_prevOrderlyState &= ~(PRE_STARTUP_FLAG | STARTUP_LOCALITY_3);

Part 3: Commands Trusted Platform Module Library

Page 24 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

51 // If this is a Resume,

52 if(in->startupType == TPM_SU_STATE)

53 {

54 // then there must have been a prior TPM2_ShutdownState(STATE)

55 if(g_prevOrderlyState != TPM_SU_STATE)

56 return TPM_RCS_VALUE + RC_Startup_startupType;

57 // and the part of NV used for state save must have been recovered

58 // correctly.

59 // NOTE: if this fails, then the caller will need to do Startup(CLEAR). The

60 // code for Startup(Clear) cannot fail if the NV can't be read correctly

61 // because that would prevent the TPM from ever getting unstuck.

62 if(g_nvOk == FALSE)

63 return TPM_RC_NV_UNINITIALIZED;

64 // For Resume, the H-CRTM has to be the same as the previous boot

65 if(g_DrtmPreStartup != ((gp.orderlyState & PRE_STARTUP_FLAG) != 0))

66 return TPM_RCS_VALUE + RC_Startup_startupType;

67 if(g_StartupLocality3 != ((gp.orderlyState & STARTUP_LOCALITY_3) != 0))

68 return TPM_RC_LOCALITY;

69 }

70 // Clean up the gp state

71 gp.orderlyState = g_prevOrderlyState;

72

73 // Internal Date Update

74 if((gp.orderlyState == TPM_SU_STATE) && (g_nvOk == TRUE))

75 {

76 // Always read the data that is only cleared on a Reset because this is not

77 // a reset

78 NvRead(&gr, NV_STATE_RESET_DATA, sizeof(gr));

79 if(in->startupType == TPM_SU_STATE)

80 {

81 // If this is a startup STATE (a Resume) need to read the data

82 // that is cleared on a startup CLEAR because this is not a Reset

83 // or Restart.

84 NvRead(&gc, NV_STATE_CLEAR_DATA, sizeof(gc));

85 startup = SU_RESUME;

86 }

87 else

88 startup = SU_RESTART;

89 }

90 else

91 // Will do a TPM reset if Shutdown(CLEAR) and Startup(CLEAR) or no shutdown

92 // or there was a failure reading the NV data.

93 startup = SU_RESET;

94 // Startup for cryptographic library. Don't do this until after the orderly

95 // state has been read in from NV.

96 OK = OK && CryptStartup(startup);

97

98 // When the cryptographic library has been started, indicate that a TPM2_Startup

99 // command has been received.

100 OK = OK && TPMRegisterStartup();

101

102 // Read the platform unique value that is used as VENDOR_PERMANENT

103 // authorization value

104 g_platformUniqueDetails.t.size

105 = (UINT16)_plat__GetUnique(1, sizeof(g_platformUniqueDetails.t.buffer),

106 g_platformUniqueDetails.t.buffer);

107

108 // Start up subsystems

109 // Start set the safe flag

110 OK = OK && TimeStartup(startup);

111

112 // Start dictionary attack subsystem

113 OK = OK && DAStartup(startup);

114

115 // Enable hierarchies

116 OK = OK && HierarchyStartup(startup);

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

117

118 // Restore/Initialize PCR

119 OK = OK && PCRStartup(startup, locality);

120

121 // Restore/Initialize command audit information

122 OK = OK && CommandAuditStartup(startup);

123

124 // Restore the ACT

125 OK = OK && ActStartup(startup);

126

127 //// The following code was moved from Time.c where it made no sense

128 if(OK)

129 {

130 switch(startup)

131 {

132 case SU_RESUME:

133 // Resume sequence

134 gr.restartCount++;

135 break;

136 case SU_RESTART:

137 // Hibernate sequence

138 gr.clearCount++;

139 gr.restartCount++;

140 break;

141 default:

142 // Reset object context ID to 0

143 gr.objectContextID = 0;

144 // Reset clearCount to 0

145 gr.clearCount = 0;

146

147 // Reset sequence

148 // Increase resetCount

149 gp.resetCount++;

150

151 // Write resetCount to NV

152 NV_SYNC_PERSISTENT(resetCount);

153

154 gp.totalResetCount++;

155 // We do not expect the total reset counter overflow during the life

156 // time of TPM. if it ever happens, TPM will be put to failure mode

157 // and there is no way to recover it.

158 // The reason that there is no recovery is that we don't increment

159 // the NV totalResetCount when incrementing would make it 0. When the

160 // TPM starts up again, the old value of totalResetCount will be read

161 // and we will get right back to here with the increment failing.

162 if(gp.totalResetCount == 0)

163 FAIL(FATAL_ERROR_INTERNAL);

164

165 // Write total reset counter to NV

166 NV_SYNC_PERSISTENT(totalResetCount);

167

168 // Reset restartCount

169 gr.restartCount = 0;

170

171 break;

172 }

173 }

174 // Initialize session table

175 OK = OK && SessionStartup(startup);

176

177 // Initialize object table

178 OK = OK && ObjectStartup();

179

180 // Initialize index/evict data. This function clears read/write locks

181 // in NV index

182 OK = OK && NvEntityStartup(startup);

Part 3: Commands Trusted Platform Module Library

Page 26 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

183

184 // Initialize the orderly shut down flag for this cycle to SU_NONE_VALUE.

185 gp.orderlyState = SU_NONE_VALUE;

186

187 OK = OK && NV_SYNC_PERSISTENT(orderlyState);

188

189 // This can be reset after the first completion of a TPM2_Startup() after

190 // a power loss. It can probably be reset earlier but this is an OK place.

191 if(OK)

192 g_powerWasLost = FALSE;

193

194 return (OK) ? TPM_RC_SUCCESS : TPM_RC_FAILURE;

195 }

196 #endif // CC_Startup

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.4 TPM2_Shutdown

 General Description

This command is used to prepare the TPM for a power cycle. The shutdownType parameter indicates

how the subsequent TPM2_Startup() will be processed.

For a shutdownType of any type, the volatile portion of Clock is saved to NV memory and the orderly

shutdown indication is SET. NV Indexes with the TPMA_NV_ORDERLY attribute will be updated.

For a shutdownType of TPM_SU_STATE, the following additional items are saved:

• tracking information for saved session contexts;

• the session context counter;

• PCR that are designated as being preserved by TPM2_Shutdown(TPM_SU_STATE);

• the PCR Update Counter;

• flags associated with supporting the TPMA_NV_WRITESTCLEAR and TPMA_NV_READSTCLEAR
attributes;

• the counter value and authPolicy for each ACT; and

NOTE If a counter has not been updated since the last TPM2_Startup(), then the saved value will be one
half of the current counter value.

• the command audit digest and count.

The following items shall not be saved and will not be in TPM memory after the next TPM2_Startup:

• TPM-memory-resident session contexts;

• TPM-memory-resident transient objects; or

• TPM-memory-resident hash contexts created by TPM2_HashSequenceStart().

Some values may be either derived from other values or saved to NV memory.

This command saves TPM state but does not change the state other than the internal indication that the

context has been saved. The TPM shall continue to accept commands. If a subsequent command

changes TPM state saved by this command, then the effect of this command is nullified. The TPM MAY

nullify this command for any subsequent command rather than check whether the command changed

state saved by this command. If this command is nullified. and if no TPM2_Shutdown() occurs before the

next TPM2_Startup(), then the next TPM2_Startup() shall be TPM2_Startup(CLEAR).

Part 3: Commands Trusted Platform Module Library

Page 28 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 7 — TPM2_Shutdown Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Shutdown {NV}

TPM_SU shutdownType TPM_SU_CLEAR or TPM_SU_STATE

Table 8 — TPM2_Shutdown Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Shutdown_fp.h"

3 #if CC_Shutdown // Conditional expansion of this file

Error Returns Meaning

TPM_RC_TYPE if PCR bank has been re-configured, a CLEAR StateSave() is
required

4 TPM_RC

5 TPM2_Shutdown(

6 Shutdown_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update. Check if NV is available.

10 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

11 // this point

12 RETURN_IF_NV_IS_NOT_AVAILABLE;

13

14 // Input Validation

15

16 // If PCR bank has been reconfigured, a CLEAR state save is required

17 if(g_pcrReConfig && in->shutdownType == TPM_SU_STATE)

18 return TPM_RCS_TYPE + RC_Shutdown_shutdownType;

19

20 // Internal Data Update

21

22 gp.orderlyState = in->shutdownType;

23

24 // PCR private date state save

25 PCRStateSave(in->shutdownType);

26

27 // Save the ACT state

28 ActShutdown(in->shutdownType);

29

30 // Save RAM backed NV index data

31 NvUpdateIndexOrderlyData();

32

33 #if ACCUMULATE_SELF_HEAL_TIMER

34 // Save the current time value

35 go.time = g_time;

36 #endif

37

38 // Save all orderly data

39 NvWrite(NV_ORDERLY_DATA, sizeof(ORDERLY_DATA), &go);

40

41 if(in->shutdownType == TPM_SU_STATE)

42 {

43 // Save STATE_RESET and STATE_CLEAR data

44 NvWrite(NV_STATE_CLEAR_DATA, sizeof(STATE_CLEAR_DATA), &gc);

45 NvWrite(NV_STATE_RESET_DATA, sizeof(STATE_RESET_DATA), &gr);

46

47 // Save the startup flags for resume

48 if(g_DrtmPreStartup)

49 gp.orderlyState = TPM_SU_STATE | PRE_STARTUP_FLAG;

50 else if(g_StartupLocality3)

51 gp.orderlyState = TPM_SU_STATE | STARTUP_LOCALITY_3;

52 }

53 // only two shutdown options.

54 else if(in->shutdownType != TPM_SU_CLEAR)

55 return TPM_RCS_VALUE + RC_Shutdown_shutdownType;

Part 3: Commands Trusted Platform Module Library

Page 30 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

56

57 NV_SYNC_PERSISTENT(orderlyState);

58

59 return TPM_RC_SUCCESS;

60 }

61 #endif // CC_Shutdown

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10 Testing

10.1 Introduction

Compliance to standards for hardware security modules may require that the TPM test its functions

before the results that depend on those functions may be returned. The TPM may perform operations

using testable functions before those functions have been tested as long as the TPM returns no value

that depends on the correctness of the testable function.

EXAMPLE TPM2_PCR_Extend() may be executed before the hash algorithms have been tested. However, until
the hash algorithms have been tested, the contents of a PCR may not be used in any command if
that command may result in a value being returned to the TPM user. This means that
TPM2_PCR_Read() or TPM2_PolicyPCR() could not complete until the hashes have been checked
but other TPM2_PCR_Extend() commands may be executed even though the operation uses
previous PCR values.

If a command is received that requires return of a value that depends on untested functions, the TPM

shall test the required functions before completing the command.

Once the TPM has received TPM2_SelfTest() and before completion of all tests, the TPM is required to

return TPM_RC_TESTING for any command that uses a function that requires a test.

If a self-test fails at any time, the TPM will enter Failure mode. While in Failure mode, the TPM will return

TPM_RC_FAILURE for any command other than TPM2_GetTestResult() and TPM2_GetCapability(). The

TPM will remain in Failure mode until the next _TPM_Init.

Part 3: Commands Trusted Platform Module Library

Page 32 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2 TPM2_SelfTest

 General Description

This command causes the TPM to perform a test of its capabilities. If the fullTest is YES, the TPM will test

all functions. If fullTest = NO, the TPM will only test those functions that have not previously been tested.

If any tests are required, the TPM shall either

• return TPM_RC_TESTING and begin self-test of the required functions, or

NOTE 1 If fullTest is NO, and all functions have been tested, the TPM shall return TPM_RC_SUCCESS.

• perform the tests and return the test result when complete. On failure, the TPM shall return
TPM_RC_FAILURE.

If the TPM uses option a), the TPM shall return TPM_RC_TESTING for any command that requires use

of a testable function, even if the functions required for completion of the command have already been

tested.

NOTE 2 This command may cause the TPM to continue processing after it has returned the response. So
that software can be notified of the completion of the testing, the interface may include controls that
would allow the TPM to generate an interrupt when the “background” processing is complete. This
would be in addition to the interrupt that may be available for signaling normal command completion.
It is not necessary that there be two interrupts, but the interface should provide a way to indicate the
nature of the interrupt (normal command or deferred command).

NOTE 3 The PC Client platform specific TPM, in response to fullTest YES, will not return
TPM_RC_TESTING. It will block until all tests are complete.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 9 — TPM2_SelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SelfTest {NV}

TPMI_YES_NO fullTest
YES if full test to be performed

NO if only test of untested functions required

Table 10 — TPM2_SelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 34 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SelfTest_fp.h"

3 #if CC_SelfTest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CANCELED the command was canceled (some incremental process may have
been made)

TPM_RC_TESTING self test in process

4 TPM_RC

5 TPM2_SelfTest(

6 SelfTest_In *in // IN: input parameter list

7)

8 {

9 // Command Output

10

11 // Call self test function in crypt module

12 return CryptSelfTest(in->fullTest);

13 }

14 #endif // CC_SelfTest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.3 TPM2_IncrementalSelfTest

 General Description

This command causes the TPM to perform a test of the selected algorithms.

NOTE 1 The toTest list indicates the algorithms that software would like the TPM to test in anticipation of
future use. This allows tests to be done so that a future commands will not be delayed due to
testing.

 The implementation may treat algorithms on the toTest list as either 'test each completely' or 'test
this combination.'

EXAMPLE If the toTest list includes AES and CTR mode, it may be interpreted as a request to test only AES in
CTR mode. Alternatively, it may be interpreted as a request to test AES in all modes and CTR mode
for all symmetric algorithms.

If toTest contains an algorithm that has already been tested, it will not be tested again.

NOTE 2 The only way to force retesting of an algorithm is with TPM2_SelfTest(fullTest = YES).

The TPM will return in toDoList a list of algorithms that are yet to be tested. This list is not the list of

algorithms that are scheduled to be tested but the algorithms/functions that have not been tested. Only

the algorithms on the toTest list are scheduled to be tested by this command.

NOTE 3 An algorithm remains on the toDoList while any part of it remains untested.

EXAMPLE A symmetric algorithm remains untested until it is tested with all its modes.

Making toTest an empty list allows the determination of the algorithms that remain untested without

triggering any testing.

If toTest is not an empty list, the TPM shall return TPM_RC_SUCCESS for this command and then return

TPM_RC_TESTING for any subsequent command (including TPM2_IncrementalSelfTest()) until the

requested testing is complete.

NOTE 4 If toDoList is empty, then no additional tests are required and TPM_RC_TESTING will not be
returned in subsequent commands and no additional delay will occur in a command due to testing.

NOTE 5 If none of the algorithms listed in toTest is in the toDoList, then no tests will be performed.

NOTE 6 The TPM cannot return TPM_RC_TESTING for the first call to this command even when testing is
not complete, because response parameters can only returned with the TPM_RC_SUCCESS return
code.

If all the parameters in this command are valid, the TPM returns TPM_RC_SUCCESS and the toDoList

(which may be empty).

NOTE 7 An implementation may perform all requested tests before returning TPM_RC_SUCCESS, or it may
return TPM_RC_SUCCESS for this command and then return TPM_RC_TESTING for all
subsequence commands (including TPM2_IncrementatSelfTest()) until the requested tests are
complete.

Part 3: Commands Trusted Platform Module Library

Page 36 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 11 — TPM2_IncrementalSelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_IncrementalSelfTest {NV}

TPML_ALG toTest list of algorithms that should be tested

Table 12 — TPM2_IncrementalSelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_ALG toDoList list of algorithms that need testing

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "IncrementalSelfTest_fp.h"

3 #if CC_IncrementalSelfTest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CANCELED the command was canceled (some tests may have completed)

TPM_RC_VALUE an algorithm in the toTest list is not implemented

4 TPM_RC

5 TPM2_IncrementalSelfTest(

6 IncrementalSelfTest_In *in, // IN: input parameter list

7 IncrementalSelfTest_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 // Command Output

12

13 // Call incremental self test function in crypt module. If this function

14 // returns TPM_RC_VALUE, it means that an algorithm on the 'toTest' list is

15 // not implemented.

16 result = CryptIncrementalSelfTest(&in->toTest, &out->toDoList);

17 if(result == TPM_RC_VALUE)

18 return TPM_RCS_VALUE + RC_IncrementalSelfTest_toTest;

19 return result;

20 }

21 #endif // CC_IncrementalSelfTest

Part 3: Commands Trusted Platform Module Library

Page 38 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.4 TPM2_GetTestResult

 General Description

This command returns manufacturer-specific information regarding the results of a self-test and an

indication of the test status.

If TPM2_SelfTest() has not been executed and a testable function has not been tested, testResult will be

TPM_RC_NEEDS_TEST. If TPM2_SelfTest() has been received and the tests are not complete,

testResult will be TPM_RC_TESTING.

If testing of all functions is complete without functional failures, testResult will be TPM_RC_SUCCESS. If

any test failed, testResult will be TPM_RC_FAILURE.

This command will operate when the TPM is in Failure mode so that software can determine the test

status of the TPM and so that diagnostic information can be obtained for use in failure analysis. If the

TPM is in Failure mode, then tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

NOTE The reference implementation may return a 32-bit value s_failFunction. This simply gives a unique
value to each of the possible places where a failure could occur. It is not intended to provide a
pointer to the function. __func__ is a pointer to a character string but the failure mode code can only
return 32-bit values. It is expected that the manufacturer can disambiguate this value if a customer’s
TPM goes into failure mode.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 13 — TPM2_GetTestResult Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTestResult

Table 14 — TPM2_GetTestResult Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData
test result data

contains manufacturer-specific information

TPM_RC testResult

Part 3: Commands Trusted Platform Module Library

Page 40 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "GetTestResult_fp.h"

3 #if CC_GetTestResult // Conditional expansion of this file

In the reference implementation, this function is only reachable if the TPM is not in failure mode meaning

that all tests that have been run have completed successfully. There is not test data and the test result is

TPM_RC_SUCCESS.

4 TPM_RC

5 TPM2_GetTestResult(

6 GetTestResult_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 // Call incremental self test function in crypt module

12 out->testResult = CryptGetTestResult(&out->outData);

13

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_GetTestResult

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11 Session Commands

11.1 TPM2_StartAuthSession

 General Description

This command is used to start an authorization session using alternative methods of establishing the

session key (sessionKey). The session key is then used to derive values used for authorization and for

encrypting parameters.

This command allows injection of a secret into the TPM using either asymmetric or symmetric encryption.

The type of tpmKey determines how the value in encryptedSalt is encrypted. The decrypted secret value

is used to compute the sessionKey.

NOTE 1 If tpmKey Is TPM_RH_NULL, then encryptedSalt is required to be an Empty Buffer.

The label value of “SECRET” (see “Terms and Definitions” in TPM 2.0 Part 1) is used in the recovery of

the secret value.

The TPM generates the sessionKey from the recovered secret value.

No authorization is required for tpmKey or bind.

NOTE 2 The justification for using tpmKey without providing authorization is that the result of using the key is
not available to the caller, except indirectly through the sessionKey. This does not represent a point
of attack on the value of the key. If the caller attempts to use the session without knowing the
sessionKey value, it is an authorization failure that will trigger the dictionary attack logic.

The entity referenced with the bind parameter contributes an authorization value to the sessionKey

generation process.

If both tpmKey and bind are TPM_RH_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is not

TPM_RH_NULL, then encryptedSalt is used in the computation of sessionKey. If bind is not

TPM_RH_NULL, the authValue of bind is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in

the symmetric parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial

nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall return

TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextID values, then the TPM shall return

TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See

“Context Management” in TPM 2.0 Part 1).

If tpmKey is not TPM_ALG_NULL then encryptedSalt shall be a TPM2B_ENCRYPTED_SECRET of the

proper type for tpmKey. The TPM shall return TPM_RC_HANDLE if the sensitive portion of tpmKey is not

loaded. The TPM shall return TPM_RC_VALUE if:

 tpmKey references an RSA key and

1) the size of encryptedSalt is not the same as the size of the public modulus of tpmKey,

2) encryptedSalt has a value that is greater than the public modulus of tpmKey,

3) encryptedSalt is not a properly encoded OAEP value, or

4) the decrypted salt value is larger than the size of the digest produced by the nameAlg of tpmKey;

or

Part 3: Commands Trusted Platform Module Library

Page 42 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 3 The asymScheme of the key object is ignored in this case and TPM_ALG_OAEP is used, even if
asymScheme is set to TPM_ALG_NULL.

 tpmKey references an ECC key and encryptedSalt

1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tpmKey;

NOTE 4 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

The TPM shall return TPM_RC_KEY if tpmkey does not reference an asymmetric key. The TPM shall

return TPM_RC_VALUE if the scheme of the key is not TPM_ALG_OAEP or TPM_ALG_NULL. The TPM

shall return TPM_RC_ATTRIBUTES if tpmKey does not have the decrypt attribute SET.

NOTE While TPM_RC_VALUE is preferred, TPM_RC_SCHEME is acceptable.

If bind references a transient object, then the TPM shall return TPM_RC_HANDLE if the sensitive portion

of the object is not loaded.

For all session types, this command will cause initialization of the sessionKey and may establish binding

between the session and an object (the bind object). If sessionType is TPM_SE_POLICY or

TPM_SE_TRIAL, the additional session initialization is:

• set policySession→policyDigest to a Zero Digest (the digest size for policySession→policyDigest is
the size of the digest produced by authHash);

• authorization may be given at any locality;

• authorization may apply to any command code;

• authorization may apply to any command parameters or handles;

• the authorization has no time limit;

• an authValue is not needed when the authorization is used;

• the session is not bound;

• the session is not an audit session; and

• the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be

used to compute the authPolicy for an object.

NOTE 5 Although this command changes the session allocation information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re -
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of

the digest produced by authHash.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 15 — TPM2_StartAuthSession Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey

handle of a loaded decrypt key used to encrypt salt

may be TPM_RH_NULL

Auth Index: None

TPMI_DH_ENTITY+ bind

entity providing the authValue

may be TPM_RH_NULL

Auth Index: None

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for the session

shall be at least 16 octets

TPM2B_ENCRYPTED_SECRET encryptedSalt

value encrypted according to the type of tpmKey

If tpmKey is TPM_RH_NULL, this shall be the Empty
Buffer.

TPM_SE sessionType
indicates the type of the session; simple HMAC or policy
(including a trial policy)

TPMT_SYM_DEF+ symmetric
the algorithm and key size for parameter encryption

may select TPM_ALG_NULL

TPMI_ALG_HASH authHash

hash algorithm to use for the session

Shall be a hash algorithm supported by the TPM and
not TPM_ALG_NULL

Table 16 — TPM2_StartAuthSession Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_SH_AUTH_SESSION sessionHandle handle for the newly created session

TPM2B_NONCE nonceTPM
the initial nonce from the TPM, used in the computation
of the sessionKey

Part 3: Commands Trusted Platform Module Library

Page 44 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "StartAuthSession_fp.h"

3 #if CC_StartAuthSession // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES tpmKey does not reference a decrypt key

TPM_RC_CONTEXT_GAP the difference between the most recently created active context and
the oldest active context is at the limits of the TPM

TPM_RC_HANDLE input decrypt key handle only has public portion loaded

TPM_RC_MODE symmetric specifies a block cipher but the mode is not
TPM_ALG_CFB.

TPM_RC_SESSION_HANDLES no session handle is available

TPM_RC_SESSION_MEMORY no more slots for loading a session

TPM_RC_SIZE nonce less than 16 octets or greater than the size of the digest
produced by authHash

TPM_RC_VALUE secret size does not match decrypt key type; or the recovered secret
is larger than the digest size of the nameAlg of tpmKey; or, for an
RSA decrypt key, if encryptedSecret is greater than the public
modulus of tpmKey.

4 TPM_RC

5 TPM2_StartAuthSession(

6 StartAuthSession_In *in, // IN: input parameter buffer

7 StartAuthSession_Out *out // OUT: output parameter buffer

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 OBJECT *tpmKey; // TPM key for decrypt salt

12 TPM2B_DATA salt;

13

14 // Input Validation

15

16 // Check input nonce size. IT should be at least 16 bytes but not larger

17 // than the digest size of session hash.

18 if(in->nonceCaller.t.size < 16

19 || in->nonceCaller.t.size > CryptHashGetDigestSize(in->authHash))

20 return TPM_RCS_SIZE + RC_StartAuthSession_nonceCaller;

21

22 // If an decrypt key is passed in, check its validation

23 if(in->tpmKey != TPM_RH_NULL)

24 {

25 // Get pointer to loaded decrypt key

26 tpmKey = HandleToObject(in->tpmKey);

27

28 // key must be asymmetric with its sensitive area loaded. Since this

29 // command does not require authorization, the presence of the sensitive

30 // area was not already checked as it is with most other commands that

31 // use the sensitive are so check it here

32 if(!CryptIsAsymAlgorithm(tpmKey->publicArea.type))

33 return TPM_RCS_KEY + RC_StartAuthSession_tpmKey;

34 // secret size cannot be 0

35 if(in->encryptedSalt.t.size == 0)

36 return TPM_RCS_VALUE + RC_StartAuthSession_encryptedSalt;

37 // Decrypting salt requires accessing the private portion of a key.

38 // Therefore, tmpKey can not be a key with only public portion loaded

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

39 if(tpmKey->attributes.publicOnly)

40 return TPM_RCS_HANDLE + RC_StartAuthSession_tpmKey;

41 // HMAC session input handle check.

42 // tpmKey should be a decryption key

43 if(!IS_ATTRIBUTE(tpmKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

44 return TPM_RCS_ATTRIBUTES + RC_StartAuthSession_tpmKey;

45 // Secret Decryption. A TPM_RC_VALUE, TPM_RC_KEY or Unmarshal errors

46 // may be returned at this point

47 result = CryptSecretDecrypt(tpmKey, &in->nonceCaller, SECRET_KEY,

48 &in->encryptedSalt, &salt);

49 if(result != TPM_RC_SUCCESS)

50 return TPM_RCS_VALUE + RC_StartAuthSession_encryptedSalt;

51 }

52 else

53 {

54 // secret size must be 0

55 if(in->encryptedSalt.t.size != 0)

56 return TPM_RCS_VALUE + RC_StartAuthSession_encryptedSalt;

57 salt.t.size = 0;

58 }

59 switch(HandleGetType(in->bind))

60 {

61 case TPM_HT_TRANSIENT:

62 {

63 OBJECT *object = HandleToObject(in->bind);

64 // If the bind handle references a transient object, make sure that we

65 // can get to the authorization value. Also, make sure that the object

66 // has a proper Name (nameAlg != TPM_ALG_NULL). If it doesn't, then

67 // it might be possible to bind to an object where the authValue is

68 // known. This does not create a real issue in that, if you know the

69 // authorization value, you can actually bind to the object. However,

70 // there is a potential

71 if(object->attributes.publicOnly == SET)

72 return TPM_RCS_HANDLE + RC_StartAuthSession_bind;

73 break;

74 }

75 case TPM_HT_NV_INDEX:

76 // a PIN index can't be a bind object

77 {

78 NV_INDEX *nvIndex = NvGetIndexInfo(in->bind, NULL);

79 if(IsNvPinPassIndex(nvIndex->publicArea.attributes)

80 || IsNvPinFailIndex(nvIndex->publicArea.attributes))

81 return TPM_RCS_HANDLE + RC_StartAuthSession_bind;

82 break;

83 }

84 default:

85 break;

86 }

87 // If 'symmetric' is a symmetric block cipher (not TPM_ALG_NULL or TPM_ALG_XOR)

88 // then the mode must be CFB.

89 if(in->symmetric.algorithm != TPM_ALG_NULL

90 && in->symmetric.algorithm != TPM_ALG_XOR

91 && in->symmetric.mode.sym != TPM_ALG_CFB)

92 return TPM_RCS_MODE + RC_StartAuthSession_symmetric;

93

94 // Internal Data Update and command output

95

96 // Create internal session structure. TPM_RC_CONTEXT_GAP, TPM_RC_NO_HANDLES

97 // or TPM_RC_SESSION_MEMORY errors may be returned at this point.

98 //

99 // The detailed actions for creating the session context are not shown here

100 // as the details are implementation dependent

101 // SessionCreate sets the output handle and nonceTPM

102 result = SessionCreate(in->sessionType, in->authHash, &in->nonceCaller,

103 &in->symmetric, in->bind, &salt, &out->sessionHandle,

104 &out->nonceTPM);

Part 3: Commands Trusted Platform Module Library

Page 46 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

105 return result;

106 }

107 #endif // CC_StartAuthSession

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.2 TPM2_PolicyRestart

 General Description

This command allows a policy authorization session to be returned to its initial state. This command is

used after the TPM returns TPM_RC_PCR_CHANGED. That response code indicates that a policy will

fail because the PCR have changed after TPM2_PolicyPCR() was executed. Restarting the session

allows the authorizations to be replayed because the session restarts with the same nonceTPM. If the

PCR are valid for the policy, the policy may then succeed.

This command does not reset the policy ID or the policy start time.

Part 3: Commands Trusted Platform Module Library

Page 48 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 17 — TPM2_PolicyRestart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyRestart

TPMI_SH_POLICY sessionHandle the handle for the policy session

Table 18 — TPM2_PolicyRestart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyRestart_fp.h"

3 #if CC_PolicyRestart // Conditional expansion of this file

4 TPM_RC

5 TPM2_PolicyRestart(

6 PolicyRestart_In *in // IN: input parameter list

7)

8 {

9 // Initialize policy session data

10 SessionResetPolicyData(SessionGet(in->sessionHandle));

11

12 return TPM_RC_SUCCESS;

13 }

14 #endif // CC_PolicyRestart

Part 3: Commands Trusted Platform Module Library

Page 50 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12 Object Commands

12.1 TPM2_Create

 General Description

This command is used to create an object that can be loaded into a TPM using TPM2_Load(). If the

command completes successfully, the TPM will create the new object and return the object’s creation

data (creationData), its public area (outPublic), and its encrypted sensitive area (outPrivate). Preservation

of the returned data is the responsibility of the caller. The object will need to be loaded (TPM2_Load())

before it may be used. The only difference between the inPublic TPMT_PUBLIC template and the

outPublic TPMT_PUBLIC object is in the unique field.

NOTE 1 This command may require temporary use of a transient resource, even though the object does not
remain loaded after the command. See Part 1 Transient Resources.

TPM2B_PUBLIC template (inPublic) contains all of the fields necessary to define the properties of the

new object. The setting for these fields is defined in “Public Area Template” in Part 1 of this specification

and in “TPMA_OBJECT” in Part 2 of this specification. The size of the unique field shall not be checked

for consistency with the other object parameters.

NOTE 2 For interoperability, the unique field should not be set to a value that is larger than allowed by object
parameters, so that the unmarshaling will not fail. A size of zero is recommended. After
unmarshaling, the TPM does not use the input unique field. It is, however, used in
TPM2_CreatePrimary() and TPM2_CreateLoaded.

EXAMPLE 1 A TPM_ALG_RSA object with a keyBits of 2048 in the object’s parameters should have a unique
field that is no larger than 256 bytes.

EXAMPLE 2 TPM_ALG_KEYEDHASH or a TPM_ALG_SYMCIPHER object should have a unique field that is no
larger than the digest produced by the object’s nameAlg.

The parentHandle parameter shall reference a loaded decryption key that has both the public and

sensitive area loaded.

When defining the object, the caller provides a template structure for the object in a TPM2B_PUBLIC

structure (inPublic), an initial value for the object’s authValue (inSensitive.userAuth), and, if the object is a

symmetric object, an optional initial data value (inSensitive.data). The TPM shall validate the consistency

of the attributes of inPublic according to the Creation rules in “TPMA_OBJECT” in TPM 2.0 Part 2.

The inSensitive parameter may be encrypted using parameter encryption.

The methods in this clause are used by both TPM2_Create() and TPM2_CreatePrimary(). When a value

is indicated as being TPM-generated, the value is filled in by bits from the RNG if the command is

TPM2_Create() and with values from KDFa() if the command is TPM2_CreatePrimary(). The parameters

of each creation value are specified in TPM 2.0 Part 1.

The sensitiveDataOrigin attribute of inPublic shall be SET if inSensitive.data is an Empty Buffer and

CLEAR if inSensitive.data is not an Empty Buffer or the TPM shall return TPM_RC_ATTRIBUTES.

If the Object is a not a keyedHash object, and the sign and encrypt attributes are CLEAR, the TPM shall

return TPM_RC_ATTRIBUTES.

The TPM will create new data for the sensitive area and compute a TPMT_PUBLIC.unique from the

sensitive area based on the object type:

 For a symmetric key:

1) If inSensitive.sensitive.data is the Empty Buffer, a TPM-generated key value is placed in the new

object’s TPMT_SENSITIVE.sensitive.sym. The size of the key will be determined by

inPublic.publicArea.parameters.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2) If inSensitive.sensitive.data is not the Empty Buffer, the TPM will validate that the size of

inSensitive.data is no larger than the key size indicated in the inPublic template (TPM_RC_SIZE)

and copy the inSensitive.data to TPMT_SENSITIVE.sensitive.sym of the new object.

3) A TPM-generated obfuscation value is placed in TPMT_SENSITIVE.sensitive.seedValue. The

size of the obfuscation value is the size of the digest produced by the nameAlg in inPublic. This

value prevents the public unique value from leaking information about the sensitive area.

4) The TPMT_PUBLIC.unique.sym value for the new object is then generated, as shown in equation

(1) below, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the nameAlg

of the object.

 unique ≔ HnameAlg(sensitive.seedValue.buffer || sensitive.any.buffer) (1)

 If the Object is an asymmetric key:

1) If inSensitive.sensitive.data is not the Empty Buffer, then the TPM shall return TPM_RC_VALUE.

2) A TPM-generated private key value is created with the size determined by the parameters of

inPublic.publicArea.parameters.

3) If the key is a Storage Key, a TPM-generated TPMT_SENSITIVE.seedValue value is created;

otherwise, TPMT_SENSITIVE.seedValue.size is set to zero.

NOTE 3 An Object that is not a storage key has no child Objects to encrypt, so it does not need a
symmetric key.

4) The public unique value is computed from the private key according to the methods of the key

type.

5) If the key is an ECC key and the scheme required by the curveID is not the same as scheme in

the public area of the template, then the TPM shall return TPM_RC_SCHEME.

6) If the key is an ECC key and the KDF required by the curveID is not the same as kdf in the pubic

area of the template, then the TPM shall return TPM_RC_KDF.

NOTE 4 There is currently no command in which the caller may specify the KDF to be used with an
ECC decryption key. Since there is no use for this capability, the reference implementation
requires that the kdf in the template be set to TPM_ALG_NULL or TPM_RC_KDF is
returned.

 If the Object is a keyedHash object:

1) If inSensitive.sensitive.data is an Empty Buffer, and both sign and decrypt are CLEAR in the

attributes of inPublic, the TPM shall return TPM_RC_ATTRIBUTES. This would be a data object

with no data.

NOTE 5 Revisions 134 and earlier reference code did not check the error case of
sensitiveDataOrigin SET and an Empty Buffer. Thus, some TPM implementations may also
not have included this error check.

2) If sign and decrypt are both CLEAR, or if sign and decrypt are both SET and the scheme in the

public area of the template is not TPM_ALG_NULL, the TPM shall return TPM_RC_SCHEME.

NOTE 6 Revisions 138 and earlier did not enforce this error case.

3) If inSensitive.sensitive.data is not an Empty Buffer, the TPM will copy the

inSensitive.sensitive.data to TPMT_SENSITIVE.sensitive.bits of the new object.

NOTE 7 The size of inSensitive.sensitive.data is limited to be no larger than MAX_SYM_DATA.

4) If inSensitive.sensitive.data is an Empty Buffer, a TPM-generated key value that is the size of the

digest produced by the nameAlg in inPublic is placed in TPMT_SENSITIVE.sensitive.bits.

Part 3: Commands Trusted Platform Module Library

Page 52 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5) A TPM-generated obfuscation value that is the size of the digest produced by the nameAlg of

inPublic is placed in TPMT_SENSITIVE.seedValue.

6) The TPMT_PUBLIC.unique.keyedHash value for the new object is then generated, as shown in

equation (1) above, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the

nameAlg of the object.

For TPM2_Load(), the TPM will apply normal symmetric protections to the created TPMT_SENSITIVE to

create outPublic.

NOTE 8 The encryption key is derived from the symmetric seed in the sensitive area of the parent.

In addition to outPublic and outPrivate, the TPM will build a TPMS_CREATION_DATA structure for the

object. TPMS_CREATION_DATA.outsideInfo is set to outsideInfo. This structure is returned in

creationData. Additionally, the digest of this structure is returned in creationHash, and, finally, a

TPMT_TK_CREATION is created so that the association between the creation data and the object may

be validated by TPM2_CertifyCreation().

If the object being created is a Storage Key and fixedParent is SET in the attributes of inPublic, then the

symmetric algorithms and parameters of inPublic are required to match those of the parent. The

algorithms that must match are inPublic.nameAlg, and the values in inPublic.parameters that select the

symmetric scheme. If inPublic.nameAlg does not match, the TPM shall return TPM_RC_HASH.If the

symmetric scheme of the key does not match, the parent, the TPM shall return TPM_RC_SYMMETRIC.

The TPM shall not use different response code to differentiate between mismatches of the components of

inPublic.parameters. However, after this verification, when using the scheme to encrypt child objects, the

TPM ignores the symmetric mode and uses TPM_ALG_CFB.

NOTE 9 The symmetric scheme is a TPMT_SYM_DEF_OBJECT. In a symmetric block ciphier, it is at
inPublic.parameters.symDetail.sym and in an asymmetric object is at
inPublic.parameters.asymDetail.symmetric.

NOTE 10 Prior to revision 01.34, the parent asymmetric algorithms were also checked for fixedParent storage
keys.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 19 — TPM2_Create Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Create

TPMI_DH_OBJECT @parentHandle

handle of parent for new object

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 20 — TPM2_Create Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate the private portion of the object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMS_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

Part 3: Commands Trusted Platform Module Library

Page 54 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Object_spt_fp.h"

3 #include "Create_fp.h"

4 #if CC_Create // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when sensitive.data is an Empty
Buffer, or is SET when sensitive.data is not empty; fixedTPM,
fixedParent, or encryptedDuplication attributes are inconsistent
between themselves or with those of the parent object; inconsistent
restricted, decrypt and sign attributes; attempt to inject sensitive data
for an asymmetric key;

TPM_RC_HASH non-duplicable storage key and its parent have different name
algorithm

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY invalid key size values in an asymmetric key public area or a
provided symmetric key has a value that is not allowed

TPM_RC_KEY_SIZE key size in public area for symmetric key differs from the size in the
sensitive creation area; may also be returned if the TPM does not
allow the key size to be used for a Storage Key

TPM_RC_OBJECT_MEMORY a free slot is not available as scratch memory for object creation

TPM_RC_RANGE the exponent value of an RSA key is not supported.

TPM_RC_SCHEME inconsistent attributes decrypt, sign, or restricted and key's scheme
ID; or hash algorithm is inconsistent with the scheme ID for keyed
hash object

TPM_RC_SIZE size of public authPolicy or sensitive authValue does not match
digest size of the name algorithm sensitive data size for the keyed
hash object is larger than is allowed for the scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE unknown object type; parentHandle does not reference a restricted
decryption key in the storage hierarchy with both public and sensitive
portion loaded

TPM_RC_VALUE exponent is not prime or could not find a prime using the provided
parameters for an RSA key; unsupported name algorithm for an ECC
key

TPM_RC_OBJECT_MEMORY there is no free slot for the object

5 TPM_RC

6 TPM2_Create(

7 Create_In *in, // IN: input parameter list

8 Create_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *parentObject;

13 OBJECT *newObject;

14 TPMT_PUBLIC *publicArea;

15

16 // Input Validation

17 parentObject = HandleToObject(in->parentHandle);

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18 pAssert(parentObject != NULL);

19

20 // Does parent have the proper attributes?

21 if(!ObjectIsParent(parentObject))

22 return TPM_RCS_TYPE + RC_Create_parentHandle;

23

24 // Get a slot for the creation

25 newObject = FindEmptyObjectSlot(NULL);

26 if(newObject == NULL)

27 return TPM_RC_OBJECT_MEMORY;

28 // If the TPM2B_PUBLIC was passed as a structure, marshal it into is canonical

29 // form for processing

30

31 // to save typing.

32 publicArea = &newObject->publicArea;

33

34 // Copy the input structure to the allocated structure

35 *publicArea = in->inPublic.publicArea;

36

37 // Check attributes in input public area. CreateChecks() checks the things that

38 // are unique to creation and then validates the attributes and values that are

39 // common to create and load.

40 result = CreateChecks(parentObject, publicArea,

41 in->inSensitive.sensitive.data.t.size);

42 if(result != TPM_RC_SUCCESS)

43 return RcSafeAddToResult(result, RC_Create_inPublic);

44 // Clean up the authValue if necessary

45 if(!AdjustAuthSize(&in->inSensitive.sensitive.userAuth, publicArea->nameAlg))

46 return TPM_RCS_SIZE + RC_Create_inSensitive;

47

48 // Command Output

49 // Create the object using the default TPM random-number generator

50 result = CryptCreateObject(newObject, &in->inSensitive.sensitive, NULL);

51 if(result != TPM_RC_SUCCESS)

52 return result;

53 // Fill in creation data

54 FillInCreationData(in->parentHandle, publicArea->nameAlg,

55 &in->creationPCR, &in->outsideInfo,

56 &out->creationData, &out->creationHash);

57

58 // Compute creation ticket

59 TicketComputeCreation(EntityGetHierarchy(in->parentHandle), &newObject->name,

60 &out->creationHash, &out->creationTicket);

61

62 // Prepare output private data from sensitive

63 SensitiveToPrivate(&newObject->sensitive, &newObject->name, parentObject,

64 publicArea->nameAlg,

65 &out->outPrivate);

66

67 // Finish by copying the remaining return values

68 out->outPublic.publicArea = newObject->publicArea;

69

70 return TPM_RC_SUCCESS;

71 }

72 #endif // CC_Create

Part 3: Commands Trusted Platform Module Library

Page 56 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.2 TPM2_Load

 General Description

This command is used to load objects into the TPM. This command is used when both a TPM2B_PUBLIC

and TPM2B_PRIVATE are to be loaded. If only a TPM2B_PUBLIC is to be loaded, the

TPM2_LoadExternal command is used.

NOTE 1 Loading an object is not the same as restoring a saved object context.

The object’s TPMA_OBJECT attributes will be checked according to the rules defined in

“TPMA_OBJECT” in TPM 2.0 Part 2 of this specification. If the Object is a not a keyedHash object, and

the sign and encrypt attributes are CLEAR, the TPM shall return TPM_RC_ATTRIBUTES.

Objects loaded using this command will have a Name. The Name is the concatenation of nameAlg and

the digest of the public area using the nameAlg.

NOTE 2 nameAlg is a parameter in the public area of the inPublic structure.

If inPrivate.size is zero, the load will fail.

After inPrivate.buffer is decrypted using the symmetric key of the parent, the integrity value shall be

checked before the sensitive area is used, or unmarshaled.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by fuzzing the
data and looking at the differences in the response codes.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the digest of the TPMT_PUBLIC structure in inPublic).

NOTE 4 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithms specified in the nameAlg of the object.

NOTE 5 The returned handle is associated with the object until the object is flushed (TPM2_FlushContext) or
until the next TPM2_Startup.

For all objects, the size of the key in the sensitive area shall be consistent with the key size indicated in

the public area or the TPM shall return TPM_RC_KEY_SIZE.

Before use, a loaded object shall be checked to validate that the public and sensitive portions are

properly linked, cryptographically. Use of an object includes use in any policy command. If the parts of the

object are not properly linked, the TPM shall return TPM_RC_BINDING. If a weak symmetric key is in the

sensitive portion, the TPM shall return TPM_RC_KEY.

EXAMPLE 1 For a symmetric object, the unique value in the public area shall be the digest of the sensitive key
and the obfuscation value.

EXAMPLE 2 For a two-prime RSA key, the remainder when dividing the public modulus by the private key shall
be zero and it shall be possible to form a private exponent from the two prime factors of the public
modulus.

EXAMPLE 3 For an ECC key, the public point shal l be f(x) where x is the private key.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 21 — TPM2_Load Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Load

TPMI_DH_OBJECT @parentHandle

TPM handle of parent key; shall not be a reserved
handle

Auth Index: 1

Auth Role: USER

TPM2B_PRIVATE inPrivate the private portion of the object

TPM2B_PUBLIC inPublic the public portion of the object

Table 22 — TPM2_Load Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for the loaded
object

TPM2B_NAME name Name of the loaded object

Part 3: Commands Trusted Platform Module Library

Page 58 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Load_fp.h"

3 #if CC_Load // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES inPulblic attributes are not allowed with selected parent

TPM_RC_BINDING inPrivate and inPublic are not cryptographically bound

TPM_RC_HASH incorrect hash selection for signing key or the nameAlg for 'inPubic is
not valid

TPM_RC_INTEGRITY HMAC on inPrivate was not valid

TPM_RC_KDF KDF selection not allowed

TPM_RC_KEY the size of the object's unique field is not consistent with the indicated
size in the object's parameters

TPM_RC_OBJECT_MEMORY no available object slot

TPM_RC_SCHEME the signing scheme is not valid for the key

TPM_RC_SENSITIVE the inPrivate did not unmarshal correctly

TPM_RC_SIZE inPrivate missing, or authPolicy size for inPublic or is not valid

TPM_RC_SYMMETRIC symmetric algorithm not provided when required

TPM_RC_TYPE parentHandle is not a storage key, or the object to load is a storage
key but its parameters do not match the parameters of the parent.

TPM_RC_VALUE decryption failure

5 TPM_RC

6 TPM2_Load(

7 Load_In *in, // IN: input parameter list

8 Load_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 TPMT_SENSITIVE sensitive;

13 OBJECT *parentObject;

14 OBJECT *newObject;

15

16 // Input Validation

17 // Don't get invested in loading if there is no place to put it.

18 newObject = FindEmptyObjectSlot(&out->objectHandle);

19 if(newObject == NULL)

20 return TPM_RC_OBJECT_MEMORY;

21

22 if(in->inPrivate.t.size == 0)

23 return TPM_RCS_SIZE + RC_Load_inPrivate;

24

25 parentObject = HandleToObject(in->parentHandle);

26 pAssert(parentObject != NULL);

27 // Is the object that is being used as the parent actually a parent.

28 if(!ObjectIsParent(parentObject))

29 return TPM_RCS_TYPE + RC_Load_parentHandle;

30

31 // Compute the name of object. If there isn't one, it is because the nameAlg is

32 // not valid.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

33 PublicMarshalAndComputeName(&in->inPublic.publicArea, &out->name);

34 if(out->name.t.size == 0)

35 return TPM_RCS_HASH + RC_Load_inPublic;

36

37 // Retrieve sensitive data.

38 result = PrivateToSensitive(&in->inPrivate.b, &out->name.b, parentObject,

39 in->inPublic.publicArea.nameAlg,

40 &sensitive);

41 if(result != TPM_RC_SUCCESS)

42 return RcSafeAddToResult(result, RC_Load_inPrivate);

43

44 // Internal Data Update

45 // Load and validate object

46 result = ObjectLoad(newObject, parentObject,

47 &in->inPublic.publicArea, &sensitive,

48 RC_Load_inPublic, RC_Load_inPrivate,

49 &out->name);

50 if(result == TPM_RC_SUCCESS)

51 {

52 // Set the common OBJECT attributes for a loaded object.

53 ObjectSetLoadedAttributes(newObject, in->parentHandle);

54 }

55 return result;

56

57 }

58 #endif // CC_Load

Part 3: Commands Trusted Platform Module Library

Page 60 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.3 TPM2_LoadExternal

 General Description

This command is used to load an object that is not a Protected Object into the TPM. The command allows

loading of a public area or both a public and sensitive area.

NOTE 1 Typical use for loading a public area is to allow the TPM to validate an asymmetric signature.
Typical use for loading both a public and sensitive area is to allow the TPM to be used as a crypto
accelerator.

Load of a public external object area allows the object to be associated with a hierarchy so that the

correct algorithms may be used when creating tickets. The hierarchy parameter provides this association.

If the public and sensitive portions of the object are loaded, hierarchy is required to be TPM_RH_NULL.

NOTE 2 If both the public and private portions of an object are loaded, the object is not allowed to appear to
be part of a hierarchy.

The object’s TPMA_OBJECT attributes will be checked according to the rules defined in

“TPMA_OBJECT” in TPM 2.0 Part 2. In particular, fixedTPM, fixedParent, and restricted shall be CLEAR

if inPrivate is not the Empty Buffer.

NOTE 3 The duplication status of a public key needs to be able to be the same as the full key which may be
resident on a different TPM. If both the public and private parts of the key are loaded, then it is not
possible for the key to be either fixedTPM or fixedParent, since, its private area would not be
available in the clear to load.

Objects loaded using this command will have a Name. The Name is the nameAlg of the object

concatenated with the digest of the public area using the nameAlg. The Qualified Name for the object will

be the same as its Name. The TPM will validate that the authPolicy is either the size of the digest

produced by nameAlg or the Empty Buffer.

NOTE 4 If nameAlg is TPM_ALG_NULL, then the Name is the Empty Buffer. When the authorization value for
an object with no Name is computed, no Name value is included in the HMAC. To ensure that these
unnamed entities are not substituted, they should have an authValue that is statistically unique.

NOTE 5 The digest size for TPM_ALG_NULL is zero.

If the nameAlg is TPM_ALG_NULL, the TPM shall not verify the cryptographic binding between the public

and sensitive areas, but the TPM will validate that the size of the key in the sensitive area is consistent

with the size indicated in the public area. If it is not, the TPM shall return TPM_RC_KEY_SIZE.

NOTE 6 For an ECC object, the TPM will verify that the public key is on the curve of the key before the public
area is used.

If nameAlg is not TPM_ALG_NULL, then the same consistency checks between inPublic and inPrivate

are made as for TPM2_Load().

NOTE 7 Consistency checks are necessary because an object with a Name needs to have the public and
sensitive portions cryptographically bound so that an attacker cannot mix pubic and sensitive areas.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the TPMT_PUBLIC structure in inPublic).

NOTE 8 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithm specified in the nameAlg of the object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The hierarchy parameter associates the external object with a hierarchy. External objects are flushed

when their associated hierarchy is disabled. If hierarchy is TPM_RH_NULL, the object is part of no

hierarchy, and there is no implicit flush.

If hierarchy is TPM_RH_NULL or nameAlg is TPM_ALG_NULL, a ticket produced using the object shall

be a NULL Ticket.

EXAMPLE If a key is loaded with hierarchy set to TPM_RH_NULL, then TPM2_VerifySignature() will produce a
NULL Ticket of the required type.

External objects are Temporary Objects. The saved external object contexts shall be invalidated at the

next TPM Reset.

If a weak symmetric key is in the sensitive area, the TPM shall return TPM_RC_KEY.

For an RSA key, the private exponent is computed using the two prime factors of the public modulus. One

of the primes is P, and the second prime (Q) is found by dividing the public modulus by P. A TPM may

return an error (TPM_RC_BINDING) if the bit size of P and Q are not the same.”

Part 3: Commands Trusted Platform Module Library

Page 62 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 23 — TPM2_LoadExternal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_LoadExternal

TPM2B_SENSITIVE inPrivate the sensitive portion of the object (optional)

TPM2B_PUBLIC+ inPublic the public portion of the object

TPMI_RH_HIERARCHY+ hierarchy hierarchy with which the object area is associated

Table 24 — TPM2_LoadExternal Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for the loaded
object

TPM2B_NAME name name of the loaded object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "LoadExternal_fp.h"

3 #if CC_LoadExternal // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES 'fixedParent", fixedTPM, and restricted must be CLEAR if sensitive
portion of an object is loaded

TPM_RC_BINDING the inPublic and inPrivate structures are not cryptographically bound

TPM_RC_HASH incorrect hash selection for signing key

TPM_RC_HIERARCHY hierarchy is turned off, or only NULL hierarchy is allowed when
loading public and private parts of an object

TPM_RC_KDF incorrect KDF selection for decrypting keyedHash object

TPM_RC_KEY the size of the object's unique field is not consistent with the indicated
size in the object's parameters

TPM_RC_OBJECT_MEMORY if there is no free slot for an object

TPM_RC_ECC_POINT for a public-only ECC key, the ECC point is not on the curve

TPM_RC_SCHEME the signing scheme is not valid for the key

TPM_RC_SIZE authPolicy is not zero and is not the size of a digest produced by the
object's nameAlg TPM_RH_NULL hierarchy

TPM_RC_SYMMETRIC symmetric algorithm not provided when required

TPM_RC_TYPE inPublic and inPrivate are not the same type

5 TPM_RC

6 TPM2_LoadExternal(

7 LoadExternal_In *in, // IN: input parameter list

8 LoadExternal_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 OBJECT *object;

13 TPMT_SENSITIVE *sensitive = NULL;

14

15 // Input Validation

16 // Don't get invested in loading if there is no place to put it.

17 object = FindEmptyObjectSlot(&out->objectHandle);

18 if(object == NULL)

19 return TPM_RC_OBJECT_MEMORY;

20

21 // If the hierarchy to be associated with this object is turned off, the object

22 // cannot be loaded.

23 if(!HierarchyIsEnabled(in->hierarchy))

24 return TPM_RCS_HIERARCHY + RC_LoadExternal_hierarchy;

25

26 // For loading an object with both public and sensitive

27 if(in->inPrivate.size != 0)

28 {

29 // An external object with a sensitive area can only be loaded in the

30 // NULL hierarchy

31 if(in->hierarchy != TPM_RH_NULL)

32 return TPM_RCS_HIERARCHY + RC_LoadExternal_hierarchy;

33 // An external object with a sensitive area must have fixedTPM == CLEAR

Part 3: Commands Trusted Platform Module Library

Page 64 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

34 // fixedParent == CLEAR so that it does not appear to be a key created by

35 // this TPM.

36 if(IS_ATTRIBUTE(in->inPublic.publicArea.objectAttributes, TPMA_OBJECT,

37 fixedTPM)

38 || IS_ATTRIBUTE(in->inPublic.publicArea.objectAttributes, TPMA_OBJECT,

39 fixedParent)

40 || IS_ATTRIBUTE(in->inPublic.publicArea.objectAttributes, TPMA_OBJECT,

41 restricted))

42 return TPM_RCS_ATTRIBUTES + RC_LoadExternal_inPublic;

43

44 // Have sensitive point to something other than NULL so that object

45 // initialization will load the sensitive part too

46 sensitive = &in->inPrivate.sensitiveArea;

47 }

48

49 // Need the name to initialize the object structure

50 PublicMarshalAndComputeName(&in->inPublic.publicArea, &out->name);

51

52 // Load and validate key

53 result = ObjectLoad(object, NULL,

54 &in->inPublic.publicArea, sensitive,

55 RC_LoadExternal_inPublic, RC_LoadExternal_inPrivate,

56 &out->name);

57 if(result == TPM_RC_SUCCESS)

58 {

59 object->attributes.external = SET;

60 // Set the common OBJECT attributes for a loaded object.

61 ObjectSetLoadedAttributes(object, in->hierarchy);

62 }

63 return result;

64 }

65 #endif // CC_LoadExternal

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.4 TPM2_ReadPublic

 General Description

This command allows access to the public area of a loaded object.

Use of the objectHandle does not require authorization.

NOTE Since the caller is not likely to know the public area of the object associated with objectHandle, it
would not be possible to include the Name associated with objectHandle in the cpHash computation.

If objectHandle references a sequence object, the TPM shall return TPM_RC_SEQUENCE.

Part 3: Commands Trusted Platform Module Library

Page 66 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 25 — TPM2_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadPublic

TPMI_DH_OBJECT objectHandle
TPM handle of an object

Auth Index: None

Table 26 — TPM2_ReadPublic Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC outPublic structure containing the public area of an object

TPM2B_NAME name name of the object

TPM2B_NAME qualifiedName the Qualified Name of the object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ReadPublic_fp.h"

3 #if CC_ReadPublic // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SEQUENCE can not read the public area of a sequence object

4 TPM_RC

5 TPM2_ReadPublic(

6 ReadPublic_In *in, // IN: input parameter list

7 ReadPublic_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *object = HandleToObject(in->objectHandle);

11

12 // Input Validation

13 // Can not read public area of a sequence object

14 if(ObjectIsSequence(object))

15 return TPM_RC_SEQUENCE;

16

17 // Command Output

18 out->outPublic.publicArea = object->publicArea;

19 out->name = object->name;

20 out->qualifiedName = object->qualifiedName;

21

22 return TPM_RC_SUCCESS;

23 }

24 #endif // CC_ReadPublic

Part 3: Commands Trusted Platform Module Library

Page 68 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.5 TPM2_ActivateCredential

 General Description

This command enables the association of a credential with an object in a way that ensures that the TPM

has validated the parameters of the credentialed object.

If both the public and private portions of activateHandle and keyHandle are not loaded, then the TPM

shall return TPM_RC_AUTH_UNAVAILABLE.

If keyHandle is not a Storage Key, then the TPM shall return TPM_RC_TYPE.

Authorization for activateHandle requires the ADMIN role.

The key associated with keyHandle is used to recover a seed from secret, which is the encrypted seed.

The Name of the object associated with activateHandle and the recovered seed are used in a KDF to

recover the symmetric key. The recovered seed (but not the Name) is used in a KDF to recover the

HMAC key.

The HMAC is used to validate that the credentialBlob is associated with activateHandle and that the data

in credentialBlob has not been modified. The linkage to the object associated with activateHandle is

achieved by including the Name in the HMAC calculation.

If the integrity checks succeed, credentialBlob is decrypted and returned as certInfo.

NOTE The output certInfo parameter is an application defined value. It is typically a symmetric key or seed
that is used to decrypt a certificate. See the TPM2_MakeCredential credential input parameter.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 27 — TPM2_ActivateCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ActivateCredential

TPMI_DH_OBJECT @activateHandle

handle of the object associated with certificate in
credentialBlob

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT @keyHandle

loaded key used to decrypt the TPMS_SENSITIVE in
credentialBlob

Auth Index: 2

Auth Role: USER

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
keyHandle algorithm-dependent encrypted seed that
protects credentialBlob

Table 28 — TPM2_ActivateCredential Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST certInfo

the decrypted certificate information

the data should be no larger than the size of the digest
of the nameAlg associated with keyHandle

Part 3: Commands Trusted Platform Module Library

Page 70 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ActivateCredential_fp.h"

3 #if CC_ActivateCredential // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a decryption key

TPM_RC_ECC_POINT secret is invalid (when keyHandle is an ECC key)

TPM_RC_INSUFFICIENT secret is invalid (when keyHandle is an ECC key)

TPM_RC_INTEGRITY credentialBlob fails integrity test

TPM_RC_NO_RESULT secret is invalid (when keyHandle is an ECC key)

TPM_RC_SIZE secret size is invalid or the credentialBlob does not unmarshal
correctly

TPM_RC_TYPE keyHandle does not reference an asymmetric key.

TPM_RC_VALUE secret is invalid (when keyHandle is an RSA key)

5 TPM_RC

6 TPM2_ActivateCredential(

7 ActivateCredential_In *in, // IN: input parameter list

8 ActivateCredential_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *object; // decrypt key

13 OBJECT *activateObject; // key associated with credential

14 TPM2B_DATA data; // credential data

15

16 // Input Validation

17

18 // Get decrypt key pointer

19 object = HandleToObject(in->keyHandle);

20

21 // Get certificated object pointer

22 activateObject = HandleToObject(in->activateHandle);

23

24 // input decrypt key must be an asymmetric, restricted decryption key

25 if(!CryptIsAsymAlgorithm(object->publicArea.type)

26 || !IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, decrypt)

27 || !IS_ATTRIBUTE(object->publicArea.objectAttributes,

28 TPMA_OBJECT, restricted))

29 return TPM_RCS_TYPE + RC_ActivateCredential_keyHandle;

30

31 // Command output

32

33 // Decrypt input credential data via asymmetric decryption. A

34 // TPM_RC_VALUE, TPM_RC_KEY or unmarshal errors may be returned at this

35 // point

36 result = CryptSecretDecrypt(object, NULL, IDENTITY_STRING, &in->secret, &data);

37 if(result != TPM_RC_SUCCESS)

38 {

39 if(result == TPM_RC_KEY)

40 return TPM_RC_FAILURE;

41 return RcSafeAddToResult(result, RC_ActivateCredential_secret);

42 }

43

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

44 // Retrieve secret data. A TPM_RC_INTEGRITY error or unmarshal

45 // errors may be returned at this point

46 result = CredentialToSecret(&in->credentialBlob.b,

47 &activateObject->name.b,

48 &data.b,

49 object,

50 &out->certInfo);

51 if(result != TPM_RC_SUCCESS)

52 return RcSafeAddToResult(result, RC_ActivateCredential_credentialBlob);

53

54 return TPM_RC_SUCCESS;

55 }

56 #endif // CC_ActivateCredential

Part 3: Commands Trusted Platform Module Library

Page 72 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.6 TPM2_MakeCredential

 General Description

This command allows the TPM to perform the actions required of a Certificate Authority (CA) in creating a

TPM2B_ID_OBJECT containing an activation credential.

NOTE The input credential parameter is an application defined value. It is typically a symmetric key or
seed that is used to encrypt a certificate. See the TPM2_ActivateCredential certInfo output
parameter.

The TPM will produce a TPM2B_ID_OBJECT according to the methods in “Credential Protection” in TPM

2.0 Part 1.

The loaded public area referenced by handle is required to be the public area of a Storage key,

otherwise, the credential cannot be properly sealed.

This command does not use any TPM secrets nor does it require authorization. It is a convenience

function, using the TPM to perform cryptographic calculations that could be done externally.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 29 — TPM2_MakeCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MakeCredential

TPMI_DH_OBJECT handle

loaded public area, used to encrypt the sensitive area
containing the credential key

Auth Index: None

TPM2B_DIGEST credential the credential information

TPM2B_NAME objectName Name of the object to which the credential applies

Table 30 — TPM2_MakeCredential Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
handle algorithm-dependent data that wraps the key
that encrypts credentialBlob

Part 3: Commands Trusted Platform Module Library

Page 74 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "MakeCredential_fp.h"

3 #if CC_MakeCredential // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_KEY handle referenced an ECC key that has a unique field that is not a
point on the curve of the key

TPM_RC_SIZE credential is larger than the digest size of Name algorithm of handle

TPM_RC_TYPE handle does not reference an asymmetric decryption key

5 TPM_RC

6 TPM2_MakeCredential(

7 MakeCredential_In *in, // IN: input parameter list

8 MakeCredential_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12

13 OBJECT *object;

14 TPM2B_DATA data;

15

16 // Input Validation

17

18 // Get object pointer

19 object = HandleToObject(in->handle);

20

21 // input key must be an asymmetric, restricted decryption key

22 // NOTE: Needs to be restricted to have a symmetric value.

23 if(!CryptIsAsymAlgorithm(object->publicArea.type)

24 || !IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, decrypt)

25 || !IS_ATTRIBUTE(object->publicArea.objectAttributes,

26 TPMA_OBJECT, restricted))

27 return TPM_RCS_TYPE + RC_MakeCredential_handle;

28

29 // The credential information may not be larger than the digest size used for

30 // the Name of the key associated with handle.

31 if(in->credential.t.size > CryptHashGetDigestSize(object->publicArea.nameAlg))

32 return TPM_RCS_SIZE + RC_MakeCredential_credential;

33

34 // Command Output

35

36 // Make encrypt key and its associated secret structure.

37 out->secret.t.size = sizeof(out->secret.t.secret);

38 result = CryptSecretEncrypt(object, IDENTITY_STRING, &data, &out->secret);

39 if(result != TPM_RC_SUCCESS)

40 return result;

41

42 // Prepare output credential data from secret

43 SecretToCredential(&in->credential, &in->objectName.b, &data.b,

44 object, &out->credentialBlob);

45

46 return TPM_RC_SUCCESS;

47 }

48 #endif // CC_MakeCredential

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.7 TPM2_Unseal

 General Description

This command returns the data in a loaded Sealed Data Object.

NOTE 1 A random, TPM-generated, Sealed Data Object may be created by the TPM with TPM2_Create() or
TPM2_CreatePrimary() using the template for a Sealed Data Object.

NOTE 2 TPM 1.2 hard coded PCR authorization. TPM 2.0 PCR authorization requires a policy.

The returned value may be encrypted using authorization session encryption.

If either restricted, decrypt, or sign is SET in the attributes of itemHandle, then the TPM shall return

TPM_RC_ATTRIBUTES. If the type of itemHandle is not TPM_ALG_KEYEDHASH, then the TPM shall

return TPM_RC_TYPE.

Part 3: Commands Trusted Platform Module Library

Page 76 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 31 — TPM2_Unseal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Unseal

TPMI_DH_OBJECT @itemHandle

handle of a loaded data object

Auth Index: 1

Auth Role: USER

Table 32 — TPM2_Unseal Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_SENSITIVE_DATA outData
unsealed data

Size of outData is limited to be no more than 128 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Unseal_fp.h"

3 #if CC_Unseal // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES itemHandle has wrong attributes

TPM_RC_TYPE itemHandle is not a KEYEDHASH data object

4 TPM_RC

5 TPM2_Unseal(

6 Unseal_In *in,

7 Unseal_Out *out

8)

9 {

10 OBJECT *object;

11 // Input Validation

12 // Get pointer to loaded object

13 object = HandleToObject(in->itemHandle);

14

15 // Input handle must be a data object

16 if(object->publicArea.type != TPM_ALG_KEYEDHASH)

17 return TPM_RCS_TYPE + RC_Unseal_itemHandle;

18 if(IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, decrypt)

19 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, sign)

20 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, restricted))

21 return TPM_RCS_ATTRIBUTES + RC_Unseal_itemHandle;

22 // Command Output

23 // Copy data

24 out->outData = object->sensitive.sensitive.bits;

25 return TPM_RC_SUCCESS;

26 }

27 #endif // CC_Unseal

Part 3: Commands Trusted Platform Module Library

Page 78 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.8 TPM2_ObjectChangeAuth

 General Description

This command is used to change the authorization secret for a TPM-resident object.

If successful, a new private area for the TPM-resident object associated with objectHandle is returned,

which includes the new authorization value.

This command does not change the authorization of the TPM-resident object on which it operates.

Therefore, the old authValue (of the TPM-resident object) is used when generating the response HMAC

key if required.

NOTE 1 The returned outPrivate will need to be loaded before the new authorization will apply.

NOTE 2 The TPM-resident object may be persistent and changing the authorization value of the persistent
object could prevent other users from accessing the object. This is why this command does not
change the TPM-resident object.

EXAMPLE If a persistent key is being used as a Storage Root Key and the authorizat ion of the key is a well-
known value so that the key can be used generally, then changing the authorization value in the
persistent key would deny access to other users.

This command may not be used to change the authorization value for an NV Index or a Primary Object.

NOTE 3 If an NV Index is to have a new authorization, it is done with TPM2_NV_ChangeAuth().

NOTE 4 If a Primary Object is to have a new authorization, it needs to be recreated (TPM2_CreatePrimary()).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 33 — TPM2_ObjectChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ObjectChangeAuth

TPMI_DH_OBJECT @objectHandle

handle of the object

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT parentHandle
handle of the parent

Auth Index: None

TPM2B_AUTH newAuth new authorization value

Table 34 — TPM2_ObjectChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate private area containing the new authorization value

Part 3: Commands Trusted Platform Module Library

Page 80 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ObjectChangeAuth_fp.h"

3 #if CC_ObjectChangeAuth // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_SIZE newAuth is larger than the size of the digest of the Name algorithm of
objectHandle

TPM_RC_TYPE the key referenced by parentHandle is not the parent of the object
referenced by objectHandle; or objectHandle is a sequence object.

5 TPM_RC

6 TPM2_ObjectChangeAuth(

7 ObjectChangeAuth_In *in, // IN: input parameter list

8 ObjectChangeAuth_Out *out // OUT: output parameter list

9)

10 {

11 TPMT_SENSITIVE sensitive;

12

13 OBJECT *object = HandleToObject(in->objectHandle);

14 TPM2B_NAME QNCompare;

15

16 // Input Validation

17

18 // Can not change authorization on sequence object

19 if(ObjectIsSequence(object))

20 return TPM_RCS_TYPE + RC_ObjectChangeAuth_objectHandle;

21

22 // Make sure that the authorization value is consistent with the nameAlg

23 if(!AdjustAuthSize(&in->newAuth, object->publicArea.nameAlg))

24 return TPM_RCS_SIZE + RC_ObjectChangeAuth_newAuth;

25

26 // Parent handle should be the parent of object handle. In this

27 // implementation we verify this by checking the QN of object. Other

28 // implementation may choose different method to verify this attribute.

29 ComputeQualifiedName(in->parentHandle,

30 object->publicArea.nameAlg,

31 &object->name, &QNCompare);

32 if(!MemoryEqual2B(&object->qualifiedName.b, &QNCompare.b))

33 return TPM_RCS_TYPE + RC_ObjectChangeAuth_parentHandle;

34

35 // Command Output

36 // Prepare the sensitive area with the new authorization value

37 sensitive = object->sensitive;

38 sensitive.authValue = in->newAuth;

39

40 // Protect the sensitive area

41 SensitiveToPrivate(&sensitive, &object->name, HandleToObject(in->parentHandle),

42 object->publicArea.nameAlg,

43 &out->outPrivate);

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_ObjectChangeAuth

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.9 TPM2_CreateLoaded

 General Description

This command creates an object and loads it in the TPM. This command allows creation of any type of

object (Primary, Ordinary, or Derived) depending on the type of parentHandle. If parentHandle references

a Primary Seed, then a Primary Object is created; if parentHandle references a Storage Parent, then an

Ordinary Object is created; and if parentHandle references a Derivation Parent, then a Derived Object is

generated.

The input validation is the same as for TPM2_Create() and TPM2_CreatePrimary() with one exception:

when parentHandle references a Derivation Parent, then sensitiveDataOrigin in inPublic is required to be

CLEAR.

Note 1 In the general descriptions of TPM2_Create() and TPM2_CreatePrimary() the validations refer to a
TPMT_PUBLIC structure that is in inPublic. For TPM2_CreateLoaded(), inPublic is a
TPM2B_TEMPLATE that may contain a TPMT_PUBLIC that is used for object creation. For object
derivation, the unique field can contain a label and context that are used in the derivation process.
To allow both the TPMT_PUBLIC and the derivation variation, a TPM2B_TEMPLATE is used. When
referring to the checks in TPM2_Create() and TPM2_CreatePrimary(), TPM2B_TEMPLATE should
be assumed to contain a TPMT_PUBLIC.

If parentHandle references a Derivation Parent, then the TPM may return TPM_RC_TYPE if the key type

to be generated is an RSA key.

If parentHandle references a Derivation Parent or a Primary Seed, then outPrivate will be an Empty

Buffer.

NOTE 2 Returning outPrivate would imply that the returned primary or derived object can be loaded and it
cannot. It can only be re-derived.

A primary key cannot be loaded is because loading a key is a way to attack the protections of a key
(e.g. using DPA). A saved context for a primary object is protected. The TPM will go into failure
mode if the integrity of a saved context is good but the fingerprint doesn’t decrypt. It is not possible
to have these protections on loaded objects because this would be a simple way for an attacker to
put the TPM into failure mode Saved contexts are assumed to be under control of the driver but
loaded objects are not.

If all objects were derived from their parents then, load could not be used as an attack. However,
that would preclude importation of objects and key hierarchies.

NOTE 3 Unlike TPM2_Create() and TPM2_CreatePrimary(), this command does not return creation data. If
creation data is needed, then TPM2_Create() or TPM2_CreatePrimary() should be used.

Part 3: Commands Trusted Platform Module Library

Page 82 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 35 — TPM2_CreateLoaded Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreateLoade

TPMI_DH_PARENT+ @parentHandle

Handle of a transient storage key, a persistent storage
key, TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data, see TPM 2.0 Part 1 Sensitive Values

TPM2B_TEMPLATE inPublic the public template

Table 36 — TPM2_CreateLoaded Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle handle of type TPM_HT_TRANSIENT for created object

TPM2B_PRIVATE outPrivate the sensitive area of the object (optional)

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_NAME name the name of the created object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "CreateLoaded_fp.h"

3 #if CC_CreateLoaded // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when sensitive.data is an Empty
Buffer; fixedTPM, fixedParent, or encryptedDuplication attributes are
inconsistent between themselves or with those of the parent object;
inconsistent restricted, decrypt and sign attributes; attempt to inject
sensitive data for an asymmetric key; attempt to create a symmetric
cipher key that is not a decryption key

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY the value of a provided symmetric key is not allowed

TPM_RC_OBJECT_MEMORY there is no free slot for the object

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID;
or hash algorithm is inconsistent with the scheme ID for keyed hash
object

TPM_RC_SIZE size of public authorization policy or sensitive authorization value
does not match digest size of the name algorithm sensitive data size
for the keyed hash object is larger than is allowed for the scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE cannot create the object of the indicated type (usually only occurs if
trying to derive an RSA key).

4 TPM_RC

5 TPM2_CreateLoaded(

6 CreateLoaded_In *in, // IN: input parameter list

7 CreateLoaded_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 OBJECT *parent = HandleToObject(in->parentHandle);

12 OBJECT *newObject;

13 BOOL derivation;

14 TPMT_PUBLIC *publicArea;

15 RAND_STATE randState;

16 RAND_STATE *rand = &randState;

17 TPMS_DERIVE labelContext;

18

19 // Input Validation

20

21 // How the public area is unmarshaled is determined by the parent, so

22 // see if parent is a derivation parent

23 derivation = (parent != NULL && parent->attributes.derivation);

24

25 // If the parent is an object, then make sure that it is either a parent or

26 // derivation parent

27 if(parent != NULL && !parent->attributes.isParent && !derivation)

28 return TPM_RCS_TYPE + RC_CreateLoaded_parentHandle;

29

30 // Get a spot in which to create the newObject

31 newObject = FindEmptyObjectSlot(&out->objectHandle);

32 if(newObject == NULL)

33 return TPM_RC_OBJECT_MEMORY;

Part 3: Commands Trusted Platform Module Library

Page 84 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

34

35 // Do this to save typing

36 publicArea = &newObject->publicArea;

37

38 // Unmarshal the template into the object space. TPM2_Create() and

39 // TPM2_CreatePrimary() have the publicArea unmarshaled by CommandDispatcher.

40 // This command is different because of an unfortunate property of the

41 // unique field of an ECC key. It is a structure rather than a single TPM2B. If

42 // if had been a TPM2B, then the label and context could be within a TPM2B and

43 // unmarshaled like other public areas. Since it is not, this command needs its

44 // on template that is a TPM2B that is unmarshaled as a BYTE array with a

45 // its own unmarshal function.

46 result = UnmarshalToPublic(publicArea, &in->inPublic, derivation,

47 &labelContext);

48 if(result != TPM_RC_SUCCESS)

49 return result + RC_CreateLoaded_inPublic;

50

51 // Validate that the authorization size is appropriate

52 if(!AdjustAuthSize(&in->inSensitive.sensitive.userAuth, publicArea->nameAlg))

53 return TPM_RCS_SIZE + RC_CreateLoaded_inSensitive;

54

55 // Command output

56 if(derivation)

57 {

58 TPMT_KEYEDHASH_SCHEME *scheme;

59 scheme = &parent->publicArea.parameters.keyedHashDetail.scheme;

60

61 // SP800-108 is the only KDF supported by this implementation and there is

62 // no default hash algorithm.

63 pAssert(scheme->details.xor.hashAlg != TPM_ALG_NULL

64 && scheme->details.xor.kdf == TPM_ALG_KDF1_SP800_108);

65 // Don't derive RSA keys

66 if(publicArea->type == ALG_RSA_VALUE)

67 return TPM_RCS_TYPE + RC_CreateLoaded_inPublic;

68 // sensitiveDataOrigin has to be CLEAR in a derived object. Since this

69 // is specific to a derived object, it is checked here.

70 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT,

71 sensitiveDataOrigin))

72 return TPM_RCS_ATTRIBUTES;

73 // Check the reset of the attributes

74 result = PublicAttributesValidation(parent, publicArea);

75 if(result != TPM_RC_SUCCESS)

76 return RcSafeAddToResult(result, RC_CreateLoaded_inPublic);

77 // Process the template and sensitive areas to get the actual 'label' and

78 // 'context' values to be used for this derivation.

79 result = SetLabelAndContext(&labelContext, &in->inSensitive.sensitive.data);

80 if(result != TPM_RC_SUCCESS)

81 return result;

82 // Set up the KDF for object generation

83 DRBG_InstantiateSeededKdf((KDF_STATE *)rand,

84 scheme->details.xor.hashAlg,

85 scheme->details.xor.kdf,

86 &parent->sensitive.sensitive.bits.b,

87 &labelContext.label.b,

88 &labelContext.context.b,

89 MAX_DERIVATION_BITS);

90 // Clear the sensitive size so that the creation functions will not try

91 // to use this value.

92 in->inSensitive.sensitive.data.t.size = 0;

93 }

94 else

95 {

96 // Check attributes in input public area. CreateChecks() checks the things

97 // that are unique to creation and then validates the attributes and values

98 // that are common to create and load.

99 result = CreateChecks(parent, publicArea,

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

100 in->inSensitive.sensitive.data.t.size);

101 if(result != TPM_RC_SUCCESS)

102 return RcSafeAddToResult(result, RC_CreateLoaded_inPublic);

103 // Creating a primary object

104 if(parent == NULL)

105 {

106 TPM2B_NAME name;

107 newObject->attributes.primary = SET;

108 if(in->parentHandle == TPM_RH_ENDORSEMENT)

109 newObject->attributes.epsHierarchy = SET;

110 // If so, use the primary seed and the digest of the template

111 // to seed the DRBG

112 result = DRBG_InstantiateSeeded((DRBG_STATE *)rand,

113 &HierarchyGetPrimarySeed(in->parentHandle)->b,

114 PRIMARY_OBJECT_CREATION,

115 (TPM2B *)PublicMarshalAndComputeName(publicArea,

116 &name),

117 &in->inSensitive.sensitive.data.b);

118 if(result != TPM_RC_SUCCESS)

119 return result;

120 }

121 else

122 {

123 // This is an ordinary object so use the normal random number generator

124 rand = NULL;

125 }

126 }

127 // Internal data update

128 // Create the object

129 result = CryptCreateObject(newObject, &in->inSensitive.sensitive, rand);

130 if(result != TPM_RC_SUCCESS)

131 return result;

132 // if this is not a Primary key and not a derived key, then return the sensitive

133 // area

134 if(parent != NULL && !derivation)

135 // Prepare output private data from sensitive

136 SensitiveToPrivate(&newObject->sensitive, &newObject->name,

137 parent, newObject->publicArea.nameAlg,

138 &out->outPrivate);

139 else

140 out->outPrivate.t.size = 0;

141 // Set the remaining return values

142 out->outPublic.publicArea = newObject->publicArea;

143 out->name = newObject->name;

144 // Set the remaining attributes for a loaded object

145 ObjectSetLoadedAttributes(newObject, in->parentHandle);

146

147 return result;

148 }

149 #endif // CC_CreateLoaded

Part 3: Commands Trusted Platform Module Library

Page 86 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13 Duplication Commands

13.1 TPM2_Duplicate

 General Description

This command duplicates a loaded object so that it may be used in a different hierarchy. The new parent

key for the duplicate may be on the same or different TPM or TPM_RH_NULL. Only the public area of

newParentHandle is required to be loaded.

NOTE 1 Since the new parent may only be extant on a different TPM, it is likely that the new parent’s
sensitive area could not be loaded in the TPM from which objectHandle is being duplicated.

If encryptedDuplication is SET in the object being duplicated, then the TPM shall return

TPM_RC_SYMMETRIC if symmetricAlg.algorithm is TPM_ALG_NULL or TPM_RC_HIERARCHY if

newParentHandle is TPM_RH_NULL.

The authorization for this command shall be with a policy session.

If fixedParent of objectHandle→attributes is SET, the TPM shall return TPM_RC_ATTRIBUTES. If

objectHandle→nameAlg is TPM_ALG_NULL, the TPM shall return TPM_RC_TYPE.

The policySession→commandCode parameter in the policy session is required to be TPM_CC_Duplicate

to indicate that authorization for duplication has been provided. This indicates that the policy that is being

used is a policy that is for duplication, and not a policy that would approve another use. That is, authority

to use an object does not grant authority to duplicate the object.

The policy is likely to include cpHash in order to restrict where duplication can occur. If

TPM2_PolicyCpHash() has been executed as part of the policy, the policySession→cpHash is compared

to the cpHash of the command.

If TPM2_PolicyDuplicationSelect() has been executed as part of the policy, the

policySession→nameHash is compared to

 HpolicyAlg(objectHandle→Name || newParentHandle→Name) (2)

If the compared hashes are not the same, then the TPM shall return TPM_RC_POLICY_FAIL.

NOTE 2 It is allowed that policySesion→nameHash and policySession→cpHash share the same memory
space.

NOTE 3 A duplication policy is not required to have either TPM2_PolicyDuplicationSelect() or
TPM2_PolicyCpHash() as part of the policy. If neither is present, then the duplication policy may be
satisfied with a policy that only contains TPM2_PolicyCommandCode(code = TPM_CC_Duplicate).

The TPM shall follow the process of encryption defined in the “Duplication” subclause of “Protected

Storage Hierarchy” in TPM 2.0 Part 1.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 37 — TPM2_Duplicate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Duplicate

TPMI_DH_OBJECT @objectHandle

loaded object to duplicate

Auth Index: 1

Auth Role: DUP

TPMI_DH_OBJECT+ newParentHandle
shall reference the public area of an asymmetric key

Auth Index: None

TPM2B_DATA encryptionKeyIn

optional symmetric encryption key

The size for this key is set to zero when the TPM is to
generate the key. This parameter may be encrypted.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to be used for the
inner wrapper

may be TPM_ALG_NULL if no inner wrapper is applied

Table 38 — TPM2_Duplicate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DATA encryptionKeyOut

If the caller provided an encryption key or if
symmetricAlg was TPM_ALG_NULL, then this will be
the Empty Buffer; otherwise, it shall contain the TPM-
generated, symmetric encryption key for the inner
wrapper.

TPM2B_PRIVATE duplicate
private area that may be encrypted by encryptionKeyIn;
and may be doubly encrypted

TPM2B_ENCRYPTED_SECRET outSymSeed
seed protected by the asymmetric algorithms of new
parent (NP)

Part 3: Commands Trusted Platform Module Library

Page 88 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Duplicate_fp.h"

3 #if CC_Duplicate // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES key to duplicate has fixedParent SET

TPM_RC_HASH for an RSA key, the nameAlg digest size for the newParent is not
compatible with the key size

TPM_RC_HIERARCHY encryptedDuplication is SET and newParentHandle specifies Null
Hierarchy

TPM_RC_KEY newParentHandle references invalid ECC key (public point not on the
curve)

TPM_RC_SIZE input encryption key size does not match the size specified in
symmetric algorithm

TPM_RC_SYMMETRIC encryptedDuplication is SET but no symmetric algorithm is provided

TPM_RC_TYPE newParentHandle is neither a storage key nor TPM_RH_NULL; or
the object has a NULL nameAlg

TPM_RC_VALUE for an RSA newParent, the sizes of the digest and the encryption key
are too large to be OAEP encoded

5 TPM_RC

6 TPM2_Duplicate(

7 Duplicate_In *in, // IN: input parameter list

8 Duplicate_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 TPMT_SENSITIVE sensitive;

13

14 UINT16 innerKeySize = 0; // encrypt key size for inner wrap

15

16 OBJECT *object;

17 OBJECT *newParent;

18 TPM2B_DATA data;

19

20 // Input Validation

21

22 // Get duplicate object pointer

23 object = HandleToObject(in->objectHandle);

24 // Get new parent

25 newParent = HandleToObject(in->newParentHandle);

26

27 // duplicate key must have fixParent bit CLEAR.

28 if(IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, fixedParent))

29 return TPM_RCS_ATTRIBUTES + RC_Duplicate_objectHandle;

30

31 // Do not duplicate object with NULL nameAlg

32 if(object->publicArea.nameAlg == TPM_ALG_NULL)

33 return TPM_RCS_TYPE + RC_Duplicate_objectHandle;

34

35 // new parent key must be a storage object or TPM_RH_NULL

36 if(in->newParentHandle != TPM_RH_NULL

37 && !ObjectIsStorage(in->newParentHandle))

38 return TPM_RCS_TYPE + RC_Duplicate_newParentHandle;

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

39

40 // If the duplicated object has encryptedDuplication SET, then there must be

41 // an inner wrapper and the new parent may not be TPM_RH_NULL

42 if(IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT,

43 encryptedDuplication))

44 {

45 if(in->symmetricAlg.algorithm == TPM_ALG_NULL)

46 return TPM_RCS_SYMMETRIC + RC_Duplicate_symmetricAlg;

47 if(in->newParentHandle == TPM_RH_NULL)

48 return TPM_RCS_HIERARCHY + RC_Duplicate_newParentHandle;

49 }

50

51 if(in->symmetricAlg.algorithm == TPM_ALG_NULL)

52 {

53 // if algorithm is TPM_ALG_NULL, input key size must be 0

54 if(in->encryptionKeyIn.t.size != 0)

55 return TPM_RCS_SIZE + RC_Duplicate_encryptionKeyIn;

56 }

57 else

58 {

59 // Get inner wrap key size

60 innerKeySize = in->symmetricAlg.keyBits.sym;

61

62 // If provided the input symmetric key must match the size of the algorithm

63 if(in->encryptionKeyIn.t.size != 0

64 && in->encryptionKeyIn.t.size != (innerKeySize + 7) / 8)

65 return TPM_RCS_SIZE + RC_Duplicate_encryptionKeyIn;

66 }

67

68 // Command Output

69

70 if(in->newParentHandle != TPM_RH_NULL)

71 {

72 // Make encrypt key and its associated secret structure. A TPM_RC_KEY

73 // error may be returned at this point

74 out->outSymSeed.t.size = sizeof(out->outSymSeed.t.secret);

75 result = CryptSecretEncrypt(newParent, DUPLICATE_STRING, &data,

76 &out->outSymSeed);

77 if(result != TPM_RC_SUCCESS)

78 return result;

79 }

80 else

81 {

82 // Do not apply outer wrapper

83 data.t.size = 0;

84 out->outSymSeed.t.size = 0;

85 }

86

87 // Copy sensitive area

88 sensitive = object->sensitive;

89

90 // Prepare output private data from sensitive.

91 // Note: If there is no encryption key, one will be provided by

92 // SensitiveToDuplicate(). This is why the assignment of encryptionKeyIn to

93 // encryptionKeyOut will work properly and is not conditional.

94 SensitiveToDuplicate(&sensitive, &object->name.b, newParent,

95 object->publicArea.nameAlg, &data.b,

96 &in->symmetricAlg, &in->encryptionKeyIn,

97 &out->duplicate);

98

99 out->encryptionKeyOut = in->encryptionKeyIn;

100

101 return TPM_RC_SUCCESS;

102 }

103 #endif // CC_Duplicate

Part 3: Commands Trusted Platform Module Library

Page 90 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13.2 TPM2_Rewrap

 General Description

This command allows the TPM to serve in the role as a Duplication Authority. If proper authorization for

use of the oldParent is provided, then an HMAC key and a symmetric key are recovered from inSymSeed

and used to integrity check and decrypt inDuplicate. A new protection seed value is generated according

to the methods appropriate for newParent and the blob is re-encrypted and a new integrity value is

computed. The re-encrypted blob is returned in outDuplicate and the symmetric key returned in

outSymKey.

In the rewrap process, L is “DUPLICATE” (see TPM 2.0 Part 1, Terms and Definitions).

If inSymSeed has a zero length, then oldParent is required to be TPM_RH_NULL and no decryption of

inDuplicate takes place.

If newParent is TPM_RH_NULL, then no encryption is performed on outDuplicate. outSymSeed will have

a zero length. See TPM 2.0 Part 2 encryptedDuplication.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 39 — TPM2_Rewrap Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Rewrap

TPMI_DH_OBJECT+ @oldParent

parent of object

Auth Index: 1

Auth Role: User

TPMI_DH_OBJECT+ newParent
new parent of the object

Auth Index: None

TPM2B_PRIVATE inDuplicate
an object encrypted using symmetric key derived from
inSymSeed

TPM2B_NAME name the Name of the object being rewrapped

TPM2B_ENCRYPTED_SECRET inSymSeed

the seed for the symmetric key and HMAC key

needs oldParent private key to recover the seed and
generate the symmetric key

Table 40 — TPM2_Rewrap Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outDuplicate
an object encrypted using symmetric key derived from
outSymSeed

TPM2B_ENCRYPTED_SECRET outSymSeed
seed for a symmetric key protected by newParent
asymmetric key

Part 3: Commands Trusted Platform Module Library

Page 92 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Rewrap_fp.h"

3 #if CC_Rewrap // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES newParent is not a decryption key

TPM_RC_HANDLE oldParent does not consistent with inSymSeed

TPM_RC_INTEGRITY the integrity check of inDuplicate failed

TPM_RC_KEY for an ECC key, the public key is not on the curve of the curve ID

TPM_RC_KEY_SIZE the decrypted input symmetric key size does not matches the
symmetric algorithm key size of oldParent

TPM_RC_TYPE oldParent is not a storage key, or 'newParent is not a storage key

TPM_RC_VALUE for an 'oldParent; RSA key, the data to be decrypted is greater than
the public exponent

errors errors during unmarshaling the input encrypted buffer to a ECC public
key, or unmarshal the private buffer to sensitive

5 TPM_RC

6 TPM2_Rewrap(

7 Rewrap_In *in, // IN: input parameter list

8 Rewrap_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 TPM2B_DATA data; // symmetric key

13 UINT16 hashSize = 0;

14 TPM2B_PRIVATE privateBlob; // A temporary private blob

15 // to transit between old

16 // and new wrappers

17 // Input Validation

18 if((in->inSymSeed.t.size == 0 && in->oldParent != TPM_RH_NULL)

19 || (in->inSymSeed.t.size != 0 && in->oldParent == TPM_RH_NULL))

20 return TPM_RCS_HANDLE + RC_Rewrap_oldParent;

21 if(in->oldParent != TPM_RH_NULL)

22 {

23 OBJECT *oldParent = HandleToObject(in->oldParent);

24

25 // old parent key must be a storage object

26 if(!ObjectIsStorage(in->oldParent))

27 return TPM_RCS_TYPE + RC_Rewrap_oldParent;

28 // Decrypt input secret data via asymmetric decryption. A

29 // TPM_RC_VALUE, TPM_RC_KEY or unmarshal errors may be returned at this

30 // point

31 result = CryptSecretDecrypt(oldParent, NULL, DUPLICATE_STRING,

32 &in->inSymSeed, &data);

33 if(result != TPM_RC_SUCCESS)

34 return TPM_RCS_VALUE + RC_Rewrap_inSymSeed;

35 // Unwrap Outer

36 result = UnwrapOuter(oldParent, &in->name.b,

37 oldParent->publicArea.nameAlg, &data.b,

38 FALSE,

39 in->inDuplicate.t.size, in->inDuplicate.t.buffer);

40 if(result != TPM_RC_SUCCESS)

41 return RcSafeAddToResult(result, RC_Rewrap_inDuplicate);

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

42 // Copy unwrapped data to temporary variable, remove the integrity field

43 hashSize = sizeof(UINT16) +

44 CryptHashGetDigestSize(oldParent->publicArea.nameAlg);

45 privateBlob.t.size = in->inDuplicate.t.size - hashSize;

46 pAssert(privateBlob.t.size <= sizeof(privateBlob.t.buffer));

47 MemoryCopy(privateBlob.t.buffer, in->inDuplicate.t.buffer + hashSize,

48 privateBlob.t.size);

49 }

50 else

51 {

52 // No outer wrap from input blob. Direct copy.

53 privateBlob = in->inDuplicate;

54 }

55 if(in->newParent != TPM_RH_NULL)

56 {

57 OBJECT *newParent;

58 newParent = HandleToObject(in->newParent);

59

60 // New parent must be a storage object

61 if(!ObjectIsStorage(in->newParent))

62 return TPM_RCS_TYPE + RC_Rewrap_newParent;

63 // Make new encrypt key and its associated secret structure. A

64 // TPM_RC_VALUE error may be returned at this point if RSA algorithm is

65 // enabled in TPM

66 out->outSymSeed.t.size = sizeof(out->outSymSeed.t.secret);

67 result = CryptSecretEncrypt(newParent, DUPLICATE_STRING, &data,

68 &out->outSymSeed);

69 if(result != TPM_RC_SUCCESS)

70 return result;

71 // Copy temporary variable to output, reserve the space for integrity

72 hashSize = sizeof(UINT16) +

73 CryptHashGetDigestSize(newParent->publicArea.nameAlg);

74 // Make sure that everything fits into the output buffer

75 // Note: this is mostly only an issue if there was no outer wrapper on

76 // 'inDuplicate'. It could be as large as a TPM2B_PRIVATE buffer. If we add

77 // a digest for an outer wrapper, it won't fit anymore.

78 if((privateBlob.t.size + hashSize) > sizeof(out->outDuplicate.t.buffer))

79 return TPM_RCS_VALUE + RC_Rewrap_inDuplicate;

80 // Command output

81 out->outDuplicate.t.size = privateBlob.t.size;

82 pAssert(privateBlob.t.size

83 <= sizeof(out->outDuplicate.t.buffer) - hashSize);

84 MemoryCopy(out->outDuplicate.t.buffer + hashSize, privateBlob.t.buffer,

85 privateBlob.t.size);

86 // Produce outer wrapper for output

87 out->outDuplicate.t.size = ProduceOuterWrap(newParent, &in->name.b,

88 newParent->publicArea.nameAlg,

89 &data.b,

90 FALSE,

91 out->outDuplicate.t.size,

92 out->outDuplicate.t.buffer);

93 }

94 else // New parent is a null key so there is no seed

95 {

96 out->outSymSeed.t.size = 0;

97

98 // Copy privateBlob directly

99 out->outDuplicate = privateBlob;

100 }

101 return TPM_RC_SUCCESS;

102 }

103 #endif // CC_Rewrap

Part 3: Commands Trusted Platform Module Library

Page 94 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13.3 TPM2_Import

 General Description

This command allows an object to be encrypted using the symmetric encryption values of a Storage Key.

After encryption, the object may be loaded and used in the new hierarchy. The imported object (duplicate)

may be singly encrypted, multiply encrypted, or unencrypted.

If fixedTPM or fixedParent is SET in objectPublic, the TPM shall return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in the object referenced by parentHandle and encryptedDuplication is

CLEAR in objectPublic, the TPM may return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in objectPublic, then inSymSeed and encryptionKey shall not be Empty

buffers (TPM_RC_ATTRIBUTES). Recovery of the sensitive data of the object occurs in the TPM in a

multi--step process in the following order:

 If inSymSeed has a non-zero size:

1) The asymmetric parameters and private key of parentHandle are used to recover the seed used

in the creation of the HMAC key and encryption keys used to protect the duplication blob.

NOTE 1 When recovering the seed from inSymSeed, L is “DUPLICATE”.

2) The integrity value in duplicate.buffer.integrityOuter is used to verify the integrity of the data blob,

which is the remainder of duplicate.buffer (TPM_RC_INTEGRITY).

NOTE 2 The data blob will contain a TPMT_SENSITIVE and may contain a TPM2B_DIGEST for the
innerIntegrity.

3) The symmetric key recovered in 1) is used to decrypt the data blob.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by
fuzzing the data and looking at the differences in the response codes .

 If encryptionKey is not an Empty Buffer:

1) Use encryptionKey to decrypt the inner blob.

2) Use the TPM2B_DIGEST at the start of the inner blob to verify the integrity of the inner blob

(TPM_RC_INTEGRITY).

 Unmarshal the sensitive area

NOTE 4 It is not necessary to validate that the sensitive area data is cryptographically bound to the public
area other than that the Name of the public area is included in the HMAC. However, if the binding is
not validated by this command, the binding must be checked each time the object is loaded. For an
object that is imported under a parent with fixedTPM SET, binding need only be checked at import. If
the parent has fixedTPM CLEAR, then the binding needs to be checked each time the object is
loaded, or before the TPM performs an operation for which the binding affects the outcome of the
operation (for example, TPM2_PolicySigned() or TPM2_Certify()).

 Similarly, if the new parent's fixedTPM is set, the encryptedDuplication state need only be checked
at import.

If the new parent is not fixedTPM, then that object will be loadable on any TPM (including SW
versions) on which the new parent exists. This means that, each time an object is loaded under a
parent that is not fixedTPM, it is necessary to validate all of the properties of that object. If the
parent is fixedTPM, then the new private blob is integrity protected by the TPM that “owns” the
parent. So, it is sufficient to validate the object’s properties (attribute and public -private binding) on
import and not again.

If a weak symmetric key is being imported, the TPM shall return TPM_RC_KEY.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

After integrity checks and decryption, the TPM will create a new symmetrically encrypted private area

using the encryption key of the parent.

NOTE 5 The symmetric re-encryption is the normal integrity generation and symmetric encryption applied to
a child object.

NOTE 6 Revision 01.16 of this specification required the ECC private key in duplicate to be padded.

Part 3: Commands Trusted Platform Module Library

Page 96 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 41 — TPM2_Import Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Import

TPMI_DH_OBJECT @parentHandle

the handle of the new parent for the object

Auth Index: 1

Auth Role: USER

TPM2B_DATA encryptionKey

the optional symmetric encryption key used as the inner
wrapper for duplicate

If symmetricAlg is TPM_ALG_NULL, then this
parameter shall be the Empty Buffer.

TPM2B_PUBLIC objectPublic

the public area of the object to be imported

This is provided so that the integrity value for duplicate
and the object attributes can be checked.

NOTE Even if the integrity value of the object is not
checked on input, the object Name is required
to create the integrity value for the imported
object.

TPM2B_PRIVATE duplicate
the symmetrically encrypted duplicate object that may
contain an inner symmetric wrapper

TPM2B_ENCRYPTED_SECRET inSymSeed

the seed for the symmetric key and HMAC key

inSymSeed is encrypted/encoded using the algorithms
of newParent.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to use for the inner
wrapper

If this algorithm is TPM_ALG_NULL, no inner wrapper is
present and encryptionKey shall be the Empty Buffer.

Table 42 — TPM2_Import Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate
the sensitive area encrypted with the symmetric key of
parentHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Import_fp.h"

3 #if CC_Import // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES FixedTPM and fixedParent of objectPublic are not both CLEAR; or
inSymSeed is nonempty and parentHandle does not reference a
decryption key; or objectPublic and parentHandle have incompatible
or inconsistent attributes; or encrytpedDuplication is SET in
objectPublic but the inner or outer wrapper is missing. Note that if the
TPM provides parameter values, the parameter number will indicate
symmetricKey (missing inner wrapper) or inSymSeed (missing outer
wrapper)

TPM_RC_BINDING duplicate and objectPublic are not cryptographically bound

TPM_RC_ECC_POINT inSymSeed is nonempty and ECC point in inSymSeed is not on the
curve

TPM_RC_HASH objectPublic does not have a valid nameAlg

TPM_RC_INSUFFICIENT inSymSeed is nonempty and failed to retrieve ECC point from the
secret; or unmarshaling sensitive value from duplicate failed the
result of inSymSeed decryption

TPM_RC_INTEGRITY duplicate integrity is broken

TPM_RC_KDF objectPublic representing decrypting keyed hash object specifies
invalid KDF

TPM_RC_KEY inconsistent parameters of objectPublic; or inSymSeed is nonempty
and parentHandle does not reference a key of supported type; or
invalid key size in objectPublic representing an asymmetric key

TPM_RC_NO_RESULT inSymSeed is nonempty and multiplication resulted in ECC point at
infinity

TPM_RC_OBJECT_MEMORY no available object slot

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID
in objectPublic; or hash algorithm is inconsistent with the scheme ID
for keyed hash object

TPM_RC_SIZE authPolicy size does not match digest size of the name algorithm in
objectPublic; or symmetricAlg and encryptionKey have different
sizes; or inSymSeed is nonempty and it size is not consistent with the
type of parentHandle; or unmarshaling sensitive value from duplicate
failed

TPM_RC_SYMMETRIC objectPublic is either a storage key with no symmetric algorithm or a
non-storage key with symmetric algorithm different from
TPM_ALG_NULL

TPM_RC_TYPE unsupported type of objectPublic; or parentHandle is not a storage
key; or only the public portion of parentHandle is loaded; or
objectPublic and duplicate are of different types

TPM_RC_VALUE nonempty inSymSeed and its numeric value is greater than the
modulus of the key referenced by parentHandle or inSymSeed is
larger than the size of the digest produced by the name algorithm of
the symmetric key referenced by parentHandle

5 TPM_RC

Part 3: Commands Trusted Platform Module Library

Page 98 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6 TPM2_Import(

7 Import_In *in, // IN: input parameter list

8 Import_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *parentObject;

13 TPM2B_DATA data; // symmetric key

14 TPMT_SENSITIVE sensitive;

15 TPM2B_NAME name;

16 TPMA_OBJECT attributes;

17 UINT16 innerKeySize = 0; // encrypt key size for inner

18 // wrapper

19

20 // Input Validation

21 // to save typing

22 attributes = in->objectPublic.publicArea.objectAttributes;

23 // FixedTPM and fixedParent must be CLEAR

24 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM)

25 || IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedParent))

26 return TPM_RCS_ATTRIBUTES + RC_Import_objectPublic;

27

28 // Get parent pointer

29 parentObject = HandleToObject(in->parentHandle);

30

31 if(!ObjectIsParent(parentObject))

32 return TPM_RCS_TYPE + RC_Import_parentHandle;

33

34 if(in->symmetricAlg.algorithm != TPM_ALG_NULL)

35 {

36 // Get inner wrap key size

37 innerKeySize = in->symmetricAlg.keyBits.sym;

38 // Input symmetric key must match the size of algorithm.

39 if(in->encryptionKey.t.size != (innerKeySize + 7) / 8)

40 return TPM_RCS_SIZE + RC_Import_encryptionKey;

41 }

42 else

43 {

44 // If input symmetric algorithm is NULL, input symmetric key size must

45 // be 0 as well

46 if(in->encryptionKey.t.size != 0)

47 return TPM_RCS_SIZE + RC_Import_encryptionKey;

48 // If encryptedDuplication is SET, then the object must have an inner

49 // wrapper

50 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, encryptedDuplication))

51 return TPM_RCS_ATTRIBUTES + RC_Import_encryptionKey;

52 }

53 // See if there is an outer wrapper

54 if(in->inSymSeed.t.size != 0)

55 {

56 // in->inParentHandle is a parent, but in order to decrypt an outer wrapper,

57 // it must be able to do key exchange and a symmetric key can't do that.

58 if(parentObject->publicArea.type == TPM_ALG_SYMCIPHER)

59 return TPM_RCS_TYPE + RC_Import_parentHandle;

60

61 // Decrypt input secret data via asymmetric decryption. TPM_RC_ATTRIBUTES,

62 // TPM_RC_ECC_POINT, TPM_RC_INSUFFICIENT, TPM_RC_KEY, TPM_RC_NO_RESULT,

63 // TPM_RC_SIZE, TPM_RC_VALUE may be returned at this point

64 result = CryptSecretDecrypt(parentObject, NULL, DUPLICATE_STRING,

65 &in->inSymSeed, &data);

66 pAssert(result != TPM_RC_BINDING);

67 if(result != TPM_RC_SUCCESS)

68 return RcSafeAddToResult(result, RC_Import_inSymSeed);

69 }

70 else

71 {

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

72 // If encrytpedDuplication is set, then the object must have an outer

73 // wrapper

74 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, encryptedDuplication))

75 return TPM_RCS_ATTRIBUTES + RC_Import_inSymSeed;

76 data.t.size = 0;

77 }

78 // Compute name of object

79 PublicMarshalAndComputeName(&(in->objectPublic.publicArea), &name);

80 if(name.t.size == 0)

81 return TPM_RCS_HASH + RC_Import_objectPublic;

82

83 // Retrieve sensitive from private.

84 // TPM_RC_INSUFFICIENT, TPM_RC_INTEGRITY, TPM_RC_SIZE may be returned here.

85 result = DuplicateToSensitive(&in->duplicate.b, &name.b, parentObject,

86 in->objectPublic.publicArea.nameAlg,

87 &data.b, &in->symmetricAlg,

88 &in->encryptionKey.b, &sensitive);

89 if(result != TPM_RC_SUCCESS)

90 return RcSafeAddToResult(result, RC_Import_duplicate);

91

92 // If the parent of this object has fixedTPM SET, then validate this

93 // object as if it were being loaded so that validation can be skipped

94 // when it is actually loaded.

95 if(IS_ATTRIBUTE(parentObject->publicArea.objectAttributes, TPMA_OBJECT, fixedTPM))

96 {

97 result = ObjectLoad(NULL, NULL, &in->objectPublic.publicArea,

98 &sensitive, RC_Import_objectPublic, RC_Import_duplicate,

99 NULL);

100 }

101 // Command output

102 if(result == TPM_RC_SUCCESS)

103 {

104 // Prepare output private data from sensitive

105 SensitiveToPrivate(&sensitive, &name, parentObject,

106 in->objectPublic.publicArea.nameAlg,

107 &out->outPrivate);

108 }

109 return result;

110 }

111 #endif // CC_Import

Part 3: Commands Trusted Platform Module Library

Page 100 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14 Asymmetric Primitives

14.1 Introduction

The commands in this clause provide low-level primitives for access to the asymmetric algorithms

implemented in the TPM. Many of these commands are only allowed if the asymmetric key is an

unrestricted key.

14.2 TPM2_RSA_Encrypt

 General Description

This command performs RSA encryption using the indicated padding scheme according to IETF RFC

8017. If the scheme of keyHandle is TPM_ALG_NULL, then the caller may use inScheme to specify the

padding scheme. If scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be

TPM_ALG_NULL or be the same as scheme (TPM_RC_SCHEME).

The key referenced by keyHandle is required to be an RSA key (TPM_RC_KEY).

The three types of allowed padding are:

1) TPM_ALG_OAEP – Data is OAEP padded as described in 7.1 of IETF RFC 8017 (PKCS#1).

The only supported mask generation is MGF1.

2) TPM_ALG_RSAES – Data is padded as described in 7.2 of IETF RFC 8017 (PKCS#1).

3) TPM_ALG_NULL – Data is not padded by the TPM and the TPM will treat message as an

unsigned integer and perform a modular exponentiation of message using the public

exponent of the key referenced by keyHandle. This scheme is only used if both the scheme

in the key referenced by keyHandle is TPM_ALG_NULL, and the inScheme parameter of the

command is TPM_ALG_NULL. The input value cannot be larger than the public modulus of

the key referenced by keyHandle.

Table 43 — Padding Scheme Selection

keyHandle→scheme inScheme padding scheme used

TPM_ALG_NULL

TPM_ALG_NULL none

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP OAEP

TPM_ALG_RSAES

TPM_ALG_NULL RSAES

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP error (TPM_RC_SCHEME)

TPM_ALG_OAEP

TPM_ALG_NULL OAEP

TPM_ALG_RSAES error (TPM_RC_SCHEME)

TPM_ALG_OAEP OAEP

After padding, the data is RSAEP encrypted according to 5.1.1 of IETF RFC 8017 (PKCS#1).

If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

NOTE 1 Because only the public portion of the key needs to be loaded for this command, the caller can
manipulate the attributes of the key in any way desired. As a result, the TPM shall not check the
consistency of the attributes. The only property checking is that the key is an RSA key and that the
padding scheme is supported.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The message parameter is limited in size by the padding scheme according to the following table:

Table 44 — Message Size Limits Based on Padding

Scheme
Maximum Message Length (mLen)

in Octets Comments

TPM_ALG_OAEP mLen k – 2hLen – 2

TPM_ALG_RSAES mLen k – 11

TPM_ALG_NULL mLen k The numeric value of the message must be
less than the numeric value of the public

modulus (n).

NOTES

1) k ≔ the number of byes in the public modulus

2) hLen ≔ the number of octets in the digest produced by the hash algorithm used in the process

The label parameter is optional. If provided (label.size != 0) then the TPM shall return TPM_RC_VALUE if

the last octet in label is not zero. The terminating octet of zero is included in the label used in the padding

scheme.

NOTE 2 If the scheme does not use a label, the TPM will still verify that label is properly formatted if label is
present.

NOTE 3 Specifications before version 1.54 stated that label is truncated after the first zero octet.
Applications should not include embedded zero bytes for compatibility.

The function returns padded and encrypted value outData.

The message parameter in the command may be encrypted using parameter encryption.

NOTE 4 Only the public area of keyHandle is required to be loaded. A public key may be loaded with any
desired scheme. If the scheme is to be changed, a different public area must be loaded.

Part 3: Commands Trusted Platform Module Library

Page 102 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 45 — TPM2_RSA_Encrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Encrypt

TPMI_DH_OBJECT keyHandle

reference to public portion of RSA key to use for
encryption

Auth Index: None

TPM2B_PUBLIC_KEY_RSA message

message to be encrypted

NOTE 1 The data type was chosen because it limits
the overall size of the input to no greater than
the size of the largest RSA public key. This
may be larger than allowed for keyHandle.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label

optional label L to be associated with the message

Size of the buffer is zero if no label is present

NOTE 2 See description of label above.

Table 46 — TPM2_RSA_Encrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA outData encrypted output

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "RSA_Encrypt_fp.h"

3 #if CC_RSA_Encrypt // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES decrypt attribute is not SET in key referenced by keyHandle

TPM_RC_KEY keyHandle does not reference an RSA key

TPM_RC_SCHEME incorrect input scheme, or the chosen scheme is not a valid RSA
decrypt scheme

TPM_RC_VALUE the numeric value of message is greater than the public modulus of
the key referenced by keyHandle, or label is not a null-terminated
string

4 TPM_RC

5 TPM2_RSA_Encrypt(

6 RSA_Encrypt_In *in, // IN: input parameter list

7 RSA_Encrypt_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *rsaKey;

12 TPMT_RSA_DECRYPT *scheme;

13 // Input Validation

14 rsaKey = HandleToObject(in->keyHandle);

15

16 // selected key must be an RSA key

17 if(rsaKey->publicArea.type != TPM_ALG_RSA)

18 return TPM_RCS_KEY + RC_RSA_Encrypt_keyHandle;

19 // selected key must have the decryption attribute

20 if(!IS_ATTRIBUTE(rsaKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

21 return TPM_RCS_ATTRIBUTES + RC_RSA_Encrypt_keyHandle;

22

23 // Is there a label?

24 if(!IsLabelProperlyFormatted(&in->label.b))

25 return TPM_RCS_VALUE + RC_RSA_Encrypt_label;

26 // Command Output

27 // Select a scheme for encryption

28 scheme = CryptRsaSelectScheme(in->keyHandle, &in->inScheme);

29 if(scheme == NULL)

30 return TPM_RCS_SCHEME + RC_RSA_Encrypt_inScheme;

31

32 // Encryption. TPM_RC_VALUE, or TPM_RC_SCHEME errors my be returned buy

33 // CryptEncyptRSA.

34 out->outData.t.size = sizeof(out->outData.t.buffer);

35

36 result = CryptRsaEncrypt(&out->outData, &in->message.b, rsaKey, scheme,

37 &in->label.b, NULL);

38 return result;

39 }

40 #endif // CC_RSA_Encrypt

Part 3: Commands Trusted Platform Module Library

Page 104 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.3 TPM2_RSA_Decrypt

 General Description

This command performs RSA decryption using the indicated padding scheme according to IETF RFC

8017 ((PKCS#1).

The scheme selection for this command is the same as for TPM2_RSA_Encrypt() and is shown in Table

43.

The key referenced by keyHandle shall be an RSA key (TPM_RC_KEY) with restricted CLEAR and

decrypt SET (TPM_RC_ATTRIBUTES).

This command uses the private key of keyHandle for this operation and authorization is required.

The TPM will perform a modular exponentiation of ciphertext using the private exponent associated with

keyHandle (this is described in IETF RFC 8017 (PKCS#1), clause 5.1.2). It will then validate the padding

according to the selected scheme. If the padding checks fail, TPM_RC_VALUE is returned. Otherwise,

the data is returned with the padding removed. If no padding is used, the returned value is an unsigned

integer value that is the result of the modular exponentiation of cipherText using the private exponent of

keyHandle. The returned value may include leading octets zeros so that it is the same size as the public

modulus. For the other padding schemes, the returned value will be smaller than the public modulus but

will contain all the data remaining after padding is removed and this may include leading zeros if the

original encrypted value contained leading zeros.

If a label is used in the padding process of the scheme during encryption, the label parameter is required

to be present in the decryption process and label is required to be the same in both cases. If label is not

the same, the decrypt operation is very likely to fail ((TPM_RC_VALUE). If label is present (label.size !=

0), it shall be a byte stream whose last byte is zero or the TPM will return TPM_RC_VALUE.

NOTE 1 The size of label includes the terminating null.

The message parameter in the response may be encrypted using parameter encryption.

 If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

If the scheme does not require a label, the value in label is not used but the size of the label field is

checked for consistency with the indicated data type (TPM2B_DATA). That is, the field may not be larger

than allowed for a TPM2B_DATA.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 47 — TPM2_RSA_Decrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Decrypt

TPMI_DH_OBJECT @keyHandle

RSA key to use for decryption

Auth Index: 1

Auth Role: USER

TPM2B_PUBLIC_KEY_RSA cipherText

cipher text to be decrypted

NOTE An encrypted RSA data block is the size of
the public modulus.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label
label whose association with the message is to be
verified

Table 48 — TPM2_RSA_Decrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA message decrypted output

Part 3: Commands Trusted Platform Module Library

Page 106 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "RSA_Decrypt_fp.h"

3 #if CC_RSA_Decrypt // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES decrypt is not SET or if restricted is SET in the key referenced by
keyHandle

TPM_RC_BINDING The public and private parts of the key are not properly bound

TPM_RC_KEY keyHandle does not reference an unrestricted decrypt key

TPM_RC_SCHEME incorrect input scheme, or the chosen scheme is not a valid RSA
decrypt scheme

TPM_RC_SIZE cipherText is not the size of the modulus of key referenced by
keyHandle

TPM_RC_VALUE label is not a null terminated string or the value of cipherText is
greater that the modulus of keyHandle or the encoding of the data is
not valid

4 TPM_RC

5 TPM2_RSA_Decrypt(

6 RSA_Decrypt_In *in, // IN: input parameter list

7 RSA_Decrypt_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *rsaKey;

12 TPMT_RSA_DECRYPT *scheme;

13

14 // Input Validation

15

16 rsaKey = HandleToObject(in->keyHandle);

17

18 // The selected key must be an RSA key

19 if(rsaKey->publicArea.type != TPM_ALG_RSA)

20 return TPM_RCS_KEY + RC_RSA_Decrypt_keyHandle;

21

22 // The selected key must be an unrestricted decryption key

23 if(IS_ATTRIBUTE(rsaKey->publicArea.objectAttributes, TPMA_OBJECT, restricted)

24 || !IS_ATTRIBUTE(rsaKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

25 return TPM_RCS_ATTRIBUTES + RC_RSA_Decrypt_keyHandle;

26

27 // NOTE: Proper operation of this command requires that the sensitive area

28 // of the key is loaded. This is assured because authorization is required

29 // to use the sensitive area of the key. In order to check the authorization,

30 // the sensitive area has to be loaded, even if authorization is with policy.

31

32 // If label is present, make sure that it is a NULL-terminated string

33 if(!IsLabelProperlyFormatted(&in->label.b))

34 return TPM_RCS_VALUE + RC_RSA_Decrypt_label;

35 // Command Output

36 // Select a scheme for decrypt.

37 scheme = CryptRsaSelectScheme(in->keyHandle, &in->inScheme);

38 if(scheme == NULL)

39 return TPM_RCS_SCHEME + RC_RSA_Decrypt_inScheme;

40

41 // Decryption. TPM_RC_VALUE, TPM_RC_SIZE, and TPM_RC_KEY error may be

42 // returned by CryptRsaDecrypt.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

43 // NOTE: CryptRsaDecrypt can also return TPM_RC_ATTRIBUTES or TPM_RC_BINDING

44 // when the key is not a decryption key but that was checked above.

45 out->message.t.size = sizeof(out->message.t.buffer);

46 result = CryptRsaDecrypt(&out->message.b, &in->cipherText.b, rsaKey,

47 scheme, &in->label.b);

48 return result;

49 }

50 #endif // CC_RSA_Decrypt

Part 3: Commands Trusted Platform Module Library

Page 108 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.4 TPM2_ECDH_KeyGen

 General Description

This command uses the TPM to generate an ephemeral key pair (de, Qe where Qe ≔ [de]G). It uses the

private ephemeral key and a loaded public key (QS) to compute the shared secret value (P ≔ [hde]QS).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY). The sensitive portion of this key need not

be loaded.

The curve parameters of the loaded ECC key are used to generate the ephemeral key.

NOTE This function is the equivalent of encrypting data to another object’s public key. The seed value is
used in a KDF to generate a symmetric key and that key is used to encrypt the data. Once the data
is encrypted and the symmetric key discarded, only the object with the private portion of the
keyHandle will be able to decrypt it.

The zPoint in the response may be encrypted using parameter encryption.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 49 — TPM2_ECDH_KeyGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_KeyGen

TPMI_DH_OBJECT keyHandle
Handle of a loaded ECC key public area.

Auth Index: None

Table 50 — TPM2_ECDH_KeyGen Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT zPoint results of P ≔ h[de]Qs

TPM2B_ECC_POINT pubPoint generated ephemeral public point (Qe)

Part 3: Commands Trusted Platform Module Library

Page 110 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ECDH_KeyGen_fp.h"

3 #if CC_ECDH_KeyGen // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY keyHandle does not reference an ECC key

4 TPM_RC

5 TPM2_ECDH_KeyGen(

6 ECDH_KeyGen_In *in, // IN: input parameter list

7 ECDH_KeyGen_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *eccKey;

11 TPM2B_ECC_PARAMETER sensitive;

12 TPM_RC result;

13

14 // Input Validation

15

16 eccKey = HandleToObject(in->keyHandle);

17

18 // Referenced key must be an ECC key

19 if(eccKey->publicArea.type != TPM_ALG_ECC)

20 return TPM_RCS_KEY + RC_ECDH_KeyGen_keyHandle;

21

22 // Command Output

23 do

24 {

25 TPMT_PUBLIC *keyPublic = &eccKey->publicArea;

26 // Create ephemeral ECC key

27 result = CryptEccNewKeyPair(&out->pubPoint.point, &sensitive,

28 keyPublic->parameters.eccDetail.curveID);

29 if(result == TPM_RC_SUCCESS)

30 {

31 // Compute Z

32 result = CryptEccPointMultiply(&out->zPoint.point,

33 keyPublic->parameters.eccDetail.curveID,

34 &keyPublic->unique.ecc,

35 &sensitive,

36 NULL, NULL);

37 // The point in the key is not on the curve. Indicate

38 // that the key is bad.

39 if(result == TPM_RC_ECC_POINT)

40 return TPM_RCS_KEY + RC_ECDH_KeyGen_keyHandle;

41 // The other possible error from CryptEccPointMultiply is

42 // TPM_RC_NO_RESULT indicating that the multiplication resulted in

43 // the point at infinity, so get a new random key and start over

44 // BTW, this never happens.

45 }

46 } while(result == TPM_RC_NO_RESULT);

47 return result;

48 }

49 #endif // CC_ECDH_KeyGen

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14.5 TPM2_ECDH_ZGen

 General Description

This command uses the TPM to recover the Z value from a public point (QB) and a private key (ds). It will

perform the multiplication of the provided inPoint (QB) with the private key (ds) and return the coordinates

of the resultant point (Z = (xZ , yZ) ≔ [hds]QB; where h is the cofactor of the curve).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY) with the restricted attribute CLEAR and the

decrypt attribute SET (TPM_RC_ATTRIBUTES).

NOTE While TPM_RC_ATTRIBUTES is preferred, TPM_RC_KEY is acceptable.

The scheme of the key referenced by keyHandle is required to be either TPM_ALG_ECDH or

TPM_ALG_NULL (TPM_RC_SCHEME).

inPoint is required to be on the curve of the key referenced by keyHandle (TPM_RC_ECC_POINT).

The parameters of the key referenced by keyHandle are used to perform the point multiplication.

Part 3: Commands Trusted Platform Module Library

Page 112 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 51 — TPM2_ECDH_ZGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_ZGen

TPMI_DH_OBJECT @keyHandle

handle of a loaded ECC key

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inPoint a public key

Table 52 — TPM2_ECDH_ZGen Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outPoint
X and Y coordinates of the product of the multiplication

Z = (xZ , yZ) ≔ [hdS]QB

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ECDH_ZGen_fp.h"

3 #if CC_ECDH_ZGen // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key

TPM_RC_KEY key referenced by keyA is not an ECC key

TPM_RC_NO_RESULT multiplying inPoint resulted in a point at infinity

TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH,

4 TPM_RC

5 TPM2_ECDH_ZGen(

6 ECDH_ZGen_In *in, // IN: input parameter list

7 ECDH_ZGen_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *eccKey;

12

13 // Input Validation

14 eccKey = HandleToObject(in->keyHandle);

15

16 // Selected key must be a non-restricted, decrypt ECC key

17 if(eccKey->publicArea.type != TPM_ALG_ECC)

18 return TPM_RCS_KEY + RC_ECDH_ZGen_keyHandle;

19 // Selected key needs to be unrestricted with the 'decrypt' attribute

20 if(IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, restricted)

21 || !IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

22 return TPM_RCS_ATTRIBUTES + RC_ECDH_ZGen_keyHandle;

23 // Make sure the scheme allows this use

24 if(eccKey->publicArea.parameters.eccDetail.scheme.scheme != TPM_ALG_ECDH

25 && eccKey->publicArea.parameters.eccDetail.scheme.scheme != TPM_ALG_NULL)

26 return TPM_RCS_SCHEME + RC_ECDH_ZGen_keyHandle;

27 // Command Output

28 // Compute Z. TPM_RC_ECC_POINT or TPM_RC_NO_RESULT may be returned here.

29 result = CryptEccPointMultiply(&out->outPoint.point,

30 eccKey->publicArea.parameters.eccDetail.curveID,

31 &in->inPoint.point,

32 &eccKey->sensitive.sensitive.ecc,

33 NULL, NULL);

34 if(result != TPM_RC_SUCCESS)

35 return RcSafeAddToResult(result, RC_ECDH_ZGen_inPoint);

36 return result;

37 }

38 #endif // CC_ECDH_ZGen

Part 3: Commands Trusted Platform Module Library

Page 114 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.6 TPM2_ECC_Parameters

 General Description

This command returns the parameters of an ECC curve identified by its TCG-assigned curveID.

The value returned is the same as that from the TCG Algorithm Registry, but may not be the same size.

EXAMPLE The value 01 may be returned as 00000001.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 53 — TPM2_ECC_Parameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECC_Parameters

TPMI_ECC_CURVE curveID parameter set selector

Table 54 — TPM2_ECC_Parameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_ALGORITHM_DETAIL_ECC parameters ECC parameters for the selected curve

Part 3: Commands Trusted Platform Module Library

Page 116 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ECC_Parameters_fp.h"

3 #if CC_ECC_Parameters // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE Unsupported ECC curve ID

4 TPM_RC

5 TPM2_ECC_Parameters(

6 ECC_Parameters_In *in, // IN: input parameter list

7 ECC_Parameters_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // Get ECC curve parameters

13 if(CryptEccGetParameters(in->curveID, &out->parameters))

14 return TPM_RC_SUCCESS;

15 else

16 return TPM_RCS_VALUE + RC_ECC_Parameters_curveID;

17 }

18 #endif // CC_ECC_Parameters

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14.7 TPM2_ZGen_2Phase

 General Description

This command supports two-phase key exchange protocols. The command is used in combination with

TPM2_EC_Ephemeral(). TPM2_EC_Ephemeral() generates an ephemeral key and returns the public

point of that ephemeral key along with a numeric value that allows the TPM to regenerate the associated

private key.

The input parameters for this command are a static public key (inQsU), an ephemeral key (inQeU) from

party B, and the commitCounter returned by TPM2_EC_Ephemeral(). The TPM uses the counter value to

regenerate the ephemeral private key (de,V) and the associated public key (Qe,V). keyA provides the static

ephemeral elements ds,V and Qs,V. This provides the two pairs of ephemeral and static keys that are

required for the schemes supported by this command.

The TPM will compute Z or Zs and Ze according to the selected scheme. If the scheme is not a two-phase

key exchange scheme or if the scheme is not supported, the TPM will return TPM_RC_SCHEME.

It is an error if inQsB or inQeB are not on the curve of keyA (TPM_RC_ECC_POINT).

The two-phase key schemes that were assigned an algorithm ID as of the time of the publication of this

specification are TPM_ALG_ECDH, TPM_ALG_ECMQV, and TPM_ALG_SM2.

If this command is supported, then support for TPM_ALG_ECDH is required. Support for

TPM_ALG_ECMQV or TPM_ALG_SM2 is optional.

NOTE 1 If SM2 is supported and this command is supported, then the implementation is required to support
the key exchange protocol of SM2, part 3.

For TPM_ALG_ECDH outZ1 will be Zs and outZ2 will Ze as defined in 6.1.1.2 of SP800-56A.

NOTE 2 An unrestricted decryption key using ECDH may be used in either TPM2_ECDH_ZGen() or
TPM2_ZGen_2Phase as the computation done with the private part of keyA is the same in both
cases.

For TPM_ALG_ECMQV or TPM_ALG_SM2 outZ1 will be Z and outZ2 will be an Empty Point.

NOTE 3 An Empty Point has two Empty Buffers as coordinates meaning the minimum size value for outZ2
will be four.

If the input scheme is TPM_ALG_ECDH, then outZ1 will be Zs and outZ2 will be Ze. For schemes like

MQV (including SM2), outZ1 will contain the computed value and outZ2 will be an Empty Point.

NOTE 4 The Z values returned by the TPM are a full point and not just an x -coordinate.

If a computation of either Z produces the point at infinity, then the corresponding Z value will be an Empty

Point.

Part 3: Commands Trusted Platform Module Library

Page 118 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 55 — TPM2_ZGen_2Phase Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ZGen_2Phase

TPMI_DH_OBJECT @keyA

handle of an unrestricted decryption key ECC

The private key referenced by this handle is used as dS,A

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inQsB other party’s static public key (Qs,B = (Xs,B, Ys,B))

TPM2B_ECC_POINT inQeB other party's ephemeral public key (Qe,B = (Xe,B, Ye,B))

TPMI_ECC_KEY_EXCHANGE inScheme the key exchange scheme

UINT16 counter value returned by TPM2_EC_Ephemeral()

Table 56 — TPM2_ZGen_2Phase Response

Type Name Description

TPM_ST tag

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outZ1
X and Y coordinates of the computed value (scheme
dependent)

TPM2B_ECC_POINT outZ2
X and Y coordinates of the second computed value
(scheme dependent)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ZGen_2Phase_fp.h"

3 #if CC_ZGen_2Phase // Conditional expansion of this file

This command uses the TPM to recover one or two Z values in a two phase key exchange protocol

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key

TPM_RC_ECC_POINT inQsB or inQeB is not on the curve of the key reference by keyA

TPM_RC_KEY key referenced by keyA is not an ECC key

TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH, ALG_ECMQV or TPM_ALG_SM2

4 TPM_RC

5 TPM2_ZGen_2Phase(

6 ZGen_2Phase_In *in, // IN: input parameter list

7 ZGen_2Phase_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *eccKey;

12 TPM2B_ECC_PARAMETER r;

13 TPM_ALG_ID scheme;

14

15 // Input Validation

16

17 eccKey = HandleToObject(in->keyA);

18

19 // keyA must be an ECC key

20 if(eccKey->publicArea.type != TPM_ALG_ECC)

21 return TPM_RCS_KEY + RC_ZGen_2Phase_keyA;

22

23 // keyA must not be restricted and must be a decrypt key

24 if(IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, restricted)

25 || !IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

26 return TPM_RCS_ATTRIBUTES + RC_ZGen_2Phase_keyA;

27

28 // if the scheme of keyA is TPM_ALG_NULL, then use the input scheme; otherwise

29 // the input scheme must be the same as the scheme of keyA

30 scheme = eccKey->publicArea.parameters.asymDetail.scheme.scheme;

31 if(scheme != TPM_ALG_NULL)

32 {

33 if(scheme != in->inScheme)

34 return TPM_RCS_SCHEME + RC_ZGen_2Phase_inScheme;

35 }

36 else

37 scheme = in->inScheme;

38 if(scheme == TPM_ALG_NULL)

39 return TPM_RCS_SCHEME + RC_ZGen_2Phase_inScheme;

40

41 // Input points must be on the curve of keyA

42 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

43 &in->inQsB.point))

44 return TPM_RCS_ECC_POINT + RC_ZGen_2Phase_inQsB;

45

46 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

47 &in->inQeB.point))

48 return TPM_RCS_ECC_POINT + RC_ZGen_2Phase_inQeB;

Part 3: Commands Trusted Platform Module Library

Page 120 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

49

50 if(!CryptGenerateR(&r, &in->counter,

51 eccKey->publicArea.parameters.eccDetail.curveID,

52 NULL))

53 return TPM_RCS_VALUE + RC_ZGen_2Phase_counter;

54

55 // Command Output

56

57 result =

58 CryptEcc2PhaseKeyExchange(&out->outZ1.point,

59 &out->outZ2.point,

60 eccKey->publicArea.parameters.eccDetail.curveID,

61 scheme,

62 &eccKey->sensitive.sensitive.ecc,

63 &r,

64 &in->inQsB.point,

65 &in->inQeB.point);

66 if(result == TPM_RC_SCHEME)

67 return TPM_RCS_SCHEME + RC_ZGen_2Phase_inScheme;

68

69 if(result == TPM_RC_SUCCESS)

70 CryptEndCommit(in->counter);

71

72 return result;

73 }

74 #endif // CC_ZGen_2Phase

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15 Symmetric Primitives

15.1 Introduction

The commands in this clause provide low-level primitives for access to the symmetric algorithms

implemented in the TPM that operate on blocks of data. These include symmetric encryption and

decryption as well as hash and HMAC. All of the commands in this group are stateless. That is, they have

no persistent state that is retained in the TPM when the command is complete.

For hashing, HMAC, and Events that require large blocks of data with retained state, the sequence

commands are provided (see clause 1).

Some of the symmetric encryption/decryption modes use an IV. When an IV is used, it may be an

initiation value or a chained value from a previous stage. The chaining for each mode is:

Part 3: Commands Trusted Platform Module Library

Page 122 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 57 — Symmetric Chaining Process

Mode Chaining process

TPM_ALG_CTR The TPM will increment the entire IV provided by the caller. The next count value will be
returned to the caller as ivOut. This can be the input value to the next encrypt or decrypt
operation.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

EXAMPLE 1 AES requires that ivIn be 128 bits (16 octets).

ivOut will be the size of a cipher block and not the size of the last encrypted block.

NOTE ivOut will be the value of the counter after the last block is encrypted.

EXAMPLE 2 If ivIn were 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0016 and four data blocks
 were encrypted, ivOut will have a value of
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0416.

All the bits of the IV are incremented as if it were an unsigned integer.

TPM_ALG_OFB In Output Feedback (OFB), the output of the pseudo-random function (the block encryption
algorithm) is XORed with a plaintext block to produce a ciphertext block. ivOut will be the
value that was XORed with the last plaintext block. That value can be used as the ivIn for a
next buffer.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_CBC For Cipher Block Chaining (CBC), a block of ciphertext is XORed with the next plaintext
block and that block is encrypted. The encrypted block is then input to the encryption of the
next block. The last ciphertext block then is used as an IV for the next buffer.

Even though the last ciphertext block is evident in the encrypted data, it is also returned in
ivOut.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

TPM_ALG_CFB Similar to CBC in that the last ciphertext block is an input to the encryption of the next block.
ivOut will be the value that was XORed with the last plaintext block. That value can be used
as the ivIn for a next buffer.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_ECB Electronic Codebook (ECB) has no chaining. Each block of plaintext is encrypted using the
key. ECB does not support chaining and ivIn shall be the Empty Buffer. ivOut will be the
Empty Buffer.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.2 TPM2_EncryptDecrypt

 General Description

NOTE 1 This command is deprecated, and TPM2_EncryptDecrypt2() is preferred. This should be reflected in
platform-specific specifications.

This command performs symmetric encryption or decryption using the symmetric key referenced by

keyHandle and the selected mode.

keyHandle shall reference a symmetric cipher object (TPM_RC_KEY) with the restricted attribute CLEAR

(TPM_RC_ATTRIBUTES).

If the decrypt parameter of the command is TRUE, then the decrypt attribute of the key is required to be

SET (TPM_RC_ATTRIBUTES). If the decrypt parameter of the command is FALSE, then the sign

attribute of the key is required to be SET (TPM_RC_ATTRIBUTES).

NOTE 2 A key may have both decrypt and sign SET.

If the mode of the key is not TPM_ALG_NULL, then that is the only mode that can be used with the key

and the caller is required to set mode either to TPM_ALG_NULL or to the same mode as the key

(TPM_RC_MODE). If the mode of the key is TPM_ALG_NULL, then the caller may set mode to any valid

symmetric encryption/decryption mode but may not select TPM_ALG_NULL (TPM_RC_MODE).

If the TPM allows this command to be canceled before completion, then the TPM may produce

incremental results and return TPM_RC_SUCCESS rather than TPM_RC_CANCELED. In such case,

outData may be less than inData.

NOTE 3 If all the data is encrypted/decrypted, the size of outData will be the same as inData.

Part 3: Commands Trusted Platform Module Library

Page 124 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 58 — TPM2_EncryptDecrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_CIPHER_MODE+ mode

symmetric encryption/decryption mode

this field shall match the default mode of the key or be
TPM_ALG_NULL.

TPM2B_IV ivIn an initial value as required by the algorithm

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

Table 59 — TPM2_EncryptDecrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted or decrypted output

TPM2B_IV ivOut chaining value to use for IV in next round

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "EncryptDecrypt_fp.h"

3 #if CC_EncryptDecrypt2

4 #include "EncryptDecrypt_spt_fp.h"

5 #endif

6 #if CC_EncryptDecrypt // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private
portions loaded

TPM_RC_SIZE IvIn size is incompatible with the block cipher mode; or inData size is
not an even multiple of the block size for CBC or ECB mode

TPM_RC_VALUE keyHandle is restricted and the argument mode does not match the
key's mode

7 TPM_RC

8 TPM2_EncryptDecrypt(

9 EncryptDecrypt_In *in, // IN: input parameter list

10 EncryptDecrypt_Out *out // OUT: output parameter list

11)

12 {

13 #if CC_EncryptDecrypt2

14 return EncryptDecryptShared(in->keyHandle, in->decrypt, in->mode,

15 &in->ivIn, &in->inData, out);

16 #else

17 OBJECT *symKey;

18 UINT16 keySize;

19 UINT16 blockSize;

20 BYTE *key;

21 TPM_ALG_ID alg;

22 TPM_ALG_ID mode;

23 TPM_RC result;

24 BOOL OK;

25 TPMA_OBJECT attributes;

26

27 // Input Validation

28 symKey = HandleToObject(in->keyHandle);

29 mode = symKey->publicArea.parameters.symDetail.sym.mode.sym;

30 attributes = symKey->publicArea.objectAttributes;

31

32 // The input key should be a symmetric key

33 if(symKey->publicArea.type != TPM_ALG_SYMCIPHER)

34 return TPM_RCS_KEY + RC_EncryptDecrypt_keyHandle;

35 // The key must be unrestricted and allow the selected operation

36 OK = IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted)

37 if(YES == in->decrypt)

38 OK = OK && IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt);

39 else

40 OK = OK && IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign);

41 if(!OK)

42 return TPM_RCS_ATTRIBUTES + RC_EncryptDecrypt_keyHandle;

43

44 // If the key mode is not TPM_ALG_NULL...

45 // or TPM_ALG_NULL

46 if(mode != TPM_ALG_NULL)

47 {

48 // then the input mode has to be TPM_ALG_NULL or the same as the key

49 if((in->mode != TPM_ALG_NULL) && (in->mode != mode))

Part 3: Commands Trusted Platform Module Library

Page 126 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

50 return TPM_RCS_MODE + RC_EncryptDecrypt_mode;

51 }

52 else

53 {

54 // if the key mode is null, then the input can't be null

55 if(in->mode == TPM_ALG_NULL)

56 return TPM_RCS_MODE + RC_EncryptDecrypt_mode;

57 mode = in->mode;

58 }

59 // The input iv for ECB mode should be an Empty Buffer. All the other modes

60 // should have an iv size same as encryption block size

61 keySize = symKey->publicArea.parameters.symDetail.sym.keyBits.sym;

62 alg = symKey->publicArea.parameters.symDetail.sym.algorithm;

63 blockSize = CryptGetSymmetricBlockSize(alg, keySize);

64

65 // reverify the algorithm. This is mainly to keep static analysis tools happy

66 if(blockSize == 0)

67 return TPM_RCS_KEY + RC_EncryptDecrypt_keyHandle;

68

69 // Note: When an algorithm is not supported by a TPM, the TPM_ALG_xxx for that

70 // algorithm is not defined. However, it is assumed that the ALG_xxx_VALUE for

71 // the algorithm is always defined. Both have the same numeric value.

72 // ALG_xxx_VALUE is used here so that the code does not get cluttered with

73 // #ifdef's. Having this check does not mean that the algorithm is supported.

74 // If it was not supported the unmarshaling code would have rejected it before

75 // this function were called. This means that, depending on the implementation,

76 // the check could be redundant but it doesn't hurt.

77 if(((mode == ALG_ECB_VALUE) && (in->ivIn.t.size != 0))

78 || ((mode != ALG_ECB_VALUE) && (in->ivIn.t.size != blockSize)))

79 return TPM_RCS_SIZE + RC_EncryptDecrypt_ivIn;

80

81 // The input data size of CBC mode or ECB mode must be an even multiple of

82 // the symmetric algorithm's block size

83 if(((mode == ALG_CBC_VALUE) || (mode == ALG_ECB_VALUE))

84 && ((in->inData.t.size % blockSize) != 0))

85 return TPM_RCS_SIZE + RC_EncryptDecrypt_inData;

86

87 // Copy IV

88 // Note: This is copied here so that the calls to the encrypt/decrypt functions

89 // will modify the output buffer, not the input buffer

90 out->ivOut = in->ivIn;

91

92 // Command Output

93 key = symKey->sensitive.sensitive.sym.t.buffer;

94 // For symmetric encryption, the cipher data size is the same as plain data

95 // size.

96 out->outData.t.size = in->inData.t.size;

97 if(in->decrypt == YES)

98 {

99 // Decrypt data to output

100 result = CryptSymmetricDecrypt(out->outData.t.buffer, alg, keySize, key,

101 &(out->ivOut), mode, in->inData.t.size,

102 in->inData.t.buffer);

103 }

104 else

105 {

106 // Encrypt data to output

107 result = CryptSymmetricEncrypt(out->outData.t.buffer, alg, keySize, key,

108 &(out->ivOut), mode, in->inData.t.size,

109 in->inData.t.buffer);

110 }

111 return result;

112 #endif // CC_EncryptDecrypt2

113

114 }

115 #endif // CC_EncryptDecrypt

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.3 TPM2_EncryptDecrypt2

 General Description

This command is identical to TPM2_EncryptDecrypt(), except that the inData parameter is the first

parameter. This permits inData to be parameter encrypted.

NOTE In platform specification updates, this command is preferred and TPM2_EncryptDecrypt() should be
deprecated.

Part 3: Commands Trusted Platform Module Library

Page 128 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Comand and Response

Table 60 — TPM2_EncryptDecrypt2 Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt2

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_CIPHER_MODE+ mode

symmetric mode

this field shall match the default mode of the key or be
TPM_ALG_NULL.

TPM2B_IV ivIn an initial value as required by the algorithm

Table 61 — TPM2_EncryptDecrypt2 Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted or decrypted output

TPM2B_IV ivOut chaining value to use for IV in next round

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "EncryptDecrypt2_fp.h"

3 #include "EncryptDecrypt_fp.h"

4 #include "EncryptDecrypt_spt_fp.h"

5 #if CC_EncryptDecrypt2 // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private
portions loaded

TPM_RC_SIZE IvIn size is incompatible with the block cipher mode; or inData size is
not an even multiple of the block size for CBC or ECB mode

TPM_RC_VALUE keyHandle is restricted and the argument mode does not match the
key's mode

6 TPM_RC

7 TPM2_EncryptDecrypt2(

8 EncryptDecrypt2_In *in, // IN: input parameter list

9 EncryptDecrypt2_Out *out // OUT: output parameter list

10)

11 {

12 TPM_RC result;

13 // EncryptDecyrptShared() performs the operations as shown in

14 // TPM2_EncrypDecrypt

15 result = EncryptDecryptShared(in->keyHandle, in->decrypt, in->mode,

16 &in->ivIn, &in->inData,

17 (EncryptDecrypt_Out *)out);

18 // Handle response code swizzle.

19 switch(result)

20 {

21 case TPM_RCS_MODE + RC_EncryptDecrypt_mode:

22 result = TPM_RCS_MODE + RC_EncryptDecrypt2_mode;

23 break;

24 case TPM_RCS_SIZE + RC_EncryptDecrypt_ivIn:

25 result = TPM_RCS_SIZE + RC_EncryptDecrypt2_ivIn;

26 break;

27 case TPM_RCS_SIZE + RC_EncryptDecrypt_inData:

28 result = TPM_RCS_SIZE + RC_EncryptDecrypt2_inData;

29 break;

30 default:

31 break;

32 }

33 return result;

34 }

35 #endif // CC_EncryptDecrypt2

Part 3: Commands Trusted Platform Module Library

Page 130 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

15.4 TPM2_Hash

 General Description

This command performs a hash operation on a data buffer and returns the results.

NOTE If the data buffer to be hashed is larger than will fit into the TPM’s input buffer, then the sequence
hash commands will need to be used.

If the results of the hash will be used in a signing operation that uses a restricted signing key, then the

ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then the TPM will return a TPMT_TK_HASHCHECK with the hierarchy set

to TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 62 — TPM2_Hash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Hash

TPM2B_MAX_BUFFER data data to be hashed

TPMI_ALG_HASH hashAlg
algorithm for the hash being computed – shall not be
TPM_ALG_NULL

TPMI_RH_HIERARCHY+ hierarchy hierarchy to use for the ticket (TPM_RH_NULL allowed)

Table 63 — TPM2_Hash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHash results

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

will be a NULL ticket if the digest may not be signed
with a restricted key

Part 3: Commands Trusted Platform Module Library

Page 132 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Hash_fp.h"

3 #if CC_Hash // Conditional expansion of this file

4 TPM_RC

5 TPM2_Hash(

6 Hash_In *in, // IN: input parameter list

7 Hash_Out *out // OUT: output parameter list

8)

9 {

10 HASH_STATE hashState;

11

12 // Command Output

13

14 // Output hash

15 // Start hash stack

16 out->outHash.t.size = CryptHashStart(&hashState, in->hashAlg);

17 // Adding hash data

18 CryptDigestUpdate2B(&hashState, &in->data.b);

19 // Complete hash

20 CryptHashEnd2B(&hashState, &out->outHash.b);

21

22 // Output ticket

23 out->validation.tag = TPM_ST_HASHCHECK;

24 out->validation.hierarchy = in->hierarchy;

25

26 if(in->hierarchy == TPM_RH_NULL)

27 {

28 // Ticket is not required

29 out->validation.hierarchy = TPM_RH_NULL;

30 out->validation.digest.t.size = 0;

31 }

32 else if(in->data.t.size >= sizeof(TPM_GENERATED)

33 && !TicketIsSafe(&in->data.b))

34 {

35 // Ticket is not safe

36 out->validation.hierarchy = TPM_RH_NULL;

37 out->validation.digest.t.size = 0;

38 }

39 else

40 {

41 // Compute ticket

42 TicketComputeHashCheck(in->hierarchy, in->hashAlg,

43 &out->outHash, &out->validation);

44 }

45

46 return TPM_RC_SUCCESS;

47 }

48 #endif // CC_Hash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.5 TPM2_HMAC

 General Description

This command performs an HMAC on the supplied data using the indicated hash algorithm.

NOTE 1 A TPM may implement either TPM2_HMAC() or TPM2_MAC() but not both, as they have the same
command code and there is no way to distinguish them. A TPM that supports TPM2_MAC() will
support any code that was written to use TPM2_HMAC(), but a TPM that supports TPM2_HMAC()
will not support a MAC based on symmetric block ciphers.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return TPM_RC_TYPE. If the key

referenced by handle has the restricted attribute SET, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not

TPM_ALG_NULL (TPM_RC_VALUE) (see hash selection matrix in

Table 72).

NOTE 3 A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and the hash algorithm must be specified.

Part 3: Commands Trusted Platform Module Library

Page 134 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 64 — TPM2_HMAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the
HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer HMAC data

TPMI_ALG_HASH+ hashAlg algorithm to use for HMAC

Table 65 — TPM2_HMAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHMAC the returned HMAC in a sized buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "HMAC_fp.h"

3 #if CC_HMAC // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is a restricted key

TPM_RC_KEY handle does not reference a signing key

TPM_RC_TYPE key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_HMAC(

6 HMAC_In *in, // IN: input parameter list

7 HMAC_Out *out // OUT: output parameter list

8)

9 {

10 HMAC_STATE hmacState;

11 OBJECT *hmacObject;

12 TPMI_ALG_HASH hashAlg;

13 TPMT_PUBLIC *publicArea;

14

15 // Input Validation

16

17 // Get HMAC key object and public area pointers

18 hmacObject = HandleToObject(in->handle);

19 publicArea = &hmacObject->publicArea;

20 // Make sure that the key is an HMAC key

21 if(publicArea->type != TPM_ALG_KEYEDHASH)

22 return TPM_RCS_TYPE + RC_HMAC_handle;

23

24 // and that it is unrestricted

25 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

26 return TPM_RCS_ATTRIBUTES + RC_HMAC_handle;

27

28 // and that it is a signing key

29 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

30 return TPM_RCS_KEY + RC_HMAC_handle;

31

32 // See if the key has a default

33 if(publicArea->parameters.keyedHashDetail.scheme.scheme == TPM_ALG_NULL)

34 // it doesn't so use the input value

35 hashAlg = in->hashAlg;

36 else

37 {

38 // key has a default so use it

39 hashAlg

40 = publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;

41 // and verify that the input was either the TPM_ALG_NULL or the default

42 if(in->hashAlg != TPM_ALG_NULL && in->hashAlg != hashAlg)

43 hashAlg = TPM_ALG_NULL;

44 }

45 // if we ended up without a hash algorithm then return an error

46 if(hashAlg == TPM_ALG_NULL)

47 return TPM_RCS_VALUE + RC_HMAC_hashAlg;

48

49 // Command Output

50

Part 3: Commands Trusted Platform Module Library

Page 136 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

51 // Start HMAC stack

52 out->outHMAC.t.size = CryptHmacStart2B(&hmacState, hashAlg,

53 &hmacObject->sensitive.sensitive.bits.b);

54 // Adding HMAC data

55 CryptDigestUpdate2B(&hmacState.hashState, &in->buffer.b);

56

57 // Complete HMAC

58 CryptHmacEnd2B(&hmacState, &out->outHMAC.b);

59

60 return TPM_RC_SUCCESS;

61 }

62 #endif // CC_HMAC

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.6 TPM2_MAC

 General Description

This command performs an HMAC or a block cipher MAC on the supplied data using the indicated

algorithm.

NOTE 1 A TPM may implement either TPM2_HMAC() or TPM2_MAC() but not both as they have the same
command code and there is no way to distinguish them. A TPM that supports TPM2_MAC() will
support any code that was written to use TPM2_HMAC() but a TPM that supports TPM2_HMAC ()
will not support a MAC based on symmetric block ciphers.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is neither TPM_ALG_KEYEDHASH nor TPM_ALG_SYMCIPHER then the TPM shall

return TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme or mode of the key referenced by handle is not TPM_ALG_NULL, then the

inScheme parameter is required to be either the same as the key’s default or TPM_ALG_NULL

(TPM_RC_VALUE).

If the default scheme of an HMAC key is TPM_ALG_NULL, then inScheme is required to be a valid hash

and not TPM_ALG_NULL (TPM_RC_VALUE) (see algorithm selection matrix in

Table 75).

If the default mode of a symmetric cipher key is TPM_ALG_NULL, then inScheme is required to be a valid

block cipher mode for authentication and not TPM_ALG_NULL (TPM_RC_VALUE)

NOTE 3 A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and inScheme may not be TPM_ALG_NULL.

NOTE 4 TPM2_MAC() was added in revision 01.43.

Part 3: Commands Trusted Platform Module Library

Page 138 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 66 — TPM2_MAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the MAC
key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer MAC data

TPMI_ALG_MAC_SCHEME+ inScheme algorithm to use for MAC

Table 67 — TPM2_MAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outMAC the returned MAC in a sized buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "MAC_fp.h"

3 #if CC_MAC // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is a restricted key

TPM_RC_KEY handle does not reference a signing key

TPM_RC_TYPE key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_MAC(

6 MAC_In *in, // IN: input parameter list

7 MAC_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *keyObject;

11 HMAC_STATE state;

12 TPMT_PUBLIC *publicArea;

13 TPM_RC result;

14

15 // Input Validation

16 // Get MAC key object and public area pointers

17 keyObject = HandleToObject(in->handle);

18 publicArea = &keyObject->publicArea;

19

20 // If the key is not able to do a MAC, indicate that the handle selects an

21 // object that can't do a MAC

22 result = CryptSelectMac(publicArea, &in->inScheme);

23 if(result == TPM_RCS_TYPE)

24 return TPM_RCS_TYPE + RC_MAC_handle;

25 // If there is another error type, indicate that the scheme and key are not

26 // compatible

27 if(result != TPM_RC_SUCCESS)

28 return RcSafeAddToResult(result, RC_MAC_inScheme);

29 // Make sure that the key is not restricted

30 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

31 return TPM_RCS_ATTRIBUTES + RC_MAC_handle;

32 // and that it is a signing key

33 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

34 return TPM_RCS_KEY + RC_MAC_handle;

35 // Command Output

36 out->outMAC.t.size = CryptMacStart(&state, &publicArea->parameters,

37 in->inScheme,

38 &keyObject->sensitive.sensitive.any.b);

39 // If the mac can't start, treat it as a fatal error

40 if(out->outMAC.t.size == 0)

41 return TPM_RC_FAILURE;

42 CryptDigestUpdate2B(&state.hashState, &in->buffer.b);

43 // If the MAC result is not what was expected, it is a fatal error

44 if(CryptHmacEnd2B(&state, &out->outMAC.b) != out->outMAC.t.size)

45 return TPM_RC_FAILURE;

46 return TPM_RC_SUCCESS;

47 }

48 #endif // CC_MAC

Part 3: Commands Trusted Platform Module Library

Page 140 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

16 Random Number Generator

16.1 TPM2_GetRandom

 General Description

This command returns the next bytesRequested octets from the random number generator (RNG).

NOTE 1 It is recommended that a TPM implement the RNG in a manner that would allow it to return RNG
octets such that, as long as the value of bytesRequested is not greater than the maximum digest
size, the frequency of bytesRequested being more than the number of octets available is an
infrequent occurrence.

If bytesRequested is more than will fit into a TPM2B_DIGEST on the TPM, no error is returned but the

TPM will only return as much data as will fit into a TPM2B_DIGEST buffer for the TPM.

NOTE 2 TPM2B_DIGEST is large enough to hold the largest digest that may be produced by the TPM.
Because that digest size changes according to the implemented hashes, the maximum amount of
data returned by this command is TPM implementation-dependent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 141

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 68 — TPM2_GetRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetRandom

UINT16 bytesRequested number of octets to return

Table 69 — TPM2_GetRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST randomBytes the random octets

Part 3: Commands Trusted Platform Module Library

Page 142 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "GetRandom_fp.h"

3 #if CC_GetRandom // Conditional expansion of this file

4 TPM_RC

5 TPM2_GetRandom(

6 GetRandom_In *in, // IN: input parameter list

7 GetRandom_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // if the requested bytes exceed the output buffer size, generates the

13 // maximum bytes that the output buffer allows

14 if(in->bytesRequested > sizeof(TPMU_HA))

15 out->randomBytes.t.size = sizeof(TPMU_HA);

16 else

17 out->randomBytes.t.size = in->bytesRequested;

18

19 CryptRandomGenerate(out->randomBytes.t.size, out->randomBytes.t.buffer);

20

21 return TPM_RC_SUCCESS;

22 }

23 #endif // CC_GetRandom

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 143

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

16.2 TPM2_StirRandom

 General Description

This command is used to add "additional information" to the RNG state.

NOTE The "additional information" is as defined in SP800-90A.

The inData parameter may not be larger than 128 octets.

Part 3: Commands Trusted Platform Module Library

Page 144 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 70 — TPM2_StirRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_StirRandom {NV}

TPM2B_SENSITIVE_DATA inData additional information

Table 71 — TPM2_StirRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 145

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "StirRandom_fp.h"

3 #if CC_StirRandom // Conditional expansion of this file

4 TPM_RC

5 TPM2_StirRandom(

6 StirRandom_In *in // IN: input parameter list

7)

8 {

9 // Internal Data Update

10 CryptRandomStir(in->inData.t.size, in->inData.t.buffer);

11

12 return TPM_RC_SUCCESS;

13 }

14 #endif // CC_StirRandom

Part 3: Commands Trusted Platform Module Library

Page 146 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17 Hash/HMAC/Event Sequences

17.1 Introduction

All of the commands in this group are to support sequences for which an intermediate state must be

maintained. For a description of sequences, see “Hash, MAC, and Event Sequences” in TPM 2.0 Part 1.

A TPM may implement either TPM2_HMAC_Start() or TPM2_MAC_Start() but not both as they have the

same command code and there is no way to distinguish them. A TPM that supports TPM2_MAC_Start()

will support any code that was written to use TPM2_HMAC_Start() but a TPM that supports

TPM2_HMAC_Start() will not support a MAC based on symmetric block ciphers.

17.2 TPM2_HMAC_Start

 General Description

This command starts an HMAC sequence. The TPM will create and initialize an HMAC sequence

structure, assign a handle to the sequence, and set the authValue of the sequence object to the value in

auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return TPM_RC_TYPE. If the key

referenced by handle has the restricted attribute SET, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not

TPM_ALG_NULL (TPM_RC_VALUE).

Table 72 — Hash Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(hash algorithm
from key's scheme) hashAlg hash used

CLEAR (unrestricted) TPM_ALG_NULL(1) TPM_ALG_NULL error(1) (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash hashAlg

CLEAR valid hash TPM_ALG_NULL or same as
handle→scheme

handle→scheme

CLEAR valid hash valid hash error (TPM_RC_VALUE) if
hashAlg != handle->scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

NOTE 1 A TPM may implement either TPM2_HMAC_Start() or TPM2_MAC_Start() but not both, as they have
the same command code and there is no way to distinguish them. A TPM that supports
TPM2_MAC_Start() will support any code that was written to use TPM2_HMAC_Start(), but a TPM
that supports TPM2_HMAC_Start() will not support a MAC based on symmetric block ciphers.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 147

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 73 — TPM2_HMAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC_Start

TPMI_DH_OBJECT @handle

handle of an HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg the hash algorithm to use for the HMAC

Table 74 — TPM2_HMAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Part 3: Commands Trusted Platform Module Library

Page 148 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "HMAC_Start_fp.h"

3 #if CC_HMAC_Start // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key or is restricted

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC_KEY key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_HMAC_Start(

6 HMAC_Start_In *in, // IN: input parameter list

7 HMAC_Start_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *keyObject;

11 TPMT_PUBLIC *publicArea;

12 TPM_ALG_ID hashAlg;

13

14 // Input Validation

15

16 // Get HMAC key object and public area pointers

17 keyObject = HandleToObject(in->handle);

18 publicArea = &keyObject->publicArea;

19

20 // Make sure that the key is an HMAC key

21 if(publicArea->type != TPM_ALG_KEYEDHASH)

22 return TPM_RCS_TYPE + RC_HMAC_Start_handle;

23

24 // and that it is unrestricted

25 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

26 return TPM_RCS_ATTRIBUTES + RC_HMAC_Start_handle;

27

28 // and that it is a signing key

29 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

30 return TPM_RCS_KEY + RC_HMAC_Start_handle;

31

32 // See if the key has a default

33 if(publicArea->parameters.keyedHashDetail.scheme.scheme == TPM_ALG_NULL)

34 // it doesn't so use the input value

35 hashAlg = in->hashAlg;

36 else

37 {

38 // key has a default so use it

39 hashAlg

40 = publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;

41 // and verify that the input was either the TPM_ALG_NULL or the default

42 if(in->hashAlg != TPM_ALG_NULL && in->hashAlg != hashAlg)

43 hashAlg = TPM_ALG_NULL;

44 }

45 // if we ended up without a hash algorithm then return an error

46 if(hashAlg == TPM_ALG_NULL)

47 return TPM_RCS_VALUE + RC_HMAC_Start_hashAlg;

48

49 // Internal Data Update

50

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 149

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

51 // Create a HMAC sequence object. A TPM_RC_OBJECT_MEMORY error may be

52 // returned at this point

53 return ObjectCreateHMACSequence(hashAlg,

54 keyObject,

55 &in->auth,

56 &out->sequenceHandle);

57 }

58 #endif // CC_HMAC_Start

Part 3: Commands Trusted Platform Module Library

Page 150 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.3 TPM2_MAC_Start

 General Description

This command starts a MAC sequence. The TPM will create and initialize a MAC sequence structure,

assign a handle to the sequence, and set the authValue of the sequence object to the value in auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH or TPM_ALG_SYMCIPHER then the TPM shall return

TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall return

TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the inScheme

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then inSchemeis required to be a valid hash or

symmetric MAC scheme and not TPM_ALG_NULL (TPM_RC_VALUE).

Table 75 — Algorithm Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(algorithm from
key's scheme) inScheme algorithm used

CLEAR (unrestricted) TPM_ALG_NULL(1) TPM_ALG_NULL error(1) (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash or symmetric MAC inScheme

CLEAR not TPM_ALG_NULL TPM_ALG_NULL or same as
handle→scheme

handle→scheme

CLEAR not TPM_ALG_NULL not TPM_AGL_NULL error (TPM_RC_VALUE)
ifinScheme!= handle-
>scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

2) hashAlg shall be TPM_ALG_NULL for handle referencing a CMAC key.

NOTE 3 For a TPM_ALG_SYMCIPHER key, the symmetric block cipher algorithm is part of the key definition.

NOTE 4 TPM2_MAC_Start() was added in revision 01.43.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 151

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 76 — TPM2_MAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MAC_Start

TPMI_DH_OBJECT @handle

handle of a MAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_MAC_SCHEME+ inScheme the algorithm to use for the MAC

Table 77 — TPM2_MAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Part 3: Commands Trusted Platform Module Library

Page 152 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "MAC_Start_fp.h"

3 #if CC_MAC_Start // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key or is restricted

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC_KEY key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_MAC_Start(

6 MAC_Start_In *in, // IN: input parameter list

7 MAC_Start_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *keyObject;

11 TPMT_PUBLIC *publicArea;

12 TPM_RC result;

13

14 // Input Validation

15

16 // Get HMAC key object and public area pointers

17 keyObject = HandleToObject(in->handle);

18 publicArea = &keyObject->publicArea;

19

20 // Make sure that the key can do what is required

21 result = CryptSelectMac(publicArea, &in->inScheme);

22 // If the key is not able to do a MAC, indicate that the handle selects an

23 // object that can't do a MAC

24 if(result == TPM_RCS_TYPE)

25 return TPM_RCS_TYPE + RC_MAC_Start_handle;

26 // If there is another error type, indicate that the scheme and key are not

27 // compatible

28 if(result != TPM_RC_SUCCESS)

29 return RcSafeAddToResult(result, RC_MAC_Start_inScheme);

30 // Make sure that the key is not restricted

31 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

32 return TPM_RCS_ATTRIBUTES + RC_MAC_Start_handle;

33 // and that it is a signing key

34 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

35 return TPM_RCS_KEY + RC_MAC_Start_handle;

36

37 // Internal Data Update

38 // Create a HMAC sequence object. A TPM_RC_OBJECT_MEMORY error may be

39 // returned at this point

40 return ObjectCreateHMACSequence(in->inScheme,

41 keyObject,

42 &in->auth,

43 &out->sequenceHandle);

44 }

45 #endif // CC_MAC_Start

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 153

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

17.4 TPM2_HashSequenceStart

 General Description

This command starts a hash or an Event Sequence. If hashAlg is an implemented hash, then a hash

sequence is started. If hashAlg is TPM_ALG_NULL, then an Event Sequence is started. If hashAlg is

neither an implemented algorithm nor TPM_ALG_NULL, then the TPM shall return TPM_RC_HASH.

Depending on hashAlg, the TPM will create and initialize a Hash Sequence context or an Event

Sequence context. Additionally, it will assign a handle to the context and set the authValue of the context

to the value in auth. A sequence context for an Event (hashAlg = TPM_ALG_NULL) contains a hash

context for each of the PCR banks implemented on the TPM.

Part 3: Commands Trusted Platform Module Library

Page 154 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 78 — TPM2_HashSequenceStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HashSequenceStart

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg
the hash algorithm to use for the hash sequence

An Event Sequence starts if this is TPM_ALG_NULL.

Table 79 — TPM2_HashSequenceStart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 155

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "HashSequenceStart_fp.h"

3 #if CC_HashSequenceStart // Conditional expansion of this file

Error Returns Meaning

TPM_RC_OBJECT_MEMORY no space to create an internal object

4 TPM_RC

5 TPM2_HashSequenceStart(

6 HashSequenceStart_In *in, // IN: input parameter list

7 HashSequenceStart_Out *out // OUT: output parameter list

8)

9 {

10 // Internal Data Update

11

12 if(in->hashAlg == TPM_ALG_NULL)

13 // Start a event sequence. A TPM_RC_OBJECT_MEMORY error may be

14 // returned at this point

15 return ObjectCreateEventSequence(&in->auth, &out->sequenceHandle);

16

17 // Start a hash sequence. A TPM_RC_OBJECT_MEMORY error may be

18 // returned at this point

19 return ObjectCreateHashSequence(in->hashAlg, &in->auth, &out->sequenceHandle);

20 }

21 #endif // CC_HashSequenceStart

Part 3: Commands Trusted Platform Module Library

Page 156 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.5 TPM2_SequenceUpdate

 General Description

This command is used to add data to a hash or HMAC sequence. The amount of data in buffer may be

any size up to the limits of the TPM.

NOTE 1 In all TPM, a buffer size of 1,024 octets is allowed.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If the command does not return TPM_RC_SUCCESS, the state of the sequence is unmodified.

If the sequence is intended to produce a digest that will be signed by a restricted signing key, then the

first block of data shall contain sizeof(TPM_GENERATED) octets and the first octets shall not be

TPM_GENERATED_VALUE.

NOTE 2 This requirement allows the TPM to validate that the first block is safe to sign without having to
accumulate octets over multiple calls.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 157

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 80 — TPM2_SequenceUpdate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceUpdate

TPMI_DH_OBJECT @sequenceHandle

handle for the sequence object

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to hash

Table 81 — TPM2_SequenceUpdate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 158 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SequenceUpdate_fp.h"

3 #if CC_SequenceUpdate // Conditional expansion of this file

Error Returns Meaning

TPM_RC_MODE sequenceHandle does not reference a hash or HMAC sequence
object

4 TPM_RC

5 TPM2_SequenceUpdate(

6 SequenceUpdate_In *in // IN: input parameter list

7)

8 {

9 OBJECT *object;

10 HASH_OBJECT *hashObject;

11

12 // Input Validation

13

14 // Get sequence object pointer

15 object = HandleToObject(in->sequenceHandle);

16 hashObject = (HASH_OBJECT *)object;

17

18 // Check that referenced object is a sequence object.

19 if(!ObjectIsSequence(object))

20 return TPM_RCS_MODE + RC_SequenceUpdate_sequenceHandle;

21

22 // Internal Data Update

23

24 if(object->attributes.eventSeq == SET)

25 {

26 // Update event sequence object

27 UINT32 i;

28 for(i = 0; i < HASH_COUNT; i++)

29 {

30 // Update sequence object

31 CryptDigestUpdate2B(&hashObject->state.hashState[i], &in->buffer.b);

32 }

33 }

34 else

35 {

36 // Update hash/HMAC sequence object

37 if(hashObject->attributes.hashSeq == SET)

38 {

39 // Is this the first block of the sequence

40 if(hashObject->attributes.firstBlock == CLEAR)

41 {

42 // If so, indicate that first block was received

43 hashObject->attributes.firstBlock = SET;

44

45 // Check the first block to see if the first block can contain

46 // the TPM_GENERATED_VALUE. If it does, it is not safe for

47 // a ticket.

48 if(TicketIsSafe(&in->buffer.b))

49 hashObject->attributes.ticketSafe = SET;

50 }

51 // Update sequence object hash/HMAC stack

52 CryptDigestUpdate2B(&hashObject->state.hashState[0], &in->buffer.b);

53 }

54 else if(object->attributes.hmacSeq == SET)

55 {

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 159

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

56 // Update sequence object HMAC stack

57 CryptDigestUpdate2B(&hashObject->state.hmacState.hashState,

58 &in->buffer.b);

59 }

60 }

61 return TPM_RC_SUCCESS;

62 }

63 #endif // CC_SequenceUpdate

Part 3: Commands Trusted Platform Module Library

Page 160 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.6 TPM2_SequenceComplete

 General Description

This command adds the last part of data, if any, to a hash/HMAC sequence and returns the result.

NOTE 1 This command is not used to complete an Event Sequence. TPM2_EventSequenceComplete() is
used for that purpose.

For a hash sequence, if the results of the hash will be used in a signing operation that uses a restricted

signing key, then the ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then validation will be a TPMT_TK_HASHCHECK with the hierarchy set to

TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

NOTE 2 Regardless of the contents of the first octets of the hashed message, if the first buffer sent to the
TPM had fewer than sizeof(TPM_GENERATED) octets, then the TPM will operate as if digest is not
safe to sign.

NOTE 3 The ticket is only required for a signing operation that uses a restricted signing key. It is always
returned, but can be ignored if not needed.

If sequenceHandle references an Event Sequence, then the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 161

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 82 — TPM2_SequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceComplete {F}

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the hash/HMAC

TPMI_RH_HIERARCHY+ hierarchy hierarchy of the ticket for a hash

Table 83 — TPM2_SequenceComplete Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST result the returned HMAC or digest in a sized buffer

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

This is a NULL Ticket when the sequence is HMAC.

Part 3: Commands Trusted Platform Module Library

Page 162 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SequenceComplete_fp.h"

3 #if CC_SequenceComplete // Conditional expansion of this file

Error Returns Meaning

TPM_RC_MODE sequenceHandle does not reference a hash or HMAC sequence
object

4 TPM_RC

5 TPM2_SequenceComplete(

6 SequenceComplete_In *in, // IN: input parameter list

7 SequenceComplete_Out *out // OUT: output parameter list

8)

9 {

10 HASH_OBJECT *hashObject;

11 // Input validation

12 // Get hash object pointer

13 hashObject = (HASH_OBJECT *)HandleToObject(in->sequenceHandle);

14

15 // input handle must be a hash or HMAC sequence object.

16 if(hashObject->attributes.hashSeq == CLEAR

17 && hashObject->attributes.hmacSeq == CLEAR)

18 return TPM_RCS_MODE + RC_SequenceComplete_sequenceHandle;

19 // Command Output

20 if(hashObject->attributes.hashSeq == SET) // sequence object for hash

21 {

22 // Get the hash algorithm before the algorithm is lost in CryptHashEnd

23 TPM_ALG_ID hashAlg = hashObject->state.hashState[0].hashAlg;

24

25 // Update last piece of the data

26 CryptDigestUpdate2B(&hashObject->state.hashState[0], &in->buffer.b);

27

28 // Complete hash

29 out->result.t.size = CryptHashEnd(&hashObject->state.hashState[0],

30 sizeof(out->result.t.buffer),

31 out->result.t.buffer);

32 // Check if the first block of the sequence has been received

33 if(hashObject->attributes.firstBlock == CLEAR)

34 {

35 // If not, then this is the first block so see if it is 'safe'

36 // to sign.

37 if(TicketIsSafe(&in->buffer.b))

38 hashObject->attributes.ticketSafe = SET;

39 }

40 // Output ticket

41 out->validation.tag = TPM_ST_HASHCHECK;

42 out->validation.hierarchy = in->hierarchy;

43

44 if(in->hierarchy == TPM_RH_NULL)

45 {

46 // Ticket is not required

47 out->validation.digest.t.size = 0;

48 }

49 else if(hashObject->attributes.ticketSafe == CLEAR)

50 {

51 // Ticket is not safe to generate

52 out->validation.hierarchy = TPM_RH_NULL;

53 out->validation.digest.t.size = 0;

54 }

55 else

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 163

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

56 {

57 // Compute ticket

58 TicketComputeHashCheck(out->validation.hierarchy, hashAlg,

59 &out->result, &out->validation);

60 }

61 }

62 else

63 {

64 // Update last piece of data

65 CryptDigestUpdate2B(&hashObject->state.hmacState.hashState, &in->buffer.b);

66 #if !SMAC_IMPLEMENTED

67 // Complete HMAC

68 out->result.t.size = CryptHmacEnd(&(hashObject->state.hmacState),

69 sizeof(out->result.t.buffer),

70 out->result.t.buffer);

71 #else

72 // Complete the MAC

73 out->result.t.size = CryptMacEnd(&hashObject->state.hmacState,

74 sizeof(out->result.t.buffer),

75 out->result.t.buffer);

76 #endif

77 // No ticket is generated for HMAC sequence

78 out->validation.tag = TPM_ST_HASHCHECK;

79 out->validation.hierarchy = TPM_RH_NULL;

80 out->validation.digest.t.size = 0;

81 }

82 // Internal Data Update

83 // mark sequence object as evict so it will be flushed on the way out

84 hashObject->attributes.evict = SET;

85

86 return TPM_RC_SUCCESS;

87 }

88 #endif // CC_SequenceComplete

Part 3: Commands Trusted Platform Module Library

Page 164 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.7 TPM2_EventSequenceComplete

 General Description

This command adds the last part of data, if any, to an Event Sequence and returns the result in a digest

list. If pcrHandle references a PCR and not TPM_RH_NULL, then the returned digest list is processed in

the same manner as the digest list input parameter to TPM2_PCR_Extend(). That is, if a bank contains a

PCR associated with pcrHandle, it is extended with the associated digest value from the list.

If sequenceHandle references a hash or HMAC sequence, the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

NOTE: Unlike TPM2_PCR_Event(), a digest is always returned for each implemented hash algorithm . There
is no option to only return digests for which pcrHandle is allocated.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 165

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 84 — TPM2_EventSequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EventSequenceComplete {NV F}

TPMI_DH_PCR+ @pcrHandle

PCR to be extended with the Event data

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 2

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the Event

Table 85 — TPM2_EventSequenceComplete Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_DIGEST_VALUES results list of digests computed for the PCR

Part 3: Commands Trusted Platform Module Library

Page 166 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "EventSequenceComplete_fp.h"

3 #if CC_EventSequenceComplete // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY PCR extension is not allowed at the current locality

TPM_RC_MODE input handle is not a valid event sequence object

4 TPM_RC

5 TPM2_EventSequenceComplete(

6 EventSequenceComplete_In *in, // IN: input parameter list

7 EventSequenceComplete_Out *out // OUT: output parameter list

8)

9 {

10 HASH_OBJECT *hashObject;

11 UINT32 i;

12 TPM_ALG_ID hashAlg;

13 // Input validation

14 // get the event sequence object pointer

15 hashObject = (HASH_OBJECT *)HandleToObject(in->sequenceHandle);

16

17 // input handle must reference an event sequence object

18 if(hashObject->attributes.eventSeq != SET)

19 return TPM_RCS_MODE + RC_EventSequenceComplete_sequenceHandle;

20

21 // see if a PCR extend is requested in call

22 if(in->pcrHandle != TPM_RH_NULL)

23 {

24 // see if extend of the PCR is allowed at the locality of the command,

25 if(!PCRIsExtendAllowed(in->pcrHandle))

26 return TPM_RC_LOCALITY;

27 // if an extend is going to take place, then check to see if there has

28 // been an orderly shutdown. If so, and the selected PCR is one of the

29 // state saved PCR, then the orderly state has to change. The orderly state

30 // does not change for PCR that are not preserved.

31 // NOTE: This doesn't just check for Shutdown(STATE) because the orderly

32 // state will have to change if this is a state-saved PCR regardless

33 // of the current state. This is because a subsequent Shutdown(STATE) will

34 // check to see if there was an orderly shutdown and not do anything if

35 // there was. So, this must indicate that a future Shutdown(STATE) has

36 // something to do.

37 if(PCRIsStateSaved(in->pcrHandle))

38 RETURN_IF_ORDERLY;

39 }

40 // Command Output

41 out->results.count = 0;

42

43 for(i = 0; i < HASH_COUNT; i++)

44 {

45 hashAlg = CryptHashGetAlgByIndex(i);

46 // Update last piece of data

47 CryptDigestUpdate2B(&hashObject->state.hashState[i], &in->buffer.b);

48 // Complete hash

49 out->results.digests[out->results.count].hashAlg = hashAlg;

50 CryptHashEnd(&hashObject->state.hashState[i],

51 CryptHashGetDigestSize(hashAlg),

52 (BYTE *)&out->results.digests[out->results.count].digest);

53 // Extend PCR

54 if(in->pcrHandle != TPM_RH_NULL)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 167

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

55 PCRExtend(in->pcrHandle, hashAlg,

56 CryptHashGetDigestSize(hashAlg),

57 (BYTE *)&out->results.digests[out->results.count].digest);

58 out->results.count++;

59 }

60 // Internal Data Update

61 // mark sequence object as evict so it will be flushed on the way out

62 hashObject->attributes.evict = SET;

63

64 return TPM_RC_SUCCESS;

65 }

66 #endif // CC_EventSequenceComplete

Part 3: Commands Trusted Platform Module Library

Page 168 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18 Attestation Commands

18.1 Introduction

The attestation commands cause the TPM to sign an internally generated data structure. The contents of

the data structure vary according to the command.

If the sign attribute is not SET in the key referenced by signHandle then the TPM shall return

TPM_RC_KEY.

All signing commands include a parameter (typically inScheme) for the caller to specify a scheme to be

used for the signing operation. This scheme will be applied only if the scheme of the key is

TPM_ALG_NULL or the key handle is TPM_RH_NULL. If the scheme for signHandle is not

TPM_ALG_NULL, then inScheme.scheme shall be TPM_ALG_NULL or the same as scheme in the

public area of the key. If the scheme for signHandle is TPM_ALG_NULL or the key handle is

TPM_RH_NULL, then inScheme will be used for the signing operation and may not be TPM_ALG_NULL.

The TPM shall return TPM_RC_SCHEME to indicate that the scheme is not appropriate.

For a signing key that is not restricted, the caller may specify the scheme to be used as long as the

scheme is compatible with the family of the key (for example, TPM_ALG_RSAPSS cannot be selected for

an ECC key). If the caller sets scheme to TPM_ALG_NULL, then the default scheme of the key is used.

For a restricted signing key, the key's scheme cannot be TPM_ALG_NULL and cannot be overridden.

If the handle for the signing key (signHandle) is TPM_RH_NULL, then all of the actions of the command

are performed and the attestation block is “signed” with the NULL Signature.

NOTE 1 This mechanism is provided so that additional commands are not required to access the data that
might be in an attestation structure.

NOTE 2 When signHandle is TPM_RH_NULL, scheme is still required to be a valid signing scheme (may be
TPM_ALG_NULL), but the scheme will have no effect on the format of the signature. It will always
be the NULL Signature.

TPM2_NV_Certify() is an attestation command that is documented in 1. The remaining attestation

commands are collected in the remainder of this clause.

Each of the attestation structures contains a TPMS_CLOCK_INFO structure and a firmware version

number. These values may be considered privacy-sensitive, because they would aid in the correlation of

attestations by different keys. To provide improved privacy, the resetCount, restartCount, and

firmwareVersion numbers are obfuscated when the signing key is not in the Endorsement or Platform

hierarchies.

The obfuscation value is computed by:

 obfuscation ≔ KDFa(signHandle→nameAlg, shProof, “OBFUSCATE”, signHandle→QN, 0, 128) (3)

Of the returned 128 bits, 64 bits are added to the versionNumber field of the attestation structure; 32 bits

are added to the clockInfo.resetCount and 32 bits are added to the clockInfo.restartCount. The order in

which the bits are added is implementation-dependent.

NOTE 3 The obfuscation value for each signing key will be unique to that key in a specific location. That is,
each version of a duplicated signing key will have a different obfuscation value.

When the signing key is TPM_RH_NULL, the data structure is produced but not signed; and the values in

the signed data structure are obfuscated. When computing the obfuscation value for TPM_RH_NULL, the

hash used for context integrity is used.

NOTE 4 The QN for TPM_RH_NULL is TPM_RH_NULL.

If the signing scheme of signHandle is an anonymous scheme, then the attestation blocks will not contain

the Qualified Name of the signHandle.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 169

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Each of the attestation structures allows the caller to provide some qualifying data (qualifyingData). For

most signing schemes, this value will be placed in the TPMS_ATTEST.extraData parameter that is then

hashed and signed. However, for some schemes such as ECDAA, the qualifyingData is used in a

different manner (for details, see “ECDAA” in TPM 2.0 Part 1).

Part 3: Commands Trusted Platform Module Library

Page 170 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.2 TPM2_Certify

 General Description

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. By

certifying that the object is loaded, the TPM warrants that a public area with a given Name is self-

consistent and associated with a valid sensitive area. If a relying party has a public area that has the

same Name as a Name certified with this command, then the values in that public area are correct.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_Certify. This indicates that the

policy that is being used is a policy that is for certification, and not a policy that would approve another

use. That is, authority to use an object does not grant authority to certify the object.

The object may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary(). An object that

only has its public area loaded cannot be certified.

NOTE 2 The restriction occurs because the Name is used to identify the object being certified. If the TPM
has not validated that the public area is associated with a matched sensitive area, then the public
area may not represent a valid object and cannot be certified.

The certification includes the Name and Qualified Name of the certified object as well as the Name and

the Qualified Name of the certifying object.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 171

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 86 — TPM2_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Certify

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData user provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 87 — TPM2_Certify Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Part 3: Commands Trusted Platform Module Library

Page 172 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "Certify_fp.h"

4 #if CC_Certify // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the
modulus of signHandle, or the buffer for the result in signature is too
small (for an RSA key); invalid commit status (for an ECC key with a
split scheme)

5 TPM_RC

6 TPM2_Certify(

7 Certify_In *in, // IN: input parameter list

8 Certify_Out *out // OUT: output parameter list

9)

10 {

11 TPMS_ATTEST certifyInfo;

12 OBJECT *signObject = HandleToObject(in->signHandle);

13 OBJECT *certifiedObject = HandleToObject(in->objectHandle);

14 // Input validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_Certify_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_Certify_inScheme;

19

20 // Command Output

21 // Filling in attest information

22 // Common fields

23 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

24 &certifyInfo);

25

26 // Certify specific fields

27 certifyInfo.type = TPM_ST_ATTEST_CERTIFY;

28 // NOTE: the certified object is not allowed to be TPM_ALG_NULL so

29 // 'certifiedObject' will never be NULL

30 certifyInfo.attested.certify.name = certifiedObject->name;

31

32 // When using an anonymous signing scheme, need to set the qualified Name to the

33 // empty buffer to avoid correlation between keys

34 if(CryptIsSchemeAnonymous(in->inScheme.scheme))

35 certifyInfo.attested.certify.qualifiedName.t.size = 0;

36 else

37 certifyInfo.attested.certify.qualifiedName = certifiedObject->qualifiedName;

38

39 // Sign attestation structure. A NULL signature will be returned if

40 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

41 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned

42 // by SignAttestInfo()

43 return SignAttestInfo(signObject, &in->inScheme, &certifyInfo,

44 &in->qualifyingData, &out->certifyInfo, &out->signature);

45 }

46 #endif // CC_Certify

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 173

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.3 TPM2_CertifyCreation

 General Description

This command is used to prove the association between an object and its creation data. The TPM will

validate that the ticket was produced by the TPM and that the ticket validates the association between a

loaded public area and the provided hash of the creation data (creationHash).

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The TPM will create a test ticket using the Name associated with objectHandle and creationHash as:

 HMAC(proof, (TPM_ST_CREATION || objectHandle→Name || creationHash)) (4)

This ticket is then compared to creation ticket. If the tickets are not the same, the TPM shall return

TPM_RC_TICKET.

If the ticket is valid, then the TPM will create a TPMS_ATTEST structure and place creationHash of the

command in the creationHash field of the structure. The Name associated with objectHandle will be

included in the attestation data that is then signed using the key associated with signHandle.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

objectHandle may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary().

Part 3: Commands Trusted Platform Module Library

Page 174 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 88 — TPM2_CertifyCreation Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyCreation

TPMI_DH_OBJECT+ @signHandle

handle of the key that will sign the attestation block

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the object associated with the creation data

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPM2B_DIGEST creationHash
hash of the creation data produced by TPM2_Create()
or TPM2_CreatePrimary()

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPMT_TK_CREATION creationTicket
ticket produced by TPM2_Create() or
TPM2_CreatePrimary()

Table 89 — TPM2_CertifyCreation Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature the signature over certifyInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 175

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "CertifyCreation_fp.h"

4 #if CC_CertifyCreation // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_TICKET creationTicket does not match objectHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the
modulus of signHandle, or the buffer for the result in signature is too
small (for an RSA key); invalid commit status (for an ECC key with a
split scheme).

5 TPM_RC

6 TPM2_CertifyCreation(

7 CertifyCreation_In *in, // IN: input parameter list

8 CertifyCreation_Out *out // OUT: output parameter list

9)

10 {

11 TPMT_TK_CREATION ticket;

12 TPMS_ATTEST certifyInfo;

13 OBJECT *certified = HandleToObject(in->objectHandle);

14 OBJECT *signObject = HandleToObject(in->signHandle);

15 // Input Validation

16 if(!IsSigningObject(signObject))

17 return TPM_RCS_KEY + RC_CertifyCreation_signHandle;

18 if(!CryptSelectSignScheme(signObject, &in->inScheme))

19 return TPM_RCS_SCHEME + RC_CertifyCreation_inScheme;

20

21 // CertifyCreation specific input validation

22 // Re-compute ticket

23 TicketComputeCreation(in->creationTicket.hierarchy, &certified->name,

24 &in->creationHash, &ticket);

25 // Compare ticket

26 if(!MemoryEqual2B(&ticket.digest.b, &in->creationTicket.digest.b))

27 return TPM_RCS_TICKET + RC_CertifyCreation_creationTicket;

28

29 // Command Output

30 // Common fields

31 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

32 &certifyInfo);

33

34 // CertifyCreation specific fields

35 // Attestation type

36 certifyInfo.type = TPM_ST_ATTEST_CREATION;

37 certifyInfo.attested.creation.objectName = certified->name;

38

39 // Copy the creationHash

40 certifyInfo.attested.creation.creationHash = in->creationHash;

41

42 // Sign attestation structure. A NULL signature will be returned if

43 // signObject is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

44 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

45 // this point

46 return SignAttestInfo(signObject, &in->inScheme, &certifyInfo,

47 &in->qualifyingData, &out->certifyInfo,

48 &out->signature);

Part 3: Commands Trusted Platform Module Library

Page 176 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

49 }

50 #endif // CC_CertifyCreation

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 177

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.4 TPM2_Quote

 General Description

This command is used to quote PCR values.

The TPM will hash the list of PCR selected by PCRselect using the hash algorithm in the selected signing

scheme. If the selected signing scheme or the scheme hash algorithm is TPM_ALG_NULL, then the TPM

shall return TPM_RC_SCHEME.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The digest is computed as the hash of the concatenation of all of the digest values of the selected PCR.

The concatenation of PCR is described in TPM 2.0 Part 1, Selecting Multiple PCR.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

NOTE 3 A TPM may optionally return TPM_RC_SCHEME if signHandle is TPM_RH_NULL.

NOTE 4 Unlike TPM 1.2, TPM2_Quote does not return the PCR values. See Part 1, “Attesting to PCR” for a
discussion of this issue.

Part 3: Commands Trusted Platform Module Library

Page 178 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 90 — TPM2_Quote Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Quote

TPMI_DH_OBJECT+ @signHandle

handle of key that will perform signature

Auth Index: 1

Auth Role: USER

TPM2B_DATA qualifyingData data supplied by the caller

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPML_PCR_SELECTION PCRselect PCR set to quote

Table 91 — TPM2_Quote Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST quoted the quoted information

TPMT_SIGNATURE signature the signature over quoted

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 179

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "Quote_fp.h"

4 #if CC_Quote // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is
not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

5 TPM_RC

6 TPM2_Quote(

7 Quote_In *in, // IN: input parameter list

8 Quote_Out *out // OUT: output parameter list

9)

10 {

11 TPMI_ALG_HASH hashAlg;

12 TPMS_ATTEST quoted;

13 OBJECT *signObject = HandleToObject(in->signHandle);

14 // Input Validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_Quote_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_Quote_inScheme;

19

20 // Command Output

21

22 // Filling in attest information

23 // Common fields

24 // FillInAttestInfo may return TPM_RC_SCHEME or TPM_RC_KEY

25 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData, "ed);

26

27 // Quote specific fields

28 // Attestation type

29 quoted.type = TPM_ST_ATTEST_QUOTE;

30

31 // Get hash algorithm in sign scheme. This hash algorithm is used to

32 // compute PCR digest. If there is no algorithm, then the PCR cannot

33 // be digested and this command returns TPM_RC_SCHEME

34 hashAlg = in->inScheme.details.any.hashAlg;

35

36 if(hashAlg == TPM_ALG_NULL)

37 return TPM_RCS_SCHEME + RC_Quote_inScheme;

38

39 // Compute PCR digest

40 PCRComputeCurrentDigest(hashAlg, &in->PCRselect,

41 "ed.attested.quote.pcrDigest);

42

43 // Copy PCR select. "PCRselect" is modified in PCRComputeCurrentDigest

44 // function

45 quoted.attested.quote.pcrSelect = in->PCRselect;

46

47 // Sign attestation structure. A NULL signature will be returned if

48 // signObject is NULL.

49 return SignAttestInfo(signObject, &in->inScheme, "ed, &in->qualifyingData,

50 &out->quoted, &out->signature);

51 }

52 #endif // CC_Quote

Part 3: Commands Trusted Platform Module Library

Page 180 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.5 TPM2_GetSessionAuditDigest

 General Description

This command returns a digital signature of the audit session digest.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

If sessionHandle is not an audit session, the TPM shall return TPM_RC_TYPE.

NOTE 2 A session does not become an audit session until the successful completion of the command in
which the session is first used as an audit session.

This command requires authorization from the privacy administrator of the TPM (expressed with

Endorsement Authorization) as well as authorization to use the key associated with signHandle.

If this command is audited, then the audit digest that is signed will not include the digest of this command

because the audit digest is only updated when the command completes successfully.

This command does not cause the audit session to be closed and does not reset the digest value.

NOTE 3 If sessionHandle is used as an audit session for this command, the command is audited in the same
manner as any other command.

NOTE 4 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 181

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 92 — TPM2_GetSessionAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetSessionAuditDigest

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

handle of the signing key

Auth Index: 2

Auth Role: USER

TPMI_SH_HMAC sessionHandle
handle of the audit session

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data – may be zero-length

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 93 — TPM2_GetSessionAuditDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the audit information that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Part 3: Commands Trusted Platform Module Library

Page 182 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "GetSessionAuditDigest_fp.h"

4 #if CC_GetSessionAuditDigest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_TYPE sessionHandle does not reference an audit session

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

5 TPM_RC

6 TPM2_GetSessionAuditDigest(

7 GetSessionAuditDigest_In *in, // IN: input parameter list

8 GetSessionAuditDigest_Out *out // OUT: output parameter list

9)

10 {

11 SESSION *session = SessionGet(in->sessionHandle);

12 TPMS_ATTEST auditInfo;

13 OBJECT *signObject = HandleToObject(in->signHandle);

14 // Input Validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_GetSessionAuditDigest_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_GetSessionAuditDigest_inScheme;

19

20 // session must be an audit session

21 if(session->attributes.isAudit == CLEAR)

22 return TPM_RCS_TYPE + RC_GetSessionAuditDigest_sessionHandle;

23

24 // Command Output

25 // Fill in attest information common fields

26 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

27 &auditInfo);

28

29 // SessionAuditDigest specific fields

30 auditInfo.type = TPM_ST_ATTEST_SESSION_AUDIT;

31 auditInfo.attested.sessionAudit.sessionDigest = session->u2.auditDigest;

32

33 // Exclusive audit session

34 auditInfo.attested.sessionAudit.exclusiveSession

35 = (g_exclusiveAuditSession == in->sessionHandle);

36

37 // Sign attestation structure. A NULL signature will be returned if

38 // signObject is NULL.

39 return SignAttestInfo(signObject, &in->inScheme, &auditInfo,

40 &in->qualifyingData, &out->auditInfo,

41 &out->signature);

42 }

43 #endif // CC_GetSessionAuditDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 183

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.6 TPM2_GetCommandAuditDigest

 General Description

This command returns the current value of the command audit digest, a digest of the commands being

audited, and the audit hash algorithm. These values are placed in an attestation structure and signed with

the key referenced by signHandle.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

When this command completes successfully, and signHandle is not TPM_RH_NULL, the audit digest is

cleared. If signHandle is TPM_RH_NULL, signature is the Empty Buffer and the audit digest is not

cleared.

NOTE 2 The way that the TPM tracks that the digest is clear is vendor-dependent. The reference
implementation resets the size of the digest to zero.

If this command is being audited, then the signed digest produced by the command will not include the

command. At the end of this command, the audit digest will be extended with cpHash and the rpHash of

the command, which would change the command audit digest signed by the next invocation of this

command.

This command requires authorization from the privacy administrator of the TPM (expressed with

Endorsement Authorization) as well as authorization to use the key associated with signHandle.

Part 3: Commands Trusted Platform Module Library

Page 184 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 94 — TPM2_GetCommandAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCommandAuditDigest {NV}

TPMI_RH_ENDORSEMENT @privacyHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the handle of the signing key

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData other data to associate with this audit digest

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 95 — TPM2_GetCommandAuditDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the auditInfo that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 185

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "GetCommandAuditDigest_fp.h"

4 #if CC_GetCommandAuditDigest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

5 TPM_RC

6 TPM2_GetCommandAuditDigest(

7 GetCommandAuditDigest_In *in, // IN: input parameter list

8 GetCommandAuditDigest_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 TPMS_ATTEST auditInfo;

13 OBJECT *signObject = HandleToObject(in->signHandle);

14 // Input validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_GetCommandAuditDigest_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_GetCommandAuditDigest_inScheme;

19

20 // Command Output

21 // Fill in attest information common fields

22 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

23 &auditInfo);

24

25 // CommandAuditDigest specific fields

26 auditInfo.type = TPM_ST_ATTEST_COMMAND_AUDIT;

27 auditInfo.attested.commandAudit.digestAlg = gp.auditHashAlg;

28 auditInfo.attested.commandAudit.auditCounter = gp.auditCounter;

29

30 // Copy command audit log

31 auditInfo.attested.commandAudit.auditDigest = gr.commandAuditDigest;

32 CommandAuditGetDigest(&auditInfo.attested.commandAudit.commandDigest);

33

34 // Sign attestation structure. A NULL signature will be returned if

35 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

36 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

37 // this point

38 result = SignAttestInfo(signObject, &in->inScheme, &auditInfo,

39 &in->qualifyingData, &out->auditInfo,

40 &out->signature);

41 // Internal Data Update

42 if(result == TPM_RC_SUCCESS && in->signHandle != TPM_RH_NULL)

43 // Reset log

44 gr.commandAuditDigest.t.size = 0;

45

46 return result;

47 }

Part 3: Commands Trusted Platform Module Library

Page 186 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

48 #endif // CC_GetCommandAuditDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 187

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.7 TPM2_GetTime

 General Description

This command returns the current values of Time and Clock.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The values of Clock, resetCount and restartCount appear in two places in timeInfo: once in

TPMS_ATTEST.clockInfo and again in TPMS_ATTEST.attested.time.clockInfo. The firmware version

number also appears in two places (TPMS_ATTEST.firmwareVersion and

TPMS_ATTEST.attested.time.firmwareVersion). If signHandle is in the endorsement or platform

hierarchies, both copies of the data will be the same. However, if signHandle is in the storage hierarchy or

is TPM_RH_NULL, the values in TPMS_ATTEST.clockInfo and TPMS_ATTEST.firmwareVersion are

obfuscated but the values in TPMS_ATTEST.attested.time are not.

NOTE 2 The purpose of this duplication is to allow an entity who is trusted by the privacy Administrator to
correlate the obfuscated values with the clear-text values. This command requires Endorsement
Authorization.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Part 3: Commands Trusted Platform Module Library

Page 188 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 96 — TPM2_GetTime Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTime

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the keyHandle identifier of a loaded key that can
perform digital signatures

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData data to tick stamp

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 97 — TPM2_GetTime Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST timeInfo standard TPM-generated attestation block

TPMT_SIGNATURE signature the signature over timeInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 189

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "GetTime_fp.h"

4 #if CC_GetTime // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

5 TPM_RC

6 TPM2_GetTime(

7 GetTime_In *in, // IN: input parameter list

8 GetTime_Out *out // OUT: output parameter list

9)

10 {

11 TPMS_ATTEST timeInfo;

12 OBJECT *signObject = HandleToObject(in->signHandle);

13 // Input Validation

14 if(!IsSigningObject(signObject))

15 return TPM_RCS_KEY + RC_GetTime_signHandle;

16 if(!CryptSelectSignScheme(signObject, &in->inScheme))

17 return TPM_RCS_SCHEME + RC_GetTime_inScheme;

18

19 // Command Output

20 // Fill in attest common fields

21 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData, &timeInfo);

22

23 // GetClock specific fields

24 timeInfo.type = TPM_ST_ATTEST_TIME;

25 timeInfo.attested.time.time.time = g_time;

26 TimeFillInfo(&timeInfo.attested.time.time.clockInfo);

27

28 // Firmware version in plain text

29 timeInfo.attested.time.firmwareVersion

30 = (((UINT64)gp.firmwareV1) << 32) + gp.firmwareV2;

31

32 // Sign attestation structure. A NULL signature will be returned if

33 // signObject is NULL.

34 return SignAttestInfo(signObject, &in->inScheme, &timeInfo, &in->qualifyingData,

35 &out->timeInfo, &out->signature);

36 }

37 #endif // CC_GetTime

18.8 TPM2_CertifyX509

 General Description

The purpose of this command is to generate an X.509 certificate that proves an object with a specific

public key and attributes is loaded in the TPM. In contrast to TPM2_Certify, which uses a TCG-defined

data structure to convey attestation information, TPM2_CertifyX509 encodes the attestation information in

Part 3: Commands Trusted Platform Module Library

Page 190 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

a DER-encoded X.509 certificate that is compliant with RFC5280 Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile.

As described in RFC, an X.509 certificate contains a collection of data that is hashed and signed. The full

signature is the combination of the to be signed (TBS) data, a description of the signature algorithm, and

the signature over the TBS data. The elements of the TBS data structure are DER-encoded values. They

are:

1) Version [0] – integer value of 2 indicating version 3

2) Certificate Serial Number – integer value

3) Signature Algorithm Identifier – values (usually a collection of OIDs) identifying the algorithm

used for the signature

4) Issuer Name – X.501 type Name to identify the entity that has authorized the use of

signHandle to create the certificate.

5) Validity – two time values indicating the period during which the certificate is valid

6) Subject Name – X.501 type Name that identifies the entity that authorized the use of

objectHandle

7) Subject Public Key Info – the public key associated with objectHandle,

8) Extensions [3] – a set of values that “provide methods for associating additional attributes

with users or public keys and for managing relationships between CAs.”

NOTE 1: The numbers in square brackets (e.g., [0]) indicate application -specific tag values that are used to
identify the type of the field.

NOTE 2: RFC 5280 describes two fields (issuerUniqueID and subjectUniqueID) but goes on to say: “CAs
conforming to this profile MUST NOT generate certificates with unique identifiers.” The TPM does
not allow them to be present.

The caller provides a partial certificate (partialCertificate) parameter that contains four or five of the

elements enumerated above in a DER encoded SEQUENCE. They are:

1) Signature Algorithm Identifier (optional)

2) Issuer (mandatory)

3) Validity (mandatory)

4) Subject Name (mandatory)

5) Extensions (mandatory)

The fields are required to be in the order in which they are listed above.

NOTE 3: The TPM determines if the Signature Algorithm Identifier element is present by counting the
elements.

The optional Signature Algorithm Identifier may be provided by the caller. If it is not present, the TPM will

generate the value based on the selected signing scheme. If the caller provides this value, then the TPM

will use it in the completed TBS. The TPM will not validate that the provided values are compatible with

the signing scheme. If the caller does not provide this field and the TPM does not have OID values for the

signing scheme, then the TPM will return an error (TPM_RC_SCHEME).

NOTE 4: The TPM may implement signing schemes for which OIDs are not defined at the time t he TPM was
manufactured. Those schemes may still be used if the caller can provide the Signature Algorithm
Identifier.

The Extensions element is required to contain a Key Usage extension. The TPM will extract the Key

Usage values and verify that the attributes of objectHandle are consistent with the selected values

(TPM_RC_ATTRIBUTES)(See Part 2, TPMA_X509_KEY_USAGE).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 191

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The Extensions element may contain a TPMA_OBJECT extension. If present, the TPM will extract the

value and verify that the extension value exactly matches the TPMA_OBJECT of objectKey

(TPM_RC_ATTRIBUTES). The element uses the TCG OID tcg-tpmaObject, 2.23.133.10.1.1.1. It is a

SEQUENCE containing that OID and an OCTET STRING encapsulating a 4-byte BIT STRING holding

the big endian TPMA_OBJECT.

signHandle is required to have the sign attribute SET (TPM_RC_KEY).

NOTE 5: See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_CertifyX509. This indicates that the

policy that is being used is a policy that is for certification, and not a policy that would approve another

use. That is, authority to use an object does not grant authority to certify the object.

If objectHandle does not have a sensitive area loaded, the TPM will return an error

(TPM_RC_AUTH_UNAVAILABLE).

NOTE 6: The command requires that authorization be provided for use of objectHandle. An object that only
has its publicArea loaded does not have an authorization value and the authPolicy has no meaning
as the sensitive area is not present.

The TPM will create the Version, the Certificate Serial Number, the Subject Public Key Info, and, if not

provided by the caller, the Signature Algorithm Identifier. These TPM-created values will be combined

with the provided values to make a full TBSCerfificate structure (See RFC 5280, clause 4.1). The TPM

will then sign the certificate using the selected signing scheme.

The TPM-created values will be returned in addedToCertificate. If the TPM creates the Signature

Algorithm Identifier, it will be in addedToCertificate before the Subject Public Key Info. The TPM returns

tbsDigest as a debugging aid.

NOTE 7: These returned fields allow the caller to unambiguously create a full RFC5280-defined
TBSCertificate.

NOTE 8: This command was added in revision 01.53.

Part 3: Commands Trusted Platform Module Library

Page 192 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 98 — TPM2_CertifyX509 Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyX509

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA reserved shall be an Empty Buffer

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPM2B_MAX_BUFFER partialCertificate a DER encoded partial certificate

Table 99 — TPM2_CertifyX509 Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_MAX_BUFFER addedToCertificate
a DER encoded SEQUENCE containing the DER
encoded fields added to partialCertificate to make it a
complete RFC5280 TBSCertificate.

TPM2B_DIGEST tbsDigest the digest that was signed

TPMT_SIGNATURE signature The signature over tbsDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 193

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "CertifyX509_fp.h"

3 #include "X509.h"

4 #include "TpmASN1_fp.h"

5 #include "X509_spt_fp.h"

6 #include "Attest_spt_fp.h"

7 #include "Platform_fp.h"

8 #if CC_CertifyX509 // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES the attributes of objectHandle are not compatible with the KeyUsage()
or TPMA_OBJECT values in the extensions fields

TPM_RC_BINDING the public and private portions of the key are not properly bound.

TPM_RC_HASH the hash algorithm in the scheme is not supported

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is
not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

TPM_RC_VALUE most likely a problem with the format of partialCertificate

9 TPM_RC

10 TPM2_CertifyX509(

11 CertifyX509_In *in, // IN: input parameter list

12 CertifyX509_Out *out // OUT: output parameter list

13)

14 {

15 TPM_RC result;

16 OBJECT *signKey = HandleToObject(in->signHandle);

17 OBJECT *object = HandleToObject(in->objectHandle);

18 HASH_STATE hash;

19 INT16 length; // length for a tagged element

20 ASN1UnmarshalContext ctx;

21 ASN1MarshalContext ctxOut;

22 // certTBS holds an array of pointers and lengths. Each entry references the

23 // corresponding value in a TBSCertificate structure. For example, the 1th

24 // element references the version number

25 stringRef certTBS[REF_COUNT] = {{0}};

26 #define ALLOWED_SEQUENCES (SUBJECT_PUBLIC_KEY_REF - SIGNATURE_REF)

27 stringRef partial[ALLOWED_SEQUENCES] = {{0}};

28 INT16 countOfSequences = 0;

29 INT16 i;

30 //

31 #if CERTIFYX509_DEBUG

32 DebugFileOpen();

33 DebugDumpBuffer(in->partialCertificate.t.size, in->partialCertificate.t.buffer,

34 "partialCertificate");

35 #endif

36

37 // Input Validation

38 if(in->reserved.b.size != 0)

39 return TPM_RC_SIZE + RC_CertifyX509_reserved;

40 // signing key must be able to sign

41 if(!IsSigningObject(signKey))

42 return TPM_RCS_KEY + RC_CertifyX509_signHandle;

43 // Pick a scheme for sign. If the input sign scheme is not compatible with

44 // the default scheme, return an error.

Part 3: Commands Trusted Platform Module Library

Page 194 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

45 if(!CryptSelectSignScheme(signKey, &in->inScheme))

46 return TPM_RCS_SCHEME + RC_CertifyX509_inScheme;

47 // Make sure that the public Key encoding is known

48 if(X509AddPublicKey(NULL, object) == 0)

49 return TPM_RCS_ASYMMETRIC + RC_CertifyX509_objectHandle;

50 // Unbundle 'partialCertificate'.

51 // Initialize the unmarshaling context

52 if(!ASN1UnmarshalContextInitialize(&ctx, in->partialCertificate.t.size,

53 in->partialCertificate.t.buffer))

54 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

55 // Make sure that this is a constructed SEQUENCE

56 length = ASN1NextTag(&ctx);

57 // Must be a constructed SEQUENCE that uses all of the input parameter

58 if((ctx.tag != (ASN1_CONSTRUCTED_SEQUENCE))

59 || ((ctx.offset + length) != in->partialCertificate.t.size))

60 return TPM_RCS_SIZE + RC_CertifyX509_partialCertificate;

61

62 // This scans through the contents of the outermost SEQUENCE. This would be the

63 // 'issuer', 'validity', 'subject', 'issuerUniqueID' (optional),

64 // 'subjectUniqueID' (optional), and 'extensions.'

65 while(ctx.offset < ctx.size)

66 {

67 INT16 startOfElement = ctx.offset;

68 //

69 // Read the next tag and length field.

70 length = ASN1NextTag(&ctx);

71 if(length < 0)

72 break;

73 if(ctx.tag == ASN1_CONSTRUCTED_SEQUENCE)

74 {

75 partial[countOfSequences].buf = &ctx.buffer[startOfElement];

76 ctx.offset += length;

77 partial[countOfSequences].len = (INT16)ctx.offset - startOfElement;

78 if(++countOfSequences > ALLOWED_SEQUENCES)

79 break;

80 }

81 else if(ctx.tag == X509_EXTENSIONS)

82 {

83 if(certTBS[EXTENSIONS_REF].len != 0)

84 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

85 certTBS[EXTENSIONS_REF].buf = &ctx.buffer[startOfElement];

86 ctx.offset += length;

87 certTBS[EXTENSIONS_REF].len =

88 (INT16)ctx.offset - startOfElement;

89 }

90 else

91 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

92 }

93 // Make sure that we used all of the data and found at least the required

94 // number of elements.

95 if((ctx.offset != ctx.size) || (countOfSequences < 3)

96 || (countOfSequences > 4)

97 || (certTBS[EXTENSIONS_REF].buf == NULL))

98 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

99 // Now that we know how many sequences there were, we can put them where they

100 // belong

101 for(i = 0; i < countOfSequences; i++)

102 certTBS[SUBJECT_KEY_REF - i] = partial[countOfSequences - 1 - i];

103

104 // If only three SEQUENCES, then the TPM needs to produce the signature algorithm.

105 // See if it can

106 if((countOfSequences == 3) &&

107 (X509AddSigningAlgorithm(NULL, signKey, &in->inScheme) == 0))

108 return TPM_RCS_SCHEME + RC_CertifyX509_signHandle;

109

110 // Process the extensions

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 195

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

111 result = X509ProcessExtensions(object, &certTBS[EXTENSIONS_REF]);

112 if(result != TPM_RC_SUCCESS)

113 // If the extension has the TPMA_OBJECT extension and the attributes don't

114 // match, then the error code will be TPM_RCS_ATTRIBUTES. Otherwise, the error

115 // indicates a malformed partialCertificate.

116 return result + ((result == TPM_RCS_ATTRIBUTES)

117 ? RC_CertifyX509_objectHandle

118 : RC_CertifyX509_partialCertificate);

119 // Command Output

120 // Create the addedToCertificate values

121

122 // Build the addedToCertificate from the bottom up.

123 // Initialize the context structure

124 ASN1InitialializeMarshalContext(&ctxOut, sizeof(out->addedToCertificate.t.buffer),

125 out->addedToCertificate.t.buffer);

126 // Place a marker for the overall context

127 ASN1StartMarshalContext(&ctxOut); // SEQUENCE for addedToCertificate

128

129 // Add the subject public key descriptor

130 certTBS[SUBJECT_PUBLIC_KEY_REF].len = X509AddPublicKey(&ctxOut, object);

131 certTBS[SUBJECT_PUBLIC_KEY_REF].buf = ctxOut.buffer + ctxOut.offset;

132 // If the caller didn't provide the algorithm identifier, create it

133 if(certTBS[SIGNATURE_REF].len == 0)

134 {

135 certTBS[SIGNATURE_REF].len = X509AddSigningAlgorithm(&ctxOut, signKey,

136 &in->inScheme);

137 certTBS[SIGNATURE_REF].buf = ctxOut.buffer + ctxOut.offset;

138 }

139 // Create the serial number value. Use the out->tbsDigest as scratch.

140 {

141 TPM2B *digest = &out->tbsDigest.b;

142 //

143 digest->size = (INT16)CryptHashStart(&hash, signKey->publicArea.nameAlg);

144 pAssert(digest->size != 0);

145

146 // The serial number size is the smaller of the digest and the vendor-defined

147 // value

148 digest->size = MIN(digest->size, SIZE_OF_X509_SERIAL_NUMBER);

149 // Add all the parts of the certificate other than the serial number

150 // and version number

151 for(i = SIGNATURE_REF; i < REF_COUNT; i++)

152 CryptDigestUpdate(&hash, certTBS[i].len, certTBS[i].buf);

153 // throw in the Name of the signing key...

154 CryptDigestUpdate2B(&hash, &signKey->name.b);

155 // ...and the Name of the signed key.

156 CryptDigestUpdate2B(&hash, &object->name.b);

157 // Done

158 CryptHashEnd2B(&hash, digest);

159 }

160

161 // Add the serial number

162 certTBS[SERIAL_NUMBER_REF].len =

163 ASN1PushInteger(&ctxOut, out->tbsDigest.t.size, out->tbsDigest.t.buffer);

164 certTBS[SERIAL_NUMBER_REF].buf = ctxOut.buffer + ctxOut.offset;

165

166 // Add the static version number

167 ASN1StartMarshalContext(&ctxOut);

168 ASN1PushUINT(&ctxOut, 2);

169 certTBS[VERSION_REF].len =

170 ASN1EndEncapsulation(&ctxOut, ASN1_APPLICAIION_SPECIFIC);

171 certTBS[VERSION_REF].buf = ctxOut.buffer + ctxOut.offset;

172

173 // Create a fake tag and length for the TBS in the space used for

174 // 'addedToCertificate'

175 {

176 for(length = 0, i = 0; i < REF_COUNT; i++)

Part 3: Commands Trusted Platform Module Library

Page 196 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

177 length += certTBS[i].len;

178 // Put a fake tag and length into the buffer for use in the tbsDigest

179 certTBS[ENCODED_SIZE_REF].len =

180 ASN1PushTagAndLength(&ctxOut, ASN1_CONSTRUCTED_SEQUENCE, length);

181 certTBS[ENCODED_SIZE_REF].buf = ctxOut.buffer + ctxOut.offset;

182 // Restore the buffer pointer to add back the number of octets used for the

183 // tag and length

184 ctxOut.offset += certTBS[ENCODED_SIZE_REF].len;

185 }

186 // sanity check

187 if(ctxOut.offset < 0)

188 return TPM_RC_FAILURE;

189 // Create the tbsDigest to sign

190 out->tbsDigest.t.size = CryptHashStart(&hash, in->inScheme.details.any.hashAlg);

191 for(i = 0; i < REF_COUNT; i++)

192 CryptDigestUpdate(&hash, certTBS[i].len, certTBS[i].buf);

193 CryptHashEnd2B(&hash, &out->tbsDigest.b);

194

195 #if CERTIFYX509_DEBUG

196 {

197 BYTE fullTBS[4096];

198 BYTE *fill = fullTBS;

199 int j;

200 for (j = 0; j < REF_COUNT; j++)

201 {

202 MemoryCopy(fill, certTBS[j].buf, certTBS[j].len);

203 fill += certTBS[j].len;

204 }

205 DebugDumpBuffer((int)(fill - &fullTBS[0]), fullTBS, "\nfull TBS");

206 }

207 #endif

208

209 // Finish up the processing of addedToCertificate

210 // Create the actual tag and length for the addedToCertificate structure

211 out->addedToCertificate.t.size =

212 ASN1EndEncapsulation(&ctxOut, ASN1_CONSTRUCTED_SEQUENCE);

213 // Now move all the addedToContext to the start of the buffer

214 MemoryCopy(out->addedToCertificate.t.buffer, ctxOut.buffer + ctxOut.offset,

215 out->addedToCertificate.t.size);

216 #if CERTIFYX509_DEBUG

217 DebugDumpBuffer(out->addedToCertificate.t.size, out->addedToCertificate.t.buffer,

218 "\naddedToCertificate");

219 #endif

220 // only thing missing is the signature

221 result = CryptSign(signKey, &in->inScheme, &out->tbsDigest, &out->signature);

222

223 return result;

224 }

225 #endif // CC_CertifyX509

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 197

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

19 Ephemeral EC Keys

19.1 Introduction

The TPM generates keys that have different lifetimes. TPM keys in a hierarchy can be persistent for as

long as the seed of the hierarchy is unchanged and these keys may be used multiple times. Other TPM-

generated keys are only useful for a single operation. Some of these single-use keys are used in the

command in which they are created. Examples of this use are TPM2_Duplicate() where an ephemeral

key is created for a single pass key exchange with another TPM. However, there are other cases, such

as anonymous attestation, where the protocol requires two passes where the public part of the ephemeral

key is used outside of the TPM before the final command "consumes" the ephemeral key.

For these uses, TPM2_Commit() or TPM2_EC_Ephemeral() may be used to have the TPM create an

ephemeral EC key and return the public part of the key for external use. Then in a subsequent command,

the caller provides a reference to the ephemeral key so that the TPM can retrieve or recreate the

associated private key.

When an ephemeral EC key is created, it is assigned a number and that number is returned to the caller

as the identifier for the key. This number is not a handle. A handle is assigned to a key that may be

context saved but these ephemeral EC keys may not be saved and do not have a full key context. When

a subsequent command uses the ephemeral key, the caller provides the number of the ephemeral key.

The TPM uses that number to either look up or recompute the associated private key. After the key is

used, the TPM records the fact that the key has been used so that it cannot be used again.

As mentioned, the TPM can keep each assigned private ephemeral key in memory until it is used.

However, this could consume a large amount of memory. To limit the memory size, the TPM is allowed to

restrict the number of pending private keys – keys that have been allocated but not used.

NOTE The minimum number of ephemeral keys is determined by a platform specific specification

To further reduce the memory requirements for the ephemeral private keys, the TPM is allowed to use

pseudo-random values for the ephemeral keys. Instead of keeping the full value of the key in memory, the

TPM can use a counter as input to a KDF. Incrementing the counter will cause the TPM to generate a

new pseudo-random value.

Using the counter to generate pseudo-random private ephemeral keys greatly simplifies tracking of key

usage. When a counter value is used to create a key, a bit in an array may be set to indicate that the key

use is pending. When the ephemeral key is consumed, the bit is cleared. This prevents the key from

being used more than once.

Since the TPM is allowed to restrict the number of pending ephemeral keys, the array size can be limited.

For example, a 128 bit array would allow 128 keys to be "pending".

The management of the array is described in greater detail in the Split Operations clause in Annex C of

TPM 2.0 Part 1.

Part 3: Commands Trusted Platform Module Library

Page 198 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

19.2 TPM2_Commit

 General Description

TPM2_Commit() performs the first part of an ECC anonymous signing operation. The TPM will perform

the point multiplications on the provided points and return intermediate signing values. The signHandle

parameter shall refer to an ECC key and the signing scheme must be anonymous (TPM_RC_SCHEME).

NOTE 1 Currently, TPM_ALG_ECDAA is the only defined anonymous scheme.

NOTE 2 This command cannot be used with a sign+decrypt key because that type of key is required to have
a scheme of TPM_ALG_NULL.

For this command, p1, s2 and y2 are optional parameters. If s2 is an Empty Buffer, then the TPM shall

return TPM_RC_SIZE if y2 is not an Empty Buffer.

The algorithm is specified in the TPM 2.0 Part 1 Annex for ECC, TPM2_Commit().

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 199

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 100 — TPM2_Commit Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Commit

TPMI_DH_OBJECT @signHandle

handle of the key that will be used in the signing

operation

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT P1 a point (M) on the curve used by signHandle

TPM2B_SENSITIVE_DATA s2 octet array used to derive x-coordinate of a base point

TPM2B_ECC_PARAMETER y2 y coordinate of the point associated with s2

Table 101 — TPM2_Commit Response

Type Name Description

TPM_ST tag see 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT K ECC point K ≔ [ds](x2, y2)

TPM2B_ECC_POINT L ECC point L ≔ [r](x2, y2)

TPM2B_ECC_POINT E ECC point E ≔ [r]P1

UINT16 counter least-significant 16 bits of commitCount

Part 3: Commands Trusted Platform Module Library

Page 200 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Commit_fp.h"

3 #if CC_Commit // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle references a restricted key that is not a signing key

TPM_RC_ECC_POINT either P1 or the point derived from s2 is not on the curve of
keyHandle

TPM_RC_HASH invalid name algorithm in keyHandle

TPM_RC_KEY keyHandle does not reference an ECC key

TPM_RC_SCHEME the scheme of keyHandle is not an anonymous scheme

TPM_RC_NO_RESULT K, L or E was a point at infinity; or failed to generate r value

TPM_RC_SIZE s2 is empty but y2 is not or s2 provided but y2 is not

4 TPM_RC

5 TPM2_Commit(

6 Commit_In *in, // IN: input parameter list

7 Commit_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *eccKey;

11 TPMS_ECC_POINT P2;

12 TPMS_ECC_POINT *pP2 = NULL;

13 TPMS_ECC_POINT *pP1 = NULL;

14 TPM2B_ECC_PARAMETER r;

15 TPM2B_ECC_PARAMETER p;

16 TPM_RC result;

17 TPMS_ECC_PARMS *parms;

18

19 // Input Validation

20

21 eccKey = HandleToObject(in->signHandle);

22 parms = &eccKey->publicArea.parameters.eccDetail;

23

24 // Input key must be an ECC key

25 if(eccKey->publicArea.type != TPM_ALG_ECC)

26 return TPM_RCS_KEY + RC_Commit_signHandle;

27

28 // This command may only be used with a sign-only key using an anonymous

29 // scheme.

30 // NOTE: a sign + decrypt key has no scheme so it will not be an anonymous one

31 // and an unrestricted sign key might no have a signing scheme but it can't

32 // be use in Commit()

33 if(!CryptIsSchemeAnonymous(parms->scheme.scheme))

34 return TPM_RCS_SCHEME + RC_Commit_signHandle;

35

36 // Make sure that both parts of P2 are present if either is present

37 if((in->s2.t.size == 0) != (in->y2.t.size == 0))

38 return TPM_RCS_SIZE + RC_Commit_y2;

39

40 // Get prime modulus for the curve. This is needed later but getting this now

41 // allows confirmation that the curve exists.

42 if(!CryptEccGetParameter(&p, 'p', parms->curveID))

43 return TPM_RCS_KEY + RC_Commit_signHandle;

44

45 // Get the random value that will be used in the point multiplications

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 201

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

46 // Note: this does not commit the count.

47 if(!CryptGenerateR(&r, NULL, parms->curveID, &eccKey->name))

48 return TPM_RC_NO_RESULT;

49

50 // Set up P2 if s2 and Y2 are provided

51 if(in->s2.t.size != 0)

52 {

53 TPM2B_DIGEST x2;

54

55 pP2 = &P2;

56

57 // copy y2 for P2

58 P2.y = in->y2;

59

60 // Compute x2 HnameAlg(s2) mod p

61 // do the hash operation on s2 with the size of curve 'p'

62 x2.t.size = CryptHashBlock(eccKey->publicArea.nameAlg,

63 in->s2.t.size,

64 in->s2.t.buffer,

65 sizeof(x2.t.buffer),

66 x2.t.buffer);

67

68 // If there were error returns in the hash routine, indicate a problem

69 // with the hash algorithm selection

70 if(x2.t.size == 0)

71 return TPM_RCS_HASH + RC_Commit_signHandle;

72 // The size of the remainder will be same as the size of p. DivideB() will

73 // pad the results (leading zeros) if necessary to make the size the same

74 P2.x.t.size = p.t.size;

75 // set p2.x = hash(s2) mod p

76 if(DivideB(&x2.b, &p.b, NULL, &P2.x.b) != TPM_RC_SUCCESS)

77 return TPM_RC_NO_RESULT;

78

79 if(!CryptEccIsPointOnCurve(parms->curveID, pP2))

80 return TPM_RCS_ECC_POINT + RC_Commit_s2;

81

82 if(eccKey->attributes.publicOnly == SET)

83 return TPM_RCS_KEY + RC_Commit_signHandle;

84 }

85 // If there is a P1, make sure that it is on the curve

86 // NOTE: an "empty" point has two UINT16 values which are the size values

87 // for each of the coordinates.

88 if(in->P1.size > 4)

89 {

90 pP1 = &in->P1.point;

91 if(!CryptEccIsPointOnCurve(parms->curveID, pP1))

92 return TPM_RCS_ECC_POINT + RC_Commit_P1;

93 }

94

95 // Pass the parameters to CryptCommit.

96 // The work is not done in-line because it does several point multiplies

97 // with the same curve. It saves work by not having to reload the curve

98 // parameters multiple times.

99 result = CryptEccCommitCompute(&out->K.point,

100 &out->L.point,

101 &out->E.point,

102 parms->curveID,

103 pP1,

104 pP2,

105 &eccKey->sensitive.sensitive.ecc,

106 &r);

107 if(result != TPM_RC_SUCCESS)

108 return result;

109

110 // The commit computation was successful so complete the commit by setting

111 // the bit

Part 3: Commands Trusted Platform Module Library

Page 202 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

112 out->counter = CryptCommit();

113

114 return TPM_RC_SUCCESS;

115 }

116 #endif // CC_Commit

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 203

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

19.3 TPM2_EC_Ephemeral

 General Description

TPM2_EC_Ephemeral() creates an ephemeral key for use in a two-phase key exchange protocol.

The TPM will use the commit mechanism to assign an ephemeral key r and compute a public point Q ≔

[r]G where G is the generator point associated with curveID.

Part 3: Commands Trusted Platform Module Library

Page 204 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 102 — TPM2_EC_Ephemeral Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is

present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EC_Ephemeral

TPMI_ECC_CURVE curveID The curve for the computed ephemeral point

Table 103 — TPM2_EC_Ephemeral Response

Type Name Description

TPM_ST tag see 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT Q ephemeral public key Q ≔ [r]G

UINT16 counter least-significant 16 bits of commitCount

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 205

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "EC_Ephemeral_fp.h"

3 #if CC_EC_Ephemeral // Conditional expansion of this file

Error Returns Meaning

TPM_RC_NO_RESULT the TPM is not able to generate an r value

4 TPM_RC

5 TPM2_EC_Ephemeral(

6 EC_Ephemeral_In *in, // IN: input parameter list

7 EC_Ephemeral_Out *out // OUT: output parameter list

8)

9 {

10 TPM2B_ECC_PARAMETER r;

11 TPM_RC result;

12 //

13 do

14 {

15 // Get the random value that will be used in the point multiplications

16 // Note: this does not commit the count.

17 if(!CryptGenerateR(&r, NULL, in->curveID, NULL))

18 return TPM_RC_NO_RESULT;

19 // do a point multiply

20 result = CryptEccPointMultiply(&out->Q.point, in->curveID, NULL, &r,

21 NULL, NULL);

22 // commit the count value if either the r value results in the point at

23 // infinity or if the value is good. The commit on the r value for infinity

24 // is so that the r value will be skipped.

25 if((result == TPM_RC_SUCCESS) || (result == TPM_RC_NO_RESULT))

26 out->counter = CryptCommit();

27 } while(result == TPM_RC_NO_RESULT);

28

29 return TPM_RC_SUCCESS;

30 }

31 #endif // CC_EC_Ephemeral

Part 3: Commands Trusted Platform Module Library

Page 206 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

20 Signing and Signature Verification

20.1 TPM2_VerifySignature

 General Description

This command uses loaded keys to validate a signature on a message with the message digest passed

to the TPM.

If the signature check succeeds, then the TPM will produce a TPMT_TK_VERIFIED. Otherwise, the TPM

shall return TPM_RC_SIGNATURE.

If the key is in the NULL hierarchy, then digest in the ticket will be the Empty Buffer.

NOTE 1 A valid ticket may be used in subsequent commands to provide proof to the TPM that the TPM has
validated the signature over the message using the key referenced by keyHandle.

If keyHandle references an asymmetric key, only the public portion of the key needs to be loaded. If

keyHandle references a symmetric key, both the public and private portions need to be loaded.

NOTE 2 The sensitive area of the symmetric object is required to allow verification of the symmetric
signature (the HMAC).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 207

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 104 — TPM2_VerifySignature Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_VerifySignature

TPMI_DH_OBJECT keyHandle
handle of public key that will be used in the validation

Auth Index: None

TPM2B_DIGEST digest digest of the signed message

TPMT_SIGNATURE signature signature to be tested

Table 105 — TPM2_VerifySignature Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_TK_VERIFIED validation

Part 3: Commands Trusted Platform Module Library

Page 208 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "VerifySignature_fp.h"

3 #if CC_VerifySignature // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a signing key

TPM_RC_SIGNATURE signature is not genuine

TPM_RC_SCHEME CryptValidateSignature()

TPM_RC_HANDLE the input handle is references an HMAC key but the private portion is
not loaded

4 TPM_RC

5 TPM2_VerifySignature(

6 VerifySignature_In *in, // IN: input parameter list

7 VerifySignature_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *signObject = HandleToObject(in->keyHandle);

12 TPMI_RH_HIERARCHY hierarchy;

13

14 // Input Validation

15 // The object to validate the signature must be a signing key.

16 if(!IS_ATTRIBUTE(signObject->publicArea.objectAttributes, TPMA_OBJECT, sign))

17 return TPM_RCS_ATTRIBUTES + RC_VerifySignature_keyHandle;

18

19 // Validate Signature. TPM_RC_SCHEME, TPM_RC_HANDLE or TPM_RC_SIGNATURE

20 // error may be returned by CryptCVerifySignatrue()

21 result = CryptValidateSignature(in->keyHandle, &in->digest, &in->signature);

22 if(result != TPM_RC_SUCCESS)

23 return RcSafeAddToResult(result, RC_VerifySignature_signature);

24

25 // Command Output

26

27 hierarchy = GetHeriarchy(in->keyHandle);

28 if(hierarchy == TPM_RH_NULL

29 || signObject->publicArea.nameAlg == TPM_ALG_NULL)

30 {

31 // produce empty ticket if hierarchy is TPM_RH_NULL or nameAlg is

32 // TPM_ALG_NULL

33 out->validation.tag = TPM_ST_VERIFIED;

34 out->validation.hierarchy = TPM_RH_NULL;

35 out->validation.digest.t.size = 0;

36 }

37 else

38 {

39 // Compute ticket

40 TicketComputeVerified(hierarchy, &in->digest, &signObject->name,

41 &out->validation);

42 }

43

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_VerifySignature

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 209

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

20.2 TPM2_Sign

 General Description

This command causes the TPM to sign an externally provided hash with the specified symmetric or

asymmetric signing key.

NOTE 1 If keyhandle references an unrestricted signing key, a digest can be signed using either this
command or an HMAC command.

If keyHandle references a restricted signing key, then validation shall be provided, indicating that the TPM

performed the hash of the data and validation shall indicate that hashed data did not start with

TPM_GENERATED_VALUE.

NOTE 2 If the hashed data did start with TPM_GENERATED_VALUE, then the validation will be a NULL
ticket.

The x509sign attribute of keyHandle may not be SET (TPM_RC_ATTRIBUTES).

If the scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be the same scheme as

keyHandle or TPM_ALG_NULL. If the sign attribute is not SET in the key referenced by handle then the

TPM shall return TPM_RC_KEY.

If the scheme of keyHandle is TPM_ALG_NULL, the TPM will sign using inScheme; otherwise, it will sign

using the scheme of keyHandle.

NOTE 3 When the signing scheme uses a hash algorithm, the algorithm is defined in the qualifying data of
the scheme. This is the same algorithm that is required to be used in producing digest. The size of
digest must match that of the hash algorithm in the scheme.

If inScheme is not a valid signing scheme for the type of keyHandle (or TPM_ALG_NULL), then the TPM

shall return TPM_RC_SCHEME.

If the scheme of keyHandle is an anonymous scheme, then inScheme shall have the same scheme

algorithm as keyHandle and inScheme will contain a counter value that will be used in the signing

process.

EXAMPLE For ECDAA, inScheme.details.ecdaa.count will contain the count value.

If validation is provided, then the hash algorithm used in computing the digest is required to be the hash

algorithm specified in the scheme of keyHandle (TPM_RC_TICKET).

If the validation parameter is not the Empty Buffer, then it will be checked even if the key referenced by

keyHandle is not a restricted signing key.

NOTE 4 If keyHandle is both a sign and decrypt key, keyHandle will have a scheme of TPM_ALG_NULL. If
validation is provided, then it must be a NULL validation ticket or the ticket validation will fail.

Part 3: Commands Trusted Platform Module Library

Page 210 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 106 — TPM2_Sign Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Sign

TPMI_DH_OBJECT @keyHandle

Handle of key that will perform signing

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST digest digest to be signed

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for keyHandle is
TPM_ALG_NULL

TPMT_TK_HASHCHECK validation

proof that digest was created by the TPM

If keyHandle is not a restricted signing key, then this
may be a NULL Ticket with tag =
TPM_ST_CHECKHASH.

Table 107 — TPM2_Sign Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_SIGNATURE signature the signature

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 211

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Sign_fp.h"

3 #if CC_Sign // Conditional expansion of this file

4 #include "Attest_spt_fp.h"

Error Returns Meaning

TPM_RC_BINDING The public and private portions of the key are not properly bound.

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is
not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

TPM_RC_TICKET validation is not a valid ticket

TPM_RC_VALUE the value to sign is larger than allowed for the type of keyHandle

5 TPM_RC

6 TPM2_Sign(

7 Sign_In *in, // IN: input parameter list

8 Sign_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 TPMT_TK_HASHCHECK ticket;

13 OBJECT *signObject = HandleToObject(in->keyHandle);

14 //

15 // Input Validation

16 if(!IsSigningObject(signObject))

17 return TPM_RCS_KEY + RC_Sign_keyHandle;

18

19 // A key that will be used for x.509 signatures can't be used in TPM2_Sign().

20 if(IS_ATTRIBUTE(signObject->publicArea.objectAttributes, TPMA_OBJECT, x509sign))

21 return TPM_RCS_ATTRIBUTES + RC_Sign_keyHandle;

22

23 // pick a scheme for sign. If the input sign scheme is not compatible with

24 // the default scheme, return an error.

25 if(!CryptSelectSignScheme(signObject, &in->inScheme))

26 return TPM_RCS_SCHEME + RC_Sign_inScheme;

27

28 // If validation is provided, or the key is restricted, check the ticket

29 if(in->validation.digest.t.size != 0

30 || IS_ATTRIBUTE(signObject->publicArea.objectAttributes,

31 TPMA_OBJECT, restricted))

32 {

33 // Compute and compare ticket

34 TicketComputeHashCheck(in->validation.hierarchy,

35 in->inScheme.details.any.hashAlg,

36 &in->digest, &ticket);

37

38 if(!MemoryEqual2B(&in->validation.digest.b, &ticket.digest.b))

39 return TPM_RCS_TICKET + RC_Sign_validation;

40 }

41 else

42 // If we don't have a ticket, at least verify that the provided 'digest'

43 // is the size of the scheme hashAlg digest.

44 // NOTE: this does not guarantee that the 'digest' is actually produced using

45 // the indicated hash algorithm, but at least it might be.

46 {

47 if(in->digest.t.size

Part 3: Commands Trusted Platform Module Library

Page 212 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

48 != CryptHashGetDigestSize(in->inScheme.details.any.hashAlg))

49 return TPM_RCS_SIZE + RC_Sign_digest;

50 }

51

52 // Command Output

53 // Sign the hash. A TPM_RC_VALUE or TPM_RC_SCHEME

54 // error may be returned at this point

55 result = CryptSign(signObject, &in->inScheme, &in->digest, &out->signature);

56

57 return result;

58 }

59 #endif // CC_Sign

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 213

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

21 Command Audit

21.1 Introduction

If a command has been selected for command audit, the command audit status will be updated when that

command completes successfully. The digest is updated as:

 commandAuditDigestnew ≔ HauditAlg(commandAuditDigestold || cpHash || rpHash) (5)

where

HauditAlg hash function using the algorithm of the audit sequence

commandAuditDigest accumulated digest

cpHash the command parameter hash

rpHash the response parameter hash

auditAlg, the hash algorithm, is set using TPM2_SetCommandCodeAuditStatus().

TPM2_Shutdown() cannot be audited but TPM2_Startup() can be audited. If the cpHash of the

TPM2_Startup() is TPM_SU_STATE, that would indicate that a TPM2_Shutdown() had been successfully

executed.

TPM2_SetCommandCodeAuditStatus() is always audited, except when it is used to change auditAlg.

If the TPM is in Failure mode, command audit is not functional.

Part 3: Commands Trusted Platform Module Library

Page 214 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

21.2 TPM2_SetCommandCodeAuditStatus

 General Description

This command may be used by the Privacy Administrator or platform to change the audit status of a

command or to set the hash algorithm used for the audit digest, but not both at the same time.

If the auditAlg parameter is a supported hash algorithm and not the same as the current algorithm, then

the TPM will check both setList and clearList are empty (zero length). If so, then the algorithm is changed,

and the audit digest is cleared. If auditAlg is TPM_ALG_NULL or the same as the current algorithm, then

the algorithm and audit digest are unchanged and the setList and clearList will be processed.

NOTE 1 Because the audit digest is cleared, the audit counter will increment the next time that an audited
command is executed.

Use of TPM2_SetCommandCodeAuditStatus() to change the list of audited commands is an audited

event. If TPM_CC_SetCommandCodeAuditStatus is in clearList, the fact that it is in clearList is ignored.

NOTE 2 Use of this command to change the audit hash algorithm is not audited and the digest is reset when
the command completes. The change in the audit hash algorithm is the evidence that this command
was used to change the algorithm.

The commands in setList indicate the commands to be added to the list of audited commands and the

commands in clearList indicate the commands that will no longer be audited. It is not an error if a

command in setList is already audited or is not implemented. It is not an error if a command in clearList is

not currently being audited or is not implemented.

If a command code is in both setList and clearList, then it will not be audited (that is, setList shall be

processed first).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 215

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 108 — TPM2_SetCommandCodeAuditStatus Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetCommandCodeAuditStatus {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_ALG_HASH+ auditAlg
hash algorithm for the audit digest; if
TPM_ALG_NULL, then the hash is not changed

TPML_CC setList
list of commands that will be added to those that will
be audited

TPML_CC clearList list of commands that will no longer be audited

Table 109 — TPM2_SetCommandCodeAuditStatus Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 216 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SetCommandCodeAuditStatus_fp.h"

3 #if CC_SetCommandCodeAuditStatus // Conditional expansion of this file

4 TPM_RC

5 TPM2_SetCommandCodeAuditStatus(

6 SetCommandCodeAuditStatus_In *in // IN: input parameter list

7)

8 {

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 RETURN_IF_NV_IS_NOT_AVAILABLE;

14

15 // Internal Data Update

16

17 // Update hash algorithm

18 if(in->auditAlg != TPM_ALG_NULL && in->auditAlg != gp.auditHashAlg)

19 {

20 // Can't change the algorithm and command list at the same time

21 if(in->setList.count != 0 || in->clearList.count != 0)

22 return TPM_RCS_VALUE + RC_SetCommandCodeAuditStatus_auditAlg;

23

24 // Change the hash algorithm for audit

25 gp.auditHashAlg = in->auditAlg;

26

27 // Set the digest size to a unique value that indicates that the digest

28 // algorithm has been changed. The size will be cleared to zero in the

29 // command audit processing on exit.

30 gr.commandAuditDigest.t.size = 1;

31

32 // Save the change of command audit data (this sets g_updateNV so that NV

33 // will be updated on exit.)

34 NV_SYNC_PERSISTENT(auditHashAlg);

35 }

36 else

37 {

38 UINT32 i;

39 BOOL changed = FALSE;

40

41 // Process set list

42 for(i = 0; i < in->setList.count; i++)

43

44 // If change is made in CommandAuditSet, set changed flag

45 if(CommandAuditSet(in->setList.commandCodes[i]))

46 changed = TRUE;

47

48 // Process clear list

49 for(i = 0; i < in->clearList.count; i++)

50 // If change is made in CommandAuditClear, set changed flag

51 if(CommandAuditClear(in->clearList.commandCodes[i]))

52 changed = TRUE;

53

54 // if change was made to command list, update NV

55 if(changed)

56 // this sets g_updateNV so that NV will be updated on exit.

57 NV_SYNC_PERSISTENT(auditCommands);

58 }

59

60 return TPM_RC_SUCCESS;

61 }

62 #endif // CC_SetCommandCodeAuditStatus

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 217

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22 Integrity Collection (PCR)

22.1 Introduction

In TPM 1.2, an Event was hashed using SHA-1 and then the 20-octet digest was extended to a PCR

using TPM_Extend(). This specification allows the use of multiple PCR at a given Index, each using a

different hash algorithm. Rather than require that the external software generate multiple hashes of the

Event with each being extended to a different PCR, the Event data may be sent to the TPM for hashing.

This ensures that the resulting digests will properly reflect the algorithms chosen for the PCR even if the

calling software is unable to implement the hash algorithm.

NOTE 1 There is continued support for software hashing of events with TPM2_PCR_Extend().

To support recording of an Event that is larger than the TPM input buffer, the caller may use the

command sequence described in clause 1.

Change to a PCR requires authorization. The authorization may be with either an authorization value or

an authorization policy. The platform-specific specifications determine which PCR may be controlled by

policy. All other PCR are controlled by authorization.

If a PCR may be associated with a policy, then the algorithm ID of that policy determines whether the

policy is to be applied. If the algorithm ID is not TPM_ALG_NULL, then the policy digest associated with

the PCR must match the policySession→policyDigest in a policy session. If the algorithm ID is

TPM_ALG_NULL, then no policy is present and the authorization requires an EmptyAuth.

If a platform-specific specification indicates that PCR are grouped, then all the PCR in the group use the

same authorization policy or authorization value.

pcrUpdateCounter counter will be incremented on the successful completion of any command that

modifies (Extends or resets) a PCR unless the platform-specific specification explicitly excludes the PCR

from being counted.

NOTE 2 If a command causes PCR in multiple banks to change, the PCR Update Counter m ust be
incremented once for each bank. The commands that extend PCR are: TPM2_PCR_Extend,
TPM2_PCR_Event, and TPM2_EventSequenceComplete.

If a command resets PCR in multiple banks, the PCR Update Counter must be incremented only
once. The commands that reset PCR are: TPM2_PCR_Reset, and TPM2_Startup.

A platform-specific specification may designate a set of PCR that are under control of the TCB. These

PCR may not be modified without the proper authorization. Updates of these PCR shall not cause the

PCR Update Counter to increment.

EXAMPLE Updates of the TCB PCR will not cause the PCR update counter to increment beca use these PCR
are changed at the whim of the TCB and may not represent the trust state of the platform.

Part 3: Commands Trusted Platform Module Library

Page 218 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.2 TPM2_PCR_Extend

 General Description

This command is used to cause an update to the indicated PCR. The digests parameter contains one or

more tagged digest values identified by an algorithm ID. For each digest, the PCR associated with

pcrHandle is Extended into the bank identified by the tag (hashAlg).

EXAMPLE A SHA1 digest would be Extended into the SHA1 bank and a SHA256 digest would be Extended into
the SHA256 bank.

For each list entry, the TPM will check to see if pcrNum is implemented for that algorithm. If so, the TPM

shall perform the following operation:

 PCR.digestnew [pcrNum][alg] ≔ Halg(PCR.digestold [pcrNum][alg] || data[alg].buffer)) (6)

where

Halg() hash function using the hash algorithm associated with the PCR

instance

PCR.digest the digest value in a PCR

pcrNum the PCR numeric selector (pcrHandle)

alg the PCR algorithm selector for the digest

data[alg].buffer the bank-specific data to be extended

If no digest value is specified for a bank, then the PCR in that bank is not modified.

NOTE 1 This allows consistent operation of the digests list for all of the Event recording commands.

If a digest is present and the PCR in that bank is not implemented, the digest value is not used.

NOTE 2 If the caller includes digests for algorithms that are not implemented, then the TPM will fail the call
because the unmarshalling of digests will fail. Each of the entries in the list is a TPMT_HA, which is
a hash algorithm followed by a digest. If the algorithm is not implemented, unmarshalling of the
hashAlg will fail and the TPM will return TPM_RC_HASH.

If the TPM unmarshals the hashAlg of a list entry and the unmarshaled value is not a hash algorithm

implemented on the TPM, the TPM shall return TPM_RC_HASH.

The pcrHandle parameter is allowed to reference TPM_RH_NULL. If so, the input parameters are

processed but no action is taken by the TPM. This permits the caller to probe for implemented hash

algorithms as an alternative to TPM2_GetCapability.

NOTE 3 This command allows a list of digests so that PCR in all banks may be updated in a single
command. While the semantics of this command allow multiple extends to a single PCR bank, this is
not the preferred use and the limit on the number of entries in the list make this use somewhat
impractical.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 219

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 110 — TPM2_PCR_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Extend {NV}

TPMI_DH_PCR+ @pcrHandle

handle of the PCR

Auth Handle: 1

Auth Role: USER

TPML_DIGEST_VALUES digests list of tagged digest values to be extended

Table 111 — TPM2_PCR_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

Part 3: Commands Trusted Platform Module Library

Page 220 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Extend_fp.h"

3 #if CC_PCR_Extend // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR
referenced by pcrHandle

4 TPM_RC

5 TPM2_PCR_Extend(

6 PCR_Extend_In *in // IN: input parameter list

7)

8 {

9 UINT32 i;

10

11 // Input Validation

12

13 // NOTE: This function assumes that the unmarshaling function for 'digests' will

14 // have validated that all of the indicated hash algorithms are valid. If the

15 // hash algorithms are correct, the unmarshaling code will unmarshal a digest

16 // of the size indicated by the hash algorithm. If the overall size is not

17 // consistent, the unmarshaling code will run out of input data or have input

18 // data left over. In either case, it will cause an unmarshaling error and this

19 // function will not be called.

20

21 // For NULL handle, do nothing and return success

22 if(in->pcrHandle == TPM_RH_NULL)

23 return TPM_RC_SUCCESS;

24

25 // Check if the extend operation is allowed by the current command locality

26 if(!PCRIsExtendAllowed(in->pcrHandle))

27 return TPM_RC_LOCALITY;

28

29 // If PCR is state saved and we need to update orderlyState, check NV

30 // availability

31 if(PCRIsStateSaved(in->pcrHandle))

32 RETURN_IF_ORDERLY;

33

34 // Internal Data Update

35

36 // Iterate input digest list to extend

37 for(i = 0; i < in->digests.count; i++)

38 {

39 PCRExtend(in->pcrHandle, in->digests.digests[i].hashAlg,

40 CryptHashGetDigestSize(in->digests.digests[i].hashAlg),

41 (BYTE *)&in->digests.digests[i].digest);

42 }

43

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_PCR_Extend

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 221

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.3 TPM2_PCR_Event

 General Description

This command is used to cause an update to the indicated PCR.

The data in eventData is hashed using the hash algorithm associated with each bank in which the

indicated PCR has been allocated. After the data is hashed, the digests list is returned. If the pcrHandle

references an implemented PCR and not TPM_RH_NULL, the digests list is processed as in

TPM2_PCR_Extend().

A TPM shall support an Event.size of zero through 1,024 inclusive (Event.size is an octet count). An

Event.size of zero indicates that there is no data but the indicated operations will still occur,

EXAMPLE 1 If the command implements PCR[2] in a SHA1 bank and a SHA256 bank, then an extend to PCR[2]
will cause eventData to be hashed twice, once with SHA1 and once with SHA256. The SHA1 hash of
eventData will be Extended to PCR[2] in the SHA1 bank and the SHA256 hash of eventData will be
Extended to PCR[2] of the SHA256 bank.

On successful command completion, digests will contain the list of tagged digests of eventData that was

computed in preparation for extending the data into the PCR. At the option of the TPM, the list may

contain a digest for each bank, or it may only contain a digest for each bank in which pcrHandle is extant.

If pcrHandle is TPM_RH_NULL, the TPM may return either an empty list or a digest for each bank.

EXAMPLE 2 Assume a TPM that implements a SHA1 bank and a SHA256 bank and that PCR[22] is only
implemented in the SHA1 bank. If pcrHandle references PCR[22], then digests may contain either a
SHA1 and a SHA256 digest or just a SHA1 digest.

Part 3: Commands Trusted Platform Module Library

Page 222 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 112 — TPM2_PCR_Event Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Event {NV}

TPMI_DH_PCR+ @pcrHandle

Handle of the PCR

Auth Handle: 1

Auth Role: USER

TPM2B_EVENT eventData Event data in sized buffer

Table 113 — TPM2_PCR_Event Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPML_DIGEST_VALUES digests

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 223

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Event_fp.h"

3 #if CC_PCR_Event // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR
referenced by pcrHandle

4 TPM_RC

5 TPM2_PCR_Event(

6 PCR_Event_In *in, // IN: input parameter list

7 PCR_Event_Out *out // OUT: output parameter list

8)

9 {

10 HASH_STATE hashState;

11 UINT32 i;

12 UINT16 size;

13

14 // Input Validation

15

16 // If a PCR extend is required

17 if(in->pcrHandle != TPM_RH_NULL)

18 {

19 // If the PCR is not allow to extend, return error

20 if(!PCRIsExtendAllowed(in->pcrHandle))

21 return TPM_RC_LOCALITY;

22

23 // If PCR is state saved and we need to update orderlyState, check NV

24 // availability

25 if(PCRIsStateSaved(in->pcrHandle))

26 RETURN_IF_ORDERLY;

27 }

28

29 // Internal Data Update

30

31 out->digests.count = HASH_COUNT;

32

33 // Iterate supported PCR bank algorithms to extend

34 for(i = 0; i < HASH_COUNT; i++)

35 {

36 TPM_ALG_ID hash = CryptHashGetAlgByIndex(i);

37 out->digests.digests[i].hashAlg = hash;

38 size = CryptHashStart(&hashState, hash);

39 CryptDigestUpdate2B(&hashState, &in->eventData.b);

40 CryptHashEnd(&hashState, size,

41 (BYTE *)&out->digests.digests[i].digest);

42 if(in->pcrHandle != TPM_RH_NULL)

43 PCRExtend(in->pcrHandle, hash, size,

44 (BYTE *)&out->digests.digests[i].digest);

45 }

46

47 return TPM_RC_SUCCESS;

48 }

49 #endif // CC_PCR_Event

Part 3: Commands Trusted Platform Module Library

Page 224 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.4 TPM2_PCR_Read

 General Description

This command returns the values of all PCR specified in pcrSelectionIn.

The TPM will process the list of TPMS_PCR_SELECTION in pcrSelectionIn in order. Within each

TPMS_PCR_SELECTION, the TPM will process the bits in the pcrSelect array in ascending PCR order

(see TPM 2.0 Part 1, Selecting Multiple PCR). If a bit is SET, and the indicated PCR is present, then the

TPM will add the digest of the PCR to the list of values to be returned in pcrValues.

The TPM will continue processing bits until all have been processed or until pcrValues would be too large

to fit into the output buffer if additional values were added.

The returned pcrSelectionOut will have a bit SET in its pcrSelect structures for each value present in

pcrValues.

The current value of the PCR Update Counter is returned in pcrUpdateCounter.

The returned list may be empty if none of the selected PCR are implemented.

NOTE If no PCR are returned from a bank, the selector for the bank will be present in pcrSelectionOut.

No authorization is required to read a PCR and any implemented PCR may be read from any locality.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 225

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 114 — TPM2_PCR_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Read

TPML_PCR_SELECTION pcrSelectionIn The selection of PCR to read

Table 115 — TPM2_PCR_Read Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

UINT32 pcrUpdateCounter the current value of the PCR update counter

TPML_PCR_SELECTION pcrSelectionOut the PCR in the returned list

TPML_DIGEST pcrValues
the contents of the PCR indicated in pcrSelectOut->
pcrSelection[] as tagged digests

Part 3: Commands Trusted Platform Module Library

Page 226 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Read_fp.h"

3 #if CC_PCR_Read // Conditional expansion of this file

4 TPM_RC

5 TPM2_PCR_Read(

6 PCR_Read_In *in, // IN: input parameter list

7 PCR_Read_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // Call PCR read function. input pcrSelectionIn parameter could be changed

13 // to reflect the actual PCR being returned

14 PCRRead(&in->pcrSelectionIn, &out->pcrValues, &out->pcrUpdateCounter);

15

16 out->pcrSelectionOut = in->pcrSelectionIn;

17

18 return TPM_RC_SUCCESS;

19 }

20 #endif // CC_PCR_Read

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 227

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.5 TPM2_PCR_Allocate

 General Description

This command is used to set the desired PCR allocation of PCR and algorithms. This command requires

Platform Authorization.

The TPM will evaluate the request and, if sufficient memory is available for the requested allocation, the

TPM will store the allocation request for use during the next _TPM_Init operation. The PCR allocation in

place when this command is executed will be retained until the next _TPM_Init. If this command is

received multiple times before a _TPM_Init, each one overwrites the previous stored allocation.

This command will only change the allocations of banks that are listed in pcrAllocation.

EXAMPLE 1 If a TPM supports SHA1 and SHA256, then it maintains an allocation for two banks (one of which
could be empty). If pcrAllocation only has a selector for the SHA1 bank, then only the allocation of
the SHA1 bank will be changed and the SHA256 bank will remain unchanged. To change the
allocation of a TPM from 24 SHA1 PCR and no SHA256 PCR to 24 SHA256 PCR and no SHA1 PCR,
the pcrAllocation would have to have two selections: one for the empty SHA1 bank and one for the
SHA256 bank with 24 PCR.

If a bank is listed more than once, then the last selection in the pcrAllocation list is the one that the TPM

will attempt to allocate.

NOTE 1 This does not mean to imply that pcrAllocation.count can exceed HASH_COUNT, the number of
digests implemented in the TPM.

EXAMPLE 2 If HASH_COUNT is 2, pcrAllocation can specify SHA-256 twice, and the second one is used.
However, if SHA_256 is specified three times, the unmarshaling may fail and the TPM may return an
error.

This command shall not allocate more PCR in any bank than there are PCR attribute definitions. The

PCR attribute definitions indicate how a PCR is to be managed – if it is resettable, the locality for update,

etc. In the response to this command, the TPM returns the maximum number of PCR allowed for any

bank.

When PCR are allocated, if DRTM_PCR is defined, the resulting allocation must have at least one bank

with the D-RTM PCR allocated. If HCRTM_PCR is defined, the resulting allocation must have at least one

bank with the HCRTM_PCR allocated. If not, the TPM returns TPM_RC_PCR.

The TPM may return TPM_RC_SUCCESS even though the request fails. This is to allow the TPM to

return information about the size needed for the requested allocation and the size available. If the

sizeNeeded parameter in the return is less than or equal to the sizeAvailable parameter, then the

allocationSuccess parameter will be YES. Alternatively, if the request fails, The TPM may return

TPM_RC_NO_RESULT.

NOTE 2 An example for this type of failure is a TPM that can only support one bank at a time and cannot
support arbitrary distribution of PCR among banks.

After this command, TPM2_Shutdown() is only allowed to have a startupType equal to TPM_SU_CLEAR

until after the next _TPM_Init.

NOTE 3 Even if this command does not cause the PCR allocation to change, the TPM cannot have its state
saved. This is done in order to simplify the implementation. There is no need to optimize this
command as it is not expected to be used more than once in the lifetime of the TPM (it can be used
any number of times but there is no justification for optimization).

Part 3: Commands Trusted Platform Module Library

Page 228 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 116 — TPM2_PCR_Allocate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Allocate {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPML_PCR_SELECTION pcrAllocation the requested allocation

Table 117 — TPM2_PCR_Allocate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO allocationSuccess YES if the allocation succeeded

UINT32 maxPCR maximum number of PCR that may be in a bank

UINT32 sizeNeeded number of octets required to satisfy the request

UINT32 sizeAvailable
Number of octets available. Computed before the
allocation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 229

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Allocate_fp.h"

3 #if CC_PCR_Allocate // Conditional expansion of this file

Error Returns Meaning

TPM_RC_PCR the allocation did not have required PCR

TPM_RC_NV_UNAVAILABLE NV is not accessible

TPM_RC_NV_RATE NV is in a rate-limiting mode

4 TPM_RC

5 TPM2_PCR_Allocate(

6 PCR_Allocate_In *in, // IN: input parameter list

7 PCR_Allocate_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point.

15 // Note: These codes are not listed in the return values above because it is

16 // an implementation choice to check in this routine rather than in a common

17 // function that is called before these actions are called. These return values

18 // are described in the Response Code section of Part 3.

19 RETURN_IF_NV_IS_NOT_AVAILABLE;

20

21 // Command Output

22

23 // Call PCR Allocation function.

24 result = PCRAllocate(&in->pcrAllocation, &out->maxPCR,

25 &out->sizeNeeded, &out->sizeAvailable);

26 if(result == TPM_RC_PCR)

27 return result;

28

29 //

30 out->allocationSuccess = (result == TPM_RC_SUCCESS);

31

32 // if re-configuration succeeds, set the flag to indicate PCR configuration is

33 // going to be changed in next boot

34 if(out->allocationSuccess == YES)

35 g_pcrReConfig = TRUE;

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PCR_Allocate

Part 3: Commands Trusted Platform Module Library

Page 230 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.6 TPM2_PCR_SetAuthPolicy

 General Description

This command is used to associate a policy with a PCR or group of PCR. The policy determines the

conditions under which a PCR may be extended or reset.

A policy may only be associated with a PCR that has been defined by a platform-specific specification as

allowing a policy. If the TPM implementation does not allow a policy for pcrNum, the TPM shall return

TPM_RC_VALUE.

A platform-specific specification may group PCR so that they share a common policy. In such case, a

pcrNum that selects any of the PCR in the group will change the policy for all PCR in the group.

The policy setting is persistent and may only be changed by TPM2_PCR_SetAuthPolicy() or by

TPM2_ChangePPS().

Before this command is first executed on a TPM or after TPM2_ChangePPS(), the access control on the

PCR will be set to the default value defined in the platform-specific specification.

NOTE 1 It is expected that the typical default will be with the policy hash set to TPM_ALG_NULL and an
Empty Buffer for the authPolicy value. This will allow an EmptyAuth to be used as the authorization
value.

If the size of the data buffer in authPolicy is not the size of a digest produced by hashAlg, the TPM shall

return TPM_RC_SIZE.

NOTE 2 If hashAlg is TPM_ALG_NULL, then the size is required to be zero.

This command requires platformAuth/platformPolicy.

NOTE 3 If the PCR is in multiple policy sets, the policy will be changed in only one set. The set that is
changed will be implementation dependent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 231

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 118 — TPM2_PCR_SetAuthPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthPolicy {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy the desired authPolicy

TPMI_ALG_HASH+ hashAlg the hash algorithm of the policy

TPMI_DH_PCR pcrNum the PCR for which the policy is to be set

Table 119 — TPM2_PCR_SetAuthPolicy Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 232 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_SetAuthPolicy_fp.h"

3 #if CC_PCR_SetAuthPolicy // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SIZE size of authPolicy is not the size of a digest produced by policyDigest

TPM_RC_VALUE PCR referenced by pcrNum is not a member of a PCR policy group

4 TPM_RC

5 TPM2_PCR_SetAuthPolicy(

6 PCR_SetAuthPolicy_In *in // IN: input parameter list

7)

8 {

9 UINT32 groupIndex;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 RETURN_IF_NV_IS_NOT_AVAILABLE;

15

16 // Input Validation:

17

18 // Check the authPolicy consistent with hash algorithm

19 if(in->authPolicy.t.size != CryptHashGetDigestSize(in->hashAlg))

20 return TPM_RCS_SIZE + RC_PCR_SetAuthPolicy_authPolicy;

21

22 // If PCR does not belong to a policy group, return TPM_RC_VALUE

23 if(!PCRBelongsPolicyGroup(in->pcrNum, &groupIndex))

24 return TPM_RCS_VALUE + RC_PCR_SetAuthPolicy_pcrNum;

25

26 // Internal Data Update

27

28 // Set PCR policy

29 gp.pcrPolicies.hashAlg[groupIndex] = in->hashAlg;

30 gp.pcrPolicies.policy[groupIndex] = in->authPolicy;

31

32 // Save new policy to NV

33 NV_SYNC_PERSISTENT(pcrPolicies);

34

35 return TPM_RC_SUCCESS;

36 }

37 #endif // CC_PCR_SetAuthPolicy

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 233

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.7 TPM2_PCR_SetAuthValue

 General Description

This command changes the authValue of a PCR or group of PCR.

An authValue may only be associated with a PCR that has been defined by a platform-specific

specification as allowing an authorization value. If the TPM implementation does not allow an

authorization for pcrNum, the TPM shall return TPM_RC_VALUE. A platform-specific specification may

group PCR so that they share a common authorization value. In such case, a pcrNum that selects any of

the PCR in the group will change the authValue value for all PCR in the group.

The authorization setting is set to EmptyAuth on each STARTUP(CLEAR) or by TPM2_Clear(). The

authorization setting is preserved by SHUTDOWN(STATE).

Part 3: Commands Trusted Platform Module Library

Page 234 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 120 — TPM2_PCR_SetAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthValue

TPMI_DH_PCR @pcrHandle

handle for a PCR that may have an authorization value
set

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST auth the desired authorization value

Table 121 — TPM2_PCR_SetAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 235

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_SetAuthValue_fp.h"

3 #if CC_PCR_SetAuthValue // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE PCR referenced by pcrHandle is not a member of a PCR
authorization group

4 TPM_RC

5 TPM2_PCR_SetAuthValue(

6 PCR_SetAuthValue_In *in // IN: input parameter list

7)

8 {

9 UINT32 groupIndex;

10 // Input Validation:

11

12 // If PCR does not belong to an auth group, return TPM_RC_VALUE

13 if(!PCRBelongsAuthGroup(in->pcrHandle, &groupIndex))

14 return TPM_RC_VALUE;

15

16 // The command may cause the orderlyState to be cleared due to the update of

17 // state clear data. If this is the case, Check if NV is available.

18 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

19 // this point

20 RETURN_IF_ORDERLY;

21

22 // Internal Data Update

23

24 // Set PCR authValue

25 MemoryRemoveTrailingZeros(&in->auth);

26 gc.pcrAuthValues.auth[groupIndex] = in->auth;

27

28 return TPM_RC_SUCCESS;

29 }

30 #endif // CC_PCR_SetAuthValue

Part 3: Commands Trusted Platform Module Library

Page 236 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.8 TPM2_PCR_Reset

 General Description

If the attribute of a PCR allows the PCR to be reset and proper authorization is provided, then this

command may be used to set the PCR in all banks to zero. The attributes of the PCR may restrict the

locality that can perform the reset operation.

NOTE 1 The definition of TPMI_DH_PCR in TPM 2.0 Part 2 indicates that if pcrHandle is out of the allowed
range for PCR, then the appropriate return value is TPM_RC_VALUE.

If pcrHandle references a PCR that cannot be reset, the TPM shall return TPM_RC_LOCALITY.

NOTE 2 TPM_RC_LOCALITY is returned because the reset attributes are defined on a per-locality basis.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 237

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 122 — TPM2_PCR_Reset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Reset {NV}

TPMI_DH_PCR @pcrHandle

the PCR to reset

Auth Index: 1

Auth Role: USER

Table 123 — TPM2_PCR_Reset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 238 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Reset_fp.h"

3 #if CC_PCR_Reset // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to reset the PCR referenced
by pcrHandle

4 TPM_RC

5 TPM2_PCR_Reset(

6 PCR_Reset_In *in // IN: input parameter list

7)

8 {

9 // Input Validation

10

11 // Check if the reset operation is allowed by the current command locality

12 if(!PCRIsResetAllowed(in->pcrHandle))

13 return TPM_RC_LOCALITY;

14

15 // If PCR is state saved and we need to update orderlyState, check NV

16 // availability

17 if(PCRIsStateSaved(in->pcrHandle))

18 RETURN_IF_ORDERLY;

19

20 // Internal Data Update

21

22 // Reset selected PCR in all banks to 0

23 PCRSetValue(in->pcrHandle, 0);

24

25 // Indicate that the PCR changed so that pcrCounter will be incremented if

26 // necessary.

27 PCRChanged(in->pcrHandle);

28

29 return TPM_RC_SUCCESS;

30 }

31 #endif // CC_PCR_Reset

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 239

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.9 _TPM_Hash_Start

 Description

This indication from the TPM interface indicates the start of an H-CRTM measurement sequence. On

receipt of this indication, the TPM will initialize an H-CRTM Event Sequence context.

If no object memory is available for creation of the sequence context, the TPM will flush the context of an

object so that creation of the sequence context will always succeed.

A platform-specific specification may allow this indication before TPM2_Startup().

NOTE If this indication occurs after TPM2_Startup(), it is the responsibility of software to ensure that an
object context slot is available or to deal with the consequences of having the TPM sel ect an
arbitrary object to be flushed. If this indication occurs before TPM2_Startup() then all context slots
are available.

Part 3: Commands Trusted Platform Module Library

Page 240 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

This function is called to process a _TPM_Hash_Start() indication.

2 LIB_EXPORT void

3 _TPM_Hash_Start(

4 void

5)

6 {

7 TPM_RC result;

8 TPMI_DH_OBJECT handle;

9

10 // If a DRTM sequence object exists, free it up

11 if(g_DRTMHandle != TPM_RH_UNASSIGNED)

12 {

13 FlushObject(g_DRTMHandle);

14 g_DRTMHandle = TPM_RH_UNASSIGNED;

15 }

16

17 // Create an event sequence object and store the handle in global

18 // g_DRTMHandle. A TPM_RC_OBJECT_MEMORY error may be returned at this point

19 // The NULL value for the first parameter will cause the sequence structure to

20 // be allocated without being set as present. This keeps the sequence from

21 // being left behind if the sequence is terminated early.

22 result = ObjectCreateEventSequence(NULL, &g_DRTMHandle);

23

24 // If a free slot was not available, then free up a slot.

25 if(result != TPM_RC_SUCCESS)

26 {

27 // An implementation does not need to have a fixed relationship between

28 // slot numbers and handle numbers. To handle the general case, scan for

29 // a handle that is assigned and free it for the DRTM sequence.

30 // In the reference implementation, the relationship between handles and

31 // slots is fixed. So, if the call to ObjectCreateEvenSequence()

32 // failed indicating that all slots are occupied, then the first handle we

33 // are going to check (TRANSIENT_FIRST) will be occupied. It will be freed

34 // so that it can be assigned for use as the DRTM sequence object.

35 for(handle = TRANSIENT_FIRST; handle < TRANSIENT_LAST; handle++)

36 {

37 // try to flush the first object

38 if(IsObjectPresent(handle))

39 break;

40 }

41 // If the first call to find a slot fails but none of the slots is occupied

42 // then there's a big problem

43 pAssert(handle < TRANSIENT_LAST);

44

45 // Free the slot

46 FlushObject(handle);

47

48 // Try to create an event sequence object again. This time, we must

49 // succeed.

50 result = ObjectCreateEventSequence(NULL, &g_DRTMHandle);

51 if(result != TPM_RC_SUCCESS)

52 FAIL(FATAL_ERROR_INTERNAL);

53 }

54

55 return;

56 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 241

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.10 _TPM_Hash_Data

 Description

This indication from the TPM interface indicates arrival of one or more octets of data that are to be

included in the H-CRTM Event Sequence sequence context created by the _TPM_Hash_Start indication.

The context holds data for each hash algorithm for each PCR bank implemented on the TPM.

If no H-CRTM Event Sequence context exists, this indication is discarded and no other action is

performed.

Part 3: Commands Trusted Platform Module Library

Page 242 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

This function is called to process a _TPM_Hash_Data() indication.

2 LIB_EXPORT void

3 _TPM_Hash_Data(

4 uint32_t dataSize, // IN: size of data to be extend

5 unsigned char *data // IN: data buffer

6)

7 {

8 UINT32 i;

9 HASH_OBJECT *hashObject;

10 TPMI_DH_PCR pcrHandle = TPMIsStarted()

11 ? PCR_FIRST + DRTM_PCR : PCR_FIRST + HCRTM_PCR;

12

13 // If there is no DRTM sequence object, then _TPM_Hash_Start

14 // was not called so this function returns without doing

15 // anything.

16 if(g_DRTMHandle == TPM_RH_UNASSIGNED)

17 return;

18

19 hashObject = (HASH_OBJECT *)HandleToObject(g_DRTMHandle);

20 pAssert(hashObject->attributes.eventSeq);

21

22 // For each of the implemented hash algorithms, update the digest with the

23 // data provided.

24 for(i = 0; i < HASH_COUNT; i++)

25 {

26 // make sure that the PCR is implemented for this algorithm

27 if(PcrIsAllocated(pcrHandle,

28 hashObject->state.hashState[i].hashAlg))

29 // Update sequence object

30 CryptDigestUpdate(&hashObject->state.hashState[i], dataSize, data);

31 }

32

33 return;

34 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 243

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.11 _TPM_Hash_End

 Description

This indication from the TPM interface indicates the end of the H-CRTM measurement. This indication is

discarded and no other action performed if the TPM does not contain an H-CRTM Event Sequence

context.

NOTE 1 An H-CRTM Event Sequence context is created by _TPM_Hash_Start().

If the H-CRTM Event Sequence occurs after TPM2_Startup(), the TPM will set all of the PCR designated

in the platform-specific specifications as resettable by this event to the value indicated in the platform

specific specification and increment restartCount. The TPM will then Extend the Event Sequence

digest/digests into the designated D-RTM PCR (PCR[17]).

 PCR[17][hashAlg] ≔ HhashAlg (initial_value || HhashAlg (hash_data)) (7)

where

hashAlg hash algorithm associated with a bank of PCR

initial_value initialization value specified in the platform-specific specification

(should be 0…0)

hash_data all the octets of data received in _TPM_Hash_Data indications

A _TPM_Hash_End indication that occurs after TPM2_Startup() will increment pcrUpdateCounter unless

a platform-specific specification excludes modifications of PCR[DRTM] from causing an increment.

A platform-specific specification may allow an H-CRTM Event Sequence before TPM2_Startup(). If so,

_TPM_Hash_End will complete the digest, initialize PCR[0] with a digest-size value of 4, and then extend

the H-CRTM Event Sequence data into PCR[0].

 PCR[0][hashAlg] ≔ HhashAlg (0…04 || HhashAlg (hash_data)) (8)

NOTE 2 The entire sequence of _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are required to
complete before TPM2_Startup() or the sequence will have no effect on the TPM.

NOTE 3 PCR[0] does not need to be updated according to (8) until the end of TPM2_Startup().

Part 3: Commands Trusted Platform Module Library

Page 244 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

This function is called to process a _TPM_Hash_End() indication.

2 LIB_EXPORT void

3 _TPM_Hash_End(

4 void

5)

6 {

7 UINT32 i;

8 TPM2B_DIGEST digest;

9 HASH_OBJECT *hashObject;

10 TPMI_DH_PCR pcrHandle;

11

12 // If the DRTM handle is not being used, then either _TPM_Hash_Start has not

13 // been called, _TPM_Hash_End was previously called, or some other command

14 // was executed and the sequence was aborted.

15 if(g_DRTMHandle == TPM_RH_UNASSIGNED)

16 return;

17

18 // Get DRTM sequence object

19 hashObject = (HASH_OBJECT *)HandleToObject(g_DRTMHandle);

20

21 // Is this _TPM_Hash_End after Startup or before

22 if(TPMIsStarted())

23 {

24 // After

25

26 // Reset the DRTM PCR

27 PCRResetDynamics();

28

29 // Extend the DRTM_PCR.

30 pcrHandle = PCR_FIRST + DRTM_PCR;

31

32 // DRTM sequence increments restartCount

33 gr.restartCount++;

34 }

35 else

36 {

37 pcrHandle = PCR_FIRST + HCRTM_PCR;

38 g_DrtmPreStartup = TRUE;

39 }

40

41 // Complete hash and extend PCR, or if this is an HCRTM, complete

42 // the hash, reset the H-CRTM register (PCR[0]) to 0...04, and then

43 // extend the H-CRTM data

44 for(i = 0; i < HASH_COUNT; i++)

45 {

46 TPMI_ALG_HASH hash = CryptHashGetAlgByIndex(i);

47 // make sure that the PCR is implemented for this algorithm

48 if(PcrIsAllocated(pcrHandle,

49 hashObject->state.hashState[i].hashAlg))

50 {

51 // Complete hash

52 digest.t.size = CryptHashGetDigestSize(hash);

53 CryptHashEnd2B(&hashObject->state.hashState[i], &digest.b);

54

55 PcrDrtm(pcrHandle, hash, &digest);

56 }

57 }

58

59 // Flush sequence object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 245

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

60 FlushObject(g_DRTMHandle);

61

62 g_DRTMHandle = TPM_RH_UNASSIGNED;

63

64 return;

65 }

Part 3: Commands Trusted Platform Module Library

Page 246 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23 Enhanced Authorization (EA) Commands

23.1 Introduction

The commands in this clause 1 are used for policy evaluation. When successful, each command will

update the policySession→policyDigest in a policy session context in order to establish that the

authorizations required to use an object have been provided. Many of the commands will also modify

other parts of a policy context so that the caller may constrain the scope of the authorization that is

provided.

NOTE 1 Many of the terms used in this clause are described in detail in TPM 2.0 Part 1 and are not redefined
in this clause.

The policySession parameter of the command is the handle of the policy session context to be modified

by the command.

If the policySession parameter indicates a trial policy session, then the policySession→policyDigest will

be updated and the indicated validations are not performed. However, any authorizations required to

perform the policy command will be checked and dictionary attack logic invoked as necessary.

NOTE 2 If software is used to create policies, no authorization values are used. For example,
TPM_PolicySecret requires an authorization in a trial policy session, but not in a policy calculation
outside the TPM.

NOTE 3 A policy session is set to a trial policy by TPM2_StartAuthSession(sessionType = TPM_SE_TRIAL).

NOTE 4 Unless there is an unmarshaling error in the parameters of the command, these commands will
return TPM_RC_SUCCESS when policySession references a trial session.

NOTE 5 Policy context other than the policySession→policyDigest may be updated for a trial policy but it is
not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 247

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.2 Signed Authorization Actions

 Introduction

The TPM2_PolicySigned, TPM_PolicySecret, and TPM2_PolicyTicket commands use many of the same

functions. This clause consolidates those functions to simplify the document and to ensure uniformity of

the operations.

 Policy Parameter Checks

These parameter checks will be performed when indicated in the description of each of the commands:

 nonceTPM – If this parameter is not the Empty Buffer, and it does not match

policySession→nonceTPM, then the TPM shall return TPM_RC_VALUE.

 expiration – If this parameter is not zero, then:

1) if nonceTPM is not an Empty Buffer, then the absolute value of expiration is converted to

milliseconds and added to policySession→startTime to create the timeout value and proceed to

c).

2) If nonceTPM is an Empty Buffer, then the absolute value of expiration is converted to

milliseconds and used as the timeout value and proceed to c).

However, timeout can only be changed to a smaller value.

 timeout – If timeout is less than the current value of Time, or the current timeEpoch is not the same

as policySession→timeEpoch, the TPM shall return TPM_RC_EXPIRED

 cpHashA – If this parameter is not an Empty Buffer

NOTE 2 cpHashA is the hash of the command to be executed using this policy session in the
authorization. The algorithm used to compute this hash is required to be the algorithm of the
policy session.

1) the TPM shall return TPM_RC_CPHASH if policySession→cpHash is set and the contents of

policySession→cpHash are not the same as cpHashA; or

NOTE 3 cpHash is the expected cpHash value held in the policy session context.

2) the TPM shall return TPM_RC_SIZE if cpHashA is not the same size as

policySession→policyDigest.

NOTE 4 policySession→policyDigest is the size of the digest produced by the hash algorithm used
to compute policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 248 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Policy Digest Update Function (PolicyUpdate())

This is the update process for policySession→policyDigest used by TPM2_PolicySigned(),

TPM2_PolicySecret(), TPM2_PolicyTicket(), and TPM2_PolicyAuthorize(). The function prototype for the

update function is:

 PolicyUpdate(commandCode, arg2, arg3) (9)

where

arg2 a TPM2B_NAME

arg3 a TPM2B

These parameters are used to update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || commandCode || arg2.name) (10)

followed by

 policyDigestnew+1 ≔ HpolicyAlg(policyDigestnew || arg3.buffer) (11)

where

HpolicyAlg() the hash algorithm chosen when the policy session was started

NOTE 1 If arg3 is a TPM2B_NAME, then arg3.buffer will actually be an arg3.name.

NOTE 2 The arg2.size and arg3.size fields are not included in the hashes.

NOTE 3 PolicyUpdate() uses two hash operations because arg2 and arg3 are variable-sized and the
concatenation of arg2 and arg3 in a single hash could produce the same digest even though arg2
and arg3 are different. For example, arg2 = 1 2 3 and arg3 = 4 5 6 would produce the same digest
as arg2 = 1 2 and arg3 = 3 4 5 6. Processing of the arguments separately in different Extend
operation ensures that the digest produced by PolicyUpdate() will be different if arg2 and arg3 are
different.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 249

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Policy Context Updates

When a policy command modifies some part of the policy session context other than the

policySession→policyDigest, the following rules apply.

• cpHash – this parameter may only be changed if it contains its initialization value (an Empty Buffer).
If cpHash is not the Empty Buffer when a policy command attempts to update it, the TPM will return
an error (TPM_RC_CPHASH) if the current and update values are not the same.

• timeOut – this parameter may only be changed to a smaller value. If a command attempts to update
this value with a larger value (longer into the future), the TPM will discard the update value. This is
not an error condition.

• commandCode – once set by a policy command, this value may not be changed except by
TPM2_PolicyRestart(). If a policy command tries to change this to a different value, an error is
returned (TPM_RC_POLICY_CC).

• pcrUpdateCounter – this parameter is updated by TPM2_PolicyPCR(). This value may only be set
once during a policy. Each time TPM2_PolicyPCR() executes, it checks to see if
policySession→pcrUpdateCounter has its default state, indicating that this is the first
TPM2_PolicyPCR(). If it has its default value, then policySession→pcrUpdateCounter is set to the
current value of pcrUpdateCounter. If policySession→pcrUpdateCounter does not have its default
value and its value is not the same as pcrUpdateCounter, the TPM shall return
TPM_RC_PCR_CHANGED.

NOTE 1 If this parameter and pcrUpdateCounter are not the same, it indicates that PCR have changed
since checked by the previous TPM2_PolicyPCR(). Since they have changed, the previous PCR
validation is no longer valid.

• commandLocality – this parameter is the logical AND of all enabled localities. All localities are
enabled for a policy when the policy session is created. TPM2_PolicyLocalities() selectively disables
localities. Once use of a policy for a locality has been disabled, it cannot be enabled except by
TPM2_PolicyRestart().

• isPPRequired – once SET, this parameter may only be CLEARed by TPM2_PolicyRestart().

• isAuthValueNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyPassword()
or TPM2_PolicyRestart().

• isPasswordNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyAuthValue()
or TPM2_PolicyRestart(),

NOTE 2 Both TPM2_PolicyAuthValue() and TPM2_PolicyPassword() change policySession→policyDigest in
the same way. The different commands simply indicate to the TPM the format used for the authValue
(HMAC or clear text). Both commands could be in the same policy. The final instance of these
commands determines the format.

Part 3: Commands Trusted Platform Module Library

Page 250 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Policy Ticket Creation

For TPM2_PolicySigned() or TPM2_PolicySecret(), if the caller specified a negative value for expiration,

then the TPM will return a ticket that includes a value indicating when the authorization expires.

Otherwise, the TPM will return a NULL Ticket.

NOTE 1 If the authHandle in TPM2_PolicySecret() references a PIN Pass Index, then the command may
succeed but a NULL Ticket will be returned.

The required computation for the digest in the authorization ticket is:

HMACcontextAlg(proof, (TPM_ST_AUTH_xxx || cpHash || policyRef || authName
|| timeout || [timeEpoch] || [resetCount])) (12)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy of the object

associated with authName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET;
used to ensure that the ticket is properly used

cpHash optional hash of the authorized command

policyRef optional reference to a policy value

authName Name of the object that signed the authorization

timeout implementation-specific value indicating when the authorization

expires

timeEpoch implementation-specific representation of the timeEpoch at the

time the ticket was created

NOTE 2 Not included if timeout is zero.

resetCount implementation-specific representation of the TPM’s

totalResetCount

NOTE 3 Not included it timeout is zero or if nonceTPM was include in the authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 251

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.3 TPM2_PolicySigned

 General Description

This command includes a signed authorization in a policy. The command ties the policy to a signing key

by including the Name of the signing key in the policyDigest

If policySession is a trial session, the TPM will not check the signature and will update

policySession→policyDigest as described in 23.2.3 as if a properly signed authorization was received, but

no ticket will be produced.

If policySession is not a trial session, the TPM will validate auth and only perform the update if it is a valid

signature over the fields of the command.

The authorizing entity will sign a digest of the authorization qualifiers: nonceTPM, expiration, cpHashA,

and policyRef. The digest is computed as:

 aHash ≔ HauthAlg(nonceTPM || expiration || cpHashA || policyRef) (13)

where

HauthAlg() the hash associated with the auth parameter of this command

NOTE 1 Each signature and key combination indicates the scheme and each scheme has an
associated hash.

nonceTPM the nonceTPM parameter from the TPM2_StartAuthSession()

response. If the authorization is not limited to this session, the
size of this value is zero.

expiration time limit on authorization set by authorizing object. This 32-bit

value is set to zero if the expiration time is not being set.

cpHashA digest of the command parameters for the command being

approved using the hash algorithm of the policy session. Set to
an Empty Digest if the authorization is not limited to a specific
command.

NOTE 3 This is not the cpHash of this TPM2_PolicySigned() command.

policyRef an opaque value determined by the authorizing entity. Set to the

Empty Buffer if no value is present.

NOTE 4 The nonceTPM, cpHashA, and policyRef qualifiers used to compute aHash use the TPM2B buffer
but do not prepend the size.

EXAMPLE The computation for an aHash if there are no restrictions is:

 aHash ≔ HauthAlg(00 00 00 0016)

 which is the hash of an expiration time of zero.

The aHash is signed by the key associated with a key whose handle is authObject. The signature and

signing parameters are combined to create the auth parameter.

The TPM will perform the parameter checks listed in 23.2.2

If the parameter checks succeed, the TPM will construct a test digest (tHash) over the provided

parameters using the same formulation as shown in equation (13) above.

If tHash does not match the digest of the signed aHash, then the authorization fails and the TPM shall

return TPM_RC_POLICY_FAIL and make no change to policySession→policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 252 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

23.2.3).

 PolicyUpdate(TPM_CC_PolicySigned, authObject→Name, policyRef) (14)

authObject→Name is a TPM2B_NAME. policySession is updated as described in 23.2.4. The TPM will

optionally produce a ticket as described in 23.2.5.

Authorization to use authObject is not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 253

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 124 — TPM2_PolicySigned Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySigned

TPMI_DH_OBJECT authObject
handle for a key that will validate the signature

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM
the policy nonce for the session

This can be the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This is not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

INT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

TPMT_SIGNATURE auth signed authorization (not optional)

Table 125 — TPM2_PolicySigned Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout

implementation-specific time value, used to indicate to
the TPM when the ticket expires

NOTE If policyTicket is a NULL Ticket, then this shall
be the Empty Buffer.

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero; this ticket will use the
TPMT_ST_AUTH_SIGNED structure tag. See 23.2.5

Part 3: Commands Trusted Platform Module Library

Page 254 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Policy_spt_fp.h"

3 #include "PolicySigned_fp.h"

4 #if CC_PolicySigned // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH cpHash was previously set to a different value

TPM_RC_EXPIRED expiration indicates a time in the past or expiration is non-zero but no
nonceTPM is present

TPM_RC_NONCE nonceTPM is not the nonce associated with the policySession

TPM_RC_SCHEME the signing scheme of auth is not supported by the TPM

TPM_RC_SIGNATURE the signature is not genuine

TPM_RC_SIZE input cpHash has wrong size

5 TPM_RC

6 TPM2_PolicySigned(

7 PolicySigned_In *in, // IN: input parameter list

8 PolicySigned_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 SESSION *session;

13 TPM2B_NAME entityName;

14 TPM2B_DIGEST authHash;

15 HASH_STATE hashState;

16 UINT64 authTimeout = 0;

17 // Input Validation

18 // Set up local pointers

19 session = SessionGet(in->policySession); // the session structure

20

21 // Only do input validation if this is not a trial policy session

22 if(session->attributes.isTrialPolicy == CLEAR)

23 {

24 authTimeout = ComputeAuthTimeout(session, in->expiration, &in->nonceTPM);

25

26 result = PolicyParameterChecks(session, authTimeout,

27 &in->cpHashA, &in->nonceTPM,

28 RC_PolicySigned_nonceTPM,

29 RC_PolicySigned_cpHashA,

30 RC_PolicySigned_expiration);

31 if(result != TPM_RC_SUCCESS)

32 return result;

33 // Re-compute the digest being signed

34

35 // Start hash

36 authHash.t.size = CryptHashStart(&hashState,

37 CryptGetSignHashAlg(&in->auth));

38 // If there is no digest size, then we don't have a verification function

39 // for this algorithm (e.g. TPM_ALG_ECDAA) so indicate that it is a

40 // bad scheme.

41 if(authHash.t.size == 0)

42 return TPM_RCS_SCHEME + RC_PolicySigned_auth;

43

44 // nonceTPM

45 CryptDigestUpdate2B(&hashState, &in->nonceTPM.b);

46

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 255

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

47 // expiration

48 CryptDigestUpdateInt(&hashState, sizeof(UINT32), in->expiration);

49

50 // cpHashA

51 CryptDigestUpdate2B(&hashState, &in->cpHashA.b);

52

53 // policyRef

54 CryptDigestUpdate2B(&hashState, &in->policyRef.b);

55

56 // Complete digest

57 CryptHashEnd2B(&hashState, &authHash.b);

58

59 // Validate Signature. A TPM_RC_SCHEME, TPM_RC_HANDLE or TPM_RC_SIGNATURE

60 // error may be returned at this point

61 result = CryptValidateSignature(in->authObject, &authHash, &in->auth);

62 if(result != TPM_RC_SUCCESS)

63 return RcSafeAddToResult(result, RC_PolicySigned_auth);

64 }

65 // Internal Data Update

66 // Update policy with input policyRef and name of authorization key

67 // These values are updated even if the session is a trial session

68 PolicyContextUpdate(TPM_CC_PolicySigned,

69 EntityGetName(in->authObject, &entityName),

70 &in->policyRef,

71 &in->cpHashA, authTimeout, session);

72 // Command Output

73 // Create ticket and timeout buffer if in->expiration < 0 and this is not

74 // a trial session.

75 // NOTE: PolicyParameterChecks() makes sure that nonceTPM is present

76 // when expiration is non-zero.

77 if(in->expiration < 0

78 && session->attributes.isTrialPolicy == CLEAR)

79 {

80 BOOL expiresOnReset = (in->nonceTPM.t.size == 0);

81 // Compute policy ticket

82 authTimeout &= ~EXPIRATION_BIT;

83

84 TicketComputeAuth(TPM_ST_AUTH_SIGNED, EntityGetHierarchy(in->authObject),

85 authTimeout, expiresOnReset, &in->cpHashA, &in->policyRef,

86 &entityName, &out->policyTicket);

87 // Generate timeout buffer. The format of output timeout buffer is

88 // TPM-specific.

89 // Note: In this implementation, the timeout buffer value is computed after

90 // the ticket is produced so, when the ticket is checked, the expiration

91 // flag needs to be extracted before the ticket is checked.

92 // In the Windows compatible version, the least-significant bit of the

93 // timeout value is used as a flag to indicate if the authorization expires

94 // on reset. The flag is the MSb.

95 out->timeout.t.size = sizeof(authTimeout);

96 if(expiresOnReset)

97 authTimeout |= EXPIRATION_BIT;

98 UINT64_TO_BYTE_ARRAY(authTimeout, out->timeout.t.buffer);

99 }

100 else

101 {

102 // Generate a null ticket.

103 // timeout buffer is null

104 out->timeout.t.size = 0;

105

106 // authorization ticket is null

107 out->policyTicket.tag = TPM_ST_AUTH_SIGNED;

108 out->policyTicket.hierarchy = TPM_RH_NULL;

109 out->policyTicket.digest.t.size = 0;

110 }

111 return TPM_RC_SUCCESS;

112 }

Part 3: Commands Trusted Platform Module Library

Page 256 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

113 #endif // CC_PolicySigned

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 257

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.4 TPM2_PolicySecret

 General Description

This command includes a secret-based authorization to a policy. The caller proves knowledge of the

secret value using an authorization session using the authValue associated with authHandle. A password

session, an HMAC session, or a policy session containing TPM2_PolicyAuthValue() or

TPM2_PolicyPassword() will satisfy this requirement.

If a policy session is used and use of the authValue of authHandle is not required, the TPM will return

TPM_RC_MODE. That is, the session for authHandle must have either isAuthValueNeeded or

isPasswordNeeded SET.

The secret is the authValue of the entity whose handle is authHandle, which may be any TPM entity with

a handle and an associated authValue. This includes the reserved handles (for example, Platform,

Storage, and Endorsement), NV Indexes, and loaded objects. authEntity is the entity referenced by

authHandle. If authEntity references an Ordinary object, it must have userWithAuth SET.

NOTE 1 The userWithAuth requirement permits the implementation to use common authorization code.

If authEntity references a non-PIN Index. TPMA_NV_AUTHREAD is required to be SET in the Index. If

authEntity references an NV PIN index, TPMA_NV_WRITTEN is required to be SET and pinCount must

be less than pinLimit.

NOTE 2 The authorization value for a hierarchy cannot be used in this command if the hierarchy is disabled.

If the authorization check fails, then the normal dictionary attack logic is invoked.

If the authorization provided by the authorization session is valid, the command parameters are checked

as described in 23.2.2.

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

23.2.3).

 PolicyUpdate(TPM_CC_PolicySecret, authEntity→Name, policyRef) (15)

authEntity→Name is a TPM2B_NAME. policySession is updated as described in 23.2.4. The TPM will

optionally produce a ticket as described in 23.2.5.

If the session is a trial session, policySession→policyDigest is updated if the authorization is valid.

NOTE 2 If an HMAC is used to convey the authorization, a separate session is needed for the authorization.
Because the HMAC in that authorization will include a nonce that prevents replay of the
authorization, the value of the nonceTPM parameter in this command is limited. It is retained mostly
to provide processing consistency with TPM2_PolicySigned().

Part 3: Commands Trusted Platform Module Library

Page 258 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 126 — TPM2_PolicySecret Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySecret

TPMI_DH_ENTITY @authHandle

handle for an entity providing the authorization

Auth Index: 1

Auth Role: USER

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM
the policy nonce for the session

This can be the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

INT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

Table 127 — TPM2_PolicySecret Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout
implementation-specific time value used to indicate to
the TPM when the ticket expires

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero (See 23.2.5). This ticket
will use the TPMT_ST_AUTH_SECRET structure tag

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 259

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicySecret_fp.h"

3 #if CC_PolicySecret // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

5 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_CPHASH cpHash for policy was previously set to a value that is not the same
as cpHashA

TPM_RC_EXPIRED expiration indicates a time in the past

TPM_RC_NONCE nonceTPM does not match the nonce associated with policySession

TPM_RC_SIZE cpHashA is not the size of a digest for the hash associated with
policySession

6 TPM_RC

7 TPM2_PolicySecret(

8 PolicySecret_In *in, // IN: input parameter list

9 PolicySecret_Out *out // OUT: output parameter list

10)

11 {

12 TPM_RC result;

13 SESSION *session;

14 TPM2B_NAME entityName;

15 UINT64 authTimeout = 0;

16 // Input Validation

17 // Get pointer to the session structure

18 session = SessionGet(in->policySession);

19

20 //Only do input validation if this is not a trial policy session

21 if(session->attributes.isTrialPolicy == CLEAR)

22 {

23 authTimeout = ComputeAuthTimeout(session, in->expiration, &in->nonceTPM);

24

25 result = PolicyParameterChecks(session, authTimeout,

26 &in->cpHashA, &in->nonceTPM,

27 RC_PolicySecret_nonceTPM,

28 RC_PolicySecret_cpHashA,

29 RC_PolicySecret_expiration);

30 if(result != TPM_RC_SUCCESS)

31 return result;

32 }

33 // Internal Data Update

34 // Update policy context with input policyRef and name of authorizing key

35 // This value is computed even for trial sessions. Possibly update the cpHash

36 PolicyContextUpdate(TPM_CC_PolicySecret,

37 EntityGetName(in->authHandle, &entityName), &in->policyRef,

38 &in->cpHashA, authTimeout, session);

39 // Command Output

40 // Create ticket and timeout buffer if in->expiration < 0 and this is not

41 // a trial session.

42 // NOTE: PolicyParameterChecks() makes sure that nonceTPM is present

43 // when expiration is non-zero.

44 if(in->expiration < 0

45 && session->attributes.isTrialPolicy == CLEAR

46 && !NvIsPinPassIndex(in->authHandle))

47 {

48 BOOL expiresOnReset = (in->nonceTPM.t.size == 0);

49 // Compute policy ticket

Part 3: Commands Trusted Platform Module Library

Page 260 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

50 authTimeout &= ~EXPIRATION_BIT;

51 TicketComputeAuth(TPM_ST_AUTH_SECRET, EntityGetHierarchy(in->authHandle),

52 authTimeout, expiresOnReset, &in->cpHashA, &in->policyRef,

53 &entityName, &out->policyTicket);

54 // Generate timeout buffer. The format of output timeout buffer is

55 // TPM-specific.

56 // Note: In this implementation, the timeout buffer value is computed after

57 // the ticket is produced so, when the ticket is checked, the expiration

58 // flag needs to be extracted before the ticket is checked.

59 out->timeout.t.size = sizeof(authTimeout);

60 // In the Windows compatible version, the least-significant bit of the

61 // timeout value is used as a flag to indicate if the authorization expires

62 // on reset. The flag is the MSb.

63 if(expiresOnReset)

64 authTimeout |= EXPIRATION_BIT;

65 UINT64_TO_BYTE_ARRAY(authTimeout, out->timeout.t.buffer);

66 }

67 else

68 {

69 // timeout buffer is null

70 out->timeout.t.size = 0;

71

72 // authorization ticket is null

73 out->policyTicket.tag = TPM_ST_AUTH_SECRET;

74 out->policyTicket.hierarchy = TPM_RH_NULL;

75 out->policyTicket.digest.t.size = 0;

76 }

77 return TPM_RC_SUCCESS;

78 }

79 #endif // CC_PolicySecret

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 261

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.5 TPM2_PolicyTicket

 General Description

This command is similar to TPM2_PolicySigned() except that it takes a ticket instead of a signed

authorization. The ticket represents a validated authorization that had an expiration time associated with

it.

The parameters of this command are checked as described in 23.2.2.

If the checks succeed, the TPM uses the timeout, cpHashA, policyRef, and authName to construct a

ticket to compare with the value in ticket. If these tickets match, then the TPM will create a TPM2B_NAME

(objectName) using authName and update the context of policySession by PolicyUpdate() (see 23.2.3).

 PolicyUpdate(commandCode, authName, policyRef) (16)

If the structure tag of ticket is TPM_ST_AUTH_SECRET, then commandCode will be

TPM_CC_PolicySecret. If the structure tag of ticket is TPM_ST_AUTH_SIGNED, then commandCode will

be TPM_CC_PolicySIgned.

policySession is updated as described in 23.2.4.

Part 3: Commands Trusted Platform Module Library

Page 262 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 128 — TPM2_PolicyTicket Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTicket

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_TIMEOUT timeout

time when authorization will expire

The contents are TPM specific. This shall be the value
returned when ticket was produced.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

If it is not limited, the parameter will be the Empty
Buffer.

TPM2B_NONCE policyRef
reference to a qualifier for the policy – may be the
Empty Buffer

TPM2B_NAME authName name of the object that provided the authorization

TPMT_TK_AUTH ticket
an authorization ticket returned by the TPM in response
to a TPM2_PolicySigned() or TPM2_PolicySecret()

Table 129 — TPM2_PolicyTicket Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 263

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyTicket_fp.h"

3 #if CC_PolicyTicket // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_CPHASH policy's cpHash was previously set to a different value

TPM_RC_EXPIRED timeout value in the ticket is in the past and the ticket has expired

TPM_RC_SIZE timeout or cpHash has invalid size for the

TPM_RC_TICKET ticket is not valid

5 TPM_RC

6 TPM2_PolicyTicket(

7 PolicyTicket_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 UINT64 authTimeout;

13 TPMT_TK_AUTH ticketToCompare;

14 TPM_CC commandCode = TPM_CC_PolicySecret;

15 BOOL expiresOnReset;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // NOTE: A trial policy session is not allowed to use this command.

23 // A ticket is used in place of a previously given authorization. Since

24 // a trial policy doesn't actually authenticate, the validated

25 // ticket is not necessary and, in place of using a ticket, one

26 // should use the intended authorization for which the ticket

27 // would be a substitute.

28 if(session->attributes.isTrialPolicy)

29 return TPM_RCS_ATTRIBUTES + RC_PolicyTicket_policySession;

30 // Restore timeout data. The format of timeout buffer is TPM-specific.

31 // In this implementation, the most significant bit of the timeout value is

32 // used as the flag to indicate that the ticket expires on TPM Reset or

33 // TPM Restart. The flag has to be removed before the parameters and ticket

34 // are checked.

35 if(in->timeout.t.size != sizeof(UINT64))

36 return TPM_RCS_SIZE + RC_PolicyTicket_timeout;

37 authTimeout = BYTE_ARRAY_TO_UINT64(in->timeout.t.buffer);

38

39 // extract the flag

40 expiresOnReset = (authTimeout & EXPIRATION_BIT) != 0;

41 authTimeout &= ~EXPIRATION_BIT;

42

43 // Do the normal checks on the cpHashA and timeout values

44 result = PolicyParameterChecks(session, authTimeout,

45 &in->cpHashA,

46 NULL, // no nonce

47 0, // no bad nonce return

48 RC_PolicyTicket_cpHashA,

49 RC_PolicyTicket_timeout);

50 if(result != TPM_RC_SUCCESS)

51 return result;

Part 3: Commands Trusted Platform Module Library

Page 264 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 // Validate Ticket

53 // Re-generate policy ticket by input parameters

54 TicketComputeAuth(in->ticket.tag, in->ticket.hierarchy,

55 authTimeout, expiresOnReset, &in->cpHashA, &in->policyRef,

56 &in->authName, &ticketToCompare);

57 // Compare generated digest with input ticket digest

58 if(!MemoryEqual2B(&in->ticket.digest.b, &ticketToCompare.digest.b))

59 return TPM_RCS_TICKET + RC_PolicyTicket_ticket;

60

61 // Internal Data Update

62

63 // Is this ticket to take the place of a TPM2_PolicySigned() or

64 // a TPM2_PolicySecret()?

65 if(in->ticket.tag == TPM_ST_AUTH_SIGNED)

66 commandCode = TPM_CC_PolicySigned;

67 else if(in->ticket.tag == TPM_ST_AUTH_SECRET)

68 commandCode = TPM_CC_PolicySecret;

69 else

70 // There could only be two possible tag values. Any other value should

71 // be caught by the ticket validation process.

72 FAIL(FATAL_ERROR_INTERNAL);

73

74 // Update policy context

75 PolicyContextUpdate(commandCode, &in->authName, &in->policyRef,

76 &in->cpHashA, authTimeout, session);

77

78 return TPM_RC_SUCCESS;

79 }

80 #endif // CC_PolicyTicket

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 265

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.6 TPM2_PolicyOR

 General Description

This command allows options in authorizations without requiring that the TPM evaluate all of the options.

If a policy may be satisfied by different sets of conditions, the TPM need only evaluate one set that

satisfies the policy. This command will indicate that one of the required sets of conditions has been

satisfied.

PolicySession→policyDigest is compared against the list of provided values. If the current

policySession→policyDigest does not match any value in the list, the TPM shall return TPM_RC_VALUE.

Otherwise, the TPM will reset policySession→policyDigest to a Zero Digest. Then

policySession→policyDigest is extended by the concatenation of TPM_CC_PolicyOR and the

concatenation of all of the digests.

If policySession is a trial session, the TPM will assume that policySession→policyDigest matches one of

the list entries and compute the new value of policyDigest.

The algorithm for computing the new value for policyDigest of policySession is:

 Concatenate all the digest values in pHashList:

 digests ≔ pHashList.digests[1].buffer || … || pHashList.digests[n].buffer (17)

NOTE 1 The TPM will not return an error if the size of an entry is not the same as the size of the digest
of the policy. However, that entry cannot match policyDigest.

 Reset policyDigest to a Zero Digest.

 Extend the command code and the hashes computed in step a) above:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyOR || digests) (18)

NOTE 2 The computation in b) and c) above is equivalent to:

 policyDigestnew ≔ HpolicyAlg(0…0 || TPM_CC_PolicyOR || digests)

A TPM shall support a list with at least eight tagged digest values.

NOTE 3 If policies are to be portable between TPMs, then they should not use more than eight values.

Part 3: Commands Trusted Platform Module Library

Page 266 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 130 — TPM2_PolicyOR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyOR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPML_DIGEST pHashList the list of hashes to check for a match

Table 131 — TPM2_PolicyOR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 267

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyOR_fp.h"

3 #if CC_PolicyOR // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_VALUE no digest in pHashList matched the current value of policyDigest for
policySession

5 TPM_RC

6 TPM2_PolicyOR(

7 PolicyOR_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 UINT32 i;

12

13 // Input Validation and Update

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // Compare and Update Internal Session policy if match

19 for(i = 0; i < in->pHashList.count; i++)

20 {

21 if(session->attributes.isTrialPolicy == SET

22 || (MemoryEqual2B(&session->u2.policyDigest.b,

23 &in->pHashList.digests[i].b)))

24 {

25 // Found a match

26 HASH_STATE hashState;

27 TPM_CC commandCode = TPM_CC_PolicyOR;

28

29 // Start hash

30 session->u2.policyDigest.t.size

31 = CryptHashStart(&hashState, session->authHashAlg);

32 // Set policyDigest to 0 string and add it to hash

33 MemorySet(session->u2.policyDigest.t.buffer, 0,

34 session->u2.policyDigest.t.size);

35 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

36

37 // add command code

38 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

39

40 // Add each of the hashes in the list

41 for(i = 0; i < in->pHashList.count; i++)

42 {

43 // Extend policyDigest

44 CryptDigestUpdate2B(&hashState, &in->pHashList.digests[i].b);

45 }

46 // Complete digest

47 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

48

49 return TPM_RC_SUCCESS;

50 }

51 }

52 // None of the values in the list matched the current policyDigest

53 return TPM_RCS_VALUE + RC_PolicyOR_pHashList;

54 }

55 #endif // CC_PolicyOR

Part 3: Commands Trusted Platform Module Library

Page 268 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.7 TPM2_PolicyPCR

 General Description

This command is used to cause conditional gating of a policy based on PCR. This command together

with TPM2_PolicyOR() allows one group of authorizations to occur when PCR are in one state and a

different set of authorizations when the PCR are in a different state.

The TPM will modify the pcrs parameter so that bits that correspond to unimplemented PCR are CLEAR.

If policySession is not a trial policy session, the TPM will use the modified value of pcrs to select PCR

values to hash according to TPM 2.0 Part 1, Selecting Multiple PCR. The hash algorithm of the policy

session is used to compute a digest (digestTPM) of the selected PCR. If pcrDigest does not have a length

of zero, then it is compared to digestTPM; and if the values do not match, the TPM shall return

TPM_RC_VALUE and make no change to policySession→policyDigest. If the values match, or if the

length of pcrDigest is zero, then policySession→policyDigest is extended by:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || digestTPM) (19)

where

pcrs the pcrs parameter with bits corresponding to unimplemented

PCR set to 0

digestTPM the digest of the selected PCR using the hash algorithm of the

policy session

NOTE 1 If the caller provides the expected PCR value, the intention is that the policy evaluation stop at that
point if the PCR do not match. If the caller does not provide the expected PCR value, then the
validity of the settings will not be determined until an attempt is made to use the policy for
authorization. If the policy is constructed such that the PCR check comes before user author ization
checks, this early termination would allow software to avoid unnecessary prompts for user input to
satisfy a policy that would fail later due to incorrect PCR values.

After this command completes successfully, the TPM shall return TPM_RC_PCR_CHANGED if the policy

session is used for authorization and the PCR are not known to be correct.

The TPM uses a “generation” number (pcrUpdateCounter) that is incremented each time PCR are

updated (unless the PCR being changed is specified not to cause a change to this counter). The value of

this counter is stored in the policy session context (policySession→pcrUpdateCounter) when this

command is executed. When the policy is used for authorization, the current value of the counter is

compared to the value in the policy session context and the authorization will fail if the values are not the

same.

When this command is executed, policySession→pcrUpdateCounter is checked to see if it has been

previously set (in the reference implementation, it has a value of zero if not previously set). If it has been

set, it will be compared with the current value of pcrUpdateCounter to determine if any PCR changes

have occurred. If the values are different, the TPM shall return TPM_RC_PCR_CHANGED.

NOTE 2 Since the pcrUpdateCounter is updated if any PCR is extended (except those specified not to do
so), this means that the command will fail even if a PCR not specified in the pol icy is updated. This
is an optimization for the purposes of conserving internal TPM memory. This would be a rare
occurrence, and, if this should occur, the policy could be reset using the TPM2_PolicyRestart
command and rerun.

If policySession→pcrUpdateCounter has not been set, then it is set to the current value of

pcrUpdateCounter.

If this command is used for a trial policySession, policySession→policyDigest will be updated using the

values from the command rather than the values from a digest of the TPM PCR. If the caller does not

provide PCR settings (pcrDigest has a length of zero), the TPM may (and it is preferred to) use the

current TPM PCR settings (digestTPM) in the calculation for the new policyDigest. The TPM may return

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 269

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

an error if the caller does not provide a PCR digest for a trial policy session but this is not the preferred

behavior.

The TPM will not check any PCR and will compute:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || pcrDigest) (20)

In this computation, pcrs is the input parameter without modification.

NOTE 3 The pcrs parameter is expected to match the configuration of the TPM for which the policy is being
computed which may not be the same as the TPM on which the trial policy is being compute d.

NOTE 4 Although no PCR are checked in a trial policy session, pcrDigest is expected to correspond to some
useful PCR values. It is legal, but pointless, to have the TPM aid in calculating a policyDigest
corresponding to PCR values that are not useful in practice.

Part 3: Commands Trusted Platform Module Library

Page 270 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 132 — TPM2_PolicyPCR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPCR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST pcrDigest
expected digest value of the selected PCR using the
hash algorithm of the session; may be zero length

TPML_PCR_SELECTION pcrs the PCR to include in the check digest

Table 133 — TPM2_PolicyPCR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 271

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyPCR_fp.h"

3 #if CC_PolicyPCR // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE if provided, pcrDigest does not match the current PCR settings

TPM_RC_PCR_CHANGED a previous TPM2_PolicyPCR() set pcrCounter and it has changed

4 TPM_RC

5 TPM2_PolicyPCR(

6 PolicyPCR_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM2B_DIGEST pcrDigest;

11 BYTE pcrs[sizeof(TPML_PCR_SELECTION)];

12 UINT32 pcrSize;

13 BYTE *buffer;

14 TPM_CC commandCode = TPM_CC_PolicyPCR;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // Compute current PCR digest

23 PCRComputeCurrentDigest(session->authHashAlg, &in->pcrs, &pcrDigest);

24

25 // Do validation for non trial session

26 if(session->attributes.isTrialPolicy == CLEAR)

27 {

28 // Make sure that this is not going to invalidate a previous PCR check

29 if(session->pcrCounter != 0 && session->pcrCounter != gr.pcrCounter)

30 return TPM_RC_PCR_CHANGED;

31

32 // If the caller specified the PCR digest and it does not

33 // match the current PCR settings, return an error..

34 if(in->pcrDigest.t.size != 0)

35 {

36 if(!MemoryEqual2B(&in->pcrDigest.b, &pcrDigest.b))

37 return TPM_RCS_VALUE + RC_PolicyPCR_pcrDigest;

38 }

39 }

40 else

41 {

42 // For trial session, just use the input PCR digest if one provided

43 // Note: It can't be too big because it is a TPM2B_DIGEST and the size

44 // would have been checked during unmarshaling

45 if(in->pcrDigest.t.size != 0)

46 pcrDigest = in->pcrDigest;

47 }

48 // Internal Data Update

49 // Update policy hash

50 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyPCR

51 // || PCRS || pcrDigest)

52 // Start hash

53 CryptHashStart(&hashState, session->authHashAlg);

54

Part 3: Commands Trusted Platform Module Library

Page 272 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

55 // add old digest

56 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

57

58 // add commandCode

59 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

60

61 // add PCRS

62 buffer = pcrs;

63 pcrSize = TPML_PCR_SELECTION_Marshal(&in->pcrs, &buffer, NULL);

64 CryptDigestUpdate(&hashState, pcrSize, pcrs);

65

66 // add PCR digest

67 CryptDigestUpdate2B(&hashState, &pcrDigest.b);

68

69 // complete the hash and get the results

70 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

71

72 // update pcrCounter in session context for non trial session

73 if(session->attributes.isTrialPolicy == CLEAR)

74 {

75 session->pcrCounter = gr.pcrCounter;

76 }

77

78 return TPM_RC_SUCCESS;

79 }

80 #endif // CC_PolicyPCR

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 273

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.8 TPM2_PolicyLocality

 General Description

This command indicates that the authorization will be limited to a specific locality.

policySession→commandLocality is a parameter kept in the session context. When the policy session is

started, this parameter is initialized to a value that allows the policy to apply to any locality.

If locality has a value greater than 31, then an extended locality is indicated. For an extended locality, the

TPM will validate that policySession→commandLocality has not previously been set or that the current

value of policySession→commandLocality is the same as locality (TPM_RC_RANGE).

When locality is not an extended locality, the TPM will validate that the policySession→commandLocality

is not set to an extended locality value (TPM_RC_RANGE). If not the TPM will disable any locality not

SET in the locality parameter. If the result of disabling localities results in no locality being enabled, the

TPM will return TPM_RC_RANGE.

If no error occurred in the validation of locality, policySession→policyDigest is extended with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyLocality || locality) (21)

Then policySession→commandLocality is updated to indicate which localities are still allowed after

execution of TPM2_PolicyLocality().

When the policy session is used to authorize a command, the authorization will fail if the locality used for

the command is not one of the enabled localities in policySession→commandLocality.

Part 3: Commands Trusted Platform Module Library

Page 274 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 134 — TPM2_PolicyLocality Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyLocality

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMA_LOCALITY locality the allowed localities for the policy

Table 135 — TPM2_PolicyLocality Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 275

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyLocality_fp.h"

3 #if CC_PolicyLocality // Conditional expansion of this file

Error Returns Meaning

TPM_RC_RANGE all the locality values selected by locality have been disabled by
previous TPM2_PolicyLocality() calls.

4 TPM_RC

5 TPM2_PolicyLocality(

6 PolicyLocality_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 BYTE marshalBuffer[sizeof(TPMA_LOCALITY)];

11 BYTE prevSetting[sizeof(TPMA_LOCALITY)];

12 UINT32 marshalSize;

13 BYTE *buffer;

14 TPM_CC commandCode = TPM_CC_PolicyLocality;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // Get new locality setting in canonical form

23 marshalBuffer[0] = 0; // Code analysis says that this is not initialized

24 buffer = marshalBuffer;

25 marshalSize = TPMA_LOCALITY_Marshal(&in->locality, &buffer, NULL);

26

27 // Its an error if the locality parameter is zero

28 if(marshalBuffer[0] == 0)

29 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

30

31 // Get existing locality setting in canonical form

32 prevSetting[0] = 0; // Code analysis says that this is not initialized

33 buffer = prevSetting;

34 TPMA_LOCALITY_Marshal(&session->commandLocality, &buffer, NULL);

35

36 // If the locality has previously been set

37 if(prevSetting[0] != 0

38 // then the current locality setting and the requested have to be the same

39 // type (that is, either both normal or both extended

40 && ((prevSetting[0] < 32) != (marshalBuffer[0] < 32)))

41 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

42

43 // See if the input is a regular or extended locality

44 if(marshalBuffer[0] < 32)

45 {

46 // if there was no previous setting, start with all normal localities

47 // enabled

48 if(prevSetting[0] == 0)

49 prevSetting[0] = 0x1F;

50

51 // AND the new setting with the previous setting and store it in prevSetting

52 prevSetting[0] &= marshalBuffer[0];

53

54 // The result setting can not be 0

55 if(prevSetting[0] == 0)

Part 3: Commands Trusted Platform Module Library

Page 276 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

56 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

57 }

58 else

59 {

60 // for extended locality

61 // if the locality has already been set, then it must match the

62 if(prevSetting[0] != 0 && prevSetting[0] != marshalBuffer[0])

63 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

64

65 // Setting is OK

66 prevSetting[0] = marshalBuffer[0];

67 }

68

69 // Internal Data Update

70

71 // Update policy hash

72 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyLocality || locality)

73 // Start hash

74 CryptHashStart(&hashState, session->authHashAlg);

75

76 // add old digest

77 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

78

79 // add commandCode

80 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

81

82 // add input locality

83 CryptDigestUpdate(&hashState, marshalSize, marshalBuffer);

84

85 // complete the digest

86 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

87

88 // update session locality by unmarshal function. The function must succeed

89 // because both input and existing locality setting have been validated.

90 buffer = prevSetting;

91 TPMA_LOCALITY_Unmarshal(&session->commandLocality, &buffer,

92 (INT32 *)&marshalSize);

93

94 return TPM_RC_SUCCESS;

95 }

96 #endif // CC_PolicyLocality

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 277

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.9 TPM2_PolicyNV

 General Description

This command is used to cause conditional gating of a policy based on the contents of an NV Index. It is

an immediate assertion. The NV index is validated during the TPM2_PolicyNV() command, not when the

session is used for authorization.

The authorization to read the NV Index must succeed even if policySession is a trial policy session.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (22) and (23) below and return TPM_RC_SUCCESS. It will not perform any further validation.

The remainder of this general description would apply only if policySession is not a trial policy session.

An authorization session providing authorization to read the NV Index shall be provided.

If TPMA_NV_WRITTEN is not SET in the NV Index, the TPM shall return TPM_RC_NV_UNINITIALIZED.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

operandA begins at offset into the NV index contents and has a size equal to the size of operandB. The

TPM will perform the indicated arithmetic check using operandA and operandB. If the check fails, the

TPM shall return TPM_RC_POLICY and not change policySession→policyDigest. If the check succeeds,

the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (22)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB the value used for the comparison

offset offset from the start of the NV Index data to start the comparison

operation the operation parameter indicating the comparison being

performed

The value of args and the Name of the NV Index are extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNV || args || nvIndex→Name) (23)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (22)

nvIndex→Name the Name of the NV Index

The signed arithmetic operations are performed using twos-compliment.

Magnitude comparisons assume that the octet at offset zero in the referenced NV location and in

operandB contain the most significant octet of the data.

Part 3: Commands Trusted Platform Module Library

Page 278 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 136 — TPM2_PolicyNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the octet offset in the NV Index for the start of operand
A

TPM_EO operation the comparison to make

Table 137 — TPM2_PolicyNV Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 279

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyNV_fp.h"

3 #if CC_PolicyNV // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_AUTH_TYPE NV index authorization type is not correct

TPM_RC_NV_LOCKED NV index read locked

TPM_RC_NV_UNINITIALIZED the NV index has not been initialized

TPM_RC_POLICY the comparison to the NV contents failed

TPM_RC_SIZE the size of nvIndex data starting at offset is less than the size of
operandB

TPM_RC_VALUE offset is too large

5 TPM_RC

6 TPM2_PolicyNV(

7 PolicyNV_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 NV_REF locator;

13 NV_INDEX *nvIndex;

14 BYTE nvBuffer[sizeof(in->operandB.t.buffer)];

15 TPM2B_NAME nvName;

16 TPM_CC commandCode = TPM_CC_PolicyNV;

17 HASH_STATE hashState;

18 TPM2B_DIGEST argHash;

19

20 // Input Validation

21

22 // Get pointer to the session structure

23 session = SessionGet(in->policySession);

24

25 //If this is a trial policy, skip all validations and the operation

26 if(session->attributes.isTrialPolicy == CLEAR)

27 {

28 // No need to access the actual NV index information for a trial policy.

29 nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

30

31 // Common read access checks. NvReadAccessChecks() may return

32 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

33 result = NvReadAccessChecks(in->authHandle,

34 in->nvIndex,

35 nvIndex->publicArea.attributes);

36 if(result != TPM_RC_SUCCESS)

37 return result;

38

39 // Make sure that offset is withing range

40 if(in->offset > nvIndex->publicArea.dataSize)

41 return TPM_RCS_VALUE + RC_PolicyNV_offset;

42

43 // Valid NV data size should not be smaller than input operandB size

44 if((nvIndex->publicArea.dataSize - in->offset) < in->operandB.t.size)

45 return TPM_RCS_SIZE + RC_PolicyNV_operandB;

46

Part 3: Commands Trusted Platform Module Library

Page 280 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

47 // Get NV data. The size of NV data equals the input operand B size

48 NvGetIndexData(nvIndex, locator, in->offset, in->operandB.t.size, nvBuffer);

49

50 // Check to see if the condition is valid

51 if(!PolicySptCheckCondition(in->operation, nvBuffer,

52 in->operandB.t.buffer, in->operandB.t.size))

53 return TPM_RC_POLICY;

54 }

55 // Internal Data Update

56

57 // Start argument hash

58 argHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

59

60 // add operandB

61 CryptDigestUpdate2B(&hashState, &in->operandB.b);

62

63 // add offset

64 CryptDigestUpdateInt(&hashState, sizeof(UINT16), in->offset);

65

66 // add operation

67 CryptDigestUpdateInt(&hashState, sizeof(TPM_EO), in->operation);

68

69 // complete argument digest

70 CryptHashEnd2B(&hashState, &argHash.b);

71

72 // Update policyDigest

73 // Start digest

74 CryptHashStart(&hashState, session->authHashAlg);

75

76 // add old digest

77 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

78

79 // add commandCode

80 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

81

82 // add argument digest

83 CryptDigestUpdate2B(&hashState, &argHash.b);

84

85 // Adding nvName

86 CryptDigestUpdate2B(&hashState, &EntityGetName(in->nvIndex, &nvName)->b);

87

88 // complete the digest

89 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

90

91 return TPM_RC_SUCCESS;

92 }

93 #endif // CC_PolicyNV

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 281

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.10 TPM2_PolicyCounterTimer

 General Description

This command is used to cause conditional gating of a policy based on the contents of the

TPMS_TIME_INFO structure.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (24) and (25) below and return TPM_RC_SUCCESS. It will not perform any validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

The TPM will perform the indicated arithmetic check on the indicated portion of the TPMS_TIME_INFO

structure. If the check fails, the TPM shall return TPM_RC_POLICY and not change

policySession→policyDigest. If the check succeeds, the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (24)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB.buffer the value used for the comparison

offset offset from the start of the TPMS_TIME_INFO structure at which

the comparison starts

operation the operation parameter indicating the comparison being

performed

NOTE There is no security related reason for the double hash.

The value of args is extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCounterTimer || args) (25)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (24)

The signed arithmetic operations are performed using twos-compliment. The indicated portion of the

TPMS_TIME_INFO structure begins at offset and has a length of operandB.size. If the number of octets

to be compared overflows the TPMS_TIME_INFO structure, the TPM returns TPM_RC_RANGE. If offset

is greater than the size of the marshaled TPMS_TIME_INFO structure, the TPM returns

TPM_RC_VALUE. The structure is marshaled into its canonical form with no padding. The TPM does not

check for alignment of the offset with a TPMS_TIME_INFO structure member.

Magnitude comparisons assume that the octet at offset zero in the referenced location and in operandB

contain the most significant octet of the data.

Part 3: Commands Trusted Platform Module Library

Page 282 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 138 — TPM2_PolicyCounterTimer Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCounterTimer

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the octet offset in the TPMS_TIME_INFO structure for
the start of operand A

TPM_EO operation the comparison to make

Table 139 — TPM2_PolicyCounterTimer Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 283

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyCounterTimer_fp.h"

3 #if CC_PolicyCounterTimer // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_POLICY the comparison of the selected portion of the TPMS_TIME_INFO with
operandB failed

TPM_RC_RANGE offset + size exceed size of TPMS_TIME_INFO structure

5 TPM_RC

6 TPM2_PolicyCounterTimer(

7 PolicyCounterTimer_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TIME_INFO infoData; // data buffer of TPMS_TIME_INFO

12 BYTE *pInfoData = (BYTE *)&infoData;

13 UINT16 infoDataSize;

14 TPM_CC commandCode = TPM_CC_PolicyCounterTimer;

15 HASH_STATE hashState;

16 TPM2B_DIGEST argHash;

17

18 // Input Validation

19 // Get a marshaled time structure

20 infoDataSize = TimeGetMarshaled(&infoData);

21 // Make sure that the referenced stays within the bounds of the structure.

22 // NOTE: the offset checks are made even for a trial policy because the policy

23 // will not make any sense if the references are out of bounds of the timer

24 // structure.

25 if(in->offset > infoDataSize)

26 return TPM_RCS_VALUE + RC_PolicyCounterTimer_offset;

27 if((UINT32)in->offset + (UINT32)in->operandB.t.size > infoDataSize)

28 return TPM_RCS_RANGE;

29 // Get pointer to the session structure

30 session = SessionGet(in->policySession);

31

32 //If this is a trial policy, skip the check to see if the condition is met.

33 if(session->attributes.isTrialPolicy == CLEAR)

34 {

35 // If the command is going to use any part of the counter or timer, need

36 // to verify that time is advancing.

37 // The time and clock vales are the first two 64-bit values in the clock

38 if(in->offset < sizeof(UINT64) + sizeof(UINT64))

39 {

40 // Using Clock or Time so see if clock is running. Clock doesn't

41 // run while NV is unavailable.

42 // TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned here.

43 RETURN_IF_NV_IS_NOT_AVAILABLE;

44 }

45 // offset to the starting position

46 pInfoData = (BYTE *)infoData;

47 // Check to see if the condition is valid

48 if(!PolicySptCheckCondition(in->operation, pInfoData + in->offset,

49 in->operandB.t.buffer, in->operandB.t.size))

50 return TPM_RC_POLICY;

51 }

52 // Internal Data Update

53 // Start argument list hash

Part 3: Commands Trusted Platform Module Library

Page 284 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

54 argHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

55 // add operandB

56 CryptDigestUpdate2B(&hashState, &in->operandB.b);

57 // add offset

58 CryptDigestUpdateInt(&hashState, sizeof(UINT16), in->offset);

59 // add operation

60 CryptDigestUpdateInt(&hashState, sizeof(TPM_EO), in->operation);

61 // complete argument hash

62 CryptHashEnd2B(&hashState, &argHash.b);

63

64 // update policyDigest

65 // start hash

66 CryptHashStart(&hashState, session->authHashAlg);

67

68 // add old digest

69 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

70

71 // add commandCode

72 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

73

74 // add argument digest

75 CryptDigestUpdate2B(&hashState, &argHash.b);

76

77 // complete the digest

78 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

79

80 return TPM_RC_SUCCESS;

81 }

82 #endif // CC_PolicyCounterTimer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 285

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.11 TPM2_PolicyCommandCode

 General Description

This command indicates that the authorization will be limited to a specific command code.

If policySession→commandCode has its default value, then it will be set to code. If

policySession→commandCode does not have its default value, then the TPM will return

TPM_RC_VALUE if the two values are not the same.

If code is not implemented, the TPM will return TPM_RC_POLICY_CC.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCommandCode || code) (26)

NOTE 1 If a previous TPM2_PolicyCommandCode() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error if code is the same.

NOTE 2 A TPM2_PolicyOR() would be used to allow an authorization to be used for multiple commands.

When the policy session is used to authorize a command, the TPM will fail the command if the

commandCode of that command does not match policySession→commandCode.

This command, or TPM2_PolicyDuplicationSelect(), is required to enable the policy to be used for ADMIN

role authorization.

EXAMPLE Before TPM2_Certify() can be executed, TPM2_PolicyCommandCode() with code set to
TPM_CC_Certify is required.

Part 3: Commands Trusted Platform Module Library

Page 286 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 140 — TPM2_PolicyCommandCode Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCommandCode

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM_CC code the allowed commandCode

Table 141 — TPM2_PolicyCommandCode Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 287

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyCommandCode_fp.h"

3 #if CC_PolicyCommandCode // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE commandCode of policySession previously set to a different value

4 TPM_RC

5 TPM2_PolicyCommandCode(

6 PolicyCommandCode_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyCommandCode;

11 HASH_STATE hashState;

12

13 // Input validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 if(session->commandCode != 0 && session->commandCode != in->code)

19 return TPM_RCS_VALUE + RC_PolicyCommandCode_code;

20 if(CommandCodeToCommandIndex(in->code) == UNIMPLEMENTED_COMMAND_INDEX)

21 return TPM_RCS_POLICY_CC + RC_PolicyCommandCode_code;

22

23 // Internal Data Update

24 // Update policy hash

25 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCommandCode || code)

26 // Start hash

27 CryptHashStart(&hashState, session->authHashAlg);

28

29 // add old digest

30 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

31

32 // add commandCode

33 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

34

35 // add input commandCode

36 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), in->code);

37

38 // complete the hash and get the results

39 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

40

41 // update commandCode value in session context

42 session->commandCode = in->code;

43

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_PolicyCommandCode

Part 3: Commands Trusted Platform Module Library

Page 288 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.12 TPM2_PolicyPhysicalPresence

 General Description

This command indicates that physical presence will need to be asserted at the time the authorization is

performed.

If this command is successful, policySession→isPPRequired will be SET to indicate that this check is

required when the policy is used for authorization. Additionally, policySession→policyDigest is extended

with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPhysicalPresence) (27)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 289

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 142 — TPM2_PolicyPhysicalPresence Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPhysicalPresence

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 143 — TPM2_PolicyPhysicalPresence Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 290 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyPhysicalPresence_fp.h"

3 #if CC_PolicyPhysicalPresence // Conditional expansion of this file

4 TPM_RC

5 TPM2_PolicyPhysicalPresence(

6 PolicyPhysicalPresence_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyPhysicalPresence;

11 HASH_STATE hashState;

12

13 // Internal Data Update

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // Update policy hash

19 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyPhysicalPresence)

20 // Start hash

21 CryptHashStart(&hashState, session->authHashAlg);

22

23 // add old digest

24 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

25

26 // add commandCode

27 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

28

29 // complete the digest

30 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

31

32 // update session attribute

33 session->attributes.isPPRequired = SET;

34

35 return TPM_RC_SUCCESS;

36 }

37 #endif // CC_PolicyPhysicalPresence

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 291

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.13 TPM2_PolicyCpHash

 General Description

This command is used to allow a policy to be bound to a specific command and command parameters.

TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_PolicyTIcket() are designed to allow an

authorizing entity to execute an arbitrary command as the cpHashA parameter of those commands is not

included in policySession→policyDigest. TPM2_PolicyCommandCode() allows the policy to be bound to a

specific Command Code so that only certain entities may authorize specific command codes. This

command allows the policy to be restricted such that an entity may only authorize a command with a

specific set of parameters.

If policySession→cpHash is already set and not the same as cpHashA, then the TPM shall return

TPM_RC_CPHASH. If cpHashA does not have the size of the policySession→policyDigest, the TPM shall

return TPM_RC_SIZE.

NOTE 1 If a previous TPM2_PolicyCpHash() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error if cpHash is the same.

If the cpHashA checks succeed, policySession→cpHash is set to cpHashA and

policySession→policyDigest is updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCpHash || cpHashA) (28)

Part 3: Commands Trusted Platform Module Library

Page 292 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 144 — TPM2_PolicyCpHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCpHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST cpHashA the cpHash added to the policy

Table 145 — TPM2_PolicyCpHash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 293

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyCpHash_fp.h"

3 #if CC_PolicyCpHash // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH cpHash of policySession has previously been set to a different value

TPM_RC_SIZE cpHashA is not the size of a digest produced by the hash algorithm
associated with policySession

4 TPM_RC

5 TPM2_PolicyCpHash(

6 PolicyCpHash_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyCpHash;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // A valid cpHash must have the same size as session hash digest

19 // NOTE: the size of the digest can't be zero because TPM_ALG_NULL

20 // can't be used for the authHashAlg.

21 if(in->cpHashA.t.size != CryptHashGetDigestSize(session->authHashAlg))

22 return TPM_RCS_SIZE + RC_PolicyCpHash_cpHashA;

23

24 // error if the cpHash in session context is not empty and is not the same

25 // as the input or is not a cpHash

26 if((session->u1.cpHash.t.size != 0)

27 && (!session->attributes.isCpHashDefined

28 || !MemoryEqual2B(&in->cpHashA.b, &session->u1.cpHash.b)))

29 return TPM_RC_CPHASH;

30

31 // Internal Data Update

32

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCpHash || cpHashA)

35 // Start hash

36 CryptHashStart(&hashState, session->authHashAlg);

37

38 // add old digest

39 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

40

41 // add commandCode

42 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

43

44 // add cpHashA

45 CryptDigestUpdate2B(&hashState, &in->cpHashA.b);

46

47 // complete the digest and get the results

48 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

49

50 // update cpHash in session context

51 session->u1.cpHash = in->cpHashA;

52 session->attributes.isCpHashDefined = SET;

53

Part 3: Commands Trusted Platform Module Library

Page 294 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

54 return TPM_RC_SUCCESS;

55 }

56 #endif // CC_PolicyCpHash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 295

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.14 TPM2_PolicyNameHash

 General Description

This command allows a policy to be bound to a specific set of TPM entities without being bound to the

parameters of the command. This is most useful for commands such as TPM2_Duplicate() and for

TPM2_PCR_Event() when the referenced PCR requires a policy.

The nameHash parameter should contain the digest of the Names associated with the handles to be used

in the authorized command.

EXAMPLE For the TPM2_Duplicate() command, two handles are provided. One is the handle of the object
being duplicated and the other is the handle of the new parent. For that command, nameHash would
contain:

nameHash ≔ HpolicyAlg(objectHandle→Name || newParentHandle→Name)

If policySession→cpHash is already set, the TPM shall return TPM_RC_CPHASH. If the size of

nameHash is not the size of policySession→policyDigest, the TPM shall return TPM_RC_SIZE.

Otherwise, policySession→cpHash is set to nameHash.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the Names associated with the handles in the command will be used.

NOTE 1 This allows the space normally used to hold policySession→cpHash to be used for
policySession→nameHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNameHash || nameHash) (29)

NOTE 2 This command can only be used with TPM2_PolicyAuthorize() or TPM2_PolicyAuthorizeNV. The
owner of the object being duplicated provides approval for their object to be migrated to a specific
new parent.

Without this approval, the Name of the Object would need to be known at the time that Object's
policy is created. However, since the Name of the Object includes its policy, the Name is not known.
The Name can be known by the authorizing entity.

Part 3: Commands Trusted Platform Module Library

Page 296 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 146 — TPM2_PolicyNameHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNameHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST nameHash the digest to be added to the policy

Table 147 — TPM2_PolicyNameHash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 297

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyNameHash_fp.h"

3 #if CC_PolicyNameHash // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH nameHash has been previously set to a different value

TPM_RC_SIZE nameHash is not the size of the digest produced by the hash
algorithm associated with policySession

4 TPM_RC

5 TPM2_PolicyNameHash(

6 PolicyNameHash_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyNameHash;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // A valid nameHash must have the same size as session hash digest

19 // Since the authHashAlg for a session cannot be TPM_ALG_NULL, the digest size

20 // is always non-zero.

21 if(in->nameHash.t.size != CryptHashGetDigestSize(session->authHashAlg))

22 return TPM_RCS_SIZE + RC_PolicyNameHash_nameHash;

23

24 // u1 in the policy session context cannot otherwise be occupied

25 if(session->u1.cpHash.b.size != 0

26 || session->attributes.isBound

27 || session->attributes.isCpHashDefined

28 || session->attributes.isTemplateSet)

29 return TPM_RC_CPHASH;

30

31 // Internal Data Update

32

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyNameHash || nameHash)

35 // Start hash

36 CryptHashStart(&hashState, session->authHashAlg);

37

38 // add old digest

39 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

40

41 // add commandCode

42 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

43

44 // add nameHash

45 CryptDigestUpdate2B(&hashState, &in->nameHash.b);

46

47 // complete the digest

48 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

49

50 // update nameHash in session context

51 session->u1.cpHash = in->nameHash;

52

53 return TPM_RC_SUCCESS;

Part 3: Commands Trusted Platform Module Library

Page 298 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

54 }

55 #endif // CC_PolicyNameHash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 299

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.15 TPM2_PolicyDuplicationSelect

 General Description

This command allows qualification of duplication to allow duplication to a selected new parent.

If this command not used in conjunction with a PolicyAuthorize Command, then only the new parent is

selected and includeObject should be CLEAR.

EXAMPLE When an object is created when the list of allowed duplication targets is known, the policy would be
created with includeObject CLEAR.

NOTE 1 Only the new parent may be selected because, without TPM2_PolicyAuthorize(), the Name of the
Object to be duplicated would need to be known at the time that Object's policy is created. However,
since the Name of the Object includes its policy, the Name is not known. The Name can be known
by the authorizing entity (a PolicyAuthorize Command) in which case includeObject may be SET.

If used in conjunction with TPM2_PolicyAuthorize(), then the authorizer of the new policy has the option

of selecting just the new parent or of selecting both the new parent and the duplication Object.

NOTE 2 If the authorizing entity for an TPM2_PolicyAuthorize() only specifies the new parent, then that
authorization may be applied to the duplication of any number of other Objects. If the authorizing
entity specifies both a new parent and the duplicated Object, then the authorization only applies to
that pairing of Object and new parent.

If either policySession→cpHash or policySession→nameHash has been previously set, the TPM shall

return TPM_RC_CPHASH. Otherwise, policySession→nameHash will be set to:

 nameHash ≔ HpolicyAlg(objectName.name || newParentName.name) (30)

NOTE 3 It is allowed that policySesion→nameHash and policySession→cpHash share the same memory
space.

NOTE 4 The Name in these equations uses Name.name, indicating that the UINT16 size is not included in
the hash.

The policySession→policyDigest will be updated according to the setting of includeObject. If equal to

YES, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
objectName .name || newParentName.name || includeObject) (31)

If includeObject is NO, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
newParentName.name || includeObject) (32)

NOTE 5 policySession→nameHash receives the digest of both Names so that the check performed in
TPM2_Duplicate() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_PolicyDuplicationSelect() is executed, it
is only valid for a specific pair of duplication object and new parent.

If the command succeeds, policySession→commandCode is set to TPM_CC_Duplicate.

NOTE 6 The normal use of this command is before a TPM2_Pol icyAuthorize(). An authorized entity would
approve a policyDigest that allowed duplication to a specific new parent. The authorizing entity may
want to limit the authorization so that the approval allows only a specific object to be duplicated to
the new parent. In that case, the authorizing entity would approve the policyDigest of equation (31).

Part 3: Commands Trusted Platform Module Library

Page 300 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 148 — TPM2_PolicyDuplicationSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyDuplicationSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the object to be duplicated

TPM2B_NAME newParentName the Name of the new parent

TPMI_YES_NO includeObject
if YES, the objectName will be included in the value in
policySession→policyDigest

Table 149 — TPM2_PolicyDuplicationSelect Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 301

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyDuplicationSelect_fp.h"

3 #if CC_PolicyDuplicationSelect // Conditional expansion of this file

Error Returns Meaning

TPM_RC_COMMAND_CODE commandCode of 'policySession; is not empty

TPM_RC_CPHASH cpHash of policySession is not empty

4 TPM_RC

5 TPM2_PolicyDuplicationSelect(

6 PolicyDuplicationSelect_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 HASH_STATE hashState;

11 TPM_CC commandCode = TPM_CC_PolicyDuplicationSelect;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // cpHash in session context must be empty

19 if(session->u1.cpHash.t.size != 0)

20 return TPM_RC_CPHASH;

21

22 // commandCode in session context must be empty

23 if(session->commandCode != 0)

24 return TPM_RC_COMMAND_CODE;

25

26 // Internal Data Update

27

28 // Update name hash

29 session->u1.cpHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

30

31 // add objectName

32 CryptDigestUpdate2B(&hashState, &in->objectName.b);

33

34 // add new parent name

35 CryptDigestUpdate2B(&hashState, &in->newParentName.b);

36

37 // complete hash

38 CryptHashEnd2B(&hashState, &session->u1.cpHash.b);

39

40 // update policy hash

41 // Old policyDigest size should be the same as the new policyDigest size since

42 // they are using the same hash algorithm

43 session->u2.policyDigest.t.size

44 = CryptHashStart(&hashState, session->authHashAlg);

45 // add old policy

46 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

47

48 // add command code

49 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

50

51 // add objectName

52 if(in->includeObject == YES)

53 CryptDigestUpdate2B(&hashState, &in->objectName.b);

54

Part 3: Commands Trusted Platform Module Library

Page 302 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

55 // add new parent name

56 CryptDigestUpdate2B(&hashState, &in->newParentName.b);

57

58 // add includeObject

59 CryptDigestUpdateInt(&hashState, sizeof(TPMI_YES_NO), in->includeObject);

60

61 // complete digest

62 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

63

64 // set commandCode in session context

65 session->commandCode = TPM_CC_Duplicate;

66

67 return TPM_RC_SUCCESS;

68 }

69 #endif // CC_PolicyDuplicationSelect

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 303

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.16 TPM2_PolicyAuthorize

 General Description

This command allows policies to change. If a policy were static, then it would be difficult to add users to a

policy. This command lets a policy authority sign a new policy so that it may be used in an existing policy.

The authorizing entity signs a structure that contains

 aHash ≔ HaHashAlg(approvedPolicy || policyRef) (33)

The aHashAlg is required to be the nameAlg of the key used to sign the aHash. The aHash value is then

signed (symmetric or asymmetric) by keySign. That signature is then checked by the TPM in 20.1

TPM2_VerifySignature() which produces a ticket by

 HMAC(proof, (TPM_ST_VERIFIED || aHash || keySign→Name)) (34)

NOTE 1 The reason for the validation is because of the expectation that the policy will be used multiple times
and it is more efficient to check a ticket than to load an object each time to check a signature.

The ticket is then used in TPM2_PolicyAuthorize() to validate the parameters.

The keySign parameter is required to be a valid object name using nameAlg other than TPM_ALG_NULL.

If the first two octets of keySign are not a valid hash algorithm, the TPM shall return TPM_RC_HASH. If

the remainder of the Name is not the size of the indicated digest, the TPM shall return TPM_RC_SIZE.

The TPM validates that the approvedPolicy matches the current value of policySession→policyDigest and

if not, shall return TPM_RC_VALUE.

The TPM then validates that the parameters to TPM2_PolicyAuthorize() match the values used to

generate the ticket. If so, the TPM will reset policySession→policyDigest to a Zero Digest. Then it will

update policySession→policyDigest with PolicyUpdate() (see 23.2.3).

 PolicyUpdate(TPM_CC_PolicyAuthorize, keySign, policyRef) (35)

If the ticket is not valid, the TPM shall return TPM_RC_POLICY.

If policySession is a trial session, policySession→policyDigest is extended as if the ticket is valid without

actual verification.

NOTE 2 The unmarshaling process requires that a proper TPMT_TK_VERIFIED be provided for checkTicket
but it may be a NULL Ticket. A NULL ticket is useful in a trial policy, where the caller uses the TPM
to perform policy calculations but does not have a valid authorization ticket.

Part 3: Commands Trusted Platform Module Library

Page 304 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 150 — TPM2_PolicyAuthorize Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorize

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST approvedPolicy digest of the policy being approved

TPM2B_NONCE policyRef a policy qualifier

TPM2B_NAME keySign Name of a key that can sign a policy addition

TPMT_TK_VERIFIED checkTicket
ticket validating that approvedPolicy and policyRef were
signed by keySign

Table 151 — TPM2_PolicyAuthorize Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 305

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyAuthorize_fp.h"

3 #if CC_PolicyAuthorize // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_HASH hash algorithm in keyName is not supported

TPM_RC_SIZE keyName is not the correct size for its hash algorithm

TPM_RC_VALUE the current policyDigest of policySession does not match
approvedPolicy; or checkTicket doesn't match the provided values

5 TPM_RC

6 TPM2_PolicyAuthorize(

7 PolicyAuthorize_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TPM2B_DIGEST authHash;

12 HASH_STATE hashState;

13 TPMT_TK_VERIFIED ticket;

14 TPM_ALG_ID hashAlg;

15 UINT16 digestSize;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // Extract from the Name of the key, the algorithm used to compute it's Name

23 hashAlg = BYTE_ARRAY_TO_UINT16(in->keySign.t.name);

24

25 // 'keySign' parameter needs to use a supported hash algorithm, otherwise

26 // can't tell how large the digest should be

27 if(!CryptHashIsValidAlg(hashAlg, FALSE))

28 return TPM_RCS_HASH + RC_PolicyAuthorize_keySign;

29

30 digestSize = CryptHashGetDigestSize(hashAlg);

31 if(digestSize != (in->keySign.t.size - 2))

32 return TPM_RCS_SIZE + RC_PolicyAuthorize_keySign;

33

34 //If this is a trial policy, skip all validations

35 if(session->attributes.isTrialPolicy == CLEAR)

36 {

37 // Check that "approvedPolicy" matches the current value of the

38 // policyDigest in policy session

39 if(!MemoryEqual2B(&session->u2.policyDigest.b,

40 &in->approvedPolicy.b))

41 return TPM_RCS_VALUE + RC_PolicyAuthorize_approvedPolicy;

42

43 // Validate ticket TPMT_TK_VERIFIED

44 // Compute aHash. The authorizing object sign a digest

45 // aHash := hash(approvedPolicy || policyRef).

46 // Start hash

47 authHash.t.size = CryptHashStart(&hashState, hashAlg);

48

49 // add approvedPolicy

50 CryptDigestUpdate2B(&hashState, &in->approvedPolicy.b);

51

Part 3: Commands Trusted Platform Module Library

Page 306 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 // add policyRef

53 CryptDigestUpdate2B(&hashState, &in->policyRef.b);

54

55 // complete hash

56 CryptHashEnd2B(&hashState, &authHash.b);

57

58 // re-compute TPMT_TK_VERIFIED

59 TicketComputeVerified(in->checkTicket.hierarchy, &authHash,

60 &in->keySign, &ticket);

61

62 // Compare ticket digest. If not match, return error

63 if(!MemoryEqual2B(&in->checkTicket.digest.b, &ticket.digest.b))

64 return TPM_RCS_VALUE + RC_PolicyAuthorize_checkTicket;

65 }

66

67 // Internal Data Update

68

69 // Set policyDigest to zero digest

70 PolicyDigestClear(session);

71

72 // Update policyDigest

73 PolicyContextUpdate(TPM_CC_PolicyAuthorize, &in->keySign, &in->policyRef,

74 NULL, 0, session);

75

76 return TPM_RC_SUCCESS;

77 }

78 #endif // CC_PolicyAuthorize

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 307

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.17 TPM2_PolicyAuthValue

 General Description

This command allows a policy to be bound to the authorization value of the authorized entity.

When this command completes successfully, policySession→isAuthValueNeeded is SET to indicate that

the authValue will be included in hmacKey when the authorization HMAC is computed for the command

being authorized using this session. Additionally, policySession→isPasswordNeeded will be CLEAR.

NOTE If a policy does not use this command, then the hmacKey for the authorized command would only
use sessionKey. If sessionKey is not present, then the hmacKey is an Empty Buffer and no HMAC
would be computed.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (36)

Part 3: Commands Trusted Platform Module Library

Page 308 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 152 — TPM2_PolicyAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthValue

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 153 — TPM2_PolicyAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 309

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyAuthValue_fp.h"

3 #if CC_PolicyAuthValue // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

5 TPM_RC

6 TPM2_PolicyAuthValue(

7 PolicyAuthValue_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TPM_CC commandCode = TPM_CC_PolicyAuthValue;

12 HASH_STATE hashState;

13

14 // Internal Data Update

15

16 // Get pointer to the session structure

17 session = SessionGet(in->policySession);

18

19 // Update policy hash

20 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyAuthValue)

21 // Start hash

22 CryptHashStart(&hashState, session->authHashAlg);

23

24 // add old digest

25 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

26

27 // add commandCode

28 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

29

30 // complete the hash and get the results

31 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

32

33 // update isAuthValueNeeded bit in the session context

34 session->attributes.isAuthValueNeeded = SET;

35 session->attributes.isPasswordNeeded = CLEAR;

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PolicyAuthValue

Part 3: Commands Trusted Platform Module Library

Page 310 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.18 TPM2_PolicyPassword

 General Description

This command allows a policy to be bound to the authorization value of the authorized object.

When this command completes successfully, policySession→isPasswordNeeded is SET to indicate that

authValue of the authorized object will be checked when the session is used for authorization. The caller

will provide the authValue in clear text in the hmac parameter of the authorization. The comparison of

hmac to authValue is performed as if the authorization is a password.

NOTE 1 The parameter field in the policy session where the authorization value is provided is called hmac. If
TPM2_PolicyPassword() is part of the sequence, then the field will contain a password and not an
HMAC.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (37)

NOTE 2 This is the same extend value as used with TPM2_PolicyAuthValue so that the evaluation may be
done using either an HMAC or a password with no change to the authPolicy of the object. The
reason that two commands are present is to indicate to the TPM if the hmac field in the authorization
will contain an HMAC or a password value.

When this command is successful, policySession→isAuthValueNeeded will be CLEAR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 311

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 154 — TPM2_PolicyPassword Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPassword

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 155 — TPM2_PolicyPassword Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 312 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyPassword_fp.h"

3 #if CC_PolicyPassword // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

5 TPM_RC

6 TPM2_PolicyPassword(

7 PolicyPassword_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TPM_CC commandCode = TPM_CC_PolicyAuthValue;

12 HASH_STATE hashState;

13

14 // Internal Data Update

15

16 // Get pointer to the session structure

17 session = SessionGet(in->policySession);

18

19 // Update policy hash

20 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyAuthValue)

21 // Start hash

22 CryptHashStart(&hashState, session->authHashAlg);

23

24 // add old digest

25 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

26

27 // add commandCode

28 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

29

30 // complete the digest

31 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

32

33 // Update isPasswordNeeded bit

34 session->attributes.isPasswordNeeded = SET;

35 session->attributes.isAuthValueNeeded = CLEAR;

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PolicyPassword

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 313

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.19 TPM2_PolicyGetDigest

 General Description

This command returns the current policyDigest of the session. This command allows the TPM to be used

to perform the actions required to pre-compute the authPolicy for an object.

Part 3: Commands Trusted Platform Module Library

Page 314 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 156 — TPM2_PolicyGetDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyGetDigest

TPMI_SH_POLICY policySession
handle for the policy session

Auth Index: None

Table 157 — TPM2_PolicyGetDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST policyDigest the current value of the policySession→policyDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 315

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyGetDigest_fp.h"

3 #if CC_PolicyGetDigest // Conditional expansion of this file

4 TPM_RC

5 TPM2_PolicyGetDigest(

6 PolicyGetDigest_In *in, // IN: input parameter list

7 PolicyGetDigest_Out *out // OUT: output parameter list

8)

9 {

10 SESSION *session;

11

12 // Command Output

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 out->policyDigest = session->u2.policyDigest;

18

19 return TPM_RC_SUCCESS;

20 }

21 #endif // CC_PolicyGetDigest

Part 3: Commands Trusted Platform Module Library

Page 316 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.20 TPM2_PolicyNvWritten

 General Description

This command allows a policy to be bound to the TPMA_NV_WRITTEN attributes. This is a deferred

assertion. Values are stored in the policy session context and checked when the policy is used for

authorization.

If policySession→checkNVWritten is CLEAR, it is SET and policySession→nvWrittenState is set to

writtenSet. If policySession→checkNVWritten is SET, the TPM will return TPM_RC_VALUE if

policySession→nvWrittenState and writtenSet are not the same.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNvWritten || writtenSet) (38)

When the policy session is used to authorize a command, the TPM will fail the command if

policySession→checkNVWritten is SET and nvIndex→attributes→TPMA_NV_WRITTEN does not match

policySession→nvWrittenState.

NOTE 1 A typical use case is a simple policy for the first write during manufacturing provisioning that would
require TPMA_NV_WRITTEN CLEAR and a more complex policy for later use that would require
TPMA_NV_WRITTEN SET.

NOTE 2 When an Index is written, it has a different authorization name than an Index that has not been
written. It is possible to use this change in the NV Index to create a write -once Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 317

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 158 — TPM2_PolicyNvWritten Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNvWritten

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMI_YES_NO writtenSet
YES if NV Index is required to have been written

NO if NV Index is required not to have been written

Table 159 — TPM2_PolicyNvWritten Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 318 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyNvWritten_fp.h"

3 #if CC_PolicyNvWritten // Conditional expansion of this file

Make an NV Index policy dependent on the state of the TPMA_NV_WRITTEN attribute of the index.

Error Returns Meaning

TPM_RC_VALUE a conflicting request for the attribute has already been processed

4 TPM_RC

5 TPM2_PolicyNvWritten(

6 PolicyNvWritten_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyNvWritten;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // If already set is this a duplicate (the same setting)? If it

19 // is a conflicting setting, it is an error

20 if(session->attributes.checkNvWritten == SET)

21 {

22 if(((session->attributes.nvWrittenState == SET)

23 != (in->writtenSet == YES)))

24 return TPM_RCS_VALUE + RC_PolicyNvWritten_writtenSet;

25 }

26

27 // Internal Data Update

28

29 // Set session attributes so that the NV Index needs to be checked

30 session->attributes.checkNvWritten = SET;

31 session->attributes.nvWrittenState = (in->writtenSet == YES);

32

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyNvWritten

35 // || writtenSet)

36 // Start hash

37 CryptHashStart(&hashState, session->authHashAlg);

38

39 // add old digest

40 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

41

42 // add commandCode

43 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

44

45 // add the byte of writtenState

46 CryptDigestUpdateInt(&hashState, sizeof(TPMI_YES_NO), in->writtenSet);

47

48 // complete the digest

49 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

50

51 return TPM_RC_SUCCESS;

52 }

53 #endif // CC_PolicyNvWritten

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 319

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.21 TPM2_PolicyTemplate

 General Description

This command allows a policy to be bound to a specific creation template. This is most useful for an

object creation command such as TPM2_Create(), TPM2_CreatePrimary(), or TPM2_CreateLoaded().

The templateHash parameter should contain the digest of the template that will be required for the

inPublic parameter of an Object creation command.

If policySession→isTemplateHash is SET and policySession→cpHash is not equal to templateHash, the

TPM shall return TPM_RC_VALUE.

NOTE 1 Revision 01.38 of this specification permitted the TPM to return TPM_RC_CPHASH.

Otherwise, if policySession→cpHash is already set, the TPM shall return TPM_RC_CPHASH.

NOTE 2 Revision 01.38 of this specification permitted the TPM to return TPM_RC_VALUE.

If the size of templateHash is not the size of policySession→policyDigest, the TPM shall return

TPM_RC_SIZE. Otherwise, policySession→cpHash is set to templateHash.

NOTE 3 The digest calculation includes the TPM2B buffer but not the TPM2B size.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the inPublic parameter will be used.

NOTE 4 This allows the space normally used to hold policySession→cpHash to be used for
policySession→templateHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyTemplate || templateHash) (39)

Part 3: Commands Trusted Platform Module Library

Page 320 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 160 — TPM2_PolicyTemplate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTemplate

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST templateHash the digest to be added to the policy

Table 161 — TPM2_PolicyTemplate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 321

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyTemplate_fp.h"

3 #if CC_PolicyTemplate // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH cpHash of policySession has previously been set to a different value

TPM_RC_SIZE templateHash is not the size of a digest produced by the hash
algorithm associated with policySession

4 TPM_RC

5 TPM2_PolicyTemplate(

6 PolicyTemplate_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyTemplate;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // If the template is set, make sure that it is the same as the input value

19 if(session->attributes.isTemplateSet)

20 {

21 if(!MemoryEqual2B(&in->templateHash.b, &session->u1.cpHash.b))

22 return TPM_RCS_VALUE + RC_PolicyTemplate_templateHash;

23 }

24 // error if cpHash contains something that is not a template

25 else if(session->u1.templateHash.t.size != 0)

26 return TPM_RC_CPHASH;

27

28 // A valid templateHash must have the same size as session hash digest

29 if(in->templateHash.t.size != CryptHashGetDigestSize(session->authHashAlg))

30 return TPM_RCS_SIZE + RC_PolicyTemplate_templateHash;

31

32 // Internal Data Update

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCpHash

35 // || cpHashA.buffer)

36 // Start hash

37 CryptHashStart(&hashState, session->authHashAlg);

38

39 // add old digest

40 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

41

42 // add commandCode

43 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

44

45 // add cpHashA

46 CryptDigestUpdate2B(&hashState, &in->templateHash.b);

47

48 // complete the digest and get the results

49 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

50

51 // update cpHash in session context

52 session->u1.templateHash = in->templateHash;

53 session->attributes.isTemplateSet = SET;

Part 3: Commands Trusted Platform Module Library

Page 322 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

54

55 return TPM_RC_SUCCESS;

56 }

57 #endif // CC_PolicyTemplateHash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 323

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.22 TPM2_PolicyAuthorizeNV

 General Description

This command provides a capability that is the equivalent of a revocable policy. With

TPM2_PolicyAuthorize(), the authorization ticket never expires, so the authorization may not be

withdrawn. With this command, the approved policy is kept in an NV Index location so that the policy may

be changed as needed to render the old policy unusable.

NOTE 1 This command is useful for Objects but of limited value for other policies that are persistently stored
in TPM NV, such as the OwnerPolicy.

An authorization session providing authorization to read the NV Index shall be provided.

The authorization to read the NV Index must succeed even if policySession is a trial policy session.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equation (40) below and return TPM_RC_SUCCESS. It will not perform any further validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

NOTE 2 If read access is controlled by policy, the policy should include a branch that authorizes a
TPM2_PolicyAuthorizeNV().

If TPMA_NV_WRITTEN is not SET in the Index referenced by nvIndex, the TPM shall return

TPM_RC_NV_UNINITIALIZED. If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall

return TPM_RC_NV_LOCKED.

The dataSize of the NV Index referenced by nvIndex is required to be at least large enough to hold a

properly formatted TPMT_HA (TPM_RC_INSUFFICIENT).

NOTE 3 A TPMT_HA contains a TPM_ALG_ID followed a digest that is consistent in size with the hash
algorithm indicated by the TPM_ALG_ID.

It is an error (TPM_RC_HASH) if the first two octets of the Index are not a TPM_ALG_ID for a hash

algorithm implemented on the TPM or if the indicated hash algorithm does not match

policySession→authHash.

NOTE 4 The TPM_ALG_ID is stored in the first two octets in big endian format.

The TPM will compare policySession→policyDigest to the contents of the NV Index, starting at the first

octet after the TPM_ALG_ID (the third octet) and return TPM_RC_VALUE if they are not the same.

NOTE 5 If the Index does not contain enough bytes for the compare, then TPM_RC_INSUFFICENT is
generated as indicated above.

NOTE 6 The dataSize of the Index may be larger than is required for this command. This permits the Index to
include metadata.

If the comparison is successful, the TPM will reset policySession→policyDigest to a Zero Digest. Then it

will update policySession→policyDigest with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthorizeNV || nvIndex→Name) (40)

Part 3: Commands Trusted Platform Module Library

Page 324 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 162 — TPM2_PolicyAuthorizeNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorizeNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 163 — TPM2_PolicyAuthorizeNV Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 325

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #if CC_PolicyAuthorizeNV // Conditional expansion of this file

3 #include "PolicyAuthorizeNV_fp.h"

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_HASH hash algorithm in keyName is not supported or is not the same as the
hash algorithm of the policy session

TPM_RC_SIZE keyName is not the correct size for its hash algorithm

TPM_RC_VALUE the current policyDigest of policySession does not match
approvedPolicy; or checkTicket doesn't match the provided values

5 TPM_RC

6 TPM2_PolicyAuthorizeNV(

7 PolicyAuthorizeNV_In *in

8)

9 {

10 SESSION *session;

11 TPM_RC result;

12 NV_REF locator;

13 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

14 TPM2B_NAME name;

15 TPMT_HA policyInNv;

16 BYTE nvTemp[sizeof(TPMT_HA)];

17 BYTE *buffer = nvTemp;

18 INT32 size;

19

20 // Input Validation

21 // Get pointer to the session structure

22 session = SessionGet(in->policySession);

23

24 // Skip checks if this is a trial policy

25 if(!session->attributes.isTrialPolicy)

26 {

27 // Check the authorizations for reading

28 // Common read access checks. NvReadAccessChecks() returns

29 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

30 // error may be returned at this point

31 result = NvReadAccessChecks(in->authHandle, in->nvIndex,

32 nvIndex->publicArea.attributes);

33 if(result != TPM_RC_SUCCESS)

34 return result;

35

36 // Read the contents of the index into a temp buffer

37 size = MIN(nvIndex->publicArea.dataSize, sizeof(TPMT_HA));

38 NvGetIndexData(nvIndex, locator, 0, (UINT16)size, nvTemp);

39

40 // Unmarshal the contents of the buffer into the internal format of a

41 // TPMT_HA so that the hash and digest elements can be accessed from the

42 // structure rather than the byte array that is in the Index (written by

43 // user of the Index).

44 result = TPMT_HA_Unmarshal(&policyInNv, &buffer, &size, FALSE);

45 if(result != TPM_RC_SUCCESS)

46 return result;

47

48 // Verify that the hash is the same

49 if(policyInNv.hashAlg != session->authHashAlg)

50 return TPM_RC_HASH;

Part 3: Commands Trusted Platform Module Library

Page 326 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

51

52 // See if the contents of the digest in the Index matches the value

53 // in the policy

54 if(!MemoryEqual(&policyInNv.digest, &session->u2.policyDigest.t.buffer,

55 session->u2.policyDigest.t.size))

56 return TPM_RC_VALUE;

57 }

58

59 // Internal Data Update

60

61 // Set policyDigest to zero digest

62 PolicyDigestClear(session);

63

64 // Update policyDigest

65 PolicyContextUpdate(TPM_CC_PolicyAuthorizeNV, EntityGetName(in->nvIndex, &name),

66 NULL, NULL, 0, session);

67

68 return TPM_RC_SUCCESS;

69 }

70 #endif // CC_PolicyAuthorize

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 327

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24 Hierarchy Commands

24.1 TPM2_CreatePrimary

 General Description

This command is used to create a Primary Object under one of the Primary Seeds or a Temporary Object

under TPM_RH_NULL. The command uses a TPM2B_PUBLIC as a template for the object to be created.

The size of the unique field shall not be checked for consistency with the other object parameters. The

command will create and load a Primary Object. The sensitive area is not returned.

NOTE 1 Since the sensitive data is not returned, the key cannot be reloaded. It can either be made
persistent or it can be recreated.

NOTE 2 For interoperability, the unique field should not be set to a value that is larger than allowed by object
parameters, so that the unmarshaling will not fail.

NOTE 3 An Empty Buffer is a legal unique field value.

EXAMPLE 1 A TPM_ALG_RSA object with a keyBits of 2048 in the objects parameters should have a unique field
that is no larger than 256 bytes.

EXAMPLE 2 A TPM_ALG_KEYEDHASH or a TPM_ALG_SYMCIPHER object should have a unique field this is no
larger than the digest produced by the object’s nameAlg.

Any type of object and attributes combination that is allowed by TPM2_Create() may be created by this

command. The constraints on templates and parameters are the same as TPM2_Create() except that a

Primary Storage Key and a Temporary Storage Key are not constrained to use the algorithms of their

parents.

For setting of the attributes of the created object, fixedParent, fixedTPM, decrypt, and restricted are

implied to be SET in the parent (a Permanent Handle). The remaining attributes are implied to be CLEAR.

The TPM will derive the object from the Primary Seed indicated in primaryHandle using an approved

KDF. All of the bits of the template are used in the creation of the Primary Key. Methods for creating a

Primary Object from a Primary Seed are described in TPM 2.0 Part 1 and implemented in TPM 2.0 Part 4.

If this command is called multiple times with the same inPublic parameter, inSensitive.data, and Primary

Seed, the TPM shall produce the same Primary Object.

NOTE 4 If the Primary Seed is changed, the Primary Objects generated with the new seed shall be
statistically unique even if the parameters of the call are the same.

This command requires authorization. Authorization for a Primary Object attached to the Platform Primary

Seed (PPS) shall be provided by platformAuth or platformPolicy. Authorization for a Primary Object

attached to the Storage Primary Seed (SPS) shall be provided by ownerAuth or ownerPolicy.

Authorization for a Primary Key attached to the Endorsement Primary Seed (EPS) shall be provided by

endorsementAuth or endorsementPolicy.

Part 3: Commands Trusted Platform Module Library

Page 328 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 164 — TPM2_CreatePrimary Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreatePrimary

TPMI_RH_HIERARCHY+ @primaryHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data, see TPM 2.0 Part 1 Sensitive Values

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 165 — TPM2_CreatePrimary Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for created
Primary Object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMT_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

TPM2B_NAME name the name of the created object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 329

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "CreatePrimary_fp.h"

3 #if CC_CreatePrimary // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when sensitive.data is an Empty Buffer
fixedTPM, fixedParent, or encryptedDuplication attributes are
inconsistent between themselves or with those of the parent object;
inconsistent restricted, decrypt and sign attributes attempt to inject
sensitive data for an asymmetric key;

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY a provided symmetric key value is not allowed

TPM_RC_OBJECT_MEMORY there is no free slot for the object

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID;
or hash algorithm is inconsistent with the scheme ID for keyed hash
object

TPM_RC_SIZE size of public authorization policy or sensitive authorization value
does not match digest size of the name algorithm; or sensitive data
size for the keyed hash object is larger than is allowed for the
scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE unknown object type

4 TPM_RC

5 TPM2_CreatePrimary(

6 CreatePrimary_In *in, // IN: input parameter list

7 CreatePrimary_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 TPMT_PUBLIC *publicArea;

12 DRBG_STATE rand;

13 OBJECT *newObject;

14 TPM2B_NAME name;

15

16 // Input Validation

17 // Will need a place to put the result

18 newObject = FindEmptyObjectSlot(&out->objectHandle);

19 if(newObject == NULL)

20 return TPM_RC_OBJECT_MEMORY;

21 // Get the address of the public area in the new object

22 // (this is just to save typing)

23 publicArea = &newObject->publicArea;

24

25 *publicArea = in->inPublic.publicArea;

26

27 // Check attributes in input public area. CreateChecks() checks the things that

28 // are unique to creation and then validates the attributes and values that are

29 // common to create and load.

30 result = CreateChecks(NULL, publicArea,

31 in->inSensitive.sensitive.data.t.size);

32 if(result != TPM_RC_SUCCESS)

33 return RcSafeAddToResult(result, RC_CreatePrimary_inPublic);

34 // Validate the sensitive area values

Part 3: Commands Trusted Platform Module Library

Page 330 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

35 if(!AdjustAuthSize(&in->inSensitive.sensitive.userAuth,

36 publicArea->nameAlg))

37 return TPM_RCS_SIZE + RC_CreatePrimary_inSensitive;

38 // Command output

39 // Compute the name using out->name as a scratch area (this is not the value

40 // that ultimately will be returned, then instantiate the state that will be

41 // used as a random number generator during the object creation.

42 // The caller does not know the seed values so the actual name does not have

43 // to be over the input, it can be over the unmarshaled structure.

44 result = DRBG_InstantiateSeeded(&rand,

45 &HierarchyGetPrimarySeed(in->primaryHandle)->b,

46 PRIMARY_OBJECT_CREATION,

47 (TPM2B *)PublicMarshalAndComputeName(publicArea, &name),

48 &in->inSensitive.sensitive.data.b);

49 if(result == TPM_RC_SUCCESS)

50 {

51 newObject->attributes.primary = SET;

52 if(in->primaryHandle == TPM_RH_ENDORSEMENT)

53 newObject->attributes.epsHierarchy = SET;

54

55 // Create the primary object.

56 result = CryptCreateObject(newObject, &in->inSensitive.sensitive,

57 (RAND_STATE *)&rand);

58 }

59 if(result != TPM_RC_SUCCESS)

60 return result;

61

62 // Set the publicArea and name from the computed values

63 out->outPublic.publicArea = newObject->publicArea;

64 out->name = newObject->name;

65

66 // Fill in creation data

67 FillInCreationData(in->primaryHandle, publicArea->nameAlg,

68 &in->creationPCR, &in->outsideInfo, &out->creationData,

69 &out->creationHash);

70

71 // Compute creation ticket

72 TicketComputeCreation(EntityGetHierarchy(in->primaryHandle), &out->name,

73 &out->creationHash, &out->creationTicket);

74

75 // Set the remaining attributes for a loaded object

76 ObjectSetLoadedAttributes(newObject, in->primaryHandle);

77 return result;

78 }

79 #endif // CC_CreatePrimary

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 331

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.2 TPM2_HierarchyControl

 General Description

This command enables and disables use of a hierarchy and its associated NV storage. The command

allows phEnable, phEnableNV, shEnable, and ehEnable to be changed when the proper authorization is

provided.

This command may be used to CLEAR phEnable and phEnableNV if platformAuth/platformPolicy is

provided. phEnable may not be SET using this command.

This command may be used to CLEAR shEnable if either platformAuth/platformPolicy or

ownerAuth/ownerPolicy is provided. shEnable may be SET if platformAuth/platformPolicy is provided.

This command may be used to CLEAR ehEnable if either platformAuth/platformPolicy or

endorsementAuth/endorsementPolicy is provided. ehEnable may be SET if platformAuth/platformPolicy is

provided.

When this command is used to CLEAR phEnable, shEnable, or ehEnable, the TPM will disable use of

any persistent entity associated with the disabled hierarchy and will flush any transient objects associated

with the disabled hierarchy.

When this command is used to CLEAR shEnable, the TPM will disable access to any NV index that has

TPMA_NV_PLATFORMCREATE CLEAR (indicating that the NV Index was defined using Owner

Authorization). As long as shEnable is CLEAR, the TPM will return an error in response to any command

that attempts to operate upon an NV index that has TPMA_NV_PLATFORMCREATE CLEAR.

When this command is used to CLEAR phEnableNV, the TPM will disable access to any NV index that

has TPMA_NV_PLATFORMCREATE SET (indicating that the NV Index was defined using Platform

Authorization). As long as phEnableNV is CLEAR, the TPM will return an error in response to any

command that attempts to operate upon an NV index that has TPMA_NV_PLATFORMCREATE SET.

Part 3: Commands Trusted Platform Module Library

Page 332 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 166 — TPM2_HierarchyControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyControl {NV E}

TPMI_RH_HIERARCHY @authHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_ENABLES enable

the enable being modified

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM, or TPM_RH_PLATFORM_NV

TPMI_YES_NO state
YES if the enable should be SET, NO if the enable
should be CLEAR

Table 167 — TPM2_HierarchyControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 333

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "HierarchyControl_fp.h"

3 #if CC_HierarchyControl // Conditional expansion of this file

Error Returns Meaning

TPM_RC_AUTH_TYPE authHandle is not applicable to hierarchy in its current state

4 TPM_RC

5 TPM2_HierarchyControl(

6 HierarchyControl_In *in // IN: input parameter list

7)

8 {

9 BOOL select = (in->state == YES);

10 BOOL *selected = NULL;

11

12 // Input Validation

13 switch(in->enable)

14 {

15 // Platform hierarchy has to be disabled by PlatformAuth

16 // If the platform hierarchy has already been disabled, only a reboot

17 // can enable it again

18 case TPM_RH_PLATFORM:

19 case TPM_RH_PLATFORM_NV:

20 if(in->authHandle != TPM_RH_PLATFORM)

21 return TPM_RC_AUTH_TYPE;

22 break;

23

24 // ShEnable may be disabled if PlatformAuth/PlatformPolicy or

25 // OwnerAuth/OwnerPolicy is provided. If ShEnable is disabled, then it

26 // may only be enabled if PlatformAuth/PlatformPolicy is provided.

27 case TPM_RH_OWNER:

28 if(in->authHandle != TPM_RH_PLATFORM

29 && in->authHandle != TPM_RH_OWNER)

30 return TPM_RC_AUTH_TYPE;

31 if(gc.shEnable == FALSE && in->state == YES

32 && in->authHandle != TPM_RH_PLATFORM)

33 return TPM_RC_AUTH_TYPE;

34 break;

35

36 // EhEnable may be disabled if either PlatformAuth/PlatformPolicy or

37 // EndosementAuth/EndorsementPolicy is provided. If EhEnable is disabled,

38 // then it may only be enabled if PlatformAuth/PlatformPolicy is

39 // provided.

40 case TPM_RH_ENDORSEMENT:

41 if(in->authHandle != TPM_RH_PLATFORM

42 && in->authHandle != TPM_RH_ENDORSEMENT)

43 return TPM_RC_AUTH_TYPE;

44 if(gc.ehEnable == FALSE && in->state == YES

45 && in->authHandle != TPM_RH_PLATFORM)

46 return TPM_RC_AUTH_TYPE;

47 break;

48 default:

49 FAIL(FATAL_ERROR_INTERNAL);

50 break;

51 }

52

53 // Internal Data Update

54

55 // Enable or disable the selected hierarchy

56 // Note: the authorization processing for this command may keep these

Part 3: Commands Trusted Platform Module Library

Page 334 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

57 // command actions from being executed. For example, if phEnable is

58 // CLEAR, then platformAuth cannot be used for authorization. This

59 // means that would not be possible to use platformAuth to change the

60 // state of phEnable from CLEAR to SET.

61 // If it is decided that platformPolicy can still be used when phEnable

62 // is CLEAR, then this code could SET phEnable when proper platform

63 // policy is provided.

64 switch(in->enable)

65 {

66 case TPM_RH_OWNER:

67 selected = &gc.shEnable;

68 break;

69 case TPM_RH_ENDORSEMENT:

70 selected = &gc.ehEnable;

71 break;

72 case TPM_RH_PLATFORM:

73 selected = &g_phEnable;

74 break;

75 case TPM_RH_PLATFORM_NV:

76 selected = &gc.phEnableNV;

77 break;

78 default:

79 FAIL(FATAL_ERROR_INTERNAL);

80 break;

81 }

82 if(selected != NULL && *selected != select)

83 {

84 // Before changing the internal state, make sure that NV is available.

85 // Only need to update NV if changing the orderly state

86 RETURN_IF_ORDERLY;

87

88 // state is changing and NV is available so modify

89 *selected = select;

90 // If a hierarchy was just disabled, flush it

91 if(select == CLEAR && in->enable != TPM_RH_PLATFORM_NV)

92 // Flush hierarchy

93 ObjectFlushHierarchy(in->enable);

94

95 // orderly state should be cleared because of the update to state clear data

96 // This gets processed in ExecuteCommand() on the way out.

97 g_clearOrderly = TRUE;

98 }

99 return TPM_RC_SUCCESS;

100 }

101 #endif // CC_HierarchyControl

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 335

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.3 TPM2_SetPrimaryPolicy

 General Description

This command allows setting of the authorization policy for the lockout (lockoutPolicy), the platform

hierarchy (platformPolicy), the storage hierarchy (ownerPolicy), and the endorsement hierarchy

(endorsementPolicy). On TPMs implementing Authenticated Countdown Timers (ACT), this command

may also be used to set the authorization policy for an ACT.

The command requires an authorization session. The session shall use the current authValue or satisfy

the current authPolicy for the referenced hierarchy, or the ACT.

The policy that is changed is the policy associated with authHandle.

If the enable associated with authHandle is not SET, then the associated authorization values (authValue

or authPolicy) may not be used, and the TPM returns TPM_RC_HIERARCHY.

When hashAlg is not TPM_ALG_NULL, if the size of authPolicy is not consistent with the hash algorithm,

the TPM returns TPM_RC_SIZE.

Part 3: Commands Trusted Platform Module Library

Page 336 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 168 — TPM2_SetPrimaryPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetPrimaryPolicy {NV}

TPMI_RH_HIERARCHY_POLICY @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER, TPMI_RH_ACT or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy

an authorization policy digest; may be the Empty Buffer

If hashAlg is TPM_ALG_NULL, then this shall be an
Empty Buffer.

TPMI_ALG_HASH+ hashAlg

the hash algorithm to use for the policy

If the authPolicy is an Empty Buffer, then this field shall
be TPM_ALG_NULL.

Table 169 — TPM2_SetPrimaryPolicy Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 337

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "SetPrimaryPolicy_fp.h"

3 #if CC_SetPrimaryPolicy // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SIZE size of input authPolicy is not consistent with input hash algorithm

4 TPM_RC

5 TPM2_SetPrimaryPolicy(

6 SetPrimaryPolicy_In *in // IN: input parameter list

7)

8 {

9 // Input Validation

10

11 // Check the authPolicy consistent with hash algorithm. If the policy size is

12 // zero, then the algorithm is required to be TPM_ALG_NULL

13 if(in->authPolicy.t.size != CryptHashGetDigestSize(in->hashAlg))

14 return TPM_RCS_SIZE + RC_SetPrimaryPolicy_authPolicy;

15

16 // The command need NV update for OWNER and ENDORSEMENT hierarchy, and

17 // might need orderlyState update for PLATFROM hierarchy.

18 // Check if NV is available. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE

19 // error may be returned at this point

20 RETURN_IF_NV_IS_NOT_AVAILABLE;

21

22 // Internal Data Update

23

24 // Set hierarchy policy

25 switch(in->authHandle)

26 {

27 case TPM_RH_OWNER:

28 gp.ownerAlg = in->hashAlg;

29 gp.ownerPolicy = in->authPolicy;

30 NV_SYNC_PERSISTENT(ownerAlg);

31 NV_SYNC_PERSISTENT(ownerPolicy);

32 break;

33 case TPM_RH_ENDORSEMENT:

34 gp.endorsementAlg = in->hashAlg;

35 gp.endorsementPolicy = in->authPolicy;

36 NV_SYNC_PERSISTENT(endorsementAlg);

37 NV_SYNC_PERSISTENT(endorsementPolicy);

38 break;

39 case TPM_RH_PLATFORM:

40 gc.platformAlg = in->hashAlg;

41 gc.platformPolicy = in->authPolicy;

42 // need to update orderly state

43 g_clearOrderly = TRUE;

44 break;

45 case TPM_RH_LOCKOUT:

46 gp.lockoutAlg = in->hashAlg;

47 gp.lockoutPolicy = in->authPolicy;

48 NV_SYNC_PERSISTENT(lockoutAlg);

49 NV_SYNC_PERSISTENT(lockoutPolicy);

50 break;

51

52 #define SET_ACT_POLICY(N) \

53 case TPM_RH_ACT_##N: \

54 go.ACT_##N.hashAlg = in->hashAlg; \

55 go.ACT_##N.authPolicy = in->authPolicy; \

56 g_clearOrderly = TRUE; \

Part 3: Commands Trusted Platform Module Library

Page 338 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

57 break;

58

59 FOR_EACH_ACT(SET_ACT_POLICY)

60

61 default:

62 FAIL(FATAL_ERROR_INTERNAL);

63 break;

64 }

65

66 return TPM_RC_SUCCESS;

67 }

68 #endif // CC_SetPrimaryPolicy

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 339

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.4 TPM2_ChangePPS

 General Description

This replaces the current platform primary seed (PPS) with a value from the RNG and sets platformPolicy

to the default initialization value (the Empty Buffer).

NOTE 1 A policy that is the Empty Buffer can match no policy.

NOTE 2 Platform Authorization is not changed.

All resident transient and persistent objects in the Platform hierarchy are flushed.

Saved contexts in the Platform hierarchy that were created under the old PPS will no longer be able to be

loaded.

The policy hash algorithm for PCR is reset to TPM_ALG_NULL.

This command does not clear any NV Index values.

NOTE 3 Index values belonging to the Platform are preserved because the indexes may have configuration
information that will be the same after the PPS changes. The Platform may remove the inde xes that
are no longer needed using TPM2_NV_UndefineSpace().

This command requires Platform Authorization.

Part 3: Commands Trusted Platform Module Library

Page 340 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 170 — TPM2_ChangePPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangePPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 171 — TPM2_ChangePPS Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 341

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ChangePPS_fp.h"

3 #if CC_ChangePPS // Conditional expansion of this file

4 TPM_RC

5 TPM2_ChangePPS(

6 ChangePPS_In *in // IN: input parameter list

7)

8 {

9 UINT32 i;

10

11 // Check if NV is available. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE

12 // error may be returned at this point

13 RETURN_IF_NV_IS_NOT_AVAILABLE;

14

15 // Input parameter is not reference in command action

16 NOT_REFERENCED(in);

17

18 // Internal Data Update

19

20 // Reset platform hierarchy seed from RNG

21 CryptRandomGenerate(sizeof(gp.PPSeed.t.buffer), gp.PPSeed.t.buffer);

22

23 // Create a new phProof value from RNG to prevent the saved platform

24 // hierarchy contexts being loaded

25 CryptRandomGenerate(sizeof(gp.phProof.t.buffer), gp.phProof.t.buffer);

26

27 // Set platform authPolicy to null

28 gc.platformAlg = TPM_ALG_NULL;

29 gc.platformPolicy.t.size = 0;

30

31 // Flush loaded object in platform hierarchy

32 ObjectFlushHierarchy(TPM_RH_PLATFORM);

33

34 // Flush platform evict object and index in NV

35 NvFlushHierarchy(TPM_RH_PLATFORM);

36

37 // Save hierarchy changes to NV

38 NV_SYNC_PERSISTENT(PPSeed);

39 NV_SYNC_PERSISTENT(phProof);

40

41 // Re-initialize PCR policies

42 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

43 for(i = 0; i < NUM_POLICY_PCR_GROUP; i++)

44 {

45 gp.pcrPolicies.hashAlg[i] = TPM_ALG_NULL;

46 gp.pcrPolicies.policy[i].t.size = 0;

47 }

48 NV_SYNC_PERSISTENT(pcrPolicies);

49 #endif

50

51 // orderly state should be cleared because of the update to state clear data

52 g_clearOrderly = TRUE;

53

54 return TPM_RC_SUCCESS;

55 }

56 #endif // CC_ChangePPS

Part 3: Commands Trusted Platform Module Library

Page 342 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.5 TPM2_ChangeEPS

 General Description

This replaces the current endorsement primary seed (EPS) with a value from the RNG and sets the

Endorsement hierarchy controls to their default initialization values: ehEnable is SET, endorsementAuth

and endorsementPolicy are both set to the Empty Buffer. It will flush any resident objects (transient or

persistent) in the Endorsement hierarchy and not allow objects in the hierarchy associated with the

previous EPS to be loaded.

NOTE In the reference implementation, ehProof is a non-volatile value from the RNG. It is allowed that the
ehProof be generated by a KDF using both the EPS and SPS as inputs. If generated with a KDF, the
ehProof can be generated on an as-needed basis or made a non-volatile value.

This command requires Platform Authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 343

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 172 — TPM2_ChangeEPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangeEPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 173 — TPM2_ChangeEPS Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 344 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ChangeEPS_fp.h"

3 #if CC_ChangeEPS // Conditional expansion of this file

4 TPM_RC

5 TPM2_ChangeEPS(

6 ChangeEPS_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update. Check if NV is available.

10 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

11 // this point

12 RETURN_IF_NV_IS_NOT_AVAILABLE;

13

14 // Input parameter is not reference in command action

15 NOT_REFERENCED(in);

16

17 // Internal Data Update

18

19 // Reset endorsement hierarchy seed from RNG

20 CryptRandomGenerate(sizeof(gp.EPSeed.t.buffer), gp.EPSeed.t.buffer);

21

22 // Create new ehProof value from RNG

23 CryptRandomGenerate(sizeof(gp.ehProof.t.buffer), gp.ehProof.t.buffer);

24

25 // Enable endorsement hierarchy

26 gc.ehEnable = TRUE;

27

28 // set authValue buffer to zeros

29 MemorySet(gp.endorsementAuth.t.buffer, 0, gp.endorsementAuth.t.size);

30 // Set endorsement authValue to null

31 gp.endorsementAuth.t.size = 0;

32

33 // Set endorsement authPolicy to null

34 gp.endorsementAlg = TPM_ALG_NULL;

35 gp.endorsementPolicy.t.size = 0;

36

37 // Flush loaded object in endorsement hierarchy

38 ObjectFlushHierarchy(TPM_RH_ENDORSEMENT);

39

40 // Flush evict object of endorsement hierarchy stored in NV

41 NvFlushHierarchy(TPM_RH_ENDORSEMENT);

42

43 // Save hierarchy changes to NV

44 NV_SYNC_PERSISTENT(EPSeed);

45 NV_SYNC_PERSISTENT(ehProof);

46 NV_SYNC_PERSISTENT(endorsementAuth);

47 NV_SYNC_PERSISTENT(endorsementAlg);

48 NV_SYNC_PERSISTENT(endorsementPolicy);

49

50 // orderly state should be cleared because of the update to state clear data

51 g_clearOrderly = TRUE;

52

53 return TPM_RC_SUCCESS;

54 }

55 #endif // CC_ChangeEPS

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 345

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.6 TPM2_Clear

 General Description

This command removes all TPM context associated with a specific Owner.

The clear operation will:

• flush resident objects (persistent and volatile) in the Storage and Endorsement hierarchies;

• delete any NV Index with TPMA_NV_PLATFORMCREATE == CLEAR;

• change the storage primary seed (SPS) to a new value from the TPM’s random number generator
(RNG),

• change shProof and ehProof,

NOTE 1 The proof values may be set from the RNG or derived from the associated new Primary Seed. If
derived from the Primary Seeds, the derivation of ehProof shall use both the SPS and EPS. The
computation shall use the SPS as an HMAC key and the derived value may then be a parameter
in a second HMAC in which the EPS is the HMAC key. The reference design uses values from
the RNG.

• SET shEnable and ehEnable;

• set ownerAuth, endorsementAuth, and lockoutAuth to the Empty Buffer;

• set ownerPolicy, endorsementPolicy, and lockoutPolicy to the Empty Buffer;

• set Clock to zero;

• set resetCount to zero;

• set restartCount to zero; and

• set Safe to YES.

• increment pcrUpdateCounter

NOTE 2 This permits an application to create a policy session that is invalidated on TPM2_Clear. The
policy needs, ideally as the first term, TPM2_PolicyPCR(). The session is invalidated even if the
PCR selection is empty.

This command requires Platform Authorization or Lockout Authorization. If TPM2_ClearControl() has

disabled this command, the TPM shall return TPM_RC_DISABLED.

If this command is authorized using lockoutAuth, the HMAC in the response shall use the new

lockoutAuth value (that is, the Empty Buffer) when computing the response HMAC.

Part 3: Commands Trusted Platform Module Library

Page 346 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 174 — TPM2_Clear Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Clear {NV E}

TPMI_RH_CLEAR @authHandle

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 175 — TPM2_Clear Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 347

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Clear_fp.h"

3 #if CC_Clear // Conditional expansion of this file

Error Returns Meaning

TPM_RC_DISABLED Clear command has been disabled

4 TPM_RC

5 TPM2_Clear(

6 Clear_In *in // IN: input parameter list

7)

8 {

9 // Input parameter is not reference in command action

10 NOT_REFERENCED(in);

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 RETURN_IF_NV_IS_NOT_AVAILABLE;

16

17 // Input Validation

18

19 // If Clear command is disabled, return an error

20 if(gp.disableClear)

21 return TPM_RC_DISABLED;

22

23 // Internal Data Update

24

25 // Reset storage hierarchy seed from RNG

26 CryptRandomGenerate(sizeof(gp.SPSeed.t.buffer), gp.SPSeed.t.buffer);

27

28 // Create new shProof and ehProof value from RNG

29 CryptRandomGenerate(sizeof(gp.shProof.t.buffer), gp.shProof.t.buffer);

30 CryptRandomGenerate(sizeof(gp.ehProof.t.buffer), gp.ehProof.t.buffer);

31

32 // Enable storage and endorsement hierarchy

33 gc.shEnable = gc.ehEnable = TRUE;

34

35 // set the authValue buffers to zero

36 MemorySet(&gp.ownerAuth, 0, sizeof(gp.ownerAuth));

37 MemorySet(&gp.endorsementAuth, 0, sizeof(gp.endorsementAuth));

38 MemorySet(&gp.lockoutAuth, 0, sizeof(gp.lockoutAuth));

39

40 // Set storage, endorsement, and lockout authPolicy to null

41 gp.ownerAlg = gp.endorsementAlg = gp.lockoutAlg = TPM_ALG_NULL;

42 MemorySet(&gp.ownerPolicy, 0, sizeof(gp.ownerPolicy));

43 MemorySet(&gp.endorsementPolicy, 0, sizeof(gp.endorsementPolicy));

44 MemorySet(&gp.lockoutPolicy, 0, sizeof(gp.lockoutPolicy));

45

46 // Flush loaded object in storage and endorsement hierarchy

47 ObjectFlushHierarchy(TPM_RH_OWNER);

48 ObjectFlushHierarchy(TPM_RH_ENDORSEMENT);

49

50 // Flush owner and endorsement object and owner index in NV

51 NvFlushHierarchy(TPM_RH_OWNER);

52 NvFlushHierarchy(TPM_RH_ENDORSEMENT);

53

54 // Initialize dictionary attack parameters

55 DAPreInstall_Init();

56

Part 3: Commands Trusted Platform Module Library

Page 348 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

57 // Reset clock

58 go.clock = 0;

59 go.clockSafe = YES;

60 NvWrite(NV_ORDERLY_DATA, sizeof(ORDERLY_DATA), &go);

61

62 // Reset counters

63 gp.resetCount = gr.restartCount = gr.clearCount = 0;

64 gp.auditCounter = 0;

65

66 // Save persistent data changes to NV

67 // Note: since there are so many changes to the persistent data structure, the

68 // entire PERSISTENT_DATA structure is written as a unit

69 NvWrite(NV_PERSISTENT_DATA, sizeof(PERSISTENT_DATA), &gp);

70

71 // Reset the PCR authValues (this does not change the PCRs)

72 PCR_ClearAuth();

73

74 // Bump the PCR counter

75 PCRChanged(0);

76

77 // orderly state should be cleared because of the update to state clear data

78 g_clearOrderly = TRUE;

79

80 return TPM_RC_SUCCESS;

81 }

82 #endif // CC_Clear

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 349

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.7 TPM2_ClearControl

 General Description

TPM2_ClearControl() disables and enables the execution of TPM2_Clear().

The TPM will SET the TPM’s TPMA_PERMANENT.disableClear attribute if disable is YES and will

CLEAR the attribute if disable is NO. When the attribute is SET, TPM2_Clear() may not be executed.

NOTE This is to simplify the logic of TPM2_Clear(). TPM2_ClearControl() can be called using Platform
Authorization to CLEAR the disableClear attribute and then execute TPM2_Clear().

Lockout Authorization may be used to SET disableClear but not to CLEAR it.

Platform Authorization may be used to SET or CLEAR disableClear.

Part 3: Commands Trusted Platform Module Library

Page 350 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 176 — TPM2_ClearControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClearControl {NV}

TPMI_RH_CLEAR @auth

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_YES_NO disable
YES if the disableOwnerClear flag is to be SET, NO if
the flag is to be CLEAR.

Table 177 — TPM2_ClearControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 351

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ClearControl_fp.h"

3 #if CC_ClearControl // Conditional expansion of this file

Error Returns Meaning

TPM_RC_AUTH_FAIL authorization is not properly given

4 TPM_RC

5 TPM2_ClearControl(

6 ClearControl_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update.

10 RETURN_IF_NV_IS_NOT_AVAILABLE;

11

12 // Input Validation

13

14 // LockoutAuth may be used to set disableLockoutClear to TRUE but not to FALSE

15 if(in->auth == TPM_RH_LOCKOUT && in->disable == NO)

16 return TPM_RC_AUTH_FAIL;

17

18 // Internal Data Update

19

20 if(in->disable == YES)

21 gp.disableClear = TRUE;

22 else

23 gp.disableClear = FALSE;

24

25 // Record the change to NV

26 NV_SYNC_PERSISTENT(disableClear);

27

28 return TPM_RC_SUCCESS;

29 }

30 #endif // CC_ClearControl

Part 3: Commands Trusted Platform Module Library

Page 352 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.8 TPM2_HierarchyChangeAuth

 General Description

This command allows the authorization secret for a hierarchy or lockout to be changed using the current

authorization value as the command authorization.

If authHandle is TPM_RH_PLATFORM, then platformAuth is changed. If authHandle is

TPM_RH_OWNER, then ownerAuth is changed. If authHandle is TPM_RH_ENDORSEMENT, then

endorsementAuth is changed. If authHandle is TPM_RH_LOCKOUT, then lockoutAuth is changed. The

HMAC in the response shall use the new authorization value when computing the response HMAC.

If authHandle is TPM_RH_PLATFORM, then Physical Presence may need to be asserted for this

command to succeed (see 26.2, TPM2_PP_Commands).

The authorization value may be no larger than the digest produced by the hash algorithm used for context

integrity.

EXAMPLE If SHA384 is used in the computation of the integrity values for saved contexts, then the largest
authorization value is 48 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 353

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 178 — TPM2_HierarchyChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyChangeAuth {NV}

TPMI_RH_HIERARCHY_AUTH @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH newAuth new authorization value

Table 179 — TPM2_HierarchyChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 354 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "HierarchyChangeAuth_fp.h"

3 #if CC_HierarchyChangeAuth // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_SIZE newAuth size is greater than that of integrity hash digest

5 TPM_RC

6 TPM2_HierarchyChangeAuth(

7 HierarchyChangeAuth_In *in // IN: input parameter list

8)

9 {

10 // The command needs NV update.

11 RETURN_IF_NV_IS_NOT_AVAILABLE;

12

13 // Make sure that the authorization value is a reasonable size (not larger than

14 // the size of the digest produced by the integrity hash. The integrity

15 // hash is assumed to produce the longest digest of any hash implemented

16 // on the TPM. This will also remove trailing zeros from the authValue.

17 if(MemoryRemoveTrailingZeros(&in->newAuth) > CONTEXT_INTEGRITY_HASH_SIZE)

18 return TPM_RCS_SIZE + RC_HierarchyChangeAuth_newAuth;

19

20 // Set hierarchy authValue

21 switch(in->authHandle)

22 {

23 case TPM_RH_OWNER:

24 gp.ownerAuth = in->newAuth;

25 NV_SYNC_PERSISTENT(ownerAuth);

26 break;

27 case TPM_RH_ENDORSEMENT:

28 gp.endorsementAuth = in->newAuth;

29 NV_SYNC_PERSISTENT(endorsementAuth);

30 break;

31 case TPM_RH_PLATFORM:

32 gc.platformAuth = in->newAuth;

33 // orderly state should be cleared

34 g_clearOrderly = TRUE;

35 break;

36 case TPM_RH_LOCKOUT:

37 gp.lockoutAuth = in->newAuth;

38 NV_SYNC_PERSISTENT(lockoutAuth);

39 break;

40 default:

41 FAIL(FATAL_ERROR_INTERNAL);

42 break;

43 }

44

45 return TPM_RC_SUCCESS;

46 }

47 #endif // CC_HierarchyChangeAuth

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 355

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

25 Dictionary Attack Functions

25.1 Introduction

A TPM is required to have support for logic that will help prevent a dictionary attack on an authorization

value. The protection is provided by a counter that increments when a password authorization or an

HMAC authorization fails. When the counter reaches a predefined value, the TPM will not accept, for

some time interval, further requests that require authorization and the TPM is in Lockout mode. While the

TPM is in Lockout mode, the TPM will return TPM_RC_LOCKOUT if the command requires use of an

object’s or Index’s authValue unless the authorization applies to an entry in the Platform hierarchy.

NOTE 1 Authorizations for objects and NV Index values in the Platform hierarchy are never locked out.
However, a command that requires multiple authorizations will not be accepted when the TPM is in
Lockout mode unless all of the authorizations reference objects and indexes in t he Platform
hierarchy.

If the TPM is continuously powered for the duration of newRecoveryTime and no authorization failures

occur, the authorization failure counter will be decremented by one. This property is called “self-healing.”

Self-healing shall not cause the count of failed attempts to decrement below zero.

The count of failed attempts, the lockout interval, and self-healing interval are settable using

TPM2_DictionaryAttackParameters(). The lockout parameters and the current value of the lockout

counter can be read with TPM2_GetCapability().

Dictionary attack protection does not apply to an entity associated with a permanent handle (handle type ==
TPM_HT_PERMANENT) other than TPM_RH_LOCKOUT

25.2 TPM2_DictionaryAttackLockReset

 General Description

This command cancels the effect of a TPM lockout due to a number of successive authorization failures.

If this command is properly authorized, the lockout counter is set to zero.

Only one lockoutAuth authorization failure is allowed for this command during a lockoutRecovery interval

(set using TPM2_DictionaryAttackParameters().

Part 3: Commands Trusted Platform Module Library

Page 356 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 180 — TPM2_DictionaryAttackLockReset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackLockReset {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

Table 181 — TPM2_DictionaryAttackLockReset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 357

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "DictionaryAttackLockReset_fp.h"

3 #if CC_DictionaryAttackLockReset // Conditional expansion of this file

4 TPM_RC

5 TPM2_DictionaryAttackLockReset(

6 DictionaryAttackLockReset_In *in // IN: input parameter list

7)

8 {

9 // Input parameter is not reference in command action

10 NOT_REFERENCED(in);

11

12 // The command needs NV update.

13 RETURN_IF_NV_IS_NOT_AVAILABLE;

14

15 // Internal Data Update

16

17 // Set failed tries to 0

18 gp.failedTries = 0;

19

20 // Record the changes to NV

21 NV_SYNC_PERSISTENT(failedTries);

22

23 return TPM_RC_SUCCESS;

24 }

25 #endif // CC_DictionaryAttackLockReset

Part 3: Commands Trusted Platform Module Library

Page 358 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

25.3 TPM2_DictionaryAttackParameters

 General Description

This command changes the lockout parameters.

The command requires Lockout Authorization.

The timeout parameters (newRecoveryTime and lockoutRecovery) indicate values that are measured with

respect to the Time and not Clock.

NOTE Use of Time means that the TPM shall be continuously powered for the duration of a timeout.

If newRecoveryTime is zero, then DA protection is disabled. Authorizations are checked but authorization

failures will not cause the TPM to enter lockout.

If newMaxTries is zero, the TPM will be in lockout and use of DA protected entities will be disabled.

If lockoutRecovery is zero, then the recovery interval is _TPM_Init followed by TPM2_Startup().

Only one lockoutAuth authorization failure is allowed for this command during a lockoutRecovery interval.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 359

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 182 — TPM2_DictionaryAttackParameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackParameters {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

UINT32 newMaxTries
count of authorization failures before the lockout is
imposed

UINT32 newRecoveryTime

time in seconds before the authorization failure count
is automatically decremented

A value of zero indicates that DA protection is
disabled.

UINT32 lockoutRecovery

time in seconds after a lockoutAuth failure before use
of lockoutAuth is allowed

A value of zero indicates that a reboot is required.

Table 183 — TPM2_DictionaryAttackParameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 360 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "DictionaryAttackParameters_fp.h"

3 #if CC_DictionaryAttackParameters // Conditional expansion of this file

4 TPM_RC

5 TPM2_DictionaryAttackParameters(

6 DictionaryAttackParameters_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update.

10 RETURN_IF_NV_IS_NOT_AVAILABLE;

11

12 // Internal Data Update

13

14 // Set dictionary attack parameters

15 gp.maxTries = in->newMaxTries;

16 gp.recoveryTime = in->newRecoveryTime;

17 gp.lockoutRecovery = in->lockoutRecovery;

18

19 #if 0 // Errata eliminates this code

20 // This functionality has been disabled. The preferred implementation is now

21 // to leave failedTries unchanged when the parameters are changed. This could

22 // have the effect of putting the TPM into DA lockout if in->newMaxTries is

23 // not greater than the current value of gp.failedTries.

24 // Set failed tries to 0

25 gp.failedTries = 0;

26 #endif

27

28 // Record the changes to NV

29 NV_SYNC_PERSISTENT(failedTries);

30 NV_SYNC_PERSISTENT(maxTries);

31 NV_SYNC_PERSISTENT(recoveryTime);

32 NV_SYNC_PERSISTENT(lockoutRecovery);

33

34 return TPM_RC_SUCCESS;

35 }

36 #endif // CC_DictionaryAttackParameters

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 361

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

26 Miscellaneous Management Functions

26.1 Introduction

This clause contains commands that do not logically group with any other commands.

26.2 TPM2_PP_Commands

 General Description

This command is used to determine which commands require assertion of Physical Presence (PP) in

addition to platformAuth/platformPolicy.

This command requires that auth is TPM_RH_PLATFORM and that Physical Presence be asserted.

After this command executes successfully, the commands listed in setList will be added to the list of

commands that require that Physical Presence be asserted when the handle associated with the

authorization is TPM_RH_PLATFORM. The commands in clearList will no longer require assertion of

Physical Presence in order to authorize a command.

If a command is not in either list, its state is not changed. If a command is in both lists, then it will no

longer require Physical Presence (for example, setList is processed first).

Only commands with handle types of TPMI_RH_PLATFORM, TPMI_RH_PROVISION,

TPMI_RH_CLEAR, or TPMI_RH_HIERARCHY can be gated with Physical Presence. If any other

command is in either list, it is discarded.

When a command requires that Physical Presence be provided, then Physical Presence shall be

asserted for either an HMAC or a Policy authorization.

NOTE 1 Physical Presence may be made a requirement of any policy.

NOTE 2 If the TPM does not implement this command, the command list is vendor specific . A platform-
specific specification may require that the command list be initialized in a specific way.

TPM2_PP_Commands() always requires assertion of Physical Presence.

Part 3: Commands Trusted Platform Module Library

Page 362 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 184 — TPM2_PP_Commands Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PP_Commands {NV}

TPMI_RH_PLATFORM @auth

TPM_RH_PLATFORM+PP

Auth Index: 1

Auth Role: USER + Physical Presence

TPML_CC setList
list of commands to be added to those that will require
that Physical Presence be asserted

TPML_CC clearList
list of commands that will no longer require that
Physical Presence be asserted

Table 185 — TPM2_PP_Commands Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 363

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PP_Commands_fp.h"

3 #if CC_PP_Commands // Conditional expansion of this file

4 TPM_RC

5 TPM2_PP_Commands(

6 PP_Commands_In *in // IN: input parameter list

7)

8 {

9 UINT32 i;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 RETURN_IF_NV_IS_NOT_AVAILABLE;

15

16 // Internal Data Update

17

18 // Process set list

19 for(i = 0; i < in->setList.count; i++)

20 // If command is implemented, set it as PP required. If the input

21 // command is not a PP command, it will be ignored at

22 // PhysicalPresenceCommandSet().

23 // Note: PhysicalPresenceCommandSet() checks if the command is implemented.

24 PhysicalPresenceCommandSet(in->setList.commandCodes[i]);

25

26 // Process clear list

27 for(i = 0; i < in->clearList.count; i++)

28 // If command is implemented, clear it as PP required. If the input

29 // command is not a PP command, it will be ignored at

30 // PhysicalPresenceCommandClear(). If the input command is

31 // TPM2_PP_Commands, it will be ignored as well

32 PhysicalPresenceCommandClear(in->clearList.commandCodes[i]);

33

34 // Save the change of PP list

35 NV_SYNC_PERSISTENT(ppList);

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PP_Commands

Part 3: Commands Trusted Platform Module Library

Page 364 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

26.3 TPM2_SetAlgorithmSet

 General Description

This command allows the platform to change the set of algorithms that are used by the TPM. The

algorithmSet setting is a vendor-dependent value.

If the changing of the algorithm set results in a change of the algorithms of PCR banks, then the TPM will

need to be reset (_TPM_Init and TPM2_Startup(TPM_SU_CLEAR)) before the new PCR settings take

effect. After this command executes successfully, if startupType in the next TPM2_Startup() is not

TPM_SU_CLEAR, the TPM shall return TPM_RC_VALUE and may enter Failure mode.

Other than PCR, when an algorithm is no longer supported, the behavior of this command is vendor-

dependent.

EXAMPLE Entities may remain resident. Persistent objects, transient objects, or sessions may be flushed. NV
Indexes may be undefined. Policies may be erased.

NOTE The reference implementation does not have support for this command. In particular, it does not
support use of this command to selectively disable algorithms. Proper support would require
modification of the unmarshaling code so that each time an algorithm is unmarshaled, it would be
verified as being enabled.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 365

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 186 — TPM2_SetAlgorithmSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetAlgorithmSet {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM

Auth Index: 1

Auth Role: USER

UINT32 algorithmSet
a TPM vendor-dependent value indicating the
algorithm set selection

Table 187 — TPM2_SetAlgorithmSet Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 366 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SetAlgorithmSet_fp.h"

3 #if CC_SetAlgorithmSet // Conditional expansion of this file

4 TPM_RC

5 TPM2_SetAlgorithmSet(

6 SetAlgorithmSet_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update. Check if NV is available.

10 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

11 // this point

12 RETURN_IF_NV_IS_NOT_AVAILABLE;

13

14 // Internal Data Update

15 gp.algorithmSet = in->algorithmSet;

16

17 // Write the algorithm set changes to NV

18 NV_SYNC_PERSISTENT(algorithmSet);

19

20 return TPM_RC_SUCCESS;

21 }

22 #endif // CC_SetAlgorithmSet

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 367

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27 Field Upgrade

27.1 Introduction

This clause contains the commands for managing field upgrade of the firmware in the TPM. The field

upgrade scheme may be used for replacement or augmentation of the firmware installed in the TPM.

EXAMPLE 1 If an algorithm is found to be flawed, a patch of that algorithm might be installed using the firmware
upgrade process. The patch might be a replacement of a portion of the code or a complete
replacement of the firmware.

EXAMPLE 2 If an additional set of ECC parameters is needed, the firmware process may be used to add the
parameters to the TPM data set.

The field upgrade process uses two commands (TPM2_FieldUpgradeStart() and

TPM2_FieldUpgradeData()). TPM2_FieldUpgradeStart() validates that a signature on the provided digest

is from the TPM manufacturer and that proper authorization is provided using platformPolicy.

NOTE 1 The platformPolicy for field upgraded is defined by the PM and may include requirements that the
upgrade be signed by the PM or the TPM owner and include any other constraints that are desired
by the PM.

If the proper authorization is given, the TPM will retain the signed digest and enter the Field Upgrade

mode (FUM). While in FUM, the TPM will accept TPM2_FieldUpgradeData() commands. It may accept

other commands if it is able to complete them using the previously installed firmware. Otherwise, it will

return TPM_RC_UPGRADE.

Each block of the field upgrade shall contain the digest of the next block of the field upgrade data. That

digest shall be included in the digest of the previous block. The digest of the first block is signed by the

TPM manufacturer. That signature and first block digest are the parameters for

TPM2_FieldUpgradeStart(). The digest is saved in the TPM as the required digest for the next field

upgrade data block and as the identifier of the field upgrade sequence.

For each field upgrade data block that is sent to the TPM by TPM2_FieldUpgradeData(), the TPM shall

validate that the digest matches the required digest and if not, shall return TPM_RC_VALUE. The TPM

shall extract the digest of the next expected block and return that value to the caller, along with the digest

of the first data block of the update sequence.

The system may attempt to abandon the firmware upgrade by using a zero-length buffer in

TPM2_FieldUpdateData(). If the TPM is able to resume operation using the firmware present when the

upgrade started, then the TPM will indicate that it has abandon the update by setting the digest of the

next block to the Empty Buffer. If the TPM cannot abandon the update, it will return the expected next

digest.

The system may also attempt to abandon the update because of a power interruption. If the TPM is able

to resume normal operations, then it will respond normally to TPM2_Startup(). If the TPM is not able to

resume normal operations, then it will respond to any command but TPM2_FieldUpgradeData() with

TPM_RC_UPGRADE.

After a _TPM_Init, system software may not be able to resume the field upgrade that was in process

when the power interruption occurred. In such case, the TPM firmware may be reset to one of two other

values:

• the original firmware that was installed at the factory (“initial firmware”); or

• the firmware that was in the TPM when the field upgrade process started (“previous firmware”).

The TPM retains the digest of the first block for these firmware images and checks to see if the first block

after _TPM_Init matches either of those digests. If so, the firmware update process restarts and the

original firmware may be loaded.

Part 3: Commands Trusted Platform Module Library

Page 368 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 2 The TPM is required to accept the previous firmware as either a vendor -provided update or as
recovered from the TPM using TPM2_FirmwareRead().

When the last block of the firmware upgrade is loaded into the TPM (indicated to the TPM by data in the

data block in a TPM vendor-specific manner), the TPM will complete the upgrade process. If the TPM is

able to resume normal operations without a reboot, it will set the hash algorithm of the next block to

TPM_ALG_NULL and return TPM_RC_SUCCESS. If a reboot is required, the TPM shall return

TPM_RC_REBOOT in response to the last TPM2_FieldUpgradeData() and all subsequent TPM

commands until a _TPM_Init is received.

NOTE 3 Because no additional data is allowed when the response code is not TPM_RC_SUCCESS, the TPM
returns TPM_RC_SUCCESS for all calls to TPM2_FieldUpgradeData() except the last. In this
manner, the TPM is able to indicate the digest of the next block. If a _TPM_Init occurs while the
TPM is in FUM, the next block may be the digest for the first block of the original firmware. If it is
not, then the TPM will not accept the original firmware until the next _TPM_Init when the TPM is in
FUM.

During the field upgrade process, either the one specified in this clause or a vendor proprietary field

upgrade process, the TPM should preserve:

• Primary Seeds;

• Hierarchy authValue, authPolicy, and proof values;

• Lockout authValue and authorization failure count values;

• PCR authValue and authPolicy values;

• NV Index allocations and contents;

• Persistent object allocations and contents; and

• Clock.

NOTE 4 A platform manufacturer may provide a means to change preserved data to accommodate a case
where a field upgrade fixes a flaw that might have compromised TPM secrets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 369

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27.2 TPM2_FieldUpgradeStart

 General Description

This command uses platformPolicy and a TPM Vendor Authorization Key to authorize a Field Upgrade

Manifest.

If the signature checks succeed, the authorization is valid and the TPM will accept

TPM2_FieldUpgradeData().

This signature is checked against the loaded key referenced by keyHandle. This key will have a Name

that is the same as a value that is part of the TPM firmware data. If the signature is not valid, the TPM

shall return TPM_RC_SIGNATURE.

NOTE A loaded key is used rather than a hard-coded key to reduce the amount of memory needed for this
key data in case more than one vendor key is needed.

Part 3: Commands Trusted Platform Module Library

Page 370 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 188 — TPM2_FieldUpgradeStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeStart

TPMI_RH_PLATFORM @authorization

TPM_RH_PLATFORM+{PP}

Auth Index:1

Auth Role: ADMIN

TPMI_DH_OBJECT keyHandle

handle of a public area that contains the TPM Vendor
Authorization Key that will be used to validate
manifestSignature

Auth Index: None

TPM2B_DIGEST fuDigest digest of the first block in the field upgrade sequence

TPMT_SIGNATURE manifestSignature
signature over fuDigest using the key associated with
keyHandle (not optional)

Table 189 — TPM2_FieldUpgradeStart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 371

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "FieldUpgradeStart_fp.h"

3 #if CC_FieldUpgradeStart // Conditional expansion of this file

4 TPM_RC

5 TPM2_FieldUpgradeStart(

6 FieldUpgradeStart_In *in // IN: input parameter list

7)

8 {

9 // Not implemented

10 UNUSED_PARAMETER(in);

11 return TPM_RC_SUCCESS;

12 }

13 #endif

Part 3: Commands Trusted Platform Module Library

Page 372 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

27.3 TPM2_FieldUpgradeData

 General Description

This command will take the actual field upgrade image to be installed on the TPM. The exact format of

fuData is vendor-specific. This command is only possible following a successful

TPM2_FieldUpgradeStart(). If the TPM has not received a properly authorized

TPM2_FieldUpgradeStart(), then the TPM shall return TPM_RC_FIELDUPGRADE.

The TPM will validate that the digest of fuData matches an expected value. If so, the TPM may buffer or

immediately apply the update. If the digest of fuData does not match an expected value, the TPM shall

return TPM_RC_VALUE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 373

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 190 — TPM2_FieldUpgradeData Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeData {NV}

TPM2B_MAX_BUFFER fuData field upgrade image data

Table 191 — TPM2_FieldUpgradeData Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_HA+ nextDigest
tagged digest of the next block

TPM_ALG_NULL if field update is complete

TPMT_HA firstDigest tagged digest of the first block of the sequence

Part 3: Commands Trusted Platform Module Library

Page 374 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "FieldUpgradeData_fp.h"

3 #if CC_FieldUpgradeData // Conditional expansion of this file

4 TPM_RC

5 TPM2_FieldUpgradeData(

6 FieldUpgradeData_In *in, // IN: input parameter list

7 FieldUpgradeData_Out *out // OUT: output parameter list

8)

9 {

10 // Not implemented

11 UNUSED_PARAMETER(in);

12 UNUSED_PARAMETER(out);

13 return TPM_RC_SUCCESS;

14 }

15 #endif

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 375

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27.4 TPM2_FirmwareRead

 General Description

This command is used to read a copy of the current firmware installed in the TPM.

The presumption is that the data will be returned in reverse order so that the last block in the sequence

would be the first block given to the TPM in case of a failure recovery. If the TPM2_FirmwareRead

sequence completes successfully, then the data provided from the TPM will be sufficient to allow the TPM

to recover from an abandoned upgrade of this firmware.

To start the sequence of retrieving the data, the caller sets sequenceNumber to zero. When the TPM has

returned all the firmware data, the TPM will return the Empty Buffer as fuData.

The contents of fuData are opaque to the caller.

NOTE 1 The caller should retain the ordering of the update blocks so that the blocks sent to the TPM have
the same size and inverse order as the blocks returned by a sequence of calls to this command.

NOTE 2 Support for this command is optional even if the TPM implements TPM2_FieldUpgradeStart() and
TPM2_FieldUpgradeData().

Part 3: Commands Trusted Platform Module Library

Page 376 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 192 — TPM2_FirmwareRead Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FirmwareRead

UINT32 sequenceNumber

the number of previous calls to this command in this
sequence

set to 0 on the first call

Table 193 — TPM2_FirmwareRead Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER fuData field upgrade image data

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 377

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "FirmwareRead_fp.h"

3 #if CC_FirmwareRead // Conditional expansion of this file

4 TPM_RC

5 TPM2_FirmwareRead(

6 FirmwareRead_In *in, // IN: input parameter list

7 FirmwareRead_Out *out // OUT: output parameter list

8)

9 {

10 // Not implemented

11 UNUSED_PARAMETER(in);

12 UNUSED_PARAMETER(out);

13 return TPM_RC_SUCCESS;

14 }

15 #endif // CC_FirmwareRead

Part 3: Commands Trusted Platform Module Library

Page 378 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

28 Context Management

28.1 Introduction

Three of the commands in this clause (TPM2_ContextSave(), TPM2_ContextLoad(), and

TPM2_FlushContext()) implement the resource management described in the "Context Management"

clause in TPM 2.0 Part 1.

The fourth command in this clause (TPM2_EvictControl()) is used to control the persistence of loadable

objects in TPM memory. Background for this command may be found in the "Owner and Platform Evict

Objects" clause in TPM 2.0 Part 1.

28.2 TPM2_ContextSave

 General Description

This command saves a session context, object context, or sequence object context outside the TPM.

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS.

NOTE This preclusion avoids complex issues of dealing with the same session in handle and in the session
area. While it might be possible to provide specificity, it would add unnecessary complexity to the
TPM and, because this capability would provide no application benefit, use of authorization sessions
for audit or encryption is prohibited.

The TPM shall encrypt and integrity protect the TPM2B_CONTEXT_SENSITIVE context as described in

the "Context Protections" clause in TPM 2.0 Part 1.

See the “Context Data” clause in TPM 2.0 Part 2 for a description of the context structure in the response.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 379

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 194 — TPM2_ContextSave Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextSave

TPMI_DH_CONTEXT saveHandle
handle of the resource to save

Auth Index: None

Table 195 — TPM2_ContextSave Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_CONTEXT context

Part 3: Commands Trusted Platform Module Library

Page 380 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ContextSave_fp.h"

3 #if CC_ContextSave // Conditional expansion of this file

4 #include "Context_spt_fp.h"

Error Returns Meaning

TPM_RC_CONTEXT_GAP a contextID could not be assigned for a session context save

TPM_RC_TOO_MANY_CONTEXTS no more contexts can be saved as the counter has maxed out

5 TPM_RC

6 TPM2_ContextSave(

7 ContextSave_In *in, // IN: input parameter list

8 ContextSave_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 UINT16 fingerprintSize; // The size of fingerprint in context

13 // blob.

14 UINT64 contextID = 0; // session context ID

15 TPM2B_SYM_KEY symKey;

16 TPM2B_IV iv;

17

18 TPM2B_DIGEST integrity;

19 UINT16 integritySize;

20 BYTE *buffer;

21

22 // This command may cause the orderlyState to be cleared due to

23 // the update of state reset data. If the state is orderly and

24 // cannot be changed, exit early.

25 RETURN_IF_ORDERLY;

26

27 // Internal Data Update

28

29 // This implementation does not do things in quite the same way as described in

30 // Part 2 of the specification. In Part 2, it indicates that the

31 // TPMS_CONTEXT_DATA contains two TPM2B values. That is not how this is

32 // implemented. Rather, the size field of the TPM2B_CONTEXT_DATA is used to

33 // determine the amount of data in the encrypted data. That part is not

34 // independently sized. This makes the actual size 2 bytes smaller than

35 // calculated using Part 2. Since this is opaque to the caller, it is not

36 // necessary to fix. The actual size is returned by TPM2_GetCapabilties().

37

38 // Initialize output handle. At the end of command action, the output

39 // handle of an object will be replaced, while the output handle

40 // for a session will be the same as input

41 out->context.savedHandle = in->saveHandle;

42

43 // Get the size of fingerprint in context blob. The sequence value in

44 // TPMS_CONTEXT structure is used as the fingerprint

45 fingerprintSize = sizeof(out->context.sequence);

46

47 // Compute the integrity size at the beginning of context blob

48 integritySize = sizeof(integrity.t.size)

49 + CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

50

51 // Perform object or session specific context save

52 switch(HandleGetType(in->saveHandle))

53 {

54 case TPM_HT_TRANSIENT:

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 381

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

55 {

56 OBJECT *object = HandleToObject(in->saveHandle);

57 ANY_OBJECT_BUFFER *outObject;

58 UINT16 objectSize = ObjectIsSequence(object)

59 ? sizeof(HASH_OBJECT) : sizeof(OBJECT);

60

61 outObject = (ANY_OBJECT_BUFFER *)(out->context.contextBlob.t.buffer

62 + integritySize + fingerprintSize);

63

64 // Set size of the context data. The contents of context blob is vendor

65 // defined. In this implementation, the size is size of integrity

66 // plus fingerprint plus the whole internal OBJECT structure

67 out->context.contextBlob.t.size = integritySize +

68 fingerprintSize + objectSize;

69 #if ALG_RSA

70 // For an RSA key, make sure that the key has had the private exponent

71 // computed before saving.

72 if(object->publicArea.type == TPM_ALG_RSA &&

73 !(object->attributes.publicOnly))

74 CryptRsaLoadPrivateExponent(&object->publicArea, &object->sensitive);

75 #endif

76 // Make sure things fit

77 pAssert(out->context.contextBlob.t.size

78 <= sizeof(out->context.contextBlob.t.buffer));

79 // Copy the whole internal OBJECT structure to context blob

80 MemoryCopy(outObject, object, objectSize);

81

82 // Increment object context ID

83 gr.objectContextID++;

84 // If object context ID overflows, TPM should be put in failure mode

85 if(gr.objectContextID == 0)

86 FAIL(FATAL_ERROR_INTERNAL);

87

88 // Fill in other return values for an object.

89 out->context.sequence = gr.objectContextID;

90 // For regular object, savedHandle is 0x80000000. For sequence object,

91 // savedHandle is 0x80000001. For object with stClear, savedHandle

92 // is 0x80000002

93 if(ObjectIsSequence(object))

94 {

95 out->context.savedHandle = 0x80000001;

96 SequenceDataExport((HASH_OBJECT *)object,

97 (HASH_OBJECT_BUFFER *)outObject);

98 }

99 else

100 out->context.savedHandle = (object->attributes.stClear == SET)

101 ? 0x80000002 : 0x80000000;

102 // Get object hierarchy

103 out->context.hierarchy = ObjectGetHierarchy(object);

104

105 break;

106 }

107 case TPM_HT_HMAC_SESSION:

108 case TPM_HT_POLICY_SESSION:

109 {

110 SESSION *session = SessionGet(in->saveHandle);

111

112 // Set size of the context data. The contents of context blob is vendor

113 // defined. In this implementation, the size of context blob is the

114 // size of a internal session structure plus the size of

115 // fingerprint plus the size of integrity

116 out->context.contextBlob.t.size = integritySize +

117 fingerprintSize + sizeof(*session);

118

119 // Make sure things fit

120 pAssert(out->context.contextBlob.t.size

Part 3: Commands Trusted Platform Module Library

Page 382 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

121 < sizeof(out->context.contextBlob.t.buffer));

122

123 // Copy the whole internal SESSION structure to context blob.

124 // Save space for fingerprint at the beginning of the buffer

125 // This is done before anything else so that the actual context

126 // can be reclaimed after this call

127 pAssert(sizeof(*session) <= sizeof(out->context.contextBlob.t.buffer)

128 - integritySize - fingerprintSize);

129 MemoryCopy(out->context.contextBlob.t.buffer + integritySize

130 + fingerprintSize, session, sizeof(*session));

131 // Fill in the other return parameters for a session

132 // Get a context ID and set the session tracking values appropriately

133 // TPM_RC_CONTEXT_GAP is a possible error.

134 // SessionContextSave() will flush the in-memory context

135 // so no additional errors may occur after this call.

136 result = SessionContextSave(out->context.savedHandle, &contextID);

137 if(result != TPM_RC_SUCCESS)

138 return result;

139 // sequence number is the current session contextID

140 out->context.sequence = contextID;

141

142 // use TPM_RH_NULL as hierarchy for session context

143 out->context.hierarchy = TPM_RH_NULL;

144

145 break;

146 }

147 default:

148 // SaveContext may only take an object handle or a session handle.

149 // All the other handle type should be filtered out at unmarshal

150 FAIL(FATAL_ERROR_INTERNAL);

151 break;

152 }

153

154 // Save fingerprint at the beginning of encrypted area of context blob.

155 // Reserve the integrity space

156 pAssert(sizeof(out->context.sequence) <=

157 sizeof(out->context.contextBlob.t.buffer) - integritySize);

158 MemoryCopy(out->context.contextBlob.t.buffer + integritySize,

159 &out->context.sequence, sizeof(out->context.sequence));

160

161 // Compute context encryption key

162 ComputeContextProtectionKey(&out->context, &symKey, &iv);

163

164 // Encrypt context blob

165 CryptSymmetricEncrypt(out->context.contextBlob.t.buffer + integritySize,

166 CONTEXT_ENCRYPT_ALG, CONTEXT_ENCRYPT_KEY_BITS,

167 symKey.t.buffer, &iv, ALG_CFB_VALUE,

168 out->context.contextBlob.t.size - integritySize,

169 out->context.contextBlob.t.buffer + integritySize);

170

171 // Compute integrity hash for the object

172 // In this implementation, the same routine is used for both sessions

173 // and objects.

174 ComputeContextIntegrity(&out->context, &integrity);

175

176 // add integrity at the beginning of context blob

177 buffer = out->context.contextBlob.t.buffer;

178 TPM2B_DIGEST_Marshal(&integrity, &buffer, NULL);

179

180 // orderly state should be cleared because of the update of state reset and

181 // state clear data

182 g_clearOrderly = TRUE;

183

184 return result;

185 }

186 #endif // CC_ContextSave

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 383

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

28.3 TPM2_ContextLoad

 General Description

This command is used to reload a context that has been saved by TPM2_ContextSave().

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 28.2.1).

The TPM will return TPM_RC_HIERARCHY if the context is associated with a hierarchy that is disabled.

NOTE Contexts for authorization sessions and for sequence objects belong to the NULL hierarchy, which is
never disabled.

See the “Context Data” clause in TPM 2.0 Part 2 for a description of the values in the context parameter.

If the integrity HMAC of the saved context is not valid, the TPM shall return TPM_RC_INTEGRITY.

The TPM shall perform a check on the decrypted context as described in the "Context Confidentiality

Protection" clause of TPM 2.0 Part 1 and enter failure mode if the check fails.

Part 3: Commands Trusted Platform Module Library

Page 384 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 196 — TPM2_ContextLoad Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextLoad

TPMS_CONTEXT context the context blob

Table 197 — TPM2_ContextLoad Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_CONTEXT loadedHandle
the handle assigned to the resource after it has been
successfully loaded

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 385

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ContextLoad_fp.h"

3 #if CC_ContextLoad // Conditional expansion of this file

4 #include "Context_spt_fp.h"

Error Returns Meaning

TPM_RC_CONTEXT_GAP there is only one available slot and this is not the oldest saved
session context

TPM_RC_HANDLE context.savedHandle' does not reference a saved session

TPM_RC_HIERARCHY context.hierarchy is disabled

TPM_RC_INTEGRITY context integrity check fail

TPM_RC_OBJECT_MEMORY no free slot for an object

TPM_RC_SESSION_MEMORY no free session slots

TPM_RC_SIZE incorrect context blob size

5 TPM_RC

6 TPM2_ContextLoad(

7 ContextLoad_In *in, // IN: input parameter list

8 ContextLoad_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 TPM2B_DIGEST integrityToCompare;

13 TPM2B_DIGEST integrity;

14 BYTE *buffer; // defined to save some typing

15 INT32 size; // defined to save some typing

16 TPM_HT handleType;

17 TPM2B_SYM_KEY symKey;

18 TPM2B_IV iv;

19

20 // Input Validation

21

22 // See discussion about the context format in TPM2_ContextSave Detailed Actions

23

24 // IF this is a session context, make sure that the sequence number is

25 // consistent with the version in the slot

26

27 // Check context blob size

28 handleType = HandleGetType(in->context.savedHandle);

29

30 // Get integrity from context blob

31 buffer = in->context.contextBlob.t.buffer;

32 size = (INT32)in->context.contextBlob.t.size;

33 result = TPM2B_DIGEST_Unmarshal(&integrity, &buffer, &size);

34 if(result != TPM_RC_SUCCESS)

35 return result;

36

37 // the size of the integrity value has to match the size of digest produced

38 // by the integrity hash

39 if(integrity.t.size != CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG))

40 return TPM_RCS_SIZE + RC_ContextLoad_context;

41

42 // Make sure that the context blob has enough space for the fingerprint. This

43 // is elastic pants to go with the belt and suspenders we already have to make

44 // sure that the context is complete and untampered.

Part 3: Commands Trusted Platform Module Library

Page 386 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

45 if((unsigned)size < sizeof(in->context.sequence))

46 return TPM_RCS_SIZE + RC_ContextLoad_context;

47

48 // After unmarshaling the integrity value, 'buffer' is pointing at the first

49 // byte of the integrity protected and encrypted buffer and 'size' is the number

50 // of integrity protected and encrypted bytes.

51

52 // Compute context integrity

53 ComputeContextIntegrity(&in->context, &integrityToCompare);

54

55 // Compare integrity

56 if(!MemoryEqual2B(&integrity.b, &integrityToCompare.b))

57 return TPM_RCS_INTEGRITY + RC_ContextLoad_context;

58 // Compute context encryption key

59 ComputeContextProtectionKey(&in->context, &symKey, &iv);

60

61 // Decrypt context data in place

62 CryptSymmetricDecrypt(buffer, CONTEXT_ENCRYPT_ALG, CONTEXT_ENCRYPT_KEY_BITS,

63 symKey.t.buffer, &iv, ALG_CFB_VALUE, size, buffer);

64 // See if the fingerprint value matches. If not, it is symptomatic of either

65 // a broken TPM or that the TPM is under attack so go into failure mode.

66 if(!MemoryEqual(buffer, &in->context.sequence, sizeof(in->context.sequence)))

67 FAIL(FATAL_ERROR_INTERNAL);

68

69 // step over fingerprint

70 buffer += sizeof(in->context.sequence);

71

72 // set the remaining size of the context

73 size -= sizeof(in->context.sequence);

74

75 // Perform object or session specific input check

76 switch(handleType)

77 {

78 case TPM_HT_TRANSIENT:

79 {

80 OBJECT *outObject;

81

82 if(size > (INT32)sizeof(OBJECT))

83 FAIL(FATAL_ERROR_INTERNAL);

84

85 // Discard any changes to the handle that the TRM might have made

86 in->context.savedHandle = TRANSIENT_FIRST;

87

88 // If hierarchy is disabled, no object context can be loaded in this

89 // hierarchy

90 if(!HierarchyIsEnabled(in->context.hierarchy))

91 return TPM_RCS_HIERARCHY + RC_ContextLoad_context;

92

93 // Restore object. If there is no empty space, indicate as much

94 outObject = ObjectContextLoad((ANY_OBJECT_BUFFER *)buffer,

95 &out->loadedHandle);

96 if(outObject == NULL)

97 return TPM_RC_OBJECT_MEMORY;

98

99 break;

100 }

101 case TPM_HT_POLICY_SESSION:

102 case TPM_HT_HMAC_SESSION:

103 {

104 if(size != sizeof(SESSION))

105 FAIL(FATAL_ERROR_INTERNAL);

106

107 // This command may cause the orderlyState to be cleared due to

108 // the update of state reset data. If this is the case, check if NV is

109 // available first

110 RETURN_IF_ORDERLY;

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 387

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

111

112 // Check if input handle points to a valid saved session and that the

113 // sequence number makes sense

114 if(!SequenceNumberForSavedContextIsValid(&in->context))

115 return TPM_RCS_HANDLE + RC_ContextLoad_context;

116

117 // Restore session. A TPM_RC_SESSION_MEMORY, TPM_RC_CONTEXT_GAP error

118 // may be returned at this point

119 result = SessionContextLoad((SESSION_BUF *)buffer,

120 &in->context.savedHandle);

121 if(result != TPM_RC_SUCCESS)

122 return result;

123

124 out->loadedHandle = in->context.savedHandle;

125

126 // orderly state should be cleared because of the update of state

127 // reset and state clear data

128 g_clearOrderly = TRUE;

129

130 break;

131 }

132 default:

133 // Context blob may only have an object handle or a session handle.

134 // All the other handle type should be filtered out at unmarshal

135 FAIL(FATAL_ERROR_INTERNAL);

136 break;

137 }

138

139 return TPM_RC_SUCCESS;

140 }

141 #endif // CC_ContextLoad

Part 3: Commands Trusted Platform Module Library

Page 388 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

28.4 TPM2_FlushContext

 General Description

This command causes all context associated with a loaded object, sequence object, or session to be

removed from TPM memory.

This command may not be used to remove a persistent object from the TPM. Use TPM2_EvictControl to

remove a persistent object.

A session does not have to be loaded in TPM memory to have its context flushed. The saved session

context associated with the indicated handle is invalidated. When flushing a session, the upper byte of the

handle is ignored.

EXAMPLE A command to flush session handle 0x20000000 will flush session handle 0x03000000.

No sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 28.2.1).

If the handle is for a Transient Object and the handle is not associated with a loaded object, then the TPM

shall return TPM_RC_HANDLE.

If the handle is for an authorization session and the handle does not reference a loaded or active session,

then the TPM shall return TPM_RC_HANDLE.

NOTE flushHandle is a parameter and not a handle. If it were in the handle area, the TPM would validate
that the context for the referenced entity is in the TPM. When a TPM2_FlushContext references a
saved session context, it is not necessary for the context to be in the TPM. When the flushHandle is
in the parameter area, the TPM does not validate that associated context is actually in the TPM.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 389

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 198 — TPM2_FlushContext Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FlushContext

TPMI_DH_CONTEXT flushHandle
the handle of the item to flush

NOTE This is a use of a handle as a parameter.

Table 199 — TPM2_FlushContext Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 390 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "FlushContext_fp.h"

3 #if CC_FlushContext // Conditional expansion of this file

Error Returns Meaning

TPM_RC_HANDLE flushHandle does not reference a loaded object or session

4 TPM_RC

5 TPM2_FlushContext(

6 FlushContext_In *in // IN: input parameter list

7)

8 {

9 // Internal Data Update

10

11 // Call object or session specific routine to flush

12 switch(HandleGetType(in->flushHandle))

13 {

14 case TPM_HT_TRANSIENT:

15 if(!IsObjectPresent(in->flushHandle))

16 return TPM_RCS_HANDLE + RC_FlushContext_flushHandle;

17 // Flush object

18 FlushObject(in->flushHandle);

19 break;

20 case TPM_HT_HMAC_SESSION:

21 case TPM_HT_POLICY_SESSION:

22 if(!SessionIsLoaded(in->flushHandle)

23 && !SessionIsSaved(in->flushHandle)

24)

25 return TPM_RCS_HANDLE + RC_FlushContext_flushHandle;

26

27 // If the session to be flushed is the exclusive audit session, then

28 // indicate that there is no exclusive audit session any longer.

29 if(in->flushHandle == g_exclusiveAuditSession)

30 g_exclusiveAuditSession = TPM_RH_UNASSIGNED;

31

32 // Flush session

33 SessionFlush(in->flushHandle);

34 break;

35 default:

36 // This command only takes object or session handle. Other handles

37 // should be filtered out at handle unmarshal

38 FAIL(FATAL_ERROR_INTERNAL);

39 break;

40 }

41

42 return TPM_RC_SUCCESS;

43 }

44 #endif // CC_FlushContext

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 391

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

28.5 TPM2_EvictControl

 General Description

This command allows certain Transient Objects to be made persistent or a persistent object to be evicted.

NOTE 1 A transient object is one that may be removed from TPM memory using either TPM2_FlushContext
or TPM2_Startup(). A persistent object is not removed from TPM memory by TPM2_FlushContext()
or TPM2_Startup().

If objectHandle is a Transient Object, then this call makes a persistent copy of the object and assigns

persistentHandle to the persistent version of the object. If objectHandle is a persistent object, then the call

evicts the persistent object. The call does not affect the transient object.

Before execution of TPM2_EvictControl code below, the TPM verifies that objectHandle references an

object that is resident on the TPM and that persistentHandle is a valid handle for a persistent object.

NOTE 2 This requirement simplifies the unmarshaling code so that it only need check that persistentHandle
is always a persistent object.

If objectHandle references a Transient Object:

 The TPM shall return TPM_RC_ATTRIBUTES if

1) it is in the hierarchy of TPM_RH_NULL,

2) only the public portion of the object is loaded, or

NOTE 3 This is for NV space efficiency. Loading an object whose private part is empty would
unnecessarily consume NV resources.

3) the stClear is SET in the object or in an ancestor key.

 The TPM shall return TPM_RC_HIERARCHY if the object is not in the proper hierarchy as

determined by auth.

1) If auth is TPM_RH_PLATFORM, the proper hierarchy is the Platform hierarchy.

2) If auth is TPM_RH_OWNER, the proper hierarchy is either the Storage or the Endorsement

hierarchy.

 The TPM shall return TPM_RC_RANGE if persistentHandle is not in the proper range as determined

by auth.

1) If auth is TPM_RH_OWNER, then persistentHandle shall be in the inclusive range of

81 00 00 0016 to 81 7F FF FF16.

2) If auth is TPM_RH_PLATFORM, then persistentHandle shall be in the inclusive range of

81 80 00 0016 to 81 FF FF FF16.

NOTE 4 This separation permits the platform (the platform OEM) a range of indexes that will not
interfere with indexes used by the TPM owner (the OS or applications).

 The TPM shall return TPM_RC_NV_DEFINED if a persistent object exists with the same handle as

persistentHandle.

 The TPM shall return TPM_RC_NV_SPACE if insufficient space is available to make the object

persistent.

 The TPM shall return TPM_RC_NV_SPACE if execution of this command will prevent the TPM from

being able to hold two transient objects of any kind.

NOTE 5 This requirement anticipates that a TPM may be implemented such that all TPM memory is non -
volatile and not subject to endurance issues. In such case, there is no movement of an object

Part 3: Commands Trusted Platform Module Library

Page 392 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

between memory of different types and it is necessary that the TPM ensure that it is always
possible for the management software to move objects to/from TPM memory in order to ensure
that the objects required for command execution can be context restored.

 If the TPM returns TPM_RC_SUCCESS, the object referenced by objectHandle will not be flushed

and both objectHandle and persistentHandle may be used to access the object.

If objectHandle references a persistent object:

 The TPM shall return TPM_RC_RANGE if objectHandle is not in the proper range as determined by

auth. If auth is TPM_RC_OWNER, objectHandle shall be in the inclusive range of 81 00 00 0016 to

81 7F FF FF16. If auth is TPM_RC_PLATFORM, objectHandle may be any valid persistent object

handle.

 If objectHandle is not the same value as persistentHandle, return TPM_RC_HANDLE.

 If the TPM returns TPM_RC_SUCCESS, objectHandle will be removed from persistent memory and

no longer be accessible.

NOTE 5 The persistent object is not converted to a transient object, as this would prevent the immediate
revocation of an object by removing it from persistent memory.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 393

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 200 — TPM2_EvictControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EvictControl {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the handle of a loaded object

Auth Index: None

TPMI_DH_PERSISTENT persistentHandle

if objectHandle is a transient object handle, then this is
the persistent handle for the object

if objectHandle is a persistent object handle, then it
shall be the same value as persistentHandle

Table 201 — TPM2_EvictControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 394 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "EvictControl_fp.h"

3 #if CC_EvictControl // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES an object with temporary, stClear or publicOnly attribute SET cannot
be made persistent

TPM_RC_HIERARCHY auth cannot authorize the operation in the hierarchy of evictObject

TPM_RC_HANDLE evictHandle of the persistent object to be evicted is not the same as
the persistentHandle argument

TPM_RC_NV_HANDLE persistentHandle is unavailable

TPM_RC_NV_SPACE no space in NV to make evictHandle persistent

TPM_RC_RANGE persistentHandle is not in the range corresponding to the hierarchy of
evictObject

4 TPM_RC

5 TPM2_EvictControl(

6 EvictControl_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 OBJECT *evictObject;

11

12 // Input Validation

13

14 // Get internal object pointer

15 evictObject = HandleToObject(in->objectHandle);

16

17 // Temporary, stClear or public only objects can not be made persistent

18 if(evictObject->attributes.temporary == SET

19 || evictObject->attributes.stClear == SET

20 || evictObject->attributes.publicOnly == SET)

21 return TPM_RCS_ATTRIBUTES + RC_EvictControl_objectHandle;

22

23 // If objectHandle refers to a persistent object, it should be the same as

24 // input persistentHandle

25 if(evictObject->attributes.evict == SET

26 && evictObject->evictHandle != in->persistentHandle)

27 return TPM_RCS_HANDLE + RC_EvictControl_objectHandle;

28

29 // Additional authorization validation

30 if(in->auth == TPM_RH_PLATFORM)

31 {

32 // To make persistent

33 if(evictObject->attributes.evict == CLEAR)

34 {

35 // PlatformAuth can not set evict object in storage or endorsement

36 // hierarchy

37 if(evictObject->attributes.ppsHierarchy == CLEAR)

38 return TPM_RCS_HIERARCHY + RC_EvictControl_objectHandle;

39 // Platform cannot use a handle outside of platform persistent range.

40 if(!NvIsPlatformPersistentHandle(in->persistentHandle))

41 return TPM_RCS_RANGE + RC_EvictControl_persistentHandle;

42 }

43 // PlatformAuth can delete any persistent object

44 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 395

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

45 else if(in->auth == TPM_RH_OWNER)

46 {

47 // OwnerAuth can not set or clear evict object in platform hierarchy

48 if(evictObject->attributes.ppsHierarchy == SET)

49 return TPM_RCS_HIERARCHY + RC_EvictControl_objectHandle;

50

51 // Owner cannot use a handle outside of owner persistent range.

52 if(evictObject->attributes.evict == CLEAR

53 && !NvIsOwnerPersistentHandle(in->persistentHandle))

54 return TPM_RCS_RANGE + RC_EvictControl_persistentHandle;

55 }

56 else

57 {

58 // Other authorization is not allowed in this command and should have been

59 // filtered out in unmarshal process

60 FAIL(FATAL_ERROR_INTERNAL);

61 }

62 // Internal Data Update

63 // Change evict state

64 if(evictObject->attributes.evict == CLEAR)

65 {

66 // Make object persistent

67 if(NvFindHandle(in->persistentHandle) != 0)

68 return TPM_RC_NV_DEFINED;

69 // A TPM_RC_NV_HANDLE or TPM_RC_NV_SPACE error may be returned at this

70 // point

71 result = NvAddEvictObject(in->persistentHandle, evictObject);

72 }

73 else

74 {

75 // Delete the persistent object in NV

76 result = NvDeleteEvict(evictObject->evictHandle);

77 }

78 return result;

79 }

80 #endif // CC_EvictControl

Part 3: Commands Trusted Platform Module Library

Page 396 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

29 Clocks and Timers

29.1 TPM2_ReadClock

 General Description

This command reads the current TPMS_TIME_INFO structure that contains the current setting of Time,

Clock, resetCount, and restartCount.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 397

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 202 — TPM2_ReadClock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadClock

Table 203 — TPM2_ReadClock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_TIME_INFO currentTime

Part 3: Commands Trusted Platform Module Library

Page 398 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ReadClock_fp.h"

3 #if CC_ReadClock // Conditional expansion of this file

4 TPM_RC

5 TPM2_ReadClock(

6 ReadClock_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 out->currentTime.time = g_time;

12 TimeFillInfo(&out->currentTime.clockInfo);

13

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_ReadClock

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 399

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

29.2 TPM2_ClockSet

 General Description

This command is used to advance the value of the TPM’s Clock. The command will fail if newTime is less

than the current value of Clock or if the new time is greater than FF FF 00 00 00 00 00 0016. If both of

these checks succeed, Clock is set to newTime. If either of these checks fails, the TPM shall return

TPM_RC_VALUE and make no change to Clock.

NOTE This maximum setting would prevent Clock from rolling over to zero for approximately 8,000 years at
the real time Clock update rate. If the Clock update rate was set so that TPM time was passing 33
percent faster than real time, it would still be more than 6,000 years before Clock would roll over to
zero. Because Clock will not roll over in the lifetime of the TPM, there is no need for external
software to deal with the possibility that Clock may wrap around.

If the value of Clock after the update makes the volatile and non-volatile versions of

TPMS_CLOCK_INFO.clock differ by more than the reported update interval, then the TPM shall update

the non-volatile version of TPMS_CLOCK_INFO.clock before returning.

This command requires Platform Authorization or Owner Authorization.

Part 3: Commands Trusted Platform Module Library

Page 400 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 204 — TPM2_ClockSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockSet {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

UINT64 newTime new Clock setting in milliseconds

Table 205 — TPM2_ClockSet Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 401

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ClockSet_fp.h"

3 #if CC_ClockSet // Conditional expansion of this file

Read the current TPMS_TIMER_INFO structure settings

Error Returns Meaning

TPM_RC_NV_RATE NV is unavailable because of rate limit

TPM_RC_NV_UNAVAILABLE NV is inaccessible

TPM_RC_VALUE invalid new clock

4 TPM_RC

5 TPM2_ClockSet(

6 ClockSet_In *in // IN: input parameter list

7)

8 {

9 // Input Validation

10 // new time can not be bigger than 0xFFFF000000000000 or smaller than

11 // current clock

12 if(in->newTime > 0xFFFF000000000000ULL

13 || in->newTime < go.clock)

14 return TPM_RCS_VALUE + RC_ClockSet_newTime;

15

16 // Internal Data Update

17 // Can't modify the clock if NV is not available.

18 RETURN_IF_NV_IS_NOT_AVAILABLE;

19

20 TimeClockUpdate(in->newTime);

21 return TPM_RC_SUCCESS;

22 }

23 #endif // CC_ClockSet

Part 3: Commands Trusted Platform Module Library

Page 402 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

29.3 TPM2_ClockRateAdjust

 General Description

This command adjusts the rate of advance of Clock and Time to provide a better approximation to real

time.

The rateAdjust value is relative to the current rate and not the nominal rate of advance.

EXAMPLE 1 If this command had been called three times with rateAdjust = TPM_CLOCK_COARSE_SLOWER
and once with rateAdjust = TPM_CLOCK_COARSE_FASTER, the net effect will be as if the
command had been called twice with rateAdjust = TPM_CLOCK_COARSE_SLOWER.

The range of adjustment shall be sufficient to allow Clock and Time to advance at real time but no more.

If the requested adjustment would make the rate advance faster or slower than the nominal accuracy of

the input frequency, the TPM shall return TPM_RC_VALUE.

EXAMPLE 2 If the frequency tolerance of the TPM's input clock is +/ -10 percent, then the TPM will return
TPM_RC_VALUE if the adjustment would make Clock run more than 10 percent faster or slower than
nominal. That is, if the input oscillator were nominally 100 megahertz (MHz), then 1 millisecond (ms)
would normally take 100,000 counts. The update Clock should be adjustable so that 1 ms is between
90,000 and 110,000 counts.

The interpretation of “fine” and “coarse” adjustments is implementation-specific.

The nominal rate of advance for Clock and Time shall be accurate to within 15 percent. That is, with no

adjustment applied, Clock and Time shall be advanced at a rate within 15 percent of actual time.

NOTE If the adjustments are incorrect, it will be possible to make the difference between advance of
Clock/Time and real time to be as much as 1.152 or ~1.33.

Changes to the current Clock update rate adjustment need not be persisted across TPM power cycles.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 403

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 206 — TPM2_ClockRateAdjust Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockRateAdjust

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPM_CLOCK_ADJUST rateAdjust Adjustment to current Clock update rate

Table 207 — TPM2_ClockRateAdjust Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 404 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ClockRateAdjust_fp.h"

3 #if CC_ClockRateAdjust // Conditional expansion of this file

4 TPM_RC

5 TPM2_ClockRateAdjust(

6 ClockRateAdjust_In *in // IN: input parameter list

7)

8 {

9 // Internal Data Update

10 TimeSetAdjustRate(in->rateAdjust);

11

12 return TPM_RC_SUCCESS;

13 }

14 #endif // CC_ClockRateAdjust

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 405

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

30 Capability Commands

30.1 Introduction

The TPM has numerous values that indicate the state, capabilities, and properties of the TPM. These

values are needed for proper management of the TPM. The TPM2_GetCapability() command is used to

access these values.

TPM2_GetCapability() allows reporting of multiple values in a single call. The values are grouped

according to type.

NOTE TPM2_TestParms()is used to determine if a TPM supports a particular combination of algorithm
parameters

30.2 TPM2_GetCapability

 General Description

This command returns various information regarding the TPM and its current state.

The capability parameter determines the category of data returned. The property parameter selects the

first value of the selected category to be returned. If there is no property that corresponds to the value of

property, the next higher value is returned, if it exists.

EXAMPLE 1 The list of handles of transient objects currently loaded in the TPM may be read one at a time. On
the first read, set the property to TRANSIENT_FIRST and propertyCount to one. If a transient object
is present, the lowest numbered handle is returned and moreData will be YES if transient objects
with higher handles are loaded. On the subsequent call, use returned handle value plus 1 in order to
access the next higher handle.

The propertyCount parameter indicates the number of capabilities in the indicated group that are

requested. The TPM will return no more than the number of requested values (propertyCount) or until the

last property of the requested type has been returned.

NOTE 1 The type of the capability is derived from a combination of capability and property.

NOTE 2 If the property selects an unimplemented property, the next higher implemented property is returned.

When all of the properties of the requested type have been returned, the moreData parameter in the

response will be set to NO. Otherwise, it will be set to YES.

NOTE 3 The moreData parameter will be YES if there are more properties even if the requested number of
capabilities has been returned.

The TPM is not required to return more than one value at a time. It is not required to provide the same

number of values in response to subsequent requests.

EXAMPLE 2 A TPM may return 4 properties in response to a TPM2_GetCapability(capability =
TPM_CAP_TPM_PROPERTY, property = TPM_PT_MANUFACTURER, propertyCount = 8) and for a
latter request with the same parameters, the TPM may return as few as one and as many as 8
values.

When the TPM is in Failure mode, a TPM is required to allow use of this command for access of the

following capabilities:

Part 3: Commands Trusted Platform Module Library

Page 406 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• TPM_PT_MANUFACTURER

• TPM_PT_VENDOR_STRING_1

• TPM_PT_VENDOR_STRING_2 (NOTE 4)

• TPM_PT_VENDOR_STRING_3 (NOTE 4)

• TPM_PT_VENDOR_STRING_4 (NOTE 4)

• TPM_PT_VENDOR_TPM_TYPE

• TPM_PT_FIRMWARE_VERSION_1

• TPM_PT_FIRMWARE_VERSION_2

NOTE 4 If the vendor string does not require one of these values, the property type does not need to exist.

A vendor may optionally allow the TPM to return other values.

If in Failure mode and a capability is requested that is not available in Failure mode, the TPM shall return

no value.

EXAMPLE 3 Assume the TPM is in Failure mode and the TPM only supports reporting of the minimum required
set of properties (the limited subset of TPML_TAGGED_TPM_PROPERTY values). If a
TPM2_GetCapability is received requesting a capability that has a property type value greater than
TPM_PT_FIRMWARE_VERSION_2, the TPM may return a zero length list with the moreData
parameter set to NO or return the property TPM_PT_FIRMWARE_VERSION_2. If the property type
is less than TPM_PT_MANUFACTURER, the TPM will return properties beginning with
TPM_PT_MANUFACTURER.

In Failure mode, tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

The capability categories and the types of the return values are:

capability property Return Type

TPM_CAP_ALGS TPM_ALG_ID(1) TPML_ALG_PROPERTY

TPM_CAP_HANDLES TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS TPM_CC TPML_CC

TPM_CAP_PCRS Reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

TPM_CAP_ECC_CURVES TPM_ECC_CURVE(1) TPML_ECC_CURVE

TPM_CAP_AUTH_POLICIES (3) TPM_HANDLE(2) TPML_TAGGED_POLICY

TPM_CAP_ACT(4) TPM_HANDLE(2) TPML_ACT_DATA

TPM_CAP_VENDOR_PROPERTY manufacturer specific manufacturer-specific values

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

(2) The TPM will return TPM_RC_VALUE if the handle does not reference the range for permanent handles.

(3) TPM_CAP_AUTH_POLICIES was added in revision 01.32.

(4) TPM_CAP_ACT was added in revision 01.56.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 407

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• TPM_CAP_ALGS – Returns a list of TPMS_ALG_PROPERTIES. Each entry is an algorithm ID and a
set of properties of the algorithm.

• TPM_CAP_HANDLES – Returns a list of all of the handles within the handle range of the property
parameter. The range of the returned handles is determined by the handle type (the most-significant
octet (MSO) of the property). Any of the defined handle types is allowed

EXAMPLE 4 If the MSO of property is TPM_HT_NV_INDEX, then the TPM will return a list of NV Index
values.

EXAMPLE 5 If the MSO of property is TPM_HT_PCR, then the TPM will return a list of PCR.

• For this capability, use of TPM_HT_LOADED_SESSION and TPM_HT_SAVED_SESSION is
allowed. Requesting handles with a handle type of TPM_HT_LOADED_SESSION will return handles
for loaded sessions. The returned handle values will have a handle type of either
TPM_HT_HMAC_SESSION or TPM_HT_POLICY_SESSION. If saved sessions are requested, all
returned values will have the TPM_HT_HMAC_SESSION handle type because the TPM does not
track the session type of saved sessions.

NOTE 5 TPM_HT_LOADED_SESSION and TPM_HT_HMAC_SESSION have the same value, as do
TPM_HT_SAVED_SESSION and TPM_HT_POLICY_SESSION. It is not possible to request that
the TPM return a list of loaded HMAC sessions without including the policy sessions.

• TPM_CAP_COMMANDS – Returns a list of the command attributes for all of the commands
implemented in the TPM, starting with the TPM_CC indicated by the property parameter. If vendor
specific commands are implemented, the vendor-specific command attribute with the lowest
commandIndex, is returned after the non-vendor-specific (base) command.

NOTE 6 The type of the property parameter is a TPM_CC while the type of the returned list is
TPML_CCA.

• TPM_CAP_PP_COMMANDS – Returns a list of all of the commands currently requiring Physical
Presence for confirmation of platform authorization. The list will start with the TPM_CC indicated by
property.

• TPM_CAP_AUDIT_COMMANDS – Returns a list of all of the commands currently set for command
audit.

• TPM_CAP_PCRS – Returns the current allocation of PCR in a TPML_PCR_SELECTION. The
property parameter shall be zero. The TPM will always respond to this command with the full PCR
allocation and moreData will be NO.

The TPML_PCR_SELECTION must include a TPMS_PCR_SELECTION for each PCR bank in which
there is at least one allocated PCR. The TPML_PCR_SELECTION may return a
TPMS_PCR_SELECTION for each implemented PCR bank. The TPML_PCR_SELECTION may
return a TPMS_PCR_SELECTION for each implemented hash algorithm.

• TPM_CAP_TPM_PROPERTIES – Returns a list of tagged properties. The tag is a TPM_PT and the
property is a 32-bit value. The properties are returned in groups. Each property group is on a 256-
value boundary (that is, the boundary occurs when the TPM_PT is evenly divisible by 256). The TPM
will only return values in the same group as the property parameter in the command.

• TPM_CAP_PCR_PROPERTIES – Returns a list of tagged PCR properties. The tag is a
TPM_PT_PCR and the property is a TPMS_PCR_SELECT.

The input command property is a TPM_PT_PCR (see TPM 2.0 Part 2 for PCR properties to be

requested) that specifies the first property to be returned. If propertyCount is greater than 1, the

list of properties begins with that property and proceeds in TPM_PT_PCR sequence.

Each item in the list is a TPMS_PCR_SELECT structure that contains a bitmap of all PCR.

NOTE 7 A PCR index in all banks (all hash algorithms) has the same properties, so the hash algorithm is
not specified here.

Part 3: Commands Trusted Platform Module Library

Page 408 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• TPM_CAP_TPM_ECC_CURVES – Returns a list of ECC curve identifiers currently available for use
in the TPM.

• TPM_CAP_AUTH_POLICIES - Returns a list of tagged policies reporting the authorization policies for
the permanent handles.

• TPM_CAP_ACT – Returns a list of TPMS_ACT_DATA, each of which contains the handle for the
ACT, the remaining time before it expires, and the ACT attributes.

The moreData parameter will have a value of YES if there are more values of the requested type that

were not returned.

If no next capability exists, the TPM will return a zero-length list and moreData will have a value of NO.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 409

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 208 — TPM2_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCapability

TPM_CAP capability group selection; determines the format of the response

UINT32 property further definition of information

UINT32 propertyCount number of properties of the indicated type to return

Table 209 — TPM2_GetCapability Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO moreData flag to indicate if there are more values of this type

TPMS_CAPABILITY_DATA capabilityData the capability data

Part 3: Commands Trusted Platform Module Library

Page 410 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "GetCapability_fp.h"

3 #if CC_GetCapability // Conditional expansion of this file

Error Returns Meaning

TPM_RC_HANDLE value of property is in an unsupported handle range for the
TPM_CAP_HANDLES capability value

TPM_RC_VALUE invalid capability; or property is not 0 for the TPM_CAP_PCRS
capability value

4 TPM_RC

5 TPM2_GetCapability(

6 GetCapability_In *in, // IN: input parameter list

7 GetCapability_Out *out // OUT: output parameter list

8)

9 {

10 TPMU_CAPABILITIES *data = &out->capabilityData.data;

11 // Command Output

12

13 // Set output capability type the same as input type

14 out->capabilityData.capability = in->capability;

15

16 switch(in->capability)

17 {

18 case TPM_CAP_ALGS:

19 out->moreData = AlgorithmCapGetImplemented((TPM_ALG_ID)in->property,

20 in->propertyCount,

21 &data->algorithms);

22 break;

23 case TPM_CAP_HANDLES:

24 switch(HandleGetType((TPM_HANDLE)in->property))

25 {

26 case TPM_HT_TRANSIENT:

27 // Get list of handles of loaded transient objects

28 out->moreData = ObjectCapGetLoaded((TPM_HANDLE)in->property,

29 in->propertyCount,

30 &data->handles);

31 break;

32 case TPM_HT_PERSISTENT:

33 // Get list of handles of persistent objects

34 out->moreData = NvCapGetPersistent((TPM_HANDLE)in->property,

35 in->propertyCount,

36 &data->handles);

37 break;

38 case TPM_HT_NV_INDEX:

39 // Get list of defined NV index

40 out->moreData = NvCapGetIndex((TPM_HANDLE)in->property,

41 in->propertyCount,

42 &data->handles);

43 break;

44 case TPM_HT_LOADED_SESSION:

45 // Get list of handles of loaded sessions

46 out->moreData = SessionCapGetLoaded((TPM_HANDLE)in->property,

47 in->propertyCount,

48 &data->handles);

49 break;

50 #ifdef TPM_HT_SAVED_SESSION

51 case TPM_HT_SAVED_SESSION:

52 #else

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 411

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

53 case TPM_HT_ACTIVE_SESSION:

54 #endif

55 // Get list of handles of

56 out->moreData = SessionCapGetSaved((TPM_HANDLE)in->property,

57 in->propertyCount,

58 &data->handles);

59 break;

60 case TPM_HT_PCR:

61 // Get list of handles of PCR

62 out->moreData = PCRCapGetHandles((TPM_HANDLE)in->property,

63 in->propertyCount,

64 &data->handles);

65 break;

66 case TPM_HT_PERMANENT:

67 // Get list of permanent handles

68 out->moreData = PermanentCapGetHandles((TPM_HANDLE)in->property,

69 in->propertyCount,

70 &data->handles);

71 break;

72 default:

73 // Unsupported input handle type

74 return TPM_RCS_HANDLE + RC_GetCapability_property;

75 break;

76 }

77 break;

78 case TPM_CAP_COMMANDS:

79 out->moreData = CommandCapGetCCList((TPM_CC)in->property,

80 in->propertyCount,

81 &data->command);

82 break;

83 case TPM_CAP_PP_COMMANDS:

84 out->moreData = PhysicalPresenceCapGetCCList((TPM_CC)in->property,

85 in->propertyCount,

86 &data->ppCommands);

87 break;

88 case TPM_CAP_AUDIT_COMMANDS:

89 out->moreData = CommandAuditCapGetCCList((TPM_CC)in->property,

90 in->propertyCount,

91 &data->auditCommands);

92 break;

93 case TPM_CAP_PCRS:

94 // Input property must be 0

95 if(in->property != 0)

96 return TPM_RCS_VALUE + RC_GetCapability_property;

97 out->moreData = PCRCapGetAllocation(in->propertyCount,

98 &data->assignedPCR);

99 break;

100 case TPM_CAP_PCR_PROPERTIES:

101 out->moreData = PCRCapGetProperties((TPM_PT_PCR)in->property,

102 in->propertyCount,

103 &data->pcrProperties);

104 break;

105 case TPM_CAP_TPM_PROPERTIES:

106 out->moreData = TPMCapGetProperties((TPM_PT)in->property,

107 in->propertyCount,

108 &data->tpmProperties);

109 break;

110 #if ALG_ECC

111 case TPM_CAP_ECC_CURVES:

112 out->moreData = CryptCapGetECCCurve((TPM_ECC_CURVE)in->property,

113 in->propertyCount,

114 &data->eccCurves);

115 break;

116 #endif // ALG_ECC

117 case TPM_CAP_AUTH_POLICIES:

118 if(HandleGetType((TPM_HANDLE)in->property) != TPM_HT_PERMANENT)

Part 3: Commands Trusted Platform Module Library

Page 412 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

119 return TPM_RCS_VALUE + RC_GetCapability_property;

120 out->moreData = PermanentHandleGetPolicy((TPM_HANDLE)in->property,

121 in->propertyCount,

122 &data->authPolicies);

123 break;

124 case TPM_CAP_ACT:

125 if(((TPM_RH)in->property < TPM_RH_ACT_0)

126 || ((TPM_RH)in->property > TPM_RH_ACT_F))

127 return TPM_RCS_VALUE + RC_GetCapability_property;

128 out->moreData = ActGetCapabilityData((TPM_HANDLE)in->property,

129 in->propertyCount,

130 &data->actData);

131 break;

132 case TPM_CAP_VENDOR_PROPERTY:

133 // vendor property is not implemented

134 default:

135 // Unsupported TPM_CAP value

136 return TPM_RCS_VALUE + RC_GetCapability_capability;

137 break;

138 }

139

140 return TPM_RC_SUCCESS;

141 }

142 #endif // CC_GetCapability

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 413

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

30.3 TPM2_TestParms

 General Description

This command is used to check to see if specific combinations of algorithm parameters are supported.

The TPM will unmarshal the provided TPMT_PUBLIC_PARMS. If the parameters unmarshal correctly,

then the TPM will return TPM_RC_SUCCESS, indicating that the parameters are valid for the TPM. The

TPM will return the appropriate unmarshaling error if a parameter is not valid.

Part 3: Commands Trusted Platform Module Library

Page 414 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 210 — TPM2_TestParms Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_TestParms

TPMT_PUBLIC_PARMS parameters algorithm parameters to be validated

Table 211 — TPM2_TestParms Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode TPM_RC

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 415

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "TestParms_fp.h"

3 #if CC_TestParms // Conditional expansion of this file

4 TPM_RC

5 TPM2_TestParms(

6 TestParms_In *in // IN: input parameter list

7)

8 {

9 // Input parameter is not reference in command action

10 NOT_REFERENCED(in);

11

12 // The parameters are tested at unmarshal process. We do nothing in command

13 // action

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_TestParms

Part 3: Commands Trusted Platform Module Library

Page 416 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31 Non-volatile Storage

31.1 Introduction

The NV commands are used to create, update, read, and delete allocations of space in NV memory.

Before an Index may be used, it must be defined (TPM2_NV_DefineSpace()).

An Index may be modified if the proper write authorization is provided or read if the proper read

authorization is provided. Different controls are available for reading and writing.

An Index may have an Index-specific authValue and authPolicy. The authValue may be used to authorize

reading if TPMA_NV_AUTHREAD is SET and writing if TPMA_NV_AUTHWRITE is SET. The authPolicy

may be used to authorize reading if TPMA_NV_POLICYREAD is SET and writing if

TPMA_NV_POLICYWRITE is SET.

For commands that have both authHandle and nvIndex parameters, authHandle can be an NV Index,

Platform Authorization, or Owner Authorization. If authHandle is an NV Index, it must be the same as

nvIndex (TPM_RC_NV_AUTHORIZATION).

TPMA_NV_PPREAD and TPMA_NV_PPWRITE indicate if reading or writing of the NV Index may be

authorized by platformAuth or platformPolicy.

TPMA_NV_OWNERREAD and TPMA_NV_OWNERWRITE indicate if reading or writing of the NV Index

may be authorized by ownerAuth or ownerPolicy.

If an operation on an NV index requires authorization, and the authHandle parameter is the handle of an

NV Index, then the nvIndex parameter must have the same value or the TPM will return

TPM_RC_NV_AUTHORIZATION.

NOTE 1 This check ensures that the authorization that was provided is associated with the NV Index being
authorized.

For creating an Index, Owner Authorization may not be used if shEnable is CLEAR and Platform

Authorization may not be used if phEnableNV is CLEAR.

If an Index was defined using Platform Authorization, then that Index is not accessible when phEnableNV

is CLEAR. If an Index was defined using Owner Authorization, then that Index is not accessible when

shEnable is CLEAR.

For read access control, any combination of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD,

TPMA_NV_AUTHREAD, or TPMA_NV_POLICYREAD is allowed as long as at least one is SET.

For write access control, any combination of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE,

TPMA_NV_AUTHWRITE, or TPMA_NV_POLICYWRITE is allowed as long as at least one is SET.

If an Index has been defined and not written, then any operation on the NV Index that requires read

authorization will fail (TPM_RC_NV_INITIALIZED). This check may be made before or after other

authorization checks but shall be performed before checking the NV Index authValue. An authorization

failure due to the NV Index not having been written shall not be logged by the dictionary attack logic.

If TPMA_NV_CLEAR_STCLEAR is SET, then the TPMA_NV_WRITTEN will be CLEAR on each

TPM2_Startup(TPM_SU_CLEAR). TPMA_NV_CLEAR_STCLEAR shall not be SET if the nvIndexType is

TPM_NT_COUNTER.

The code in the “Detailed Actions” clause of each command is written to interface with an implementation-

dependent library that allows access to NV memory. The actions assume no specific layout of the

structure of the NV data.

Only one NV Index may be directly referenced in a command.

NOTE 2 This means that, if authHandle references an NV Index, then nvIndex will have the same value.
However, this does not limit the number of changes that may occur as side effects. For example, any
number of NV Indexes might be relocated as a result of deleting or adding a NV Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 417

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.2 NV Counters

When an Index has the TPM_NT_COUNTER attribute, it behaves as a monotonic counter and may only

be updated using TPM2_NV_Increment().

When an NV counter is created, the TPM shall initialize the 8-octet counter value with a number that is

greater than any count value for any NV counter on the TPM since the time of TPM manufacture.

An NV counter may be defined with the TPMA_NV_ORDERLY attribute to indicate that the NV Index is

expected to be modified at a high frequency and that the data is only required to persist when the TPM

goes through an orderly shutdown process. The TPM may update the counter value in RAM and

occasionally update the non-volatile version of the counter. An orderly shutdown is one occasion to

update the non-volatile count. If the difference between the volatile and non-volatile version of the counter

becomes as large as MAX_ORDERLY_COUNT, this shall be another occasion for updating the non-

volatile count.

Before an NV counter can be used, the TPM shall validate that the count is not less than a previously

reported value. If the TPMA_NV_ORDERLY attribute is not SET, or if the TPM experienced an orderly

shutdown, then the count is assumed to be correct. If the TPMA_NV_ORDERLY attribute is SET, and the

TPM shutdown was not orderly, then the TPM shall OR MAX_ORDERLY_COUNT to the contents of the

non-volatile counter and set that as the current count.

NOTE 1 Because the TPM would have updated the NV Index if the difference between the count values was
equal to MAX_ORDERLY_COUNT + 1, the highest value that could have been in the NV Index is
MAX_ORDERLY_COUNT so it is safe to restore that value.

NOTE 2 The TPM may implement the RAM portion of the counter such that the effective value of the NV
counter is the sum of both the volatile and non-volatile parts. If so, then the TPM may initialize the
RAM version of the counter to MAX_ORDERLY_COUNT and no update of NV is necessary.

NOTE 3 When a new NV counter is created, the TPM may search all the counters to determine which has the
highest value. In this search, the TPM would use the sum of the non-volatile and RAM portions of
the counter. The RAM portion of the counter shall be properly initialized to reflect shutdown process
(orderly or not) of the TPM.

Part 3: Commands Trusted Platform Module Library

Page 418 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.3 TPM2_NV_DefineSpace

 General Description

This command defines the attributes of an NV Index and causes the TPM to reserve space to hold the

data associated with the NV Index. If a definition already exists at the NV Index, the TPM will return

TPM_RC_NV_DEFINED.

The TPM will return TPM_RC_ATTRIBUTES if nvIndexType has a reserved value in publicInfo.

NOTE 1 It is not required that any of these three attributes be set.

The TPM shall return TPM_RC_ATTRIBUTES if TPMA_NV_WRITTEN, TPMA_NV_READLOCKED, or

TPMA_NV_WRITELOCKED is SET.

If nvIndexType is TPM_NT_COUNTER, TPM_NT_BITS, TPM_NT_PIN_FAIL, or TPM_NT_PIN_PASS,

then publicInfo→dataSize shall be set to eight (8) or the TPM shall return TPM_RC_SIZE.

If nvIndexType is TPM_NT_EXTEND, then publicInfo→dataSize shall match the digest size of the

publicInfo.nameAlg or the TPM shall return TPM_RC_SIZE.

NOTE 2 TPM_RC_ATTRIBUTES could be returned by a TPM that is based on the reference code of older
versions of the specification but the correct response for this error is TPM_RC_SIZE.

If the NV Index is an ordinary Index and publicInfo→dataSize is larger than supported by the TPM

implementation then the TPM shall return TPM_RC_SIZE.

NOTE 3 The limit for the data size may vary according to the type of the index. For example, if the index has
TPMA_NV_ORDERLY SET, then the maximum size of an ordinary NV Index may be less than the
size of an ordinary NV Index that has TPMA_NV_ORDERLY CLEAR.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or

TPMA_NV_POLICYREAD shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, or

TPMA_NV_POLICYWRITE shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_CLEAR_STCLEAR is SET, then nvIndexType shall not be TPM_NT_COUNTER or the TPM

shall return TPM_RC_ATTRIBUTES.

If platformAuth/platformPolicy is used for authorization, then TPMA_NV_PLATFORMCREATE shall be

SET in publicInfo. If ownerAuth/ownerPolicy is used for authorization, TPMA_NV_PLATFORMCREATE

shall be CLEAR in publicInfo. If TPMA_NV_PLATFORMCREATE is not set correctly for the authorization,

the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_POLICY_DELETE is SET, then the authorization shall be with Platform Authorization or the

TPM shall return TPM_RC_ATTRIBUTES.

If nvIndexType is TPM_NT_PIN_FAIL, then TPMA_NV_NO_DA shall be SET. Otherwise, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE 4 The intent of a PIN Fail index is that its DA protection is on a per-index basis, not based on the
global DA protection. This avoids conflict over which type of dictionary attack protection is in use.

If nvIndexType is TPM_NT_PIN_FAIL or TPM_NT_PIN_PASS, then at least one of

TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, or TPMA_NV_POLICYWRITE shall be SET or the

TPM shall return TPM_RC_ATTRIBUTES. TPMA_NV_AUTHWRITE shall be CLEAR. Otherwise, the

TPM shall return TPM_RC_ATTRIBUTES.

NOTE 5 If TPMA_NV_AUTHWRITE was SET for a PIN Pass index, a user knowing the authorization value
could decrease pinCount or increase pinLimit, defeating the purpose of a PIN Pass index. The
requirement is also enforced for a PIN Fail index for consistency.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 419

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If the implementation does not support TPM2_NV_Increment(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_COUNTER.

If the implementation does not support TPM2_NV_SetBits(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_BITS.

If the implementation does not support TPM2_NV_Extend(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_EXTEND.

If the implementation does not support TPM2_NV_UndefineSpaceSpecial(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_POLICY_DELETE is SET.

After the successful completion of this command, the NV Index exists but TPMA_NV_WRITTEN will be

CLEAR. Any access of the NV data will return TPM_RC_NV_UNINITIALIZED.

In some implementations, an NV Index with the TPM_NT_COUNTER attribute may require special TPM

resources that provide higher endurance than regular NV. For those implementations, if this command

fails because of lack of resources, the TPM will return TPM_RC_NV_SPACE.

The value of auth is saved in the created structure. The size of auth is limited to be no larger than the size

of the digest produced by the NV Index's nameAlg (TPM_RC_SIZE).

Part 3: Commands Trusted Platform Module Library

Page 420 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 212 — TPM2_NV_DefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_DefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth the authorization value

TPM2B_NV_PUBLIC publicInfo the public parameters of the NV area

Table 213 — TPM2_NV_DefineSpace Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 421

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_DefineSpace_fp.h"

3 #if CC_NV_DefineSpace // Conditional expansion of this file

Error Returns Meaning

TPM_RC_HIERARCHY for authorizations using TPM_RH_PLATFORM phEnable_NV is clear
preventing access to NV data in the platform hierarchy.

TPM_RC_ATTRIBUTES attributes of the index are not consistent

TPM_RC_NV_DEFINED index already exists

TPM_RC_NV_SPACE insufficient space for the index

TPM_RC_SIZE 'auth->size' or 'publicInfo->authPolicy.size' is larger than the digest
size of 'publicInfo->nameAlg'; or 'publicInfo->dataSize' is not
consistent with 'publicInfo->attributes' (this includes the case when
the index is larger than a MAX_NV_BUFFER_SIZE but the
TPMA_NV_WRITEALL attribute is SET)

4 TPM_RC

5 TPM2_NV_DefineSpace(

6 NV_DefineSpace_In *in // IN: input parameter list

7)

8 {

9 TPMA_NV attributes = in->publicInfo.nvPublic.attributes;

10 UINT16 nameSize;

11

12 nameSize = CryptHashGetDigestSize(in->publicInfo.nvPublic.nameAlg);

13

14 // Input Validation

15

16 // Checks not specific to type

17

18 // If the UndefineSpaceSpecial command is not implemented, then can't have

19 // an index that can only be deleted with policy

20 #if CC_NV_UndefineSpaceSpecial == NO

21 if(IS_ATTRIBUTE(attributes, TPMA_NV, POLICY_DELETE))

22 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

23 #endif

24

25 // check that the authPolicy consistent with hash algorithm

26

27 if(in->publicInfo.nvPublic.authPolicy.t.size != 0

28 && in->publicInfo.nvPublic.authPolicy.t.size != nameSize)

29 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

30

31 // make sure that the authValue is not too large

32 if(MemoryRemoveTrailingZeros(&in->auth)

33 > CryptHashGetDigestSize(in->publicInfo.nvPublic.nameAlg))

34 return TPM_RCS_SIZE + RC_NV_DefineSpace_auth;

35

36 // If an index is being created by the owner and shEnable is

37 // clear, then we would not reach this point because ownerAuth

38 // can't be given when shEnable is CLEAR. However, if phEnable

39 // is SET but phEnableNV is CLEAR, we have to check here

40 if(in->authHandle == TPM_RH_PLATFORM && gc.phEnableNV == CLEAR)

41 return TPM_RCS_HIERARCHY + RC_NV_DefineSpace_authHandle;

42

43 // Attribute checks

44 // Eliminate the unsupported types

Part 3: Commands Trusted Platform Module Library

Page 422 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

45 switch(GET_TPM_NT(attributes))

46 {

47 #if CC_NV_Increment == YES

48 case TPM_NT_COUNTER:

49 #endif

50 #if CC_NV_SetBits == YES

51 case TPM_NT_BITS:

52 #endif

53 #if CC_NV_Extend == YES

54 case TPM_NT_EXTEND:

55 #endif

56 #if CC_PolicySecret == YES && defined TPM_NT_PIN_PASS

57 case TPM_NT_PIN_PASS:

58 case TPM_NT_PIN_FAIL:

59 #endif

60 case TPM_NT_ORDINARY:

61 break;

62 default:

63 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

64 break;

65 }

66 // Check that the sizes are OK based on the type

67 switch(GET_TPM_NT(attributes))

68 {

69 case TPM_NT_ORDINARY:

70 // Can't exceed the allowed size for the implementation

71 if(in->publicInfo.nvPublic.dataSize > MAX_NV_INDEX_SIZE)

72 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

73 break;

74 case TPM_NT_EXTEND:

75 if(in->publicInfo.nvPublic.dataSize != nameSize)

76 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

77 break;

78 default:

79 // Everything else needs a size of 8

80 if(in->publicInfo.nvPublic.dataSize != 8)

81 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

82 break;

83 }

84 // Handle other specifics

85 switch(GET_TPM_NT(attributes))

86 {

87 case TPM_NT_COUNTER:

88 // Counter can't have TPMA_NV_CLEAR_STCLEAR SET (don't clear counters)

89 if(IS_ATTRIBUTE(attributes, TPMA_NV, CLEAR_STCLEAR))

90 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

91 break;

92 #ifdef TPM_NT_PIN_FAIL

93 case TPM_NT_PIN_FAIL:

94 // NV_NO_DA must be SET and AUTHWRITE must be CLEAR

95 // NOTE: As with a PIN_PASS index, the authValue of the index is not

96 // available until the index is written. If AUTHWRITE is the only way to

97 // write then index, it could never be written. Rather than go through

98 // all of the other possible ways to write the Index, it is simply

99 // prohibited to write the index with the authValue. Other checks

100 // below will insure that there seems to be a way to write the index

101 // (i.e., with platform authorization , owner authorization,

102 // or with policyAuth.)

103 // It is not allowed to create a PIN Index that can't be modified.

104 if(!IS_ATTRIBUTE(attributes, TPMA_NV, NO_DA))

105 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

106 #endif

107 #ifdef TPM_NT_PIN_PASS

108 case TPM_NT_PIN_PASS:

109 // AUTHWRITE must be CLEAR (see note above to TPM_NT_PIN_FAIL)

110 if(IS_ATTRIBUTE(attributes, TPMA_NV, AUTHWRITE)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 423

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

111 || IS_ATTRIBUTE(attributes, TPMA_NV, GLOBALLOCK)

112 || IS_ATTRIBUTE(attributes, TPMA_NV, WRITEDEFINE))

113 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

114 #endif // this comes before break because PIN_FAIL falls through

115 break;

116 default:

117 break;

118 }

119

120 // Locks may not be SET and written cannot be SET

121 if(IS_ATTRIBUTE(attributes, TPMA_NV, WRITTEN)

122 || IS_ATTRIBUTE(attributes, TPMA_NV, WRITELOCKED)

123 || IS_ATTRIBUTE(attributes, TPMA_NV, READLOCKED))

124 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

125

126 // There must be a way to read the index.

127 if(!IS_ATTRIBUTE(attributes, TPMA_NV, OWNERREAD)

128 && !IS_ATTRIBUTE(attributes, TPMA_NV, PPREAD)

129 && !IS_ATTRIBUTE(attributes, TPMA_NV, AUTHREAD)

130 && !IS_ATTRIBUTE(attributes, TPMA_NV, POLICYREAD))

131 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

132

133 // There must be a way to write the index

134 if(!IS_ATTRIBUTE(attributes, TPMA_NV, OWNERWRITE)

135 && !IS_ATTRIBUTE(attributes, TPMA_NV, PPWRITE)

136 && !IS_ATTRIBUTE(attributes, TPMA_NV, AUTHWRITE)

137 && !IS_ATTRIBUTE(attributes, TPMA_NV, POLICYWRITE))

138 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

139

140 // An index with TPMA_NV_CLEAR_STCLEAR can't have TPMA_NV_WRITEDEFINE SET

141 if(IS_ATTRIBUTE(attributes, TPMA_NV, CLEAR_STCLEAR)

142 && IS_ATTRIBUTE(attributes, TPMA_NV, WRITEDEFINE))

143 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

144

145 // Make sure that the creator of the index can delete the index

146 if((IS_ATTRIBUTE(attributes, TPMA_NV, PLATFORMCREATE)

147 && in->authHandle == TPM_RH_OWNER)

148 || (!IS_ATTRIBUTE(attributes, TPMA_NV, PLATFORMCREATE)

149 && in->authHandle == TPM_RH_PLATFORM))

150 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_authHandle;

151

152 // If TPMA_NV_POLICY_DELETE is SET, then the index must be defined by

153 // the platform

154 if(IS_ATTRIBUTE(attributes, TPMA_NV, POLICY_DELETE)

155 && TPM_RH_PLATFORM != in->authHandle)

156 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

157

158 // Make sure that the TPMA_NV_WRITEALL is not set if the index size is larger

159 // than the allowed NV buffer size.

160 if(in->publicInfo.nvPublic.dataSize > MAX_NV_BUFFER_SIZE

161 && IS_ATTRIBUTE(attributes, TPMA_NV, WRITEALL))

162 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

163

164 // And finally, see if the index is already defined.

165 if(NvIndexIsDefined(in->publicInfo.nvPublic.nvIndex))

166 return TPM_RC_NV_DEFINED;

167

168 // Internal Data Update

169 // define the space. A TPM_RC_NV_SPACE error may be returned at this point

170 return NvDefineIndex(&in->publicInfo.nvPublic, &in->auth);

171 }

172 #endif // CC_NV_DefineSpace

Part 3: Commands Trusted Platform Module Library

Page 424 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.4 TPM2_NV_UndefineSpace

 General Description

This command removes an Index from the TPM.

If nvIndex is not defined, the TPM shall return TPM_RC_HANDLE.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE attribute SET, the TPM shall

return TPM_RC_NV_AUTHORIZATION unless Platform Authorization is provided.

If nvIndex references an Index that has its TPMA_NV_POLICY_DELETE attribute SET, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with Platform Authorization
as long as shEnable is SET. If shEnable is CLEAR, indexes created using Owner Authorization are
not accessible even for deletion by the platform.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 425

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 214 — TPM2_NV_UndefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to remove from NV space

Auth Index: None

Table 215 — TPM2_NV_UndefineSpace Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 426 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_UndefineSpace_fp.h"

3 #if CC_NV_UndefineSpace // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_POLICY_DELETE is SET in the Index referenced by
nvIndex so this command may not be used to delete this Index (see
TPM2_NV_UndefineSpaceSpecial())

TPM_RC_NV_AUTHORIZATION attempt to use ownerAuth to delete an index created by the platform

4 TPM_RC

5 TPM2_NV_UndefineSpace(

6 NV_UndefineSpace_In *in // IN: input parameter list

7)

8 {

9 NV_REF locator;

10 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

11

12 // Input Validation

13 // This command can't be used to delete an index with TPMA_NV_POLICY_DELETE SET

14 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, POLICY_DELETE))

15 return TPM_RCS_ATTRIBUTES + RC_NV_UndefineSpace_nvIndex;

16

17 // The owner may only delete an index that was defined with ownerAuth. The

18 // platform may delete an index that was created with either authorization.

19 if(in->authHandle == TPM_RH_OWNER

20 && IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, PLATFORMCREATE))

21 return TPM_RC_NV_AUTHORIZATION;

22

23 // Internal Data Update

24

25 // Call implementation dependent internal routine to delete NV index

26 return NvDeleteIndex(nvIndex, locator);

27 }

28 #endif // CC_NV_UndefineSpace

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 427

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.5 TPM2_NV_UndefineSpaceSpecial

 General Description

This command allows removal of a platform-created NV Index that has TPMA_NV_POLICY_DELETE

SET.

This command requires that the policy of the NV Index be satisfied before the NV Index may be deleted.

Because administrative role is required, the policy must contain a command that sets the policy command

code to TPM_CC_NV_UndefineSpaceSpecial. This indicates that the policy that is being used is a policy

that is for this command, and not a policy that would approve another use. That is, authority to use an

entity does not grant authority to undefine the entity.

Since the index is deleted, the Empty Buffer is used as the authValue when generating the response

HMAC.

If nvIndex is not defined, the TPM shall return TPM_RC_HANDLE.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE or

TPMA_NV_POLICY_DELETE attribute CLEAR, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with
TPM2_UndefineSpace()as long as shEnable is SET. If shEnable is CLEAR, indexes created using
Owner Authorization are not accessible even for deletion by the platform.

Part 3: Commands Trusted Platform Module Library

Page 428 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 216 — TPM2_NV_UndefineSpaceSpecial Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpaceSpecial {NV}

TPMI_RH_NV_INDEX @nvIndex

Index to be deleted

Auth Index: 1

Auth Role: ADMIN

TPMI_RH_PLATFORM @platform

TPM_RH_PLATFORM + {PP}

Auth Index: 2

Auth Role: USER

Table 217 — TPM2_NV_UndefineSpaceSpecial Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 429

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_UndefineSpaceSpecial_fp.h"

3 #include "SessionProcess_fp.h"

4 #if CC_NV_UndefineSpaceSpecial // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_POLICY_DELETE is not SET in the Index referenced by
nvIndex

5 TPM_RC

6 TPM2_NV_UndefineSpaceSpecial(

7 NV_UndefineSpaceSpecial_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 NV_REF locator;

12 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

13 // Input Validation

14 // This operation only applies when the TPMA_NV_POLICY_DELETE attribute is SET

15 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, POLICY_DELETE))

16 return TPM_RCS_ATTRIBUTES + RC_NV_UndefineSpaceSpecial_nvIndex;

17 // Internal Data Update

18 // Call implementation dependent internal routine to delete NV index

19 result = NvDeleteIndex(nvIndex, locator);

20

21 // If we just removed the index providing the authorization, make sure that the

22 // authorization session computation is modified so that it doesn't try to

23 // access the authValue of the just deleted index

24 if(result == TPM_RC_SUCCESS)

25 SessionRemoveAssociationToHandle(in->nvIndex);

26 return result;

27 }

28 #endif // CC_NV_UndefineSpaceSpecial

Part 3: Commands Trusted Platform Module Library

Page 430 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.6 TPM2_NV_ReadPublic

 General Description

This command is used to read the public area and Name of an NV Index. The public area of an Index is

not privacy-sensitive and no authorization is required to read this data.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 431

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 218 — TPM2_NV_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadPublic

TPMI_RH_NV_INDEX nvIndex
the NV Index

Auth Index: None

Table 219 — TPM2_NV_ReadPublic Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_NV_PUBLIC nvPublic the public area of the NV Index

TPM2B_NAME nvName the Name of the nvIndex

Part 3: Commands Trusted Platform Module Library

Page 432 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_ReadPublic_fp.h"

3 #if CC_NV_ReadPublic // Conditional expansion of this file

4 TPM_RC

5 TPM2_NV_ReadPublic(

6 NV_ReadPublic_In *in, // IN: input parameter list

7 NV_ReadPublic_Out *out // OUT: output parameter list

8)

9 {

10 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, NULL);

11

12 // Command Output

13

14 // Copy index public data to output

15 out->nvPublic.nvPublic = nvIndex->publicArea;

16

17 // Compute NV name

18 NvGetIndexName(nvIndex, &out->nvName);

19

20 return TPM_RC_SUCCESS;

21 }

22 #endif // CC_NV_ReadPublic

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 433

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.7 TPM2_NV_Write

 General Description

This command writes a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPWRITE;

TPMA_NV_OWNERWRITE; TPMA_NV_AUTHWRITE; and, if TPMA_NV_POLICY_WRITE is SET, the

authPolicy of the NV Index.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 1 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

If nvIndexType is TPM_NT_COUNTER, TPM_NT_BITS or TPM_NT_EXTEND, then the TPM shall return

TPM_RC_ATTRIBUTES.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

If the TPMA_NV_WRITEALL attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_RANGE if the size of the data parameter of the command is not the same as the data field

of the NV Index.

If all checks succeed, the TPM will merge the data.size octets of data.buffer value into the nvIndex→data

starting at nvIndex→data[offset]. If the NV memory is implemented with a technology that has endurance

limitations, the TPM shall check that the merged data is different from the current contents of the NV

Index and only perform a write to NV memory if they differ.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 2 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined or the NV Index is
cleared.

Part 3: Commands Trusted Platform Module Library

Page 434 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 220 — TPM2_NV_Write Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Write {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to write

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to write

UINT16 offset the octet offset into the NV Area

Table 221 — TPM2_NV_Write Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 435

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Write_fp.h"

3 #if CC_NV_Write // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES Index referenced by nvIndex has either TPMA_NV_BITS,
TPMA_NV_COUNTER, or TPMA_NV_EVENT attribute SET

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED Index referenced by nvIndex is write locked

TPM_RC_NV_RANGE if TPMA_NV_WRITEALL is SET then the write is not the size of the
Index referenced by nvIndex; otherwise, the write extends beyond the
limits of the Index

4 TPM_RC

5 TPM2_NV_Write(

6 NV_Write_In *in // IN: input parameter list

7)

8 {

9 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, NULL);

10 TPMA_NV attributes = nvIndex->publicArea.attributes;

11 TPM_RC result;

12

13 // Input Validation

14

15 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

16 // or TPM_RC_NV_LOCKED

17 result = NvWriteAccessChecks(in->authHandle,

18 in->nvIndex,

19 attributes);

20 if(result != TPM_RC_SUCCESS)

21 return result;

22

23 // Bits index, extend index or counter index may not be updated by

24 // TPM2_NV_Write

25 if(IsNvCounterIndex(attributes)

26 || IsNvBitsIndex(attributes)

27 || IsNvExtendIndex(attributes))

28 return TPM_RC_ATTRIBUTES;

29

30 // Make sure that the offset is not too large

31 if(in->offset > nvIndex->publicArea.dataSize)

32 return TPM_RCS_VALUE + RC_NV_Write_offset;

33

34 // Make sure that the selection is within the range of the Index

35 if(in->data.t.size > (nvIndex->publicArea.dataSize - in->offset))

36 return TPM_RC_NV_RANGE;

37

38 // If this index requires a full sized write, make sure that input range is

39 // full sized.

40 // Note: if the requested size is the same as the Index data size, then offset

41 // will have to be zero. Otherwise, the range check above would have failed.

42 if(IS_ATTRIBUTE(attributes, TPMA_NV, WRITEALL)

43 && in->data.t.size < nvIndex->publicArea.dataSize)

44 return TPM_RC_NV_RANGE;

45

46 // Internal Data Update

47

Part 3: Commands Trusted Platform Module Library

Page 436 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

48 // Perform the write. This called routine will SET the TPMA_NV_WRITTEN

49 // attribute if it has not already been SET. If NV isn't available, an error

50 // will be returned.

51 return NvWriteIndexData(nvIndex, in->offset, in->data.t.size,

52 in->data.t.buffer);

53 }

54 #endif // CC_NV_Write

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 437

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.8 TPM2_NV_Increment

 General Description

This command is used to increment the value in an NV Index that has the TPM_NT_COUNTER attribute.

The data value of the NV Index is incremented by one.

NOTE 1 The NV Index counter is an unsigned value.

If nvIndexType is not TPM_NT_COUNTER in the indicated NV Index, the TPM shall return

TPM_RC_ATTRIBUTES.

If TPMA_NV_WRITELOCKED is SET, the TPM shall return TPM_RC_NV_LOCKED.

If TPMA_NV_WRITTEN is CLEAR, it will be SET.

If TPMA_NV_ORDERLY is SET, and the difference between the volatile and non-volatile versions of this

field is greater than MAX_ORDERLY_COUNT, then the non-volatile version of the counter is updated.

NOTE 2 If a TPM implements TPMA_NV_ORDERLY and an Index is defined with TPMA_NV_ORDERLY and
TPM_NT_COUNTER both SET, then in the Event of a non-orderly shutdown, the non-volatile value
for the counter Index will be advanced by MAX_ORDERLY_COUNT at the next TPM2_Startup().

NOTE 3 An allowed implementation would keep a counter value in NV and a resettable counter in RAM. The
reported value of the NV Index would be the sum of the two values. When the RAM count increments
past the maximum allowed value (MAX_ORDERLY_COUNT), the non-volatile version of the count is
updated with the sum of the values and the RAM count is reset to zero.

Part 3: Commands Trusted Platform Module Library

Page 438 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 222 — TPM2_NV_Increment Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Increment {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to increment

Auth Index: None

Table 223 — TPM2_NV_Increment Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 439

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Increment_fp.h"

3 #if CC_NV_Increment // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES NV index is not a counter

TPM_RC_NV_AUTHORIZATION authorization failure

TPM_RC_NV_LOCKED Index is write locked

4 TPM_RC

5 TPM2_NV_Increment(

6 NV_Increment_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 UINT64 countValue;

13

14 // Input Validation

15

16 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

17 // or TPM_RC_NV_LOCKED

18 result = NvWriteAccessChecks(in->authHandle,

19 in->nvIndex,

20 nvIndex->publicArea.attributes);

21 if(result != TPM_RC_SUCCESS)

22 return result;

23

24 // Make sure that this is a counter

25 if(!IsNvCounterIndex(nvIndex->publicArea.attributes))

26 return TPM_RCS_ATTRIBUTES + RC_NV_Increment_nvIndex;

27

28 // Internal Data Update

29

30 // If counter index is not been written, initialize it

31 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

32 countValue = NvReadMaxCount();

33 else

34 // Read NV data in native format for TPM CPU.

35 countValue = NvGetUINT64Data(nvIndex, locator);

36

37 // Do the increment

38 countValue++;

39

40 // Write NV data back. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may

41 // be returned at this point. If necessary, this function will set the

42 // TPMA_NV_WRITTEN attribute

43 result = NvWriteUINT64Data(nvIndex, countValue);

44 if(result == TPM_RC_SUCCESS)

45 {

46 // If a counter just rolled over, then force the NV update.

47 // Note, if this is an orderly counter, then the write-back needs to be

48 // forced, for other counters, the write-back will happen anyway

49 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, ORDERLY)

50 && (countValue & MAX_ORDERLY_COUNT) == 0)

51 {

52 // Need to force an NV update of orderly data

Part 3: Commands Trusted Platform Module Library

Page 440 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

53 SET_NV_UPDATE(UT_ORDERLY);

54 }

55 }

56 return result;

57 }

58 #endif // CC_NV_Increment

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 441

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.9 TPM2_NV_Extend

 General Description

This command extends a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace.

If nvIndexType is not TPM_NT_EXTEND, then the TPM shall return TPM_RC_ATTRIBUTES.

Proper write authorizations are required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 1 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined, un less the
TPMA_NV_CLEAR_STCLEAR attribute is SET and a TPM Reset or TPM Restart occurs.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 2 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

The data.buffer parameter may be larger than the defined size of the NV Index.

The Index will be updated by:

 nvIndex→datanew ≔ HnameAkg(nvIndex→dataold || data.buffer) (41)

where

nvIndex→datanew the value of the data field in the NV Index after the command

returns

HnameAkg() the hash algorithm indicated in nvIndex→nameAlg

nvIndex→dataold the value of the data field in the NV Index before the command is

called

data.buffer the data buffer of the command parameter

NOTE 3 If TPMA_NV_WRITTEN is CLEAR, then nvIndex→dataold is a Zero Digest.

Part 3: Commands Trusted Platform Module Library

Page 442 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 224 — TPM2_NV_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Extend {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to extend

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to extend

Table 225 — TPM2_NV_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 443

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Extend_fp.h"

3 #if CC_NV_Extend // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES the TPMA_NV_EXTEND attribute is not SET in the Index referenced
by nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is locked for writing

4 TPM_RC

5 TPM2_NV_Extend(

6 NV_Extend_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12

13 TPM2B_DIGEST oldDigest;

14 TPM2B_DIGEST newDigest;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

20 // or TPM_RC_NV_LOCKED

21 result = NvWriteAccessChecks(in->authHandle,

22 in->nvIndex,

23 nvIndex->publicArea.attributes);

24 if(result != TPM_RC_SUCCESS)

25 return result;

26

27 // Make sure that this is an extend index

28 if(!IsNvExtendIndex(nvIndex->publicArea.attributes))

29 return TPM_RCS_ATTRIBUTES + RC_NV_Extend_nvIndex;

30

31 // Internal Data Update

32

33 // Perform the write.

34 oldDigest.t.size = CryptHashGetDigestSize(nvIndex->publicArea.nameAlg);

35 pAssert(oldDigest.t.size <= sizeof(oldDigest.t.buffer));

36 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

37 {

38 NvGetIndexData(nvIndex, locator, 0, oldDigest.t.size, oldDigest.t.buffer);

39 }

40 else

41 {

42 MemorySet(oldDigest.t.buffer, 0, oldDigest.t.size);

43 }

44 // Start hash

45 newDigest.t.size = CryptHashStart(&hashState, nvIndex->publicArea.nameAlg);

46

47 // Adding old digest

48 CryptDigestUpdate2B(&hashState, &oldDigest.b);

49

50 // Adding new data

Part 3: Commands Trusted Platform Module Library

Page 444 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

51 CryptDigestUpdate2B(&hashState, &in->data.b);

52

53 // Complete hash

54 CryptHashEnd2B(&hashState, &newDigest.b);

55

56 // Write extended hash back.

57 // Note, this routine will SET the TPMA_NV_WRITTEN attribute if necessary

58 return NvWriteIndexData(nvIndex, 0, newDigest.t.size, newDigest.t.buffer);

59 }

60 #endif // CC_NV_Extend

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 445

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.10 TPM2_NV_SetBits

 General Description

This command is used to SET bits in an NV Index that was created as a bit field. Any number of bits from

0 to 64 may be SET. The contents of bits are ORed with the current contents of the NV Index.

If TPMA_NV_WRITTEN is not SET, then, for the purposes of this command, the NV Index is considered

to contain all zero bits and data is ORed with that value.

If TPM_NT_BITS is not SET, then the TPM shall return TPM_RC_ATTRIBUTES.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE TPMA_NV_WRITTEN will be SET even if no bits were SET.

Part 3: Commands Trusted Platform Module Library

Page 446 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 226 — TPM2_NV_SetBits Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_SetBits {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
NV Index of the area in which the bit is to be set

Auth Index: None

UINT64 bits the data to OR with the current contents

Table 227 — TPM2_NV_SetBits Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 447

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_SetBits_fp.h"

3 #if CC_NV_SetBits // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES the TPMA_NV_BITS attribute is not SET in the Index referenced by
nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is locked for writing

4 TPM_RC

5 TPM2_NV_SetBits(

6 NV_SetBits_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 UINT64 oldValue;

13 UINT64 newValue;

14

15 // Input Validation

16

17 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

18 // or TPM_RC_NV_LOCKED

19 result = NvWriteAccessChecks(in->authHandle,

20 in->nvIndex,

21 nvIndex->publicArea.attributes);

22 if(result != TPM_RC_SUCCESS)

23 return result;

24

25 // Make sure that this is a bit field

26 if(!IsNvBitsIndex(nvIndex->publicArea.attributes))

27 return TPM_RCS_ATTRIBUTES + RC_NV_SetBits_nvIndex;

28

29 // If index is not been written, initialize it

30 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

31 oldValue = 0;

32 else

33 // Read index data

34 oldValue = NvGetUINT64Data(nvIndex, locator);

35

36 // Figure out what the new value is going to be

37 newValue = oldValue | in->bits;

38

39 // Internal Data Update

40 return NvWriteUINT64Data(nvIndex, newValue);

41 }

42 #endif // CC_NV_SetBits

Part 3: Commands Trusted Platform Module Library

Page 448 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.11 TPM2_NV_WriteLock

 General Description

If the TPMA_NV_WRITEDEFINE or TPMA_NV_WRITE_STCLEAR attributes of an NV location are SET,

then this command may be used to inhibit further writes of the NV Index.

Proper write authorization is required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

It is not an error if TPMA_NV_WRITELOCKED for the NV Index is already SET.

If neither TPMA_NV_WRITEDEFINE nor TPMA_NV_WRITE_STCLEAR of the NV Index is SET, then the

TPM shall return TPM_RC_ATTRIBUTES.

If the command is properly authorized and TPMA_NV_WRITE_STCLEAR or TPMA_NV_WRITEDEFINE

is SET, then the TPM shall SET TPMA_NV_WRITELOCKED for the NV Index.

TPMA_NV_WRITELOCKED will be clear on the next TPM2_Startup(TPM_SU_CLEAR) if either

TPMA_NV_WRITEDEFINE is CLEAR or TPMA_NV_WRITTEN is CLEAR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 449

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 228 — TPM2_NV_WriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_WriteLock {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to lock

Auth Index: None

Table 229 — TPM2_NV_WriteLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 450 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_WriteLock_fp.h"

3 #if CC_NV_WriteLock // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES neither TPMA_NV_WRITEDEFINE nor
TPMA_NV_WRITE_STCLEAR is SET in Index referenced by
nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

4 TPM_RC

5 TPM2_NV_WriteLock(

6 NV_WriteLock_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 TPMA_NV nvAttributes = nvIndex->publicArea.attributes;

13

14 // Input Validation:

15

16 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

17 // or TPM_RC_NV_LOCKED

18 result = NvWriteAccessChecks(in->authHandle, in->nvIndex, nvAttributes);

19 if(result != TPM_RC_SUCCESS)

20 {

21 if(result == TPM_RC_NV_AUTHORIZATION)

22 return result;

23 // If write access failed because the index is already locked, then it is

24 // no error.

25 return TPM_RC_SUCCESS;

26 }

27 // if neither TPMA_NV_WRITEDEFINE nor TPMA_NV_WRITE_STCLEAR is set, the index

28 // can not be write-locked

29 if(!IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITEDEFINE)

30 && !IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITE_STCLEAR))

31 return TPM_RCS_ATTRIBUTES + RC_NV_WriteLock_nvIndex;

32 // Internal Data Update

33 // Set the WRITELOCK attribute.

34 // Note: if TPMA_NV_WRITELOCKED were already SET, then the write access check

35 // above would have failed and this code isn't executed.

36 SET_ATTRIBUTE(nvAttributes, TPMA_NV, WRITELOCKED);

37

38 // Write index info back

39 return NvWriteIndexAttributes(nvIndex->publicArea.nvIndex, locator,

40 nvAttributes);

41 }

42 #endif // CC_NV_WriteLock

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 451

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.12 TPM2_NV_GlobalWriteLock

 General Description

The command will SET TPMA_NV_WRITELOCKED for all indexes that have their

TPMA_NV_GLOBALLOCK attribute SET.

If an Index has both TPMA_NV_GLOBALLOCK and TPMA_NV_WRITEDEFINE SET, then this command

will permanently lock the NV Index for writing unless TPMA_NV_WRITTEN is CLEAR.

NOTE If an Index is defined with TPMA_NV_GLOBALLOCK SET, then the global lock does not apply until
the next time this command is executed.

This command requires either platformAuth/platformPolicy or ownerAuth/ownerPolicy.

Part 3: Commands Trusted Platform Module Library

Page 452 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 230 — TPM2_NV_GlobalWriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_GlobalWriteLock {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 231 — TPM2_NV_GlobalWriteLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 453

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_GlobalWriteLock_fp.h"

3 #if CC_NV_GlobalWriteLock // Conditional expansion of this file

4 TPM_RC

5 TPM2_NV_GlobalWriteLock(

6 NV_GlobalWriteLock_In *in // IN: input parameter list

7)

8 {

9 // Input parameter (the authorization handle) is not reference in command action.

10 NOT_REFERENCED(in);

11

12 // Internal Data Update

13

14 // Implementation dependent method of setting the global lock

15 return NvSetGlobalLock();

16 }

17 #endif // CC_NV_GlobalWriteLock

Part 3: Commands Trusted Platform Module Library

Page 454 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.13 TPM2_NV_Read

 General Description

This command reads a value from an area in NV memory previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

NOTE 1 If authorization sessions are present, they are checked before the read-lock status of the NV Index
is checked.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UNINITIALIZED even if size is zero.

The data parameter in the response may be encrypted using parameter encryption.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 455

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 232 — TPM2_NV_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Read

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be read

Auth Index: None

UINT16 size number of octets to read

UINT16 offset

octet offset into the NV area

This value shall be less than or equal to the size of the
nvIndex data.

Table 233 — TPM2_NV_Read Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_NV_BUFFER data the data read

Part 3: Commands Trusted Platform Module Library

Page 456 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Read_fp.h"

3 #if CC_NV_Read // Conditional expansion of this file

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is read locked

TPM_RC_NV_RANGE read range defined by size and offset is outside the range of the
Index referenced by nvIndex

TPM_RC_NV_UNINITIALIZED the Index referenced by nvIndex has not been initialized (written)

TPM_RC_VALUE the read size is larger than the MAX_NV_BUFFER_SIZE

4 TPM_RC

5 TPM2_NV_Read(

6 NV_Read_In *in, // IN: input parameter list

7 NV_Read_Out *out // OUT: output parameter list

8)

9 {

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 TPM_RC result;

13

14 // Input Validation

15 // Common read access checks. NvReadAccessChecks() may return

16 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

17 result = NvReadAccessChecks(in->authHandle, in->nvIndex,

18 nvIndex->publicArea.attributes);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 // Make sure the data will fit the return buffer

23 if(in->size > MAX_NV_BUFFER_SIZE)

24 return TPM_RCS_VALUE + RC_NV_Read_size;

25

26 // Verify that the offset is not too large

27 if(in->offset > nvIndex->publicArea.dataSize)

28 return TPM_RCS_VALUE + RC_NV_Read_offset;

29

30 // Make sure that the selection is within the range of the Index

31 if(in->size > (nvIndex->publicArea.dataSize - in->offset))

32 return TPM_RC_NV_RANGE;

33

34 // Command Output

35 // Set the return size

36 out->data.t.size = in->size;

37

38 // Perform the read

39 NvGetIndexData(nvIndex, locator, in->offset, in->size, out->data.t.buffer);

40

41 return TPM_RC_SUCCESS;

42 }

43 #endif // CC_NV_Read

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 457

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.14 TPM2_NV_ReadLock

 General Description

If TPMA_NV_READ_STCLEAR is SET in an Index, then this command may be used to prevent further

reads of the NV Index until the next TPM2_Startup (TPM_SU_CLEAR).

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

NOTE Only an entity that may read an Index is allowed to lock the NV Index for read.

If the command is properly authorized and TPMA_NV_READ_STCLEAR of the NV Index is SET, then the

TPM shall SET TPMA_NV_READLOCKED for the NV Index. If TPMA_NV_READ_STCLEAR of the NV

Index is CLEAR, then the TPM shall return TPM_RC_ATTRIBUTES. TPMA_NV_READLOCKED will be

CLEAR by the next TPM2_Startup(TPM_SU_CLEAR).

It is not an error to use this command for an Index that is already locked for reading.

An Index that had not been written may be locked for reading.

Part 3: Commands Trusted Platform Module Library

Page 458 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 234 — TPM2_NV_ReadLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadLock {NV}

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be locked

Auth Index: None

Table 235 — TPM2_NV_ReadLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 459

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_ReadLock_fp.h"

3 #if CC_NV_ReadLock // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_READ_STCLEAR is not SET so Index referenced by
nvIndex may not be write locked

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

4 TPM_RC

5 TPM2_NV_ReadLock(

6 NV_ReadLock_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 // The referenced index has been checked multiple times before this is called

12 // so it must be present and will be loaded into cache

13 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

14 TPMA_NV nvAttributes = nvIndex->publicArea.attributes;

15

16 // Input Validation

17 // Common read access checks. NvReadAccessChecks() may return

18 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

19 result = NvReadAccessChecks(in->authHandle,

20 in->nvIndex,

21 nvAttributes);

22 if(result == TPM_RC_NV_AUTHORIZATION)

23 return TPM_RC_NV_AUTHORIZATION;

24 // Index is already locked for write

25 else if(result == TPM_RC_NV_LOCKED)

26 return TPM_RC_SUCCESS;

27

28 // If NvReadAccessChecks return TPM_RC_NV_UNINITALIZED, then continue.

29 // It is not an error to read lock an uninitialized Index.

30

31 // if TPMA_NV_READ_STCLEAR is not set, the index can not be read-locked

32 if(!IS_ATTRIBUTE(nvAttributes, TPMA_NV, READ_STCLEAR))

33 return TPM_RCS_ATTRIBUTES + RC_NV_ReadLock_nvIndex;

34

35 // Internal Data Update

36

37 // Set the READLOCK attribute

38 SET_ATTRIBUTE(nvAttributes, TPMA_NV, READLOCKED);

39

40 // Write NV info back

41 return NvWriteIndexAttributes(nvIndex->publicArea.nvIndex,

42 locator,

43 nvAttributes);

44 }

45 #endif // CC_NV_ReadLock

Part 3: Commands Trusted Platform Module Library

Page 460 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.15 TPM2_NV_ChangeAuth

 General Description

This command allows the authorization secret for an NV Index to be changed.

If successful, the authorization secret (authValue) of the NV Index associated with nvIndex is changed.

This command requires that a policy session be used for authorization of nvIndex so that the ADMIN role

may be asserted and that commandCode in the policy session context shall be

TPM_CC_NV_ChangeAuth. That is, the policy must contain a specific authorization for changing the

authorization value of the referenced entity.

NOTE The reason for this restriction is to ensure that the administrative actions on nvIndex require explicit
approval while other commands may use policy that is not command-dependent.

The size of the newAuth value may be no larger than the size of the digest produced by the nameAlg of

the NV Index.

Since the NV Index authorization is changed before the response HMAC is calculated, the newAuth value

is used when generating the response HMAC key if required. See TPM 2.0 Part 4

ComputeResponseHMAC().

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 461

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 236 — TPM2_NV_ChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ChangeAuth {NV}

TPMI_RH_NV_INDEX @nvIndex

handle of the entity

Auth Index: 1

Auth Role: ADMIN

TPM2B_AUTH newAuth new authorization value

Table 237 — TPM2_NV_ChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 462 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_ChangeAuth_fp.h"

3 #if CC_NV_ChangeAuth // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SIZE newAuth size is larger than the digest size of the Name algorithm for
the Index referenced by 'nvIndex

4 TPM_RC

5 TPM2_NV_ChangeAuth(

6 NV_ChangeAuth_In *in // IN: input parameter list

7)

8 {

9 NV_REF locator;

10 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

11

12 // Input Validation

13

14 // Remove trailing zeros and make sure that the result is not larger than the

15 // digest of the nameAlg.

16 if(MemoryRemoveTrailingZeros(&in->newAuth)

17 > CryptHashGetDigestSize(nvIndex->publicArea.nameAlg))

18 return TPM_RCS_SIZE + RC_NV_ChangeAuth_newAuth;

19

20 // Internal Data Update

21 // Change authValue

22 return NvWriteIndexAuth(locator, &in->newAuth);

23 }

24 #endif // CC_NV_ChangeAuth

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 463

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.16 TPM2_NV_Certify

 General Description

The purpose of this command is to certify the contents of an NV Index or portion of an NV Index.

If the sign attribute is not SET in the key referenced by signHandle then the TPM shall return

TPM_RC_KEY.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UNINITIALIZED even if size is zero.

If proper authorization for reading the NV Index is provided, the portion of the NV Index selected by size

and offset are included in an attestation block and signed using the key indicated by signHandle. The

attestation includes size and offset so that the range of the data can be determined. It also includes the

NV index Name.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

If offset and size add to a value that is greater than the dataSize field of the NV Index referenced by

nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may return an error

(TPM_RC_VALUE) if it performs an additional check and determines that offset is greater than the

dataSize field of the NV Index, or if size is greater than MAX_NV_BUFFER_SIZE.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

If size and offset are both zero (0), then certifyInfo in the response will contain a

TPMS_NV_DIGEST_CERTIFY_INFO, otherwise, it will contain a TPMS_NV_CERTIFY_INFO. The digest

in the TPMS_NV_DIGEST_CERTIFY_INFO is created using the digest of the selected signing scheme.

NOTE 3 TPMS_NV_DIGEST_CERTIFY_INFO was added in revision 01.53. It permits TPM2_NV_Certify() to
certify NV Index contents that are larger than MAX_NV_BUFFER_SIZE.

Part 3: Commands Trusted Platform Module Library

Page 464 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 238 — TPM2_NV_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Certify

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value
for the NV Index

Auth Index: 2

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
Index for the area to be certified

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

UINT16 size number of octets to certify

UINT16 offset

octet offset into the NV area

This value shall be less than or equal to the size of the
nvIndex data.

Table 239 — TPM2_NV_Certify Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 465

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "NV_Certify_fp.h"

4 #if CC_NV_Certify // Conditional expansion of this file

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

TPM_RC_KEY signHandle does not reference a signing key

TPM_RC_NV_LOCKED Index referenced by nvIndex is locked for reading

TPM_RC_NV_RANGE offset plus size extends outside of the data range of the Index
referenced by nvIndex

TPM_RC_NV_UNINITIALIZED Index referenced by nvIndex has not been written

TPM_RC_SCHEME inScheme is not an allowed value for the key definition

5 TPM_RC

6 TPM2_NV_Certify(

7 NV_Certify_In *in, // IN: input parameter list

8 NV_Certify_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 NV_REF locator;

13 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

14 TPMS_ATTEST certifyInfo;

15 OBJECT *signObject = HandleToObject(in->signHandle);

16 // Input Validation

17 if(!IsSigningObject(signObject))

18 return TPM_RCS_KEY + RC_NV_Certify_signHandle;

19 if(!CryptSelectSignScheme(signObject, &in->inScheme))

20 return TPM_RCS_SCHEME + RC_NV_Certify_inScheme;

21

22 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

23 // or TPM_RC_NV_LOCKED

24 result = NvReadAccessChecks(in->authHandle, in->nvIndex,

25 nvIndex->publicArea.attributes);

26 if(result != TPM_RC_SUCCESS)

27 return result;

28

29 // make sure that the selection is within the range of the Index (cast to avoid

30 // any wrap issues with addition)

31 if((UINT32)in->size + (UINT32)in->offset > (UINT32)nvIndex->publicArea.dataSize)

32 return TPM_RC_NV_RANGE;

33 // Make sure the data will fit the return buffer.

34 // NOTE: This check may be modified if the output buffer will not hold the

35 // maximum sized NV buffer as part of the certified data. The difference in

36 // size could be substantial if the signature scheme was produced a large

37 // signature (e.g., RSA 4096).

38 if(in->size > MAX_NV_BUFFER_SIZE)

39 return TPM_RCS_VALUE + RC_NV_Certify_size;

40

41 // Command Output

42

43 // Fill in attest information common fields

44 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

45 &certifyInfo);

Part 3: Commands Trusted Platform Module Library

Page 466 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

46

47 // Get the name of the index

48 NvGetIndexName(nvIndex, &certifyInfo.attested.nv.indexName);

49

50 // See if this is old format or new format

51 if ((in->size != 0) || (in->offset != 0))

52 {

53 // NV certify specific fields

54 // Attestation type

55 certifyInfo.type = TPM_ST_ATTEST_NV;

56

57 // Set the return size

58 certifyInfo.attested.nv.nvContents.t.size = in->size;

59

60 // Set the offset

61 certifyInfo.attested.nv.offset = in->offset;

62

63 // Perform the read

64 NvGetIndexData(nvIndex, locator, in->offset, in->size,

65 certifyInfo.attested.nv.nvContents.t.buffer);

66 }

67 else

68 {

69 HASH_STATE hashState;

70 // This is to sign a digest of the data

71 certifyInfo.type = TPM_ST_ATTEST_NV_DIGEST;

72 // Initialize the hash before calling the function to add the Index data to

73 // the hash.

74 certifyInfo.attested.nvDigest.nvDigest.t.size =

75 CryptHashStart(&hashState, in->inScheme.details.any.hashAlg);

76 NvHashIndexData(&hashState, nvIndex, locator, 0,

77 nvIndex->publicArea.dataSize);

78 CryptHashEnd2B(&hashState, &certifyInfo.attested.nvDigest.nvDigest.b);

79 }

80 // Sign attestation structure. A NULL signature will be returned if

81 // signObject is NULL.

82 return SignAttestInfo(signObject, &in->inScheme, &certifyInfo,

83 &in->qualifyingData, &out->certifyInfo, &out->signature);

84 }

85 #endif // CC_NV_Certify

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 467

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

32 Attached Components

32.1 Introduction

This section contains commands that allow interaction with an Attached Component (AC).

NOTE The Attached Component feature was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 468 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

32.2 TPM2_AC_GetCapability

 General Description

The purpose of this command is to obtain information about an Attached Component referenced by an

AC handle.

The returned list contains 0 or more values starting at the first tagged value that is equal to or greater

than capability.

The list returned in capabilitiesData contains tagged values that indicate the type of the value.

The TPM will return the lesser of a) the available values, b) the number requested in count, or c) the

number that will fit within the available response buffer. If additional values with higher capability numbers

are available, moreData will be YES.

NOTE TPM2_AC_GetCapability() was added in revision 01.40.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 469

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 240 — TPM2_AC_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_AC_GetCapability

TPMI_RH_AC ac
handle indicating the Attached Component

Auth Index: None

TPM_AT capability starting info type

UINT32 count maximum number of values to return

Table 241 — TPM2_AC_GetCapability Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPMI_YES_NO moreData flag to indicate whether there are more values

TPML_AC_CAPABILITIES capabilitiesData list of capabilities

Part 3: Commands Trusted Platform Module Library

Page 470 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "AC_GetCapability_fp.h"

3 #include "AC_spt_fp.h"

4 #if CC_AC_GetCapability // Conditional expansion of this file

5 TPM_RC

6 TPM2_AC_GetCapability(

7 AC_GetCapability_In *in, // IN: input parameter list

8 AC_GetCapability_Out *out // OUT: output parameter list

9)

10 {

11 // Command Output

12 out->moreData = AcCapabilitiesGet(in->ac, in->count, &out->capabilitiesData);

13

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_AC_GetCapability

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 471

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

32.3 TPM2_AC_Send

 General Description

The purpose of this command is to send (copy) a loaded object from the TPM to an Attached Component.

The Object referenced by sendObject is required to have fixedTpm, fixedParent, and

encryptedDuplication attributes CLEAR (TPM_RC_ATTRIBUTES). Authorization for sendObject is

required to be a policy session. The policySession→commandCode of the policy session context is

required to be TPM_CC_AC_Send (TPM_RC_POLICY_FAIL) to demonstrate that the policy is specific for

this command.

Authorization to send to the ac is provided by the session associated with authHandle.

If an NV Alias is not defined for ac, then authHandle is required to be either TPM_RH_OWNER or

TPM_RH_PLATFORM (TPM_RC_HANDLE).

If an NV Alias is defined for ac, then the authorization for authHandle is required to be compatible with the

write authorization attributes (TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE

TPMA_NV_AUTHWRITE, and TPMA_NV_POLICYWRITE) in the NV Alias

(TPM_RC_NV_AUTHORIZATION).

NOTE 1 If authorization for authHandle is the handle of an NV Index, then it is required to be the NV Alias
value for ac (TPM_RC_NV_AUTHORIZATION).

If authorization succeeds, the TPM will attempt to send acDataIn and relevant portions of sendObject to

the AC referenced by ac.

The TPM will return TPM_RC_SUCCESS if it succeeds in performing all the required authorizations and

validations. If problems occur in the process of sending the object from the TPM to the AC, the response

code will be TPM_RC_SUCCESS with the AC-dependent error reported in acDataOut.

NOTE 2 TPM2_AC_Send() was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 472 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 242 — TPM2_AC_Send Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_AC_Send

TPMI_DH_OBJECT @sendObject

handle of the object being sent to ac

Auth Index: 1

Auth Role: DUP

TPMI_RH_NV_AUTH @authHandle the handle indicating the source of the authorization
value

Auth Index: 2

Auth Role: USER

TPMI_RH_AC ac

handle indicating the Attached Component to which the
object will be sent

Auth Index: None

TPM2B_MAX_BUFFER acDataIn Optional non sensitive information related to the object

Table 243 — TPM2_AC_Send Response

Type Name Description

TPM_ST Tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_AC_OUTPUT acDataOut
May include AC specific data or information about an
error.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 473

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "AC_Send_fp.h"

3 #include "AC_spt_fp.h"

4 #if CC_AC_Send // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key to duplicate has fixedParent SET

TPM_RC_HASH for an RSA key, the nameAlg digest size for the newParent is not
compatible with the key size

TPM_RC_HIERARCHY encryptedDuplication is SET and newParentHandle specifies Null
Hierarchy

TPM_RC_KEY newParentHandle references invalid ECC key (public point not on the
curve)

TPM_RC_SIZE input encryption key size does not match the size specified in
symmetric algorithm

TPM_RC_SYMMETRIC encryptedDuplication is SET but no symmetric algorithm is provided

TPM_RC_TYPE newParentHandle is neither a storage key nor TPM_RH_NULL; or
the object has a NULL nameAlg

TPM_RC_VALUE for an RSA newParent, the sizes of the digest and the encryption key
are too large to be OAEP encoded

5 TPM_RC

6 TPM2_AC_Send(

7 AC_Send_In *in, // IN: input parameter list

8 AC_Send_Out *out // OUT: output parameter list

9)

10 {

11 NV_REF locator;

12 TPM_HANDLE nvAlias = ((in->ac - AC_FIRST) + NV_AC_FIRST);

13 NV_INDEX *nvIndex = NvGetIndexInfo(nvAlias, &locator);

14 OBJECT *object = HandleToObject(in->sendObject);

15 TPM_RC result;

16 // Input validation

17 // If there is an NV alias, then the index must allow the authorization provided

18 if(nvIndex != NULL)

19 {

20 // Common access checks, NvWriteAccessCheck() may return

21 // TPM_RC_NV_AUTHORIZATION or TPM_RC_NV_LOCKED

22 result = NvWriteAccessChecks(in->authHandle, nvAlias,

23 nvIndex->publicArea.attributes);

24 if(result != TPM_RC_SUCCESS)

25 return result;

26 }

27 // If 'ac' did not have an alias then the authorization had to be with either

28 // platform or owner authorization. The type of TPMI_RH_NV_AUTH only allows

29 // owner or platform or an NV index. If it was a valid index, it would have had

30 // an alias and be processed above, so only success here is if this is a

31 // permanent handle.

32 else if(HandleGetType(in->authHandle) != TPM_HT_PERMANENT)

33 return TPM_RCS_HANDLE + RC_AC_Send_authHandle;

34 // Make sure that the object to be duplicated has the right attributes

35 if(IS_ATTRIBUTE(object->publicArea.objectAttributes,

36 TPMA_OBJECT, encryptedDuplication)

37 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT,

38 fixedParent)

Part 3: Commands Trusted Platform Module Library

Page 474 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

39 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, fixedTPM))

40 return TPM_RCS_ATTRIBUTES + RC_AC_Send_sendObject;

41 // Command output

42 // Do the implementation dependent send

43 return AcSendObject(in->ac, object, &out->acDataOut);

44 }

45 #endif // TPM_CC_AC_Send

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 475

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

32.4 TPM2_Policy_AC_SendSelect

 General Description

This command allows qualification of the sending (copying) of an Object to an Attached Component (AC).

Qualification includes selection of the receiving AC and the method of authentication for the AC, and, in

certain circumstances, the Object to be sent may be specified.

If this command is not used in conjunction with TPM2_PolicyAuthorize(), then only the authHandleName

and acName are selected and includeObject should be CLEAR.

NOTE 1 In the absence of TPM2_PolicyAuthorize(), a policy session cannot create a policyDigest that
simultaneously equals the authPolicy in an Object and names that Object. This is because the
authPolicy recorded in an Object is unable to include the Name of the Object as the Name of an
Object depends on the Object’s authPolicy.

NOTE 2 An object’s authPolicy can incorporate the use of TPM2_PolicyAuthorize(). If the authorizing entity
for the TPM2_PolicyAuthorize() command specifies only the ac and the authHandle, then the
resultant policyDigest may be applied to the sending of any number of Objects. If the authorizing
entity for the TPM2_PolicyAuthorize() specifies also the Name of the Object to be sent, then the
resultant policyDigest applies only to that specific Object.

If either policySession→cpHash or policySession→nameHash has been previously
set, the TPM shall return TPM_RC_CPHASH. Otherwise, policySession→nameHash
will be set to:nameHash ≔ HpolicyAlg(objectName || authHandleName || acName)(42)

NOTE 3 A policy cannot specify both cpHash and nameHash because policySession→nameHash and
policySession→cpHash may share the same memory space.

If the command succeeds, policySession→policyDigest will be updated according to the setting of the

input parameter includeObject. If includeObject is SET, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_Policy_AC_SendSelect ||
objectName || authHandleName || acName || includeObject) (43)

but if includeObject is CLEAR, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_Policy_AC_SendSelect ||
authHandleName || acName || includeObject) (44)

NOTE 4 policySession→nameHash receives the digest of all Names so that the check performed in
TPM2_AC_Send() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_Policy_AC_SendSelect() is executed, it
is only valid for a specific triple of objectName, authHandleName, and acName.

If the command succeeds, policySession→commandCode is set to TPM_CC_AC_Send.

NOTE 5 The normal use of TPM2_Policy_AC_SendSelect() is before a TPM2_PolicyAuthorize(). An
authorized entity would approve a policyDigest that allows sending to a specific Attached
Component. The authorizing entity may want to l imit the authorization so that the approval allows
only a specific Object to be sent to the Attached Component. In that case, the authorizing entity
would approve the policyDigest of equation (44).

NOTE 6 TPM2_Policy_AC_SendSelect() was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 476 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 244 — TPM2_Policy_AC_SendSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Policy_AC_SendSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the Object to be sent

TPM2B_NAME authHandleName
the Name associated with authHandle used in the
TPM2_AC_Send() command

TPM2B_NAME acName
the Name of the Attached Component to which the
Object will be sent

TPMI_YES_NO includeObject
if SET, objectName will be included in the value in
policySession→policyDigest

Table 245 — TPM2_Policy_AC_SendSelect Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 477

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Policy_AC_SendSelect_fp.h"

3 #if CC_Policy_AC_SendSelect // Conditional expansion of this file

Error Returns Meaning

TPM_RC_COMMAND_CODE commandCode of 'policySession; is not empty

TPM_RC_CPHASH cpHash of policySession is not empty

4 TPM_RC

5 TPM2_Policy_AC_SendSelect(

6 Policy_AC_SendSelect_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 HASH_STATE hashState;

11 TPM_CC commandCode = TPM_CC_Policy_AC_SendSelect;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // cpHash in session context must be empty

19 if(session->u1.cpHash.t.size != 0)

20 return TPM_RC_CPHASH;

21 // commandCode in session context must be empty

22 if(session->commandCode != 0)

23 return TPM_RC_COMMAND_CODE;

24 // Internal Data Update

25 // Update name hash

26 session->u1.cpHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

27

28 // add objectName

29 CryptDigestUpdate2B(&hashState, &in->objectName.b);

30

31 // add authHandleName

32 CryptDigestUpdate2B(&hashState, &in->authHandleName.b);

33

34 // add ac name

35 CryptDigestUpdate2B(&hashState, &in->acName.b);

36

37 // complete hash

38 CryptHashEnd2B(&hashState, &session->u1.cpHash.b);

39

40 // update policy hash

41 // Old policyDigest size should be the same as the new policyDigest size since

42 // they are using the same hash algorithm

43 session->u2.policyDigest.t.size

44 = CryptHashStart(&hashState, session->authHashAlg);

45 // add old policy

46 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

47

48 // add command code

49 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

50

51 // add objectName

52 if(in->includeObject == YES)

53 CryptDigestUpdate2B(&hashState, &in->objectName.b);

54

Part 3: Commands Trusted Platform Module Library

Page 478 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

55 // add authHandleName

56 CryptDigestUpdate2B(&hashState, &in->authHandleName.b);

57

58 // add acName

59 CryptDigestUpdate2B(&hashState, &in->acName.b);

60

61 // add includeObject

62 CryptDigestUpdateInt(&hashState, sizeof(TPMI_YES_NO), in->includeObject);

63

64 // complete digest

65 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

66

67 // set commandCode in session context

68 session->commandCode = TPM_CC_AC_Send;

69

70 return TPM_RC_SUCCESS;

71 }

72 #endif // CC_Policy_AC_SendSelect

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 479

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

33 Authenticated Countdown Timer

33.1 Introduction

This section contains commands that allow interaction with an Authenticated Countdown Timer (ACT).

NOTE The Authenticated Countdown Timer was added in revision 01.56.

33.2 TPM2_ACT_SetTimeout

 General Description

This command is used to set the time remaining before an Authenticated Countdown Timer (ACT)

expires.

This command sets TPMS_ACT_DATA.timeout (ACT Timeout) to startTimeout. The startTimeout value is

an integer number of seconds and may be zero. The startTimeout parameter may be greater, equal, or

less than the current value of ACT Timeout.

When ACT Timeout is non-zero, it will count down, once per second until it reaches zero, at which time

the signaled attribute of the TPMA_ACT associated with actHandle is SET.

When ACT Timeout is zero and the signaled attribute is SET, writing a startTimeout of FF FF FF FF16 will

clear signaled and stop the counting.

There are four states for ACT Timeout and startTimeout. The signaled attribute will be set as follows:

1) If ACT Timeout is zero and startTimeout is non-zero, then signaled will be CLEAR.

2) If ACT Timeout is non-zero and startTimeout is non-zero, then signaled will be CLEAR.

3) If ACT Timeout is zero and startTimeout is zero, then signaled will be unchanged.

4) If ACT Timeout is non-zero and startTimeout is zero, then signaled will be SET.

NOTE 1 The ACT signals on a transition from non-zero to zero. The transition can occur either due to
TPM2_ACT_SetTimeout() or a decrement. The effect of signaled is platform dependent.

NOTE 2 It may take up to one second until ACT Timeout will be set and signaled will be CLEAR or SET by
TPM2_ACT_SetTimeout() or TPM2_Startup(STATE). This allows the counting and signaling to take
place synchronously with the hardware clock tick.

NOTE 3 TPM2_ACT_SetTimeout() was added in revision 01.56.

Part 3: Commands Trusted Platform Module Library

Page 480 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 246 — TPM2_ACT_SetTimeout Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ACT_SetTimeout

TPMI_RH_ACT @actHandle

Handle of the selected ACT

Auth Index: 1

Auth Role: USER

UINT32 startTimeout the start timeout value for the ACT in seconds

Table 247 — TPM2_ACT_SetTimeout Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 481

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ACT_SetTimeout_fp.h"

3 #if CC_ACT_SetTimeout // Conditional expansion of this file

Error Returns Meaning

TPM_RC_RETRY returned when an update for the selected ACT is already pending

TPM_RC_VALUE attempt to disable signaling from an ACT that has not expired

4 TPM_RC

5 TPM2_ACT_SetTimeout(

6 ACT_SetTimeout_In *in // IN: input parameter list

7)

8 {

9 // If 'startTimeout' is UINT32_MAX, then this is an attempt to disable the ACT

10 // and turn off the signaling for the ACT. This is only valid if the ACT

11 // is signaling.

12 if((in->startTimeout == UINT32_MAX) && !ActGetSignaled(in->actHandle))

13 return TPM_RC_VALUE + RC_ACT_SetTimeout_startTimeout;

14 return ActCounterUpdate(in->actHandle, in->startTimeout);

15 }

16 #endif // CC_ACT_SetTimeout

Part 3: Commands Trusted Platform Module Library

Page 482 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

34 Vendor Specific

34.1 Introduction

This section contains commands that are vendor specific but made public in order to prevent proliferation.

This specification does define TPM2_Vendor_TCG_Test() in order to have at least one command that

can be used to ensure the proper operation of the command dispatch code when processing a vendor-

specific command.

34.2 TPM2_Vendor_TCG_Test

 General Description

This is a placeholder to allow testing of the dispatch code.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 483

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 248 — TPM2_Vendor_TCG_Test Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Vendor_TCG_Test

TPM2B_DATA inputData dummy data

Table 249 — TPM2_Vendor_TCG_Test Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode TPM_RC_SUCCESS

TPM2B_DATA outputData dummy data

Part 3: Commands Trusted Platform Module Library

Page 484 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #if CC_Vendor_TCG_Test // Conditional expansion of this file

3 #include "Vendor_TCG_Test_fp.h"

4 TPM_RC

5 TPM2_Vendor_TCG_Test(

6 Vendor_TCG_Test_In *in, // IN: input parameter list

7 Vendor_TCG_Test_Out *out // OUT: output parameter list

8)

9 {

10 out->outputData = in->inputData;

11 return TPM_RC_SUCCESS;

12 }

13 #endif // CC_Vendor_TCG_Test

TCG

Trusted Platform Module Library

Part 3: Commands

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Page ii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

CONTENTS

1 Scope .. 1
2 Terms and Definitions ... 1
3 Symbols and abbreviated terms .. 1
4 Notation ... 2

4.1 Introduction ... 2
4.2 Table Decorations ... 2
4.3 Handle and Parameter Demarcation .. 3
4.4 AuthorizationSize and ParameterSize .. 3
4.5 Return Code Alias ... 4

5 Command Processing ... 4

5.1 Introduction ... 4
5.2 Command Header Validation .. 4
5.3 Mode Checks .. 5
5.4 Handle Area Validation ... 5
5.5 Session Area Validation .. 6
5.6 Authorization Checks .. 7
5.7 Parameter Decryption ... 9
5.8 Parameter Unmarshaling .. 9
5.9 Command Post Processing .. 11

6 Response Values .. 12

6.1 Tag .. 12
6.2 Response Codes .. 12

7 Implementation Dependent ... 15
8 Detailed Actions Assumptions ... 16

8.1 Introduction ... 16
8.2 Pre-processing .. 16
8.3 Post Processing .. 16

9 Start-up .. 17

9.1 Introduction ... 17
9.2 _TPM_Init .. 17
9.3 TPM2_Startup ... 19
9.4 TPM2_Shutdown .. 24

10 Testing ... 27

10.1 Introduction ... 27
10.2 TPM2_SelfTest ... 28
10.3 TPM2_IncrementalSelfTest .. 31
10.4 TPM2_GetTestResult ... 34

11 Session Commands .. 37

11.1 TPM2_StartAuthSession .. 37
11.2 TPM2_PolicyRestart ... 41

12 Object Commands ... 44

12.1 TPM2_Create.. 44

Part 3: Commands Trusted Platform Module Library

Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.2 TPM2_Load .. 49
12.3 TPM2_LoadExternal ... 52
12.4 TPM2_ReadPublic .. 56
12.5 TPM2_ActivateCredential ... 59
12.6 TPM2_MakeCredential ... 62
12.7 TPM2_Unseal ... 65
12.8 TPM2_ObjectChangeAuth .. 68
12.9 TPM2_CreateLoaded ... 71

13 Duplication Commands ... 74

13.1 TPM2_Duplicate ... 74
13.2 TPM2_Rewrap .. 77
13.3 TPM2_Import .. 80

14 Asymmetric Primitives ... 84

14.1 Introduction ... 84
14.2 TPM2_RSA_Encrypt ... 84
14.3 TPM2_RSA_Decrypt .. 88
14.4 TPM2_ECDH_KeyGen ... 91
14.5 TPM2_ECDH_ZGen ... 94
14.6 TPM2_ECC_Parameters .. 97
14.7 TPM2_ZGen_2Phase ... 100

15 Symmetric Primitives ... 103

15.1 Introduction ... 103
15.2 TPM2_EncryptDecrypt .. 105
15.3 TPM2_EncryptDecrypt2 .. 108
15.4 TPM2_Hash .. 111
15.5 TPM2_HMAC .. 114
15.6 TPM2_MAC .. 117

16 Random Number Generator .. 120

16.1 TPM2_GetRandom ... 120
16.2 TPM2_StirRandom ... 123

17 Hash/HMAC/Event Sequences ... 126

17.1 Introduction ... 126
17.2 TPM2_HMAC_Start .. 126
17.3 TPM2_MAC_Start ... 129
17.4 TPM2_HashSequenceStart .. 132
17.5 TPM2_SequenceUpdate .. 135
17.6 TPM2_SequenceComplete ... 138
17.7 TPM2_EventSequenceComplete ... 141

18 Attestation Commands .. 144

18.1 Introduction ... 144
18.2 TPM2_Certify .. 146
18.3 TPM2_CertifyCreation .. 149
18.4 TPM2_Quote... 152
18.5 TPM2_GetSessionAuditDigest ... 155
18.6 TPM2_GetCommandAuditDigest ... 158

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.7 TPM2_GetTime... 161
18.8 TPM2_CertifyX509 ... 163

19 Ephemeral EC Keys .. 167

19.1 Introduction ... 167
19.2 TPM2_Commit .. 168
19.3 TPM2_EC_Ephemeral .. 171

20 Signing and Signature Verification .. 174

20.1 TPM2_VerifySignature .. 174
20.2 TPM2_Sign ... 177

21 Command Audit ... 180

21.1 Introduction ... 180
21.2 TPM2_SetCommandCodeAuditStatus ... 181

22 Integrity Collection (PCR) .. 184

22.1 Introduction ... 184
22.2 TPM2_PCR_Extend ... 185
22.3 TPM2_PCR_Event ... 188
22.4 TPM2_PCR_Read .. 191
22.5 TPM2_PCR_Allocate .. 194
22.6 TPM2_PCR_SetAuthPolicy .. 197
22.7 TPM2_PCR_SetAuthValue ... 200
22.8 TPM2_PCR_Reset ... 203
22.9 _TPM_Hash_Start .. 206
22.10 _TPM_Hash_Data .. 208
22.11 _TPM_Hash_End ... 210

23 Enhanced Authorization (EA) Commands .. 212

23.1 Introduction ... 212
23.2 Signed Authorization Actions .. 213
23.3 TPM2_PolicySigned ... 217
23.4 TPM2_PolicySecret .. 221
23.5 TPM2_PolicyTicket ... 224
23.6 TPM2_PolicyOR ... 227
23.7 TPM2_PolicyPCR ... 230
23.8 TPM2_PolicyLocality .. 234
23.9 TPM2_PolicyNV .. 237
23.10 TPM2_PolicyCounterTimer ... 240
23.11 TPM2_PolicyCommandCode ... 243
23.12 TPM2_PolicyPhysicalPresence .. 246
23.13 TPM2_PolicyCpHash .. 249
23.14 TPM2_PolicyNameHash ... 252
23.15 TPM2_PolicyDuplicationSelect ... 255
23.16 TPM2_PolicyAuthorize ... 258
23.17 TPM2_PolicyAuthValue .. 261
23.18 TPM2_PolicyPassword ... 264
23.19 TPM2_PolicyGetDigest ... 267
23.20 TPM2_PolicyNvWritten ... 270
23.21 TPM2_PolicyTemplate .. 273

Part 3: Commands Trusted Platform Module Library

Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.22 TPM2_PolicyAuthorizeNV .. 276

24 Hierarchy Commands .. 279

24.1 TPM2_CreatePrimary ... 279
24.2 TPM2_HierarchyControl ... 282
24.3 TPM2_SetPrimaryPolicy ... 285
24.4 TPM2_ChangePPS .. 288
24.5 TPM2_ChangeEPS .. 291
24.6 TPM2_Clear .. 294
24.7 TPM2_ClearControl .. 297
24.8 TPM2_HierarchyChangeAuth ... 300

25 Dictionary Attack Functions ... 303

25.1 Introduction ... 303
25.2 TPM2_DictionaryAttackLockReset ... 303
25.3 TPM2_DictionaryAttackParameters.. 306

26 Miscellaneous Management Functions ... 309

26.1 Introduction ... 309
26.2 TPM2_PP_Commands ... 309
26.3 TPM2_SetAlgorithmSet .. 312

27 Field Upgrade .. 315

27.1 Introduction ... 315
27.2 TPM2_FieldUpgradeStart ... 317
27.3 TPM2_FieldUpgradeData ... 320
27.4 TPM2_FirmwareRead ... 323

28 Context Management .. 326

28.1 Introduction ... 326
28.2 TPM2_ContextSave .. 326
28.3 TPM2_ContextLoad .. 329
28.4 TPM2_FlushContext ... 332
28.5 TPM2_EvictControl ... 335

29 Clocks and Timers ... 339

29.1 TPM2_ReadClock ... 339
29.2 TPM2_ClockSet .. 342
29.3 TPM2_ClockRateAdjust .. 345

30 Capability Commands ... 348

30.1 Introduction ... 348
30.2 TPM2_GetCapability ... 348
30.3 TPM2_TestParms ... 354

31 Non-volatile Storage .. 357

31.1 Introduction ... 357
31.2 NV Counters ... 359
31.3 TPM2_NV_DefineSpace ... 360
31.4 TPM2_NV_UndefineSpace ... 364
31.5 TPM2_NV_UndefineSpaceSpecial ... 367
31.6 TPM2_NV_ReadPublic ... 370

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page vii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.7 TPM2_NV_Write ... 373
31.8 TPM2_NV_Increment ... 376
31.9 TPM2_NV_Extend .. 379
31.10 TPM2_NV_SetBits .. 382
31.11 TPM2_NV_WriteLock ... 385
31.12 TPM2_NV_GlobalWriteLock ... 388
31.13 TPM2_NV_Read ... 391
31.14 TPM2_NV_ReadLock ... 394
31.15 TPM2_NV_ChangeAuth ... 397
31.16 TPM2_NV_Certify ... 400

32 Attached Components ... 403

32.1 Introduction ... 403
32.2 TPM2_AC_GetCapability .. 404
32.3 TPM2_AC_Send ... 407
32.4 TPM2_Policy_AC_SendSelect ... 410

33 Authenticated Countdown Timer ... 413

33.1 Introduction ... 413
33.2 TPM2_ACT_SetTimeout ... 413

34 Vendor Specific ... 416

34.1 Introduction ... 416
34.2 TPM2_Vendor_TCG_Test .. 416

Part 3: Commands Trusted Platform Module Library

Page viii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Tables

Table 1 — Command Modifiers and Decoration ... 2

Table 2 — Separators ... 3

Table 3 — Unmarshaling Errors ... 10

Table 4 — Command-Independent Response Codes .. 13

Table 5 — TPM2_Startup Command .. 22

Table 6 — TPM2_Startup Response .. 22

Table 7 — TPM2_Shutdown Command ... 25

Table 8 — TPM2_Shutdown Response .. 25

Table 9 — TPM2_SelfTest Command .. 29

Table 10 — TPM2_SelfTest Response .. 29

Table 11 — TPM2_IncrementalSelfTest Command ... 32

Table 12 — TPM2_IncrementalSelfTest Response ... 32

Table 13 — TPM2_GetTestResult Command .. 35

Table 14 — TPM2_GetTestResult Response... 35

Table 15 — TPM2_StartAuthSession Command ... 39

Table 16 — TPM2_StartAuthSession Response .. 39

Table 17 — TPM2_PolicyRestart Command .. 42

Table 18 — TPM2_PolicyRestart Response .. 42

Table 19 — TPM2_Create Command .. 47

Table 20 — TPM2_Create Response ... 47

Table 21 — TPM2_Load Command ... 50

Table 22 — TPM2_Load Response .. 50

Table 23 — TPM2_LoadExternal Command .. 54

Table 24 — TPM2_LoadExternal Response .. 54

Table 25 — TPM2_ReadPublic Command ... 57

Table 26 — TPM2_ReadPublic Response ... 57

Table 27 — TPM2_ActivateCredential Command .. 60

Table 28 — TPM2_ActivateCredential Response .. 60

Table 29 — TPM2_MakeCredential Command .. 63

Table 30 — TPM2_MakeCredential Response .. 63

Table 31 — TPM2_Unseal Command .. 66

Table 32 — TPM2_Unseal Response .. 66

Table 33 — TPM2_ObjectChangeAuth Command ... 69

Table 34 — TPM2_ObjectChangeAuth Response ... 69

Table 35 — TPM2_CreateLoaded Command .. 72

Table 36 — TPM2_CreateLoaded Response ... 72

Table 37 — TPM2_Duplicate Command .. 75

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page ix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 38 — TPM2_Duplicate Response ... 75

Table 39 — TPM2_Rewrap Command ... 78

Table 40 — TPM2_Rewrap Response ... 78

Table 41 — TPM2_Import Command ... 82

Table 42 — TPM2_Import Response ... 82

Table 43 — Padding Scheme Selection ... 84

Table 44 — Message Size Limits Based on Padding ... 85

Table 45 — TPM2_RSA_Encrypt Command.. 86

Table 46 — TPM2_RSA_Encrypt Response .. 86

Table 47 — TPM2_RSA_Decrypt Command ... 89

Table 48 — TPM2_RSA_Decrypt Response .. 89

Table 49 — TPM2_ECDH_KeyGen Command .. 92

Table 50 — TPM2_ECDH_KeyGen Response .. 92

Table 51 — TPM2_ECDH_ZGen Command .. 95

Table 52 — TPM2_ECDH_ZGen Response .. 95

Table 53 — TPM2_ECC_Parameters Command ... 98

Table 54 — TPM2_ECC_Parameters Response ... 98

Table 55 — TPM2_ZGen_2Phase Command .. 101

Table 56 — TPM2_ZGen_2Phase Response .. 101

Table 57 — Symmetric Chaining Process .. 104

Table 58 — TPM2_EncryptDecrypt Command... 106

Table 59 — TPM2_EncryptDecrypt Response ... 106

Table 60 — TPM2_EncryptDecrypt2 Command... 109

Table 61 — TPM2_EncryptDecrypt2 Response ... 109

Table 62 — TPM2_Hash Command ... 112

Table 63 — TPM2_Hash Response ... 112

Table 64 — TPM2_HMAC Command ... 115

Table 65 — TPM2_HMAC Response ... 115

Table 66 — TPM2_MAC Command ... 118

Table 67 — TPM2_MAC Response .. 118

Table 68 — TPM2_GetRandom Command .. 121

Table 69 — TPM2_GetRandom Response .. 121

Table 70 — TPM2_StirRandom Command .. 124

Table 71 — TPM2_StirRandom Response ... 124

Table 72 — Hash Selection Matrix ... 126

Table 73 — TPM2_HMAC_Start Command ... 127

Table 74 — TPM2_HMAC_Start Response ... 127

Table 75 — Algorithm Selection Matrix ... 129

Table 76 — TPM2_MAC_Start Command .. 130

Part 3: Commands Trusted Platform Module Library

Page x TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 77 — TPM2_MAC_Start Response .. 130

Table 78 — TPM2_HashSequenceStart Command ... 133

Table 79 — TPM2_HashSequenceStart Response ... 133

Table 80 — TPM2_SequenceUpdate Command ... 136

Table 81 — TPM2_SequenceUpdate Response .. 136

Table 82 — TPM2_SequenceComplete Command ... 139

Table 83 — TPM2_SequenceComplete Response .. 139

Table 84 — TPM2_EventSequenceComplete Command .. 142

Table 85 — TPM2_EventSequenceComplete Response ... 142

Table 86 — TPM2_Certify Command ... 147

Table 87 — TPM2_Certify Response ... 147

Table 88 — TPM2_CertifyCreation Command ... 150

Table 89 — TPM2_CertifyCreation Response .. 150

Table 90 — TPM2_Quote Command ... 153

Table 91 — TPM2_Quote Response .. 153

Table 92 — TPM2_GetSessionAuditDigest Command .. 156

Table 93 — TPM2_GetSessionAuditDigest Response .. 156

Table 94 — TPM2_GetCommandAuditDigest Command .. 159

Table 95 — TPM2_GetCommandAuditDigest Response ... 159

Table 96 — TPM2_GetTime Command ... 162

Table 97 — TPM2_GetTime Response .. 162

Table 98 — TPM2_CertifyX509 Command .. 165

Table 99 — TPM2_CertifyX509 Response ... 165

Table 100 — TPM2_Commit Command ... 169

Table 101 — TPM2_Commit Response ... 169

Table 102 — TPM2_EC_Ephemeral Command ... 172

Table 103 — TPM2_EC_Ephemeral Response ... 172

Table 104 — TPM2_VerifySignature Command... 175

Table 105 — TPM2_VerifySignature Response ... 175

Table 106 — TPM2_Sign Command .. 178

Table 107 — TPM2_Sign Response .. 178

Table 108 — TPM2_SetCommandCodeAuditStatus Command .. 182

Table 109 — TPM2_SetCommandCodeAuditStatus Response .. 182

Table 110 — TPM2_PCR_Extend Command .. 186

Table 111 — TPM2_PCR_Extend Response ... 186

Table 112 — TPM2_PCR_Event Command .. 189

Table 113 — TPM2_PCR_Event Response ... 189

Table 114 — TPM2_PCR_Read Command ... 192

Table 115 — TPM2_PCR_Read Response ... 192

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page xi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 116 — TPM2_PCR_Allocate Command ... 195

Table 117 — TPM2_PCR_Allocate Response ... 195

Table 118 — TPM2_PCR_SetAuthPolicy Command ... 198

Table 119 — TPM2_PCR_SetAuthPolicy Response ... 198

Table 120 — TPM2_PCR_SetAuthValue Command ... 201

Table 121 — TPM2_PCR_SetAuthValue Response .. 201

Table 122 — TPM2_PCR_Reset Command .. 204

Table 123 — TPM2_PCR_Reset Response ... 204

Table 124 — TPM2_PolicySigned Command .. 219

Table 125 — TPM2_PolicySigned Response ... 219

Table 126 — TPM2_PolicySecret Command ... 222

Table 127 — TPM2_PolicySecret Response .. 222

Table 128 — TPM2_PolicyTicket Command .. 225

Table 129 — TPM2_PolicyTicket Response .. 225

Table 130 — TPM2_PolicyOR Command .. 228

Table 131 — TPM2_PolicyOR Response ... 228

Table 132 — TPM2_PolicyPCR Command .. 232

Table 133 — TPM2_PolicyPCR Response .. 232

Table 134 — TPM2_PolicyLocality Command ... 235

Table 135 — TPM2_PolicyLocality Response .. 235

Table 136 — TPM2_PolicyNV Command ... 238

Table 137 — TPM2_PolicyNV Response ... 238

Table 138 — TPM2_PolicyCounterTimer Command ... 241

Table 139 — TPM2_PolicyCounterTimer Response .. 241

Table 140 — TPM2_PolicyCommandCode Command .. 244

Table 141 — TPM2_PolicyCommandCode Response ... 244

Table 142 — TPM2_PolicyPhysicalPresence Command ... 247

Table 143 — TPM2_PolicyPhysicalPresence Response ... 247

Table 144 — TPM2_PolicyCpHash Command... 250

Table 145 — TPM2_PolicyCpHash Response ... 250

Table 146 — TPM2_PolicyNameHash Command.. 253

Table 147 — TPM2_PolicyNameHash Response .. 253

Table 148 — TPM2_PolicyDuplicationSelect Command .. 256

Table 149 — TPM2_PolicyDuplicationSelect Response .. 256

Table 150 — TPM2_PolicyAuthorize Command .. 259

Table 151 — TPM2_PolicyAuthorize Response ... 259

Table 152 — TPM2_PolicyAuthValue Command ... 262

Table 153 — TPM2_PolicyAuthValue Response ... 262

Table 154 — TPM2_PolicyPassword Command .. 265

Part 3: Commands Trusted Platform Module Library

Page xii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 155 — TPM2_PolicyPassword Response .. 265

Table 156 — TPM2_PolicyGetDigest Command.. 268

Table 157 — TPM2_PolicyGetDigest Response .. 268

Table 158 — TPM2_PolicyNvWritten Command .. 271

Table 159 — TPM2_PolicyNvWritten Response .. 271

Table 160 — TPM2_PolicyTemplate Command... 274

Table 161 — TPM2_PolicyTemplate Response ... 274

Table 162 — TPM2_PolicyAuthorizeNV Command ... 277

Table 163 — TPM2_PolicyAuthorizeNV Response .. 277

Table 164 — TPM2_CreatePrimary Command .. 280

Table 165 — TPM2_CreatePrimary Response .. 280

Table 166 — TPM2_HierarchyControl Command .. 283

Table 167 — TPM2_HierarchyControl Response .. 283

Table 168 — TPM2_SetPrimaryPolicy Command .. 286

Table 169 — TPM2_SetPrimaryPolicy Response .. 286

Table 170 — TPM2_ChangePPS Command ... 289

Table 171 — TPM2_ChangePPS Response .. 289

Table 172 — TPM2_ChangeEPS Command ... 292

Table 173 — TPM2_ChangeEPS Response .. 292

Table 174 — TPM2_Clear Command ... 295

Table 175 — TPM2_Clear Response ... 295

Table 176 — TPM2_ClearControl Command ... 298

Table 177 — TPM2_ClearControl Response ... 298

Table 178 — TPM2_HierarchyChangeAuth Command .. 301

Table 179 — TPM2_HierarchyChangeAuth Response .. 301

Table 180 — TPM2_DictionaryAttackLockReset Command .. 304

Table 181 — TPM2_DictionaryAttackLockReset Response .. 304

Table 182 — TPM2_DictionaryAttackParameters Command .. 307

Table 183 — TPM2_DictionaryAttackParameters Response ... 307

Table 184 — TPM2_PP_Commands Command .. 310

Table 185 — TPM2_PP_Commands Response .. 310

Table 186 — TPM2_SetAlgorithmSet Command ... 313

Table 187 — TPM2_SetAlgorithmSet Response.. 313

Table 188 — TPM2_FieldUpgradeStart Command .. 318

Table 189 — TPM2_FieldUpgradeStart Response .. 318

Table 190 — TPM2_FieldUpgradeData Command .. 321

Table 191 — TPM2_FieldUpgradeData Response .. 321

Table 192 — TPM2_FirmwareRead Command.. 324

Table 193 — TPM2_FirmwareRead Response .. 324

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page xiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 194 — TPM2_ContextSave Command ... 327

Table 195 — TPM2_ContextSave Response ... 327

Table 196 — TPM2_ContextLoad Command ... 330

Table 197 — TPM2_ContextLoad Response ... 330

Table 198 — TPM2_FlushContext Command .. 333

Table 199 — TPM2_FlushContext Response .. 333

Table 200 — TPM2_EvictControl Command .. 337

Table 201 — TPM2_EvictControl Response .. 337

Table 202 — TPM2_ReadClock Command .. 340

Table 203 — TPM2_ReadClock Response .. 340

Table 204 — TPM2_ClockSet Command ... 343

Table 205 — TPM2_ClockSet Response ... 343

Table 206 — TPM2_ClockRateAdjust Command... 346

Table 207 — TPM2_ClockRateAdjust Response ... 346

Table 208 — TPM2_GetCapability Command.. 352

Table 209 — TPM2_GetCapability Response .. 352

Table 210 — TPM2_TestParms Command .. 355

Table 211 — TPM2_TestParms Response .. 355

Table 212 — TPM2_NV_DefineSpace Command ... 362

Table 213 — TPM2_NV_DefineSpace Response .. 362

Table 214 — TPM2_NV_UndefineSpace Command ... 365

Table 215 — TPM2_NV_UndefineSpace Response .. 365

Table 216 — TPM2_NV_UndefineSpaceSpecial Command .. 368

Table 217 — TPM2_NV_UndefineSpaceSpecial Response .. 368

Table 218 — TPM2_NV_ReadPublic Command .. 371

Table 219 — TPM2_NV_ReadPublic Response .. 371

Table 220 — TPM2_NV_Write Command .. 374

Table 221 — TPM2_NV_Write Response .. 374

Table 222 — TPM2_NV_Increment Command .. 377

Table 223 — TPM2_NV_Increment Response... 377

Table 224 — TPM2_NV_Extend Command ... 380

Table 225 — TPM2_NV_Extend Response ... 380

Table 226 — TPM2_NV_SetBits Command ... 383

Table 227 — TPM2_NV_SetBits Response ... 383

Table 228 — TPM2_NV_WriteLock Command .. 386

Table 229 — TPM2_NV_WriteLock Response... 386

Table 230 — TPM2_NV_GlobalWriteLock Command .. 389

Table 231 — TPM2_NV_GlobalWriteLock Response .. 389

Table 232 — TPM2_NV_Read Command .. 392

Part 3: Commands Trusted Platform Module Library

Page xiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 233 — TPM2_NV_Read Response .. 392

Table 234 — TPM2_NV_ReadLock Command .. 395

Table 235 — TPM2_NV_ReadLock Response .. 395

Table 236 — TPM2_NV_ChangeAuth Command .. 398

Table 237 — TPM2_NV_ChangeAuth Response .. 398

Table 238 — TPM2_NV_Certify Command .. 401

Table 239 — TPM2_NV_Certify Response .. 401

Table 240 — TPM2_AC_GetCapability Command .. 405

Table 241 — TPM2_AC_GetCapability Response ... 405

Table 242 — TPM2_AC_Send Command .. 408

Table 243 — TPM2_AC_Send Response .. 408

Table 244 — TPM2_Policy_AC_SendSelect Command .. 411

Table 245 — TPM2_Policy_AC_SendSelect Response .. 411

Table 246 — TPM2_ACT_SetTimeout Command ... 414

Table 247 — TPM2_ACT_SetTimeout Response .. 414

Table 248 — TPM2_Vendor_TCG_Test Command ... 417

Table 249 — TPM2_Vendor_TCG_Test Response ... 417

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Trusted Platform Module Library
Part 3: Commands

1 Scope

This TPM 2.0 Part 3 of the Trusted Platform Module Library specification contains the definitions of the

TPM commands. These commands make use of the constants, flags, structures, and union definitions

defined in TPM 2.0 Part 2.

The detailed description of the operation of the commands is written in the C language with extensive

comments. The behavior of the C code in this TPM 2.0 Part 3 is normative but does not fully describe the

behavior of a TPM. The combination of this TPM 2.0 Part 3 and TPM 2.0 Part 4 is sufficient to fully

describe the required behavior of a TPM.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,

firmware update), it is not possible to provide a compliant implementation. In those cases, any

implementation provided by the vendor that meets the general description of the function provided in TPM

2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this

specification require that a TPM meet any particular level of conformance.

2 Terms and Definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

Part 3: Commands Trusted Platform Module Library

Page 2 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4 Notation

4.1 Introduction

For the purposes of this document, the notation given in TPM 2.0 Part 1 applies.

Command and response tables use various decorations to indicate the fields of the command and the

allowed types. These decorations are described in this clause.

4.2 Table Decorations

The symbols and terms in the Notation column of Table 1 are used in the tables for the command

schematics. These values indicate various qualifiers for the parameters or descriptions with which they

are associated.

Table 1 — Command Modifiers and Decoration

Notation Meaning

+ A Type decoration – When appended to a value in the Type column of a command, this symbol
indicates that the parameter is allowed to use the “null” value of the data type (see in TPM 2.0
Part 2, Conditional Types). The null value is usually TPM_RH_NULL for a handle or
TPM_ALG_NULL for an algorithm selector.

NOTE This decoration is not appended to response parameters.

@ A Name decoration – When this symbol precedes a handle parameter in the “Name” column, it
indicates that an authorization session is required for use of the entity associated with the handle.
If a handle does not have this symbol, then an authorization session is not allowed.

+PP A Description modifier – This modifier may follow TPM_RH_PLATFORM in the “Description”
column to indicate that Physical Presence is required when platformAuth/platformPolicy is
provided.

+{PP} A Description modifier – This modifier may follow TPM_RH_PLATFORM to indicate that Physical
Presence may be required when platformAuth/platformPolicy is provided. The commands with this
notation may be in the setList or clearList of TPM2_PP_Commands().

{NV} A Description modifier – This modifier may follow the commandCode in the “Description” column
to indicate that the command may result in an update of NV memory and be subject to rate
throttling by the TPM. If the command code does not have this notation, then a write to NV
memory does not occur as part of the command actions.

NOTE Any command that uses authorization may cause a write to NV if there is an authorization
failure. A TPM may use the occasion of command execution to update the NV copy of clock.

{F} A Description modifier – This modifier indicates that the “flushed” attribute will be SET in the
TPMA_CC for the command. The modifier may follow the commandCode in the “Description”
column to indicate that any transient handle context used by the command will be flushed from the
TPM when the command completes. This may be combined with the {NV} modifier but not with the
{E} modifier.

EXAMPLE 1 {NV F}

EXAMPLE 2 TPM2_SequenceComplete() will flush the context associated with the sequenceHandle.

{E} A Description modifier – This modifier indicates that the “extensive” attribute will be SET in the
TPMA_CC for the command. This modifier may follow the commandCode in the “Description”
column to indicate that the command may flush many objects and re-enumeration of the loaded
context likely will be required. This may be combined with the {NV} modifier but not with the {F}
modifier.

EXAMPLE 1 {NV E}

EXAMPLE 2 TPM2_Clear() will flush all contexts associated with the Storage hierarchy and the
Endorsement hierarchy.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Notation Meaning

Auth Index: A Description modifier – When a handle has a “@” decoration, the “Description” column will
contain an “Auth Index:” entry for the handle. This entry indicates the number of the authorization
session. The authorization sessions associated with handles will occur in the session area in the
order of the handles with the “@” modifier. Sessions used only for encryption/decryption or only for
audit will follow the handles used for authorization.

Auth Role: A Description modifier – This will be in the “Description” column of a handle with the “@”
decoration. It may have a value of USER, ADMIN or DUP.

If the handle has the Auth Role of USER and the handle is an Object, the type of authorization is
determined by the setting of userWithAuth in the Object's attributes. If the handle is
TPM_RH_OWNER, TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if
userWithAuth is SET. If the handle references an NV Index, then the allowed authorizations are
determined by the settings of the attributes of the NV Index as described in TPM 2.0 Part 2,
"TPMA_NV (NV Index Attributes)."

If the Auth Role is ADMIN and the handle is an Object, the type of authorization is determined by
the setting of adminWithPolicy in the Object's attributes. If the handle is TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if adminWithPolicy is SET.
If the handle is an NV index, operation is as if adminWithPolicy is SET (see 5.6 e)2)).

If the DUP role is selected, authorization may only be with a policy session (DUP role only applies
to Objects).

When either ADMIN or DUP role is selected, a policy command that selects the command being
authorized is required to be part of the policy.

EXAMPLE TPM2_Certify requires the ADMIN role for the first handle (objectHandle). The policy
authorization for objectHandle is required to contain
TPM2_PolicyCommandCode(commandCode == TPM_CC_Certify). This sets the state of the
policy so that it can be used for ADMIN role authorization in TPM2_Certify().

4.3 Handle and Parameter Demarcation

The demarcations between the header, handle, and parameter parts are indicated by:

Table 2 — Separators

 Separator Meaning

 the values immediately following are in the handle area

 the values immediately following are in the parameter area

4.4 AuthorizationSize and ParameterSize

Authorization sessions are not shown in the command or response schematics. When the tag of a

command or response is TPM_ST_SESSIONS, then a 32-bit value will be present in the

command/response buffer to indicate the size of the authorization field or the parameter field. This value

shall immediately follow the handle area (which may contain no handles). For a command, this value

(authorizationSize) indicates the size of the Authorization Area and shall have a value of 9 or more. For a

response, this value (parameterSize) indicates the size of the parameter area and may have a value of

zero.

If the authorizationSize field is present in the command, parameterSize will be present in the response,

but only if the responseCode is TPM_RC_SUCCESS.

When authorization is required to use the TPM entity associated with a handle, then at least one session

will be present. To indicate this, the command tag Description field contains TPM_ST_SESSIONS.

Addional sessions for audit, encrypt, and decrypt may be present.

Part 3: Commands Trusted Platform Module Library

Page 4 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When the command tag Description field contains TPM_ST_NO_SESSIONS, then no sessions are

allowed and the authorizationSize field is not present.

When a command allows use of sessions when not required, the command tag Description field will

indicate the types of sessions that may be used with the command.

4.5 Return Code Alias

For the RC_FMT1 return codes that may add a parameter, handle, or session number, the prefix

TPM_RCS_ is an alias for TPM_RC_.

TPM_RC_n is added, where n is the parameter, handle, or session number. In addition, TPM_RC_H is

added for handle, TPM_RC_P for parameter, and TPM_RC_S for session errors.

NOTE TPM_RCS_ is a programming convention. Programmers should only add numbers to
TPM_RCS_ return codes, never TPM_RC_ return codes. Only return codes that can have a
number added have the TPM_RCS_ alias defined. Attempting to use a TPM_RCS_ return code
that does not have the TPM_RCS_ alias will cause a compiler error.

EXAMPLE 1 Since TPM_RC_VALUE can have a number added, TPM_RCS_VALUE is defined. A
program can use the construct "TPM_RCS_VALUE + number". Since TPM_RC_SIGNATURE
cannot have a number added, TPM_RCS_SIGNATURE is not defined. A program using the
construct "TPM_RCS_SIGNATURE + number" will not compile, alerting the programmer that the
construct is incorrect.

By convention, the number to be added is of the form RC_CommandName_ParameterName where

CommmandName is the name of the command with the TPM2_ prefix removed. The parameter name

alone is insufficient because the same parameter name could be in a different position in different

commands.

EXAMPLE 2 TPM2_HMAC_Start with parameters that result in TPM_ALG_NULL as the hash algorithm will
returns TPM_RC_VALUE plus the parameter number. Since hashAlg is the second parameter,
This code results:

#define RC_HMAC_Start_hashAlg (TPM_RC_P + TPM_RC_2)

return TPM_RCS_VALUE + RC_HMAC_Start_hashAlg;

5 Command Processing

5.1 Introduction

This clause defines the command validations that are required of any implementation and the response

code returned if the indicated check fails. Unless stated otherwise, the order of the checks is not

normative and different TPM may give different responses when a command has multiple errors.

In the description below, some statements that describe a check may be followed by a response code in

parentheses. This is the normative response code should the indicated check fail. A normative response

code may also be included in the statement.

5.2 Command Header Validation

Before a TPM may begin the actions associated with a command, a set of command format and

consistency checks shall be performed. These checks are listed below and should be performed in the

indicated order.

 The TPM shall successfully unmarshal a TPMI_ST_COMMAND_TAG and verify that it is either

TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS (TPM_RC_BAD_TAG).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 The TPM shall successfully unmarshal a UINT32 as the commandSize. If the TPM has an interface

buffer that is loaded by some hardware process, the number of octets in the input buffer for the

command reported by the hardware process shall exactly match the value in commandSize

(TPM_RC_COMMAND_SIZE).

NOTE A TPM may have direct access to system memory and unmarshal directly from that memory.

 The TPM shall successfully unmarshal a TPM_CC and verify that the command is implemented

(TPM_RC_COMMAND_CODE).

5.3 Mode Checks

The following mode checks shall be performed in the order listed:

 If the TPM is in Failure mode, then the commandCode is TPM_CC_GetTestResult or

TPM_CC_GetCapability (TPM_RC_FAILURE) and the command tag is TPM_ST_NO_SESSIONS

(TPM_RC_FAILURE).

NOTE 1 In Failure mode, the TPM has no cryptographic capability and processing of sessions is not
supported.

 The TPM is in Field Upgrade mode (FUM), the commandCode is TPM_CC_FieldUpgradeData

(TPM_RC_UPGRADE).

 If the TPM has not been initialized (TPM2_Startup()), then the commandCode is TPM_CC_Startup

(TPM_RC_INITIALIZE).

NOTE 2 The TPM may enter Failure mode during _TPM_Init processing, before TPM2_Startup(). Since
the platform firmware cannot know that the TPM is in Failure mode without accessing it, and
since the first command is required to be TPM2_Startup(), the expected sequence will be that
platform firmware (the CRTM) will issue TPM2_Startup() and receive TPM_RC_FAILURE
indicating that the TPM is in Failure mode.

There may be failures where a TPM cannot record that it received TPM2_Startup(). In those
cases, a TPM in failure mode may process TPM2_GetTestResult(), TPM2_GetCapability(), or
the field upgrade commands. As a side effect, that TPM may process TPM2_GetTestResult(),
TPM2_GetCapability() or the field upgrade commands before TPM2_Startup().

This is a corner case exception to the rule that TPM2_Startup() must be the first command.

The mode checks may be performed before or after the command header validation.

5.4 Handle Area Validation

After successfully unmarshaling and validating the command header, the TPM shall perform the following

checks on the handles and sessions. These checks may be performed in any order.

NOTE 1 A TPM is required to perform the handle area validation before the authorization checks because an
authorization cannot be performed unless the authorization values and attributes for the referenced
entity are known by the TPM. For them to be known, the referenced entity must be in the TPM and
accessible.

 The TPM shall successfully unmarshal the number of handles required by the command and validate

that the value of the handle is consistent with the command syntax. If not, the TPM shall return

TPM_RC_VALUE.

NOTE 2 The TPM may unmarshal a handle and validate that it references an entity on the TPM before
unmarshaling a subsequent handle.

NOTE 3 If the submitted command contains fewer handles than required by the syntax of the command,
the TPM may continue to read into the next area and attempt to interpret the data as a handle.

Part 3: Commands Trusted Platform Module Library

Page 6 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 For all handles in the handle area of the command, the TPM will validate that the referenced entity is

present in the TPM.

1) If the handle references a transient object, the handle shall reference a loaded object

(TPM_RC_REFERENCE_H0 + N where N is the number of the handle in the command).

NOTE 4 If the hierarchy for a transient object is disabled, then the transient objects will be flushed
so this check will fail.

2) If the handle references a persistent object, then

i) the hierarchy associated with the object (platform or storage, based on the handle value) is

enabled (TPM_RC_HANDLE);

ii) the handle shall reference a persistent object that is currently in TPM non-volatile memory

(TPM_RC_HANDLE);

iii) if the handle references a persistent object that is associated with the endorsement hierarchy,

that the endorsement hierarchy is not disabled (TPM_RC_HANDLE); and

NOTE 5 The reference implementation keeps an internal attribute, passed down from a primary
key to its descendents, indicating the object's hierarchy.

iv) if the TPM implementation moves a persistent object to RAM for command processing then

sufficient RAM space is available (TPM_RC_OBJECT_MEMORY).

3) If the handle references an NV Index, then

i) an Index exists that corresponds to the handle (TPM_RC_HANDLE); and

ii) the hierarchy associated with the existing NV Index is not disabled (TPM_RC_HANDLE).

iii) If the command requires write access to the index data then TPMA_NV_WRITELOCKED is

not SET (TPM_RC_NV_LOCKED)

iv) If the command requires read access to the index data then TPMA_NV_READLOCKED is

not SET (TPM_RC_NV_LOCKED)

4) If the handle references a session, then the session context shall be present in TPM memory

(TPM_RC_REFERENCE_H0 + N).

5) If the handle references a primary seed for a hierarchy (TPM_RH_ENDORSEMENT,

TPM_RH_OWNER, or TPM_RH_PLATFORM) then the enable for the hierarchy is SET

(TPM_RC_HIERARCHY).

6) If the handle references a PCR, then the value is within the range of PCR supported by the TPM

(TPM_RC_VALUE)

NOTE 6 In the reference implementation, this TPM_RC_VALUE is returned by the unmarshaling
code for a TPMI_DH_PCR.

5.5 Session Area Validation

 If the tag is TPM_ST_SESSIONS and the command requires TPM_ST_NO_SESSIONS, the TPM will

return TPM_RC_AUTH_CONTEXT.

 If the tag is TPM_ST_NO_SESSIONS and the command requires TPM_ST_SESSIONS, the TPM will

return TPM_RC_AUTH_MISSING.

 If the tag is TPM_ST_SESSIONS, the TPM will attempt to unmarshal an authorizationSize and return

TPM_RC_AUTHSIZE if the value is not within an acceptable range.

1) The minimum value is (sizeof(TPM_HANDLE) + sizeof(UINT16) + sizeof(TPMA_SESSION) +

sizeof(UINT16)).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2) The maximum value of authorizationSize is equal to commandSize – (sizeof(TPM_ST) +

sizeof(UINT32) + sizeof(TPM_CC) + (N * sizeof(TPM_HANDLE)) + sizeof(UINT32)) where N is

the number of handles associated with the commandCode and may be zero.

NOTE 1 (sizeof(TPM_ST) + sizeof(UINT32) + sizeof(TPM_CC)) is the size of a command header.
The last UINT32 contains the authorizationSize octets, which are not counted as being in
the authorization session area.

 The TPM will unmarshal the authorization sessions and perform the following validations:

1) If the session handle is not a handle for an HMAC session, a handle for a policy session, or,

TPM_RS_PW then the TPM shall return TPM_RC_HANDLE.

2) If the session is not loaded, the TPM will return the warning TPM_RC_REFERENCE_S0 + N

where N is the number of the session. The first session is session zero, N = 0.

NOTE 2 If the HMAC and policy session contexts use the same memory, the type of the context
must match the type of the handle.

3) If the maximum allowed number of sessions have been unmarshaled and fewer octets than

indicated in authorizationSize were unmarshaled (that is, authorizationSize is too large), the TPM

shall return TPM_RC_AUTHSIZE.

4) The consistency of the authorization session attributes is checked.

i) Only one session is allowed for:

(a) session auditing (TPM_RC_ATTRIBUTES) – this session may be used for encrypt or

decrypt but may not be a session that is also used for authorization;

(b) decrypting a command parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions, or the audit session, or a session may be added for the single

purpose of decrypting a command parameter, as long as the total number of sessions

does not exceed three; and

(c) encrypting a response parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions, or the audit session if present, ora session may be added for the

single purpose of encrypting a response parameter, as long as the total number of

sessions does not exceed three.

NOTE 3 A session used for decrypting a command parameter may also be used for
encrypting a response parameter.

ii) If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must

be SET. (TPM_RC_ATTRIBUTES).

5) An authorization session is present for each of the handles with the “@” decoration

(TPM_RC_AUTH_MISSING).

5.6 Authorization Checks

After unmarshaling and validating the handles and the consistency of the authorization sessions, the

authorizations shall be checked. Authorization checks only apply to handles if the handle in the command

schematic has the “@” decoration. Authorization checks must be performed in this order.

 The public and sensitive portions of the object shall be present on the TPM

(TPM_RC_AUTH_UNAVAILABLE).

 If the associated handle is TPM_RH_PLATFORM, and the command requires confirmation with

physical presence, then physical presence is asserted (TPM_RC_PP).

 If the object or NV Index is subject to DA protection, and the authorization is with an HMAC or

password, then the TPM is not in lockout (TPM_RC_LOCKOUT).

Part 3: Commands Trusted Platform Module Library

Page 8 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 1 An object is subject to DA protection if its noDA attribute is CLEAR. An NV Index is subject to
DA protection if its TPMA_NV_NO_DA attribute is CLEAR.

NOTE 2 An HMAC or password is required in a policy session when the policy contains
TPM2_PolicyAuthValue() or TPM2_PolicyPassword().

 If the command requires a handle to have DUP role authorization, then the associated authorization

session is a policy session (TPM_RC_AUTH_TYPE).

 If the command requires a handle to have ADMIN role authorization:

1) If the entity being authorized is an object and its adminWithPolicy attribute is SET, or a hierarchy,

then the authorization session is a policy session (TPM_RC_AUTH_TYPE).

NOTE 3 If adminWithPolicy is CLEAR, then any type of authorization session is allowed.

2) If the entity being authorized is an NV Index, then the associated authorization session is a policy

session.

NOTE 4 The only commands that are currently defined that require use of ADMIN role authorization
are commands that operate on objects and NV Indices.

 If the command requires a handle to have USER role authorization:

1) If the entity being authorized is an object and its userWithAuth attribute is CLEAR, then the

associated authorization session is a policy session (TPM_RC_POLICY_FAIL).

NOTE 5 There is no check for a hierarchy, because a hierarchy operates as if use rWithAuth is SET.

2) If the entity being authorized is an NV Index;

i) if the authorization session is a policy session;

(a) the TPMA_NV_POLICYWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_POLICYREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE);

ii) if the authorization is an HMAC session or a password;

(a) the TPMA_NV_AUTHWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_AUTHREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE).

 If the authorization is provided by a policy session, then:

1) if policySession→timeOut has been set, the session shall not have expired

(TPM_RC_EXPIRED);

2) if policySession→cpHash has been set, it shall match the cpHash of the command

(TPM_RC_POLICY_FAIL);

3) if policySession→commandCode has been set, then commandCode of the command shall match

(TPM_RC_POLICY_CC);

4) policySession→policyDigest shall match the authPolicy associated with the handle

(TPM_RC_POLICY_FAIL);

5) if policySession→pcrUpdateCounter has been set, then it shall match the value of

pcrUpdateCounter (TPM_RC_PCR_CHANGED);

6) if policySession→commandLocality has been set, it shall match the locality of the command

(TPM_RC_LOCALITY),

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7) if policySession→cpHash contains a template, and the command is TPM2_Create(),

TPM2_CreatePrimary(), or TPM2_CreateLoaded(), then the inPublic parmeter matches the

contents of policySession→cpHash; and

8) if the policy requires that an authValue be provided in order to satisfy the policy, then

session.hmac is not an Empty Buffer.

 If the authorization uses an HMAC, then the HMAC is properly constructed using the authValue

associated with the handle and/or the session secret (TPM_RC_AUTH_FAIL or

TPM_RC_BAD_AUTH).

NOTE 6 A policy session may require proof of knowledge of the authValue of the object being
authorized.

 If the authorization uses a password, then the password matches the authValue associated with the

handle (TPM_RC_AUTH_FAIL or TPM_RC_BAD_AUTH).

If the TPM returns an error other than TPM_RC_AUTH_FAIL then the TPM shall not alter any TPM state.

If the TPM return TPM_RC_AUTH_FAIL, then the TPM shall not alter any TPM state other than

lockoutCount.

NOTE 7 The TPM may decrease failedTries regardless of any other processing performed by the TPM. That
is, the TPM may exit Lockout mode, regardless of the return code.

5.7 Parameter Decryption

If an authorization session has the TPMA_SESSION.decrypt attribute SET, and the command does not

allow a command parameter to be encrypted, then the TPM will return TPM_RC_ATTRIBUTES.

Otherwise, the TPM will decrypt the parameter using the values associated with the session before

parsing parameters.

NOTE The size of the parameter to be encrypted can be zero.

5.8 Parameter Unmarshaling

 Introduction

The detailed actions for each command assume that the input parameters of the command have been

unmarshaled into a command-specific structure with the structure defined by the command schematic.

Additionally, a response-specific output structure is assumed which will receive the values produced by

the detailed actions.

NOTE An implementation is not required to process parameters in this manner or to separate the
parameter parsing from the command actions. This method was chosen for the specification so that
the normative behavior described by the detailed actions would be clear and une ncumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the

parameters for use by the command-specific action code. No data movement need take place but it is

required that the TPM validate that the parameters meet the requirements of the expected data type as

defined in TPM 2.0 Part 2.

Part 3: Commands Trusted Platform Module Library

Page 10 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Unmarshaling Errors

When an error is encountered while unmarshaling a command parameter, an error response code is

returned and no command processing occurs. A table defining a data type may have response codes

embedded in the table to indicate the error returned when the input value does not match the parameters

of the table.

NOTE In the reference implementation, a parameter number is added to the response code so that the
offending parameter can be isolated. This is optional.

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 3.

Table 3 — Unmarshaling Errors

Response Code Meaning

TPM_RC_ASYMMETRIC a parameter that should be an asymmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_BAD_TAG a parameter that should be a command tag selection has a value that is not
supported by the TPM

TPM_RC_COMMAND_CODE a parameter that should be a command code does not have a value that is
supported by the TPM

TPM_RC_HASH a parameter that should be a hash algorithm selection does not have a value that
is supported by the TPM

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_KDF a parameter that should be a key derivation scheme (KDF) selection does not
have a value that is supported by the TPM

TPM_RC_KEY_SIZE a parameter that is a key size has a value that is not supported by the TPM

TPM_RC_MODE a parameter that should be a symmetric encryption mode selection does not have
a value that is supported by the TPM

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SCHEME a parameter that should be signing or encryption scheme selection does not have
a value that is supported by the TPM

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_SYMMETRIC a parameter that should be a symmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_TAG a parameter that should be a structure tag has a value that is not supported by
the TPM

TPM_RC_TYPE The type parameter of a TPMT_PUBLIC or TPMT_SENSITIVE has a value that is
not supported by the TPM

TPM_RC_VALUE a parameter does not have one of its allowed values

In some commands, a parameter may not be used because of various options of that command.

However, the unmarshaling code is required to validate that all parameters have values that are allowed

by the TPM 2.0 Part 2 definition of the parameter type even if that parameter is not used in the command

actions.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.9 Command Post Processing

When the code that implements the detailed actions of the command completes, it returns a response

code. If that code is not TPM_RC_SUCCESS, the post processing code will not update any session or

audit data and will return a 10-octet response packet.

If the command completes successfully, the tag of the command determines if any authorization sessions

will be in the response. If so, the TPM will encrypt the first parameter of the response if indicated by the

authorization attributes. The TPM will then generate a new nonce value for each session and, if

appropriate, generate an HMAC.

If authorization HMAC computations are performed on the response, the HMAC keys used in the

response will be the same as the HMAC keys used in processing the HMAC in the command.

NOTE 1 This primarily affects authorizations associated with a first write to an NV Index using a bound
session. The computation of the HMAC in the response is performed as if the Name o f the Index did
not change as a consequence of the command actions. The session binding to the NV Index will not
persist to any subsequent command.

NOTE 2 The authorization attributes were validated during the session area validation to ensure that only
one session was used for parameter encryption of the response and that the command allowed
encryption in the response.

NOTE 3 No session nonce value is used for a password authorization but the session data is present.

Additionally, if the command is being audited by Command Audit, the audit digest is updated with the

cpHash of the command and rpHash of the response.

Part 3: Commands Trusted Platform Module Library

Page 12 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6 Response Values

6.1 Tag

When a command completes successfully, the tag parameter in the response shall have the same value

as the tag parameter in the command (TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS). When a

command fails (the responseCode is not TPM_RC_SUCCESS), then the tag parameter in the response

shall be TPM_ST_NO_SESSIONS.

A special case exists when the command tag parameter is not an allowed value (TPM_ST_SESSIONS or

TPM_ST_NO_SESSIONS). For this case, it is assumed that the system software is attempting to send a

command formatted for a TPM 1.2 but the TPM is not capable of executing TPM 1.2 commands. So that

the TPM 1.2 compatible software will have a recognizable response, the TPM sets tag to

TPM_ST_RSP_COMMAND, responseSize to 00 00 00 0A16 and responseCode to TPM_RC_BAD_TAG.

This is the same response as the TPM 1.2 fatal error for TPM_BADTAG.

6.2 Response Codes

The normal response for any command is TPM_RC_SUCCESS. Any other value indicates that the

command did not complete and the state of the TPM is unchanged. An exception to this general rule is

that the logic associated with dictionary attack protection is allowed to be modified when an authorization

failure occurs.

Commands have response codes that are specific to that command, and those response codes are

enumerated in the detailed actions of each command. The codes associated with the unmarshaling of

parameters are documented Table 3. Another set of response code values are not command specific and

indicate a problem that is not specific to the command. That is, if the indicated problem is remedied, the

same command could be resubmitted and may complete normally.

The response codes that are not command specific are listed and described in

Table 4.

The reference code for the command actions may have code that generates specific response codes

associated with a specific check but the listing of responses may not have that response code listed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Table 4 — Command-Independent Response Codes

Response Code Meaning

TPM_RC_CANCELED

This response code may be returned by a TPM that supports command cancel.
When the TPM receives an indication that the current command should be
cancelled, the TPM may complete the command or return this code. If this code
is returned, then the TPM state is not changed and the same command may be
retried.

TPM_RC_CONTEXT_GAP

This response code can be returned for commands that manage session
contexts. It indicates that the gap between the lowest numbered active session
and the highest numbered session is at the limits of the session tracking logic.
The remedy is to load the session context with the lowest number so that its
tracking number can be updated.

TPM_RC_LOCKOUT
This response indicates that authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in DA lockout mode. The remedy
is to wait or to exeucte TPM2_DictionaryAttackLockoutReset().

TPM_RC_MEMORY

A TPM may use a common pool of memory for objects, sessions, and other
purposes. When the TPM does not have enough memory available to perform
the actions of the command, it may return TPM_RC_MEMORY. This indicates
that the TPM resource manager may flush either sessions or objects in order to
make memory available for the command execution. A TPM may choose to
return TPM_RC_OBJECT_MEMORY or TPM_RC_SESSION_MEMORY if it
needs contexts of a particular type to be flushed.

TPM_RC_NV_RATE

This response code indicates that the TPM is rate-limiting writes to the NV
memory in order to prevent wearout. This response is possible for any command
that explicity writes to NV or commands that incidentally use NV such as a
command that uses authorization session that may need to update the dictionary
attack logic.

TPM_RC_NV_UNAVAILABLE

This response code is similar to TPM_RC_NV_RATE but indicates that access to
NV memory is currently not available and the command is not allowed to proceed
until it is. This would occur in a system where the NV memory used by the TPM
is not exclusive to the TPM and is a shared system resource.

TPM_RC_OBJECT_HANDLES

This response code indicates that the TPM has exhausted its handle space and
no new objects can be loaded unless the TPM is rebooted. This does not occur in
the reference implementation because of the way that object handles are
allocated. However, other implementations are allowed to assign each object a
unique handle each time the object is loaded. A TPM using this implementation
would be able to load 224 objects before the object space is exhausted.

TPM_RC_OBJECT_MEMORY

This response code can be returned by any command that causes the TPM to
need an object 'slot'. The most common case where this might be returned is
when an object is loaded (TPM2_Load, TPM2_CreatePrimary(), or
TPM2_ContextLoad()). However, the TPM implementation is allowed to use
object slots for other reasons. In the reference implementation, the TPM copies a
referenced persistent object into RAM for the duration of the commannd. If all the
slots are previously occupied, the TPM may return this value. A TPM is allowed
to use object slots for other purposes and return this value. The remedy when
this response is returned is for the TPM resource manager to flush a transient
object.

TPM_RC_REFERENCE_Hx

This response code indicates that a handle in the handle area of the command is
not associated with a loaded object. The value of 'x' is in the range 0 to 6 with a
value of 0 indicating the 1st handle and 6 representing the 7th. Upper values are
provided for future use. The TPM resource manager needs to find the correct
object and load it. It may then adjust the handle and retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

Part 3: Commands Trusted Platform Module Library

Page 14 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Response Code Meaning

TPM_RC_REFERENCE_Sx

This response code indicates that a handle in the session area of the command
is not associated with a loaded session. The value of 'x' is in the range 0 to 6 with
a value of 0 indicating the 1st session handle and 6 representing the 7th. Upper
values are provided for future use. The TPM resource manager needs to find the
correct session and load it. It may then retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

TPM_RC_RETRY the TPM was not able to start the command

TPM_RC_SESSION_HANDLES

This response code indicates that the TPM does not have a handle to assign to a
new session. This respose is only returned by TPM2_StartAuthSession(). It is
listed here because the command is not in error and the TPM resource manager
can remedy the situation by flushing a session (TPM2_FlushContext().

TPM_RC_SESSION_MEMORY

This response code can be returned by any command that causes the TPM to
need a session 'slot'. The most common case where this might be returned is
when a session is loaded (TPM2_StartAuthSession() or TPM2_ContextLoad()).
However, the TPM implementation is allowed to use object slots for other
purposes. The remedy when this response is returned is for the TPM resource
manager to flush a transient object.

TPM_RC_SUCCESS

Normal completion for any command. If the responseCode is
TPM_RC_SUCCESS, then the rest of the response has the format indicated in
the response schematic. Otherwise, the response is a 10 octet value indicating
an error.

TPM_RC_TESTING
This response code indicates that the TPM is performing tests and cannot
respond to the request at this time. The command may be retried.

TPM_RC_YIELDED

the TPM has suspended operation on the command; forward progress was made
and the command may be retried.

See TPM 2.0 Part 1, “Multi-tasking.”

NOTE This cannot occur on the reference implementation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7 Implementation Dependent

The actions code for each command makes assumptions about the behavior of various sub-systems.

There are many possible implementations of the subsystems that would achieve equivalent results. The

actions code is not written to anticipate all possible implementations of the sub-systems. Therefore, it is

the responsibility of the implementer to ensure that the necessary changes are made to the actions code

when the sub-system behavior changes.

Part 3: Commands Trusted Platform Module Library

Page 16 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8 Detailed Actions Assumptions

8.1 Introduction

The C code in the Detailed Actions for each command is written with a set of assumptions about the

processing performed before the action code is called and the processing that will be done after the

action code completes.

8.2 Pre-processing

Before calling the command actions code, the following actions have occurred.

• Verification that the handles in the handle area reference entities that are resident on the TPM.

• NOTE If a handle is in the parameter portion of the command, the associated entity does not
have to be loaded, but the handle is required to be the correct type.

• If use of a handle requires authorization, the Password, HMAC, or Policy session associated with the
handle has been verified.

• If a command parameter was encrypted using parameter encryption, it was decrypted before being
unmarshaled.

• If the command uses handles or parameters, the calling stack contains a pointer to a data structure
(in) that holds the unmarshaled values for the handles and command parameters. If the response has
handles or parameters, the calling stack contains a pointer to a data structure (out) to hold the
handles and response parameters generated by the command.

• All parameters of the in structure have been validated and meet the requirements of the parameter
type as defined in TPM 2.0 Part 2.

• Space set aside for the out structure is sufficient to hold the largest out structure that could be
produced by the command

8.3 Post Processing

When the function implementing the command actions completes,

• response parameters that require parameter encryption will be encrypted after the command actions
complete;

• audit and session contexts will be updated if the command response is TPM_RC_SUCCESS; and

• the command header and command response parameters will be marshaled to the response buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9 Start-up

9.1 Introduction

This clause contains the commands used to manage the startup and restart state of a TPM.

9.2 _TPM_Init

 General Description

_TPM_Init initializes a TPM.

Initialization actions include testing code required to execute the next expected command. If the TPM is in

FUM, the next expected command is TPM2_FieldUpgradeData(); otherwise, the next expected command

is TPM2_Startup().

NOTE 1 If the TPM performs self-tests after receiving _TPM_Init() and the TPM enters Failure mode before
receiving TPM2_Startup() or TPM2_FieldUpgradeData(), then the TPM may be able to accept
TPM2_GetTestResult() or TPM2_GetCapability().

The means of signaling _TPM_Init shall be defined in the platform-specific specifications that define the

physical interface to the TPM. The platform shall send this indication whenever the platform starts its boot

process and only when the platform starts its boot process.

There shall be no software method of generating this indication that does not also reset the platform and

begin execution of the CRTM.

NOTE 2 In the reference implementation, this signal causes an internal flag (s_initialized) to be CLEAR.
While this flag is CLEAR, the TPM will only accept the next expected command described above.

Part 3: Commands Trusted Platform Module Library

Page 18 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[_TPM_Init]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3 TPM2_Startup

 General Description

TPM2_Startup() is always preceded by _TPM_Init, which is the physical indication that TPM initialization

is necessary because of a system-wide reset. TPM2_Startup() is only valid after _TPM_Init. Additional

TPM2_Startup() commands are not allowed after it has completed successfully. If a TPM requires

TPM2_Startup() and another command is received, or if the TPM receives TPM2_Startup() when it is not

required, the TPM shall return TPM_RC_INITIALIZE.

NOTE 1 See 9.2.1 for other command options for a TPM supporting field upgrade mode.

NOTE 2 _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are not commands and a platform -
specific specification may allow these indications between _TPM_Init and TPM2_Startup().

If in Failure mode, the TPM shall accept TPM2_GetTestResult() and TPM2_GetCapability() even if

TPM2_Startup() is not completed successfully or processed at all.

A platform-specific specification may restrict the localities at which TPM2_Startup() may be received.

A Shutdown/Startup sequence determines the way in which the TPM will operate in response to

TPM2_Startup(). The three sequences are:

1) TPM Reset – This is a Startup(CLEAR) preceded by either Shutdown(CLEAR) or no
TPM2_Shutdown(). On TPM Reset, all variables go back to their default initialization state.

NOTE 3 Only those values that are specified as having a default initialization state are changed by TPM
Reset. Persistent values that have no default initialization state are not changed by this
command. Values such as seeds have no default initialization state and only change due to
specific commands.

2) TPM Restart – This is a Startup(CLEAR) preceded by Shutdown(STATE). This preserves much of the
previous state of the TPM except that PCR and the controls associated with the Platform hierarchy
are all returned to their default initialization state;

3) TPM Resume – This is a Startup(STATE) preceded by Shutdown(STATE). This preserves the
previous state of the TPM including the static Root of Trust for Measurement (S-RTM) PCR and the
platform controls other than the phEnable.

If a TPM receives Startup(STATE) and that was not preceded by Shutdown(STATE), the TPM shall return

TPM_RC_VALUE.

If, during TPM Restart or TPM Resume, the TPM fails to restore the state saved at the last

Shutdown(STATE), the TPM shall enter Failure Mode and return TPM_RC_FAILURE.

On any TPM2_Startup(),

• phEnable shall be SET;

• all transient contexts (objects, sessions, and sequences) shall be flushed from TPM memory;

NOTE 4 See Part 1 Time for a description of the TPMS_TIME_INFO. time behaviour.

• use of lockoutAuth shall be enabled if lockoutRecovery is zero.

Additional actions are performed based on the Shutdown/Startup sequence.

Part 3: Commands Trusted Platform Module Library

Page 20 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

On TPM Reset:

• platformAuth and platformPolicy shall be set to the Empty Buffer,

• For each NV Index with TPMA_NV_WRITEDEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

• For each NV Index with TPMA_NV_ORDERLY SET, TPMA_NV_WRITTEN shall be CLEAR unless
the type is TPM_NT_COUNTER,

• On a disorderly reset, advance the orderly counters,

• For each NV Index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be CLEAR,

• tracking data for saved session contexts shall be set to its initial value,

• the object context sequence number is reset to zero,

• a new context encryption key shall be generated,

• TPMS_CLOCK_INFO.restartCount shall be reset to zero,

• TPMS_CLOCK_INFO.resetCount shall be incremented,

• the PCR Update Counter shall be clear to zero,

NOTE 5 Because the PCR update counter may be incremented when a PCR is reset, the PCR resets
performed as part of this command can result in the PCR update counter being non -zero at the
end of this command.

• phEnableNV, shEnable and ehEnable shall be SET, and

• PCR in all banks are reset to their default initial conditions as determined by the relevant platform-
specific specification and the H-CRTM state (for exceptions, see TPM 2.0 Part 1, H-CRTM before
TPM2_Startup() and TPM2_Startup without H-CRTM),

• For each ACT the timeout is reset to zero, the signaled attribute is set to CLEAR (if preserveSignaled
is CLEAR), and the authPolicy is set to the Empty Buffer and its hashAlg is set to TPM_ALG_NULL.

NOTE 6 PCR may be initialized any time between _TPM_Init and the end of TPM2_Startup(). PCR that
are preserved by TPM Resume will need to be restored during TPM2_Startup().

NOTE 7 See "Initializing PCR" in TPM 2.0 Part 1 for a description of the default initial conditions for a
PCR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

On TPM Restart:

• TPMS_CLOCK_INFO.restartCount shall be incremented,

• phEnableNV, shEnable and ehEnable shall be SET,

• platformAuth and platformPolicy shall be set to the Empty Buffer,

• For each NV index with TPMA_NV_WRITEDEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

• For each NV index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be CLEAR,
and

• PCR in all banks are reset to their default initial conditions.

• If an H-CRTM Event Sequence is active, extend the PCR designated by the platform-specific
specification.

• For each ACT the timeout is reset to zero, the signaled attribute is set to CLEAR (if preserveSignaled
is CLEAR), and the authPolicy is set to the Empty Buffer and its hashAlg is set to TPM_ALG_NULL.

On TPM Resume:

• the H-CRTM startup method is the same for this TPM2_Startup() as for the previous TPM2_Startup();
(TPM_RC_LOCALITY)

• TPMS_CLOCK_INFO.restartCount shall be incremented; and

• PCR that are specified in a platform-specific specification to be preserved on TPM Resume are
restored to their saved state and other PCR are set to their initial value as determined by a platform-
specific specification. For constraints, see TPM 2.0 Part 1, H-CRTM before TPM2_Startup() and
TPM2_Startup without H-CRTM.

• The ACT timeout, the ACT signaled attribute and the ACT specific authPolicy values are preserved.

Other TPM state may change as required to meet the needs of the implementation.

If the startupType is TPM_SU_STATE and the TPM requires TPM_SU_CLEAR, then the TPM shall return

TPM_RC_VALUE.

NOTE 8 The TPM will require TPM_SU_CLEAR when no shutdown was performed or after
Shutdown(CLEAR).

NOTE 9 If startupType is neither TPM_SU_STATE nor TPM_SU_CLEAR, then the unmarshaling code returns
TPM_RC_VALUE.

Part 3: Commands Trusted Platform Module Library

Page 22 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 5 — TPM2_Startup Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Startup {NV}

TPM_SU startupType TPM_SU_CLEAR or TPM_SU_STATE

Table 6 — TPM2_Startup Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[Startup]]

Part 3: Commands Trusted Platform Module Library

Page 24 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.4 TPM2_Shutdown

 General Description

This command is used to prepare the TPM for a power cycle. The shutdownType parameter indicates

how the subsequent TPM2_Startup() will be processed.

For a shutdownType of any type, the volatile portion of Clock is saved to NV memory and the orderly

shutdown indication is SET. NV Indexes with the TPMA_NV_ORDERLY attribute will be updated.

For a shutdownType of TPM_SU_STATE, the following additional items are saved:

• tracking information for saved session contexts;

• the session context counter;

• PCR that are designated as being preserved by TPM2_Shutdown(TPM_SU_STATE);

• the PCR Update Counter;

• flags associated with supporting the TPMA_NV_WRITESTCLEAR and TPMA_NV_READSTCLEAR
attributes;

• the counter value and authPolicy for each ACT; and

NOTE If a counter has not been updated since the last TPM2_Startup(), then the saved value will be one
half of the current counter value.

• the command audit digest and count.

The following items shall not be saved and will not be in TPM memory after the next TPM2_Startup:

• TPM-memory-resident session contexts;

• TPM-memory-resident transient objects; or

• TPM-memory-resident hash contexts created by TPM2_HashSequenceStart().

Some values may be either derived from other values or saved to NV memory.

This command saves TPM state but does not change the state other than the internal indication that the

context has been saved. The TPM shall continue to accept commands. If a subsequent command

changes TPM state saved by this command, then the effect of this command is nullified. The TPM MAY

nullify this command for any subsequent command rather than check whether the command changed

state saved by this command. If this command is nullified. and if no TPM2_Shutdown() occurs before the

next TPM2_Startup(), then the next TPM2_Startup() shall be TPM2_Startup(CLEAR).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 7 — TPM2_Shutdown Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Shutdown {NV}

TPM_SU shutdownType TPM_SU_CLEAR or TPM_SU_STATE

Table 8 — TPM2_Shutdown Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 26 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Shutdown]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10 Testing

10.1 Introduction

Compliance to standards for hardware security modules may require that the TPM test its functions

before the results that depend on those functions may be returned. The TPM may perform operations

using testable functions before those functions have been tested as long as the TPM returns no value

that depends on the correctness of the testable function.

EXAMPLE TPM2_PCR_Extend() may be executed before the hash algorithms have been tested. However, until
the hash algorithms have been tested, the contents of a PCR may not be used in any command if
that command may result in a value being returned to the TPM user. This means that
TPM2_PCR_Read() or TPM2_PolicyPCR() could not complete until the hashes have been checked
but other TPM2_PCR_Extend() commands may be executed even though the operation uses
previous PCR values.

If a command is received that requires return of a value that depends on untested functions, the TPM

shall test the required functions before completing the command.

Once the TPM has received TPM2_SelfTest() and before completion of all tests, the TPM is required to

return TPM_RC_TESTING for any command that uses a function that requires a test.

If a self-test fails at any time, the TPM will enter Failure mode. While in Failure mode, the TPM will return

TPM_RC_FAILURE for any command other than TPM2_GetTestResult() and TPM2_GetCapability(). The

TPM will remain in Failure mode until the next _TPM_Init.

Part 3: Commands Trusted Platform Module Library

Page 28 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2 TPM2_SelfTest

 General Description

This command causes the TPM to perform a test of its capabilities. If the fullTest is YES, the TPM will test

all functions. If fullTest = NO, the TPM will only test those functions that have not previously been tested.

If any tests are required, the TPM shall either

• return TPM_RC_TESTING and begin self-test of the required functions, or

NOTE 1 If fullTest is NO, and all functions have been tested, the TPM shall return TPM_RC_SUCCESS.

• perform the tests and return the test result when complete. On failure, the TPM shall return
TPM_RC_FAILURE.

If the TPM uses option a), the TPM shall return TPM_RC_TESTING for any command that requires use

of a testable function, even if the functions required for completion of the command have already been

tested.

NOTE 2 This command may cause the TPM to continue processing after it has returned the response. So
that software can be notified of the completion of the testing, the interface may include controls that
would allow the TPM to generate an interrupt when the “background” processing is complete. This
would be in addition to the interrupt that may be available for signaling normal command completion.
It is not necessary that there be two interrupts, but the interface should provide a way to indicate the
nature of the interrupt (normal command or deferred command).

NOTE 3 The PC Client platform specific TPM, in response to fullTest YES, will not return
TPM_RC_TESTING. It will block until all tests are complete.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 9 — TPM2_SelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SelfTest {NV}

TPMI_YES_NO fullTest
YES if full test to be performed

NO if only test of untested functions required

Table 10 — TPM2_SelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 30 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[SelfTest]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.3 TPM2_IncrementalSelfTest

 General Description

This command causes the TPM to perform a test of the selected algorithms.

NOTE 1 The toTest list indicates the algorithms that software would like the TPM to test in anticipation of
future use. This allows tests to be done so that a future commands will not be delayed due to
testing.

 The implementation may treat algorithms on the toTest list as either 'test each completely' or 'test
this combination.'

EXAMPLE If the toTest list includes AES and CTR mode, it may be interpreted as a request to test only AES in
CTR mode. Alternatively, it may be interpreted as a request to test AES in all modes and CTR mode
for all symmetric algorithms.

If toTest contains an algorithm that has already been tested, it will not be tested again.

NOTE 2 The only way to force retesting of an algorithm is with TPM2_SelfTest(fullTest = YES).

The TPM will return in toDoList a list of algorithms that are yet to be tested. This list is not the list of

algorithms that are scheduled to be tested but the algorithms/functions that have not been tested. Only

the algorithms on the toTest list are scheduled to be tested by this command.

NOTE 3 An algorithm remains on the toDoList while any part of it remains untested.

EXAMPLE A symmetric algorithm remains untested until it is tested with all its modes.

Making toTest an empty list allows the determination of the algorithms that remain untested without

triggering any testing.

If toTest is not an empty list, the TPM shall return TPM_RC_SUCCESS for this command and then return

TPM_RC_TESTING for any subsequent command (including TPM2_IncrementalSelfTest()) until the

requested testing is complete.

NOTE 4 If toDoList is empty, then no additional tests are required and TPM_RC_TESTING will not be
returned in subsequent commands and no additional delay will occur in a command due to testing.

NOTE 5 If none of the algorithms listed in toTest is in the toDoList, then no tests will be performed.

NOTE 6 The TPM cannot return TPM_RC_TESTING for the first call to this command even when testing is
not complete, because response parameters can only returned with the TPM_RC_SUCCESS return
code.

If all the parameters in this command are valid, the TPM returns TPM_RC_SUCCESS and the toDoList

(which may be empty).

NOTE 7 An implementation may perform all requested tests before returning TPM_RC_SUCCESS, or it may
return TPM_RC_SUCCESS for this command and then return TPM_RC_TESTING for all
subsequence commands (including TPM2_IncrementatSelfTest()) until the requested tests are
complete.

Part 3: Commands Trusted Platform Module Library

Page 32 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 11 — TPM2_IncrementalSelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_IncrementalSelfTest {NV}

TPML_ALG toTest list of algorithms that should be tested

Table 12 — TPM2_IncrementalSelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_ALG toDoList list of algorithms that need testing

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[IncrementalSelfTest]]

Part 3: Commands Trusted Platform Module Library

Page 34 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.4 TPM2_GetTestResult

 General Description

This command returns manufacturer-specific information regarding the results of a self-test and an

indication of the test status.

If TPM2_SelfTest() has not been executed and a testable function has not been tested, testResult will be

TPM_RC_NEEDS_TEST. If TPM2_SelfTest() has been received and the tests are not complete,

testResult will be TPM_RC_TESTING.

If testing of all functions is complete without functional failures, testResult will be TPM_RC_SUCCESS. If

any test failed, testResult will be TPM_RC_FAILURE.

This command will operate when the TPM is in Failure mode so that software can determine the test

status of the TPM and so that diagnostic information can be obtained for use in failure analysis. If the

TPM is in Failure mode, then tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

NOTE The reference implementation may return a 32-bit value s_failFunction. This simply gives a unique
value to each of the possible places where a failure could occur. It is not intended to provide a
pointer to the function. __func__ is a pointer to a character string but the failure mode code can only
return 32-bit values. It is expected that the manufacturer can disambiguate this value if a customer’s
TPM goes into failure mode.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 13 — TPM2_GetTestResult Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTestResult

Table 14 — TPM2_GetTestResult Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData
test result data

contains manufacturer-specific information

TPM_RC testResult

Part 3: Commands Trusted Platform Module Library

Page 36 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[GetTestResult]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11 Session Commands

11.1 TPM2_StartAuthSession

 General Description

This command is used to start an authorization session using alternative methods of establishing the

session key (sessionKey). The session key is then used to derive values used for authorization and for

encrypting parameters.

This command allows injection of a secret into the TPM using either asymmetric or symmetric encryption.

The type of tpmKey determines how the value in encryptedSalt is encrypted. The decrypted secret value

is used to compute the sessionKey.

NOTE 1 If tpmKey Is TPM_RH_NULL, then encryptedSalt is required to be an Empty Buffer.

The label value of “SECRET” (see “Terms and Definitions” in TPM 2.0 Part 1) is used in the recovery of

the secret value.

The TPM generates the sessionKey from the recovered secret value.

No authorization is required for tpmKey or bind.

NOTE 2 The justification for using tpmKey without providing authorization is that the result of using the key is
not available to the caller, except indirectly through the sessionKey. This does not represent a point
of attack on the value of the key. If the caller attempts to use the session with out knowing the
sessionKey value, it is an authorization failure that will trigger the dictionary attack logic.

The entity referenced with the bind parameter contributes an authorization value to the sessionKey

generation process.

If both tpmKey and bind are TPM_RH_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is not

TPM_RH_NULL, then encryptedSalt is used in the computation of sessionKey. If bind is not

TPM_RH_NULL, the authValue of bind is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in

the symmetric parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial

nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall return

TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextID values, then the TPM shall return

TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See

“Context Management” in TPM 2.0 Part 1).

If tpmKey is not TPM_ALG_NULL then encryptedSalt shall be a TPM2B_ENCRYPTED_SECRET of the

proper type for tpmKey. The TPM shall return TPM_RC_HANDLE if the sensitive portion of tpmKey is not

loaded. The TPM shall return TPM_RC_VALUE if:

 tpmKey references an RSA key and

1) the size of encryptedSalt is not the same as the size of the public modulus of tpmKey,

2) encryptedSalt has a value that is greater than the public modulus of tpmKey,

3) encryptedSalt is not a properly encoded OAEP value, or

4) the decrypted salt value is larger than the size of the digest produced by the nameAlg of tpmKey;

or

Part 3: Commands Trusted Platform Module Library

Page 38 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 3 The asymScheme of the key object is ignored in this case and TPM_ALG_OAEP is used, even if
asymScheme is set to TPM_ALG_NULL.

 tpmKey references an ECC key and encryptedSalt

1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tpmKey;

NOTE 4 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

The TPM shall return TPM_RC_KEY if tpmkey does not reference an asymmetric key. The TPM shall

return TPM_RC_VALUE if the scheme of the key is not TPM_ALG_OAEP or TPM_ALG_NULL. The TPM

shall return TPM_RC_ATTRIBUTES if tpmKey does not have the decrypt attribute SET.

NOTE While TPM_RC_VALUE is preferred, TPM_RC_SCHEME is acceptable.

If bind references a transient object, then the TPM shall return TPM_RC_HANDLE if the sensitive portion

of the object is not loaded.

For all session types, this command will cause initialization of the sessionKey and may establish binding

between the session and an object (the bind object). If sessionType is TPM_SE_POLICY or

TPM_SE_TRIAL, the additional session initialization is:

• set policySession→policyDigest to a Zero Digest (the digest size for policySession→policyDigest is
the size of the digest produced by authHash);

• authorization may be given at any locality;

• authorization may apply to any command code;

• authorization may apply to any command parameters or handles;

• the authorization has no time limit;

• an authValue is not needed when the authorization is used;

• the session is not bound;

• the session is not an audit session; and

• the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be

used to compute the authPolicy for an object.

NOTE 5 Although this command changes the session allocation information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re -
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of

the digest produced by authHash.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 15 — TPM2_StartAuthSession Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey

handle of a loaded decrypt key used to encrypt salt

may be TPM_RH_NULL

Auth Index: None

TPMI_DH_ENTITY+ bind

entity providing the authValue

may be TPM_RH_NULL

Auth Index: None

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for the session

shall be at least 16 octets

TPM2B_ENCRYPTED_SECRET encryptedSalt

value encrypted according to the type of tpmKey

If tpmKey is TPM_RH_NULL, this shall be the Empty
Buffer.

TPM_SE sessionType
indicates the type of the session; simple HMAC or policy
(including a trial policy)

TPMT_SYM_DEF+ symmetric
the algorithm and key size for parameter encryption

may select TPM_ALG_NULL

TPMI_ALG_HASH authHash

hash algorithm to use for the session

Shall be a hash algorithm supported by the TPM and
not TPM_ALG_NULL

Table 16 — TPM2_StartAuthSession Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_SH_AUTH_SESSION sessionHandle handle for the newly created session

TPM2B_NONCE nonceTPM
the initial nonce from the TPM, used in the computation
of the sessionKey

Part 3: Commands Trusted Platform Module Library

Page 40 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[StartAuthSession]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11.2 TPM2_PolicyRestart

 General Description

This command allows a policy authorization session to be returned to its initial state. This command is

used after the TPM returns TPM_RC_PCR_CHANGED. That response code indicates that a policy will

fail because the PCR have changed after TPM2_PolicyPCR() was executed. Restarting the session

allows the authorizations to be replayed because the session restarts with the same nonceTPM. If the

PCR are valid for the policy, the policy may then succeed.

This command does not reset the policy ID or the policy start time.

Part 3: Commands Trusted Platform Module Library

Page 42 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 17 — TPM2_PolicyRestart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyRestart

TPMI_SH_POLICY sessionHandle the handle for the policy session

Table 18 — TPM2_PolicyRestart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyRestart]]

Part 3: Commands Trusted Platform Module Library

Page 44 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12 Object Commands

12.1 TPM2_Create

 General Description

This command is used to create an object that can be loaded into a TPM using TPM2_Load(). If the

command completes successfully, the TPM will create the new object and return the object’s creation

data (creationData), its public area (outPublic), and its encrypted sensitive area (outPrivate). Preservation

of the returned data is the responsibility of the caller. The object will need to be loaded (TPM2_Load())

before it may be used. The only difference between the inPublic TPMT_PUBLIC template and the

outPublic TPMT_PUBLIC object is in the unique field.

NOTE 1 This command may require temporary use of a transient resource, even though the object does not
remain loaded after the command. See Part 1 Transient Resources.

TPM2B_PUBLIC template (inPublic) contains all of the fields necessary to define the properties of the

new object. The setting for these fields is defined in “Public Area Template” in Part 1 of this specification

and in “TPMA_OBJECT” in Part 2 of this specification. The size of the unique field shall not be checked

for consistency with the other object parameters.

NOTE 2 For interoperability, the unique field should not be set to a value that is larger than allowed by object
parameters, so that the unmarshaling will not fail. A size of zero is recommended. After
unmarshaling, the TPM does not use the input unique field. It is, however, used in
TPM2_CreatePrimary() and TPM2_CreateLoaded.

EXAMPLE 1 A TPM_ALG_RSA object with a keyBits of 2048 in the object’s parameters should have a unique
field that is no larger than 256 bytes.

EXAMPLE 2 TPM_ALG_KEYEDHASH or a TPM_ALG_SYMCIPHER object should have a unique field that is no
larger than the digest produced by the object’s nameAlg.

The parentHandle parameter shall reference a loaded decryption key that has both the public and

sensitive area loaded.

When defining the object, the caller provides a template structure for the object in a TPM2B_PUBLIC

structure (inPublic), an initial value for the object’s authValue (inSensitive.userAuth), and, if the object is a

symmetric object, an optional initial data value (inSensitive.data). The TPM shall validate the consistency

of the attributes of inPublic according to the Creation rules in “TPMA_OBJECT” in TPM 2.0 Part 2.

The inSensitive parameter may be encrypted using parameter encryption.

The methods in this clause are used by both TPM2_Create() and TPM2_CreatePrimary(). When a value

is indicated as being TPM-generated, the value is filled in by bits from the RNG if the command is

TPM2_Create() and with values from KDFa() if the command is TPM2_CreatePrimary(). The parameters

of each creation value are specified in TPM 2.0 Part 1.

The sensitiveDataOrigin attribute of inPublic shall be SET if inSensitive.data is an Empty Buffer and

CLEAR if inSensitive.data is not an Empty Buffer or the TPM shall return TPM_RC_ATTRIBUTES.

If the Object is a not a keyedHash object, and the sign and encrypt attributes are CLEAR, the TPM shall

return TPM_RC_ATTRIBUTES.

The TPM will create new data for the sensitive area and compute a TPMT_PUBLIC.unique from the

sensitive area based on the object type:

 For a symmetric key:

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1) If inSensitive.sensitive.data is the Empty Buffer, a TPM-generated key value is placed in the new

object’s TPMT_SENSITIVE.sensitive.sym. The size of the key will be determined by

inPublic.publicArea.parameters.

2) If inSensitive.sensitive.data is not the Empty Buffer, the TPM will validate that the size of

inSensitive.data is no larger than the key size indicated in the inPublic template (TPM_RC_SIZE)

and copy the inSensitive.data to TPMT_SENSITIVE.sensitive.sym of the new object.

3) A TPM-generated obfuscation value is placed in TPMT_SENSITIVE.sensitive.seedValue. The

size of the obfuscation value is the size of the digest produced by the nameAlg in inPublic. This

value prevents the public unique value from leaking information about the sensitive area.

4) The TPMT_PUBLIC.unique.sym value for the new object is then generated, as shown in equation

(1) below, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the nameAlg

of the object.

 unique ≔ HnameAlg(sensitive.seedValue.buffer || sensitive.any.buffer) (1)

 If the Object is an asymmetric key:

1) If inSensitive.sensitive.data is not the Empty Buffer, then the TPM shall return TPM_RC_VALUE.

2) A TPM-generated private key value is created with the size determined by the parameters of

inPublic.publicArea.parameters.

3) If the key is a Storage Key, a TPM-generated TPMT_SENSITIVE.seedValue value is created;

otherwise, TPMT_SENSITIVE.seedValue.size is set to zero.

NOTE 3 An Object that is not a storage key has no child Objects to encrypt, so it does not need a
symmetric key.

4) The public unique value is computed from the private key according to the methods of the key

type.

5) If the key is an ECC key and the scheme required by the curveID is not the same as scheme in

the public area of the template, then the TPM shall return TPM_RC_SCHEME.

6) If the key is an ECC key and the KDF required by the curveID is not the same as kdf in the pubic

area of the template, then the TPM shall return TPM_RC_KDF.

NOTE 4 There is currently no command in which the caller may specify the KDF to be used with an
ECC decryption key. Since there is no use for this capability, the reference implementation
requires that the kdf in the template be set to TPM_ALG_NULL or TPM_RC_KDF is
returned.

 If the Object is a keyedHash object:

1) If inSensitive.sensitive.data is an Empty Buffer, and both sign and decrypt are CLEAR in the

attributes of inPublic, the TPM shall return TPM_RC_ATTRIBUTES. This would be a data object

with no data.

NOTE 5 Revisions 134 and earlier reference code did not check the error case of
sensitiveDataOrigin SET and an Empty Buffer. Thus, some TPM implementations may also
not have included this error check.

2) If sign and decrypt are both CLEAR, or if sign and decrypt are both SET and the scheme in the

public area of the template is not TPM_ALG_NULL, the TPM shall return TPM_RC_SCHEME.

NOTE 6 Revisions 138 and earlier did not enforce this error case.

3) If inSensitive.sensitive.data is not an Empty Buffer, the TPM will copy the

inSensitive.sensitive.data to TPMT_SENSITIVE.sensitive.bits of the new object.

NOTE 7 The size of inSensitive.sensitive.data is limited to be no larger than MAX_SYM_DATA.

Part 3: Commands Trusted Platform Module Library

Page 46 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4) If inSensitive.sensitive.data is an Empty Buffer, a TPM-generated key value that is the size of the

digest produced by the nameAlg in inPublic is placed in TPMT_SENSITIVE.sensitive.bits.

5) A TPM-generated obfuscation value that is the size of the digest produced by the nameAlg of

inPublic is placed in TPMT_SENSITIVE.seedValue.

6) The TPMT_PUBLIC.unique.keyedHash value for the new object is then generated, as shown in

equation (1) above, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the

nameAlg of the object.

For TPM2_Load(), the TPM will apply normal symmetric protections to the created TPMT_SENSITIVE to

create outPublic.

NOTE 8 The encryption key is derived from the symmetric seed in the sensitive area of the parent.

In addition to outPublic and outPrivate, the TPM will build a TPMS_CREATION_DATA structure for the

object. TPMS_CREATION_DATA.outsideInfo is set to outsideInfo. This structure is returned in

creationData. Additionally, the digest of this structure is returned in creationHash, and, finally, a

TPMT_TK_CREATION is created so that the association between the creation data and the object may

be validated by TPM2_CertifyCreation().

If the object being created is a Storage Key and fixedParent is SET in the attributes of inPublic, then the

symmetric algorithms and parameters of inPublic are required to match those of the parent. The

algorithms that must match are inPublic.nameAlg, and the values in inPublic.parameters that select the

symmetric scheme. If inPublic.nameAlg does not match, the TPM shall return TPM_RC_HASH.If the

symmetric scheme of the key does not match, the parent, the TPM shall return TPM_RC_SYMMETRIC.

The TPM shall not use different response code to differentiate between mismatches of the components of

inPublic.parameters. However, after this verification, when using the scheme to encrypt child objects, the

TPM ignores the symmetric mode and uses TPM_ALG_CFB.

NOTE 9 The symmetric scheme is a TPMT_SYM_DEF_OBJECT. In a symmetric block ciphier, it is at
inPublic.parameters.symDetail.sym and in an asymmetric object is at
inPublic.parameters.asymDetail.symmetric.

NOTE 10 Prior to revision 01.34, the parent asymmetric algorithms were also checked for fixedParent storage
keys.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 19 — TPM2_Create Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Create

TPMI_DH_OBJECT @parentHandle

handle of parent for new object

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 20 — TPM2_Create Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate the private portion of the object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMS_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

Part 3: Commands Trusted Platform Module Library

Page 48 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Create]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.2 TPM2_Load

 General Description

This command is used to load objects into the TPM. This command is used when both a TPM2B_PUBLIC

and TPM2B_PRIVATE are to be loaded. If only a TPM2B_PUBLIC is to be loaded, the

TPM2_LoadExternal command is used.

NOTE 1 Loading an object is not the same as restoring a saved object context.

The object’s TPMA_OBJECT attributes will be checked according to the rules defined in

“TPMA_OBJECT” in TPM 2.0 Part 2 of this specification. If the Object is a not a keyedHash object, and

the sign and encrypt attributes are CLEAR, the TPM shall return TPM_RC_ATTRIBUTES.

Objects loaded using this command will have a Name. The Name is the concatenation of nameAlg and

the digest of the public area using the nameAlg.

NOTE 2 nameAlg is a parameter in the public area of the inPublic structure.

If inPrivate.size is zero, the load will fail.

After inPrivate.buffer is decrypted using the symmetric key of the parent, the integrity value shall be

checked before the sensitive area is used, or unmarshaled.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by fuzzing the
data and looking at the differences in the response codes.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the digest of the TPMT_PUBLIC structure in inPublic).

NOTE 4 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithms specified in the nameAlg of the object.

NOTE 5 The returned handle is associated with the object until the object is flushed (TPM2_FlushContext) o r
until the next TPM2_Startup.

For all objects, the size of the key in the sensitive area shall be consistent with the key size indicated in

the public area or the TPM shall return TPM_RC_KEY_SIZE.

Before use, a loaded object shall be checked to validate that the public and sensitive portions are

properly linked, cryptographically. Use of an object includes use in any policy command. If the parts of the

object are not properly linked, the TPM shall return TPM_RC_BINDING. If a weak symmetric key is in the

sensitive portion, the TPM shall return TPM_RC_KEY.

EXAMPLE 1 For a symmetric object, the unique value in the public area shall be the digest of the sensitive key
and the obfuscation value.

EXAMPLE 2 For a two-prime RSA key, the remainder when dividing the public modulus by the private key shall
be zero and it shall be possible to form a private exponent from the two prime factors of the public
modulus.

EXAMPLE 3 For an ECC key, the public point shall be f(x) where x is the private key.

Part 3: Commands Trusted Platform Module Library

Page 50 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 21 — TPM2_Load Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Load

TPMI_DH_OBJECT @parentHandle

TPM handle of parent key; shall not be a reserved
handle

Auth Index: 1

Auth Role: USER

TPM2B_PRIVATE inPrivate the private portion of the object

TPM2B_PUBLIC inPublic the public portion of the object

Table 22 — TPM2_Load Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for the loaded
object

TPM2B_NAME name Name of the loaded object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[Load]]

Part 3: Commands Trusted Platform Module Library

Page 52 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.3 TPM2_LoadExternal

 General Description

This command is used to load an object that is not a Protected Object into the TPM. The command allows

loading of a public area or both a public and sensitive area.

NOTE 1 Typical use for loading a public area is to allow the TPM to validate an asymmetric signature.
Typical use for loading both a public and sensitive area is to allow the TPM to be used as a crypto
accelerator.

Load of a public external object area allows the object to be associated with a hierarchy so that the

correct algorithms may be used when creating tickets. The hierarchy parameter provides this association.

If the public and sensitive portions of the object are loaded, hierarchy is required to be TPM_RH_NULL.

NOTE 2 If both the public and private portions of an object are loaded, the object is not allowed to appear to
be part of a hierarchy.

The object’s TPMA_OBJECT attributes will be checked according to the rules defined in

“TPMA_OBJECT” in TPM 2.0 Part 2. In particular, fixedTPM, fixedParent, and restricted shall be CLEAR

if inPrivate is not the Empty Buffer.

NOTE 3 The duplication status of a public key needs to be able to be the same as the full key which may be
resident on a different TPM. If both the public and private parts of the key are loaded, then it is not
possible for the key to be either fixedTPM or fixedParent, since, its private area would not be
available in the clear to load.

Objects loaded using this command will have a Name. The Name is the nameAlg of the object

concatenated with the digest of the public area using the nameAlg. The Qualified Name for the object will

be the same as its Name. The TPM will validate that the authPolicy is either the size of the digest

produced by nameAlg or the Empty Buffer.

NOTE 4 If nameAlg is TPM_ALG_NULL, then the Name is the Empty Buffer. When the authorization value for
an object with no Name is computed, no Name value is included in the HMAC. To ensure that these
unnamed entities are not substituted, they should have an authValue that is statistically unique.

NOTE 5 The digest size for TPM_ALG_NULL is zero.

If the nameAlg is TPM_ALG_NULL, the TPM shall not verify the cryptographic binding between the public

and sensitive areas, but the TPM will validate that the size of the key in the sensitive area is consistent

with the size indicated in the public area. If it is not, the TPM shall return TPM_RC_KEY_SIZE.

NOTE 6 For an ECC object, the TPM will verify that the public key is on the curve of the key before the public
area is used.

If nameAlg is not TPM_ALG_NULL, then the same consistency checks between inPublic and inPrivate

are made as for TPM2_Load().

NOTE 7 Consistency checks are necessary because an object with a Name needs to have the public and
sensitive portions cryptographically bound so that an attacker cannot mix pubic and sensitive areas.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the TPMT_PUBLIC structure in inPublic).

NOTE 8 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithm specified in the nameAlg of the object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The hierarchy parameter associates the external object with a hierarchy. External objects are flushed

when their associated hierarchy is disabled. If hierarchy is TPM_RH_NULL, the object is part of no

hierarchy, and there is no implicit flush.

If hierarchy is TPM_RH_NULL or nameAlg is TPM_ALG_NULL, a ticket produced using the object shall

be a NULL Ticket.

EXAMPLE If a key is loaded with hierarchy set to TPM_RH_NULL, then TPM2_VerifySignature() will produce a
NULL Ticket of the required type.

External objects are Temporary Objects. The saved external object contexts shall be invalidated at the

next TPM Reset.

If a weak symmetric key is in the sensitive area, the TPM shall return TPM_RC_KEY.

For an RSA key, the private exponent is computed using the two prime factors of the public modulus. One

of the primes is P, and the second prime (Q) is found by dividing the public modulus by P. A TPM may

return an error (TPM_RC_BINDING) if the bit size of P and Q are not the same.”

Part 3: Commands Trusted Platform Module Library

Page 54 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 23 — TPM2_LoadExternal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_LoadExternal

TPM2B_SENSITIVE inPrivate the sensitive portion of the object (optional)

TPM2B_PUBLIC+ inPublic the public portion of the object

TPMI_RH_HIERARCHY+ hierarchy hierarchy with which the object area is associated

Table 24 — TPM2_LoadExternal Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for the loaded
object

TPM2B_NAME name name of the loaded object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[LoadExternal]]

Part 3: Commands Trusted Platform Module Library

Page 56 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.4 TPM2_ReadPublic

 General Description

This command allows access to the public area of a loaded object.

Use of the objectHandle does not require authorization.

NOTE Since the caller is not likely to know the public area of the object associated with objectHandle, it
would not be possible to include the Name associated with objectHandle in the cpHash computation.

If objectHandle references a sequence object, the TPM shall return TPM_RC_SEQUENCE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 25 — TPM2_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadPublic

TPMI_DH_OBJECT objectHandle
TPM handle of an object

Auth Index: None

Table 26 — TPM2_ReadPublic Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC outPublic structure containing the public area of an object

TPM2B_NAME name name of the object

TPM2B_NAME qualifiedName the Qualified Name of the object

Part 3: Commands Trusted Platform Module Library

Page 58 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ReadPublic]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.5 TPM2_ActivateCredential

 General Description

This command enables the association of a credential with an object in a way that ensures that the TPM

has validated the parameters of the credentialed object.

If both the public and private portions of activateHandle and keyHandle are not loaded, then the TPM

shall return TPM_RC_AUTH_UNAVAILABLE.

If keyHandle is not a Storage Key, then the TPM shall return TPM_RC_TYPE.

Authorization for activateHandle requires the ADMIN role.

The key associated with keyHandle is used to recover a seed from secret, which is the encrypted seed.

The Name of the object associated with activateHandle and the recovered seed are used in a KDF to

recover the symmetric key. The recovered seed (but not the Name) is used in a KDF to recover the

HMAC key.

The HMAC is used to validate that the credentialBlob is associated with activateHandle and that the data

in credentialBlob has not been modified. The linkage to the object associated with activateHandle is

achieved by including the Name in the HMAC calculation.

If the integrity checks succeed, credentialBlob is decrypted and returned as certInfo.

NOTE The output certInfo parameter is an application defined value. It is typically a symmetric key or seed
that is used to decrypt a certificate. See the TPM2_MakeCredential credential input parameter.

Part 3: Commands Trusted Platform Module Library

Page 60 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 27 — TPM2_ActivateCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ActivateCredential

TPMI_DH_OBJECT @activateHandle

handle of the object associated with certificate in
credentialBlob

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT @keyHandle

loaded key used to decrypt the TPMS_SENSITIVE in
credentialBlob

Auth Index: 2

Auth Role: USER

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
keyHandle algorithm-dependent encrypted seed that
protects credentialBlob

Table 28 — TPM2_ActivateCredential Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST certInfo

the decrypted certificate information

the data should be no larger than the size of the digest
of the nameAlg associated with keyHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ActivateCredential]]

Part 3: Commands Trusted Platform Module Library

Page 62 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.6 TPM2_MakeCredential

 General Description

This command allows the TPM to perform the actions required of a Certificate Authority (CA) in creating a

TPM2B_ID_OBJECT containing an activation credential.

NOTE The input credential parameter is an application defined value. It is typically a symmetric key or
seed that is used to encrypt a certificate. See the TPM2_ActivateCredential certInfo output
parameter.

The TPM will produce a TPM2B_ID_OBJECT according to the methods in “Credential Protection” in TPM

2.0 Part 1.

The loaded public area referenced by handle is required to be the public area of a Storage key,

otherwise, the credential cannot be properly sealed.

This command does not use any TPM secrets nor does it require authorization. It is a convenience

function, using the TPM to perform cryptographic calculations that could be done externally.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 29 — TPM2_MakeCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MakeCredential

TPMI_DH_OBJECT handle

loaded public area, used to encrypt the sensitive area
containing the credential key

Auth Index: None

TPM2B_DIGEST credential the credential information

TPM2B_NAME objectName Name of the object to which the credential applies

Table 30 — TPM2_MakeCredential Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
handle algorithm-dependent data that wraps the key
that encrypts credentialBlob

Part 3: Commands Trusted Platform Module Library

Page 64 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[MakeCredential]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.7 TPM2_Unseal

 General Description

This command returns the data in a loaded Sealed Data Object.

NOTE 1 A random, TPM-generated, Sealed Data Object may be created by the TPM with TPM2_Create() or
TPM2_CreatePrimary() using the template for a Sealed Data Object.

NOTE 2 TPM 1.2 hard coded PCR authorization. TPM 2.0 PCR authorization requires a policy.

The returned value may be encrypted using authorization session encryption.

If either restricted, decrypt, or sign is SET in the attributes of itemHandle, then the TPM shall return

TPM_RC_ATTRIBUTES. If the type of itemHandle is not TPM_ALG_KEYEDHASH, then the TPM shall

return TPM_RC_TYPE.

Part 3: Commands Trusted Platform Module Library

Page 66 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 31 — TPM2_Unseal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Unseal

TPMI_DH_OBJECT @itemHandle

handle of a loaded data object

Auth Index: 1

Auth Role: USER

Table 32 — TPM2_Unseal Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_SENSITIVE_DATA outData
unsealed data

Size of outData is limited to be no more than 128 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[Unseal]]

Part 3: Commands Trusted Platform Module Library

Page 68 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

12.8 TPM2_ObjectChangeAuth

 General Description

This command is used to change the authorization secret for a TPM-resident object.

If successful, a new private area for the TPM-resident object associated with objectHandle is returned,

which includes the new authorization value.

This command does not change the authorization of the TPM-resident object on which it operates.

Therefore, the old authValue (of the TPM-resident object) is used when generating the response HMAC

key if required.

NOTE 1 The returned outPrivate will need to be loaded before the new authorization will apply.

NOTE 2 The TPM-resident object may be persistent and changing the authorization value of the persistent
object could prevent other users from accessing the object. This is why this comman d does not
change the TPM-resident object.

EXAMPLE If a persistent key is being used as a Storage Root Key and the authorization of the key is a well -
known value so that the key can be used generally, then changing the authorization value in the
persistent key would deny access to other users.

This command may not be used to change the authorization value for an NV Index or a Primary Object.

NOTE 3 If an NV Index is to have a new authorization, it is done with TPM2_NV_ChangeAuth().

NOTE 4 If a Primary Object is to have a new authorization, it needs to be recreated (TPM2_CreatePrimary()).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 33 — TPM2_ObjectChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ObjectChangeAuth

TPMI_DH_OBJECT @objectHandle

handle of the object

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT parentHandle
handle of the parent

Auth Index: None

TPM2B_AUTH newAuth new authorization value

Table 34 — TPM2_ObjectChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate private area containing the new authorization value

Part 3: Commands Trusted Platform Module Library

Page 70 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ObjectChangeAuth]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12.9 TPM2_CreateLoaded

 General Description

This command creates an object and loads it in the TPM. This command allows creation of any type of

object (Primary, Ordinary, or Derived) depending on the type of parentHandle. If parentHandle references

a Primary Seed, then a Primary Object is created; if parentHandle references a Storage Parent, then an

Ordinary Object is created; and if parentHandle references a Derivation Parent, then a Derived Object is

generated.

The input validation is the same as for TPM2_Create() and TPM2_CreatePrimary() with one exception:

when parentHandle references a Derivation Parent, then sensitiveDataOrigin in inPublic is required to be

CLEAR.

Note 1 In the general descriptions of TPM2_Create() and TPM2_CreatePrimary() the validations refer to a
TPMT_PUBLIC structure that is in inPublic. For TPM2_CreateLoaded(), inPublic is a
TPM2B_TEMPLATE that may contain a TPMT_PUBLIC that is used for object creation. For object
derivation, the unique field can contain a label and context that are used in the derivation process.
To allow both the TPMT_PUBLIC and the derivation variation, a TPM2B_TEMPLATE is used. When
referring to the checks in TPM2_Create() and TPM2_CreatePrimary(), TPM2B_TEMPLATE should
be assumed to contain a TPMT_PUBLIC.

If parentHandle references a Derivation Parent, then the TPM may return TPM_RC_TYPE if the key type

to be generated is an RSA key.

If parentHandle references a Derivation Parent or a Primary Seed, then outPrivate will be an Empty

Buffer.

NOTE 2 Returning outPrivate would imply that the returned primary or derived object can be loaded and it
cannot. It can only be re-derived.

A primary key cannot be loaded is because loading a key is a way to attack the protections of a key
(e.g. using DPA). A saved context for a primary object is protected. The TPM will go into failure
mode if the integrity of a saved context is good but the fingerprint doesn’t decrypt. It is not possible
to have these protections on loaded objects because this would be a simple way for an attacker to
put the TPM into failure mode Saved contexts are assumed to be under control of the driver but
loaded objects are not.

If all objects were derived from their parents then, load could not be used as an attack. However,
that would preclude importation of objects and key hierarchies.

NOTE 3 Unlike TPM2_Create() and TPM2_CreatePrimary(), this command does not return creation data. If
creation data is needed, then TPM2_Create() or TPM2_CreatePrimary() should be used.

Part 3: Commands Trusted Platform Module Library

Page 72 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 35 — TPM2_CreateLoaded Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreateLoade

TPMI_DH_PARENT+ @parentHandle

Handle of a transient storage key, a persistent storage
key, TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data, see TPM 2.0 Part 1 Sensitive Values

TPM2B_TEMPLATE inPublic the public template

Table 36 — TPM2_CreateLoaded Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle handle of type TPM_HT_TRANSIENT for created object

TPM2B_PRIVATE outPrivate the sensitive area of the object (optional)

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_NAME name the name of the created object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[CreateLoaded]]

Part 3: Commands Trusted Platform Module Library

Page 74 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13 Duplication Commands

13.1 TPM2_Duplicate

 General Description

This command duplicates a loaded object so that it may be used in a different hierarchy. The new parent

key for the duplicate may be on the same or different TPM or TPM_RH_NULL. Only the public area of

newParentHandle is required to be loaded.

NOTE 1 Since the new parent may only be extant on a different TPM, it is likely that the new parent’s
sensitive area could not be loaded in the TPM from which objectHandle is being duplicated.

If encryptedDuplication is SET in the object being duplicated, then the TPM shall return

TPM_RC_SYMMETRIC if symmetricAlg.algorithm is TPM_ALG_NULL or TPM_RC_HIERARCHY if

newParentHandle is TPM_RH_NULL.

The authorization for this command shall be with a policy session.

If fixedParent of objectHandle→attributes is SET, the TPM shall return TPM_RC_ATTRIBUTES. If

objectHandle→nameAlg is TPM_ALG_NULL, the TPM shall return TPM_RC_TYPE.

The policySession→commandCode parameter in the policy session is required to be TPM_CC_Duplicate

to indicate that authorization for duplication has been provided. This indicates that the policy that is being

used is a policy that is for duplication, and not a policy that would approve another use. That is, authority

to use an object does not grant authority to duplicate the object.

The policy is likely to include cpHash in order to restrict where duplication can occur. If

TPM2_PolicyCpHash() has been executed as part of the policy, the policySession→cpHash is compared

to the cpHash of the command.

If TPM2_PolicyDuplicationSelect() has been executed as part of the policy, the

policySession→nameHash is compared to

 HpolicyAlg(objectHandle→Name || newParentHandle→Name) (2)

If the compared hashes are not the same, then the TPM shall return TPM_RC_POLICY_FAIL.

NOTE 2 It is allowed that policySesion→nameHash and policySession→cpHash share the same memory
space.

NOTE 3 A duplication policy is not required to have either TPM2_PolicyDuplicationSelect() or
TPM2_PolicyCpHash() as part of the policy. If neither is present, then the duplication policy may be
satisfied with a policy that only contains TPM2_PolicyCommandCode(code = TPM_CC_Duplicate).

The TPM shall follow the process of encryption defined in the “Duplication” subclause of “Protected

Storage Hierarchy” in TPM 2.0 Part 1.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 37 — TPM2_Duplicate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Duplicate

TPMI_DH_OBJECT @objectHandle

loaded object to duplicate

Auth Index: 1

Auth Role: DUP

TPMI_DH_OBJECT+ newParentHandle
shall reference the public area of an asymmetric key

Auth Index: None

TPM2B_DATA encryptionKeyIn

optional symmetric encryption key

The size for this key is set to zero when the TPM is to
generate the key. This parameter may be encrypted.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to be used for the
inner wrapper

may be TPM_ALG_NULL if no inner wrapper is applied

Table 38 — TPM2_Duplicate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DATA encryptionKeyOut

If the caller provided an encryption key or if
symmetricAlg was TPM_ALG_NULL, then this will be
the Empty Buffer; otherwise, it shall contain the TPM-
generated, symmetric encryption key for the inner
wrapper.

TPM2B_PRIVATE duplicate
private area that may be encrypted by encryptionKeyIn;
and may be doubly encrypted

TPM2B_ENCRYPTED_SECRET outSymSeed
seed protected by the asymmetric algorithms of new
parent (NP)

Part 3: Commands Trusted Platform Module Library

Page 76 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Duplicate]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

13.2 TPM2_Rewrap

 General Description

This command allows the TPM to serve in the role as a Duplication Authority. If proper authorization for

use of the oldParent is provided, then an HMAC key and a symmetric key are recovered from inSymSeed

and used to integrity check and decrypt inDuplicate. A new protection seed value is generated according

to the methods appropriate for newParent and the blob is re-encrypted and a new integrity value is

computed. The re-encrypted blob is returned in outDuplicate and the symmetric key returned in

outSymKey.

In the rewrap process, L is “DUPLICATE” (see TPM 2.0 Part 1, Terms and Definitions).

If inSymSeed has a zero length, then oldParent is required to be TPM_RH_NULL and no decryption of

inDuplicate takes place.

If newParent is TPM_RH_NULL, then no encryption is performed on outDuplicate. outSymSeed will have

a zero length. See TPM 2.0 Part 2 encryptedDuplication.

Part 3: Commands Trusted Platform Module Library

Page 78 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 39 — TPM2_Rewrap Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Rewrap

TPMI_DH_OBJECT+ @oldParent

parent of object

Auth Index: 1

Auth Role: User

TPMI_DH_OBJECT+ newParent
new parent of the object

Auth Index: None

TPM2B_PRIVATE inDuplicate
an object encrypted using symmetric key derived from
inSymSeed

TPM2B_NAME name the Name of the object being rewrapped

TPM2B_ENCRYPTED_SECRET inSymSeed

the seed for the symmetric key and HMAC key

needs oldParent private key to recover the seed and
generate the symmetric key

Table 40 — TPM2_Rewrap Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outDuplicate
an object encrypted using symmetric key derived from
outSymSeed

TPM2B_ENCRYPTED_SECRET outSymSeed
seed for a symmetric key protected by newParent
asymmetric key

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[Rewrap]]

Part 3: Commands Trusted Platform Module Library

Page 80 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13.3 TPM2_Import

 General Description

This command allows an object to be encrypted using the symmetric encryption values of a Storage Key.

After encryption, the object may be loaded and used in the new hierarchy. The imported object (duplicate)

may be singly encrypted, multiply encrypted, or unencrypted.

If fixedTPM or fixedParent is SET in objectPublic, the TPM shall return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in the object referenced by parentHandle and encryptedDuplication is

CLEAR in objectPublic, the TPM may return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in objectPublic, then inSymSeed and encryptionKey shall not be Empty

buffers (TPM_RC_ATTRIBUTES). Recovery of the sensitive data of the object occurs in the TPM in a

multi--step process in the following order:

 If inSymSeed has a non-zero size:

1) The asymmetric parameters and private key of parentHandle are used to recover the seed used

in the creation of the HMAC key and encryption keys used to protect the duplication blob.

NOTE 1 When recovering the seed from inSymSeed, L is “DUPLICATE”.

2) The integrity value in duplicate.buffer.integrityOuter is used to verify the integrity of the data blob,

which is the remainder of duplicate.buffer (TPM_RC_INTEGRITY).

NOTE 2 The data blob will contain a TPMT_SENSITIVE and may contain a TPM2B_DIGEST for the
innerIntegrity.

3) The symmetric key recovered in 1) is used to decrypt the data blob.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensiti ve area by
fuzzing the data and looking at the differences in the response codes.

 If encryptionKey is not an Empty Buffer:

1) Use encryptionKey to decrypt the inner blob.

2) Use the TPM2B_DIGEST at the start of the inner blob to verify the integrity of the inner blob

(TPM_RC_INTEGRITY).

 Unmarshal the sensitive area

NOTE 4 It is not necessary to validate that the sensitive area data is cryptographically bound to the public
area other than that the Name of the public area is included in the HMAC. However, if the b inding is
not validated by this command, the binding must be checked each time the object is loaded. For an
object that is imported under a parent with fixedTPM SET, binding need only be checked at import. If
the parent has fixedTPM CLEAR, then the binding needs to be checked each time the object is
loaded, or before the TPM performs an operation for which the binding affects the outcome of the
operation (for example, TPM2_PolicySigned() or TPM2_Certify()).

 Similarly, if the new parent's fixedTPM is set, the encryptedDuplication state need only be checked
at import.

If the new parent is not fixedTPM, then that object will be loadable on any TPM (including SW
versions) on which the new parent exists. This means that, each time an object is loaded under a
parent that is not fixedTPM, it is necessary to validate all of the properties of that object. If the
parent is fixedTPM, then the new private blob is integrity protected by the TPM that “owns” the
parent. So, it is sufficient to validate the object’s properties (attribute and public -private binding) on
import and not again.

If a weak symmetric key is being imported, the TPM shall return TPM_RC_KEY.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

After integrity checks and decryption, the TPM will create a new symmetrically encrypted private area

using the encryption key of the parent.

NOTE 5 The symmetric re-encryption is the normal integrity generation and symmetric encryption applied to
a child object.

NOTE 6 Revision 01.16 of this specification required the ECC private key in duplicate to be padded.

Part 3: Commands Trusted Platform Module Library

Page 82 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 41 — TPM2_Import Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Import

TPMI_DH_OBJECT @parentHandle

the handle of the new parent for the object

Auth Index: 1

Auth Role: USER

TPM2B_DATA encryptionKey

the optional symmetric encryption key used as the inner
wrapper for duplicate

If symmetricAlg is TPM_ALG_NULL, then this
parameter shall be the Empty Buffer.

TPM2B_PUBLIC objectPublic

the public area of the object to be imported

This is provided so that the integrity value for duplicate
and the object attributes can be checked.

NOTE Even if the integrity value of the object is not
checked on input, the object Name is required
to create the integrity value for the imported
object.

TPM2B_PRIVATE duplicate
the symmetrically encrypted duplicate object that may
contain an inner symmetric wrapper

TPM2B_ENCRYPTED_SECRET inSymSeed

the seed for the symmetric key and HMAC key

inSymSeed is encrypted/encoded using the algorithms
of newParent.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to use for the inner
wrapper

If this algorithm is TPM_ALG_NULL, no inner wrapper is
present and encryptionKey shall be the Empty Buffer.

Table 42 — TPM2_Import Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate
the sensitive area encrypted with the symmetric key of
parentHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[Import]]

Part 3: Commands Trusted Platform Module Library

Page 84 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14 Asymmetric Primitives

14.1 Introduction

The commands in this clause provide low-level primitives for access to the asymmetric algorithms

implemented in the TPM. Many of these commands are only allowed if the asymmetric key is an

unrestricted key.

14.2 TPM2_RSA_Encrypt

 General Description

This command performs RSA encryption using the indicated padding scheme according to IETF RFC

8017. If the scheme of keyHandle is TPM_ALG_NULL, then the caller may use inScheme to specify the

padding scheme. If scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be

TPM_ALG_NULL or be the same as scheme (TPM_RC_SCHEME).

The key referenced by keyHandle is required to be an RSA key (TPM_RC_KEY).

The three types of allowed padding are:

1) TPM_ALG_OAEP – Data is OAEP padded as described in 7.1 of IETF RFC 8017 (PKCS#1).

The only supported mask generation is MGF1.

2) TPM_ALG_RSAES – Data is padded as described in 7.2 of IETF RFC 8017 (PKCS#1).

3) TPM_ALG_NULL – Data is not padded by the TPM and the TPM will treat message as an

unsigned integer and perform a modular exponentiation of message using the public

exponent of the key referenced by keyHandle. This scheme is only used if both the scheme

in the key referenced by keyHandle is TPM_ALG_NULL, and the inScheme parameter of the

command is TPM_ALG_NULL. The input value cannot be larger than the public modulus of

the key referenced by keyHandle.

Table 43 — Padding Scheme Selection

keyHandle→scheme inScheme padding scheme used

TPM_ALG_NULL

TPM_ALG_NULL none

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP OAEP

TPM_ALG_RSAES

TPM_ALG_NULL RSAES

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP error (TPM_RC_SCHEME)

TPM_ALG_OAEP

TPM_ALG_NULL OAEP

TPM_ALG_RSAES error (TPM_RC_SCHEME)

TPM_ALG_OAEP OAEP

After padding, the data is RSAEP encrypted according to 5.1.1 of IETF RFC 8017 (PKCS#1).

If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

NOTE 1 Because only the public portion of the key needs to be loaded for this command, the caller can
manipulate the attributes of the key in any way desired. As a result, the TPM shall not check the
consistency of the attributes. The only property checking is that the key is an RSA key and that the
padding scheme is supported.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

The message parameter is limited in size by the padding scheme according to the following table:

Table 44 — Message Size Limits Based on Padding

Scheme
Maximum Message Length (mLen)

in Octets Comments

TPM_ALG_OAEP mLen k – 2hLen – 2

TPM_ALG_RSAES mLen k – 11

TPM_ALG_NULL mLen k The numeric value of the message must be
less than the numeric value of the public

modulus (n).

NOTES

1) k ≔ the number of byes in the public modulus

2) hLen ≔ the number of octets in the digest produced by the hash algorithm used in the process

The label parameter is optional. If provided (label.size != 0) then the TPM shall return TPM_RC_VALUE if

the last octet in label is not zero. The terminating octet of zero is included in the label used in the padding

scheme.

NOTE 2 If the scheme does not use a label, the TPM will still verify that label is properly formatted if label is
present.

NOTE 3 Specifications before version 1.54 stated that label is truncated after the first zero octet.
Applications should not include embedded zero bytes for compatibility.

The function returns padded and encrypted value outData.

The message parameter in the command may be encrypted using parameter encryption.

NOTE 4 Only the public area of keyHandle is required to be loaded. A public key may be loaded with any
desired scheme. If the scheme is to be changed, a different public area must be loaded.

Part 3: Commands Trusted Platform Module Library

Page 86 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 45 — TPM2_RSA_Encrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Encrypt

TPMI_DH_OBJECT keyHandle

reference to public portion of RSA key to use for
encryption

Auth Index: None

TPM2B_PUBLIC_KEY_RSA message

message to be encrypted

NOTE 1 The data type was chosen because it limits
the overall size of the input to no greater than
the size of the largest RSA public key. This
may be larger than allowed for keyHandle.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label

optional label L to be associated with the message

Size of the buffer is zero if no label is present

NOTE 2 See description of label above.

Table 46 — TPM2_RSA_Encrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA outData encrypted output

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[RSA_Encrypt]]

Part 3: Commands Trusted Platform Module Library

Page 88 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.3 TPM2_RSA_Decrypt

 General Description

This command performs RSA decryption using the indicated padding scheme according to IETF RFC

8017 ((PKCS#1).

The scheme selection for this command is the same as for TPM2_RSA_Encrypt() and is shown in Table

43.

The key referenced by keyHandle shall be an RSA key (TPM_RC_KEY) with restricted CLEAR and

decrypt SET (TPM_RC_ATTRIBUTES).

This command uses the private key of keyHandle for this operation and authorization is required.

The TPM will perform a modular exponentiation of ciphertext using the private exponent associated with

keyHandle (this is described in IETF RFC 8017 (PKCS#1), clause 5.1.2). It will then validate the padding

according to the selected scheme. If the padding checks fail, TPM_RC_VALUE is returned. Otherwise,

the data is returned with the padding removed. If no padding is used, the returned value is an unsigned

integer value that is the result of the modular exponentiation of cipherText using the private exponent of

keyHandle. The returned value may include leading octets zeros so that it is the same size as the public

modulus. For the other padding schemes, the returned value will be smaller than the public modulus but

will contain all the data remaining after padding is removed and this may include leading zeros if the

original encrypted value contained leading zeros.

If a label is used in the padding process of the scheme during encryption, the label parameter is required

to be present in the decryption process and label is required to be the same in both cases. If label is not

the same, the decrypt operation is very likely to fail ((TPM_RC_VALUE). If label is present (label.size !=

0), it shall be a byte stream whose last byte is zero or the TPM will return TPM_RC_VALUE.

NOTE 1 The size of label includes the terminating null.

The message parameter in the response may be encrypted using parameter encryption.

 If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

If the scheme does not require a label, the value in label is not used but the size of the label field is

checked for consistency with the indicated data type (TPM2B_DATA). That is, the field may not be larger

than allowed for a TPM2B_DATA.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 47 — TPM2_RSA_Decrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Decrypt

TPMI_DH_OBJECT @keyHandle

RSA key to use for decryption

Auth Index: 1

Auth Role: USER

TPM2B_PUBLIC_KEY_RSA cipherText

cipher text to be decrypted

NOTE An encrypted RSA data block is the size of
the public modulus.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label
label whose association with the message is to be
verified

Table 48 — TPM2_RSA_Decrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA message decrypted output

Part 3: Commands Trusted Platform Module Library

Page 90 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[RSA_Decrypt]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14.4 TPM2_ECDH_KeyGen

 General Description

This command uses the TPM to generate an ephemeral key pair (de, Qe where Qe ≔ [de]G). It uses the

private ephemeral key and a loaded public key (QS) to compute the shared secret value (P ≔ [hde]QS).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY). The sensitive portion of this key need not

be loaded.

The curve parameters of the loaded ECC key are used to generate the ephemeral key.

NOTE This function is the equivalent of encrypting data to another object’s public key. The seed value is
used in a KDF to generate a symmetric key and that key is used to encrypt the data. Once the data
is encrypted and the symmetric key discarded, only the object with the private portion of the
keyHandle will be able to decrypt it.

The zPoint in the response may be encrypted using parameter encryption.

Part 3: Commands Trusted Platform Module Library

Page 92 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 49 — TPM2_ECDH_KeyGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_KeyGen

TPMI_DH_OBJECT keyHandle
Handle of a loaded ECC key public area.

Auth Index: None

Table 50 — TPM2_ECDH_KeyGen Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT zPoint results of P ≔ h[de]Qs

TPM2B_ECC_POINT pubPoint generated ephemeral public point (Qe)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ECDH_KeyGen]]

Part 3: Commands Trusted Platform Module Library

Page 94 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.5 TPM2_ECDH_ZGen

 General Description

This command uses the TPM to recover the Z value from a public point (QB) and a private key (ds). It will

perform the multiplication of the provided inPoint (QB) with the private key (ds) and return the coordinates

of the resultant point (Z = (xZ , yZ) ≔ [hds]QB; where h is the cofactor of the curve).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY) with the restricted attribute CLEAR and the

decrypt attribute SET (TPM_RC_ATTRIBUTES).

NOTE While TPM_RC_ATTRIBUTES is preferred, TPM_RC_KEY is acceptable.

The scheme of the key referenced by keyHandle is required to be either TPM_ALG_ECDH or

TPM_ALG_NULL (TPM_RC_SCHEME).

inPoint is required to be on the curve of the key referenced by keyHandle (TPM_RC_ECC_POINT).

The parameters of the key referenced by keyHandle are used to perform the point multiplication.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 51 — TPM2_ECDH_ZGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_ZGen

TPMI_DH_OBJECT @keyHandle

handle of a loaded ECC key

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inPoint a public key

Table 52 — TPM2_ECDH_ZGen Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outPoint
X and Y coordinates of the product of the multiplication

Z = (xZ , yZ) ≔ [hdS]QB

Part 3: Commands Trusted Platform Module Library

Page 96 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ECDH_ZGen]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14.6 TPM2_ECC_Parameters

 General Description

This command returns the parameters of an ECC curve identified by its TCG-assigned curveID.

The value returned is the same as that from the TCG Algorithm Registry, but may not be the same size.

EXAMPLE The value 01 may be returned as 00000001.

Part 3: Commands Trusted Platform Module Library

Page 98 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 53 — TPM2_ECC_Parameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECC_Parameters

TPMI_ECC_CURVE curveID parameter set selector

Table 54 — TPM2_ECC_Parameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_ALGORITHM_DETAIL_ECC parameters ECC parameters for the selected curve

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ECC_Parameters]]

Part 3: Commands Trusted Platform Module Library

Page 100 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

14.7 TPM2_ZGen_2Phase

 General Description

This command supports two-phase key exchange protocols. The command is used in combination with

TPM2_EC_Ephemeral(). TPM2_EC_Ephemeral() generates an ephemeral key and returns the public

point of that ephemeral key along with a numeric value that allows the TPM to regenerate the associated

private key.

The input parameters for this command are a static public key (inQsU), an ephemeral key (inQeU) from

party B, and the commitCounter returned by TPM2_EC_Ephemeral(). The TPM uses the counter value to

regenerate the ephemeral private key (de,V) and the associated public key (Qe,V). keyA provides the static

ephemeral elements ds,V and Qs,V. This provides the two pairs of ephemeral and static keys that are

required for the schemes supported by this command.

The TPM will compute Z or Zs and Ze according to the selected scheme. If the scheme is not a two-phase

key exchange scheme or if the scheme is not supported, the TPM will return TPM_RC_SCHEME.

It is an error if inQsB or inQeB are not on the curve of keyA (TPM_RC_ECC_POINT).

The two-phase key schemes that were assigned an algorithm ID as of the time of the publication of this

specification are TPM_ALG_ECDH, TPM_ALG_ECMQV, and TPM_ALG_SM2.

If this command is supported, then support for TPM_ALG_ECDH is required. Support for

TPM_ALG_ECMQV or TPM_ALG_SM2 is optional.

NOTE 1 If SM2 is supported and this command is supported, then the implementation is required to support
the key exchange protocol of SM2, part 3.

For TPM_ALG_ECDH outZ1 will be Zs and outZ2 will Ze as defined in 6.1.1.2 of SP800-56A.

NOTE 2 An unrestricted decryption key using ECDH may be used in either TPM2_ECDH_ZGen() or
TPM2_ZGen_2Phase as the computation done with the private part of keyA is the same in both
cases.

For TPM_ALG_ECMQV or TPM_ALG_SM2 outZ1 will be Z and outZ2 will be an Empty Point.

NOTE 3 An Empty Point has two Empty Buffers as coordinates meaning the minimum size value for outZ2
will be four.

If the input scheme is TPM_ALG_ECDH, then outZ1 will be Zs and outZ2 will be Ze. For schemes like

MQV (including SM2), outZ1 will contain the computed value and outZ2 will be an Empty Point.

NOTE 4 The Z values returned by the TPM are a full point and not just an x-coordinate.

If a computation of either Z produces the point at infinity, then the corresponding Z value will be an Empty

Point.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 55 — TPM2_ZGen_2Phase Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ZGen_2Phase

TPMI_DH_OBJECT @keyA

handle of an unrestricted decryption key ECC

The private key referenced by this handle is used as dS,A

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inQsB other party’s static public key (Qs,B = (Xs,B, Ys,B))

TPM2B_ECC_POINT inQeB other party's ephemeral public key (Qe,B = (Xe,B, Ye,B))

TPMI_ECC_KEY_EXCHANGE inScheme the key exchange scheme

UINT16 counter value returned by TPM2_EC_Ephemeral()

Table 56 — TPM2_ZGen_2Phase Response

Type Name Description

TPM_ST tag

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outZ1
X and Y coordinates of the computed value (scheme
dependent)

TPM2B_ECC_POINT outZ2
X and Y coordinates of the second computed value
(scheme dependent)

Part 3: Commands Trusted Platform Module Library

Page 102 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ZGen_2Phase]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15 Symmetric Primitives

15.1 Introduction

The commands in this clause provide low-level primitives for access to the symmetric algorithms

implemented in the TPM that operate on blocks of data. These include symmetric encryption and

decryption as well as hash and HMAC. All of the commands in this group are stateless. That is, they have

no persistent state that is retained in the TPM when the command is complete.

For hashing, HMAC, and Events that require large blocks of data with retained state, the sequence

commands are provided (see clause 17).

Some of the symmetric encryption/decryption modes use an IV. When an IV is used, it may be an

initiation value or a chained value from a previous stage. The chaining for each mode is:

Part 3: Commands Trusted Platform Module Library

Page 104 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 57 — Symmetric Chaining Process

Mode Chaining process

TPM_ALG_CTR The TPM will increment the entire IV provided by the caller. The next count value will be
returned to the caller as ivOut. This can be the input value to the next encrypt or decrypt
operation.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

EXAMPLE 1 AES requires that ivIn be 128 bits (16 octets).

ivOut will be the size of a cipher block and not the size of the last encrypted block.

NOTE ivOut will be the value of the counter after the last block is encrypted.

EXAMPLE 2 If ivIn were 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0016 and four data blocks
 were encrypted, ivOut will have a value of
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0416.

All the bits of the IV are incremented as if it were an unsigned integer.

TPM_ALG_OFB In Output Feedback (OFB), the output of the pseudo-random function (the block encryption
algorithm) is XORed with a plaintext block to produce a ciphertext block. ivOut will be the
value that was XORed with the last plaintext block. That value can be used as the ivIn for a
next buffer.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_CBC For Cipher Block Chaining (CBC), a block of ciphertext is XORed with the next plaintext
block and that block is encrypted. The encrypted block is then input to the encryption of the
next block. The last ciphertext block then is used as an IV for the next buffer.

Even though the last ciphertext block is evident in the encrypted data, it is also returned in
ivOut.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

TPM_ALG_CFB Similar to CBC in that the last ciphertext block is an input to the encryption of the next block.
ivOut will be the value that was XORed with the last plaintext block. That value can be used
as the ivIn for a next buffer.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_ECB Electronic Codebook (ECB) has no chaining. Each block of plaintext is encrypted using the
key. ECB does not support chaining and ivIn shall be the Empty Buffer. ivOut will be the
Empty Buffer.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.2 TPM2_EncryptDecrypt

 General Description

NOTE 1 This command is deprecated, and TPM2_EncryptDecrypt2() is preferred. This should be reflected in
platform-specific specifications.

This command performs symmetric encryption or decryption using the symmetric key referenced by

keyHandle and the selected mode.

keyHandle shall reference a symmetric cipher object (TPM_RC_KEY) with the restricted attribute CLEAR

(TPM_RC_ATTRIBUTES).

If the decrypt parameter of the command is TRUE, then the decrypt attribute of the key is required to be

SET (TPM_RC_ATTRIBUTES). If the decrypt parameter of the command is FALSE, then the sign

attribute of the key is required to be SET (TPM_RC_ATTRIBUTES).

NOTE 2 A key may have both decrypt and sign SET.

If the mode of the key is not TPM_ALG_NULL, then that is the only mode that can be used with the key

and the caller is required to set mode either to TPM_ALG_NULL or to the same mode as the key

(TPM_RC_MODE). If the mode of the key is TPM_ALG_NULL, then the caller may set mode to any valid

symmetric encryption/decryption mode but may not select TPM_ALG_NULL (TPM_RC_MODE).

If the TPM allows this command to be canceled before completion, then the TPM may produce

incremental results and return TPM_RC_SUCCESS rather than TPM_RC_CANCELED. In such case,

outData may be less than inData.

NOTE 3 If all the data is encrypted/decrypted, the size of outData will be the same as inData.

Part 3: Commands Trusted Platform Module Library

Page 106 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 58 — TPM2_EncryptDecrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_CIPHER_MODE+ mode

symmetric encryption/decryption mode

this field shall match the default mode of the key or be
TPM_ALG_NULL.

TPM2B_IV ivIn an initial value as required by the algorithm

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

Table 59 — TPM2_EncryptDecrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted or decrypted output

TPM2B_IV ivOut chaining value to use for IV in next round

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[EncryptDecrypt]]

Part 3: Commands Trusted Platform Module Library

Page 108 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

15.3 TPM2_EncryptDecrypt2

 General Description

This command is identical to TPM2_EncryptDecrypt(), except that the inData parameter is the first

parameter. This permits inData to be parameter encrypted.

NOTE In platform specification updates, this command is preferred and TPM2_EncryptDecrypt() should be
deprecated.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Comand and Response

Table 60 — TPM2_EncryptDecrypt2 Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt2

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_CIPHER_MODE+ mode

symmetric mode

this field shall match the default mode of the key or be
TPM_ALG_NULL.

TPM2B_IV ivIn an initial value as required by the algorithm

Table 61 — TPM2_EncryptDecrypt2 Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted or decrypted output

TPM2B_IV ivOut chaining value to use for IV in next round

Part 3: Commands Trusted Platform Module Library

Page 110 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[EncryptDecrypt2]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.4 TPM2_Hash

 General Description

This command performs a hash operation on a data buffer and returns the results.

NOTE If the data buffer to be hashed is larger than will fit into the TPM’s input buffer, then the sequence
hash commands will need to be used.

If the results of the hash will be used in a signing operation that uses a restricted signing key, then the

ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then the TPM will return a TPMT_TK_HASHCHECK with the hierarchy set

to TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

Part 3: Commands Trusted Platform Module Library

Page 112 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 62 — TPM2_Hash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Hash

TPM2B_MAX_BUFFER data data to be hashed

TPMI_ALG_HASH hashAlg
algorithm for the hash being computed – shall not be
TPM_ALG_NULL

TPMI_RH_HIERARCHY+ hierarchy hierarchy to use for the ticket (TPM_RH_NULL allowed)

Table 63 — TPM2_Hash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHash results

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

will be a NULL ticket if the digest may not be signed
with a restricted key

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[HASH]]

Part 3: Commands Trusted Platform Module Library

Page 114 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

15.5 TPM2_HMAC

 General Description

This command performs an HMAC on the supplied data using the indicated hash algorithm.

NOTE 1 A TPM may implement either TPM2_HMAC() or TPM2_MAC() but not both, as they have the same
command code and there is no way to distinguish them. A TPM that supports TPM2_MAC() will
support any code that was written to use TPM2_HMAC(), but a TPM that supports TPM2_HMAC()
will not support a MAC based on symmetric block ciphers.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return TPM_RC_TYPE. If the key

referenced by handle has the restricted attribute SET, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not

TPM_ALG_NULL (TPM_RC_VALUE) (see hash selection matrix in

Table 72).

NOTE 3 A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and the hash algorithm must be specified.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 64 — TPM2_HMAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the
HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer HMAC data

TPMI_ALG_HASH+ hashAlg algorithm to use for HMAC

Table 65 — TPM2_HMAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHMAC the returned HMAC in a sized buffer

Part 3: Commands Trusted Platform Module Library

Page 116 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[HMAC]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

15.6 TPM2_MAC

 General Description

This command performs an HMAC or a block cipher MAC on the supplied data using the indicated

algorithm.

NOTE 1 A TPM may implement either TPM2_HMAC() or TPM2_MAC() but not both as they have the same
command code and there is no way to distinguish them. A TPM that supports TPM2_MAC() wi ll
support any code that was written to use TPM2_HMAC() but a TPM that supports TPM2_HMAC ()
will not support a MAC based on symmetric block ciphers.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is neither TPM_ALG_KEYEDHASH nor TPM_ALG_SYMCIPHER then the TPM shall

return TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme or mode of the key referenced by handle is not TPM_ALG_NULL, then the

inScheme parameter is required to be either the same as the key’s default or TPM_ALG_NULL

(TPM_RC_VALUE).

If the default scheme of an HMAC key is TPM_ALG_NULL, then inScheme is required to be a valid hash

and not TPM_ALG_NULL (TPM_RC_VALUE) (see algorithm selection matrix in

Table 75).

If the default mode of a symmetric cipher key is TPM_ALG_NULL, then inScheme is required to be a valid

block cipher mode for authentication and not TPM_ALG_NULL (TPM_RC_VALUE)

NOTE 3 A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and inScheme may not be TPM_ALG_NULL.

NOTE 4 TPM2_MAC() was added in revision 01.43.

Part 3: Commands Trusted Platform Module Library

Page 118 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 66 — TPM2_MAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the MAC
key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer MAC data

TPMI_ALG_MAC_SCHEME+ inScheme algorithm to use for MAC

Table 67 — TPM2_MAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outMAC the returned MAC in a sized buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[MAC]]

Part 3: Commands Trusted Platform Module Library

Page 120 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

16 Random Number Generator

16.1 TPM2_GetRandom

 General Description

This command returns the next bytesRequested octets from the random number generator (RNG).

NOTE 1 It is recommended that a TPM implement the RNG in a manner that would allow it to return RNG
octets such that, as long as the value of bytesRequested is not greater than the maximum digest
size, the frequency of bytesRequested being more than the number of octets available is an
infrequent occurrence.

If bytesRequested is more than will fit into a TPM2B_DIGEST on the TPM, no error is returned but the

TPM will only return as much data as will fit into a TPM2B_DIGEST buffer for the TPM.

NOTE 2 TPM2B_DIGEST is large enough to hold the largest digest that may be produced by the TPM.
Because that digest size changes according to the implemented hashes, the maximum amount of
data returned by this command is TPM implementation-dependent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 68 — TPM2_GetRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetRandom

UINT16 bytesRequested number of octets to return

Table 69 — TPM2_GetRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST randomBytes the random octets

Part 3: Commands Trusted Platform Module Library

Page 122 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[GetRandom]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

16.2 TPM2_StirRandom

 General Description

This command is used to add "additional information" to the RNG state.

NOTE The "additional information" is as defined in SP800-90A.

The inData parameter may not be larger than 128 octets.

Part 3: Commands Trusted Platform Module Library

Page 124 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 70 — TPM2_StirRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_StirRandom {NV}

TPM2B_SENSITIVE_DATA inData additional information

Table 71 — TPM2_StirRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[StirRandom]]

Part 3: Commands Trusted Platform Module Library

Page 126 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17 Hash/HMAC/Event Sequences

17.1 Introduction

All of the commands in this group are to support sequences for which an intermediate state must be

maintained. For a description of sequences, see “Hash, MAC, and Event Sequences” in TPM 2.0 Part 1.

A TPM may implement either TPM2_HMAC_Start() or TPM2_MAC_Start() but not both as they have the

same command code and there is no way to distinguish them. A TPM that supports TPM2_MAC_Start()

will support any code that was written to use TPM2_HMAC_Start() but a TPM that supports

TPM2_HMAC_Start() will not support a MAC based on symmetric block ciphers.

17.2 TPM2_HMAC_Start

 General Description

This command starts an HMAC sequence. The TPM will create and initialize an HMAC sequence

structure, assign a handle to the sequence, and set the authValue of the sequence object to the value in

auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return TPM_RC_TYPE. If the key

referenced by handle has the restricted attribute SET, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not

TPM_ALG_NULL (TPM_RC_VALUE).

Table 72 — Hash Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(hash algorithm
from key's scheme) hashAlg hash used

CLEAR (unrestricted) TPM_ALG_NULL(1) TPM_ALG_NULL error(1) (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash hashAlg

CLEAR valid hash TPM_ALG_NULL or same as
handle→scheme

handle→scheme

CLEAR valid hash valid hash error (TPM_RC_VALUE) if
hashAlg != handle->scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

NOTE 1 A TPM may implement either TPM2_HMAC_Start() or TPM2_MAC_Start() but not both, as they have
the same command code and there is no way to distinguish them. A TPM that supports
TPM2_MAC_Start() will support any code that was written to use TPM2_HMAC_Start(), but a TPM
that supports TPM2_HMAC_Start() will not support a MAC based on symmetric block ciphers.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 73 — TPM2_HMAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC_Start

TPMI_DH_OBJECT @handle

handle of an HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg the hash algorithm to use for the HMAC

Table 74 — TPM2_HMAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Part 3: Commands Trusted Platform Module Library

Page 128 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[HMAC_Start]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

17.3 TPM2_MAC_Start

 General Description

This command starts a MAC sequence. The TPM will create and initialize a MAC sequence structure,

assign a handle to the sequence, and set the authValue of the sequence object to the value in auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH or TPM_ALG_SYMCIPHER then the TPM shall return

TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall return

TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the inScheme

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then inSchemeis required to be a valid hash or

symmetric MAC scheme and not TPM_ALG_NULL (TPM_RC_VALUE).

Table 75 — Algorithm Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(algorithm from
key's scheme) inScheme algorithm used

CLEAR (unrestricted) TPM_ALG_NULL(1) TPM_ALG_NULL error(1) (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash or symmetric MAC inScheme

CLEAR not TPM_ALG_NULL TPM_ALG_NULL or same as
handle→scheme

handle→scheme

CLEAR not TPM_ALG_NULL not TPM_AGL_NULL error (TPM_RC_VALUE)
ifinScheme!= handle-
>scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

2) hashAlg shall be TPM_ALG_NULL for handle referencing a CMAC key.

NOTE 3 For a TPM_ALG_SYMCIPHER key, the symmetric block cipher algorithm is part of the key definition.

NOTE 4 TPM2_MAC_Start() was added in revision 01.43.

Part 3: Commands Trusted Platform Module Library

Page 130 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 76 — TPM2_MAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MAC_Start

TPMI_DH_OBJECT @handle

handle of a MAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_MAC_SCHEME+ inScheme the algorithm to use for the MAC

Table 77 — TPM2_MAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[MAC_Start]]

Part 3: Commands Trusted Platform Module Library

Page 132 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.4 TPM2_HashSequenceStart

 General Description

This command starts a hash or an Event Sequence. If hashAlg is an implemented hash, then a hash

sequence is started. If hashAlg is TPM_ALG_NULL, then an Event Sequence is started. If hashAlg is

neither an implemented algorithm nor TPM_ALG_NULL, then the TPM shall return TPM_RC_HASH.

Depending on hashAlg, the TPM will create and initialize a Hash Sequence context or an Event

Sequence context. Additionally, it will assign a handle to the context and set the authValue of the context

to the value in auth. A sequence context for an Event (hashAlg = TPM_ALG_NULL) contains a hash

context for each of the PCR banks implemented on the TPM.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 78 — TPM2_HashSequenceStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HashSequenceStart

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg
the hash algorithm to use for the hash sequence

An Event Sequence starts if this is TPM_ALG_NULL.

Table 79 — TPM2_HashSequenceStart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Part 3: Commands Trusted Platform Module Library

Page 134 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[HashSequenceStart]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

17.5 TPM2_SequenceUpdate

 General Description

This command is used to add data to a hash or HMAC sequence. The amount of data in buffer may be

any size up to the limits of the TPM.

NOTE 1 In all TPM, a buffer size of 1,024 octets is allowed.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If the command does not return TPM_RC_SUCCESS, the state of the sequence is unmodified.

If the sequence is intended to produce a digest that will be signed by a restricted signing key, then the

first block of data shall contain sizeof(TPM_GENERATED) octets and the first octets shall not be

TPM_GENERATED_VALUE.

NOTE 2 This requirement allows the TPM to validate that the first block is safe to sign without having to
accumulate octets over multiple calls.

Part 3: Commands Trusted Platform Module Library

Page 136 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 80 — TPM2_SequenceUpdate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceUpdate

TPMI_DH_OBJECT @sequenceHandle

handle for the sequence object

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to hash

Table 81 — TPM2_SequenceUpdate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[SequenceUpdate]]

Part 3: Commands Trusted Platform Module Library

Page 138 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17.6 TPM2_SequenceComplete

 General Description

This command adds the last part of data, if any, to a hash/HMAC sequence and returns the result.

NOTE 1 This command is not used to complete an Event Sequence. TPM2_EventSequenceComplete() is
used for that purpose.

For a hash sequence, if the results of the hash will be used in a signing operation that uses a restricted

signing key, then the ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then validation will be a TPMT_TK_HASHCHECK with the hierarchy set to

TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

NOTE 2 Regardless of the contents of the first octets of the hashed message, if the first buffer sent to the
TPM had fewer than sizeof(TPM_GENERATED) octets, then the TPM will operate as if digest is not
safe to sign.

NOTE 3 The ticket is only required for a signing operation that uses a restricted signing key. It is always
returned, but can be ignored if not needed.

If sequenceHandle references an Event Sequence, then the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 82 — TPM2_SequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceComplete {F}

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the hash/HMAC

TPMI_RH_HIERARCHY+ hierarchy hierarchy of the ticket for a hash

Table 83 — TPM2_SequenceComplete Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST result the returned HMAC or digest in a sized buffer

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

This is a NULL Ticket when the sequence is HMAC.

Part 3: Commands Trusted Platform Module Library

Page 140 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[SequenceComplete]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 141

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

17.7 TPM2_EventSequenceComplete

 General Description

This command adds the last part of data, if any, to an Event Sequence and returns the result in a digest

list. If pcrHandle references a PCR and not TPM_RH_NULL, then the returned digest list is processed in

the same manner as the digest list input parameter to TPM2_PCR_Extend(). That is, if a bank contains a

PCR associated with pcrHandle, it is extended with the associated digest value from the list.

If sequenceHandle references a hash or HMAC sequence, the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

NOTE: Unlike TPM2_PCR_Event(), a digest is always returned for each implemented hash algorithm . There
is no option to only return digests for which pcrHandle is allocated.

Part 3: Commands Trusted Platform Module Library

Page 142 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 84 — TPM2_EventSequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EventSequenceComplete {NV F}

TPMI_DH_PCR+ @pcrHandle

PCR to be extended with the Event data

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 2

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the Event

Table 85 — TPM2_EventSequenceComplete Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_DIGEST_VALUES results list of digests computed for the PCR

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 143

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[EventSequenceComplete]]

Part 3: Commands Trusted Platform Module Library

Page 144 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18 Attestation Commands

18.1 Introduction

The attestation commands cause the TPM to sign an internally generated data structure. The contents of

the data structure vary according to the command.

If the sign attribute is not SET in the key referenced by signHandle then the TPM shall return

TPM_RC_KEY.

All signing commands include a parameter (typically inScheme) for the caller to specify a scheme to be

used for the signing operation. This scheme will be applied only if the scheme of the key is

TPM_ALG_NULL or the key handle is TPM_RH_NULL. If the scheme for signHandle is not

TPM_ALG_NULL, then inScheme.scheme shall be TPM_ALG_NULL or the same as scheme in the

public area of the key. If the scheme for signHandle is TPM_ALG_NULL or the key handle is

TPM_RH_NULL, then inScheme will be used for the signing operation and may not be TPM_ALG_NULL.

The TPM shall return TPM_RC_SCHEME to indicate that the scheme is not appropriate.

For a signing key that is not restricted, the caller may specify the scheme to be used as long as the

scheme is compatible with the family of the key (for example, TPM_ALG_RSAPSS cannot be selected for

an ECC key). If the caller sets scheme to TPM_ALG_NULL, then the default scheme of the key is used.

For a restricted signing key, the key's scheme cannot be TPM_ALG_NULL and cannot be overridden.

If the handle for the signing key (signHandle) is TPM_RH_NULL, then all of the actions of the command

are performed and the attestation block is “signed” with the NULL Signature.

NOTE 1 This mechanism is provided so that additional commands are not required to access the data that
might be in an attestation structure.

NOTE 2 When signHandle is TPM_RH_NULL, scheme is still required to be a valid signing scheme (may be
TPM_ALG_NULL), but the scheme will have no effect on the format of the signature. It will always
be the NULL Signature.

TPM2_NV_Certify() is an attestation command that is documented in 31.16. The remaining attestation

commands are collected in the remainder of this clause.

Each of the attestation structures contains a TPMS_CLOCK_INFO structure and a firmware version

number. These values may be considered privacy-sensitive, because they would aid in the correlation of

attestations by different keys. To provide improved privacy, the resetCount, restartCount, and

firmwareVersion numbers are obfuscated when the signing key is not in the Endorsement or Platform

hierarchies.

The obfuscation value is computed by:

 obfuscation ≔ KDFa(signHandle→nameAlg, shProof, “OBFUSCATE”, signHandle→QN, 0, 128) (3)

Of the returned 128 bits, 64 bits are added to the versionNumber field of the attestation structure; 32 bits

are added to the clockInfo.resetCount and 32 bits are added to the clockInfo.restartCount. The order in

which the bits are added is implementation-dependent.

NOTE 3 The obfuscation value for each signing key will be unique to that key in a specific location. That is,
each version of a duplicated signing key will have a different obfuscation value.

When the signing key is TPM_RH_NULL, the data structure is produced but not signed; and the values in

the signed data structure are obfuscated. When computing the obfuscation value for TPM_RH_NULL, the

hash used for context integrity is used.

NOTE 4 The QN for TPM_RH_NULL is TPM_RH_NULL.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 145

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If the signing scheme of signHandle is an anonymous scheme, then the attestation blocks will not contain

the Qualified Name of the signHandle.

Each of the attestation structures allows the caller to provide some qualifying data (qualifyingData). For

most signing schemes, this value will be placed in the TPMS_ATTEST.extraData parameter that is then

hashed and signed. However, for some schemes such as ECDAA, the qualifyingData is used in a

different manner (for details, see “ECDAA” in TPM 2.0 Part 1).

Part 3: Commands Trusted Platform Module Library

Page 146 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.2 TPM2_Certify

 General Description

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. By

certifying that the object is loaded, the TPM warrants that a public area with a given Name is self-

consistent and associated with a valid sensitive area. If a relying party has a public area that has the

same Name as a Name certified with this command, then the values in that public area are correct.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_Certify. This indicates that the

policy that is being used is a policy that is for certification, and not a policy that would approve another

use. That is, authority to use an object does not grant authority to certify the object.

The object may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary(). An object that

only has its public area loaded cannot be certified.

NOTE 2 The restriction occurs because the Name is used to identi fy the object being certified. If the TPM
has not validated that the public area is associated with a matched sensitive area, then the public
area may not represent a valid object and cannot be certified.

The certification includes the Name and Qualified Name of the certified object as well as the Name and

the Qualified Name of the certifying object.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 147

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 86 — TPM2_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Certify

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData user provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 87 — TPM2_Certify Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Part 3: Commands Trusted Platform Module Library

Page 148 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Certify]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 149

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.3 TPM2_CertifyCreation

 General Description

This command is used to prove the association between an object and its creation data. The TPM will

validate that the ticket was produced by the TPM and that the ticket validates the association between a

loaded public area and the provided hash of the creation data (creationHash).

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The TPM will create a test ticket using the Name associated with objectHandle and creationHash as:

 HMAC(proof, (TPM_ST_CREATION || objectHandle→Name || creationHash)) (4)

This ticket is then compared to creation ticket. If the tickets are not the same, the TPM shall return

TPM_RC_TICKET.

If the ticket is valid, then the TPM will create a TPMS_ATTEST structure and place creationHash of the

command in the creationHash field of the structure. The Name associated with objectHandle will be

included in the attestation data that is then signed using the key associated with signHandle.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

objectHandle may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary().

Part 3: Commands Trusted Platform Module Library

Page 150 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 88 — TPM2_CertifyCreation Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyCreation

TPMI_DH_OBJECT+ @signHandle

handle of the key that will sign the attestation block

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the object associated with the creation data

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPM2B_DIGEST creationHash
hash of the creation data produced by TPM2_Create()
or TPM2_CreatePrimary()

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPMT_TK_CREATION creationTicket
ticket produced by TPM2_Create() or
TPM2_CreatePrimary()

Table 89 — TPM2_CertifyCreation Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature the signature over certifyInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 151

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[CertifyCreation]]

Part 3: Commands Trusted Platform Module Library

Page 152 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.4 TPM2_Quote

 General Description

This command is used to quote PCR values.

The TPM will hash the list of PCR selected by PCRselect using the hash algorithm in the selected signing

scheme. If the selected signing scheme or the scheme hash algorithm is TPM_ALG_NULL, then the TPM

shall return TPM_RC_SCHEME.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The digest is computed as the hash of the concatenation of all of the digest values of the selected PCR.

The concatenation of PCR is described in TPM 2.0 Part 1, Selecting Multiple PCR.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

NOTE 3 A TPM may optionally return TPM_RC_SCHEME if signHandle is TPM_RH_NULL.

NOTE 4 Unlike TPM 1.2, TPM2_Quote does not return the PCR values. See Part 1, “Attesting to PCR” for a
discussion of this issue.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 153

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 90 — TPM2_Quote Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Quote

TPMI_DH_OBJECT+ @signHandle

handle of key that will perform signature

Auth Index: 1

Auth Role: USER

TPM2B_DATA qualifyingData data supplied by the caller

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPML_PCR_SELECTION PCRselect PCR set to quote

Table 91 — TPM2_Quote Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST quoted the quoted information

TPMT_SIGNATURE signature the signature over quoted

Part 3: Commands Trusted Platform Module Library

Page 154 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Quote]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 155

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.5 TPM2_GetSessionAuditDigest

 General Description

This command returns a digital signature of the audit session digest.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

If sessionHandle is not an audit session, the TPM shall return TPM_RC_TYPE.

NOTE 2 A session does not become an audit session until the successful completion of the command in
which the session is first used as an audit session.

This command requires authorization from the privacy administrator of the TPM (expressed with

Endorsement Authorization) as well as authorization to use the key associated with signHandle.

If this command is audited, then the audit digest that is signed will not include the digest of this command

because the audit digest is only updated when the command completes successfully.

This command does not cause the audit session to be closed and does not reset the digest value.

NOTE 3 If sessionHandle is used as an audit session for this command, the command is audited in the same
manner as any other command.

NOTE 4 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Part 3: Commands Trusted Platform Module Library

Page 156 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 92 — TPM2_GetSessionAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetSessionAuditDigest

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

handle of the signing key

Auth Index: 2

Auth Role: USER

TPMI_SH_HMAC sessionHandle
handle of the audit session

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data – may be zero-length

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 93 — TPM2_GetSessionAuditDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the audit information that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 157

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[GetSessionAuditDigest]]

Part 3: Commands Trusted Platform Module Library

Page 158 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

18.6 TPM2_GetCommandAuditDigest

 General Description

This command returns the current value of the command audit digest, a digest of the commands being

audited, and the audit hash algorithm. These values are placed in an attestation structure and signed with

the key referenced by signHandle.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

When this command completes successfully, and signHandle is not TPM_RH_NULL, the audit digest is

cleared. If signHandle is TPM_RH_NULL, signature is the Empty Buffer and the audit digest is not

cleared.

NOTE 2 The way that the TPM tracks that the digest is clear is vendor-dependent. The reference
implementation resets the size of the digest to zero.

If this command is being audited, then the signed digest produced by the command will not include the

command. At the end of this command, the audit digest will be extended with cpHash and the rpHash of

the command, which would change the command audit digest signed by the next invocation of this

command.

This command requires authorization from the privacy administrator of the TPM (expressed with

Endorsement Authorization) as well as authorization to use the key associated with signHandle.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 159

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 94 — TPM2_GetCommandAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCommandAuditDigest {NV}

TPMI_RH_ENDORSEMENT @privacyHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the handle of the signing key

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData other data to associate with this audit digest

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 95 — TPM2_GetCommandAuditDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the auditInfo that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Part 3: Commands Trusted Platform Module Library

Page 160 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[GetCommandAuditDigest]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 161

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

18.7 TPM2_GetTime

 General Description

This command returns the current values of Time and Clock.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The values of Clock, resetCount and restartCount appear in two places in timeInfo: once in

TPMS_ATTEST.clockInfo and again in TPMS_ATTEST.attested.time.clockInfo. The firmware version

number also appears in two places (TPMS_ATTEST.firmwareVersion and

TPMS_ATTEST.attested.time.firmwareVersion). If signHandle is in the endorsement or platform

hierarchies, both copies of the data will be the same. However, if signHandle is in the storage hierarchy or

is TPM_RH_NULL, the values in TPMS_ATTEST.clockInfo and TPMS_ATTEST.firmwareVersion are

obfuscated but the values in TPMS_ATTEST.attested.time are not.

NOTE 2 The purpose of this duplication is to allow an entity who is trusted by the privacy Administrator to
correlate the obfuscated values with the clear-text values. This command requires Endorsement
Authorization.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Part 3: Commands Trusted Platform Module Library

Page 162 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 96 — TPM2_GetTime Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTime

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the keyHandle identifier of a loaded key that can
perform digital signatures

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData data to tick stamp

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 97 — TPM2_GetTime Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST timeInfo standard TPM-generated attestation block

TPMT_SIGNATURE signature the signature over timeInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 163

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[GetTime]]

18.8 TPM2_CertifyX509

 General Description

The purpose of this command is to generate an X.509 certificate that proves an object with a specific

public key and attributes is loaded in the TPM. In contrast to TPM2_Certify, which uses a TCG-defined

data structure to convey attestation information, TPM2_CertifyX509 encodes the attestation information in

a DER-encoded X.509 certificate that is compliant with RFC5280 Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile.

As described in RFC, an X.509 certificate contains a collection of data that is hashed and signed. The full

signature is the combination of the to be signed (TBS) data, a description of the signature algorithm, and

the signature over the TBS data. The elements of the TBS data structure are DER-encoded values. They

are:

1) Version [0] – integer value of 2 indicating version 3

2) Certificate Serial Number – integer value

3) Signature Algorithm Identifier – values (usually a collection of OIDs) identifying the algorithm

used for the signature

4) Issuer Name – X.501 type Name to identify the entity that has authorized the use of

signHandle to create the certificate.

5) Validity – two time values indicating the period during which the certificate is valid

6) Subject Name – X.501 type Name that identifies the entity that authorized the use of

objectHandle

7) Subject Public Key Info – the public key associated with objectHandle,

8) Extensions [3] – a set of values that “provide methods for associating additional attributes

with users or public keys and for managing relationships between CAs. ”

NOTE 1: The numbers in square brackets (e.g., [0]) indicate application -specific tag values that are used to
identify the type of the field.

NOTE 2: RFC 5280 describes two fields (issuerUniqueID and subjectUniqueID) but goes on to say: “CAs
conforming to this profile MUST NOT generate certificates with unique identifiers.” The TPM does
not allow them to be present.

The caller provides a partial certificate (partialCertificate) parameter that contains four or five of the

elements enumerated above in a DER encoded SEQUENCE. They are:

1) Signature Algorithm Identifier (optional)

2) Issuer (mandatory)

3) Validity (mandatory)

4) Subject Name (mandatory)

5) Extensions (mandatory)

The fields are required to be in the order in which they are listed above.

NOTE 3: The TPM determines if the Signature Algorithm Identifier element is present by counting the
elements.

Part 3: Commands Trusted Platform Module Library

Page 164 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The optional Signature Algorithm Identifier may be provided by the caller. If it is not present, the TPM will

generate the value based on the selected signing scheme. If the caller provides this value, then the TPM

will use it in the completed TBS. The TPM will not validate that the provided values are compatible with

the signing scheme. If the caller does not provide this field and the TPM does not have OID values for the

signing scheme, then the TPM will return an error (TPM_RC_SCHEME).

NOTE 4: The TPM may implement signing schemes for which OIDs are not defined at the time the TPM was
manufactured. Those schemes may still be used if the caller can provide the Signature Algorithm
Identifier.

The Extensions element is required to contain a Key Usage extension. The TPM will extract the Key

Usage values and verify that the attributes of objectHandle are consistent with the selected values

(TPM_RC_ATTRIBUTES)(See Part 2, TPMA_X509_KEY_USAGE).

The Extensions element may contain a TPMA_OBJECT extension. If present, the TPM will extract the

value and verify that the extension value exactly matches the TPMA_OBJECT of objectKey

(TPM_RC_ATTRIBUTES). The element uses the TCG OID tcg-tpmaObject, 2.23.133.10.1.1.1. It is a

SEQUENCE containing that OID and an OCTET STRING encapsulating a 4-byte BIT STRING holding

the big endian TPMA_OBJECT.

signHandle is required to have the sign attribute SET (TPM_RC_KEY).

NOTE 5: See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_CertifyX509. This indicates that the

policy that is being used is a policy that is for certification, and not a policy that would approve another

use. That is, authority to use an object does not grant authority to certify the object.

If objectHandle does not have a sensitive area loaded, the TPM will return an error

(TPM_RC_AUTH_UNAVAILABLE).

NOTE 6: The command requires that authorization be provided for use of objectHandle. An object that only
has its publicArea loaded does not have an authorization value and the authPolicy has no meaning
as the sensitive area is not present.

The TPM will create the Version, the Certificate Serial Number, the Subject Public Key Info, and, if not

provided by the caller, the Signature Algorithm Identifier. These TPM-created values will be combined

with the provided values to make a full TBSCerfificate structure (See RFC 5280, clause 4.1). The TPM

will then sign the certificate using the selected signing scheme.

The TPM-created values will be returned in addedToCertificate. If the TPM creates the Signature

Algorithm Identifier, it will be in addedToCertificate before the Subject Public Key Info. The TPM returns

tbsDigest as a debugging aid.

NOTE 7: These returned fields allow the caller to unambiguously create a full RFC5280-defined
TBSCertificate.

NOTE 8: This command was added in revision 01.53.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 165

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 98 — TPM2_CertifyX509 Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyX509

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA reserved shall be an Empty Buffer

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPM2B_MAX_BUFFER partialCertificate a DER encoded partial certificate

Table 99 — TPM2_CertifyX509 Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_MAX_BUFFER addedToCertificate
a DER encoded SEQUENCE containing the DER
encoded fields added to partialCertificate to make it a
complete RFC5280 TBSCertificate.

TPM2B_DIGEST tbsDigest the digest that was signed

TPMT_SIGNATURE signature The signature over tbsDigest

Part 3: Commands Trusted Platform Module Library

Page 166 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[certifyX509]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 167

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

19 Ephemeral EC Keys

19.1 Introduction

The TPM generates keys that have different lifetimes. TPM keys in a hierarchy can be persistent for as

long as the seed of the hierarchy is unchanged and these keys may be used multiple times. Other TPM-

generated keys are only useful for a single operation. Some of these single-use keys are used in the

command in which they are created. Examples of this use are TPM2_Duplicate() where an ephemeral

key is created for a single pass key exchange with another TPM. However, there are other cases, such

as anonymous attestation, where the protocol requires two passes where the public part of the ephemeral

key is used outside of the TPM before the final command "consumes" the ephemeral key.

For these uses, TPM2_Commit() or TPM2_EC_Ephemeral() may be used to have the TPM create an

ephemeral EC key and return the public part of the key for external use. Then in a subsequent command,

the caller provides a reference to the ephemeral key so that the TPM can retrieve or recreate the

associated private key.

When an ephemeral EC key is created, it is assigned a number and that number is returned to the caller

as the identifier for the key. This number is not a handle. A handle is assigned to a key that may be

context saved but these ephemeral EC keys may not be saved and do not have a full key context. When

a subsequent command uses the ephemeral key, the caller provides the number of the ephemeral key.

The TPM uses that number to either look up or recompute the associated private key. After the key is

used, the TPM records the fact that the key has been used so that it cannot be used again.

As mentioned, the TPM can keep each assigned private ephemeral key in memory until it is used.

However, this could consume a large amount of memory. To limit the memory size, the TPM is allowed to

restrict the number of pending private keys – keys that have been allocated but not used.

NOTE The minimum number of ephemeral keys is determined by a platform specific specification

To further reduce the memory requirements for the ephemeral private keys, the TPM is allowed to use

pseudo-random values for the ephemeral keys. Instead of keeping the full value of the key in memory, the

TPM can use a counter as input to a KDF. Incrementing the counter will cause the TPM to generate a

new pseudo-random value.

Using the counter to generate pseudo-random private ephemeral keys greatly simplifies tracking of key

usage. When a counter value is used to create a key, a bit in an array may be set to indicate that the key

use is pending. When the ephemeral key is consumed, the bit is cleared. This prevents the key from

being used more than once.

Since the TPM is allowed to restrict the number of pending ephemeral keys, the array size can be limited.

For example, a 128 bit array would allow 128 keys to be "pending".

The management of the array is described in greater detail in the Split Operations clause in Annex C of

TPM 2.0 Part 1.

Part 3: Commands Trusted Platform Module Library

Page 168 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

19.2 TPM2_Commit

 General Description

TPM2_Commit() performs the first part of an ECC anonymous signing operation. The TPM will perform

the point multiplications on the provided points and return intermediate signing values. The signHandle

parameter shall refer to an ECC key and the signing scheme must be anonymous (TPM_RC_SCHEME).

NOTE 1 Currently, TPM_ALG_ECDAA is the only defined anonymous scheme.

NOTE 2 This command cannot be used with a sign+decrypt key because that type of key is required to have
a scheme of TPM_ALG_NULL.

For this command, p1, s2 and y2 are optional parameters. If s2 is an Empty Buffer, then the TPM shall

return TPM_RC_SIZE if y2 is not an Empty Buffer.

The algorithm is specified in the TPM 2.0 Part 1 Annex for ECC, TPM2_Commit().

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 169

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 100 — TPM2_Commit Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Commit

TPMI_DH_OBJECT @signHandle

handle of the key that will be used in the signing

operation

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT P1 a point (M) on the curve used by signHandle

TPM2B_SENSITIVE_DATA s2 octet array used to derive x-coordinate of a base point

TPM2B_ECC_PARAMETER y2 y coordinate of the point associated with s2

Table 101 — TPM2_Commit Response

Type Name Description

TPM_ST tag see 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT K ECC point K ≔ [ds](x2, y2)

TPM2B_ECC_POINT L ECC point L ≔ [r](x2, y2)

TPM2B_ECC_POINT E ECC point E ≔ [r]P1

UINT16 counter least-significant 16 bits of commitCount

Part 3: Commands Trusted Platform Module Library

Page 170 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Commit]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 171

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

19.3 TPM2_EC_Ephemeral

 General Description

TPM2_EC_Ephemeral() creates an ephemeral key for use in a two-phase key exchange protocol.

The TPM will use the commit mechanism to assign an ephemeral key r and compute a public point Q ≔

[r]G where G is the generator point associated with curveID.

Part 3: Commands Trusted Platform Module Library

Page 172 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 102 — TPM2_EC_Ephemeral Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is

present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EC_Ephemeral

TPMI_ECC_CURVE curveID The curve for the computed ephemeral point

Table 103 — TPM2_EC_Ephemeral Response

Type Name Description

TPM_ST tag see 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT Q ephemeral public key Q ≔ [r]G

UINT16 counter least-significant 16 bits of commitCount

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 173

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[EC_Ephemeral]]

Part 3: Commands Trusted Platform Module Library

Page 174 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

20 Signing and Signature Verification

20.1 TPM2_VerifySignature

 General Description

This command uses loaded keys to validate a signature on a message with the message digest passed

to the TPM.

If the signature check succeeds, then the TPM will produce a TPMT_TK_VERIFIED. Otherwise, the TPM

shall return TPM_RC_SIGNATURE.

If the key is in the NULL hierarchy, then digest in the ticket will be the Empty Buffer.

NOTE 1 A valid ticket may be used in subsequent commands to provide proof to the TPM that the TPM has
validated the signature over the message using the key referenced by keyHandle.

If keyHandle references an asymmetric key, only the public portion of the key needs to be loaded. If

keyHandle references a symmetric key, both the public and private portions need to be loaded.

NOTE 2 The sensitive area of the symmetric object is required to allow verification of the symmetric
signature (the HMAC).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 175

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 104 — TPM2_VerifySignature Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_VerifySignature

TPMI_DH_OBJECT keyHandle
handle of public key that will be used in the validation

Auth Index: None

TPM2B_DIGEST digest digest of the signed message

TPMT_SIGNATURE signature signature to be tested

Table 105 — TPM2_VerifySignature Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_TK_VERIFIED validation

Part 3: Commands Trusted Platform Module Library

Page 176 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[VerifySignature]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 177

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

20.2 TPM2_Sign

 General Description

This command causes the TPM to sign an externally provided hash with the specified symmetric or

asymmetric signing key.

NOTE 1 If keyhandle references an unrestricted signing key, a digest can be signed using either this
command or an HMAC command.

If keyHandle references a restricted signing key, then validation shall be provided, indicating that the TPM

performed the hash of the data and validation shall indicate that hashed data did not start with

TPM_GENERATED_VALUE.

NOTE 2 If the hashed data did start with TPM_GENERATED_VALUE, then the vali dation will be a NULL
ticket.

The x509sign attribute of keyHandle may not be SET (TPM_RC_ATTRIBUTES).

If the scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be the same scheme as

keyHandle or TPM_ALG_NULL. If the sign attribute is not SET in the key referenced by handle then the

TPM shall return TPM_RC_KEY.

If the scheme of keyHandle is TPM_ALG_NULL, the TPM will sign using inScheme; otherwise, it will sign

using the scheme of keyHandle.

NOTE 3 When the signing scheme uses a hash algorithm, the algorithm is defined in the qualifying data of
the scheme. This is the same algorithm that is required to be used in producing digest. The size of
digest must match that of the hash algorithm in the scheme.

If inScheme is not a valid signing scheme for the type of keyHandle (or TPM_ALG_NULL), then the TPM

shall return TPM_RC_SCHEME.

If the scheme of keyHandle is an anonymous scheme, then inScheme shall have the same scheme

algorithm as keyHandle and inScheme will contain a counter value that will be used in the signing

process.

EXAMPLE For ECDAA, inScheme.details.ecdaa.count will contain the count value.

If validation is provided, then the hash algorithm used in computing the digest is required to be the hash

algorithm specified in the scheme of keyHandle (TPM_RC_TICKET).

If the validation parameter is not the Empty Buffer, then it will be checked even if the key referenced by

keyHandle is not a restricted signing key.

NOTE 4 If keyHandle is both a sign and decrypt key, keyHandle will have a scheme of TPM_ALG_NULL. If
validation is provided, then it must be a NULL validation ticket or the ticket validation will fail.

Part 3: Commands Trusted Platform Module Library

Page 178 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 106 — TPM2_Sign Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Sign

TPMI_DH_OBJECT @keyHandle

Handle of key that will perform signing

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST digest digest to be signed

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for keyHandle is
TPM_ALG_NULL

TPMT_TK_HASHCHECK validation

proof that digest was created by the TPM

If keyHandle is not a restricted signing key, then this
may be a NULL Ticket with tag =
TPM_ST_CHECKHASH.

Table 107 — TPM2_Sign Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_SIGNATURE signature the signature

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 179

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[Sign]]

Part 3: Commands Trusted Platform Module Library

Page 180 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

21 Command Audit

21.1 Introduction

If a command has been selected for command audit, the command audit status will be updated when that

command completes successfully. The digest is updated as:

 commandAuditDigestnew ≔ HauditAlg(commandAuditDigestold || cpHash || rpHash) (5)

where

HauditAlg hash function using the algorithm of the audit sequence

commandAuditDigest accumulated digest

cpHash the command parameter hash

rpHash the response parameter hash

auditAlg, the hash algorithm, is set using TPM2_SetCommandCodeAuditStatus().

TPM2_Shutdown() cannot be audited but TPM2_Startup() can be audited. If the cpHash of the

TPM2_Startup() is TPM_SU_STATE, that would indicate that a TPM2_Shutdown() had been successfully

executed.

TPM2_SetCommandCodeAuditStatus() is always audited, except when it is used to change auditAlg.

If the TPM is in Failure mode, command audit is not functional.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 181

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

21.2 TPM2_SetCommandCodeAuditStatus

 General Description

This command may be used by the Privacy Administrator or platform to change the audit status of a

command or to set the hash algorithm used for the audit digest, but not both at the same time.

If the auditAlg parameter is a supported hash algorithm and not the same as the current algorithm, then

the TPM will check both setList and clearList are empty (zero length). If so, then the algorithm is changed,

and the audit digest is cleared. If auditAlg is TPM_ALG_NULL or the same as the current algorithm, then

the algorithm and audit digest are unchanged and the setList and clearList will be processed.

NOTE 1 Because the audit digest is cleared, the audit counter will increment the next time that an audited
command is executed.

Use of TPM2_SetCommandCodeAuditStatus() to change the list of audited commands is an audited

event. If TPM_CC_SetCommandCodeAuditStatus is in clearList, the fact that it is in clearList is ignored.

NOTE 2 Use of this command to change the audit hash algorithm is not audited and the digest is re set when
the command completes. The change in the audit hash algorithm is the evidence that this command
was used to change the algorithm.

The commands in setList indicate the commands to be added to the list of audited commands and the

commands in clearList indicate the commands that will no longer be audited. It is not an error if a

command in setList is already audited or is not implemented. It is not an error if a command in clearList is

not currently being audited or is not implemented.

If a command code is in both setList and clearList, then it will not be audited (that is, setList shall be

processed first).

Part 3: Commands Trusted Platform Module Library

Page 182 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 108 — TPM2_SetCommandCodeAuditStatus Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetCommandCodeAuditStatus {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_ALG_HASH+ auditAlg
hash algorithm for the audit digest; if
TPM_ALG_NULL, then the hash is not changed

TPML_CC setList
list of commands that will be added to those that will
be audited

TPML_CC clearList list of commands that will no longer be audited

Table 109 — TPM2_SetCommandCodeAuditStatus Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 183

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[SetCommandCodeAuditStatus]]

Part 3: Commands Trusted Platform Module Library

Page 184 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22 Integrity Collection (PCR)

22.1 Introduction

In TPM 1.2, an Event was hashed using SHA-1 and then the 20-octet digest was extended to a PCR

using TPM_Extend(). This specification allows the use of multiple PCR at a given Index, each using a

different hash algorithm. Rather than require that the external software generate multiple hashes of the

Event with each being extended to a different PCR, the Event data may be sent to the TPM for hashing.

This ensures that the resulting digests will properly reflect the algorithms chosen for the PCR even if the

calling software is unable to implement the hash algorithm.

NOTE 1 There is continued support for software hashing of events with TPM2_PCR_Extend().

To support recording of an Event that is larger than the TPM input buffer, the caller may use the

command sequence described in clause 17.

Change to a PCR requires authorization. The authorization may be with either an authorization value or

an authorization policy. The platform-specific specifications determine which PCR may be controlled by

policy. All other PCR are controlled by authorization.

If a PCR may be associated with a policy, then the algorithm ID of that policy determines whether the

policy is to be applied. If the algorithm ID is not TPM_ALG_NULL, then the policy digest associated with

the PCR must match the policySession→policyDigest in a policy session. If the algorithm ID is

TPM_ALG_NULL, then no policy is present and the authorization requires an EmptyAuth.

If a platform-specific specification indicates that PCR are grouped, then all the PCR in the group use the

same authorization policy or authorization value.

pcrUpdateCounter counter will be incremented on the successful completion of any command that

modifies (Extends or resets) a PCR unless the platform-specific specification explicitly excludes the PCR

from being counted.

NOTE 2 If a command causes PCR in multiple banks to change, the PCR Update Counter must be
incremented once for each bank. The commands that extend PCR are: TPM2_PCR_Extend,
TPM2_PCR_Event, and TPM2_EventSequenceComplete.

If a command resets PCR in multiple banks, the PCR Update Counter must be incremented only
once. The commands that reset PCR are: TPM2_PCR_Reset, and TPM2_Startup.

A platform-specific specification may designate a set of PCR that are under control of the TCB. These

PCR may not be modified without the proper authorization. Updates of these PCR shall not cause the

PCR Update Counter to increment.

EXAMPLE Updates of the TCB PCR will not cause the PCR update counter to increment because these PCR
are changed at the whim of the TCB and may not represent the trust state of the platform.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 185

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.2 TPM2_PCR_Extend

 General Description

This command is used to cause an update to the indicated PCR. The digests parameter contains one or

more tagged digest values identified by an algorithm ID. For each digest, the PCR associated with

pcrHandle is Extended into the bank identified by the tag (hashAlg).

EXAMPLE A SHA1 digest would be Extended into the SHA1 bank and a SHA256 digest would be Extended into
the SHA256 bank.

For each list entry, the TPM will check to see if pcrNum is implemented for that algorithm. If so, the TPM

shall perform the following operation:

 PCR.digestnew [pcrNum][alg] ≔ Halg(PCR.digestold [pcrNum][alg] || data[alg].buffer)) (6)

where

Halg() hash function using the hash algorithm associated with the PCR

instance

PCR.digest the digest value in a PCR

pcrNum the PCR numeric selector (pcrHandle)

alg the PCR algorithm selector for the digest

data[alg].buffer the bank-specific data to be extended

If no digest value is specified for a bank, then the PCR in that bank is not modified.

NOTE 1 This allows consistent operation of the digests list for all of the Event recording commands.

If a digest is present and the PCR in that bank is not implemented, the digest value is not used.

NOTE 2 If the caller includes digests for algorithms that are not implemented, then the TPM will fail the call
because the unmarshalling of digests will fail. Each of the entries in the list is a TPMT_HA, which is
a hash algorithm followed by a digest. If the algorithm is not implemented, unmarshalling of the
hashAlg will fail and the TPM will return TPM_RC_HASH.

If the TPM unmarshals the hashAlg of a list entry and the unmarshaled value is not a hash algorithm

implemented on the TPM, the TPM shall return TPM_RC_HASH.

The pcrHandle parameter is allowed to reference TPM_RH_NULL. If so, the input parameters are

processed but no action is taken by the TPM. This permits the caller to probe for implemented hash

algorithms as an alternative to TPM2_GetCapability.

NOTE 3 This command allows a list of digests so that PCR in all banks may be updated in a single
command. While the semantics of this command allow multiple extends to a single PCR bank, this is
not the preferred use and the limit on the number of entries in the list make this use somewhat
impractical.

Part 3: Commands Trusted Platform Module Library

Page 186 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 110 — TPM2_PCR_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Extend {NV}

TPMI_DH_PCR+ @pcrHandle

handle of the PCR

Auth Handle: 1

Auth Role: USER

TPML_DIGEST_VALUES digests list of tagged digest values to be extended

Table 111 — TPM2_PCR_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 187

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PCR_Extend]]

Part 3: Commands Trusted Platform Module Library

Page 188 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.3 TPM2_PCR_Event

 General Description

This command is used to cause an update to the indicated PCR.

The data in eventData is hashed using the hash algorithm associated with each bank in which the

indicated PCR has been allocated. After the data is hashed, the digests list is returned. If the pcrHandle

references an implemented PCR and not TPM_RH_NULL, the digests list is processed as in

TPM2_PCR_Extend().

A TPM shall support an Event.size of zero through 1,024 inclusive (Event.size is an octet count). An

Event.size of zero indicates that there is no data but the indicated operations will still occur,

EXAMPLE 1 If the command implements PCR[2] in a SHA1 bank and a SHA256 bank, then an extend to PCR[2]
will cause eventData to be hashed twice, once with SHA1 and once with SHA256. The SHA1 hash of
eventData will be Extended to PCR[2] in the SHA1 bank and the SHA256 hash of eventData will be
Extended to PCR[2] of the SHA256 bank.

On successful command completion, digests will contain the list of tagged digests of eventData that was

computed in preparation for extending the data into the PCR. At the option of the TPM, the list may

contain a digest for each bank, or it may only contain a digest for each bank in which pcrHandle is extant.

If pcrHandle is TPM_RH_NULL, the TPM may return either an empty list or a digest for each bank.

EXAMPLE 2 Assume a TPM that implements a SHA1 bank and a SHA256 bank and that PCR[22] is only
implemented in the SHA1 bank. If pcrHandle references PCR[22], then digests may contain either a
SHA1 and a SHA256 digest or just a SHA1 digest.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 189

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 112 — TPM2_PCR_Event Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Event {NV}

TPMI_DH_PCR+ @pcrHandle

Handle of the PCR

Auth Handle: 1

Auth Role: USER

TPM2B_EVENT eventData Event data in sized buffer

Table 113 — TPM2_PCR_Event Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPML_DIGEST_VALUES digests

Part 3: Commands Trusted Platform Module Library

Page 190 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PCR_Event]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 191

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.4 TPM2_PCR_Read

 General Description

This command returns the values of all PCR specified in pcrSelectionIn.

The TPM will process the list of TPMS_PCR_SELECTION in pcrSelectionIn in order. Within each

TPMS_PCR_SELECTION, the TPM will process the bits in the pcrSelect array in ascending PCR order

(see TPM 2.0 Part 1, Selecting Multiple PCR). If a bit is SET, and the indicated PCR is present, then the

TPM will add the digest of the PCR to the list of values to be returned in pcrValues.

The TPM will continue processing bits until all have been processed or until pcrValues would be too large

to fit into the output buffer if additional values were added.

The returned pcrSelectionOut will have a bit SET in its pcrSelect structures for each value present in

pcrValues.

The current value of the PCR Update Counter is returned in pcrUpdateCounter.

The returned list may be empty if none of the selected PCR are implemented.

NOTE If no PCR are returned from a bank, the selector for the bank will be present in pcrSelectionOut.

No authorization is required to read a PCR and any implemented PCR may be read from any locality.

Part 3: Commands Trusted Platform Module Library

Page 192 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 114 — TPM2_PCR_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Read

TPML_PCR_SELECTION pcrSelectionIn The selection of PCR to read

Table 115 — TPM2_PCR_Read Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

UINT32 pcrUpdateCounter the current value of the PCR update counter

TPML_PCR_SELECTION pcrSelectionOut the PCR in the returned list

TPML_DIGEST pcrValues
the contents of the PCR indicated in pcrSelectOut->
pcrSelection[] as tagged digests

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 193

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PCR_Read]]

Part 3: Commands Trusted Platform Module Library

Page 194 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.5 TPM2_PCR_Allocate

 General Description

This command is used to set the desired PCR allocation of PCR and algorithms. This command requires

Platform Authorization.

The TPM will evaluate the request and, if sufficient memory is available for the requested allocation, the

TPM will store the allocation request for use during the next _TPM_Init operation. The PCR allocation in

place when this command is executed will be retained until the next _TPM_Init. If this command is

received multiple times before a _TPM_Init, each one overwrites the previous stored allocation.

This command will only change the allocations of banks that are listed in pcrAllocation.

EXAMPLE 1 If a TPM supports SHA1 and SHA256, then it maintains an allocation for two banks (one of which
could be empty). If pcrAllocation only has a selector for the SHA1 bank, then only the allocation of
the SHA1 bank will be changed and the SHA256 bank will remain unchanged. To change the
allocation of a TPM from 24 SHA1 PCR and no SHA256 PCR to 24 SHA256 PCR and no SHA1 PCR,
the pcrAllocation would have to have two selections: one for the empty SHA1 bank and one for the
SHA256 bank with 24 PCR.

If a bank is listed more than once, then the last selection in the pcrAllocation list is the one that the TPM

will attempt to allocate.

NOTE 1 This does not mean to imply that pcrAllocation.count can exceed HASH_COUNT, the number of
digests implemented in the TPM.

EXAMPLE 2 If HASH_COUNT is 2, pcrAllocation can specify SHA-256 twice, and the second one is used.
However, if SHA_256 is specified three times, the unmarshaling may fail and the TPM may return an
error.

This command shall not allocate more PCR in any bank than there are PCR attribute definitions. The

PCR attribute definitions indicate how a PCR is to be managed – if it is resettable, the locality for update,

etc. In the response to this command, the TPM returns the maximum number of PCR allowed for any

bank.

When PCR are allocated, if DRTM_PCR is defined, the resulting allocation must have at least one bank

with the D-RTM PCR allocated. If HCRTM_PCR is defined, the resulting allocation must have at least one

bank with the HCRTM_PCR allocated. If not, the TPM returns TPM_RC_PCR.

The TPM may return TPM_RC_SUCCESS even though the request fails. This is to allow the TPM to

return information about the size needed for the requested allocation and the size available. If the

sizeNeeded parameter in the return is less than or equal to the sizeAvailable parameter, then the

allocationSuccess parameter will be YES. Alternatively, if the request fails, The TPM may return

TPM_RC_NO_RESULT.

NOTE 2 An example for this type of failure is a TPM that can only support one bank at a time and cannot
support arbitrary distribution of PCR among banks.

After this command, TPM2_Shutdown() is only allowed to have a startupType equal to TPM_SU_CLEAR

until after the next _TPM_Init.

NOTE 3 Even if this command does not cause the PCR allocation to change, the TPM cannot have its state
saved. This is done in order to simplify the implementation. There is no need to optimize this
command as it is not expected to be used more than once in the lifetime of the TPM (it can be used
any number of times but there is no justification for optimization).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 195

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 116 — TPM2_PCR_Allocate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Allocate {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPML_PCR_SELECTION pcrAllocation the requested allocation

Table 117 — TPM2_PCR_Allocate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO allocationSuccess YES if the allocation succeeded

UINT32 maxPCR maximum number of PCR that may be in a bank

UINT32 sizeNeeded number of octets required to satisfy the request

UINT32 sizeAvailable
Number of octets available. Computed before the
allocation.

Part 3: Commands Trusted Platform Module Library

Page 196 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PCR_Allocate]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 197

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.6 TPM2_PCR_SetAuthPolicy

 General Description

This command is used to associate a policy with a PCR or group of PCR. The policy determines the

conditions under which a PCR may be extended or reset.

A policy may only be associated with a PCR that has been defined by a platform-specific specification as

allowing a policy. If the TPM implementation does not allow a policy for pcrNum, the TPM shall return

TPM_RC_VALUE.

A platform-specific specification may group PCR so that they share a common policy. In such case, a

pcrNum that selects any of the PCR in the group will change the policy for all PCR in the group.

The policy setting is persistent and may only be changed by TPM2_PCR_SetAuthPolicy() or by

TPM2_ChangePPS().

Before this command is first executed on a TPM or after TPM2_ChangePPS(), the access control on the

PCR will be set to the default value defined in the platform-specific specification.

NOTE 1 It is expected that the typical default will be with the policy hash set to TPM_ALG_NULL and an
Empty Buffer for the authPolicy value. This will allow an EmptyAuth to be used as the authorization
value.

If the size of the data buffer in authPolicy is not the size of a digest produced by hashAlg, the TPM shall

return TPM_RC_SIZE.

NOTE 2 If hashAlg is TPM_ALG_NULL, then the size is required to be zero.

This command requires platformAuth/platformPolicy.

NOTE 3 If the PCR is in multiple policy sets, the policy will be changed in only one set. The set that is
changed will be implementation dependent.

Part 3: Commands Trusted Platform Module Library

Page 198 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 118 — TPM2_PCR_SetAuthPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthPolicy {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy the desired authPolicy

TPMI_ALG_HASH+ hashAlg the hash algorithm of the policy

TPMI_DH_PCR pcrNum the PCR for which the policy is to be set

Table 119 — TPM2_PCR_SetAuthPolicy Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 199

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PCR_SetAuthPolicy]]

Part 3: Commands Trusted Platform Module Library

Page 200 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.7 TPM2_PCR_SetAuthValue

 General Description

This command changes the authValue of a PCR or group of PCR.

An authValue may only be associated with a PCR that has been defined by a platform-specific

specification as allowing an authorization value. If the TPM implementation does not allow an

authorization for pcrNum, the TPM shall return TPM_RC_VALUE. A platform-specific specification may

group PCR so that they share a common authorization value. In such case, a pcrNum that selects any of

the PCR in the group will change the authValue value for all PCR in the group.

The authorization setting is set to EmptyAuth on each STARTUP(CLEAR) or by TPM2_Clear(). The

authorization setting is preserved by SHUTDOWN(STATE).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 201

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 120 — TPM2_PCR_SetAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthValue

TPMI_DH_PCR @pcrHandle

handle for a PCR that may have an authorization value
set

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST auth the desired authorization value

Table 121 — TPM2_PCR_SetAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 202 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PCR_SetAuthValue]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 203

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22.8 TPM2_PCR_Reset

 General Description

If the attribute of a PCR allows the PCR to be reset and proper authorization is provided, then this

command may be used to set the PCR in all banks to zero. The attributes of the PCR may restrict the

locality that can perform the reset operation.

NOTE 1 The definition of TPMI_DH_PCR in TPM 2.0 Part 2 indicates that if pcrHandle is out of the allowed
range for PCR, then the appropriate return value is TPM_RC_VALUE.

If pcrHandle references a PCR that cannot be reset, the TPM shall return TPM_RC_LOCALITY.

NOTE 2 TPM_RC_LOCALITY is returned because the reset attributes are defined on a per -locality basis.

Part 3: Commands Trusted Platform Module Library

Page 204 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 122 — TPM2_PCR_Reset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Reset {NV}

TPMI_DH_PCR @pcrHandle

the PCR to reset

Auth Index: 1

Auth Role: USER

Table 123 — TPM2_PCR_Reset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 205

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PCR_Reset]]

Part 3: Commands Trusted Platform Module Library

Page 206 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.9 _TPM_Hash_Start

 Description

This indication from the TPM interface indicates the start of an H-CRTM measurement sequence. On

receipt of this indication, the TPM will initialize an H-CRTM Event Sequence context.

If no object memory is available for creation of the sequence context, the TPM will flush the context of an

object so that creation of the sequence context will always succeed.

A platform-specific specification may allow this indication before TPM2_Startup().

NOTE If this indication occurs after TPM2_Startup(), it is the responsibility of software to ensure that an
object context slot is available or to deal with the consequences of having the TPM select an
arbitrary object to be flushed. If this indication occurs before TPM2_Startup() then all context slots
are available.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 207

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[_TPM_Hash_Start]]

Part 3: Commands Trusted Platform Module Library

Page 208 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.10 _TPM_Hash_Data

 Description

This indication from the TPM interface indicates arrival of one or more octets of data that are to be

included in the H-CRTM Event Sequence sequence context created by the _TPM_Hash_Start indication.

The context holds data for each hash algorithm for each PCR bank implemented on the TPM.

If no H-CRTM Event Sequence context exists, this indication is discarded and no other action is

performed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 209

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[_TPM_Hash_Data]]

Part 3: Commands Trusted Platform Module Library

Page 210 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

22.11 _TPM_Hash_End

 Description

This indication from the TPM interface indicates the end of the H-CRTM measurement. This indication is

discarded and no other action performed if the TPM does not contain an H-CRTM Event Sequence

context.

NOTE 1 An H-CRTM Event Sequence context is created by _TPM_Hash_Start().

If the H-CRTM Event Sequence occurs after TPM2_Startup(), the TPM will set all of the PCR designated

in the platform-specific specifications as resettable by this event to the value indicated in the platform

specific specification and increment restartCount. The TPM will then Extend the Event Sequence

digest/digests into the designated D-RTM PCR (PCR[17]).

 PCR[17][hashAlg] ≔ HhashAlg (initial_value || HhashAlg (hash_data)) (7)

where

hashAlg hash algorithm associated with a bank of PCR

initial_value initialization value specified in the platform-specific specification

(should be 0…0)

hash_data all the octets of data received in _TPM_Hash_Data indications

A _TPM_Hash_End indication that occurs after TPM2_Startup() will increment pcrUpdateCounter unless

a platform-specific specification excludes modifications of PCR[DRTM] from causing an increment.

A platform-specific specification may allow an H-CRTM Event Sequence before TPM2_Startup(). If so,

_TPM_Hash_End will complete the digest, initialize PCR[0] with a digest-size value of 4, and then extend

the H-CRTM Event Sequence data into PCR[0].

 PCR[0][hashAlg] ≔ HhashAlg (0…04 || HhashAlg (hash_data)) (8)

NOTE 2 The entire sequence of _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are required to
complete before TPM2_Startup() or the sequence will have no effect on the TPM.

NOTE 3 PCR[0] does not need to be updated according to (8) until the end of TPM2_Startup().

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 211

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[_TPM_Hash_End]]

Part 3: Commands Trusted Platform Module Library

Page 212 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23 Enhanced Authorization (EA) Commands

23.1 Introduction

The commands in this clause 23 are used for policy evaluation. When successful, each command will

update the policySession→policyDigest in a policy session context in order to establish that the

authorizations required to use an object have been provided. Many of the commands will also modify

other parts of a policy context so that the caller may constrain the scope of the authorization that is

provided.

NOTE 1 Many of the terms used in this clause are described in detail i n TPM 2.0 Part 1 and are not redefined
in this clause.

The policySession parameter of the command is the handle of the policy session context to be modified

by the command.

If the policySession parameter indicates a trial policy session, then the policySession→policyDigest will

be updated and the indicated validations are not performed. However, any authorizations required to

perform the policy command will be checked and dictionary attack logic invoked as necessary.

NOTE 2 If software is used to create policies, no authorization values are used. For example,
TPM_PolicySecret requires an authorization in a trial policy session, but not in a policy calculation
outside the TPM.

NOTE 3 A policy session is set to a trial policy by TPM2_StartAuthSession(sessionType = TPM_SE_TRIAL).

NOTE 4 Unless there is an unmarshaling error in the parameters of the command, these commands will
return TPM_RC_SUCCESS when policySession references a trial session.

NOTE 5 Policy context other than the policySession→policyDigest may be updated for a trial policy but it is
not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 213

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.2 Signed Authorization Actions

 Introduction

The TPM2_PolicySigned, TPM_PolicySecret, and TPM2_PolicyTicket commands use many of the same

functions. This clause consolidates those functions to simplify the document and to ensure uniformity of

the operations.

 Policy Parameter Checks

These parameter checks will be performed when indicated in the description of each of the commands:

 nonceTPM – If this parameter is not the Empty Buffer, and it does not match

policySession→nonceTPM, then the TPM shall return TPM_RC_VALUE.

 expiration – If this parameter is not zero, then:

1) if nonceTPM is not an Empty Buffer, then the absolute value of expiration is converted to

milliseconds and added to policySession→startTime to create the timeout value and proceed to

c).

2) If nonceTPM is an Empty Buffer, then the absolute value of expiration is converted to

milliseconds and used as the timeout value and proceed to c).

However, timeout can only be changed to a smaller value.

 timeout – If timeout is less than the current value of Time, or the current timeEpoch is not the same

as policySession→timeEpoch, the TPM shall return TPM_RC_EXPIRED

 cpHashA – If this parameter is not an Empty Buffer

NOTE 2 cpHashA is the hash of the command to be executed using this policy session in the
authorization. The algorithm used to compute this hash is required to be the algorithm of the
policy session.

1) the TPM shall return TPM_RC_CPHASH if policySession→cpHash is set and the contents of

policySession→cpHash are not the same as cpHashA; or

NOTE 3 cpHash is the expected cpHash value held in the policy session context.

2) the TPM shall return TPM_RC_SIZE if cpHashA is not the same size as

policySession→policyDigest.

NOTE 4 policySession→policyDigest is the size of the digest produced by the hash algorithm used
to compute policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 214 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Policy Digest Update Function (PolicyUpdate())

This is the update process for policySession→policyDigest used by TPM2_PolicySigned(),

TPM2_PolicySecret(), TPM2_PolicyTicket(), and TPM2_PolicyAuthorize(). The function prototype for the

update function is:

 PolicyUpdate(commandCode, arg2, arg3) (9)

where

arg2 a TPM2B_NAME

arg3 a TPM2B

These parameters are used to update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || commandCode || arg2.name) (10)

followed by

 policyDigestnew+1 ≔ HpolicyAlg(policyDigestnew || arg3.buffer) (11)

where

HpolicyAlg() the hash algorithm chosen when the policy session was started

NOTE 1 If arg3 is a TPM2B_NAME, then arg3.buffer will actually be an arg3.name.

NOTE 2 The arg2.size and arg3.size fields are not included in the hashes.

NOTE 3 PolicyUpdate() uses two hash operations because arg2 and arg3 are variable-sized and the
concatenation of arg2 and arg3 in a single hash could produce the same digest even though arg2
and arg3 are different. For example, arg2 = 1 2 3 and arg3 = 4 5 6 would produce the same digest
as arg2 = 1 2 and arg3 = 3 4 5 6. Processing of the arguments separately in different Extend
operation ensures that the digest produced by PolicyUpdate() will be different if arg2 and arg3 are
different.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 215

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Policy Context Updates

When a policy command modifies some part of the policy session context other than the

policySession→policyDigest, the following rules apply.

• cpHash – this parameter may only be changed if it contains its initialization value (an Empty Buffer).
If cpHash is not the Empty Buffer when a policy command attempts to update it, the TPM will return
an error (TPM_RC_CPHASH) if the current and update values are not the same.

• timeOut – this parameter may only be changed to a smaller value. If a command attempts to update
this value with a larger value (longer into the future), the TPM will discard the update value. This is
not an error condition.

• commandCode – once set by a policy command, this value may not be changed except by
TPM2_PolicyRestart(). If a policy command tries to change this to a different value, an error is
returned (TPM_RC_POLICY_CC).

• pcrUpdateCounter – this parameter is updated by TPM2_PolicyPCR(). This value may only be set
once during a policy. Each time TPM2_PolicyPCR() executes, it checks to see if
policySession→pcrUpdateCounter has its default state, indicating that this is the first
TPM2_PolicyPCR(). If it has its default value, then policySession→pcrUpdateCounter is set to the
current value of pcrUpdateCounter. If policySession→pcrUpdateCounter does not have its default
value and its value is not the same as pcrUpdateCounter, the TPM shall return
TPM_RC_PCR_CHANGED.

NOTE 1 If this parameter and pcrUpdateCounter are not the same, it indicates that PCR have changed
since checked by the previous TPM2_PolicyPCR(). Since they have changed, the previous PCR
validation is no longer valid.

• commandLocality – this parameter is the logical AND of all enabled localities. All localities are
enabled for a policy when the policy session is created. TPM2_PolicyLocalities() selectively disables
localities. Once use of a policy for a locality has been disabled, it cannot be enabled except by
TPM2_PolicyRestart().

• isPPRequired – once SET, this parameter may only be CLEARed by TPM2_PolicyRestart().

• isAuthValueNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyPassword()
or TPM2_PolicyRestart().

• isPasswordNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyAuthValue()
or TPM2_PolicyRestart(),

NOTE 2 Both TPM2_PolicyAuthValue() and TPM2_PolicyPassword() change policySession→policyDigest in
the same way. The different commands simply indicate to the TPM the format used for the authValue
(HMAC or clear text). Both commands could be in the same policy. The final instance of these
commands determines the format.

Part 3: Commands Trusted Platform Module Library

Page 216 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Policy Ticket Creation

For TPM2_PolicySigned() or TPM2_PolicySecret(), if the caller specified a negative value for expiration,

then the TPM will return a ticket that includes a value indicating when the authorization expires.

Otherwise, the TPM will return a NULL Ticket.

NOTE 1 If the authHandle in TPM2_PolicySecret() references a PIN Pass Index, then the command may
succeed but a NULL Ticket will be returned.

The required computation for the digest in the authorization ticket is:

HMACcontextAlg(proof, (TPM_ST_AUTH_xxx || cpHash || policyRef || authName
|| timeout || [timeEpoch] || [resetCount])) (12)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy of the object

associated with authName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET;
used to ensure that the ticket is properly used

cpHash optional hash of the authorized command

policyRef optional reference to a policy value

authName Name of the object that signed the authorization

timeout implementation-specific value indicating when the authorization

expires

timeEpoch implementation-specific representation of the timeEpoch at the

time the ticket was created

NOTE 2 Not included if timeout is zero.

resetCount implementation-specific representation of the TPM’s

totalResetCount

NOTE 3 Not included it timeout is zero or if nonceTPM was include in the authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 217

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.3 TPM2_PolicySigned

 General Description

This command includes a signed authorization in a policy. The command ties the policy to a signing key

by including the Name of the signing key in the policyDigest

If policySession is a trial session, the TPM will not check the signature and will update

policySession→policyDigest as described in 23.2.3 as if a properly signed authorization was received, but

no ticket will be produced.

If policySession is not a trial session, the TPM will validate auth and only perform the update if it is a valid

signature over the fields of the command.

The authorizing entity will sign a digest of the authorization qualifiers: nonceTPM, expiration, cpHashA,

and policyRef. The digest is computed as:

 aHash ≔ HauthAlg(nonceTPM || expiration || cpHashA || policyRef) (13)

where

HauthAlg() the hash associated with the auth parameter of this command

NOTE 1 Each signature and key combination indicates the scheme and each scheme has an
associated hash.

nonceTPM the nonceTPM parameter from the TPM2_StartAuthSession()

response. If the authorization is not limited to this session, the
size of this value is zero.

expiration time limit on authorization set by authorizing object. This 32-bit

value is set to zero if the expiration time is not being set.

cpHashA digest of the command parameters for the command being

approved using the hash algorithm of the policy session. Set to
an Empty Digest if the authorization is not limited to a specific
command.

NOTE 3 This is not the cpHash of this TPM2_PolicySigned() command.

policyRef an opaque value determined by the authorizing entity. Set to the

Empty Buffer if no value is present.

NOTE 4 The nonceTPM, cpHashA, and policyRef qualifiers used to compute aHash use the TPM2B buffer
but do not prepend the size.

EXAMPLE The computation for an aHash if there are no restrictions is:

 aHash ≔ HauthAlg(00 00 00 0016)

 which is the hash of an expiration time of zero.

The aHash is signed by the key associated with a key whose handle is authObject. The signature and

signing parameters are combined to create the auth parameter.

The TPM will perform the parameter checks listed in 23.2.2

If the parameter checks succeed, the TPM will construct a test digest (tHash) over the provided

parameters using the same formulation as shown in equation (13) above.

If tHash does not match the digest of the signed aHash, then the authorization fails and the TPM shall

return TPM_RC_POLICY_FAIL and make no change to policySession→policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 218 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

23.2.3).

 PolicyUpdate(TPM_CC_PolicySigned, authObject→Name, policyRef) (14)

authObject→Name is a TPM2B_NAME. policySession is updated as described in 23.2.4. The TPM will

optionally produce a ticket as described in 23.2.5.

Authorization to use authObject is not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 219

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 124 — TPM2_PolicySigned Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySigned

TPMI_DH_OBJECT authObject
handle for a key that will validate the signature

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM
the policy nonce for the session

This can be the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This is not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

INT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

TPMT_SIGNATURE auth signed authorization (not optional)

Table 125 — TPM2_PolicySigned Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout

implementation-specific time value, used to indicate to
the TPM when the ticket expires

NOTE If policyTicket is a NULL Ticket, then this shall
be the Empty Buffer.

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero; this ticket will use the
TPMT_ST_AUTH_SIGNED structure tag. See 23.2.5

Part 3: Commands Trusted Platform Module Library

Page 220 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicySigned]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 221

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.4 TPM2_PolicySecret

 General Description

This command includes a secret-based authorization to a policy. The caller proves knowledge of the

secret value using an authorization session using the authValue associated with authHandle. A password

session, an HMAC session, or a policy session containing TPM2_PolicyAuthValue() or

TPM2_PolicyPassword() will satisfy this requirement.

If a policy session is used and use of the authValue of authHandle is not required, the TPM will return

TPM_RC_MODE. That is, the session for authHandle must have either isAuthValueNeeded or

isPasswordNeeded SET.

The secret is the authValue of the entity whose handle is authHandle, which may be any TPM entity with

a handle and an associated authValue. This includes the reserved handles (for example, Platform,

Storage, and Endorsement), NV Indexes, and loaded objects. authEntity is the entity referenced by

authHandle. If authEntity references an Ordinary object, it must have userWithAuth SET.

NOTE 1 The userWithAuth requirement permits the implementation to use common authorization code.

If authEntity references a non-PIN Index. TPMA_NV_AUTHREAD is required to be SET in the Index. If

authEntity references an NV PIN index, TPMA_NV_WRITTEN is required to be SET and pinCount must

be less than pinLimit.

NOTE 2 The authorization value for a hierarchy cannot be used in this command if the hierarchy is disabled.

If the authorization check fails, then the normal dictionary attack logic is invoked.

If the authorization provided by the authorization session is valid, the command parameters are checked

as described in 23.2.2.

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

23.2.3).

 PolicyUpdate(TPM_CC_PolicySecret, authEntity→Name, policyRef) (15)

authEntity→Name is a TPM2B_NAME. policySession is updated as described in 23.2.4. The TPM will

optionally produce a ticket as described in 23.2.5.

If the session is a trial session, policySession→policyDigest is updated if the authorization is valid.

NOTE 2 If an HMAC is used to convey the authorization, a separate session is needed for the authorization.
Because the HMAC in that authorization will include a nonce that prevents replay of the
authorization, the value of the nonceTPM parameter in this command is limited. It is retained mostly
to provide processing consistency with TPM2_PolicySigned().

Part 3: Commands Trusted Platform Module Library

Page 222 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 126 — TPM2_PolicySecret Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySecret

TPMI_DH_ENTITY @authHandle

handle for an entity providing the authorization

Auth Index: 1

Auth Role: USER

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM
the policy nonce for the session

This can be the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

INT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

Table 127 — TPM2_PolicySecret Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout
implementation-specific time value used to indicate to
the TPM when the ticket expires

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero (See 23.2.5). This ticket
will use the TPMT_ST_AUTH_SECRET structure tag

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 223

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicySecret]]

Part 3: Commands Trusted Platform Module Library

Page 224 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.5 TPM2_PolicyTicket

 General Description

This command is similar to TPM2_PolicySigned() except that it takes a ticket instead of a signed

authorization. The ticket represents a validated authorization that had an expiration time associated with

it.

The parameters of this command are checked as described in 23.2.2.

If the checks succeed, the TPM uses the timeout, cpHashA, policyRef, and authName to construct a

ticket to compare with the value in ticket. If these tickets match, then the TPM will create a TPM2B_NAME

(objectName) using authName and update the context of policySession by PolicyUpdate() (see 23.2.3).

 PolicyUpdate(commandCode, authName, policyRef) (16)

If the structure tag of ticket is TPM_ST_AUTH_SECRET, then commandCode will be

TPM_CC_PolicySecret. If the structure tag of ticket is TPM_ST_AUTH_SIGNED, then commandCode will

be TPM_CC_PolicySIgned.

policySession is updated as described in 23.2.4.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 225

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 128 — TPM2_PolicyTicket Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTicket

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_TIMEOUT timeout

time when authorization will expire

The contents are TPM specific. This shall be the value
returned when ticket was produced.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

If it is not limited, the parameter will be the Empty
Buffer.

TPM2B_NONCE policyRef
reference to a qualifier for the policy – may be the
Empty Buffer

TPM2B_NAME authName name of the object that provided the authorization

TPMT_TK_AUTH ticket
an authorization ticket returned by the TPM in response
to a TPM2_PolicySigned() or TPM2_PolicySecret()

Table 129 — TPM2_PolicyTicket Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 226 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyTicket]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 227

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.6 TPM2_PolicyOR

 General Description

This command allows options in authorizations without requiring that the TPM evaluate all of the options.

If a policy may be satisfied by different sets of conditions, the TPM need only evaluate one set that

satisfies the policy. This command will indicate that one of the required sets of conditions has been

satisfied.

PolicySession→policyDigest is compared against the list of provided values. If the current

policySession→policyDigest does not match any value in the list, the TPM shall return TPM_RC_VALUE.

Otherwise, the TPM will reset policySession→policyDigest to a Zero Digest. Then

policySession→policyDigest is extended by the concatenation of TPM_CC_PolicyOR and the

concatenation of all of the digests.

If policySession is a trial session, the TPM will assume that policySession→policyDigest matches one of

the list entries and compute the new value of policyDigest.

The algorithm for computing the new value for policyDigest of policySession is:

 Concatenate all the digest values in pHashList:

 digests ≔ pHashList.digests[1].buffer || … || pHashList.digests[n].buffer (17)

NOTE 1 The TPM will not return an error if the size of an entry is not the same as the size of the digest
of the policy. However, that entry cannot match policyDigest.

 Reset policyDigest to a Zero Digest.

 Extend the command code and the hashes computed in step a) above:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyOR || digests) (18)

NOTE 2 The computation in b) and c) above is equivalent to:

 policyDigestnew ≔ HpolicyAlg(0…0 || TPM_CC_PolicyOR || digests)

A TPM shall support a list with at least eight tagged digest values.

NOTE 3 If policies are to be portable between TPMs, then they should not use more than eight values.

Part 3: Commands Trusted Platform Module Library

Page 228 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 130 — TPM2_PolicyOR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyOR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPML_DIGEST pHashList the list of hashes to check for a match

Table 131 — TPM2_PolicyOR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 229

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyOR]]

Part 3: Commands Trusted Platform Module Library

Page 230 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.7 TPM2_PolicyPCR

 General Description

This command is used to cause conditional gating of a policy based on PCR. This command together

with TPM2_PolicyOR() allows one group of authorizations to occur when PCR are in one state and a

different set of authorizations when the PCR are in a different state.

The TPM will modify the pcrs parameter so that bits that correspond to unimplemented PCR are CLEAR.

If policySession is not a trial policy session, the TPM will use the modified value of pcrs to select PCR

values to hash according to TPM 2.0 Part 1, Selecting Multiple PCR. The hash algorithm of the policy

session is used to compute a digest (digestTPM) of the selected PCR. If pcrDigest does not have a length

of zero, then it is compared to digestTPM; and if the values do not match, the TPM shall return

TPM_RC_VALUE and make no change to policySession→policyDigest. If the values match, or if the

length of pcrDigest is zero, then policySession→policyDigest is extended by:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || digestTPM) (19)

where

pcrs the pcrs parameter with bits corresponding to unimplemented

PCR set to 0

digestTPM the digest of the selected PCR using the hash algorithm of the

policy session

NOTE 1 If the caller provides the expected PCR value, the intention is that the policy evaluation stop at that
point if the PCR do not match. If the caller does not provide the expected PCR value, then the
validity of the settings will not be determined until an attempt is made to use the policy for
authorization. If the policy is constructed such that the PCR check comes before user authorization
checks, this early termination would allow software to avoid unnecessary prompts for user input to
satisfy a policy that would fail later due to incorrect PCR values.

After this command completes successfully, the TPM shall return TPM_RC_PCR_CHANGED if the policy

session is used for authorization and the PCR are not known to be correct.

The TPM uses a “generation” number (pcrUpdateCounter) that is incremented each time PCR are

updated (unless the PCR being changed is specified not to cause a change to this counter). The value of

this counter is stored in the policy session context (policySession→pcrUpdateCounter) when this

command is executed. When the policy is used for authorization, the current value of the counter is

compared to the value in the policy session context and the authorization will fail if the values are not the

same.

When this command is executed, policySession→pcrUpdateCounter is checked to see if it has been

previously set (in the reference implementation, it has a value of zero if not previously set). If it has been

set, it will be compared with the current value of pcrUpdateCounter to determine if any PCR changes

have occurred. If the values are different, the TPM shall return TPM_RC_PCR_CHANGED.

NOTE 2 Since the pcrUpdateCounter is updated if any PCR is extended (except those specified not to do
so), this means that the command will fail even if a PCR not specified in the policy is updated. This
is an optimization for the purposes of conserving internal TPM memory . This would be a rare
occurrence, and, if this should occur, the policy could be reset using the TPM2_PolicyRestart
command and rerun.

If policySession→pcrUpdateCounter has not been set, then it is set to the current value of

pcrUpdateCounter.

If this command is used for a trial policySession, policySession→policyDigest will be updated using the

values from the command rather than the values from a digest of the TPM PCR. If the caller does not

provide PCR settings (pcrDigest has a length of zero), the TPM may (and it is preferred to) use the

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 231

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

current TPM PCR settings (digestTPM) in the calculation for the new policyDigest. The TPM may return

an error if the caller does not provide a PCR digest for a trial policy session but this is not the preferred

behavior.

The TPM will not check any PCR and will compute:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || pcrDigest) (20)

In this computation, pcrs is the input parameter without modification.

NOTE 3 The pcrs parameter is expected to match the configuration of the TPM for which the policy is being
computed which may not be the same as the TPM on which the trial policy is being computed.

NOTE 4 Although no PCR are checked in a trial policy session, pcrDigest is expected to correspond to some
useful PCR values. It is legal, but pointless, to have the TPM aid in calculating a policyDigest
corresponding to PCR values that are not useful in practice.

Part 3: Commands Trusted Platform Module Library

Page 232 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 132 — TPM2_PolicyPCR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPCR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST pcrDigest
expected digest value of the selected PCR using the
hash algorithm of the session; may be zero length

TPML_PCR_SELECTION pcrs the PCR to include in the check digest

Table 133 — TPM2_PolicyPCR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 233

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyPCR]]

Part 3: Commands Trusted Platform Module Library

Page 234 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.8 TPM2_PolicyLocality

 General Description

This command indicates that the authorization will be limited to a specific locality.

policySession→commandLocality is a parameter kept in the session context. When the policy session is

started, this parameter is initialized to a value that allows the policy to apply to any locality.

If locality has a value greater than 31, then an extended locality is indicated. For an extended locality, the

TPM will validate that policySession→commandLocality has not previously been set or that the current

value of policySession→commandLocality is the same as locality (TPM_RC_RANGE).

When locality is not an extended locality, the TPM will validate that the policySession→commandLocality

is not set to an extended locality value (TPM_RC_RANGE). If not the TPM will disable any locality not

SET in the locality parameter. If the result of disabling localities results in no locality being enabled, the

TPM will return TPM_RC_RANGE.

If no error occurred in the validation of locality, policySession→policyDigest is extended with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyLocality || locality) (21)

Then policySession→commandLocality is updated to indicate which localities are still allowed after

execution of TPM2_PolicyLocality().

When the policy session is used to authorize a command, the authorization will fail if the locality used for

the command is not one of the enabled localities in policySession→commandLocality.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 235

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 134 — TPM2_PolicyLocality Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyLocality

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMA_LOCALITY locality the allowed localities for the policy

Table 135 — TPM2_PolicyLocality Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 236 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyLocality]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 237

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.9 TPM2_PolicyNV

 General Description

This command is used to cause conditional gating of a policy based on the contents of an NV Index. It is

an immediate assertion. The NV index is validated during the TPM2_PolicyNV() command, not when the

session is used for authorization.

The authorization to read the NV Index must succeed even if policySession is a trial policy session.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (22) and (23) below and return TPM_RC_SUCCESS. It will not perform any further validation.

The remainder of this general description would apply only if policySession is not a trial policy session.

An authorization session providing authorization to read the NV Index shall be provided.

If TPMA_NV_WRITTEN is not SET in the NV Index, the TPM shall return TPM_RC_NV_UNINITIALIZED.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

operandA begins at offset into the NV index contents and has a size equal to the size of operandB. The

TPM will perform the indicated arithmetic check using operandA and operandB. If the check fails, the

TPM shall return TPM_RC_POLICY and not change policySession→policyDigest. If the check succeeds,

the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (22)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB the value used for the comparison

offset offset from the start of the NV Index data to start the comparison

operation the operation parameter indicating the comparison being

performed

The value of args and the Name of the NV Index are extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNV || args || nvIndex→Name) (23)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (22)

nvIndex→Name the Name of the NV Index

The signed arithmetic operations are performed using twos-compliment.

Magnitude comparisons assume that the octet at offset zero in the referenced NV location and in

operandB contain the most significant octet of the data.

Part 3: Commands Trusted Platform Module Library

Page 238 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 136 — TPM2_PolicyNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the octet offset in the NV Index for the start of operand
A

TPM_EO operation the comparison to make

Table 137 — TPM2_PolicyNV Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 239

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyNV]]

Part 3: Commands Trusted Platform Module Library

Page 240 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.10 TPM2_PolicyCounterTimer

 General Description

This command is used to cause conditional gating of a policy based on the contents of the

TPMS_TIME_INFO structure.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (24) and (25) below and return TPM_RC_SUCCESS. It will not perform any validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

The TPM will perform the indicated arithmetic check on the indicated portion of the TPMS_TIME_INFO

structure. If the check fails, the TPM shall return TPM_RC_POLICY and not change

policySession→policyDigest. If the check succeeds, the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (24)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB.buffer the value used for the comparison

offset offset from the start of the TPMS_TIME_INFO structure at which

the comparison starts

operation the operation parameter indicating the comparison being

performed

NOTE There is no security related reason for the double hash.

The value of args is extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCounterTimer || args) (25)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (24)

The signed arithmetic operations are performed using twos-compliment. The indicated portion of the

TPMS_TIME_INFO structure begins at offset and has a length of operandB.size. If the number of octets

to be compared overflows the TPMS_TIME_INFO structure, the TPM returns TPM_RC_RANGE. If offset

is greater than the size of the marshaled TPMS_TIME_INFO structure, the TPM returns

TPM_RC_VALUE. The structure is marshaled into its canonical form with no padding. The TPM does not

check for alignment of the offset with a TPMS_TIME_INFO structure member.

Magnitude comparisons assume that the octet at offset zero in the referenced location and in operandB

contain the most significant octet of the data.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 241

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 138 — TPM2_PolicyCounterTimer Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCounterTimer

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the octet offset in the TPMS_TIME_INFO structure for
the start of operand A

TPM_EO operation the comparison to make

Table 139 — TPM2_PolicyCounterTimer Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 242 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyCounterTimer]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 243

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.11 TPM2_PolicyCommandCode

 General Description

This command indicates that the authorization will be limited to a specific command code.

If policySession→commandCode has its default value, then it will be set to code. If

policySession→commandCode does not have its default value, then the TPM will return

TPM_RC_VALUE if the two values are not the same.

If code is not implemented, the TPM will return TPM_RC_POLICY_CC.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCommandCode || code) (26)

NOTE 1 If a previous TPM2_PolicyCommandCode() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error if code is the same.

NOTE 2 A TPM2_PolicyOR() would be used to allow an authorization to be used for multiple commands.

When the policy session is used to authorize a command, the TPM will fail the command if the

commandCode of that command does not match policySession→commandCode.

This command, or TPM2_PolicyDuplicationSelect(), is required to enable the policy to be used for ADMIN

role authorization.

EXAMPLE Before TPM2_Certify() can be executed, TPM2_PolicyCommandCode() with code set to
TPM_CC_Certify is required.

Part 3: Commands Trusted Platform Module Library

Page 244 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 140 — TPM2_PolicyCommandCode Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCommandCode

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM_CC code the allowed commandCode

Table 141 — TPM2_PolicyCommandCode Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 245

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyCommandCode]]

Part 3: Commands Trusted Platform Module Library

Page 246 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.12 TPM2_PolicyPhysicalPresence

 General Description

This command indicates that physical presence will need to be asserted at the time the authorization is

performed.

If this command is successful, policySession→isPPRequired will be SET to indicate that this check is

required when the policy is used for authorization. Additionally, policySession→policyDigest is extended

with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPhysicalPresence) (27)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 247

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 142 — TPM2_PolicyPhysicalPresence Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPhysicalPresence

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 143 — TPM2_PolicyPhysicalPresence Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 248 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyPhysicalPresence]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 249

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.13 TPM2_PolicyCpHash

 General Description

This command is used to allow a policy to be bound to a specific command and command parameters.

TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_PolicyTIcket() are designed to allow an

authorizing entity to execute an arbitrary command as the cpHashA parameter of those commands is not

included in policySession→policyDigest. TPM2_PolicyCommandCode() allows the policy to be bound to a

specific Command Code so that only certain entities may authorize specific command codes. This

command allows the policy to be restricted such that an entity may only authorize a command with a

specific set of parameters.

If policySession→cpHash is already set and not the same as cpHashA, then the TPM shall return

TPM_RC_CPHASH. If cpHashA does not have the size of the policySession→policyDigest, the TPM shall

return TPM_RC_SIZE.

NOTE 1 If a previous TPM2_PolicyCpHash() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error if cpHash is the same.

If the cpHashA checks succeed, policySession→cpHash is set to cpHashA and

policySession→policyDigest is updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCpHash || cpHashA) (28)

Part 3: Commands Trusted Platform Module Library

Page 250 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 144 — TPM2_PolicyCpHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCpHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST cpHashA the cpHash added to the policy

Table 145 — TPM2_PolicyCpHash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 251

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyCpHash]]

Part 3: Commands Trusted Platform Module Library

Page 252 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.14 TPM2_PolicyNameHash

 General Description

This command allows a policy to be bound to a specific set of TPM entities without being bound to the

parameters of the command. This is most useful for commands such as TPM2_Duplicate() and for

TPM2_PCR_Event() when the referenced PCR requires a policy.

The nameHash parameter should contain the digest of the Names associated with the handles to be used

in the authorized command.

EXAMPLE For the TPM2_Duplicate() command, two handles are provided. One is the handle of the object
being duplicated and the other is the handle of the new parent. For that command, nameHash would
contain:

nameHash ≔ HpolicyAlg(objectHandle→Name || newParentHandle→Name)

If policySession→cpHash is already set, the TPM shall return TPM_RC_CPHASH. If the size of

nameHash is not the size of policySession→policyDigest, the TPM shall return TPM_RC_SIZE.

Otherwise, policySession→cpHash is set to nameHash.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the Names associated with the handles in the command will be used.

NOTE 1 This allows the space normally used to hold policySession→cpHash to be used for
policySession→nameHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNameHash || nameHash) (29)

NOTE 2 This command can only be used with TPM2_PolicyAuthorize() or TPM2_PolicyAuthorizeNV. The
owner of the object being duplicated provides approval for their object to be migrated to a specific
new parent.

Without this approval, the Name of the Object would need to be known at the time that Object's
policy is created. However, since the Name of the Object includes its policy, the Name is not known.
The Name can be known by the authorizing entity.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 253

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 146 — TPM2_PolicyNameHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNameHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST nameHash the digest to be added to the policy

Table 147 — TPM2_PolicyNameHash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 254 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyNameHash]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 255

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.15 TPM2_PolicyDuplicationSelect

 General Description

This command allows qualification of duplication to allow duplication to a selected new parent.

If this command not used in conjunction with a PolicyAuthorize Command, then only the new parent is

selected and includeObject should be CLEAR.

EXAMPLE When an object is created when the list of allowed duplicati on targets is known, the policy would be
created with includeObject CLEAR.

NOTE 1 Only the new parent may be selected because, without TPM2_PolicyAuthorize(), the Name of the
Object to be duplicated would need to be known at the time that Object's policy i s created. However,
since the Name of the Object includes its policy, the Name is not known. The Name can be known
by the authorizing entity (a PolicyAuthorize Command) in which case includeObject may be SET.

If used in conjunction with TPM2_PolicyAuthorize(), then the authorizer of the new policy has the option

of selecting just the new parent or of selecting both the new parent and the duplication Object.

NOTE 2 If the authorizing entity for an TPM2_PolicyAuthorize() only specifies the new parent, then th at
authorization may be applied to the duplication of any number of other Objects. If the authorizing
entity specifies both a new parent and the duplicated Object, then the authorization only applies to
that pairing of Object and new parent.

If either policySession→cpHash or policySession→nameHash has been previously set, the TPM shall

return TPM_RC_CPHASH. Otherwise, policySession→nameHash will be set to:

 nameHash ≔ HpolicyAlg(objectName.name || newParentName.name) (30)

NOTE 3 It is allowed that policySesion→nameHash and policySession→cpHash share the same memory
space.

NOTE 4 The Name in these equations uses Name.name, indicating that the UINT16 size is not included in
the hash.

The policySession→policyDigest will be updated according to the setting of includeObject. If equal to

YES, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
objectName .name || newParentName.name || includeObject) (31)

If includeObject is NO, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
newParentName.name || includeObject) (32)

NOTE 5 policySession→nameHash receives the digest of both Names so that the check performed in
TPM2_Duplicate() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_PolicyDuplicationSelect() is executed, it
is only valid for a specific pair of dupl ication object and new parent.

If the command succeeds, policySession→commandCode is set to TPM_CC_Duplicate.

NOTE 6 The normal use of this command is before a TPM2_PolicyAuthorize(). An authorized entity would
approve a policyDigest that allowed duplication to a specific new parent. The authorizing entity may
want to limit the authorization so that the approval allows only a specific object to be duplicated to
the new parent. In that case, the authorizing entity would approve the policyDigest of equation (31).

Part 3: Commands Trusted Platform Module Library

Page 256 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 148 — TPM2_PolicyDuplicationSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyDuplicationSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the object to be duplicated

TPM2B_NAME newParentName the Name of the new parent

TPMI_YES_NO includeObject
if YES, the objectName will be included in the value in
policySession→policyDigest

Table 149 — TPM2_PolicyDuplicationSelect Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 257

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyDuplicationSelect]]

Part 3: Commands Trusted Platform Module Library

Page 258 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.16 TPM2_PolicyAuthorize

 General Description

This command allows policies to change. If a policy were static, then it would be difficult to add users to a

policy. This command lets a policy authority sign a new policy so that it may be used in an existing policy.

The authorizing entity signs a structure that contains

 aHash ≔ HaHashAlg(approvedPolicy || policyRef) (33)

The aHashAlg is required to be the nameAlg of the key used to sign the aHash. The aHash value is then

signed (symmetric or asymmetric) by keySign. That signature is then checked by the TPM in 20.1

TPM2_VerifySignature() which produces a ticket by

 HMAC(proof, (TPM_ST_VERIFIED || aHash || keySign→Name)) (34)

NOTE 1 The reason for the validation is because of the expectation that the policy will be used multiple times
and it is more efficient to check a ticket than to load an object each time to check a signature.

The ticket is then used in TPM2_PolicyAuthorize() to validate the parameters.

The keySign parameter is required to be a valid object name using nameAlg other than TPM_ALG_NULL.

If the first two octets of keySign are not a valid hash algorithm, the TPM shall return TPM_RC_HASH. If

the remainder of the Name is not the size of the indicated digest, the TPM shall return TPM_RC_SIZE.

The TPM validates that the approvedPolicy matches the current value of policySession→policyDigest and

if not, shall return TPM_RC_VALUE.

The TPM then validates that the parameters to TPM2_PolicyAuthorize() match the values used to

generate the ticket. If so, the TPM will reset policySession→policyDigest to a Zero Digest. Then it will

update policySession→policyDigest with PolicyUpdate() (see 23.2.3).

 PolicyUpdate(TPM_CC_PolicyAuthorize, keySign, policyRef) (35)

If the ticket is not valid, the TPM shall return TPM_RC_POLICY.

If policySession is a trial session, policySession→policyDigest is extended as if the ticket is valid without

actual verification.

NOTE 2 The unmarshaling process requires that a proper TPMT_TK_VERIFIED be provided for checkTicket
but it may be a NULL Ticket. A NULL ticket is useful in a trial policy, where the caller uses the TPM
to perform policy calculations but does not have a valid authorization ticket.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 259

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 150 — TPM2_PolicyAuthorize Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorize

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST approvedPolicy digest of the policy being approved

TPM2B_NONCE policyRef a policy qualifier

TPM2B_NAME keySign Name of a key that can sign a policy addition

TPMT_TK_VERIFIED checkTicket
ticket validating that approvedPolicy and policyRef were
signed by keySign

Table 151 — TPM2_PolicyAuthorize Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 260 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyAuthorize]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 261

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.17 TPM2_PolicyAuthValue

 General Description

This command allows a policy to be bound to the authorization value of the authorized entity.

When this command completes successfully, policySession→isAuthValueNeeded is SET to indicate that

the authValue will be included in hmacKey when the authorization HMAC is computed for the command

being authorized using this session. Additionally, policySession→isPasswordNeeded will be CLEAR.

NOTE If a policy does not use this command, then the hmacKey for the authorized command would only
use sessionKey. If sessionKey is not present, then the hmacKey is an Empty Buffer and no HMAC
would be computed.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (36)

Part 3: Commands Trusted Platform Module Library

Page 262 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 152 — TPM2_PolicyAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthValue

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 153 — TPM2_PolicyAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 263

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyAuthValue]]

Part 3: Commands Trusted Platform Module Library

Page 264 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.18 TPM2_PolicyPassword

 General Description

This command allows a policy to be bound to the authorization value of the authorized object.

When this command completes successfully, policySession→isPasswordNeeded is SET to indicate that

authValue of the authorized object will be checked when the session is used for authorization. The caller

will provide the authValue in clear text in the hmac parameter of the authorization. The comparison of

hmac to authValue is performed as if the authorization is a password.

NOTE 1 The parameter field in the policy session where the authorization value is provided is called hmac. If
TPM2_PolicyPassword() is part of the sequence, then the field will contain a password and not an
HMAC.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (37)

NOTE 2 This is the same extend value as used with TPM2_PolicyAuthValue so that the evaluation may be
done using either an HMAC or a password with no change to the authPolicy of the object. The
reason that two commands are present is to indicate to the TPM if the hmac field in the authorization
will contain an HMAC or a password value.

When this command is successful, policySession→isAuthValueNeeded will be CLEAR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 265

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 154 — TPM2_PolicyPassword Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPassword

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 155 — TPM2_PolicyPassword Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 266 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyPassword]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 267

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.19 TPM2_PolicyGetDigest

 General Description

This command returns the current policyDigest of the session. This command allows the TPM to be used

to perform the actions required to pre-compute the authPolicy for an object.

Part 3: Commands Trusted Platform Module Library

Page 268 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 156 — TPM2_PolicyGetDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyGetDigest

TPMI_SH_POLICY policySession
handle for the policy session

Auth Index: None

Table 157 — TPM2_PolicyGetDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST policyDigest the current value of the policySession→policyDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 269

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyGetDigest]]

Part 3: Commands Trusted Platform Module Library

Page 270 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.20 TPM2_PolicyNvWritten

 General Description

This command allows a policy to be bound to the TPMA_NV_WRITTEN attributes. This is a deferred

assertion. Values are stored in the policy session context and checked when the policy is used for

authorization.

If policySession→checkNVWritten is CLEAR, it is SET and policySession→nvWrittenState is set to

writtenSet. If policySession→checkNVWritten is SET, the TPM will return TPM_RC_VALUE if

policySession→nvWrittenState and writtenSet are not the same.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNvWritten || writtenSet) (38)

When the policy session is used to authorize a command, the TPM will fail the command if

policySession→checkNVWritten is SET and nvIndex→attributes→TPMA_NV_WRITTEN does not match

policySession→nvWrittenState.

NOTE 1 A typical use case is a simple policy for the first write during manufacturing provisioning that would
require TPMA_NV_WRITTEN CLEAR and a more complex policy for later use that would require
TPMA_NV_WRITTEN SET.

NOTE 2 When an Index is written, it has a different authorization name than an Index that has not been
written. It is possible to use this change in the NV Index to create a write -once Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 271

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 158 — TPM2_PolicyNvWritten Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNvWritten

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMI_YES_NO writtenSet
YES if NV Index is required to have been written

NO if NV Index is required not to have been written

Table 159 — TPM2_PolicyNvWritten Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 272 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyNvWRitten]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 273

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23.21 TPM2_PolicyTemplate

 General Description

This command allows a policy to be bound to a specific creation template. This is most useful for an

object creation command such as TPM2_Create(), TPM2_CreatePrimary(), or TPM2_CreateLoaded().

The templateHash parameter should contain the digest of the template that will be required for the

inPublic parameter of an Object creation command.

If policySession→isTemplateHash is SET and policySession→cpHash is not equal to templateHash, the

TPM shall return TPM_RC_VALUE.

NOTE 1 Revision 01.38 of this specification permitted the TPM to return TPM_RC_CPHASH.

Otherwise, if policySession→cpHash is already set, the TPM shall return TPM_RC_CPHASH.

NOTE 2 Revision 01.38 of this specification permitted the TPM to return TPM_RC_VALUE.

If the size of templateHash is not the size of policySession→policyDigest, the TPM shall return

TPM_RC_SIZE. Otherwise, policySession→cpHash is set to templateHash.

NOTE 3 The digest calculation includes the TPM2B buffer but not the TPM2B size.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the inPublic parameter will be used.

NOTE 4 This allows the space normally used to hold policySession→cpHash to be used for
policySession→templateHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyTemplate || templateHash) (39)

Part 3: Commands Trusted Platform Module Library

Page 274 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 160 — TPM2_PolicyTemplate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTemplate

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST templateHash the digest to be added to the policy

Table 161 — TPM2_PolicyTemplate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 275

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PolicyTemplate]]

Part 3: Commands Trusted Platform Module Library

Page 276 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

23.22 TPM2_PolicyAuthorizeNV

 General Description

This command provides a capability that is the equivalent of a revocable policy. With

TPM2_PolicyAuthorize(), the authorization ticket never expires, so the authorization may not be

withdrawn. With this command, the approved policy is kept in an NV Index location so that the policy may

be changed as needed to render the old policy unusable.

NOTE 1 This command is useful for Objects but of limited value for other policies that are persistently stored
in TPM NV, such as the OwnerPolicy.

An authorization session providing authorization to read the NV Index shall be provided.

The authorization to read the NV Index must succeed even if policySession is a trial policy session.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equation (40) below and return TPM_RC_SUCCESS. It will not perform any further validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

NOTE 2 If read access is controlled by policy, the policy should include a branch that authorizes a
TPM2_PolicyAuthorizeNV().

If TPMA_NV_WRITTEN is not SET in the Index referenced by nvIndex, the TPM shall return

TPM_RC_NV_UNINITIALIZED. If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall

return TPM_RC_NV_LOCKED.

The dataSize of the NV Index referenced by nvIndex is required to be at least large enough to hold a

properly formatted TPMT_HA (TPM_RC_INSUFFICIENT).

NOTE 3 A TPMT_HA contains a TPM_ALG_ID followed a digest that is consistent in size with the hash
algorithm indicated by the TPM_ALG_ID.

It is an error (TPM_RC_HASH) if the first two octets of the Index are not a TPM_ALG_ID for a hash

algorithm implemented on the TPM or if the indicated hash algorithm does not match

policySession→authHash.

NOTE 4 The TPM_ALG_ID is stored in the first two octets in big endian format.

The TPM will compare policySession→policyDigest to the contents of the NV Index, starting at the first

octet after the TPM_ALG_ID (the third octet) and return TPM_RC_VALUE if they are not the same.

NOTE 5 If the Index does not contain enough bytes for the compare, then TPM_RC_INSUFFICENT is
generated as indicated above.

NOTE 6 The dataSize of the Index may be larger than is required for this command. This permits the Index to
include metadata.

If the comparison is successful, the TPM will reset policySession→policyDigest to a Zero Digest. Then it

will update policySession→policyDigest with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthorizeNV || nvIndex→Name) (40)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 277

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 162 — TPM2_PolicyAuthorizeNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorizeNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 163 — TPM2_PolicyAuthorizeNV Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 278 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[PolicyAuthorizeNV]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 279

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24 Hierarchy Commands

24.1 TPM2_CreatePrimary

 General Description

This command is used to create a Primary Object under one of the Primary Seeds or a Temporary Object

under TPM_RH_NULL. The command uses a TPM2B_PUBLIC as a template for the object to be created.

The size of the unique field shall not be checked for consistency with the other object parameters. The

command will create and load a Primary Object. The sensitive area is not returned.

NOTE 1 Since the sensitive data is not returned, the key cannot be reloaded. It can either be made
persistent or it can be recreated.

NOTE 2 For interoperability, the unique field should not be set to a value that is larger than allowed by object
parameters, so that the unmarshaling will not fail.

NOTE 3 An Empty Buffer is a legal unique field value.

EXAMPLE 1 A TPM_ALG_RSA object with a keyBits of 2048 in the objects parameters should have a unique field
that is no larger than 256 bytes.

EXAMPLE 2 A TPM_ALG_KEYEDHASH or a TPM_ALG_SYMCIPHER object should have a unique field this is no
larger than the digest produced by the object’s nameAlg.

Any type of object and attributes combination that is allowed by TPM2_Create() may be created by this

command. The constraints on templates and parameters are the same as TPM2_Create() except that a

Primary Storage Key and a Temporary Storage Key are not constrained to use the algorithms of their

parents.

For setting of the attributes of the created object, fixedParent, fixedTPM, decrypt, and restricted are

implied to be SET in the parent (a Permanent Handle). The remaining attributes are implied to be CLEAR.

The TPM will derive the object from the Primary Seed indicated in primaryHandle using an approved

KDF. All of the bits of the template are used in the creation of the Primary Key. Methods for creating a

Primary Object from a Primary Seed are described in TPM 2.0 Part 1 and implemented in TPM 2.0 Part 4.

If this command is called multiple times with the same inPublic parameter, inSensitive.data, and Primary

Seed, the TPM shall produce the same Primary Object.

NOTE 4 If the Primary Seed is changed, the Primary Objects generated with the new seed shall be
statistically unique even if the parameters of the call are the same.

This command requires authorization. Authorization for a Primary Object attached to the Platform Primary

Seed (PPS) shall be provided by platformAuth or platformPolicy. Authorization for a Primary Object

attached to the Storage Primary Seed (SPS) shall be provided by ownerAuth or ownerPolicy.

Authorization for a Primary Key attached to the Endorsement Primary Seed (EPS) shall be provided by

endorsementAuth or endorsementPolicy.

Part 3: Commands Trusted Platform Module Library

Page 280 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 164 — TPM2_CreatePrimary Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreatePrimary

TPMI_RH_HIERARCHY+ @primaryHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data, see TPM 2.0 Part 1 Sensitive Values

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 165 — TPM2_CreatePrimary Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for created
Primary Object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMT_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

TPM2B_NAME name the name of the created object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 281

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[CreatePrimary]]

Part 3: Commands Trusted Platform Module Library

Page 282 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.2 TPM2_HierarchyControl

 General Description

This command enables and disables use of a hierarchy and its associated NV storage. The command

allows phEnable, phEnableNV, shEnable, and ehEnable to be changed when the proper authorization is

provided.

This command may be used to CLEAR phEnable and phEnableNV if platformAuth/platformPolicy is

provided. phEnable may not be SET using this command.

This command may be used to CLEAR shEnable if either platformAuth/platformPolicy or

ownerAuth/ownerPolicy is provided. shEnable may be SET if platformAuth/platformPolicy is provided.

This command may be used to CLEAR ehEnable if either platformAuth/platformPolicy or

endorsementAuth/endorsementPolicy is provided. ehEnable may be SET if platformAuth/platformPolicy is

provided.

When this command is used to CLEAR phEnable, shEnable, or ehEnable, the TPM will disable use of

any persistent entity associated with the disabled hierarchy and will flush any transient objects associated

with the disabled hierarchy.

When this command is used to CLEAR shEnable, the TPM will disable access to any NV index that has

TPMA_NV_PLATFORMCREATE CLEAR (indicating that the NV Index was defined using Owner

Authorization). As long as shEnable is CLEAR, the TPM will return an error in response to any command

that attempts to operate upon an NV index that has TPMA_NV_PLATFORMCREATE CLEAR.

When this command is used to CLEAR phEnableNV, the TPM will disable access to any NV index that

has TPMA_NV_PLATFORMCREATE SET (indicating that the NV Index was defined using Platform

Authorization). As long as phEnableNV is CLEAR, the TPM will return an error in response to any

command that attempts to operate upon an NV index that has TPMA_NV_PLATFORMCREATE SET.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 283

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 166 — TPM2_HierarchyControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyControl {NV E}

TPMI_RH_HIERARCHY @authHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_ENABLES enable

the enable being modified

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM, or TPM_RH_PLATFORM_NV

TPMI_YES_NO state
YES if the enable should be SET, NO if the enable
should be CLEAR

Table 167 — TPM2_HierarchyControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 284 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[HierarchyControl]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 285

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.3 TPM2_SetPrimaryPolicy

 General Description

This command allows setting of the authorization policy for the lockout (lockoutPolicy), the platform

hierarchy (platformPolicy), the storage hierarchy (ownerPolicy), and the endorsement hierarchy

(endorsementPolicy). On TPMs implementing Authenticated Countdown Timers (ACT), this command

may also be used to set the authorization policy for an ACT.

The command requires an authorization session. The session shall use the current authValue or satisfy

the current authPolicy for the referenced hierarchy, or the ACT.

The policy that is changed is the policy associated with authHandle.

If the enable associated with authHandle is not SET, then the associated authorization values (authValue

or authPolicy) may not be used, and the TPM returns TPM_RC_HIERARCHY.

When hashAlg is not TPM_ALG_NULL, if the size of authPolicy is not consistent with the hash algorithm,

the TPM returns TPM_RC_SIZE.

Part 3: Commands Trusted Platform Module Library

Page 286 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 168 — TPM2_SetPrimaryPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetPrimaryPolicy {NV}

TPMI_RH_HIERARCHY_POLICY @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER, TPMI_RH_ACT or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy

an authorization policy digest; may be the Empty Buffer

If hashAlg is TPM_ALG_NULL, then this shall be an
Empty Buffer.

TPMI_ALG_HASH+ hashAlg

the hash algorithm to use for the policy

If the authPolicy is an Empty Buffer, then this field shall
be TPM_ALG_NULL.

Table 169 — TPM2_SetPrimaryPolicy Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 287

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[SetPrimaryPolicy]]

Part 3: Commands Trusted Platform Module Library

Page 288 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.4 TPM2_ChangePPS

 General Description

This replaces the current platform primary seed (PPS) with a value from the RNG and sets platformPolicy

to the default initialization value (the Empty Buffer).

NOTE 1 A policy that is the Empty Buffer can match no policy.

NOTE 2 Platform Authorization is not changed.

All resident transient and persistent objects in the Platform hierarchy are flushed.

Saved contexts in the Platform hierarchy that were created under the old PPS will no longer be able to be

loaded.

The policy hash algorithm for PCR is reset to TPM_ALG_NULL.

This command does not clear any NV Index values.

NOTE 3 Index values belonging to the Platform are preserved because the indexes may have configuration
information that will be the same after the PPS changes. The Platform may remove the indexes that
are no longer needed using TPM2_NV_UndefineSpace().

This command requires Platform Authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 289

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 170 — TPM2_ChangePPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangePPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 171 — TPM2_ChangePPS Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 290 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ChangePPS]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 291

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.5 TPM2_ChangeEPS

 General Description

This replaces the current endorsement primary seed (EPS) with a value from the RNG and sets the

Endorsement hierarchy controls to their default initialization values: ehEnable is SET, endorsementAuth

and endorsementPolicy are both set to the Empty Buffer. It will flush any resident objects (transient or

persistent) in the Endorsement hierarchy and not allow objects in the hierarchy associated with the

previous EPS to be loaded.

NOTE In the reference implementation, ehProof is a non-volatile value from the RNG. It is allowed that the
ehProof be generated by a KDF using both the EPS and SPS as inputs. If generated with a KDF, the
ehProof can be generated on an as-needed basis or made a non-volatile value.

This command requires Platform Authorization.

Part 3: Commands Trusted Platform Module Library

Page 292 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 172 — TPM2_ChangeEPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangeEPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 173 — TPM2_ChangeEPS Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 293

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ChangeEPS]]

Part 3: Commands Trusted Platform Module Library

Page 294 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.6 TPM2_Clear

 General Description

This command removes all TPM context associated with a specific Owner.

The clear operation will:

• flush resident objects (persistent and volatile) in the Storage and Endorsement hierarchies;

• delete any NV Index with TPMA_NV_PLATFORMCREATE == CLEAR;

• change the storage primary seed (SPS) to a new value from the TPM’s random number generator
(RNG),

• change shProof and ehProof,

NOTE 1 The proof values may be set from the RNG or derived from the associated new Primary Seed. If
derived from the Primary Seeds, the derivation of ehProof shall use both the SPS and EPS. The
computation shall use the SPS as an HMAC key and the derived value may then be a parameter
in a second HMAC in which the EPS is the HMAC key. The reference design uses values from
the RNG.

• SET shEnable and ehEnable;

• set ownerAuth, endorsementAuth, and lockoutAuth to the Empty Buffer;

• set ownerPolicy, endorsementPolicy, and lockoutPolicy to the Empty Buffer;

• set Clock to zero;

• set resetCount to zero;

• set restartCount to zero; and

• set Safe to YES.

• increment pcrUpdateCounter

NOTE 2 This permits an application to create a policy session that is invalidated on TPM2_Clear. The
policy needs, ideally as the first term, TPM2_PolicyPCR(). The session is invalidated even if the
PCR selection is empty.

This command requires Platform Authorization or Lockout Authorization. If TPM2_ClearControl() has

disabled this command, the TPM shall return TPM_RC_DISABLED.

If this command is authorized using lockoutAuth, the HMAC in the response shall use the new

lockoutAuth value (that is, the Empty Buffer) when computing the response HMAC.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 295

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 174 — TPM2_Clear Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Clear {NV E}

TPMI_RH_CLEAR @authHandle

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 175 — TPM2_Clear Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 296 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Clear]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 297

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

24.7 TPM2_ClearControl

 General Description

TPM2_ClearControl() disables and enables the execution of TPM2_Clear().

The TPM will SET the TPM’s TPMA_PERMANENT.disableClear attribute if disable is YES and will

CLEAR the attribute if disable is NO. When the attribute is SET, TPM2_Clear() may not be executed.

NOTE This is to simplify the logic of TPM2_Clear(). TPM2_ClearControl() can be called using Platform
Authorization to CLEAR the disableClear attribute and then execute TPM2_Clear().

Lockout Authorization may be used to SET disableClear but not to CLEAR it.

Platform Authorization may be used to SET or CLEAR disableClear.

Part 3: Commands Trusted Platform Module Library

Page 298 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 176 — TPM2_ClearControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClearControl {NV}

TPMI_RH_CLEAR @auth

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_YES_NO disable
YES if the disableOwnerClear flag is to be SET, NO if
the flag is to be CLEAR.

Table 177 — TPM2_ClearControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 299

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ClearControl]]

Part 3: Commands Trusted Platform Module Library

Page 300 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

24.8 TPM2_HierarchyChangeAuth

 General Description

This command allows the authorization secret for a hierarchy or lockout to be changed using the current

authorization value as the command authorization.

If authHandle is TPM_RH_PLATFORM, then platformAuth is changed. If authHandle is

TPM_RH_OWNER, then ownerAuth is changed. If authHandle is TPM_RH_ENDORSEMENT, then

endorsementAuth is changed. If authHandle is TPM_RH_LOCKOUT, then lockoutAuth is changed. The

HMAC in the response shall use the new authorization value when computing the response HMAC.

If authHandle is TPM_RH_PLATFORM, then Physical Presence may need to be asserted for this

command to succeed (see 26.2, TPM2_PP_Commands).

The authorization value may be no larger than the digest produced by the hash algorithm used for context

integrity.

EXAMPLE If SHA384 is used in the computation of the integrity values for saved contexts, then the largest
authorization value is 48 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 301

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 178 — TPM2_HierarchyChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyChangeAuth {NV}

TPMI_RH_HIERARCHY_AUTH @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH newAuth new authorization value

Table 179 — TPM2_HierarchyChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 302 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[HierarchyChangeAuth]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 303

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

25 Dictionary Attack Functions

25.1 Introduction

A TPM is required to have support for logic that will help prevent a dictionary attack on an authorization

value. The protection is provided by a counter that increments when a password authorization or an

HMAC authorization fails. When the counter reaches a predefined value, the TPM will not accept, for

some time interval, further requests that require authorization and the TPM is in Lockout mode. While the

TPM is in Lockout mode, the TPM will return TPM_RC_LOCKOUT if the command requires use of an

object’s or Index’s authValue unless the authorization applies to an entry in the Platform hierarchy.

NOTE 1 Authorizations for objects and NV Index values in the Platform hierarchy are never locked out.
However, a command that requires multiple authorizations will not be accepted when the TPM is in
Lockout mode unless all of the authorizations reference objects and indexes in the Platform
hierarchy.

If the TPM is continuously powered for the duration of newRecoveryTime and no authorization failures

occur, the authorization failure counter will be decremented by one. This property is called “self-healing.”

Self-healing shall not cause the count of failed attempts to decrement below zero.

The count of failed attempts, the lockout interval, and self-healing interval are settable using

TPM2_DictionaryAttackParameters(). The lockout parameters and the current value of the lockout

counter can be read with TPM2_GetCapability().

Dictionary attack protection does not apply to an entity associated with a permane nt handle (handle type ==
TPM_HT_PERMANENT) other than TPM_RH_LOCKOUT

25.2 TPM2_DictionaryAttackLockReset

 General Description

This command cancels the effect of a TPM lockout due to a number of successive authorization failures.

If this command is properly authorized, the lockout counter is set to zero.

Only one lockoutAuth authorization failure is allowed for this command during a lockoutRecovery interval

(set using TPM2_DictionaryAttackParameters().

Part 3: Commands Trusted Platform Module Library

Page 304 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 180 — TPM2_DictionaryAttackLockReset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackLockReset {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

Table 181 — TPM2_DictionaryAttackLockReset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 305

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[DictionaryAttackLockReset]]

Part 3: Commands Trusted Platform Module Library

Page 306 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

25.3 TPM2_DictionaryAttackParameters

 General Description

This command changes the lockout parameters.

The command requires Lockout Authorization.

The timeout parameters (newRecoveryTime and lockoutRecovery) indicate values that are measured with

respect to the Time and not Clock.

NOTE Use of Time means that the TPM shall be continuously powered for the duration of a timeout.

If newRecoveryTime is zero, then DA protection is disabled. Authorizations are checked but authorization

failures will not cause the TPM to enter lockout.

If newMaxTries is zero, the TPM will be in lockout and use of DA protected entities will be disabled.

If lockoutRecovery is zero, then the recovery interval is _TPM_Init followed by TPM2_Startup().

Only one lockoutAuth authorization failure is allowed for this command during a lockoutRecovery interval.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 307

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 182 — TPM2_DictionaryAttackParameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackParameters {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

UINT32 newMaxTries
count of authorization failures before the lockout is
imposed

UINT32 newRecoveryTime

time in seconds before the authorization failure count
is automatically decremented

A value of zero indicates that DA protection is
disabled.

UINT32 lockoutRecovery

time in seconds after a lockoutAuth failure before use
of lockoutAuth is allowed

A value of zero indicates that a reboot is required.

Table 183 — TPM2_DictionaryAttackParameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 308 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[DictionaryAttackParameters]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 309

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

26 Miscellaneous Management Functions

26.1 Introduction

This clause contains commands that do not logically group with any other commands.

26.2 TPM2_PP_Commands

 General Description

This command is used to determine which commands require assertion of Physical Presence (PP) in

addition to platformAuth/platformPolicy.

This command requires that auth is TPM_RH_PLATFORM and that Physical Presence be asserted.

After this command executes successfully, the commands listed in setList will be added to the list of

commands that require that Physical Presence be asserted when the handle associated with the

authorization is TPM_RH_PLATFORM. The commands in clearList will no longer require assertion of

Physical Presence in order to authorize a command.

If a command is not in either list, its state is not changed. If a command is in both lists, then it will no

longer require Physical Presence (for example, setList is processed first).

Only commands with handle types of TPMI_RH_PLATFORM, TPMI_RH_PROVISION,

TPMI_RH_CLEAR, or TPMI_RH_HIERARCHY can be gated with Physical Presence. If any other

command is in either list, it is discarded.

When a command requires that Physical Presence be provided, then Physical Presence shall be

asserted for either an HMAC or a Policy authorization.

NOTE 1 Physical Presence may be made a requirement of any policy.

NOTE 2 If the TPM does not implement this command, the command list is vendor specific . A platform-
specific specification may require that the command list be initialized in a specific way.

TPM2_PP_Commands() always requires assertion of Physical Presence.

Part 3: Commands Trusted Platform Module Library

Page 310 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 184 — TPM2_PP_Commands Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PP_Commands {NV}

TPMI_RH_PLATFORM @auth

TPM_RH_PLATFORM+PP

Auth Index: 1

Auth Role: USER + Physical Presence

TPML_CC setList
list of commands to be added to those that will require
that Physical Presence be asserted

TPML_CC clearList
list of commands that will no longer require that
Physical Presence be asserted

Table 185 — TPM2_PP_Commands Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 311

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[PP_Commands]]

Part 3: Commands Trusted Platform Module Library

Page 312 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

26.3 TPM2_SetAlgorithmSet

 General Description

This command allows the platform to change the set of algorithms that are used by the TPM. The

algorithmSet setting is a vendor-dependent value.

If the changing of the algorithm set results in a change of the algorithms of PCR banks, then the TPM will

need to be reset (_TPM_Init and TPM2_Startup(TPM_SU_CLEAR)) before the new PCR settings take

effect. After this command executes successfully, if startupType in the next TPM2_Startup() is not

TPM_SU_CLEAR, the TPM shall return TPM_RC_VALUE and may enter Failure mode.

Other than PCR, when an algorithm is no longer supported, the behavior of this command is vendor-

dependent.

EXAMPLE Entities may remain resident. Persistent objects, transient objects, or sessions may be flushed. NV
Indexes may be undefined. Policies may be erased.

NOTE The reference implementation does not have support for this command. In particular, it does not
support use of this command to selectively disable algorithms. Proper support would require
modification of the unmarshaling code so that each time an algorithm is unmarshaled, it would be
verified as being enabled.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 313

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 186 — TPM2_SetAlgorithmSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetAlgorithmSet {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM

Auth Index: 1

Auth Role: USER

UINT32 algorithmSet
a TPM vendor-dependent value indicating the
algorithm set selection

Table 187 — TPM2_SetAlgorithmSet Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 314 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[SetAlgorithmSet]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 315

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27 Field Upgrade

27.1 Introduction

This clause contains the commands for managing field upgrade of the firmware in the TPM. The field

upgrade scheme may be used for replacement or augmentation of the firmware installed in the TPM.

EXAMPLE 1 If an algorithm is found to be flawed, a patch of that algorithm might be installed using the firmware
upgrade process. The patch might be a replacement of a portion of the code or a complete
replacement of the firmware.

EXAMPLE 2 If an additional set of ECC parameters is needed, the firmware process may be used to add the
parameters to the TPM data set.

The field upgrade process uses two commands (TPM2_FieldUpgradeStart() and

TPM2_FieldUpgradeData()). TPM2_FieldUpgradeStart() validates that a signature on the provided digest

is from the TPM manufacturer and that proper authorization is provided using platformPolicy.

NOTE 1 The platformPolicy for field upgraded is defined by the PM and may include requirements that the
upgrade be signed by the PM or the TPM owner and include any other constraints that are desired
by the PM.

If the proper authorization is given, the TPM will retain the signed digest and enter the Field Upgrade

mode (FUM). While in FUM, the TPM will accept TPM2_FieldUpgradeData() commands. It may accept

other commands if it is able to complete them using the previously installed firmware. Otherwise, it will

return TPM_RC_UPGRADE.

Each block of the field upgrade shall contain the digest of the next block of the field upgrade data. That

digest shall be included in the digest of the previous block. The digest of the first block is signed by the

TPM manufacturer. That signature and first block digest are the parameters for

TPM2_FieldUpgradeStart(). The digest is saved in the TPM as the required digest for the next field

upgrade data block and as the identifier of the field upgrade sequence.

For each field upgrade data block that is sent to the TPM by TPM2_FieldUpgradeData(), the TPM shall

validate that the digest matches the required digest and if not, shall return TPM_RC_VALUE. The TPM

shall extract the digest of the next expected block and return that value to the caller, along with the digest

of the first data block of the update sequence.

The system may attempt to abandon the firmware upgrade by using a zero-length buffer in

TPM2_FieldUpdateData(). If the TPM is able to resume operation using the firmware present when the

upgrade started, then the TPM will indicate that it has abandon the update by setting the digest of the

next block to the Empty Buffer. If the TPM cannot abandon the update, it will return the expected next

digest.

The system may also attempt to abandon the update because of a power interruption. If the TPM is able

to resume normal operations, then it will respond normally to TPM2_Startup(). If the TPM is not able to

resume normal operations, then it will respond to any command but TPM2_FieldUpgradeData() with

TPM_RC_UPGRADE.

After a _TPM_Init, system software may not be able to resume the field upgrade that was in process

when the power interruption occurred. In such case, the TPM firmware may be reset to one of two other

values:

• the original firmware that was installed at the factory (“initial firmware”); or

• the firmware that was in the TPM when the field upgrade process started (“previous firmware”).

The TPM retains the digest of the first block for these firmware images and checks to see if the first block

after _TPM_Init matches either of those digests. If so, the firmware update process restarts and the

original firmware may be loaded.

Part 3: Commands Trusted Platform Module Library

Page 316 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 2 The TPM is required to accept the previous firmware as either a vendor -provided update or as
recovered from the TPM using TPM2_FirmwareRead().

When the last block of the firmware upgrade is loaded into the TPM (indicated to the TPM by data in the

data block in a TPM vendor-specific manner), the TPM will complete the upgrade process. If the TPM is

able to resume normal operations without a reboot, it will set the hash algorithm of the next block to

TPM_ALG_NULL and return TPM_RC_SUCCESS. If a reboot is required, the TPM shall return

TPM_RC_REBOOT in response to the last TPM2_FieldUpgradeData() and all subsequent TPM

commands until a _TPM_Init is received.

NOTE 3 Because no additional data is allowed when the response code is not TPM_RC_SUCCESS, the TPM
returns TPM_RC_SUCCESS for all calls to TPM2_FieldUpgradeData() except the last. In this
manner, the TPM is able to indicate the digest of the next block. If a _TPM_Init occurs while the
TPM is in FUM, the next block may be the digest for the first block of the original firmware. If it is
not, then the TPM will not accept the original firmware until the next _TPM_Init when the TPM is in
FUM.

During the field upgrade process, either the one specified in this clause or a vendor proprietary field

upgrade process, the TPM should preserve:

• Primary Seeds;

• Hierarchy authValue, authPolicy, and proof values;

• Lockout authValue and authorization failure count values;

• PCR authValue and authPolicy values;

• NV Index allocations and contents;

• Persistent object allocations and contents; and

• Clock.

NOTE 4 A platform manufacturer may provide a means to change preserved data to accommodate a case
where a field upgrade fixes a flaw that might have compromised TPM secrets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 317

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27.2 TPM2_FieldUpgradeStart

 General Description

This command uses platformPolicy and a TPM Vendor Authorization Key to authorize a Field Upgrade

Manifest.

If the signature checks succeed, the authorization is valid and the TPM will accept

TPM2_FieldUpgradeData().

This signature is checked against the loaded key referenced by keyHandle. This key will have a Name

that is the same as a value that is part of the TPM firmware data. If the signature is not valid, the TPM

shall return TPM_RC_SIGNATURE.

NOTE A loaded key is used rather than a hard-coded key to reduce the amount of memory needed for this
key data in case more than one vendor key is needed.

Part 3: Commands Trusted Platform Module Library

Page 318 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 188 — TPM2_FieldUpgradeStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeStart

TPMI_RH_PLATFORM @authorization

TPM_RH_PLATFORM+{PP}

Auth Index:1

Auth Role: ADMIN

TPMI_DH_OBJECT keyHandle

handle of a public area that contains the TPM Vendor
Authorization Key that will be used to validate
manifestSignature

Auth Index: None

TPM2B_DIGEST fuDigest digest of the first block in the field upgrade sequence

TPMT_SIGNATURE manifestSignature
signature over fuDigest using the key associated with
keyHandle (not optional)

Table 189 — TPM2_FieldUpgradeStart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 319

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[FieldUpgradeStart]]

Part 3: Commands Trusted Platform Module Library

Page 320 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

27.3 TPM2_FieldUpgradeData

 General Description

This command will take the actual field upgrade image to be installed on the TPM. The exact format of

fuData is vendor-specific. This command is only possible following a successful

TPM2_FieldUpgradeStart(). If the TPM has not received a properly authorized

TPM2_FieldUpgradeStart(), then the TPM shall return TPM_RC_FIELDUPGRADE.

The TPM will validate that the digest of fuData matches an expected value. If so, the TPM may buffer or

immediately apply the update. If the digest of fuData does not match an expected value, the TPM shall

return TPM_RC_VALUE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 321

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 190 — TPM2_FieldUpgradeData Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeData {NV}

TPM2B_MAX_BUFFER fuData field upgrade image data

Table 191 — TPM2_FieldUpgradeData Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_HA+ nextDigest
tagged digest of the next block

TPM_ALG_NULL if field update is complete

TPMT_HA firstDigest tagged digest of the first block of the sequence

Part 3: Commands Trusted Platform Module Library

Page 322 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[FieldUpgradeData]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 323

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27.4 TPM2_FirmwareRead

 General Description

This command is used to read a copy of the current firmware installed in the TPM.

The presumption is that the data will be returned in reverse order so that the last block in the sequence

would be the first block given to the TPM in case of a failure recovery. If the TPM2_FirmwareRead

sequence completes successfully, then the data provided from the TPM will be sufficient to allow the TPM

to recover from an abandoned upgrade of this firmware.

To start the sequence of retrieving the data, the caller sets sequenceNumber to zero. When the TPM has

returned all the firmware data, the TPM will return the Empty Buffer as fuData.

The contents of fuData are opaque to the caller.

NOTE 1 The caller should retain the ordering of the update blocks so that the blocks sent to the TPM have
the same size and inverse order as the blocks returned by a sequence o f calls to this command.

NOTE 2 Support for this command is optional even if the TPM implements TPM2_FieldUpgradeStart() and
TPM2_FieldUpgradeData().

Part 3: Commands Trusted Platform Module Library

Page 324 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 192 — TPM2_FirmwareRead Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FirmwareRead

UINT32 sequenceNumber

the number of previous calls to this command in this
sequence

set to 0 on the first call

Table 193 — TPM2_FirmwareRead Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER fuData field upgrade image data

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 325

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[FirmwareRead]]

Part 3: Commands Trusted Platform Module Library

Page 326 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

28 Context Management

28.1 Introduction

Three of the commands in this clause (TPM2_ContextSave(), TPM2_ContextLoad(), and

TPM2_FlushContext()) implement the resource management described in the "Context Management"

clause in TPM 2.0 Part 1.

The fourth command in this clause (TPM2_EvictControl()) is used to control the persistence of loadable

objects in TPM memory. Background for this command may be found in the "Owner and Platform Evict

Objects" clause in TPM 2.0 Part 1.

28.2 TPM2_ContextSave

 General Description

This command saves a session context, object context, or sequence object context outside the TPM.

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS.

NOTE This preclusion avoids complex issues of dealing with the same session in handle and in the session
area. While it might be possible to provide specificity, it would add unnecessary complexity to the
TPM and, because this capability would provide no application benefit, use of authorization sessions
for audit or encryption is prohibited.

The TPM shall encrypt and integrity protect the TPM2B_CONTEXT_SENSITIVE context as described in

the "Context Protections" clause in TPM 2.0 Part 1.

See the “Context Data” clause in TPM 2.0 Part 2 for a description of the context structure in the response.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 327

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 194 — TPM2_ContextSave Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextSave

TPMI_DH_CONTEXT saveHandle
handle of the resource to save

Auth Index: None

Table 195 — TPM2_ContextSave Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_CONTEXT context

Part 3: Commands Trusted Platform Module Library

Page 328 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ContextSave]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 329

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

28.3 TPM2_ContextLoad

 General Description

This command is used to reload a context that has been saved by TPM2_ContextSave().

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 28.2.1).

The TPM will return TPM_RC_HIERARCHY if the context is associated with a hierarchy that is disabled.

NOTE Contexts for authorization sessions and for sequence objects belong to the NULL hierarchy, which is
never disabled.

See the “Context Data” clause in TPM 2.0 Part 2 for a description of the values in the context parameter.

If the integrity HMAC of the saved context is not valid, the TPM shall return TPM_RC_INTEGRITY.

The TPM shall perform a check on the decrypted context as described in the "Context Confidentiality

Protection" clause of TPM 2.0 Part 1 and enter failure mode if the check fails.

Part 3: Commands Trusted Platform Module Library

Page 330 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 196 — TPM2_ContextLoad Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextLoad

TPMS_CONTEXT context the context blob

Table 197 — TPM2_ContextLoad Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_CONTEXT loadedHandle
the handle assigned to the resource after it has been
successfully loaded

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 331

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ContextLoad]]

Part 3: Commands Trusted Platform Module Library

Page 332 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

28.4 TPM2_FlushContext

 General Description

This command causes all context associated with a loaded object, sequence object, or session to be

removed from TPM memory.

This command may not be used to remove a persistent object from the TPM. Use TPM2_EvictControl to

remove a persistent object.

A session does not have to be loaded in TPM memory to have its context flushed. The saved session

context associated with the indicated handle is invalidated. When flushing a session, the upper byte of the

handle is ignored.

EXAMPLE A command to flush session handle 0x20000000 will flush session handle 0x03000000.

No sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 28.2.1).

If the handle is for a Transient Object and the handle is not associated with a loaded object, then the TPM

shall return TPM_RC_HANDLE.

If the handle is for an authorization session and the handle does not reference a loaded or active session,

then the TPM shall return TPM_RC_HANDLE.

NOTE flushHandle is a parameter and not a handle. If it were in the handle area, the TPM would validate
that the context for the referenced entity is in the TPM. When a TPM2_FlushContext references a
saved session context, it is not necessary for the context to be in the TPM. When the flushHandle is
in the parameter area, the TPM does not validate that associated context is actually in the TPM.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 333

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 198 — TPM2_FlushContext Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FlushContext

TPMI_DH_CONTEXT flushHandle
the handle of the item to flush

NOTE This is a use of a handle as a parameter.

Table 199 — TPM2_FlushContext Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 334 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[FlushContext]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 335

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

28.5 TPM2_EvictControl

 General Description

This command allows certain Transient Objects to be made persistent or a persistent object to be evicted.

NOTE 1 A transient object is one that may be removed from TPM memory using either TPM2_FlushContext
or TPM2_Startup(). A persistent object is not removed from TPM memory by TPM2_FlushContext()
or TPM2_Startup().

If objectHandle is a Transient Object, then this call makes a persistent copy of the object and assigns

persistentHandle to the persistent version of the object. If objectHandle is a persistent object, then the call

evicts the persistent object. The call does not affect the transient object.

Before execution of TPM2_EvictControl code below, the TPM verifies that objectHandle references an

object that is resident on the TPM and that persistentHandle is a valid handle for a persistent object.

NOTE 2 This requirement simplifies the unmarshaling code so that it only need check that persistentHandle
is always a persistent object.

If objectHandle references a Transient Object:

 The TPM shall return TPM_RC_ATTRIBUTES if

1) it is in the hierarchy of TPM_RH_NULL,

2) only the public portion of the object is loaded, or

NOTE 3 This is for NV space efficiency. Loading an object whose private part is empty would
unnecessarily consume NV resources.

3) the stClear is SET in the object or in an ancestor key.

 The TPM shall return TPM_RC_HIERARCHY if the object is not in the proper hierarchy as

determined by auth.

1) If auth is TPM_RH_PLATFORM, the proper hierarchy is the Platform hierarchy.

2) If auth is TPM_RH_OWNER, the proper hierarchy is either the Storage or the Endorsement

hierarchy.

 The TPM shall return TPM_RC_RANGE if persistentHandle is not in the proper range as determined

by auth.

1) If auth is TPM_RH_OWNER, then persistentHandle shall be in the inclusive range of

81 00 00 0016 to 81 7F FF FF16.

2) If auth is TPM_RH_PLATFORM, then persistentHandle shall be in the inclusive range of

81 80 00 0016 to 81 FF FF FF16.

NOTE 4 This separation permits the platform (the platform OEM) a range of indexes that will not
interfere with indexes used by the TPM owner (the OS or applications).

 The TPM shall return TPM_RC_NV_DEFINED if a persistent object exists with the same handle as

persistentHandle.

 The TPM shall return TPM_RC_NV_SPACE if insufficient space is available to make the object

persistent.

 The TPM shall return TPM_RC_NV_SPACE if execution of this command will prevent the TPM from

being able to hold two transient objects of any kind.

Part 3: Commands Trusted Platform Module Library

Page 336 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 5 This requirement anticipates that a TPM may be implemented such that all TPM memory is non-
volatile and not subject to endurance issues. In such case, there is no movement of an object
between memory of different types and it is necessary that the TPM ensure that it is always
possible for the management software to move objects to/f rom TPM memory in order to ensure
that the objects required for command execution can be context restored.

 If the TPM returns TPM_RC_SUCCESS, the object referenced by objectHandle will not be flushed

and both objectHandle and persistentHandle may be used to access the object.

If objectHandle references a persistent object:

 The TPM shall return TPM_RC_RANGE if objectHandle is not in the proper range as determined by

auth. If auth is TPM_RC_OWNER, objectHandle shall be in the inclusive range of 81 00 00 0016 to

81 7F FF FF16. If auth is TPM_RC_PLATFORM, objectHandle may be any valid persistent object

handle.

 If objectHandle is not the same value as persistentHandle, return TPM_RC_HANDLE.

 If the TPM returns TPM_RC_SUCCESS, objectHandle will be removed from persistent memory and

no longer be accessible.

NOTE 5 The persistent object is not converted to a transient object, as this would prevent the immediate
revocation of an object by removing it from persistent memory.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 337

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 200 — TPM2_EvictControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EvictControl {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the handle of a loaded object

Auth Index: None

TPMI_DH_PERSISTENT persistentHandle

if objectHandle is a transient object handle, then this is
the persistent handle for the object

if objectHandle is a persistent object handle, then it
shall be the same value as persistentHandle

Table 201 — TPM2_EvictControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 338 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[EvictControl]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 339

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

29 Clocks and Timers

29.1 TPM2_ReadClock

 General Description

This command reads the current TPMS_TIME_INFO structure that contains the current setting of Time,

Clock, resetCount, and restartCount.

Part 3: Commands Trusted Platform Module Library

Page 340 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 202 — TPM2_ReadClock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadClock

Table 203 — TPM2_ReadClock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_TIME_INFO currentTime

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 341

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ReadClock]]

Part 3: Commands Trusted Platform Module Library

Page 342 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

29.2 TPM2_ClockSet

 General Description

This command is used to advance the value of the TPM’s Clock. The command will fail if newTime is less

than the current value of Clock or if the new time is greater than FF FF 00 00 00 00 00 0016. If both of

these checks succeed, Clock is set to newTime. If either of these checks fails, the TPM shall return

TPM_RC_VALUE and make no change to Clock.

NOTE This maximum setting would prevent Clock from rolling over to zero for approximately 8,000 years at
the real time Clock update rate. If the Clock update rate was set so that TPM time was passing 33
percent faster than real time, it would still be more than 6,000 years before Clock would roll over to
zero. Because Clock will not roll over in the lifetime of the TPM, there is no need for external
software to deal with the possibility that Clock may wrap around.

If the value of Clock after the update makes the volatile and non-volatile versions of

TPMS_CLOCK_INFO.clock differ by more than the reported update interval, then the TPM shall update

the non-volatile version of TPMS_CLOCK_INFO.clock before returning.

This command requires Platform Authorization or Owner Authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 343

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 204 — TPM2_ClockSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockSet {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

UINT64 newTime new Clock setting in milliseconds

Table 205 — TPM2_ClockSet Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 344 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[ClockSet]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 345

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

29.3 TPM2_ClockRateAdjust

 General Description

This command adjusts the rate of advance of Clock and Time to provide a better approximation to real

time.

The rateAdjust value is relative to the current rate and not the nominal rate of advance.

EXAMPLE 1 If this command had been called three times with rateAdjust = TPM_CLOCK_COARSE_SLOWER
and once with rateAdjust = TPM_CLOCK_COARSE_FASTER, the net effect will be as if the
command had been called twice with rateAdjust = TPM_CLOCK_COARSE_SLOWER.

The range of adjustment shall be sufficient to allow Clock and Time to advance at real time but no more.

If the requested adjustment would make the rate advance faster or slower than the nominal accuracy of

the input frequency, the TPM shall return TPM_RC_VALUE.

EXAMPLE 2 If the frequency tolerance of the TPM's input clock is +/-10 percent, then the TPM will return
TPM_RC_VALUE if the adjustment would make Clock run more than 10 percent faster or slower than
nominal. That is, if the input oscillator were nominally 100 megahertz (MHz), then 1 millisecond (ms)
would normally take 100,000 counts. The update Clock should be adjustable so that 1 ms is between
90,000 and 110,000 counts.

The interpretation of “fine” and “coarse” adjustments is implementation-specific.

The nominal rate of advance for Clock and Time shall be accurate to within 15 percent. That is, with no

adjustment applied, Clock and Time shall be advanced at a rate within 15 percent of actual time.

NOTE If the adjustments are incorrect, it will be possible to make the difference between advance of
Clock/Time and real time to be as much as 1.152 or ~1.33.

Changes to the current Clock update rate adjustment need not be persisted across TPM power cycles.

Part 3: Commands Trusted Platform Module Library

Page 346 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 206 — TPM2_ClockRateAdjust Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockRateAdjust

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPM_CLOCK_ADJUST rateAdjust Adjustment to current Clock update rate

Table 207 — TPM2_ClockRateAdjust Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 347

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ClockRateAdjust]]

Part 3: Commands Trusted Platform Module Library

Page 348 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

30 Capability Commands

30.1 Introduction

The TPM has numerous values that indicate the state, capabilities, and properties of the TPM. These

values are needed for proper management of the TPM. The TPM2_GetCapability() command is used to

access these values.

TPM2_GetCapability() allows reporting of multiple values in a single call. The values are grouped

according to type.

NOTE TPM2_TestParms()is used to determine if a TPM supports a particular combination of algorithm
parameters

30.2 TPM2_GetCapability

 General Description

This command returns various information regarding the TPM and its current state.

The capability parameter determines the category of data returned. The property parameter selects the

first value of the selected category to be returned. If there is no property that corresponds to the value of

property, the next higher value is returned, if it exists.

EXAMPLE 1 The list of handles of transient objects currently loaded in the TPM may be read one at a time. On
the first read, set the property to TRANSIENT_FIRST and propertyCount to one. If a transient object
is present, the lowest numbered handle is returned and moreData will be YES if transient objects
with higher handles are loaded. On the subsequent call, use returned handle value plus 1 in order to
access the next higher handle.

The propertyCount parameter indicates the number of capabilities in the indicated group that are

requested. The TPM will return no more than the number of requested values (propertyCount) or until the

last property of the requested type has been returned.

NOTE 1 The type of the capability is derived from a combination of capability and property.

NOTE 2 If the property selects an unimplemented property, the next higher implemented property is returned.

When all of the properties of the requested type have been returned, the moreData parameter in the

response will be set to NO. Otherwise, it will be set to YES.

NOTE 3 The moreData parameter will be YES if there are more properties even if the requested number of
capabilities has been returned.

The TPM is not required to return more than one value at a time. It is not required to provide the same

number of values in response to subsequent requests.

EXAMPLE 2 A TPM may return 4 properties in response to a TPM2_GetCapability(capability =
TPM_CAP_TPM_PROPERTY, property = TPM_PT_MANUFACTURER, propertyCount = 8) and for a
latter request with the same parameters, the TPM may return as few as one and as many as 8
values.

When the TPM is in Failure mode, a TPM is required to allow use of this command for access of the

following capabilities:

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 349

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• TPM_PT_MANUFACTURER

• TPM_PT_VENDOR_STRING_1

• TPM_PT_VENDOR_STRING_2 (NOTE 4)

• TPM_PT_VENDOR_STRING_3 (NOTE 4)

• TPM_PT_VENDOR_STRING_4 (NOTE 4)

• TPM_PT_VENDOR_TPM_TYPE

• TPM_PT_FIRMWARE_VERSION_1

• TPM_PT_FIRMWARE_VERSION_2

NOTE 4 If the vendor string does not require one of these values, the property type does not need to exist.

A vendor may optionally allow the TPM to return other values.

If in Failure mode and a capability is requested that is not available in Failure mode, the TPM shall return

no value.

EXAMPLE 3 Assume the TPM is in Failure mode and the TPM only supports reporting of the minimum required
set of properties (the limited subset of TPML_TAGGED_TPM_PROPERTY values). If a
TPM2_GetCapability is received requesting a capability that has a property type value greater than
TPM_PT_FIRMWARE_VERSION_2, the TPM may return a zero length list with the moreData
parameter set to NO or return the property TPM_PT_FIRMWARE_VERSION_2. If the property type
is less than TPM_PT_MANUFACTURER, the TPM will return properties beginning with
TPM_PT_MANUFACTURER.

In Failure mode, tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

The capability categories and the types of the return values are:

capability property Return Type

TPM_CAP_ALGS TPM_ALG_ID(1) TPML_ALG_PROPERTY

TPM_CAP_HANDLES TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS TPM_CC TPML_CC

TPM_CAP_PCRS Reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

TPM_CAP_ECC_CURVES TPM_ECC_CURVE(1) TPML_ECC_CURVE

TPM_CAP_AUTH_POLICIES (3) TPM_HANDLE(2) TPML_TAGGED_POLICY

TPM_CAP_ACT(4) TPM_HANDLE(2) TPML_ACT_DATA

TPM_CAP_VENDOR_PROPERTY manufacturer specific manufacturer-specific values

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

(2) The TPM will return TPM_RC_VALUE if the handle does not reference the range for permanent handles.

(3) TPM_CAP_AUTH_POLICIES was added in revision 01.32.

(4) TPM_CAP_ACT was added in revision 01.56.

Part 3: Commands Trusted Platform Module Library

Page 350 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

• TPM_CAP_ALGS – Returns a list of TPMS_ALG_PROPERTIES. Each entry is an algorithm ID and a
set of properties of the algorithm.

• TPM_CAP_HANDLES – Returns a list of all of the handles within the handle range of the property
parameter. The range of the returned handles is determined by the handle type (the most-significant
octet (MSO) of the property). Any of the defined handle types is allowed

EXAMPLE 4 If the MSO of property is TPM_HT_NV_INDEX, then the TPM will return a list of NV Index
values.

EXAMPLE 5 If the MSO of property is TPM_HT_PCR, then the TPM will return a list of PCR.

• For this capability, use of TPM_HT_LOADED_SESSION and TPM_HT_SAVED_SESSION is
allowed. Requesting handles with a handle type of TPM_HT_LOADED_SESSION will return handles
for loaded sessions. The returned handle values will have a handle type of either
TPM_HT_HMAC_SESSION or TPM_HT_POLICY_SESSION. If saved sessions are requested, all
returned values will have the TPM_HT_HMAC_SESSION handle type because the TPM does not
track the session type of saved sessions.

NOTE 5 TPM_HT_LOADED_SESSION and TPM_HT_HMAC_SESSION have the same value, as do
TPM_HT_SAVED_SESSION and TPM_HT_POLICY_SESSION. It is not possible to request that
the TPM return a list of loaded HMAC sessions without including the policy sessions.

• TPM_CAP_COMMANDS – Returns a list of the command attributes for all of the commands
implemented in the TPM, starting with the TPM_CC indicated by the property parameter. If vendor
specific commands are implemented, the vendor-specific command attribute with the lowest
commandIndex, is returned after the non-vendor-specific (base) command.

NOTE 6 The type of the property parameter is a TPM_CC while the type of the returned list is
TPML_CCA.

• TPM_CAP_PP_COMMANDS – Returns a list of all of the commands currently requiring Physical
Presence for confirmation of platform authorization. The list will start with the TPM_CC indicated by
property.

• TPM_CAP_AUDIT_COMMANDS – Returns a list of all of the commands currently set for command
audit.

• TPM_CAP_PCRS – Returns the current allocation of PCR in a TPML_PCR_SELECTION. The
property parameter shall be zero. The TPM will always respond to this command with the full PCR
allocation and moreData will be NO.

The TPML_PCR_SELECTION must include a TPMS_PCR_SELECTION for each PCR bank in which
there is at least one allocated PCR. The TPML_PCR_SELECTION may return a
TPMS_PCR_SELECTION for each implemented PCR bank. The TPML_PCR_SELECTION may
return a TPMS_PCR_SELECTION for each implemented hash algorithm.

• TPM_CAP_TPM_PROPERTIES – Returns a list of tagged properties. The tag is a TPM_PT and the
property is a 32-bit value. The properties are returned in groups. Each property group is on a 256-
value boundary (that is, the boundary occurs when the TPM_PT is evenly divisible by 256). The TPM
will only return values in the same group as the property parameter in the command.

• TPM_CAP_PCR_PROPERTIES – Returns a list of tagged PCR properties. The tag is a
TPM_PT_PCR and the property is a TPMS_PCR_SELECT.

The input command property is a TPM_PT_PCR (see TPM 2.0 Part 2 for PCR properties to be

requested) that specifies the first property to be returned. If propertyCount is greater than 1, the

list of properties begins with that property and proceeds in TPM_PT_PCR sequence.

Each item in the list is a TPMS_PCR_SELECT structure that contains a bitmap of all PCR.

NOTE 7 A PCR index in all banks (all hash algorithms) has the same properties, so the hash algorithm is
not specified here.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 351

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• TPM_CAP_TPM_ECC_CURVES – Returns a list of ECC curve identifiers currently available for use
in the TPM.

• TPM_CAP_AUTH_POLICIES - Returns a list of tagged policies reporting the authorization policies for
the permanent handles.

• TPM_CAP_ACT – Returns a list of TPMS_ACT_DATA, each of which contains the handle for the
ACT, the remaining time before it expires, and the ACT attributes.

The moreData parameter will have a value of YES if there are more values of the requested type that

were not returned.

If no next capability exists, the TPM will return a zero-length list and moreData will have a value of NO.

Part 3: Commands Trusted Platform Module Library

Page 352 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 208 — TPM2_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCapability

TPM_CAP capability group selection; determines the format of the response

UINT32 property further definition of information

UINT32 propertyCount number of properties of the indicated type to return

Table 209 — TPM2_GetCapability Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO moreData flag to indicate if there are more values of this type

TPMS_CAPABILITY_DATA capabilityData the capability data

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 353

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[GetCapability]]

Part 3: Commands Trusted Platform Module Library

Page 354 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

30.3 TPM2_TestParms

 General Description

This command is used to check to see if specific combinations of algorithm parameters are supported.

The TPM will unmarshal the provided TPMT_PUBLIC_PARMS. If the parameters unmarshal correctly,

then the TPM will return TPM_RC_SUCCESS, indicating that the parameters are valid for the TPM. The

TPM will return the appropriate unmarshaling error if a parameter is not valid.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 355

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 210 — TPM2_TestParms Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_TestParms

TPMT_PUBLIC_PARMS parameters algorithm parameters to be validated

Table 211 — TPM2_TestParms Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode TPM_RC

Part 3: Commands Trusted Platform Module Library

Page 356 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[TestParms]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 357

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31 Non-volatile Storage

31.1 Introduction

The NV commands are used to create, update, read, and delete allocations of space in NV memory.

Before an Index may be used, it must be defined (TPM2_NV_DefineSpace()).

An Index may be modified if the proper write authorization is provided or read if the proper read

authorization is provided. Different controls are available for reading and writing.

An Index may have an Index-specific authValue and authPolicy. The authValue may be used to authorize

reading if TPMA_NV_AUTHREAD is SET and writing if TPMA_NV_AUTHWRITE is SET. The authPolicy

may be used to authorize reading if TPMA_NV_POLICYREAD is SET and writing if

TPMA_NV_POLICYWRITE is SET.

For commands that have both authHandle and nvIndex parameters, authHandle can be an NV Index,

Platform Authorization, or Owner Authorization. If authHandle is an NV Index, it must be the same as

nvIndex (TPM_RC_NV_AUTHORIZATION).

TPMA_NV_PPREAD and TPMA_NV_PPWRITE indicate if reading or writing of the NV Index may be

authorized by platformAuth or platformPolicy.

TPMA_NV_OWNERREAD and TPMA_NV_OWNERWRITE indicate if reading or writing of the NV Index

may be authorized by ownerAuth or ownerPolicy.

If an operation on an NV index requires authorization, and the authHandle parameter is the handle of an

NV Index, then the nvIndex parameter must have the same value or the TPM will return

TPM_RC_NV_AUTHORIZATION.

NOTE 1 This check ensures that the authorization that was provided is associated with the NV Index being
authorized.

For creating an Index, Owner Authorization may not be used if shEnable is CLEAR and Platform

Authorization may not be used if phEnableNV is CLEAR.

If an Index was defined using Platform Authorization, then that Index is not accessible when phEnableNV

is CLEAR. If an Index was defined using Owner Authorization, then that Index is not accessible when

shEnable is CLEAR.

For read access control, any combination of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD,

TPMA_NV_AUTHREAD, or TPMA_NV_POLICYREAD is allowed as long as at least one is SET.

For write access control, any combination of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE,

TPMA_NV_AUTHWRITE, or TPMA_NV_POLICYWRITE is allowed as long as at least one is SET.

If an Index has been defined and not written, then any operation on the NV Index that requires read

authorization will fail (TPM_RC_NV_INITIALIZED). This check may be made before or after other

authorization checks but shall be performed before checking the NV Index authValue. An authorization

failure due to the NV Index not having been written shall not be logged by the dictionary attack logic.

If TPMA_NV_CLEAR_STCLEAR is SET, then the TPMA_NV_WRITTEN will be CLEAR on each

TPM2_Startup(TPM_SU_CLEAR). TPMA_NV_CLEAR_STCLEAR shall not be SET if the nvIndexType is

TPM_NT_COUNTER.

The code in the “Detailed Actions” clause of each command is written to interface with an implementation-

dependent library that allows access to NV memory. The actions assume no specific layout of the

structure of the NV data.

Only one NV Index may be directly referenced in a command.

Part 3: Commands Trusted Platform Module Library

Page 358 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE 2 This means that, if authHandle references an NV Index, then nvIndex will have the same value.
However, this does not limit the number of changes that may occur as side effects. For example, any
number of NV Indexes might be relocated as a result of deleting or adding a NV Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 359

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.2 NV Counters

When an Index has the TPM_NT_COUNTER attribute, it behaves as a monotonic counter and may only

be updated using TPM2_NV_Increment().

When an NV counter is created, the TPM shall initialize the 8-octet counter value with a number that is

greater than any count value for any NV counter on the TPM since the time of TPM manufacture.

An NV counter may be defined with the TPMA_NV_ORDERLY attribute to indicate that the NV Index is

expected to be modified at a high frequency and that the data is only required to persist when the TPM

goes through an orderly shutdown process. The TPM may update the counter value in RAM and

occasionally update the non-volatile version of the counter. An orderly shutdown is one occasion to

update the non-volatile count. If the difference between the volatile and non-volatile version of the counter

becomes as large as MAX_ORDERLY_COUNT, this shall be another occasion for updating the non-

volatile count.

Before an NV counter can be used, the TPM shall validate that the count is not less than a previously

reported value. If the TPMA_NV_ORDERLY attribute is not SET, or if the TPM experienced an orderly

shutdown, then the count is assumed to be correct. If the TPMA_NV_ORDERLY attribute is SET, and the

TPM shutdown was not orderly, then the TPM shall OR MAX_ORDERLY_COUNT to the contents of the

non-volatile counter and set that as the current count.

NOTE 1 Because the TPM would have updated the NV Index if the difference between the count values was
equal to MAX_ORDERLY_COUNT + 1, the highest value that could have been in the NV Index is
MAX_ORDERLY_COUNT so it is safe to restore that value.

NOTE 2 The TPM may implement the RAM portion of the counter such that the effective value of the NV
counter is the sum of both the volatile and non-volatile parts. If so, then the TPM may initialize the
RAM version of the counter to MAX_ORDERLY_COUNT and no update of NV is necessary.

NOTE 3 When a new NV counter is created, the TPM may search all the counters to determine which has the
highest value. In this search, the TPM would use the sum of the non-volatile and RAM portions of
the counter. The RAM portion of the counter shall be properly initialized to reflect shutdown process
(orderly or not) of the TPM.

Part 3: Commands Trusted Platform Module Library

Page 360 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.3 TPM2_NV_DefineSpace

 General Description

This command defines the attributes of an NV Index and causes the TPM to reserve space to hold the

data associated with the NV Index. If a definition already exists at the NV Index, the TPM will return

TPM_RC_NV_DEFINED.

The TPM will return TPM_RC_ATTRIBUTES if nvIndexType has a reserved value in publicInfo.

NOTE 1 It is not required that any of these three attributes be set.

The TPM shall return TPM_RC_ATTRIBUTES if TPMA_NV_WRITTEN, TPMA_NV_READLOCKED, or

TPMA_NV_WRITELOCKED is SET.

If nvIndexType is TPM_NT_COUNTER, TPM_NT_BITS, TPM_NT_PIN_FAIL, or TPM_NT_PIN_PASS,

then publicInfo→dataSize shall be set to eight (8) or the TPM shall return TPM_RC_SIZE.

If nvIndexType is TPM_NT_EXTEND, then publicInfo→dataSize shall match the digest size of the

publicInfo.nameAlg or the TPM shall return TPM_RC_SIZE.

NOTE 2 TPM_RC_ATTRIBUTES could be returned by a TPM that is based on the reference code of older
versions of the specification but the correct response for this error is TPM_RC_SIZE.

If the NV Index is an ordinary Index and publicInfo→dataSize is larger than supported by the TPM

implementation then the TPM shall return TPM_RC_SIZE.

NOTE 3 The limit for the data size may vary according to the type of the index. For example, if the index has
TPMA_NV_ORDERLY SET, then the maximum size of an ordinary NV Index may be less than the
size of an ordinary NV Index that has TPMA_NV_ORDERLY CLEAR.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or

TPMA_NV_POLICYREAD shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, or

TPMA_NV_POLICYWRITE shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_CLEAR_STCLEAR is SET, then nvIndexType shall not be TPM_NT_COUNTER or the TPM

shall return TPM_RC_ATTRIBUTES.

If platformAuth/platformPolicy is used for authorization, then TPMA_NV_PLATFORMCREATE shall be

SET in publicInfo. If ownerAuth/ownerPolicy is used for authorization, TPMA_NV_PLATFORMCREATE

shall be CLEAR in publicInfo. If TPMA_NV_PLATFORMCREATE is not set correctly for the authorization,

the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_POLICY_DELETE is SET, then the authorization shall be with Platform Authorization or the

TPM shall return TPM_RC_ATTRIBUTES.

If nvIndexType is TPM_NT_PIN_FAIL, then TPMA_NV_NO_DA shall be SET. Otherwise, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE 4 The intent of a PIN Fail index is that its DA protection is on a per-index basis, not based on the
global DA protection. This avoids conflict over which type of dictionary attack protection is in use.

If nvIndexType is TPM_NT_PIN_FAIL or TPM_NT_PIN_PASS, then at least one of

TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, or TPMA_NV_POLICYWRITE shall be SET or the

TPM shall return TPM_RC_ATTRIBUTES. TPMA_NV_AUTHWRITE shall be CLEAR. Otherwise, the

TPM shall return TPM_RC_ATTRIBUTES.

NOTE 5 If TPMA_NV_AUTHWRITE was SET for a PIN Pass index, a user knowing the authorization value
could decrease pinCount or increase pinLimit, defeating the purpose of a PIN Pass index. The
requirement is also enforced for a PIN Fail index for consistency.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 361

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

If the implementation does not support TPM2_NV_Increment(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_COUNTER.

If the implementation does not support TPM2_NV_SetBits(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_BITS.

If the implementation does not support TPM2_NV_Extend(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_EXTEND.

If the implementation does not support TPM2_NV_UndefineSpaceSpecial(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_POLICY_DELETE is SET.

After the successful completion of this command, the NV Index exists but TPMA_NV_WRITTEN will be

CLEAR. Any access of the NV data will return TPM_RC_NV_UNINITIALIZED.

In some implementations, an NV Index with the TPM_NT_COUNTER attribute may require special TPM

resources that provide higher endurance than regular NV. For those implementations, if this command

fails because of lack of resources, the TPM will return TPM_RC_NV_SPACE.

The value of auth is saved in the created structure. The size of auth is limited to be no larger than the size

of the digest produced by the NV Index's nameAlg (TPM_RC_SIZE).

Part 3: Commands Trusted Platform Module Library

Page 362 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 212 — TPM2_NV_DefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_DefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth the authorization value

TPM2B_NV_PUBLIC publicInfo the public parameters of the NV area

Table 213 — TPM2_NV_DefineSpace Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 363

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_DefineSpace]]

Part 3: Commands Trusted Platform Module Library

Page 364 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.4 TPM2_NV_UndefineSpace

 General Description

This command removes an Index from the TPM.

If nvIndex is not defined, the TPM shall return TPM_RC_HANDLE.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE attribute SET, the TPM shall

return TPM_RC_NV_AUTHORIZATION unless Platform Authorization is provided.

If nvIndex references an Index that has its TPMA_NV_POLICY_DELETE attribute SET, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with Platform Authorization
as long as shEnable is SET. If shEnable is CLEAR, indexes created using Owner Authorization are
not accessible even for deletion by the platform.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 365

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 214 — TPM2_NV_UndefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to remove from NV space

Auth Index: None

Table 215 — TPM2_NV_UndefineSpace Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 366 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_UndefineSpace]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 367

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.5 TPM2_NV_UndefineSpaceSpecial

 General Description

This command allows removal of a platform-created NV Index that has TPMA_NV_POLICY_DELETE

SET.

This command requires that the policy of the NV Index be satisfied before the NV Index may be deleted.

Because administrative role is required, the policy must contain a command that sets the policy command

code to TPM_CC_NV_UndefineSpaceSpecial. This indicates that the policy that is being used is a policy

that is for this command, and not a policy that would approve another use. That is, authority to use an

entity does not grant authority to undefine the entity.

Since the index is deleted, the Empty Buffer is used as the authValue when generating the response

HMAC.

If nvIndex is not defined, the TPM shall return TPM_RC_HANDLE.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE or

TPMA_NV_POLICY_DELETE attribute CLEAR, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with
TPM2_UndefineSpace()as long as shEnable is SET. If shEnable is CLEAR, indexes created using
Owner Authorization are not accessible even for deletion by the platform.

Part 3: Commands Trusted Platform Module Library

Page 368 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 216 — TPM2_NV_UndefineSpaceSpecial Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpaceSpecial {NV}

TPMI_RH_NV_INDEX @nvIndex

Index to be deleted

Auth Index: 1

Auth Role: ADMIN

TPMI_RH_PLATFORM @platform

TPM_RH_PLATFORM + {PP}

Auth Index: 2

Auth Role: USER

Table 217 — TPM2_NV_UndefineSpaceSpecial Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 369

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_UndefineSpaceSpecial]]

Part 3: Commands Trusted Platform Module Library

Page 370 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.6 TPM2_NV_ReadPublic

 General Description

This command is used to read the public area and Name of an NV Index. The public area of an Index is

not privacy-sensitive and no authorization is required to read this data.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 371

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 218 — TPM2_NV_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadPublic

TPMI_RH_NV_INDEX nvIndex
the NV Index

Auth Index: None

Table 219 — TPM2_NV_ReadPublic Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_NV_PUBLIC nvPublic the public area of the NV Index

TPM2B_NAME nvName the Name of the nvIndex

Part 3: Commands Trusted Platform Module Library

Page 372 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_ReadPublic]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 373

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.7 TPM2_NV_Write

 General Description

This command writes a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPWRITE;

TPMA_NV_OWNERWRITE; TPMA_NV_AUTHWRITE; and, if TPMA_NV_POLICY_WRITE is SET, the

authPolicy of the NV Index.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 1 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

If nvIndexType is TPM_NT_COUNTER, TPM_NT_BITS or TPM_NT_EXTEND, then the TPM shall return

TPM_RC_ATTRIBUTES.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

If the TPMA_NV_WRITEALL attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_RANGE if the size of the data parameter of the command is not the same as the data field

of the NV Index.

If all checks succeed, the TPM will merge the data.size octets of data.buffer value into the nvIndex→data

starting at nvIndex→data[offset]. If the NV memory is implemented with a technology that has endurance

limitations, the TPM shall check that the merged data is different from the current contents of the NV

Index and only perform a write to NV memory if they differ.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 2 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined or the NV Index is
cleared.

Part 3: Commands Trusted Platform Module Library

Page 374 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 220 — TPM2_NV_Write Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Write {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to write

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to write

UINT16 offset the octet offset into the NV Area

Table 221 — TPM2_NV_Write Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 375

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_Write]]

Part 3: Commands Trusted Platform Module Library

Page 376 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.8 TPM2_NV_Increment

 General Description

This command is used to increment the value in an NV Index that has the TPM_NT_COUNTER attribute.

The data value of the NV Index is incremented by one.

NOTE 1 The NV Index counter is an unsigned value.

If nvIndexType is not TPM_NT_COUNTER in the indicated NV Index, the TPM shall return

TPM_RC_ATTRIBUTES.

If TPMA_NV_WRITELOCKED is SET, the TPM shall return TPM_RC_NV_LOCKED.

If TPMA_NV_WRITTEN is CLEAR, it will be SET.

If TPMA_NV_ORDERLY is SET, and the difference between the volatile and non-volatile versions of this

field is greater than MAX_ORDERLY_COUNT, then the non-volatile version of the counter is updated.

NOTE 2 If a TPM implements TPMA_NV_ORDERLY and an Index is defined with TPMA_NV_ORDERLY and
TPM_NT_COUNTER both SET, then in the Event of a non-orderly shutdown, the non-volatile value
for the counter Index will be advanced by MAX_ORDERLY_COUNT at the next TPM2_Startup().

NOTE 3 An allowed implementation would keep a counter value in NV and a resettable counter in RAM. The
reported value of the NV Index would be the sum of the two values. When the RAM count increment s
past the maximum allowed value (MAX_ORDERLY_COUNT), the non-volatile version of the count is
updated with the sum of the values and the RAM count is reset to zero.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 377

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 222 — TPM2_NV_Increment Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Increment {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to increment

Auth Index: None

Table 223 — TPM2_NV_Increment Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 378 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_Increment]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 379

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.9 TPM2_NV_Extend

 General Description

This command extends a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace.

If nvIndexType is not TPM_NT_EXTEND, then the TPM shall return TPM_RC_ATTRIBUTES.

Proper write authorizations are required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 1 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined, unless the
TPMA_NV_CLEAR_STCLEAR attribute is SET and a TPM Reset or TPM Restart occurs.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 2 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

The data.buffer parameter may be larger than the defined size of the NV Index.

The Index will be updated by:

 nvIndex→datanew ≔ HnameAkg(nvIndex→dataold || data.buffer) (41)

where

nvIndex→datanew the value of the data field in the NV Index after the command

returns

HnameAkg() the hash algorithm indicated in nvIndex→nameAlg

nvIndex→dataold the value of the data field in the NV Index before the command is

called

data.buffer the data buffer of the command parameter

NOTE 3 If TPMA_NV_WRITTEN is CLEAR, then nvIndex→dataold is a Zero Digest.

Part 3: Commands Trusted Platform Module Library

Page 380 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 224 — TPM2_NV_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Extend {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to extend

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to extend

Table 225 — TPM2_NV_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 381

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_Extend]]

Part 3: Commands Trusted Platform Module Library

Page 382 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.10 TPM2_NV_SetBits

 General Description

This command is used to SET bits in an NV Index that was created as a bit field. Any number of bits from

0 to 64 may be SET. The contents of bits are ORed with the current contents of the NV Index.

If TPMA_NV_WRITTEN is not SET, then, for the purposes of this command, the NV Index is considered

to contain all zero bits and data is ORed with that value.

If TPM_NT_BITS is not SET, then the TPM shall return TPM_RC_ATTRIBUTES.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE TPMA_NV_WRITTEN will be SET even if no bits were SET.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 383

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 226 — TPM2_NV_SetBits Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_SetBits {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
NV Index of the area in which the bit is to be set

Auth Index: None

UINT64 bits the data to OR with the current contents

Table 227 — TPM2_NV_SetBits Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 384 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_SetBits]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 385

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.11 TPM2_NV_WriteLock

 General Description

If the TPMA_NV_WRITEDEFINE or TPMA_NV_WRITE_STCLEAR attributes of an NV location are SET,

then this command may be used to inhibit further writes of the NV Index.

Proper write authorization is required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

It is not an error if TPMA_NV_WRITELOCKED for the NV Index is already SET.

If neither TPMA_NV_WRITEDEFINE nor TPMA_NV_WRITE_STCLEAR of the NV Index is SET, then the

TPM shall return TPM_RC_ATTRIBUTES.

If the command is properly authorized and TPMA_NV_WRITE_STCLEAR or TPMA_NV_WRITEDEFINE

is SET, then the TPM shall SET TPMA_NV_WRITELOCKED for the NV Index.

TPMA_NV_WRITELOCKED will be clear on the next TPM2_Startup(TPM_SU_CLEAR) if either

TPMA_NV_WRITEDEFINE is CLEAR or TPMA_NV_WRITTEN is CLEAR.

Part 3: Commands Trusted Platform Module Library

Page 386 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 228 — TPM2_NV_WriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_WriteLock {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to lock

Auth Index: None

Table 229 — TPM2_NV_WriteLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 387

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_WriteLock]]

Part 3: Commands Trusted Platform Module Library

Page 388 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.12 TPM2_NV_GlobalWriteLock

 General Description

The command will SET TPMA_NV_WRITELOCKED for all indexes that have their

TPMA_NV_GLOBALLOCK attribute SET.

If an Index has both TPMA_NV_GLOBALLOCK and TPMA_NV_WRITEDEFINE SET, then this command

will permanently lock the NV Index for writing unless TPMA_NV_WRITTEN is CLEAR.

NOTE If an Index is defined with TPMA_NV_GLOBALLOCK SET, then the global lock does not apply until
the next time this command is executed.

This command requires either platformAuth/platformPolicy or ownerAuth/ownerPolicy.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 389

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 230 — TPM2_NV_GlobalWriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_GlobalWriteLock {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 231 — TPM2_NV_GlobalWriteLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 390 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_GlobalWriteLock]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 391

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.13 TPM2_NV_Read

 General Description

This command reads a value from an area in NV memory previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

NOTE 1 If authorization sessions are present, they are checked before the read-lock status of the NV Index
is checked.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UNINITIALIZED even if size is zero.

The data parameter in the response may be encrypted using parameter encryption.

Part 3: Commands Trusted Platform Module Library

Page 392 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 232 — TPM2_NV_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Read

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be read

Auth Index: None

UINT16 size number of octets to read

UINT16 offset

octet offset into the NV area

This value shall be less than or equal to the size of the
nvIndex data.

Table 233 — TPM2_NV_Read Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_NV_BUFFER data the data read

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 393

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_Read]]

Part 3: Commands Trusted Platform Module Library

Page 394 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.14 TPM2_NV_ReadLock

 General Description

If TPMA_NV_READ_STCLEAR is SET in an Index, then this command may be used to prevent further

reads of the NV Index until the next TPM2_Startup (TPM_SU_CLEAR).

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

NOTE Only an entity that may read an Index is allowed to lock the NV Index for read.

If the command is properly authorized and TPMA_NV_READ_STCLEAR of the NV Index is SET, then the

TPM shall SET TPMA_NV_READLOCKED for the NV Index. If TPMA_NV_READ_STCLEAR of the NV

Index is CLEAR, then the TPM shall return TPM_RC_ATTRIBUTES. TPMA_NV_READLOCKED will be

CLEAR by the next TPM2_Startup(TPM_SU_CLEAR).

It is not an error to use this command for an Index that is already locked for reading.

An Index that had not been written may be locked for reading.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 395

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 234 — TPM2_NV_ReadLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadLock {NV}

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be locked

Auth Index: None

Table 235 — TPM2_NV_ReadLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 396 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_ReadLock]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 397

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31.15 TPM2_NV_ChangeAuth

 General Description

This command allows the authorization secret for an NV Index to be changed.

If successful, the authorization secret (authValue) of the NV Index associated with nvIndex is changed.

This command requires that a policy session be used for authorization of nvIndex so that the ADMIN role

may be asserted and that commandCode in the policy session context shall be

TPM_CC_NV_ChangeAuth. That is, the policy must contain a specific authorization for changing the

authorization value of the referenced entity.

NOTE The reason for this restriction is to ensure that the administrative actions on nvIndex require explicit
approval while other commands may use policy that is not command-dependent.

The size of the newAuth value may be no larger than the size of the digest produced by the nameAlg of

the NV Index.

Since the NV Index authorization is changed before the response HMAC is calculated, the newAuth value

is used when generating the response HMAC key if required. See TPM 2.0 Part 4

ComputeResponseHMAC().

Part 3: Commands Trusted Platform Module Library

Page 398 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 236 — TPM2_NV_ChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ChangeAuth {NV}

TPMI_RH_NV_INDEX @nvIndex

handle of the entity

Auth Index: 1

Auth Role: ADMIN

TPM2B_AUTH newAuth new authorization value

Table 237 — TPM2_NV_ChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 399

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[NV_ChangeAuth]]

Part 3: Commands Trusted Platform Module Library

Page 400 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31.16 TPM2_NV_Certify

 General Description

The purpose of this command is to certify the contents of an NV Index or portion of an NV Index.

If the sign attribute is not SET in the key referenced by signHandle then the TPM shall return

TPM_RC_KEY.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UNINITIALIZED even if size is zero.

If proper authorization for reading the NV Index is provided, the portion of the NV Index selected by size

and offset are included in an attestation block and signed using the key indicated by signHandle. The

attestation includes size and offset so that the range of the data can be determined. It also includes the

NV index Name.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

If offset and size add to a value that is greater than the dataSize field of the NV Index referenced by

nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may return an error

(TPM_RC_VALUE) if it performs an additional check and determines that offset is greater than the

dataSize field of the NV Index, or if size is greater than MAX_NV_BUFFER_SIZE.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

If size and offset are both zero (0), then certifyInfo in the response will contain a

TPMS_NV_DIGEST_CERTIFY_INFO, otherwise, it will contain a TPMS_NV_CERTIFY_INFO. The digest

in the TPMS_NV_DIGEST_CERTIFY_INFO is created using the digest of the selected signing scheme.

NOTE 3 TPMS_NV_DIGEST_CERTIFY_INFO was added in revision 01.53. It permits TPM2_NV_Certify() to
certify NV Index contents that are larger than MAX_NV_BUFFER_SIZE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 401

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 238 — TPM2_NV_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Certify

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value
for the NV Index

Auth Index: 2

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
Index for the area to be certified

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

UINT16 size number of octets to certify

UINT16 offset

octet offset into the NV area

This value shall be less than or equal to the size of the
nvIndex data.

Table 239 — TPM2_NV_Certify Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Part 3: Commands Trusted Platform Module Library

Page 402 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[NV_Certify]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 403

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

32 Attached Components

32.1 Introduction

This section contains commands that allow interaction with an Attached Component (AC).

NOTE The Attached Component feature was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 404 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

32.2 TPM2_AC_GetCapability

 General Description

The purpose of this command is to obtain information about an Attached Component referenced by an

AC handle.

The returned list contains 0 or more values starting at the first tagged value that is equal to or greater

than capability.

The list returned in capabilitiesData contains tagged values that indicate the type of the value.

The TPM will return the lesser of a) the available values, b) the number requested in count, or c) the

number that will fit within the available response buffer. If additional values with higher capability numbers

are available, moreData will be YES.

NOTE TPM2_AC_GetCapability() was added in revision 01.40.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 405

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 240 — TPM2_AC_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_AC_GetCapability

TPMI_RH_AC ac
handle indicating the Attached Component

Auth Index: None

TPM_AT capability starting info type

UINT32 count maximum number of values to return

Table 241 — TPM2_AC_GetCapability Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPMI_YES_NO moreData flag to indicate whether there are more values

TPML_AC_CAPABILITIES capabilitiesData list of capabilities

Part 3: Commands Trusted Platform Module Library

Page 406 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[AC_GetCapability]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 407

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

32.3 TPM2_AC_Send

 General Description

The purpose of this command is to send (copy) a loaded object from the TPM to an Attached Component.

The Object referenced by sendObject is required to have fixedTpm, fixedParent, and

encryptedDuplication attributes CLEAR (TPM_RC_ATTRIBUTES). Authorization for sendObject is

required to be a policy session. The policySession→commandCode of the policy session context is

required to be TPM_CC_AC_Send (TPM_RC_POLICY_FAIL) to demonstrate that the policy is specific for

this command.

Authorization to send to the ac is provided by the session associated with authHandle.

If an NV Alias is not defined for ac, then authHandle is required to be either TPM_RH_OWNER or

TPM_RH_PLATFORM (TPM_RC_HANDLE).

If an NV Alias is defined for ac, then the authorization for authHandle is required to be compatible with the

write authorization attributes (TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE

TPMA_NV_AUTHWRITE, and TPMA_NV_POLICYWRITE) in the NV Alias

(TPM_RC_NV_AUTHORIZATION).

NOTE 1 If authorization for authHandle is the handle of an NV Index, then it is required to be the NV Alias
value for ac (TPM_RC_NV_AUTHORIZATION).

If authorization succeeds, the TPM will attempt to send acDataIn and relevant portions of sendObject to

the AC referenced by ac.

The TPM will return TPM_RC_SUCCESS if it succeeds in performing all the required authorizations and

validations. If problems occur in the process of sending the object from the TPM to the AC, the response

code will be TPM_RC_SUCCESS with the AC-dependent error reported in acDataOut.

NOTE 2 TPM2_AC_Send() was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 408 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 242 — TPM2_AC_Send Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_AC_Send

TPMI_DH_OBJECT @sendObject

handle of the object being sent to ac

Auth Index: 1

Auth Role: DUP

TPMI_RH_NV_AUTH @authHandle the handle indicating the source of the authorization
value

Auth Index: 2

Auth Role: USER

TPMI_RH_AC ac

handle indicating the Attached Component to which the
object will be sent

Auth Index: None

TPM2B_MAX_BUFFER acDataIn Optional non sensitive information related to the object

Table 243 — TPM2_AC_Send Response

Type Name Description

TPM_ST Tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_AC_OUTPUT acDataOut
May include AC specific data or information about an
error.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 409

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[AC_Send]]

Part 3: Commands Trusted Platform Module Library

Page 410 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

32.4 TPM2_Policy_AC_SendSelect

 General Description

This command allows qualification of the sending (copying) of an Object to an Attached Component (AC).

Qualification includes selection of the receiving AC and the method of authentication for the AC, and, in

certain circumstances, the Object to be sent may be specified.

If this command is not used in conjunction with TPM2_PolicyAuthorize(), then only the authHandleName

and acName are selected and includeObject should be CLEAR.

NOTE 1 In the absence of TPM2_PolicyAuthorize(), a policy session cannot create a policyDigest that
simultaneously equals the authPolicy in an Object and names that Object. This is because the
authPolicy recorded in an Object is unable to include the Name of the Object as the Name of an
Object depends on the Object’s authPolicy.

NOTE 2 An object’s authPolicy can incorporate the use of TPM2_PolicyAuthorize(). If the authorizing entity
for the TPM2_PolicyAuthorize() command specifies only the ac and the authHandle, then the
resultant policyDigest may be applied to the sending of any number of Objects. If the authorizing
entity for the TPM2_PolicyAuthorize() specifies also the Name of the Object to be sent, then the
resultant policyDigest applies only to that specific Object.

If either policySession→cpHash or policySession→nameHash has been previously
set, the TPM shall return TPM_RC_CPHASH. Otherwise, policySession→nameHash
will be set to:nameHash ≔ HpolicyAlg(objectName || authHandleName || acName)(42)

NOTE 3 A policy cannot specify both cpHash and nameHash because policySession→nameHash and
policySession→cpHash may share the same memory space.

If the command succeeds, policySession→policyDigest will be updated according to the setting of the

input parameter includeObject. If includeObject is SET, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_Policy_AC_SendSelect ||
objectName || authHandleName || acName || includeObject) (43)

but if includeObject is CLEAR, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_Policy_AC_SendSelect ||
authHandleName || acName || includeObject) (44)

NOTE 4 policySession→nameHash receives the digest of all Names so that the check performed in
TPM2_AC_Send() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_Policy_AC_SendSelect() is executed, it
is only valid for a specific triple of objectName, authHandleName, and acName.

If the command succeeds, policySession→commandCode is set to TPM_CC_AC_Send.

NOTE 5 The normal use of TPM2_Policy_AC_SendSelect() is before a TPM2_PolicyAuthorize(). An
authorized entity would approve a policyDigest that allows sending to a specific Attached
Component. The authorizing entity may want to limit the authorization so that the approval allows
only a specific Object to be sent to the Attached Component. In that case, the authorizing entity
would approve the policyDigest of equation (44).

NOTE 6 TPM2_Policy_AC_SendSelect() was added in revision 01.40.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 411

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 244 — TPM2_Policy_AC_SendSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Policy_AC_SendSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the Object to be sent

TPM2B_NAME authHandleName
the Name associated with authHandle used in the
TPM2_AC_Send() command

TPM2B_NAME acName
the Name of the Attached Component to which the
Object will be sent

TPMI_YES_NO includeObject
if SET, objectName will be included in the value in
policySession→policyDigest

Table 245 — TPM2_Policy_AC_SendSelect Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 412 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Policy_AC_SendSelect]]

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 413

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

33 Authenticated Countdown Timer

33.1 Introduction

This section contains commands that allow interaction with an Authenticated Countdown Timer (ACT).

NOTE The Authenticated Countdown Timer was added in revision 01.56.

33.2 TPM2_ACT_SetTimeout

 General Description

This command is used to set the time remaining before an Authenticated Countdown Timer (ACT)

expires.

This command sets TPMS_ACT_DATA.timeout (ACT Timeout) to startTimeout. The startTimeout value is

an integer number of seconds and may be zero. The startTimeout parameter may be greater, equal, or

less than the current value of ACT Timeout.

When ACT Timeout is non-zero, it will count down, once per second until it reaches zero, at which time

the signaled attribute of the TPMA_ACT associated with actHandle is SET.

When ACT Timeout is zero and the signaled attribute is SET, writing a startTimeout of FF FF FF FF16 will

clear signaled and stop the counting.

There are four states for ACT Timeout and startTimeout. The signaled attribute will be set as follows:

1) If ACT Timeout is zero and startTimeout is non-zero, then signaled will be CLEAR.

2) If ACT Timeout is non-zero and startTimeout is non-zero, then signaled will be CLEAR.

3) If ACT Timeout is zero and startTimeout is zero, then signaled will be unchanged.

4) If ACT Timeout is non-zero and startTimeout is zero, then signaled will be SET.

NOTE 1 The ACT signals on a transition from non-zero to zero. The transition can occur either due to
TPM2_ACT_SetTimeout() or a decrement. The effect of signaled is platform dependent.

NOTE 2 It may take up to one second until ACT Timeout will be set and signaled will be CLEAR or SET by
TPM2_ACT_SetTimeout() or TPM2_Startup(STATE). This allows the counting and signaling to take
place synchronously with the hardware clock tick.

NOTE 3 TPM2_ACT_SetTimeout() was added in revision 01.56.

Part 3: Commands Trusted Platform Module Library

Page 414 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Command and Response

Table 246 — TPM2_ACT_SetTimeout Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ACT_SetTimeout

TPMI_RH_ACT @actHandle

Handle of the selected ACT

Auth Index: 1

Auth Role: USER

UINT32 startTimeout the start timeout value for the ACT in seconds

Table 247 — TPM2_ACT_SetTimeout Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 415

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Detailed Actions

[[ACT_SetTimeout]]

Part 3: Commands Trusted Platform Module Library

Page 416 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

34 Vendor Specific

34.1 Introduction

This section contains commands that are vendor specific but made public in order to prevent proliferation.

This specification does define TPM2_Vendor_TCG_Test() in order to have at least one command that

can be used to ensure the proper operation of the command dispatch code when processing a vendor-

specific command.

34.2 TPM2_Vendor_TCG_Test

 General Description

This is a placeholder to allow testing of the dispatch code.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Published Page 417

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Command and Response

Table 248 — TPM2_Vendor_TCG_Test Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Vendor_TCG_Test

TPM2B_DATA inputData dummy data

Table 249 — TPM2_Vendor_TCG_Test Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode TPM_RC_SUCCESS

TPM2B_DATA outputData dummy data

Part 3: Commands Trusted Platform Module Library

Page 418 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

 Detailed Actions

[[Vendor_TCG_Test]]

TCG

Trusted Platform Module Library

Part 4: Supporting Routines

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 4: Supporting Routines

Page ii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

CONTENTS

1 Scope ... 1

2 Terms and definitions ... 1

3 Symbols and abbreviated terms .. 1

4 Automation ... 1

4.1 Configuration Parser ... 1
4.2 Structure Parser .. 2

4.2.1 Introduction .. 2
4.2.2 Unmarshaling Code Prototype .. 2

4.2.3 Marshaling Code Function Prototypes .. 3

4.3 Part 3 Parsing ... 4
4.4 Function Prototypes .. 5
4.5 Portability .. 6

5 Header Files ... 7

5.1 Introduction ... 7
5.2 BaseTypes.h ... 7
5.3 Capabilities.h .. 8
5.4 CommandAttributeData.h .. 9
5.5 CommandAttributes.h .. 23
5.6 CommandDispatchData.h .. 24
5.7 Commands.h ... 93
5.8 CompilerDependencies.h .. 100
5.9 Global.h .. 102

5.9.1 Description ... 102
5.9.2 Includes ... 102
5.9.3 Loaded Object Structures ... 103

5.9.4 AUTH_DUP Types .. 105
5.9.5 Active Session Context ... 105

5.9.6 PCR ... 107

Trusted Platform Module Library Part 4: Supporting Routines

Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.9.7 STARTUP_TYPE .. 108
5.9.8 NV .. 108

5.9.9 COMMIT_INDEX_MASK ... 109
5.9.10 RAM Global Values .. 109

5.9.11 Global Macro Definitions .. 118
5.9.12 From CryptTest.c .. 120

5.10 GpMacros.h ... 125

5.10.1 Introduction .. 125
5.10.2 For Self-test ... 125
5.10.3 For Failures .. 125
5.10.4 Derived from Vendor-specific values .. 126
5.10.5 Compile-time Checks ... 126

5.11 InternalRoutines.h ... 131
5.12 LibSupport.h .. 133
5.13 MinMax.h .. 133
5.14 NV.h .. 134

5.14.1 Index Type Definitions .. 134
5.14.2 Attribute Macros ... 134
5.14.3 Orderly RAM Values ... 135

5.15 TPMB.h ... 137
5.16 Tpm.h .. 138
5.17 TpmBuildSwitches.h .. 139
5.18 TpmError.h .. 145
5.19 TpmTypes.h .. 146
5.20 VendorString.h .. 182
5.21 swap.h .. 183
5.22 ACT.h .. 185

6 Main ... 188

6.1 Introduction ... 188
6.2 ExecCommand.c ... 188

6.2.1 Introduction .. 188
6.2.2 Includes ... 188
6.2.3 ExecuteCommand() .. 188

6.3 CommandDispatcher.c .. 194

6.3.1 Introduction .. 194

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.4 SessionProcess.c .. 202

6.4.1 Introduction .. 202
6.4.2 Includes and Data Definitions ... 202
6.4.3 Authorization Support Functions ... 202

6.4.4 Session Parsing Functions ... 209

6.4.5 Response Session Processing ... 229

7 Command Support Functions .. 237

7.1 Introduction ... 237
7.2 Attestation Command Support (Attest_spt.c) ... 237

7.2.1 Includes ... 237
7.2.2 Functions ... 237

7.3 Context Management Command Support (Context_spt.c) .. 240

7.3.1 Includes ... 240

Trusted Platform Module Library Part 4: Supporting Routines

Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.3.2 Functions ... 240

7.4 Policy Command Support (Policy_spt.c) .. 243

7.4.1 Includes ... 243
7.4.2 Functions ... 243

7.5 NV Command Support (NV_spt.c) ... 248

7.5.1 Includes ... 248
7.5.2 Functions ... 248

7.6 Object Command Support (Object_spt.c) ... 251

7.6.1 Includes ... 251
7.6.2 Local Functions .. 251

7.6.3 Public Functions ... 255

7.7 Encrypt Decrypt Support (EncryptDecrypt_spt.c) ... 277
7.8 ACT Support (ACT_spt.c) .. 279

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page vii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.8.1 Introduction .. 279
7.8.2 Includes ... 279
7.8.3 Functions ... 279

8 Subsystem.. 284

8.1 CommandAudit.c ... 284

8.1.1 Introduction .. 284
8.1.2 Includes ... 284
8.1.3 Functions ... 284

8.2 DA.c .. 289

8.2.1 Introduction .. 289
8.2.2 Includes and Data Definitions ... 289
8.2.3 Functions ... 289

8.3 Hierarchy.c .. 293

8.3.1 Introduction .. 293
8.3.2 Includes ... 293
8.3.3 Functions ... 293

8.4 NvDynamic.c ... 297

8.4.1 Introduction .. 297
8.4.2 Includes, Defines and Data Definitions ... 297
8.4.3 Local Functions .. 297

Trusted Platform Module Library Part 4: Supporting Routines

Page viii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.4.4 RAM-based NV Index Data Access Functions ... 303

8.4.5 Externally Accessible Functions ... 309

8.4.6 NV Max Counter ... 328

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page ix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.5 NvReserved.c .. 330

8.5.1 Introduction .. 330
8.5.2 Includes, Defines .. 330
8.5.3 Functions ... 330

8.6 Object.c... 334

8.6.1 Introduction .. 334
8.6.2 Includes and Data Definitions ... 334
8.6.3 Functions ... 334

8.7 PCR.c ... 351

Trusted Platform Module Library Part 4: Supporting Routines

Page x TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.7.1 Introduction .. 351
8.7.2 Includes, Defines, and Data Definitions .. 351

8.8 PP.c .. 373

8.8.1 Introduction .. 373
8.8.2 Includes ... 373
8.8.3 Functions ... 373

8.9 Session.c .. 376

8.9.1 Introduction .. 376
8.9.2 Includes, Defines, and Local Variables ... 377
8.9.3 File Scope Function -- ContextIdSetOldest() ... 377
8.9.4 Startup Function -- SessionStartup() .. 378
8.9.5 Access Functions ... 378

8.9.6 Utility Functions .. 381

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.10 Time.c ... 393

8.10.1 Introduction .. 393
8.10.2 Includes ... 393
8.10.3 Functions ... 393

9 Support .. 398

9.1 AlgorithmCap.c .. 398

9.1.1 Description ... 398
9.1.2 Includes and Defines .. 398
9.1.3 AlgorithmCapGetImplemented() .. 400
9.1.4 AlgorithmGetImplementedVector() .. 401

9.2 Bits.c ... 402

9.2.1 Introduction .. 402
9.2.2 Includes ... 402
9.2.3 Functions ... 402

9.3 CommandCodeAttributes.c .. 404

9.3.1 Introduction .. 404
9.3.2 Includes and Defines .. 404
9.3.3 Command Attribute Functions .. 404

Trusted Platform Module Library Part 4: Supporting Routines

Page xii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.4 Entity.c .. 414

9.4.1 Description ... 414
9.4.2 Includes ... 414
9.4.3 Functions ... 414

9.5 Global.c... 422

9.5.1 Description ... 422
9.5.2 Defines and Includes .. 422

9.6 Handle.c .. 423

9.6.1 Description ... 423
9.6.2 Includes ... 423
9.6.3 Functions ... 423

9.7 IoBuffers.c ... 426

9.7.1 Includes and Data Definitions ... 426
9.7.2 Buffers and Functions .. 426

9.8 Locality.c ... 428

9.8.1 Includes ... 428
9.8.2 LocalityGetAttributes() .. 428

9.9 Manufacture.c ... 429

9.9.1 Description ... 429
9.9.2 Includes and Data Definitions ... 429
9.9.3 Functions ... 429

9.10 Marshal.c .. 432

9.10.1 Introduction .. 432
9.10.2 Unmarshal and Marshal a Value ... 432
9.10.3 Unmarshal and Marshal a Union ... 433
9.10.4 Unmarshal and Marshal a Structure .. 435
9.10.5 Unmarshal and Marshal an Array ... 436

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.6 TPM2B Handling .. 438
9.10.7 Table Marshal Headers .. 438

9.10.8 Table Marshal Source .. 518

9.11 MathOnByteBuffers.c .. 557

9.11.1 Introduction .. 557
9.11.2 Functions ... 557

9.12 Memory.c .. 562

9.12.1 Description ... 562
9.12.2 Includes and Data Definitions ... 562
9.12.3 Functions ... 562

9.13 Power.c ... 567

9.13.1 Description ... 567
9.13.2 Includes and Data Definitions ... 567
9.13.3 Functions ... 567

9.14 PropertyCap.c ... 569

9.14.1 Description ... 569
9.14.2 Includes ... 569
9.14.3 Functions ... 569

9.15 Response.c ... 578

Trusted Platform Module Library Part 4: Supporting Routines

Page xiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.15.1 Description ... 578
9.15.2 Includes and Defines .. 578
9.15.3 BuildResponseHeader() ... 578

9.16 ResponseCodeProcessing.c .. 579

9.16.1 Description ... 579
9.16.2 Includes and Defines .. 579
9.16.3 RcSafeAddToResult() ... 579

9.17 TpmFail.c .. 580

9.17.1 Includes, Defines, and Types ... 580
9.17.2 Typedefs .. 580
9.17.3 Local Functions .. 581

9.17.4 Public Functions ... 582

10 Cryptographic Functions ... 587

10.1 Headers .. 587

10.1.1 BnValues.h ... 587

10.1.2 CryptEcc.h ... 592

10.1.3 CryptHash.h ... 593

10.1.4 CryptRand.h ... 598

10.1.5 CryptRsa.h ... 601
10.1.6 CryptTest.h .. 602
10.1.7 HashTestData.h ... 603
10.1.8 KdfTestData.h .. 605
10.1.9 RsaTestData.h ... 606
10.1.10 SelfTest.h ... 612

10.1.11 SupportLibraryFunctionPrototypes_fp.h .. 613

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xv

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.12 SymmetricTestData.h ... 617
10.1.13 SymmetricTest.h .. 620

10.1.14 EccTestData.h .. 621
10.1.15 CryptSym.h .. 624

10.1.16 OIDs.h .. 626
10.1.17 PRNG_TestVectors.h ... 629
10.1.18 TpmAsn1.h ... 630

10.1.19 X509.h ... 631

10.1.20 TpmAlgorithmDefines.h .. 633

10.2 Source .. 640

10.2.1 AlgorithmTests.c .. 640

Trusted Platform Module Library Part 4: Supporting Routines

Page xvi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.2 BnConvert.c ... 656

10.2.3 BnMath.c .. 661

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xvii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.4 BnMemory.c ... 671

10.2.5 CryptCmac.c .. 674

10.2.6 CryptUtil.c .. 677

Trusted Platform Module Library Part 4: Supporting Routines

Page xviii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.7 CryptSelfTest.c... 707

10.2.8 CryptEccData.c .. 711
10.2.9 CryptDes.c ... 721

10.2.10 CryptEccKeyExchange.c .. 724

10.2.11 CryptEccMain.c .. 730

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xix

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.12 CryptEccSignature.c ... 744

10.2.13 CryptHash.c ... 759

Trusted Platform Module Library Part 4: Supporting Routines

Page xx TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.14 CryptPrime.c .. 775

10.2.15 CryptPrimeSieve.c .. 781

10.2.16 CryptRand.c ... 790

10.2.17 CryptRsa.c ... 806

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xxi

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.18 CryptSmac.c ... 830

10.2.19 CryptSym.c... 832

10.2.20 PrimeData.c ... 840
10.2.21 RsaKeyCache.c .. 847

Trusted Platform Module Library Part 4: Supporting Routines

Page xxii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.22 Ticket.c .. 851

10.2.23 TpmAsn1.c ... 855

10.2.24 X509_ECC.c ... 864

10.2.25 X509_RSA.c ... 867

10.2.26 X509_spt.c ... 871

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xxiii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.27 AC_spt.c .. 876

Annex A (informative) Implementation Dependent .. 879

A.1 Introduction ... 879
A.2 TpmProfile.h .. 879
A.3 TpmSizeChecks.c.. 890

A.3.1. Includes, Defines, and Types ... 890

Annex B (informative) Library-Specific .. 894

B.1 Introduction ... 894
B.2 OpenSSL-Specific Files ... 895

B.2.1. Introduction .. 895
B.2.2. Header Files ... 895

B.2.3. Source Files ... 902

Trusted Platform Module Library Part 4: Supporting Routines

Page xxiv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex C (informative) Simulation Environment ... 917

C.1 Introduction ... 917
C.2 Cancel.c .. 917

C.2.1. Description ... 917
C.2.2. Includes, Typedefs, Structures, and Defines ... 917
C.2.3. Functions ... 917

C.3 Clock.c .. 919

C.3.1. Description ... 919
C.3.2. Includes and Data Definitions ... 919
C.3.3. Simulator Functions .. 919

C.3.4. Functions Used by TPM ... 920

C.4 Entropy.c ... 924

C.4.1. Includes and Local Values .. 924

C.5 LocalityPlat.c ... 927

C.5.1. Includes ... 927
C.5.2. Functions ... 927

C.6 NVMem.c .. 928

C.6.1. Description ... 928
C.6.2. Includes and Local ... 928

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xxv

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.7 PowerPlat.c ... 935

C.7.1. Includes and Function Prototypes ... 935
C.7.2. Functions ... 935

C.8 PlatformData.h .. 937
C.9 PlatformData.c .. 939

C.9.1. Description ... 939
C.9.2. Includes ... 939

C.10 PPPlat.c .. 940

C.10.1. Description ... 940
C.10.2. Includes ... 940
C.10.3. Functions ... 940

C.11 RunCommand.c ... 941

C.11.1. Introduction .. 941
C.11.2. Includes and locals ... 941

C.12 Unique.c .. 942

C.12.1. Introduction .. 942
C.12.2. Includes ... 942

C.13 DebugHelpers.c... 943

C.13.1. Description ... 943
C.13.2. Includes and Local ... 943

C.14 Platform.h ... 945
C.15 PlatformACT.h ... 946
C.16 PlatformACT.c ... 949

C.16.1. Includes ... 949
C.16.2. Functions ... 949

Trusted Platform Module Library Part 4: Supporting Routines

Page xxvi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.17 PlatformClock.h ... 955

Annex D (informative) Remote Procedure Interface .. 956

D.1 Introduction ... 956
D.2 TpmTcpProtocol.h ... 957

D.2.1. Introduction .. 957
D.2.2. Typedefs and Defines ... 957
D.2.3. TPM Commands ... 957
D.2.4. Enumerations and Structures ... 957

D.3 TcpServer.c ... 959

D.3.1. Description ... 959
D.3.2. Includes, Locals, Defines and Function Prototypes ... 959

D.4 TPMCmdp.c .. 971

D.4.1. Description ... 971
D.4.2. Includes and Data Definitions ... 971

D.5 TPMCmds.c... 977

D.5.1. Description ... 977
D.5.2. Includes, Defines, Data Definitions, and Function Prototypes 977

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page xxvii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Trusted Platform Module Library
Part 4: Supporting Routines

1 Scope

This part contains C code that describes the algorithms and methods used by the command code in TPM

2.0 Part 3. The code in this document augments TPM 2.0 Part 2 and TPM 2.0 Part 3 to provide a

complete description of a TPM, including the supporting framework for the code that performs the

command actions.

Any TPM 2.0 Part 4 code may be replaced by code that provides similar results when interfacing to the

action code in TPM 2.0 Part 3. The behavior of code in this document that is not included in an annex is

normative, as observed at the interfaces with TPM 2.0 Part 3 code. Code in an annex is provided for

completeness, that is, to allow a full implementation of the specification from the provided code.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,

firmware update), it is not possible to provide a compliant implementation. In those cases, any

implementation provided by the vendor that meets the general description of the function provided in TPM

2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this

specification require that a TPM meet any particular level of conformance.

2 Terms and definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

4 Automation

TPM 2.0 Part 2 and 3 are constructed so that they can be processed by an automated parser. For

example, TPM 2.0 Part 2 can be processed to generate header file contents such as structures, typedefs,

and enums. TPM 2.0 Part 3 can be processed to generate command and response marshaling and

unmarshaling code.

The automated processor is not provided by the TCG. It was used to generate the Microsoft Visual Studio

TPM simulator files. These files are not specification reference code, but rather design examples.

The automation produces TPM_Types.h, a header representing TPM 2.0 Part 2. It also produces, for

each major clause of Part 4, a header of the form _fp.h with the function prototypes.

EXAMPLE The header file for SessionProcess.c is SessionProcess_fp.h.

4.1 Configuration Parser

The TPM configuration is largely defined by TpmProfiles.h. This file may be edited in order to change the

algorithms and commands supported by a TPM implementation.

A parser exists to process a Word document that defines the TPM configuration. This parser is used to

create TpmProfiles.h.

Trusted Platform Module Library Part 4: Supporting Routines

Page 2 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.2 Structure Parser

4.2.1 Introduction

The program that processes the tables in TPM 2.0 Part 2 is called "The TPM 2.0 Part 2 Structure Parser."

NOTE A Perl script was used to parse the tables in TPM 2.0 Part 2 to produce the header files and unmarshaling code
in for the reference implementation.

The TPM 2.0 Part 2 Structure Parser takes as input the files produced by the TPM 2.0 Part 2

Configuration Parser and the same TPM 2.0 Part 2 specification that was used as input to the TPM 2.0

Part 2 Configuration Parser. The TPM 2.0 Part 2 Structure Parser will generate all of the C structure

constant definitions that are required by the TPM interface. Additionally, the parser will generate

unmarshaling code for all structures passed to the TPM, and marshaling code for structures passed from

the TPM.

The unmarshaling code produced by the parser uses the prototypes defined below. The unmarshaling

code will perform validations of the data to ensure that it is compliant with the limitations on the data

imposed by the structure definition and use the response code provided in the table if not.

EXAMPLE: The definition for a TPMI_RH_PROVISION indicates that the primitive data type is a TPM_HANDLE and the
only allowed values are TPM_RH_OWNER and TPM_RH_PLATFORM. The definition also indicates that the
TPM shall indicate TPM_RC_HANDLE if the input value is not none of these values. The unmarshaling code
will validate that the input value has one of those allowed values and return TPM_RC_HANDLE if not.

The sections below describe the function prototypes for the marshaling and unmarshaling code that is

automatically generated by the TPM 2.0 Part 2 Structure Parser. These prototypes are described here as

the unmarshaling and marshaling of various types occurs in places other than when the command is

being parsed or the response is being built. The prototypes and the description of the interface are

intended to aid in the comprehension of the code that uses these auto-generated routines.

4.2.2 Unmarshaling Code Prototype

4.2.2.1 Simple Types and Structures

The general form for the unmarshaling code for a simple type or a structure is:

TPM_RC TYPE_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size);

Where:

TYPE name of the data type or structure

*target location in the TPM memory into which the data from **buffer is placed

**buffer location in input buffer containing the most significant octet (MSO) of

*target

*size number of octets remaining in **buffer

When the data is successfully unmarshaled, the called routine will return TPM_RC_SUCCESS.

Otherwise, it will return a Format-One response code (see TPM 2.0 Part 2).

If the data is successfully unmarshaled, *buffer is advanced point to the first octet of the next parameter

in the input buffer and size is reduced by the number of octets removed from the buffer.

When the data type is a simple type, the parser will generate code that will unmarshal the underlying type

and then perform checks on the type as indicated by the type definition.

When the data type is a structure, the parser will generate code that unmarshals each of the structure

elements in turn and performs any additional parameter checks as indicated by the data type.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.2.2.2 Union Types

When a union is defined, an extra parameter is defined for the unmarshaling code. This parameter is the

selector for the type. The unmarshaling code for the union will unmarshal the type indicated by the

selector.

The function prototype for a union has the form:

TPM_RC TYPE_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size, UINT32 selector);

where:

TYPE name of the union type or structure

*target location in the TPM memory into which the data from **buffer is placed

**buffer location in input buffer containing the most significant octet (MSO) of

*target

*size number of octets remaining in **buffer

selector union selector that determines what will be unmarshaled into *target

4.2.2.3 Null Types

In some cases, the structure definition allows an optional “null” value. The “null” value allows the use of

the same C type for the entity even though it does not always have the same members.

For example, the TPMI_ALG_HASH data type is used in many places. In some cases, TPM_ALG_NULL

is permitted and in some cases it is not. If two different data types had to be defined, the interfaces and

code would become more complex because of the number of cast operations that would be necessary.

Rather than encumber the code, the “null” value is defined and the unmarshaling code is given a flag to

indicate if this instance of the type accepts the “null” parameter or not. When the data type has a “null”

value, the function prototype is

TPM_RC TYPE_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size, BOOL flag);

The parser detects when the type allows a “null” value and will always include flag in any call to

unmarshal that type. flag TRUE indicates that null is accepted.

4.2.2.4 Arrays

Any data type may be included in an array. The function prototype use to unmarshal an array for a TYPE is

TPM_RC TYPE_Array_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size,INT32 count);

The generated code for an array uses a count-limited loop within which it calls the unmarshaling code for

TYPE.

4.2.3 Marshaling Code Function Prototypes

4.2.3.1 Simple Types and Structures

The general form for the marshaling code for a simple type or a structure is:

 UINT16 TYPE_Marshal(TYPE *source, BYTE **buffer, INT32 *size);

Where:

Trusted Platform Module Library Part 4: Supporting Routines

Page 4 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

TYPE name of the data type or structure

*source location in the TPM memory containing the value that is to be marshaled

in to the designated buffer

**buffer location in the output buffer where the first octet of the TYPE is to be

placed

*size number of octets remaining in **buffer.

If buffer is a NULL pointer, then no data is marshaled, but the routine will compute and return the size

of the memory required to marshal the indicated type. *size is not changed.

If buffer is not a NULL pointer, data is marshaled, *buffer is advanced to point to the first octet of the

next location in the output buffer, and the called routine will return the number of octets marshaled into
**buffer. This occurs even if size is a NULL pointer. If size is a not NULL pointer *size is reduced by

the number of octets placed in the buffer.

When the data type is a simple type, the parser will generate code that will marshal the underlying type.

The presumption is that the TPM internal structures are consistent and correct so the marshaling code

does not validate that the data placed in the buffer has a permissible value. The presumption is also that
the size is sufficient for the source being marshaled.

When the data type is a structure, the parser will generate code that marshals each of the structure

elements in turn.

4.2.3.2 Union Types

An extra parameter is defined for the marshaling function of a union. This parameter is the selector for the

type. The marshaling code for the union will marshal the type indicated by the selector.

The function prototype for a union has the form:

UINT16 TYPE_Marshal(TYPE *source, BYTE **buffer, INT32 *size, UINT32 selector);

The parameters have a similar meaning as those in 4.2.2.2 but the data movement is from source to

buffer.

4.2.3.3 Arrays

Any type may be included in an array. The function prototype use to unmarshal an array is:

UINT16 TYPE_Array_Marshal(TYPE *source, BYTE **buffer, INT32 *size, INT32 count);

4.2.3.4 The generated code for an array uses a count-limited loop within which it calls

the marshaling code for TYPE.Table-driven Marshaling

The most recent versions of the TPM code includes the option to use table-driven marshaling rather that

the procedural marshaling described in previous clauses in 4.2.2. The structure and processing of this

code is complex and is provided in the code.

4.3 Part 3 Parsing

The Command / Response tables in Part 3 of this specification are processed by scripts to produce the

command-specific data structures used by functions in this TPM 2.0 Part 4. They are:

• CommandAttributeData.h -- This file contains the command attributes reported by
TPM2_GetCapability.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

• CommandAttributes.h – This file contains the definition of command attributes that are extracted by
the parsing code. The file mainly exists to ensure that the parsing code and the function code are
using the same attributes.

• CommandDispatchData.h – This file contains the data definitions for the table driven version of the
command dispatcher.

Part 3 parsing also produces special function prototype files as described in 4.4.

4.4 Function Prototypes

For functions that have entry definitions not defined by Part 3 tables. a script is used to extracts function

prototypes from the code. For each .c file that is not in Part 3, a file with the same name is created with a

suffix of _fp.h. For example, the function prototypes for Create.c will be placed in a file called Create_fp.h.

The _fp.h is added because some files have two types of associated headers: the one containing the

function prototypes for the file and another containing definitions that are specific to that file.

In some cases, a function will be replaced by a macro. The macro is defined in the .c file and extracted by

the function prototype processor. A special comment tag (“//%”) is used to indicate that the line is to be

included in the function prototype file. If the “//%” tag occurs at the start of the line, it is deleted. If it occurs

later in the line, it is preserved. Removing the “//%/ at the start of the line allows the macro to be placed in

the .c file with the tag as a prefix, and then show up in the _fp.h file as the actual macro. This allows the

code that includes that function prototype code to use the appropriate macro.

For files that that contain the command actions, a special _fp.h file is created from the tables in Part 3.

These files contain:

• the definition of the input and output structure of the function;

• definition of command-specific return code modifiers (parameter identifiers); and

• the function prototype for the command action function.

Create_fp.h (shown below) is prototypical of the command _fp.h files.

1 #if CC_Create // Command must be enabled

2 #ifndef _Create_FP_H_

3 #define _Create_FP_H_

Input structure definition

4 typedef struct {

5 TPMI_DH_OBJECT parentHandle;

6 TPM2B_SENSITIVE_CREATE inSensitive;

7 TPM2B_PUBLIC inPublic;

8 TPM2B_DATA outsideInfo;

9 TPML_PCR_SELECTION creationPCR;

10 } Create_In;

Output structure definition

11 typedef struct {

12 TPM2B_PRIVATE outPrivate;

13 TPM2B_PUBLIC outPublic;

14 TPM2B_CREATION_DATA creationData;

15 TPM2B_DIGEST creationHash;

16 TPMT_TK_CREATION creationTicket;

17 } Create_Out;

Response code modifiers

18 #define RC_Create_parentHandle (TPM_RC_H + TPM_RC_1)

Trusted Platform Module Library Part 4: Supporting Routines

Page 6 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

19 #define RC_Create_inSensitive (TPM_RC_P + TPM_RC_1)

20 #define RC_Create_inPublic (TPM_RC_P + TPM_RC_2)

21 #define RC_Create_outsideInfo (TPM_RC_P + TPM_RC_3)

22 #define RC_Create_creationPCR (TPM_RC_P + TPM_RC_4)

Function prototype

23 TPM_RC

24 TPM2_Create(

25 Create_In *in,

26 Create_Out *out

27);

28 #endif // _Create_FP_H_

29 #endif // CC_Create

4.5 Portability

Where reasonable, the code is written to be portable. There are a few known cases where the code is not

portable. Specifically, the handling of bit fields will not always be portable. The bit fields are marshaled

and unmarshaled as a simple element of the underlying type. For example, a TPMA_SESSION is defined

as a bit field in an octet (BYTE). When sent on the interface a TPMA_SESSION will occupy one octet.

When unmarshaled, it is unmarshaled as a UINT8. The ramifications of this are that a TPMA_SESSION

will occupy the 0th octet of the structure in which it is placed regardless of the size of the structure.

Many compilers will pad a bit field to some "natural" size for the processor, often 4 octets, meaning that
sizeof(TPMA_SESSION) would return 4 rather than 1 (the canonical size of a TPMA_SESSION).

For a little endian machine, padding of bit fields should have little consequence since the 0 th octet always

contains the 0th bit of the structure no matter how large the structure. However, for a big endian machine,

the 0th bit will be in the highest numbered octet. When unmarshaling a TPMA_SESSION, the current

unmarshaling code will place the input octet at the 0th octet of the TPMA_SESSION. Since the 0th octet is

most significant octet, this has the effect of shifting all the session attribute bits left by 24 places.

As a consequence, someone implementing on a big endian machine should do one of two things:

 allocate all structures as packed to a byte boundary (this may not be possible if the processor does

not handle unaligned accesses); or

 modify the code that manipulates bit fields that are not defined as being the alignment size of the

system.

For many RISC processors, option #2 would be the only choice. This is may not be a terribly daunting

task since only two attribute structures are not 32-bits (TPMA_SESSION and TPMA_LOCALITY).

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5 Header Files

5.1 Introduction

The files in this section are used to define values that are used in multiple parts of the specification and

are not confined to a single module.

5.2 BaseTypes.h

1 #ifndef _BASE_TYPES_H_

2 #define _BASE_TYPES_H_

NULL definition

3 #ifndef NULL

4 #define NULL (0)

5 #endif

6 typedef uint8_t UINT8;

7 typedef uint8_t BYTE;

8 typedef int8_t INT8;

9 typedef int BOOL;

10 typedef uint16_t UINT16;

11 typedef int16_t INT16;

12 typedef uint32_t UINT32;

13 typedef int32_t INT32;

14 typedef uint64_t UINT64;

15 typedef int64_t INT64;

16 #endif // _BASE_TYPES_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 8 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.3 Capabilities.h

This file contains defines for the number of capability values that will fit into the largest data buffer.

These defines are used in various function in the "support" and the "subsystem" code groups. A module

that supports a type that is returned by a capability will have a function that returns the capabilities of the

type.

EXAMPLE PCR.c contains PCRCapGetHandles() and PCRCapGetProperties().

1 #ifndef _CAPABILITIES_H

2 #define _CAPABILITIES_H

3 #define MAX_CAP_DATA (MAX_CAP_BUFFER - sizeof(TPM_CAP)-sizeof(UINT32))

4 #define MAX_CAP_ALGS (MAX_CAP_DATA / sizeof(TPMS_ALG_PROPERTY))

5 #define MAX_CAP_HANDLES (MAX_CAP_DATA / sizeof(TPM_HANDLE))

6 #define MAX_CAP_CC (MAX_CAP_DATA / sizeof(TPM_CC))

7 #define MAX_TPM_PROPERTIES (MAX_CAP_DATA / sizeof(TPMS_TAGGED_PROPERTY))

8 #define MAX_PCR_PROPERTIES (MAX_CAP_DATA / sizeof(TPMS_TAGGED_PCR_SELECT))

9 #define MAX_ECC_CURVES (MAX_CAP_DATA / sizeof(TPM_ECC_CURVE))

10 #define MAX_TAGGED_POLICIES (MAX_CAP_DATA / sizeof(TPMS_TAGGED_POLICY))

11 #define MAX_ACT_DATA (MAX_CAP_DATA / sizeof(TPMS_ACT_DATA))

12 #define MAX_AC_CAPABILITIES (MAX_CAP_DATA / sizeof(TPMS_AC_OUTPUT))

13 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.4 CommandAttributeData.h

This file should only be included by CommandCodeAttibutes.c

1 #ifdef _COMMAND_CODE_ATTRIBUTES_

2 #include "CommandAttributes.h"

3 #if COMPRESSED_LISTS

4 # define PAD_LIST 0

5 #else

6 # define PAD_LIST 1

7 #endif

This is the command code attribute array for GetCapability(). Both this array and s_commandAttributes

provides command code attributes, but tuned for different purpose

8 const TPMA_CC s_ccAttr [] = {

9 #if (PAD_LIST || CC_NV_UndefineSpaceSpecial)

10 TPMA_CC_INITIALIZER(0x011F, 0, 1, 0, 0, 2, 0, 0, 0),

11 #endif

12 #if (PAD_LIST || CC_EvictControl)

13 TPMA_CC_INITIALIZER(0x0120, 0, 1, 0, 0, 2, 0, 0, 0),

14 #endif

15 #if (PAD_LIST || CC_HierarchyControl)

16 TPMA_CC_INITIALIZER(0x0121, 0, 1, 1, 0, 1, 0, 0, 0),

17 #endif

18 #if (PAD_LIST || CC_NV_UndefineSpace)

19 TPMA_CC_INITIALIZER(0x0122, 0, 1, 0, 0, 2, 0, 0, 0),

20 #endif

21 #if (PAD_LIST)

22 TPMA_CC_INITIALIZER(0x0123, 0, 0, 0, 0, 0, 0, 0, 0),

23 #endif

24 #if (PAD_LIST || CC_ChangeEPS)

25 TPMA_CC_INITIALIZER(0x0124, 0, 1, 1, 0, 1, 0, 0, 0),

26 #endif

27 #if (PAD_LIST || CC_ChangePPS)

28 TPMA_CC_INITIALIZER(0x0125, 0, 1, 1, 0, 1, 0, 0, 0),

29 #endif

30 #if (PAD_LIST || CC_Clear)

31 TPMA_CC_INITIALIZER(0x0126, 0, 1, 1, 0, 1, 0, 0, 0),

32 #endif

33 #if (PAD_LIST || CC_ClearControl)

34 TPMA_CC_INITIALIZER(0x0127, 0, 1, 0, 0, 1, 0, 0, 0),

35 #endif

36 #if (PAD_LIST || CC_ClockSet)

37 TPMA_CC_INITIALIZER(0x0128, 0, 1, 0, 0, 1, 0, 0, 0),

38 #endif

39 #if (PAD_LIST || CC_HierarchyChangeAuth)

40 TPMA_CC_INITIALIZER(0x0129, 0, 1, 0, 0, 1, 0, 0, 0),

41 #endif

42 #if (PAD_LIST || CC_NV_DefineSpace)

43 TPMA_CC_INITIALIZER(0x012A, 0, 1, 0, 0, 1, 0, 0, 0),

44 #endif

45 #if (PAD_LIST || CC_PCR_Allocate)

46 TPMA_CC_INITIALIZER(0x012B, 0, 1, 0, 0, 1, 0, 0, 0),

47 #endif

48 #if (PAD_LIST || CC_PCR_SetAuthPolicy)

49 TPMA_CC_INITIALIZER(0x012C, 0, 1, 0, 0, 1, 0, 0, 0),

50 #endif

51 #if (PAD_LIST || CC_PP_Commands)

52 TPMA_CC_INITIALIZER(0x012D, 0, 1, 0, 0, 1, 0, 0, 0),

53 #endif

54 #if (PAD_LIST || CC_SetPrimaryPolicy)

55 TPMA_CC_INITIALIZER(0x012E, 0, 1, 0, 0, 1, 0, 0, 0),

56 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 10 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

57 #if (PAD_LIST || CC_FieldUpgradeStart)

58 TPMA_CC_INITIALIZER(0x012F, 0, 0, 0, 0, 2, 0, 0, 0),

59 #endif

60 #if (PAD_LIST || CC_ClockRateAdjust)

61 TPMA_CC_INITIALIZER(0x0130, 0, 0, 0, 0, 1, 0, 0, 0),

62 #endif

63 #if (PAD_LIST || CC_CreatePrimary)

64 TPMA_CC_INITIALIZER(0x0131, 0, 0, 0, 0, 1, 1, 0, 0),

65 #endif

66 #if (PAD_LIST || CC_NV_GlobalWriteLock)

67 TPMA_CC_INITIALIZER(0x0132, 0, 1, 0, 0, 1, 0, 0, 0),

68 #endif

69 #if (PAD_LIST || CC_GetCommandAuditDigest)

70 TPMA_CC_INITIALIZER(0x0133, 0, 1, 0, 0, 2, 0, 0, 0),

71 #endif

72 #if (PAD_LIST || CC_NV_Increment)

73 TPMA_CC_INITIALIZER(0x0134, 0, 1, 0, 0, 2, 0, 0, 0),

74 #endif

75 #if (PAD_LIST || CC_NV_SetBits)

76 TPMA_CC_INITIALIZER(0x0135, 0, 1, 0, 0, 2, 0, 0, 0),

77 #endif

78 #if (PAD_LIST || CC_NV_Extend)

79 TPMA_CC_INITIALIZER(0x0136, 0, 1, 0, 0, 2, 0, 0, 0),

80 #endif

81 #if (PAD_LIST || CC_NV_Write)

82 TPMA_CC_INITIALIZER(0x0137, 0, 1, 0, 0, 2, 0, 0, 0),

83 #endif

84 #if (PAD_LIST || CC_NV_WriteLock)

85 TPMA_CC_INITIALIZER(0x0138, 0, 1, 0, 0, 2, 0, 0, 0),

86 #endif

87 #if (PAD_LIST || CC_DictionaryAttackLockReset)

88 TPMA_CC_INITIALIZER(0x0139, 0, 1, 0, 0, 1, 0, 0, 0),

89 #endif

90 #if (PAD_LIST || CC_DictionaryAttackParameters)

91 TPMA_CC_INITIALIZER(0x013A, 0, 1, 0, 0, 1, 0, 0, 0),

92 #endif

93 #if (PAD_LIST || CC_NV_ChangeAuth)

94 TPMA_CC_INITIALIZER(0x013B, 0, 1, 0, 0, 1, 0, 0, 0),

95 #endif

96 #if (PAD_LIST || CC_PCR_Event)

97 TPMA_CC_INITIALIZER(0x013C, 0, 1, 0, 0, 1, 0, 0, 0),

98 #endif

99 #if (PAD_LIST || CC_PCR_Reset)

100 TPMA_CC_INITIALIZER(0x013D, 0, 1, 0, 0, 1, 0, 0, 0),

101 #endif

102 #if (PAD_LIST || CC_SequenceComplete)

103 TPMA_CC_INITIALIZER(0x013E, 0, 0, 0, 1, 1, 0, 0, 0),

104 #endif

105 #if (PAD_LIST || CC_SetAlgorithmSet)

106 TPMA_CC_INITIALIZER(0x013F, 0, 1, 0, 0, 1, 0, 0, 0),

107 #endif

108 #if (PAD_LIST || CC_SetCommandCodeAuditStatus)

109 TPMA_CC_INITIALIZER(0x0140, 0, 1, 0, 0, 1, 0, 0, 0),

110 #endif

111 #if (PAD_LIST || CC_FieldUpgradeData)

112 TPMA_CC_INITIALIZER(0x0141, 0, 1, 0, 0, 0, 0, 0, 0),

113 #endif

114 #if (PAD_LIST || CC_IncrementalSelfTest)

115 TPMA_CC_INITIALIZER(0x0142, 0, 1, 0, 0, 0, 0, 0, 0),

116 #endif

117 #if (PAD_LIST || CC_SelfTest)

118 TPMA_CC_INITIALIZER(0x0143, 0, 1, 0, 0, 0, 0, 0, 0),

119 #endif

120 #if (PAD_LIST || CC_Startup)

121 TPMA_CC_INITIALIZER(0x0144, 0, 1, 0, 0, 0, 0, 0, 0),

122 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

123 #if (PAD_LIST || CC_Shutdown)

124 TPMA_CC_INITIALIZER(0x0145, 0, 1, 0, 0, 0, 0, 0, 0),

125 #endif

126 #if (PAD_LIST || CC_StirRandom)

127 TPMA_CC_INITIALIZER(0x0146, 0, 1, 0, 0, 0, 0, 0, 0),

128 #endif

129 #if (PAD_LIST || CC_ActivateCredential)

130 TPMA_CC_INITIALIZER(0x0147, 0, 0, 0, 0, 2, 0, 0, 0),

131 #endif

132 #if (PAD_LIST || CC_Certify)

133 TPMA_CC_INITIALIZER(0x0148, 0, 0, 0, 0, 2, 0, 0, 0),

134 #endif

135 #if (PAD_LIST || CC_PolicyNV)

136 TPMA_CC_INITIALIZER(0x0149, 0, 0, 0, 0, 3, 0, 0, 0),

137 #endif

138 #if (PAD_LIST || CC_CertifyCreation)

139 TPMA_CC_INITIALIZER(0x014A, 0, 0, 0, 0, 2, 0, 0, 0),

140 #endif

141 #if (PAD_LIST || CC_Duplicate)

142 TPMA_CC_INITIALIZER(0x014B, 0, 0, 0, 0, 2, 0, 0, 0),

143 #endif

144 #if (PAD_LIST || CC_GetTime)

145 TPMA_CC_INITIALIZER(0x014C, 0, 0, 0, 0, 2, 0, 0, 0),

146 #endif

147 #if (PAD_LIST || CC_GetSessionAuditDigest)

148 TPMA_CC_INITIALIZER(0x014D, 0, 0, 0, 0, 3, 0, 0, 0),

149 #endif

150 #if (PAD_LIST || CC_NV_Read)

151 TPMA_CC_INITIALIZER(0x014E, 0, 0, 0, 0, 2, 0, 0, 0),

152 #endif

153 #if (PAD_LIST || CC_NV_ReadLock)

154 TPMA_CC_INITIALIZER(0x014F, 0, 1, 0, 0, 2, 0, 0, 0),

155 #endif

156 #if (PAD_LIST || CC_ObjectChangeAuth)

157 TPMA_CC_INITIALIZER(0x0150, 0, 0, 0, 0, 2, 0, 0, 0),

158 #endif

159 #if (PAD_LIST || CC_PolicySecret)

160 TPMA_CC_INITIALIZER(0x0151, 0, 0, 0, 0, 2, 0, 0, 0),

161 #endif

162 #if (PAD_LIST || CC_Rewrap)

163 TPMA_CC_INITIALIZER(0x0152, 0, 0, 0, 0, 2, 0, 0, 0),

164 #endif

165 #if (PAD_LIST || CC_Create)

166 TPMA_CC_INITIALIZER(0x0153, 0, 0, 0, 0, 1, 0, 0, 0),

167 #endif

168 #if (PAD_LIST || CC_ECDH_ZGen)

169 TPMA_CC_INITIALIZER(0x0154, 0, 0, 0, 0, 1, 0, 0, 0),

170 #endif

171 #if (PAD_LIST || (CC_HMAC || CC_MAC))

172 TPMA_CC_INITIALIZER(0x0155, 0, 0, 0, 0, 1, 0, 0, 0),

173 #endif

174 #if (PAD_LIST || CC_Import)

175 TPMA_CC_INITIALIZER(0x0156, 0, 0, 0, 0, 1, 0, 0, 0),

176 #endif

177 #if (PAD_LIST || CC_Load)

178 TPMA_CC_INITIALIZER(0x0157, 0, 0, 0, 0, 1, 1, 0, 0),

179 #endif

180 #if (PAD_LIST || CC_Quote)

181 TPMA_CC_INITIALIZER(0x0158, 0, 0, 0, 0, 1, 0, 0, 0),

182 #endif

183 #if (PAD_LIST || CC_RSA_Decrypt)

184 TPMA_CC_INITIALIZER(0x0159, 0, 0, 0, 0, 1, 0, 0, 0),

185 #endif

186 #if (PAD_LIST)

187 TPMA_CC_INITIALIZER(0x015A, 0, 0, 0, 0, 0, 0, 0, 0),

188 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 12 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

189 #if (PAD_LIST || (CC_HMAC_Start || CC_MAC_Start))

190 TPMA_CC_INITIALIZER(0x015B, 0, 0, 0, 0, 1, 1, 0, 0),

191 #endif

192 #if (PAD_LIST || CC_SequenceUpdate)

193 TPMA_CC_INITIALIZER(0x015C, 0, 0, 0, 0, 1, 0, 0, 0),

194 #endif

195 #if (PAD_LIST || CC_Sign)

196 TPMA_CC_INITIALIZER(0x015D, 0, 0, 0, 0, 1, 0, 0, 0),

197 #endif

198 #if (PAD_LIST || CC_Unseal)

199 TPMA_CC_INITIALIZER(0x015E, 0, 0, 0, 0, 1, 0, 0, 0),

200 #endif

201 #if (PAD_LIST)

202 TPMA_CC_INITIALIZER(0x015F, 0, 0, 0, 0, 0, 0, 0, 0),

203 #endif

204 #if (PAD_LIST || CC_PolicySigned)

205 TPMA_CC_INITIALIZER(0x0160, 0, 0, 0, 0, 2, 0, 0, 0),

206 #endif

207 #if (PAD_LIST || CC_ContextLoad)

208 TPMA_CC_INITIALIZER(0x0161, 0, 0, 0, 0, 0, 1, 0, 0),

209 #endif

210 #if (PAD_LIST || CC_ContextSave)

211 TPMA_CC_INITIALIZER(0x0162, 0, 0, 0, 0, 1, 0, 0, 0),

212 #endif

213 #if (PAD_LIST || CC_ECDH_KeyGen)

214 TPMA_CC_INITIALIZER(0x0163, 0, 0, 0, 0, 1, 0, 0, 0),

215 #endif

216 #if (PAD_LIST || CC_EncryptDecrypt)

217 TPMA_CC_INITIALIZER(0x0164, 0, 0, 0, 0, 1, 0, 0, 0),

218 #endif

219 #if (PAD_LIST || CC_FlushContext)

220 TPMA_CC_INITIALIZER(0x0165, 0, 0, 0, 0, 0, 0, 0, 0),

221 #endif

222 #if (PAD_LIST)

223 TPMA_CC_INITIALIZER(0x0166, 0, 0, 0, 0, 0, 0, 0, 0),

224 #endif

225 #if (PAD_LIST || CC_LoadExternal)

226 TPMA_CC_INITIALIZER(0x0167, 0, 0, 0, 0, 0, 1, 0, 0),

227 #endif

228 #if (PAD_LIST || CC_MakeCredential)

229 TPMA_CC_INITIALIZER(0x0168, 0, 0, 0, 0, 1, 0, 0, 0),

230 #endif

231 #if (PAD_LIST || CC_NV_ReadPublic)

232 TPMA_CC_INITIALIZER(0x0169, 0, 0, 0, 0, 1, 0, 0, 0),

233 #endif

234 #if (PAD_LIST || CC_PolicyAuthorize)

235 TPMA_CC_INITIALIZER(0x016A, 0, 0, 0, 0, 1, 0, 0, 0),

236 #endif

237 #if (PAD_LIST || CC_PolicyAuthValue)

238 TPMA_CC_INITIALIZER(0x016B, 0, 0, 0, 0, 1, 0, 0, 0),

239 #endif

240 #if (PAD_LIST || CC_PolicyCommandCode)

241 TPMA_CC_INITIALIZER(0x016C, 0, 0, 0, 0, 1, 0, 0, 0),

242 #endif

243 #if (PAD_LIST || CC_PolicyCounterTimer)

244 TPMA_CC_INITIALIZER(0x016D, 0, 0, 0, 0, 1, 0, 0, 0),

245 #endif

246 #if (PAD_LIST || CC_PolicyCpHash)

247 TPMA_CC_INITIALIZER(0x016E, 0, 0, 0, 0, 1, 0, 0, 0),

248 #endif

249 #if (PAD_LIST || CC_PolicyLocality)

250 TPMA_CC_INITIALIZER(0x016F, 0, 0, 0, 0, 1, 0, 0, 0),

251 #endif

252 #if (PAD_LIST || CC_PolicyNameHash)

253 TPMA_CC_INITIALIZER(0x0170, 0, 0, 0, 0, 1, 0, 0, 0),

254 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

255 #if (PAD_LIST || CC_PolicyOR)

256 TPMA_CC_INITIALIZER(0x0171, 0, 0, 0, 0, 1, 0, 0, 0),

257 #endif

258 #if (PAD_LIST || CC_PolicyTicket)

259 TPMA_CC_INITIALIZER(0x0172, 0, 0, 0, 0, 1, 0, 0, 0),

260 #endif

261 #if (PAD_LIST || CC_ReadPublic)

262 TPMA_CC_INITIALIZER(0x0173, 0, 0, 0, 0, 1, 0, 0, 0),

263 #endif

264 #if (PAD_LIST || CC_RSA_Encrypt)

265 TPMA_CC_INITIALIZER(0x0174, 0, 0, 0, 0, 1, 0, 0, 0),

266 #endif

267 #if (PAD_LIST)

268 TPMA_CC_INITIALIZER(0x0175, 0, 0, 0, 0, 0, 0, 0, 0),

269 #endif

270 #if (PAD_LIST || CC_StartAuthSession)

271 TPMA_CC_INITIALIZER(0x0176, 0, 0, 0, 0, 2, 1, 0, 0),

272 #endif

273 #if (PAD_LIST || CC_VerifySignature)

274 TPMA_CC_INITIALIZER(0x0177, 0, 0, 0, 0, 1, 0, 0, 0),

275 #endif

276 #if (PAD_LIST || CC_ECC_Parameters)

277 TPMA_CC_INITIALIZER(0x0178, 0, 0, 0, 0, 0, 0, 0, 0),

278 #endif

279 #if (PAD_LIST || CC_FirmwareRead)

280 TPMA_CC_INITIALIZER(0x0179, 0, 0, 0, 0, 0, 0, 0, 0),

281 #endif

282 #if (PAD_LIST || CC_GetCapability)

283 TPMA_CC_INITIALIZER(0x017A, 0, 0, 0, 0, 0, 0, 0, 0),

284 #endif

285 #if (PAD_LIST || CC_GetRandom)

286 TPMA_CC_INITIALIZER(0x017B, 0, 0, 0, 0, 0, 0, 0, 0),

287 #endif

288 #if (PAD_LIST || CC_GetTestResult)

289 TPMA_CC_INITIALIZER(0x017C, 0, 0, 0, 0, 0, 0, 0, 0),

290 #endif

291 #if (PAD_LIST || CC_Hash)

292 TPMA_CC_INITIALIZER(0x017D, 0, 0, 0, 0, 0, 0, 0, 0),

293 #endif

294 #if (PAD_LIST || CC_PCR_Read)

295 TPMA_CC_INITIALIZER(0x017E, 0, 0, 0, 0, 0, 0, 0, 0),

296 #endif

297 #if (PAD_LIST || CC_PolicyPCR)

298 TPMA_CC_INITIALIZER(0x017F, 0, 0, 0, 0, 1, 0, 0, 0),

299 #endif

300 #if (PAD_LIST || CC_PolicyRestart)

301 TPMA_CC_INITIALIZER(0x0180, 0, 0, 0, 0, 1, 0, 0, 0),

302 #endif

303 #if (PAD_LIST || CC_ReadClock)

304 TPMA_CC_INITIALIZER(0x0181, 0, 0, 0, 0, 0, 0, 0, 0),

305 #endif

306 #if (PAD_LIST || CC_PCR_Extend)

307 TPMA_CC_INITIALIZER(0x0182, 0, 1, 0, 0, 1, 0, 0, 0),

308 #endif

309 #if (PAD_LIST || CC_PCR_SetAuthValue)

310 TPMA_CC_INITIALIZER(0x0183, 0, 0, 0, 0, 1, 0, 0, 0),

311 #endif

312 #if (PAD_LIST || CC_NV_Certify)

313 TPMA_CC_INITIALIZER(0x0184, 0, 0, 0, 0, 3, 0, 0, 0),

314 #endif

315 #if (PAD_LIST || CC_EventSequenceComplete)

316 TPMA_CC_INITIALIZER(0x0185, 0, 1, 0, 1, 2, 0, 0, 0),

317 #endif

318 #if (PAD_LIST || CC_HashSequenceStart)

319 TPMA_CC_INITIALIZER(0x0186, 0, 0, 0, 0, 0, 1, 0, 0),

320 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 14 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

321 #if (PAD_LIST || CC_PolicyPhysicalPresence)

322 TPMA_CC_INITIALIZER(0x0187, 0, 0, 0, 0, 1, 0, 0, 0),

323 #endif

324 #if (PAD_LIST || CC_PolicyDuplicationSelect)

325 TPMA_CC_INITIALIZER(0x0188, 0, 0, 0, 0, 1, 0, 0, 0),

326 #endif

327 #if (PAD_LIST || CC_PolicyGetDigest)

328 TPMA_CC_INITIALIZER(0x0189, 0, 0, 0, 0, 1, 0, 0, 0),

329 #endif

330 #if (PAD_LIST || CC_TestParms)

331 TPMA_CC_INITIALIZER(0x018A, 0, 0, 0, 0, 0, 0, 0, 0),

332 #endif

333 #if (PAD_LIST || CC_Commit)

334 TPMA_CC_INITIALIZER(0x018B, 0, 0, 0, 0, 1, 0, 0, 0),

335 #endif

336 #if (PAD_LIST || CC_PolicyPassword)

337 TPMA_CC_INITIALIZER(0x018C, 0, 0, 0, 0, 1, 0, 0, 0),

338 #endif

339 #if (PAD_LIST || CC_ZGen_2Phase)

340 TPMA_CC_INITIALIZER(0x018D, 0, 0, 0, 0, 1, 0, 0, 0),

341 #endif

342 #if (PAD_LIST || CC_EC_Ephemeral)

343 TPMA_CC_INITIALIZER(0x018E, 0, 0, 0, 0, 0, 0, 0, 0),

344 #endif

345 #if (PAD_LIST || CC_PolicyNvWritten)

346 TPMA_CC_INITIALIZER(0x018F, 0, 0, 0, 0, 1, 0, 0, 0),

347 #endif

348 #if (PAD_LIST || CC_PolicyTemplate)

349 TPMA_CC_INITIALIZER(0x0190, 0, 0, 0, 0, 1, 0, 0, 0),

350 #endif

351 #if (PAD_LIST || CC_CreateLoaded)

352 TPMA_CC_INITIALIZER(0x0191, 0, 0, 0, 0, 1, 1, 0, 0),

353 #endif

354 #if (PAD_LIST || CC_PolicyAuthorizeNV)

355 TPMA_CC_INITIALIZER(0x0192, 0, 0, 0, 0, 3, 0, 0, 0),

356 #endif

357 #if (PAD_LIST || CC_EncryptDecrypt2)

358 TPMA_CC_INITIALIZER(0x0193, 0, 0, 0, 0, 1, 0, 0, 0),

359 #endif

360 #if (PAD_LIST || CC_AC_GetCapability)

361 TPMA_CC_INITIALIZER(0x0194, 0, 0, 0, 0, 1, 0, 0, 0),

362 #endif

363 #if (PAD_LIST || CC_AC_Send)

364 TPMA_CC_INITIALIZER(0x0195, 0, 0, 0, 0, 3, 0, 0, 0),

365 #endif

366 #if (PAD_LIST || CC_Policy_AC_SendSelect)

367 TPMA_CC_INITIALIZER(0x0196, 0, 0, 0, 0, 1, 0, 0, 0),

368 #endif

369 #if (PAD_LIST || CC_CertifyX509)

370 TPMA_CC_INITIALIZER(0x0197, 0, 0, 0, 0, 2, 0, 0, 0),

371 #endif

372 #if (PAD_LIST || CC_ACT_SetTimeout)

373 TPMA_CC_INITIALIZER(0x0198, 0, 0, 0, 0, 1, 0, 0, 0),

374 #endif

375 #if (PAD_LIST || CC_Vendor_TCG_Test)

376 TPMA_CC_INITIALIZER(0x0000, 0, 0, 0, 0, 0, 0, 1, 0),

377 #endif

378 TPMA_ZERO_INITIALIZER()

379 };

This is the command code attribute structure.

380 const COMMAND_ATTRIBUTES s_commandAttributes [] = {

381 #if (PAD_LIST || CC_NV_UndefineSpaceSpecial)

382 (COMMAND_ATTRIBUTES)(CC_NV_UndefineSpaceSpecial * // 0x011F

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

383 (IS_IMPLEMENTED+HANDLE_1_ADMIN+HANDLE_2_USER+PP_COMMAND)),

384 #endif

385 #if (PAD_LIST || CC_EvictControl)

386 (COMMAND_ATTRIBUTES)(CC_EvictControl * // 0x0120

387 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

388 #endif

389 #if (PAD_LIST || CC_HierarchyControl)

390 (COMMAND_ATTRIBUTES)(CC_HierarchyControl * // 0x0121

391 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

392 #endif

393 #if (PAD_LIST || CC_NV_UndefineSpace)

394 (COMMAND_ATTRIBUTES)(CC_NV_UndefineSpace * // 0x0122

395 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

396 #endif

397 #if (PAD_LIST)

398 (COMMAND_ATTRIBUTES)(0), // 0x0123

399 #endif

400 #if (PAD_LIST || CC_ChangeEPS)

401 (COMMAND_ATTRIBUTES)(CC_ChangeEPS * // 0x0124

402 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

403 #endif

404 #if (PAD_LIST || CC_ChangePPS)

405 (COMMAND_ATTRIBUTES)(CC_ChangePPS * // 0x0125

406 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

407 #endif

408 #if (PAD_LIST || CC_Clear)

409 (COMMAND_ATTRIBUTES)(CC_Clear * // 0x0126

410 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

411 #endif

412 #if (PAD_LIST || CC_ClearControl)

413 (COMMAND_ATTRIBUTES)(CC_ClearControl * // 0x0127

414 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

415 #endif

416 #if (PAD_LIST || CC_ClockSet)

417 (COMMAND_ATTRIBUTES)(CC_ClockSet * // 0x0128

418 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

419 #endif

420 #if (PAD_LIST || CC_HierarchyChangeAuth)

421 (COMMAND_ATTRIBUTES)(CC_HierarchyChangeAuth * // 0x0129

422 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+PP_COMMAND)),

423 #endif

424 #if (PAD_LIST || CC_NV_DefineSpace)

425 (COMMAND_ATTRIBUTES)(CC_NV_DefineSpace * // 0x012A

426 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+PP_COMMAND)),

427 #endif

428 #if (PAD_LIST || CC_PCR_Allocate)

429 (COMMAND_ATTRIBUTES)(CC_PCR_Allocate * // 0x012B

430 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

431 #endif

432 #if (PAD_LIST || CC_PCR_SetAuthPolicy)

433 (COMMAND_ATTRIBUTES)(CC_PCR_SetAuthPolicy * // 0x012C

434 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+PP_COMMAND)),

435 #endif

436 #if (PAD_LIST || CC_PP_Commands)

437 (COMMAND_ATTRIBUTES)(CC_PP_Commands * // 0x012D

438 (IS_IMPLEMENTED+HANDLE_1_USER+PP_REQUIRED)),

439 #endif

440 #if (PAD_LIST || CC_SetPrimaryPolicy)

441 (COMMAND_ATTRIBUTES)(CC_SetPrimaryPolicy * // 0x012E

442 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+PP_COMMAND)),

443 #endif

444 #if (PAD_LIST || CC_FieldUpgradeStart)

445 (COMMAND_ATTRIBUTES)(CC_FieldUpgradeStart * // 0x012F

446 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_ADMIN+PP_COMMAND)),

447 #endif

448 #if (PAD_LIST || CC_ClockRateAdjust)

Trusted Platform Module Library Part 4: Supporting Routines

Page 16 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

449 (COMMAND_ATTRIBUTES)(CC_ClockRateAdjust * // 0x0130

450 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

451 #endif

452 #if (PAD_LIST || CC_CreatePrimary)

453 (COMMAND_ATTRIBUTES)(CC_CreatePrimary * // 0x0131

454 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+PP_COMMAND+ENCRYPT_2+R_HANDLE)),

455 #endif

456 #if (PAD_LIST || CC_NV_GlobalWriteLock)

457 (COMMAND_ATTRIBUTES)(CC_NV_GlobalWriteLock * // 0x0132

458 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

459 #endif

460 #if (PAD_LIST || CC_GetCommandAuditDigest)

461 (COMMAND_ATTRIBUTES)(CC_GetCommandAuditDigest * // 0x0133

462 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+HANDLE_2_USER+ENCRYPT_2)),

463 #endif

464 #if (PAD_LIST || CC_NV_Increment)

465 (COMMAND_ATTRIBUTES)(CC_NV_Increment * // 0x0134

466 (IS_IMPLEMENTED+HANDLE_1_USER)),

467 #endif

468 #if (PAD_LIST || CC_NV_SetBits)

469 (COMMAND_ATTRIBUTES)(CC_NV_SetBits * // 0x0135

470 (IS_IMPLEMENTED+HANDLE_1_USER)),

471 #endif

472 #if (PAD_LIST || CC_NV_Extend)

473 (COMMAND_ATTRIBUTES)(CC_NV_Extend * // 0x0136

474 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER)),

475 #endif

476 #if (PAD_LIST || CC_NV_Write)

477 (COMMAND_ATTRIBUTES)(CC_NV_Write * // 0x0137

478 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER)),

479 #endif

480 #if (PAD_LIST || CC_NV_WriteLock)

481 (COMMAND_ATTRIBUTES)(CC_NV_WriteLock * // 0x0138

482 (IS_IMPLEMENTED+HANDLE_1_USER)),

483 #endif

484 #if (PAD_LIST || CC_DictionaryAttackLockReset)

485 (COMMAND_ATTRIBUTES)(CC_DictionaryAttackLockReset * // 0x0139

486 (IS_IMPLEMENTED+HANDLE_1_USER)),

487 #endif

488 #if (PAD_LIST || CC_DictionaryAttackParameters)

489 (COMMAND_ATTRIBUTES)(CC_DictionaryAttackParameters * // 0x013A

490 (IS_IMPLEMENTED+HANDLE_1_USER)),

491 #endif

492 #if (PAD_LIST || CC_NV_ChangeAuth)

493 (COMMAND_ATTRIBUTES)(CC_NV_ChangeAuth * // 0x013B

494 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_ADMIN)),

495 #endif

496 #if (PAD_LIST || CC_PCR_Event)

497 (COMMAND_ATTRIBUTES)(CC_PCR_Event * // 0x013C

498 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER)),

499 #endif

500 #if (PAD_LIST || CC_PCR_Reset)

501 (COMMAND_ATTRIBUTES)(CC_PCR_Reset * // 0x013D

502 (IS_IMPLEMENTED+HANDLE_1_USER)),

503 #endif

504 #if (PAD_LIST || CC_SequenceComplete)

505 (COMMAND_ATTRIBUTES)(CC_SequenceComplete * // 0x013E

506 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

507 #endif

508 #if (PAD_LIST || CC_SetAlgorithmSet)

509 (COMMAND_ATTRIBUTES)(CC_SetAlgorithmSet * // 0x013F

510 (IS_IMPLEMENTED+HANDLE_1_USER)),

511 #endif

512 #if (PAD_LIST || CC_SetCommandCodeAuditStatus)

513 (COMMAND_ATTRIBUTES)(CC_SetCommandCodeAuditStatus * // 0x0140

514 (IS_IMPLEMENTED+HANDLE_1_USER+PP_COMMAND)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

515 #endif

516 #if (PAD_LIST || CC_FieldUpgradeData)

517 (COMMAND_ATTRIBUTES)(CC_FieldUpgradeData * // 0x0141

518 (IS_IMPLEMENTED+DECRYPT_2)),

519 #endif

520 #if (PAD_LIST || CC_IncrementalSelfTest)

521 (COMMAND_ATTRIBUTES)(CC_IncrementalSelfTest * // 0x0142

522 (IS_IMPLEMENTED)),

523 #endif

524 #if (PAD_LIST || CC_SelfTest)

525 (COMMAND_ATTRIBUTES)(CC_SelfTest * // 0x0143

526 (IS_IMPLEMENTED)),

527 #endif

528 #if (PAD_LIST || CC_Startup)

529 (COMMAND_ATTRIBUTES)(CC_Startup * // 0x0144

530 (IS_IMPLEMENTED+NO_SESSIONS)),

531 #endif

532 #if (PAD_LIST || CC_Shutdown)

533 (COMMAND_ATTRIBUTES)(CC_Shutdown * // 0x0145

534 (IS_IMPLEMENTED)),

535 #endif

536 #if (PAD_LIST || CC_StirRandom)

537 (COMMAND_ATTRIBUTES)(CC_StirRandom * // 0x0146

538 (IS_IMPLEMENTED+DECRYPT_2)),

539 #endif

540 #if (PAD_LIST || CC_ActivateCredential)

541 (COMMAND_ATTRIBUTES)(CC_ActivateCredential * // 0x0147

542 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_ADMIN+HANDLE_2_USER+ENCRYPT_2)),

543 #endif

544 #if (PAD_LIST || CC_Certify)

545 (COMMAND_ATTRIBUTES)(CC_Certify * // 0x0148

546 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_ADMIN+HANDLE_2_USER+ENCRYPT_2)),

547 #endif

548 #if (PAD_LIST || CC_PolicyNV)

549 (COMMAND_ATTRIBUTES)(CC_PolicyNV * // 0x0149

550 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ALLOW_TRIAL)),

551 #endif

552 #if (PAD_LIST || CC_CertifyCreation)

553 (COMMAND_ATTRIBUTES)(CC_CertifyCreation * // 0x014A

554 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

555 #endif

556 #if (PAD_LIST || CC_Duplicate)

557 (COMMAND_ATTRIBUTES)(CC_Duplicate * // 0x014B

558 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_DUP+ENCRYPT_2)),

559 #endif

560 #if (PAD_LIST || CC_GetTime)

561 (COMMAND_ATTRIBUTES)(CC_GetTime * // 0x014C

562 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+HANDLE_2_USER+ENCRYPT_2)),

563 #endif

564 #if (PAD_LIST || CC_GetSessionAuditDigest)

565 (COMMAND_ATTRIBUTES)(CC_GetSessionAuditDigest * // 0x014D

566 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+HANDLE_2_USER+ENCRYPT_2)),

567 #endif

568 #if (PAD_LIST || CC_NV_Read)

569 (COMMAND_ATTRIBUTES)(CC_NV_Read * // 0x014E

570 (IS_IMPLEMENTED+HANDLE_1_USER+ENCRYPT_2)),

571 #endif

572 #if (PAD_LIST || CC_NV_ReadLock)

573 (COMMAND_ATTRIBUTES)(CC_NV_ReadLock * // 0x014F

574 (IS_IMPLEMENTED+HANDLE_1_USER)),

575 #endif

576 #if (PAD_LIST || CC_ObjectChangeAuth)

577 (COMMAND_ATTRIBUTES)(CC_ObjectChangeAuth * // 0x0150

578 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_ADMIN+ENCRYPT_2)),

579 #endif

580 #if (PAD_LIST || CC_PolicySecret)

Trusted Platform Module Library Part 4: Supporting Routines

Page 18 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

581 (COMMAND_ATTRIBUTES)(CC_PolicySecret * // 0x0151

582 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ALLOW_TRIAL+ENCRYPT_2)),

583 #endif

584 #if (PAD_LIST || CC_Rewrap)

585 (COMMAND_ATTRIBUTES)(CC_Rewrap * // 0x0152

586 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

587 #endif

588 #if (PAD_LIST || CC_Create)

589 (COMMAND_ATTRIBUTES)(CC_Create * // 0x0153

590 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

591 #endif

592 #if (PAD_LIST || CC_ECDH_ZGen)

593 (COMMAND_ATTRIBUTES)(CC_ECDH_ZGen * // 0x0154

594 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

595 #endif

596 #if (PAD_LIST || (CC_HMAC || CC_MAC))

597 (COMMAND_ATTRIBUTES)((CC_HMAC || CC_MAC) * // 0x0155

598 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

599 #endif

600 #if (PAD_LIST || CC_Import)

601 (COMMAND_ATTRIBUTES)(CC_Import * // 0x0156

602 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

603 #endif

604 #if (PAD_LIST || CC_Load)

605 (COMMAND_ATTRIBUTES)(CC_Load * // 0x0157

606 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2+R_HANDLE)),

607 #endif

608 #if (PAD_LIST || CC_Quote)

609 (COMMAND_ATTRIBUTES)(CC_Quote * // 0x0158

610 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

611 #endif

612 #if (PAD_LIST || CC_RSA_Decrypt)

613 (COMMAND_ATTRIBUTES)(CC_RSA_Decrypt * // 0x0159

614 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

615 #endif

616 #if (PAD_LIST)

617 (COMMAND_ATTRIBUTES)(0), // 0x015A

618 #endif

619 #if (PAD_LIST || (CC_HMAC_Start || CC_MAC_Start))

620 (COMMAND_ATTRIBUTES)((CC_HMAC_Start || CC_MAC_Start) * // 0x015B

621 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+R_HANDLE)),

622 #endif

623 #if (PAD_LIST || CC_SequenceUpdate)

624 (COMMAND_ATTRIBUTES)(CC_SequenceUpdate * // 0x015C

625 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER)),

626 #endif

627 #if (PAD_LIST || CC_Sign)

628 (COMMAND_ATTRIBUTES)(CC_Sign * // 0x015D

629 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER)),

630 #endif

631 #if (PAD_LIST || CC_Unseal)

632 (COMMAND_ATTRIBUTES)(CC_Unseal * // 0x015E

633 (IS_IMPLEMENTED+HANDLE_1_USER+ENCRYPT_2)),

634 #endif

635 #if (PAD_LIST)

636 (COMMAND_ATTRIBUTES)(0), // 0x015F

637 #endif

638 #if (PAD_LIST || CC_PolicySigned)

639 (COMMAND_ATTRIBUTES)(CC_PolicySigned * // 0x0160

640 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL+ENCRYPT_2)),

641 #endif

642 #if (PAD_LIST || CC_ContextLoad)

643 (COMMAND_ATTRIBUTES)(CC_ContextLoad * // 0x0161

644 (IS_IMPLEMENTED+NO_SESSIONS+R_HANDLE)),

645 #endif

646 #if (PAD_LIST || CC_ContextSave)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

647 (COMMAND_ATTRIBUTES)(CC_ContextSave * // 0x0162

648 (IS_IMPLEMENTED+NO_SESSIONS)),

649 #endif

650 #if (PAD_LIST || CC_ECDH_KeyGen)

651 (COMMAND_ATTRIBUTES)(CC_ECDH_KeyGen * // 0x0163

652 (IS_IMPLEMENTED+ENCRYPT_2)),

653 #endif

654 #if (PAD_LIST || CC_EncryptDecrypt)

655 (COMMAND_ATTRIBUTES)(CC_EncryptDecrypt * // 0x0164

656 (IS_IMPLEMENTED+HANDLE_1_USER+ENCRYPT_2)),

657 #endif

658 #if (PAD_LIST || CC_FlushContext)

659 (COMMAND_ATTRIBUTES)(CC_FlushContext * // 0x0165

660 (IS_IMPLEMENTED+NO_SESSIONS)),

661 #endif

662 #if (PAD_LIST)

663 (COMMAND_ATTRIBUTES)(0), // 0x0166

664 #endif

665 #if (PAD_LIST || CC_LoadExternal)

666 (COMMAND_ATTRIBUTES)(CC_LoadExternal * // 0x0167

667 (IS_IMPLEMENTED+DECRYPT_2+ENCRYPT_2+R_HANDLE)),

668 #endif

669 #if (PAD_LIST || CC_MakeCredential)

670 (COMMAND_ATTRIBUTES)(CC_MakeCredential * // 0x0168

671 (IS_IMPLEMENTED+DECRYPT_2+ENCRYPT_2)),

672 #endif

673 #if (PAD_LIST || CC_NV_ReadPublic)

674 (COMMAND_ATTRIBUTES)(CC_NV_ReadPublic * // 0x0169

675 (IS_IMPLEMENTED+ENCRYPT_2)),

676 #endif

677 #if (PAD_LIST || CC_PolicyAuthorize)

678 (COMMAND_ATTRIBUTES)(CC_PolicyAuthorize * // 0x016A

679 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

680 #endif

681 #if (PAD_LIST || CC_PolicyAuthValue)

682 (COMMAND_ATTRIBUTES)(CC_PolicyAuthValue * // 0x016B

683 (IS_IMPLEMENTED+ALLOW_TRIAL)),

684 #endif

685 #if (PAD_LIST || CC_PolicyCommandCode)

686 (COMMAND_ATTRIBUTES)(CC_PolicyCommandCode * // 0x016C

687 (IS_IMPLEMENTED+ALLOW_TRIAL)),

688 #endif

689 #if (PAD_LIST || CC_PolicyCounterTimer)

690 (COMMAND_ATTRIBUTES)(CC_PolicyCounterTimer * // 0x016D

691 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

692 #endif

693 #if (PAD_LIST || CC_PolicyCpHash)

694 (COMMAND_ATTRIBUTES)(CC_PolicyCpHash * // 0x016E

695 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

696 #endif

697 #if (PAD_LIST || CC_PolicyLocality)

698 (COMMAND_ATTRIBUTES)(CC_PolicyLocality * // 0x016F

699 (IS_IMPLEMENTED+ALLOW_TRIAL)),

700 #endif

701 #if (PAD_LIST || CC_PolicyNameHash)

702 (COMMAND_ATTRIBUTES)(CC_PolicyNameHash * // 0x0170

703 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

704 #endif

705 #if (PAD_LIST || CC_PolicyOR)

706 (COMMAND_ATTRIBUTES)(CC_PolicyOR * // 0x0171

707 (IS_IMPLEMENTED+ALLOW_TRIAL)),

708 #endif

709 #if (PAD_LIST || CC_PolicyTicket)

710 (COMMAND_ATTRIBUTES)(CC_PolicyTicket * // 0x0172

711 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

712 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 20 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

713 #if (PAD_LIST || CC_ReadPublic)

714 (COMMAND_ATTRIBUTES)(CC_ReadPublic * // 0x0173

715 (IS_IMPLEMENTED+ENCRYPT_2)),

716 #endif

717 #if (PAD_LIST || CC_RSA_Encrypt)

718 (COMMAND_ATTRIBUTES)(CC_RSA_Encrypt * // 0x0174

719 (IS_IMPLEMENTED+DECRYPT_2+ENCRYPT_2)),

720 #endif

721 #if (PAD_LIST)

722 (COMMAND_ATTRIBUTES)(0), // 0x0175

723 #endif

724 #if (PAD_LIST || CC_StartAuthSession)

725 (COMMAND_ATTRIBUTES)(CC_StartAuthSession * // 0x0176

726 (IS_IMPLEMENTED+DECRYPT_2+ENCRYPT_2+R_HANDLE)),

727 #endif

728 #if (PAD_LIST || CC_VerifySignature)

729 (COMMAND_ATTRIBUTES)(CC_VerifySignature * // 0x0177

730 (IS_IMPLEMENTED+DECRYPT_2)),

731 #endif

732 #if (PAD_LIST || CC_ECC_Parameters)

733 (COMMAND_ATTRIBUTES)(CC_ECC_Parameters * // 0x0178

734 (IS_IMPLEMENTED)),

735 #endif

736 #if (PAD_LIST || CC_FirmwareRead)

737 (COMMAND_ATTRIBUTES)(CC_FirmwareRead * // 0x0179

738 (IS_IMPLEMENTED+ENCRYPT_2)),

739 #endif

740 #if (PAD_LIST || CC_GetCapability)

741 (COMMAND_ATTRIBUTES)(CC_GetCapability * // 0x017A

742 (IS_IMPLEMENTED)),

743 #endif

744 #if (PAD_LIST || CC_GetRandom)

745 (COMMAND_ATTRIBUTES)(CC_GetRandom * // 0x017B

746 (IS_IMPLEMENTED+ENCRYPT_2)),

747 #endif

748 #if (PAD_LIST || CC_GetTestResult)

749 (COMMAND_ATTRIBUTES)(CC_GetTestResult * // 0x017C

750 (IS_IMPLEMENTED+ENCRYPT_2)),

751 #endif

752 #if (PAD_LIST || CC_Hash)

753 (COMMAND_ATTRIBUTES)(CC_Hash * // 0x017D

754 (IS_IMPLEMENTED+DECRYPT_2+ENCRYPT_2)),

755 #endif

756 #if (PAD_LIST || CC_PCR_Read)

757 (COMMAND_ATTRIBUTES)(CC_PCR_Read * // 0x017E

758 (IS_IMPLEMENTED)),

759 #endif

760 #if (PAD_LIST || CC_PolicyPCR)

761 (COMMAND_ATTRIBUTES)(CC_PolicyPCR * // 0x017F

762 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

763 #endif

764 #if (PAD_LIST || CC_PolicyRestart)

765 (COMMAND_ATTRIBUTES)(CC_PolicyRestart * // 0x0180

766 (IS_IMPLEMENTED+ALLOW_TRIAL)),

767 #endif

768 #if (PAD_LIST || CC_ReadClock)

769 (COMMAND_ATTRIBUTES)(CC_ReadClock * // 0x0181

770 (IS_IMPLEMENTED)),

771 #endif

772 #if (PAD_LIST || CC_PCR_Extend)

773 (COMMAND_ATTRIBUTES)(CC_PCR_Extend * // 0x0182

774 (IS_IMPLEMENTED+HANDLE_1_USER)),

775 #endif

776 #if (PAD_LIST || CC_PCR_SetAuthValue)

777 (COMMAND_ATTRIBUTES)(CC_PCR_SetAuthValue * // 0x0183

778 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

779 #endif

780 #if (PAD_LIST || CC_NV_Certify)

781 (COMMAND_ATTRIBUTES)(CC_NV_Certify * // 0x0184

782 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+HANDLE_2_USER+ENCRYPT_2)),

783 #endif

784 #if (PAD_LIST || CC_EventSequenceComplete)

785 (COMMAND_ATTRIBUTES)(CC_EventSequenceComplete * // 0x0185

786 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+HANDLE_2_USER)),

787 #endif

788 #if (PAD_LIST || CC_HashSequenceStart)

789 (COMMAND_ATTRIBUTES)(CC_HashSequenceStart * // 0x0186

790 (IS_IMPLEMENTED+DECRYPT_2+R_HANDLE)),

791 #endif

792 #if (PAD_LIST || CC_PolicyPhysicalPresence)

793 (COMMAND_ATTRIBUTES)(CC_PolicyPhysicalPresence * // 0x0187

794 (IS_IMPLEMENTED+ALLOW_TRIAL)),

795 #endif

796 #if (PAD_LIST || CC_PolicyDuplicationSelect)

797 (COMMAND_ATTRIBUTES)(CC_PolicyDuplicationSelect * // 0x0188

798 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

799 #endif

800 #if (PAD_LIST || CC_PolicyGetDigest)

801 (COMMAND_ATTRIBUTES)(CC_PolicyGetDigest * // 0x0189

802 (IS_IMPLEMENTED+ALLOW_TRIAL+ENCRYPT_2)),

803 #endif

804 #if (PAD_LIST || CC_TestParms)

805 (COMMAND_ATTRIBUTES)(CC_TestParms * // 0x018A

806 (IS_IMPLEMENTED)),

807 #endif

808 #if (PAD_LIST || CC_Commit)

809 (COMMAND_ATTRIBUTES)(CC_Commit * // 0x018B

810 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

811 #endif

812 #if (PAD_LIST || CC_PolicyPassword)

813 (COMMAND_ATTRIBUTES)(CC_PolicyPassword * // 0x018C

814 (IS_IMPLEMENTED+ALLOW_TRIAL)),

815 #endif

816 #if (PAD_LIST || CC_ZGen_2Phase)

817 (COMMAND_ATTRIBUTES)(CC_ZGen_2Phase * // 0x018D

818 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

819 #endif

820 #if (PAD_LIST || CC_EC_Ephemeral)

821 (COMMAND_ATTRIBUTES)(CC_EC_Ephemeral * // 0x018E

822 (IS_IMPLEMENTED+ENCRYPT_2)),

823 #endif

824 #if (PAD_LIST || CC_PolicyNvWritten)

825 (COMMAND_ATTRIBUTES)(CC_PolicyNvWritten * // 0x018F

826 (IS_IMPLEMENTED+ALLOW_TRIAL)),

827 #endif

828 #if (PAD_LIST || CC_PolicyTemplate)

829 (COMMAND_ATTRIBUTES)(CC_PolicyTemplate * // 0x0190

830 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

831 #endif

832 #if (PAD_LIST || CC_CreateLoaded)

833 (COMMAND_ATTRIBUTES)(CC_CreateLoaded * // 0x0191

834 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+PP_COMMAND+ENCRYPT_2+R_HANDLE)),

835 #endif

836 #if (PAD_LIST || CC_PolicyAuthorizeNV)

837 (COMMAND_ATTRIBUTES)(CC_PolicyAuthorizeNV * // 0x0192

838 (IS_IMPLEMENTED+HANDLE_1_USER+ALLOW_TRIAL)),

839 #endif

840 #if (PAD_LIST || CC_EncryptDecrypt2)

841 (COMMAND_ATTRIBUTES)(CC_EncryptDecrypt2 * // 0x0193

842 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_USER+ENCRYPT_2)),

843 #endif

844 #if (PAD_LIST || CC_AC_GetCapability)

Trusted Platform Module Library Part 4: Supporting Routines

Page 22 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

845 (COMMAND_ATTRIBUTES)(CC_AC_GetCapability * // 0x0194

846 (IS_IMPLEMENTED)),

847 #endif

848 #if (PAD_LIST || CC_AC_Send)

849 (COMMAND_ATTRIBUTES)(CC_AC_Send * // 0x0195

850 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_DUP+HANDLE_2_USER)),

851 #endif

852 #if (PAD_LIST || CC_Policy_AC_SendSelect)

853 (COMMAND_ATTRIBUTES)(CC_Policy_AC_SendSelect * // 0x0196

854 (IS_IMPLEMENTED+DECRYPT_2+ALLOW_TRIAL)),

855 #endif

856 #if (PAD_LIST || CC_CertifyX509)

857 (COMMAND_ATTRIBUTES)(CC_CertifyX509 * // 0x0197

858 (IS_IMPLEMENTED+DECRYPT_2+HANDLE_1_ADMIN+HANDLE_2_USER+ENCRYPT_2)),

859 #endif

860 #if (PAD_LIST || CC_ACT_SetTimeout)

861 (COMMAND_ATTRIBUTES)(CC_ACT_SetTimeout * // 0x0198

862 (IS_IMPLEMENTED+HANDLE_1_USER)),

863 #endif

864 #if (PAD_LIST || CC_Vendor_TCG_Test)

865 (COMMAND_ATTRIBUTES)(CC_Vendor_TCG_Test * // 0x0000

866 (IS_IMPLEMENTED+DECRYPT_2+ENCRYPT_2)),

867 #endif

868 0

869 };

870 #endif // _COMMAND_CODE_ATTRIBUTES_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.5 CommandAttributes.h

The attributes defined in this file are produced by the parser that creates the structure definitions from

Part 3. The attributes are defined in that parser and should track the attributes being tested in

CommandCodeAttributes.c. Generally, when an attribute is added to this list, new code will be needed in

CommandCodeAttributes.c to test it.

1 #ifndef COMMAND_ATTRIBUTES_H

2 #define COMMAND_ATTRIBUTES_H

3 typedef UINT16 COMMAND_ATTRIBUTES;

4 #define NOT_IMPLEMENTED (COMMAND_ATTRIBUTES)(0)

5 #define ENCRYPT_2 ((COMMAND_ATTRIBUTES)1 << 0)

6 #define ENCRYPT_4 ((COMMAND_ATTRIBUTES)1 << 1)

7 #define DECRYPT_2 ((COMMAND_ATTRIBUTES)1 << 2)

8 #define DECRYPT_4 ((COMMAND_ATTRIBUTES)1 << 3)

9 #define HANDLE_1_USER ((COMMAND_ATTRIBUTES)1 << 4)

10 #define HANDLE_1_ADMIN ((COMMAND_ATTRIBUTES)1 << 5)

11 #define HANDLE_1_DUP ((COMMAND_ATTRIBUTES)1 << 6)

12 #define HANDLE_2_USER ((COMMAND_ATTRIBUTES)1 << 7)

13 #define PP_COMMAND ((COMMAND_ATTRIBUTES)1 << 8)

14 #define IS_IMPLEMENTED ((COMMAND_ATTRIBUTES)1 << 9)

15 #define NO_SESSIONS ((COMMAND_ATTRIBUTES)1 << 10)

16 #define NV_COMMAND ((COMMAND_ATTRIBUTES)1 << 11)

17 #define PP_REQUIRED ((COMMAND_ATTRIBUTES)1 << 12)

18 #define R_HANDLE ((COMMAND_ATTRIBUTES)1 << 13)

19 #define ALLOW_TRIAL ((COMMAND_ATTRIBUTES)1 << 14)

20 #endif // COMMAND_ATTRIBUTES_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 24 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.6 CommandDispatchData.h

This file should only be included by CommandCodeAttibutes.c

1 #ifdef _COMMAND_TABLE_DISPATCH_

Define the stop value

2 #define END_OF_LIST 0xff

3 #define ADD_FLAG 0x80

These macros provide some variability in how the data is encoded. They also make the lines a little

shorter. ;-)

4 #if TABLE_DRIVEN_MARSHAL

5 # define UNMARSHAL_DISPATCH(name) (marshalIndex_t)name##_MARSHAL_REF

6 # define MARSHAL_DISPATCH(name) (marshalIndex_t)name##_MARSHAL_REF

7 # define _UNMARSHAL_T_ marshalIndex_t

8 # define _MARSHAL_T_ marshalIndex_t

9 #

10 #else

11 # define UNMARSHAL_DISPATCH(name) (UNMARSHAL_t)name##_Unmarshal

12 # define MARSHAL_DISPATCH(name) (MARSHAL_t)name##_Marshal

13 # define _UNMARSHAL_T_ UNMARSHAL_t

14 # define _MARSHAL_T_ MARSHAL_t

15 #endif

The UnmarshalArray() contains the dispatch functions for the unmarshaling code. The defines in this

array are used to make it easier to cross reference the unmarshaling values in the types array of each

command

16 const _UNMARSHAL_T_ UnmarshalArray[] = {

17 #define TPMI_DH_CONTEXT_H_UNMARSHAL 0

18 UNMARSHAL_DISPATCH(TPMI_DH_CONTEXT),

19 #define TPMI_RH_AC_H_UNMARSHAL (TPMI_DH_CONTEXT_H_UNMARSHAL + 1)

20 UNMARSHAL_DISPATCH(TPMI_RH_AC),

21 #define TPMI_RH_ACT_H_UNMARSHAL (TPMI_RH_AC_H_UNMARSHAL + 1)

22 UNMARSHAL_DISPATCH(TPMI_RH_ACT),

23 #define TPMI_RH_CLEAR_H_UNMARSHAL (TPMI_RH_ACT_H_UNMARSHAL + 1)

24 UNMARSHAL_DISPATCH(TPMI_RH_CLEAR),

25 #define TPMI_RH_HIERARCHY_AUTH_H_UNMARSHAL (TPMI_RH_CLEAR_H_UNMARSHAL + 1)

26 UNMARSHAL_DISPATCH(TPMI_RH_HIERARCHY_AUTH),

27 #define TPMI_RH_HIERARCHY_POLICY_H_UNMARSHAL \

28 (TPMI_RH_HIERARCHY_AUTH_H_UNMARSHAL + 1)

29 UNMARSHAL_DISPATCH(TPMI_RH_HIERARCHY_POLICY),

30 #define TPMI_RH_LOCKOUT_H_UNMARSHAL \

31 (TPMI_RH_HIERARCHY_POLICY_H_UNMARSHAL + 1)

32 UNMARSHAL_DISPATCH(TPMI_RH_LOCKOUT),

33 #define TPMI_RH_NV_AUTH_H_UNMARSHAL (TPMI_RH_LOCKOUT_H_UNMARSHAL + 1)

34 UNMARSHAL_DISPATCH(TPMI_RH_NV_AUTH),

35 #define TPMI_RH_NV_INDEX_H_UNMARSHAL (TPMI_RH_NV_AUTH_H_UNMARSHAL + 1)

36 UNMARSHAL_DISPATCH(TPMI_RH_NV_INDEX),

37 #define TPMI_RH_PLATFORM_H_UNMARSHAL (TPMI_RH_NV_INDEX_H_UNMARSHAL + 1)

38 UNMARSHAL_DISPATCH(TPMI_RH_PLATFORM),

39 #define TPMI_RH_PROVISION_H_UNMARSHAL (TPMI_RH_PLATFORM_H_UNMARSHAL + 1)

40 UNMARSHAL_DISPATCH(TPMI_RH_PROVISION),

41 #define TPMI_SH_HMAC_H_UNMARSHAL (TPMI_RH_PROVISION_H_UNMARSHAL + 1)

42 UNMARSHAL_DISPATCH(TPMI_SH_HMAC),

43 #define TPMI_SH_POLICY_H_UNMARSHAL (TPMI_SH_HMAC_H_UNMARSHAL + 1)

44 UNMARSHAL_DISPATCH(TPMI_SH_POLICY),

45 // HANDLE_FIRST_FLAG_TYPE is the first handle that needs a flag when called.

46 #define HANDLE_FIRST_FLAG_TYPE (TPMI_SH_POLICY_H_UNMARSHAL + 1)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

47 #define TPMI_DH_ENTITY_H_UNMARSHAL (TPMI_SH_POLICY_H_UNMARSHAL + 1)

48 UNMARSHAL_DISPATCH(TPMI_DH_ENTITY),

49 #define TPMI_DH_OBJECT_H_UNMARSHAL (TPMI_DH_ENTITY_H_UNMARSHAL + 1)

50 UNMARSHAL_DISPATCH(TPMI_DH_OBJECT),

51 #define TPMI_DH_PARENT_H_UNMARSHAL (TPMI_DH_OBJECT_H_UNMARSHAL + 1)

52 UNMARSHAL_DISPATCH(TPMI_DH_PARENT),

53 #define TPMI_DH_PCR_H_UNMARSHAL (TPMI_DH_PARENT_H_UNMARSHAL + 1)

54 UNMARSHAL_DISPATCH(TPMI_DH_PCR),

55 #define TPMI_RH_ENDORSEMENT_H_UNMARSHAL (TPMI_DH_PCR_H_UNMARSHAL + 1)

56 UNMARSHAL_DISPATCH(TPMI_RH_ENDORSEMENT),

57 #define TPMI_RH_HIERARCHY_H_UNMARSHAL \

58 (TPMI_RH_ENDORSEMENT_H_UNMARSHAL + 1)

59 UNMARSHAL_DISPATCH(TPMI_RH_HIERARCHY),

60 // PARAMETER_FIRST_TYPE marks the end of the handle list.

61 #define PARAMETER_FIRST_TYPE (TPMI_RH_HIERARCHY_H_UNMARSHAL + 1)

62 #define TPM2B_DATA_P_UNMARSHAL (TPMI_RH_HIERARCHY_H_UNMARSHAL + 1)

63 UNMARSHAL_DISPATCH(TPM2B_DATA),

64 #define TPM2B_DIGEST_P_UNMARSHAL (TPM2B_DATA_P_UNMARSHAL + 1)

65 UNMARSHAL_DISPATCH(TPM2B_DIGEST),

66 #define TPM2B_ECC_PARAMETER_P_UNMARSHAL (TPM2B_DIGEST_P_UNMARSHAL + 1)

67 UNMARSHAL_DISPATCH(TPM2B_ECC_PARAMETER),

68 #define TPM2B_ECC_POINT_P_UNMARSHAL \

69 (TPM2B_ECC_PARAMETER_P_UNMARSHAL + 1)

70 UNMARSHAL_DISPATCH(TPM2B_ECC_POINT),

71 #define TPM2B_ENCRYPTED_SECRET_P_UNMARSHAL (TPM2B_ECC_POINT_P_UNMARSHAL + 1)

72 UNMARSHAL_DISPATCH(TPM2B_ENCRYPTED_SECRET),

73 #define TPM2B_EVENT_P_UNMARSHAL \

74 (TPM2B_ENCRYPTED_SECRET_P_UNMARSHAL + 1)

75 UNMARSHAL_DISPATCH(TPM2B_EVENT),

76 #define TPM2B_ID_OBJECT_P_UNMARSHAL (TPM2B_EVENT_P_UNMARSHAL + 1)

77 UNMARSHAL_DISPATCH(TPM2B_ID_OBJECT),

78 #define TPM2B_IV_P_UNMARSHAL (TPM2B_ID_OBJECT_P_UNMARSHAL + 1)

79 UNMARSHAL_DISPATCH(TPM2B_IV),

80 #define TPM2B_MAX_BUFFER_P_UNMARSHAL (TPM2B_IV_P_UNMARSHAL + 1)

81 UNMARSHAL_DISPATCH(TPM2B_MAX_BUFFER),

82 #define TPM2B_MAX_NV_BUFFER_P_UNMARSHAL (TPM2B_MAX_BUFFER_P_UNMARSHAL + 1)

83 UNMARSHAL_DISPATCH(TPM2B_MAX_NV_BUFFER),

84 #define TPM2B_NAME_P_UNMARSHAL \

85 (TPM2B_MAX_NV_BUFFER_P_UNMARSHAL + 1)

86 UNMARSHAL_DISPATCH(TPM2B_NAME),

87 #define TPM2B_NV_PUBLIC_P_UNMARSHAL (TPM2B_NAME_P_UNMARSHAL + 1)

88 UNMARSHAL_DISPATCH(TPM2B_NV_PUBLIC),

89 #define TPM2B_PRIVATE_P_UNMARSHAL (TPM2B_NV_PUBLIC_P_UNMARSHAL + 1)

90 UNMARSHAL_DISPATCH(TPM2B_PRIVATE),

91 #define TPM2B_PUBLIC_KEY_RSA_P_UNMARSHAL (TPM2B_PRIVATE_P_UNMARSHAL + 1)

92 UNMARSHAL_DISPATCH(TPM2B_PUBLIC_KEY_RSA),

93 #define TPM2B_SENSITIVE_P_UNMARSHAL \

94 (TPM2B_PUBLIC_KEY_RSA_P_UNMARSHAL + 1)

95 UNMARSHAL_DISPATCH(TPM2B_SENSITIVE),

96 #define TPM2B_SENSITIVE_CREATE_P_UNMARSHAL (TPM2B_SENSITIVE_P_UNMARSHAL + 1)

97 UNMARSHAL_DISPATCH(TPM2B_SENSITIVE_CREATE),

98 #define TPM2B_SENSITIVE_DATA_P_UNMARSHAL \

99 (TPM2B_SENSITIVE_CREATE_P_UNMARSHAL + 1)

100 UNMARSHAL_DISPATCH(TPM2B_SENSITIVE_DATA),

101 #define TPM2B_TEMPLATE_P_UNMARSHAL \

102 (TPM2B_SENSITIVE_DATA_P_UNMARSHAL + 1)

103 UNMARSHAL_DISPATCH(TPM2B_TEMPLATE),

104 #define TPM2B_TIMEOUT_P_UNMARSHAL (TPM2B_TEMPLATE_P_UNMARSHAL + 1)

105 UNMARSHAL_DISPATCH(TPM2B_TIMEOUT),

106 #define TPMI_DH_CONTEXT_P_UNMARSHAL (TPM2B_TIMEOUT_P_UNMARSHAL + 1)

107 UNMARSHAL_DISPATCH(TPMI_DH_CONTEXT),

108 #define TPMI_DH_PERSISTENT_P_UNMARSHAL (TPMI_DH_CONTEXT_P_UNMARSHAL + 1)

109 UNMARSHAL_DISPATCH(TPMI_DH_PERSISTENT),

110 #define TPMI_ECC_CURVE_P_UNMARSHAL (TPMI_DH_PERSISTENT_P_UNMARSHAL + 1)

111 UNMARSHAL_DISPATCH(TPMI_ECC_CURVE),

112 #define TPMI_YES_NO_P_UNMARSHAL (TPMI_ECC_CURVE_P_UNMARSHAL + 1)

Trusted Platform Module Library Part 4: Supporting Routines

Page 26 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

113 UNMARSHAL_DISPATCH(TPMI_YES_NO),

114 #define TPML_ALG_P_UNMARSHAL (TPMI_YES_NO_P_UNMARSHAL + 1)

115 UNMARSHAL_DISPATCH(TPML_ALG),

116 #define TPML_CC_P_UNMARSHAL (TPML_ALG_P_UNMARSHAL + 1)

117 UNMARSHAL_DISPATCH(TPML_CC),

118 #define TPML_DIGEST_P_UNMARSHAL (TPML_CC_P_UNMARSHAL + 1)

119 UNMARSHAL_DISPATCH(TPML_DIGEST),

120 #define TPML_DIGEST_VALUES_P_UNMARSHAL (TPML_DIGEST_P_UNMARSHAL + 1)

121 UNMARSHAL_DISPATCH(TPML_DIGEST_VALUES),

122 #define TPML_PCR_SELECTION_P_UNMARSHAL (TPML_DIGEST_VALUES_P_UNMARSHAL + 1)

123 UNMARSHAL_DISPATCH(TPML_PCR_SELECTION),

124 #define TPMS_CONTEXT_P_UNMARSHAL (TPML_PCR_SELECTION_P_UNMARSHAL + 1)

125 UNMARSHAL_DISPATCH(TPMS_CONTEXT),

126 #define TPMT_PUBLIC_PARMS_P_UNMARSHAL (TPMS_CONTEXT_P_UNMARSHAL + 1)

127 UNMARSHAL_DISPATCH(TPMT_PUBLIC_PARMS),

128 #define TPMT_TK_AUTH_P_UNMARSHAL (TPMT_PUBLIC_PARMS_P_UNMARSHAL + 1)

129 UNMARSHAL_DISPATCH(TPMT_TK_AUTH),

130 #define TPMT_TK_CREATION_P_UNMARSHAL (TPMT_TK_AUTH_P_UNMARSHAL + 1)

131 UNMARSHAL_DISPATCH(TPMT_TK_CREATION),

132 #define TPMT_TK_HASHCHECK_P_UNMARSHAL (TPMT_TK_CREATION_P_UNMARSHAL + 1)

133 UNMARSHAL_DISPATCH(TPMT_TK_HASHCHECK),

134 #define TPMT_TK_VERIFIED_P_UNMARSHAL (TPMT_TK_HASHCHECK_P_UNMARSHAL + 1)

135 UNMARSHAL_DISPATCH(TPMT_TK_VERIFIED),

136 #define TPM_AT_P_UNMARSHAL (TPMT_TK_VERIFIED_P_UNMARSHAL + 1)

137 UNMARSHAL_DISPATCH(TPM_AT),

138 #define TPM_CAP_P_UNMARSHAL (TPM_AT_P_UNMARSHAL + 1)

139 UNMARSHAL_DISPATCH(TPM_CAP),

140 #define TPM_CLOCK_ADJUST_P_UNMARSHAL (TPM_CAP_P_UNMARSHAL + 1)

141 UNMARSHAL_DISPATCH(TPM_CLOCK_ADJUST),

142 #define TPM_EO_P_UNMARSHAL (TPM_CLOCK_ADJUST_P_UNMARSHAL + 1)

143 UNMARSHAL_DISPATCH(TPM_EO),

144 #define TPM_SE_P_UNMARSHAL (TPM_EO_P_UNMARSHAL + 1)

145 UNMARSHAL_DISPATCH(TPM_SE),

146 #define TPM_SU_P_UNMARSHAL (TPM_SE_P_UNMARSHAL + 1)

147 UNMARSHAL_DISPATCH(TPM_SU),

148 #define UINT16_P_UNMARSHAL (TPM_SU_P_UNMARSHAL + 1)

149 UNMARSHAL_DISPATCH(UINT16),

150 #define UINT32_P_UNMARSHAL (UINT16_P_UNMARSHAL + 1)

151 UNMARSHAL_DISPATCH(UINT32),

152 #define UINT64_P_UNMARSHAL (UINT32_P_UNMARSHAL + 1)

153 UNMARSHAL_DISPATCH(UINT64),

154 #define UINT8_P_UNMARSHAL (UINT64_P_UNMARSHAL + 1)

155 UNMARSHAL_DISPATCH(UINT8),

156 // PARAMETER_FIRST_FLAG_TYPE is the first parameter to need a flag.

157 #define PARAMETER_FIRST_FLAG_TYPE (UINT8_P_UNMARSHAL + 1)

158 #define TPM2B_PUBLIC_P_UNMARSHAL (UINT8_P_UNMARSHAL + 1)

159 UNMARSHAL_DISPATCH(TPM2B_PUBLIC),

160 #define TPMI_ALG_CIPHER_MODE_P_UNMARSHAL (TPM2B_PUBLIC_P_UNMARSHAL + 1)

161 UNMARSHAL_DISPATCH(TPMI_ALG_CIPHER_MODE),

162 #define TPMI_ALG_HASH_P_UNMARSHAL \

163 (TPMI_ALG_CIPHER_MODE_P_UNMARSHAL + 1)

164 UNMARSHAL_DISPATCH(TPMI_ALG_HASH),

165 #define TPMI_ALG_MAC_SCHEME_P_UNMARSHAL (TPMI_ALG_HASH_P_UNMARSHAL + 1)

166 UNMARSHAL_DISPATCH(TPMI_ALG_MAC_SCHEME),

167 #define TPMI_DH_PCR_P_UNMARSHAL \

168 (TPMI_ALG_MAC_SCHEME_P_UNMARSHAL + 1)

169 UNMARSHAL_DISPATCH(TPMI_DH_PCR),

170 #define TPMI_ECC_KEY_EXCHANGE_P_UNMARSHAL (TPMI_DH_PCR_P_UNMARSHAL + 1)

171 UNMARSHAL_DISPATCH(TPMI_ECC_KEY_EXCHANGE),

172 #define TPMI_RH_ENABLES_P_UNMARSHAL \

173 (TPMI_ECC_KEY_EXCHANGE_P_UNMARSHAL + 1)

174 UNMARSHAL_DISPATCH(TPMI_RH_ENABLES),

175 #define TPMI_RH_HIERARCHY_P_UNMARSHAL (TPMI_RH_ENABLES_P_UNMARSHAL + 1)

176 UNMARSHAL_DISPATCH(TPMI_RH_HIERARCHY),

177 #define TPMT_RSA_DECRYPT_P_UNMARSHAL (TPMI_RH_HIERARCHY_P_UNMARSHAL + 1)

178 UNMARSHAL_DISPATCH(TPMT_RSA_DECRYPT),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

179 #define TPMT_SIGNATURE_P_UNMARSHAL (TPMT_RSA_DECRYPT_P_UNMARSHAL + 1)

180 UNMARSHAL_DISPATCH(TPMT_SIGNATURE),

181 #define TPMT_SIG_SCHEME_P_UNMARSHAL (TPMT_SIGNATURE_P_UNMARSHAL + 1)

182 UNMARSHAL_DISPATCH(TPMT_SIG_SCHEME),

183 #define TPMT_SYM_DEF_P_UNMARSHAL (TPMT_SIG_SCHEME_P_UNMARSHAL + 1)

184 UNMARSHAL_DISPATCH(TPMT_SYM_DEF),

185 #define TPMT_SYM_DEF_OBJECT_P_UNMARSHAL (TPMT_SYM_DEF_P_UNMARSHAL + 1)

186 UNMARSHAL_DISPATCH(TPMT_SYM_DEF_OBJECT)

187 // PARAMETER_LAST_TYPE is the end of the command parameter list.

188 #define PARAMETER_LAST_TYPE (TPMT_SYM_DEF_OBJECT_P_UNMARSHAL)

189 };

The MarshalArray() contains the dispatch functions for the marshaling code. The defines in this array are

used to make it easier to cross reference the marshaling values in the types array of each command

190 const _MARSHAL_T_ MarshalArray[] = {

191

192 #define UINT32_H_MARSHAL 0

193 MARSHAL_DISPATCH(UINT32),

194 // RESPONSE_PARAMETER_FIRST_TYPE marks the end of the response handles.

195 #define RESPONSE_PARAMETER_FIRST_TYPE (UINT32_H_MARSHAL + 1)

196 #define TPM2B_ATTEST_P_MARSHAL (UINT32_H_MARSHAL + 1)

197 MARSHAL_DISPATCH(TPM2B_ATTEST),

198 #define TPM2B_CREATION_DATA_P_MARSHAL (TPM2B_ATTEST_P_MARSHAL + 1)

199 MARSHAL_DISPATCH(TPM2B_CREATION_DATA),

200 #define TPM2B_DATA_P_MARSHAL (TPM2B_CREATION_DATA_P_MARSHAL + 1)

201 MARSHAL_DISPATCH(TPM2B_DATA),

202 #define TPM2B_DIGEST_P_MARSHAL (TPM2B_DATA_P_MARSHAL + 1)

203 MARSHAL_DISPATCH(TPM2B_DIGEST),

204 #define TPM2B_ECC_POINT_P_MARSHAL (TPM2B_DIGEST_P_MARSHAL + 1)

205 MARSHAL_DISPATCH(TPM2B_ECC_POINT),

206 #define TPM2B_ENCRYPTED_SECRET_P_MARSHAL (TPM2B_ECC_POINT_P_MARSHAL + 1)

207 MARSHAL_DISPATCH(TPM2B_ENCRYPTED_SECRET),

208 #define TPM2B_ID_OBJECT_P_MARSHAL \

209 (TPM2B_ENCRYPTED_SECRET_P_MARSHAL + 1)

210 MARSHAL_DISPATCH(TPM2B_ID_OBJECT),

211 #define TPM2B_IV_P_MARSHAL (TPM2B_ID_OBJECT_P_MARSHAL + 1)

212 MARSHAL_DISPATCH(TPM2B_IV),

213 #define TPM2B_MAX_BUFFER_P_MARSHAL (TPM2B_IV_P_MARSHAL + 1)

214 MARSHAL_DISPATCH(TPM2B_MAX_BUFFER),

215 #define TPM2B_MAX_NV_BUFFER_P_MARSHAL (TPM2B_MAX_BUFFER_P_MARSHAL + 1)

216 MARSHAL_DISPATCH(TPM2B_MAX_NV_BUFFER),

217 #define TPM2B_NAME_P_MARSHAL (TPM2B_MAX_NV_BUFFER_P_MARSHAL + 1)

218 MARSHAL_DISPATCH(TPM2B_NAME),

219 #define TPM2B_NV_PUBLIC_P_MARSHAL (TPM2B_NAME_P_MARSHAL + 1)

220 MARSHAL_DISPATCH(TPM2B_NV_PUBLIC),

221 #define TPM2B_PRIVATE_P_MARSHAL (TPM2B_NV_PUBLIC_P_MARSHAL + 1)

222 MARSHAL_DISPATCH(TPM2B_PRIVATE),

223 #define TPM2B_PUBLIC_P_MARSHAL (TPM2B_PRIVATE_P_MARSHAL + 1)

224 MARSHAL_DISPATCH(TPM2B_PUBLIC),

225 #define TPM2B_PUBLIC_KEY_RSA_P_MARSHAL (TPM2B_PUBLIC_P_MARSHAL + 1)

226 MARSHAL_DISPATCH(TPM2B_PUBLIC_KEY_RSA),

227 #define TPM2B_SENSITIVE_DATA_P_MARSHAL (TPM2B_PUBLIC_KEY_RSA_P_MARSHAL + 1)

228 MARSHAL_DISPATCH(TPM2B_SENSITIVE_DATA),

229 #define TPM2B_TIMEOUT_P_MARSHAL (TPM2B_SENSITIVE_DATA_P_MARSHAL + 1)

230 MARSHAL_DISPATCH(TPM2B_TIMEOUT),

231 #define UINT8_P_MARSHAL (TPM2B_TIMEOUT_P_MARSHAL + 1)

232 MARSHAL_DISPATCH(UINT8),

233 #define TPML_AC_CAPABILITIES_P_MARSHAL (UINT8_P_MARSHAL + 1)

234 MARSHAL_DISPATCH(TPML_AC_CAPABILITIES),

235 #define TPML_ALG_P_MARSHAL (TPML_AC_CAPABILITIES_P_MARSHAL + 1)

236 MARSHAL_DISPATCH(TPML_ALG),

237 #define TPML_DIGEST_P_MARSHAL (TPML_ALG_P_MARSHAL + 1)

238 MARSHAL_DISPATCH(TPML_DIGEST),

239 #define TPML_DIGEST_VALUES_P_MARSHAL (TPML_DIGEST_P_MARSHAL + 1)

Trusted Platform Module Library Part 4: Supporting Routines

Page 28 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

240 MARSHAL_DISPATCH(TPML_DIGEST_VALUES),

241 #define TPML_PCR_SELECTION_P_MARSHAL (TPML_DIGEST_VALUES_P_MARSHAL + 1)

242 MARSHAL_DISPATCH(TPML_PCR_SELECTION),

243 #define TPMS_AC_OUTPUT_P_MARSHAL (TPML_PCR_SELECTION_P_MARSHAL + 1)

244 MARSHAL_DISPATCH(TPMS_AC_OUTPUT),

245 #define TPMS_ALGORITHM_DETAIL_ECC_P_MARSHAL (TPMS_AC_OUTPUT_P_MARSHAL + 1)

246 MARSHAL_DISPATCH(TPMS_ALGORITHM_DETAIL_ECC),

247 #define TPMS_CAPABILITY_DATA_P_MARSHAL \

248 (TPMS_ALGORITHM_DETAIL_ECC_P_MARSHAL + 1)

249 MARSHAL_DISPATCH(TPMS_CAPABILITY_DATA),

250 #define TPMS_CONTEXT_P_MARSHAL (TPMS_CAPABILITY_DATA_P_MARSHAL + 1)

251 MARSHAL_DISPATCH(TPMS_CONTEXT),

252 #define TPMS_TIME_INFO_P_MARSHAL (TPMS_CONTEXT_P_MARSHAL + 1)

253 MARSHAL_DISPATCH(TPMS_TIME_INFO),

254 #define TPMT_HA_P_MARSHAL (TPMS_TIME_INFO_P_MARSHAL + 1)

255 MARSHAL_DISPATCH(TPMT_HA),

256 #define TPMT_SIGNATURE_P_MARSHAL (TPMT_HA_P_MARSHAL + 1)

257 MARSHAL_DISPATCH(TPMT_SIGNATURE),

258 #define TPMT_TK_AUTH_P_MARSHAL (TPMT_SIGNATURE_P_MARSHAL + 1)

259 MARSHAL_DISPATCH(TPMT_TK_AUTH),

260 #define TPMT_TK_CREATION_P_MARSHAL (TPMT_TK_AUTH_P_MARSHAL + 1)

261 MARSHAL_DISPATCH(TPMT_TK_CREATION),

262 #define TPMT_TK_HASHCHECK_P_MARSHAL (TPMT_TK_CREATION_P_MARSHAL + 1)

263 MARSHAL_DISPATCH(TPMT_TK_HASHCHECK),

264 #define TPMT_TK_VERIFIED_P_MARSHAL (TPMT_TK_HASHCHECK_P_MARSHAL + 1)

265 MARSHAL_DISPATCH(TPMT_TK_VERIFIED),

266 #define UINT32_P_MARSHAL (TPMT_TK_VERIFIED_P_MARSHAL + 1)

267 MARSHAL_DISPATCH(UINT32),

268 #define UINT16_P_MARSHAL (UINT32_P_MARSHAL + 1)

269 MARSHAL_DISPATCH(UINT16)

270 // RESPONSE_PARAMETER_LAST_TYPE is the end of the response parameter list.

271 #define RESPONSE_PARAMETER_LAST_TYPE (UINT16_P_MARSHAL)

272 };

This list of aliases allows the types in the _COMMAND_DESCRIPTOR_T to match the types in the

command/response templates of part 3.

273 #define INT32_P_UNMARSHAL UINT32_P_UNMARSHAL

274 #define TPM2B_AUTH_P_UNMARSHAL TPM2B_DIGEST_P_UNMARSHAL

275 #define TPM2B_NONCE_P_UNMARSHAL TPM2B_DIGEST_P_UNMARSHAL

276 #define TPM2B_OPERAND_P_UNMARSHAL TPM2B_DIGEST_P_UNMARSHAL

277 #define TPMA_LOCALITY_P_UNMARSHAL UINT8_P_UNMARSHAL

278 #define TPM_CC_P_UNMARSHAL UINT32_P_UNMARSHAL

279 #define TPMI_DH_CONTEXT_H_MARSHAL UINT32_H_MARSHAL

280 #define TPMI_DH_OBJECT_H_MARSHAL UINT32_H_MARSHAL

281 #define TPMI_SH_AUTH_SESSION_H_MARSHAL UINT32_H_MARSHAL

282 #define TPM_HANDLE_H_MARSHAL UINT32_H_MARSHAL

283 #define TPM2B_NONCE_P_MARSHAL TPM2B_DIGEST_P_MARSHAL

284 #define TPMI_YES_NO_P_MARSHAL UINT8_P_MARSHAL

285 #define TPM_RC_P_MARSHAL UINT32_P_MARSHAL

286 #if CC_Startup

287 #include "Startup_fp.h"

288 typedef TPM_RC (Startup_Entry)(

289 Startup_In *in

290);

291 typedef const struct {

292 Startup_Entry *entry;

293 UINT16 inSize;

294 UINT16 outSize;

295 UINT16 offsetOfTypes;

296 BYTE types[3];

297 } Startup_COMMAND_DESCRIPTOR_t;

298 Startup_COMMAND_DESCRIPTOR_t _StartupData = {

299 /* entry */ &TPM2_Startup,

300 /* inSize */ (UINT16)(sizeof(Startup_In)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

301 /* outSize */ 0,

302 /* offsetOfTypes */ offsetof(Startup_COMMAND_DESCRIPTOR_t, types),

303 /* offsets */ // No parameter offsets;

304 /* types */ {TPM_SU_P_UNMARSHAL,

305 END_OF_LIST,

306 END_OF_LIST}

307 };

308 #define _StartupDataAddress (&_StartupData)

309 #else

310 #define _StartupDataAddress 0

311 #endif // CC_Startup

312 #if CC_Shutdown

313 #include "Shutdown_fp.h"

314 typedef TPM_RC (Shutdown_Entry)(

315 Shutdown_In *in

316);

317 typedef const struct {

318 Shutdown_Entry *entry;

319 UINT16 inSize;

320 UINT16 outSize;

321 UINT16 offsetOfTypes;

322 BYTE types[3];

323 } Shutdown_COMMAND_DESCRIPTOR_t;

324 Shutdown_COMMAND_DESCRIPTOR_t _ShutdownData = {

325 /* entry */ &TPM2_Shutdown,

326 /* inSize */ (UINT16)(sizeof(Shutdown_In)),

327 /* outSize */ 0,

328 /* offsetOfTypes */ offsetof(Shutdown_COMMAND_DESCRIPTOR_t, types),

329 /* offsets */ // No parameter offsets;

330 /* types */ {TPM_SU_P_UNMARSHAL,

331 END_OF_LIST,

332 END_OF_LIST}

333 };

334 #define _ShutdownDataAddress (&_ShutdownData)

335 #else

336 #define _ShutdownDataAddress 0

337 #endif // CC_Shutdown

338 #if CC_SelfTest

339 #include "SelfTest_fp.h"

340 typedef TPM_RC (SelfTest_Entry)(

341 SelfTest_In *in

342);

343 typedef const struct {

344 SelfTest_Entry *entry;

345 UINT16 inSize;

346 UINT16 outSize;

347 UINT16 offsetOfTypes;

348 BYTE types[3];

349 } SelfTest_COMMAND_DESCRIPTOR_t;

350 SelfTest_COMMAND_DESCRIPTOR_t _SelfTestData = {

351 /* entry */ &TPM2_SelfTest,

352 /* inSize */ (UINT16)(sizeof(SelfTest_In)),

353 /* outSize */ 0,

354 /* offsetOfTypes */ offsetof(SelfTest_COMMAND_DESCRIPTOR_t, types),

355 /* offsets */ // No parameter offsets;

356 /* types */ {TPMI_YES_NO_P_UNMARSHAL,

357 END_OF_LIST,

358 END_OF_LIST}

359 };

360 #define _SelfTestDataAddress (&_SelfTestData)

361 #else

362 #define _SelfTestDataAddress 0

363 #endif // CC_SelfTest

364 #if CC_IncrementalSelfTest

365 #include "IncrementalSelfTest_fp.h"

366 typedef TPM_RC (IncrementalSelfTest_Entry)(

Trusted Platform Module Library Part 4: Supporting Routines

Page 30 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

367 IncrementalSelfTest_In *in,

368 IncrementalSelfTest_Out *out

369);

370 typedef const struct {

371 IncrementalSelfTest_Entry *entry;

372 UINT16 inSize;

373 UINT16 outSize;

374 UINT16 offsetOfTypes;

375 BYTE types[4];

376 } IncrementalSelfTest_COMMAND_DESCRIPTOR_t;

377 IncrementalSelfTest_COMMAND_DESCRIPTOR_t _IncrementalSelfTestData = {

378 /* entry */ &TPM2_IncrementalSelfTest,

379 /* inSize */ (UINT16)(sizeof(IncrementalSelfTest_In)),

380 /* outSize */ (UINT16)(sizeof(IncrementalSelfTest_Out)),

381 /* offsetOfTypes */ offsetof(IncrementalSelfTest_COMMAND_DESCRIPTOR_t,

types),

382 /* offsets */ // No parameter offsets;

383 /* types */ {TPML_ALG_P_UNMARSHAL,

384 END_OF_LIST,

385 TPML_ALG_P_MARSHAL,

386 END_OF_LIST}

387 };

388 #define _IncrementalSelfTestDataAddress (&_IncrementalSelfTestData)

389 #else

390 #define _IncrementalSelfTestDataAddress 0

391 #endif // CC_IncrementalSelfTest

392 #if CC_GetTestResult

393 #include "GetTestResult_fp.h"

394 typedef TPM_RC (GetTestResult_Entry)(

395 GetTestResult_Out *out

396);

397 typedef const struct {

398 GetTestResult_Entry *entry;

399 UINT16 inSize;

400 UINT16 outSize;

401 UINT16 offsetOfTypes;

402 UINT16 paramOffsets[1];

403 BYTE types[4];

404 } GetTestResult_COMMAND_DESCRIPTOR_t;

405 GetTestResult_COMMAND_DESCRIPTOR_t _GetTestResultData = {

406 /* entry */ &TPM2_GetTestResult,

407 /* inSize */ 0,

408 /* outSize */ (UINT16)(sizeof(GetTestResult_Out)),

409 /* offsetOfTypes */ offsetof(GetTestResult_COMMAND_DESCRIPTOR_t, types),

410 /* offsets */ {(UINT16)(offsetof(GetTestResult_Out, testResult))},

411 /* types */ {END_OF_LIST,

412 TPM2B_MAX_BUFFER_P_MARSHAL,

413 TPM_RC_P_MARSHAL,

414 END_OF_LIST}

415 };

416 #define _GetTestResultDataAddress (&_GetTestResultData)

417 #else

418 #define _GetTestResultDataAddress 0

419 #endif // CC_GetTestResult

420 #if CC_StartAuthSession

421 #include "StartAuthSession_fp.h"

422 typedef TPM_RC (StartAuthSession_Entry)(

423 StartAuthSession_In *in,

424 StartAuthSession_Out *out

425);

426 typedef const struct {

427 StartAuthSession_Entry *entry;

428 UINT16 inSize;

429 UINT16 outSize;

430 UINT16 offsetOfTypes;

431 UINT16 paramOffsets[7];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

432 BYTE types[11];

433 } StartAuthSession_COMMAND_DESCRIPTOR_t;

434 StartAuthSession_COMMAND_DESCRIPTOR_t _StartAuthSessionData = {

435 /* entry */ &TPM2_StartAuthSession,

436 /* inSize */ (UINT16)(sizeof(StartAuthSession_In)),

437 /* outSize */ (UINT16)(sizeof(StartAuthSession_Out)),

438 /* offsetOfTypes */ offsetof(StartAuthSession_COMMAND_DESCRIPTOR_t, types),

439 /* offsets */ {(UINT16)(offsetof(StartAuthSession_In, bind)),

440 (UINT16)(offsetof(StartAuthSession_In, nonceCaller)),

441 (UINT16)(offsetof(StartAuthSession_In, encryptedSalt)),

442 (UINT16)(offsetof(StartAuthSession_In, sessionType)),

443 (UINT16)(offsetof(StartAuthSession_In, symmetric)),

444 (UINT16)(offsetof(StartAuthSession_In, authHash)),

445 (UINT16)(offsetof(StartAuthSession_Out, nonceTPM))},

446 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

447 TPMI_DH_ENTITY_H_UNMARSHAL + ADD_FLAG,

448 TPM2B_NONCE_P_UNMARSHAL,

449 TPM2B_ENCRYPTED_SECRET_P_UNMARSHAL,

450 TPM_SE_P_UNMARSHAL,

451 TPMT_SYM_DEF_P_UNMARSHAL + ADD_FLAG,

452 TPMI_ALG_HASH_P_UNMARSHAL,

453 END_OF_LIST,

454 TPMI_SH_AUTH_SESSION_H_MARSHAL,

455 TPM2B_NONCE_P_MARSHAL,

456 END_OF_LIST}

457 };

458 #define _StartAuthSessionDataAddress (&_StartAuthSessionData)

459 #else

460 #define _StartAuthSessionDataAddress 0

461 #endif // CC_StartAuthSession

462 #if CC_PolicyRestart

463 #include "PolicyRestart_fp.h"

464 typedef TPM_RC (PolicyRestart_Entry)(

465 PolicyRestart_In *in

466);

467 typedef const struct {

468 PolicyRestart_Entry *entry;

469 UINT16 inSize;

470 UINT16 outSize;

471 UINT16 offsetOfTypes;

472 BYTE types[3];

473 } PolicyRestart_COMMAND_DESCRIPTOR_t;

474 PolicyRestart_COMMAND_DESCRIPTOR_t _PolicyRestartData = {

475 /* entry */ &TPM2_PolicyRestart,

476 /* inSize */ (UINT16)(sizeof(PolicyRestart_In)),

477 /* outSize */ 0,

478 /* offsetOfTypes */ offsetof(PolicyRestart_COMMAND_DESCRIPTOR_t, types),

479 /* offsets */ // No parameter offsets;

480 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

481 END_OF_LIST,

482 END_OF_LIST}

483 };

484 #define _PolicyRestartDataAddress (&_PolicyRestartData)

485 #else

486 #define _PolicyRestartDataAddress 0

487 #endif // CC_PolicyRestart

488 #if CC_Create

489 #include "Create_fp.h"

490 typedef TPM_RC (Create_Entry)(

491 Create_In *in,

492 Create_Out *out

493);

494 typedef const struct {

495 Create_Entry *entry;

496 UINT16 inSize;

497 UINT16 outSize;

Trusted Platform Module Library Part 4: Supporting Routines

Page 32 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

498 UINT16 offsetOfTypes;

499 UINT16 paramOffsets[8];

500 BYTE types[12];

501 } Create_COMMAND_DESCRIPTOR_t;

502 Create_COMMAND_DESCRIPTOR_t _CreateData = {

503 /* entry */ &TPM2_Create,

504 /* inSize */ (UINT16)(sizeof(Create_In)),

505 /* outSize */ (UINT16)(sizeof(Create_Out)),

506 /* offsetOfTypes */ offsetof(Create_COMMAND_DESCRIPTOR_t, types),

507 /* offsets */ {(UINT16)(offsetof(Create_In, inSensitive)),

508 (UINT16)(offsetof(Create_In, inPublic)),

509 (UINT16)(offsetof(Create_In, outsideInfo)),

510 (UINT16)(offsetof(Create_In, creationPCR)),

511 (UINT16)(offsetof(Create_Out, outPublic)),

512 (UINT16)(offsetof(Create_Out, creationData)),

513 (UINT16)(offsetof(Create_Out, creationHash)),

514 (UINT16)(offsetof(Create_Out, creationTicket))},

515 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

516 TPM2B_SENSITIVE_CREATE_P_UNMARSHAL,

517 TPM2B_PUBLIC_P_UNMARSHAL,

518 TPM2B_DATA_P_UNMARSHAL,

519 TPML_PCR_SELECTION_P_UNMARSHAL,

520 END_OF_LIST,

521 TPM2B_PRIVATE_P_MARSHAL,

522 TPM2B_PUBLIC_P_MARSHAL,

523 TPM2B_CREATION_DATA_P_MARSHAL,

524 TPM2B_DIGEST_P_MARSHAL,

525 TPMT_TK_CREATION_P_MARSHAL,

526 END_OF_LIST}

527 };

528 #define _CreateDataAddress (&_CreateData)

529 #else

530 #define _CreateDataAddress 0

531 #endif // CC_Create

532 #if CC_Load

533 #include "Load_fp.h"

534 typedef TPM_RC (Load_Entry)(

535 Load_In *in,

536 Load_Out *out

537);

538 typedef const struct {

539 Load_Entry *entry;

540 UINT16 inSize;

541 UINT16 outSize;

542 UINT16 offsetOfTypes;

543 UINT16 paramOffsets[3];

544 BYTE types[7];

545 } Load_COMMAND_DESCRIPTOR_t;

546 Load_COMMAND_DESCRIPTOR_t _LoadData = {

547 /* entry */ &TPM2_Load,

548 /* inSize */ (UINT16)(sizeof(Load_In)),

549 /* outSize */ (UINT16)(sizeof(Load_Out)),

550 /* offsetOfTypes */ offsetof(Load_COMMAND_DESCRIPTOR_t, types),

551 /* offsets */ {(UINT16)(offsetof(Load_In, inPrivate)),

552 (UINT16)(offsetof(Load_In, inPublic)),

553 (UINT16)(offsetof(Load_Out, name))},

554 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

555 TPM2B_PRIVATE_P_UNMARSHAL,

556 TPM2B_PUBLIC_P_UNMARSHAL,

557 END_OF_LIST,

558 TPM_HANDLE_H_MARSHAL,

559 TPM2B_NAME_P_MARSHAL,

560 END_OF_LIST}

561 };

562 #define _LoadDataAddress (&_LoadData)

563 #else

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

564 #define _LoadDataAddress 0

565 #endif // CC_Load

566 #if CC_LoadExternal

567 #include "LoadExternal_fp.h"

568 typedef TPM_RC (LoadExternal_Entry)(

569 LoadExternal_In *in,

570 LoadExternal_Out *out

571);

572 typedef const struct {

573 LoadExternal_Entry *entry;

574 UINT16 inSize;

575 UINT16 outSize;

576 UINT16 offsetOfTypes;

577 UINT16 paramOffsets[3];

578 BYTE types[7];

579 } LoadExternal_COMMAND_DESCRIPTOR_t;

580 LoadExternal_COMMAND_DESCRIPTOR_t _LoadExternalData = {

581 /* entry */ &TPM2_LoadExternal,

582 /* inSize */ (UINT16)(sizeof(LoadExternal_In)),

583 /* outSize */ (UINT16)(sizeof(LoadExternal_Out)),

584 /* offsetOfTypes */ offsetof(LoadExternal_COMMAND_DESCRIPTOR_t, types),

585 /* offsets */ {(UINT16)(offsetof(LoadExternal_In, inPublic)),

586 (UINT16)(offsetof(LoadExternal_In, hierarchy)),

587 (UINT16)(offsetof(LoadExternal_Out, name))},

588 /* types */ {TPM2B_SENSITIVE_P_UNMARSHAL,

589 TPM2B_PUBLIC_P_UNMARSHAL + ADD_FLAG,

590 TPMI_RH_HIERARCHY_P_UNMARSHAL + ADD_FLAG,

591 END_OF_LIST,

592 TPM_HANDLE_H_MARSHAL,

593 TPM2B_NAME_P_MARSHAL,

594 END_OF_LIST}

595 };

596 #define _LoadExternalDataAddress (&_LoadExternalData)

597 #else

598 #define _LoadExternalDataAddress 0

599 #endif // CC_LoadExternal

600 #if CC_ReadPublic

601 #include "ReadPublic_fp.h"

602 typedef TPM_RC (ReadPublic_Entry)(

603 ReadPublic_In *in,

604 ReadPublic_Out *out

605);

606 typedef const struct {

607 ReadPublic_Entry *entry;

608 UINT16 inSize;

609 UINT16 outSize;

610 UINT16 offsetOfTypes;

611 UINT16 paramOffsets[2];

612 BYTE types[6];

613 } ReadPublic_COMMAND_DESCRIPTOR_t;

614 ReadPublic_COMMAND_DESCRIPTOR_t _ReadPublicData = {

615 /* entry */ &TPM2_ReadPublic,

616 /* inSize */ (UINT16)(sizeof(ReadPublic_In)),

617 /* outSize */ (UINT16)(sizeof(ReadPublic_Out)),

618 /* offsetOfTypes */ offsetof(ReadPublic_COMMAND_DESCRIPTOR_t, types),

619 /* offsets */ {(UINT16)(offsetof(ReadPublic_Out, name)),

620 (UINT16)(offsetof(ReadPublic_Out, qualifiedName))},

621 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

622 END_OF_LIST,

623 TPM2B_PUBLIC_P_MARSHAL,

624 TPM2B_NAME_P_MARSHAL,

625 TPM2B_NAME_P_MARSHAL,

626 END_OF_LIST}

627 };

628 #define _ReadPublicDataAddress (&_ReadPublicData)

629 #else

Trusted Platform Module Library Part 4: Supporting Routines

Page 34 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

630 #define _ReadPublicDataAddress 0

631 #endif // CC_ReadPublic

632 #if CC_ActivateCredential

633 #include "ActivateCredential_fp.h"

634 typedef TPM_RC (ActivateCredential_Entry)(

635 ActivateCredential_In *in,

636 ActivateCredential_Out *out

637);

638 typedef const struct {

639 ActivateCredential_Entry *entry;

640 UINT16 inSize;

641 UINT16 outSize;

642 UINT16 offsetOfTypes;

643 UINT16 paramOffsets[3];

644 BYTE types[7];

645 } ActivateCredential_COMMAND_DESCRIPTOR_t;

646 ActivateCredential_COMMAND_DESCRIPTOR_t _ActivateCredentialData = {

647 /* entry */ &TPM2_ActivateCredential,

648 /* inSize */ (UINT16)(sizeof(ActivateCredential_In)),

649 /* outSize */ (UINT16)(sizeof(ActivateCredential_Out)),

650 /* offsetOfTypes */ offsetof(ActivateCredential_COMMAND_DESCRIPTOR_t,

types),

651 /* offsets */ {(UINT16)(offsetof(ActivateCredential_In, keyHandle)),

652 (UINT16)(offsetof(ActivateCredential_In,

credentialBlob)),

653 (UINT16)(offsetof(ActivateCredential_In, secret))},

654 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

655 TPMI_DH_OBJECT_H_UNMARSHAL,

656 TPM2B_ID_OBJECT_P_UNMARSHAL,

657 TPM2B_ENCRYPTED_SECRET_P_UNMARSHAL,

658 END_OF_LIST,

659 TPM2B_DIGEST_P_MARSHAL,

660 END_OF_LIST}

661 };

662 #define _ActivateCredentialDataAddress (&_ActivateCredentialData)

663 #else

664 #define _ActivateCredentialDataAddress 0

665 #endif // CC_ActivateCredential

666 #if CC_MakeCredential

667 #include "MakeCredential_fp.h"

668 typedef TPM_RC (MakeCredential_Entry)(

669 MakeCredential_In *in,

670 MakeCredential_Out *out

671);

672 typedef const struct {

673 MakeCredential_Entry *entry;

674 UINT16 inSize;

675 UINT16 outSize;

676 UINT16 offsetOfTypes;

677 UINT16 paramOffsets[3];

678 BYTE types[7];

679 } MakeCredential_COMMAND_DESCRIPTOR_t;

680 MakeCredential_COMMAND_DESCRIPTOR_t _MakeCredentialData = {

681 /* entry */ &TPM2_MakeCredential,

682 /* inSize */ (UINT16)(sizeof(MakeCredential_In)),

683 /* outSize */ (UINT16)(sizeof(MakeCredential_Out)),

684 /* offsetOfTypes */ offsetof(MakeCredential_COMMAND_DESCRIPTOR_t, types),

685 /* offsets */ {(UINT16)(offsetof(MakeCredential_In, credential)),

686 (UINT16)(offsetof(MakeCredential_In, objectName)),

687 (UINT16)(offsetof(MakeCredential_Out, secret))},

688 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

689 TPM2B_DIGEST_P_UNMARSHAL,

690 TPM2B_NAME_P_UNMARSHAL,

691 END_OF_LIST,

692 TPM2B_ID_OBJECT_P_MARSHAL,

693 TPM2B_ENCRYPTED_SECRET_P_MARSHAL,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

694 END_OF_LIST}

695 };

696 #define _MakeCredentialDataAddress (&_MakeCredentialData)

697 #else

698 #define _MakeCredentialDataAddress 0

699 #endif // CC_MakeCredential

700 #if CC_Unseal

701 #include "Unseal_fp.h"

702 typedef TPM_RC (Unseal_Entry)(

703 Unseal_In *in,

704 Unseal_Out *out

705);

706 typedef const struct {

707 Unseal_Entry *entry;

708 UINT16 inSize;

709 UINT16 outSize;

710 UINT16 offsetOfTypes;

711 BYTE types[4];

712 } Unseal_COMMAND_DESCRIPTOR_t;

713 Unseal_COMMAND_DESCRIPTOR_t _UnsealData = {

714 /* entry */ &TPM2_Unseal,

715 /* inSize */ (UINT16)(sizeof(Unseal_In)),

716 /* outSize */ (UINT16)(sizeof(Unseal_Out)),

717 /* offsetOfTypes */ offsetof(Unseal_COMMAND_DESCRIPTOR_t, types),

718 /* offsets */ // No parameter offsets;

719 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

720 END_OF_LIST,

721 TPM2B_SENSITIVE_DATA_P_MARSHAL,

722 END_OF_LIST}

723 };

724 #define _UnsealDataAddress (&_UnsealData)

725 #else

726 #define _UnsealDataAddress 0

727 #endif // CC_Unseal

728 #if CC_ObjectChangeAuth

729 #include "ObjectChangeAuth_fp.h"

730 typedef TPM_RC (ObjectChangeAuth_Entry)(

731 ObjectChangeAuth_In *in,

732 ObjectChangeAuth_Out *out

733);

734 typedef const struct {

735 ObjectChangeAuth_Entry *entry;

736 UINT16 inSize;

737 UINT16 outSize;

738 UINT16 offsetOfTypes;

739 UINT16 paramOffsets[2];

740 BYTE types[6];

741 } ObjectChangeAuth_COMMAND_DESCRIPTOR_t;

742 ObjectChangeAuth_COMMAND_DESCRIPTOR_t _ObjectChangeAuthData = {

743 /* entry */ &TPM2_ObjectChangeAuth,

744 /* inSize */ (UINT16)(sizeof(ObjectChangeAuth_In)),

745 /* outSize */ (UINT16)(sizeof(ObjectChangeAuth_Out)),

746 /* offsetOfTypes */ offsetof(ObjectChangeAuth_COMMAND_DESCRIPTOR_t, types),

747 /* offsets */ {(UINT16)(offsetof(ObjectChangeAuth_In, parentHandle)),

748 (UINT16)(offsetof(ObjectChangeAuth_In, newAuth))},

749 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

750 TPMI_DH_OBJECT_H_UNMARSHAL,

751 TPM2B_AUTH_P_UNMARSHAL,

752 END_OF_LIST,

753 TPM2B_PRIVATE_P_MARSHAL,

754 END_OF_LIST}

755 };

756 #define _ObjectChangeAuthDataAddress (&_ObjectChangeAuthData)

757 #else

758 #define _ObjectChangeAuthDataAddress 0

759 #endif // CC_ObjectChangeAuth

Trusted Platform Module Library Part 4: Supporting Routines

Page 36 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

760 #if CC_CreateLoaded

761 #include "CreateLoaded_fp.h"

762 typedef TPM_RC (CreateLoaded_Entry)(

763 CreateLoaded_In *in,

764 CreateLoaded_Out *out

765);

766 typedef const struct {

767 CreateLoaded_Entry *entry;

768 UINT16 inSize;

769 UINT16 outSize;

770 UINT16 offsetOfTypes;

771 UINT16 paramOffsets[5];

772 BYTE types[9];

773 } CreateLoaded_COMMAND_DESCRIPTOR_t;

774 CreateLoaded_COMMAND_DESCRIPTOR_t _CreateLoadedData = {

775 /* entry */ &TPM2_CreateLoaded,

776 /* inSize */ (UINT16)(sizeof(CreateLoaded_In)),

777 /* outSize */ (UINT16)(sizeof(CreateLoaded_Out)),

778 /* offsetOfTypes */ offsetof(CreateLoaded_COMMAND_DESCRIPTOR_t, types),

779 /* offsets */ {(UINT16)(offsetof(CreateLoaded_In, inSensitive)),

780 (UINT16)(offsetof(CreateLoaded_In, inPublic)),

781 (UINT16)(offsetof(CreateLoaded_Out, outPrivate)),

782 (UINT16)(offsetof(CreateLoaded_Out, outPublic)),

783 (UINT16)(offsetof(CreateLoaded_Out, name))},

784 /* types */ {TPMI_DH_PARENT_H_UNMARSHAL + ADD_FLAG,

785 TPM2B_SENSITIVE_CREATE_P_UNMARSHAL,

786 TPM2B_TEMPLATE_P_UNMARSHAL,

787 END_OF_LIST,

788 TPM_HANDLE_H_MARSHAL,

789 TPM2B_PRIVATE_P_MARSHAL,

790 TPM2B_PUBLIC_P_MARSHAL,

791 TPM2B_NAME_P_MARSHAL,

792 END_OF_LIST}

793 };

794 #define _CreateLoadedDataAddress (&_CreateLoadedData)

795 #else

796 #define _CreateLoadedDataAddress 0

797 #endif // CC_CreateLoaded

798 #if CC_Duplicate

799 #include "Duplicate_fp.h"

800 typedef TPM_RC (Duplicate_Entry)(

801 Duplicate_In *in,

802 Duplicate_Out *out

803);

804 typedef const struct {

805 Duplicate_Entry *entry;

806 UINT16 inSize;

807 UINT16 outSize;

808 UINT16 offsetOfTypes;

809 UINT16 paramOffsets[5];

810 BYTE types[9];

811 } Duplicate_COMMAND_DESCRIPTOR_t;

812 Duplicate_COMMAND_DESCRIPTOR_t _DuplicateData = {

813 /* entry */ &TPM2_Duplicate,

814 /* inSize */ (UINT16)(sizeof(Duplicate_In)),

815 /* outSize */ (UINT16)(sizeof(Duplicate_Out)),

816 /* offsetOfTypes */ offsetof(Duplicate_COMMAND_DESCRIPTOR_t, types),

817 /* offsets */ {(UINT16)(offsetof(Duplicate_In, newParentHandle)),

818 (UINT16)(offsetof(Duplicate_In, encryptionKeyIn)),

819 (UINT16)(offsetof(Duplicate_In, symmetricAlg)),

820 (UINT16)(offsetof(Duplicate_Out, duplicate)),

821 (UINT16)(offsetof(Duplicate_Out, outSymSeed))},

822 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

823 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

824 TPM2B_DATA_P_UNMARSHAL,

825 TPMT_SYM_DEF_OBJECT_P_UNMARSHAL + ADD_FLAG,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

826 END_OF_LIST,

827 TPM2B_DATA_P_MARSHAL,

828 TPM2B_PRIVATE_P_MARSHAL,

829 TPM2B_ENCRYPTED_SECRET_P_MARSHAL,

830 END_OF_LIST}

831 };

832 #define _DuplicateDataAddress (&_DuplicateData)

833 #else

834 #define _DuplicateDataAddress 0

835 #endif // CC_Duplicate

836 #if CC_Rewrap

837 #include "Rewrap_fp.h"

838 typedef TPM_RC (Rewrap_Entry)(

839 Rewrap_In *in,

840 Rewrap_Out *out

841);

842 typedef const struct {

843 Rewrap_Entry *entry;

844 UINT16 inSize;

845 UINT16 outSize;

846 UINT16 offsetOfTypes;

847 UINT16 paramOffsets[5];

848 BYTE types[9];

849 } Rewrap_COMMAND_DESCRIPTOR_t;

850 Rewrap_COMMAND_DESCRIPTOR_t _RewrapData = {

851 /* entry */ &TPM2_Rewrap,

852 /* inSize */ (UINT16)(sizeof(Rewrap_In)),

853 /* outSize */ (UINT16)(sizeof(Rewrap_Out)),

854 /* offsetOfTypes */ offsetof(Rewrap_COMMAND_DESCRIPTOR_t, types),

855 /* offsets */ {(UINT16)(offsetof(Rewrap_In, newParent)),

856 (UINT16)(offsetof(Rewrap_In, inDuplicate)),

857 (UINT16)(offsetof(Rewrap_In, name)),

858 (UINT16)(offsetof(Rewrap_In, inSymSeed)),

859 (UINT16)(offsetof(Rewrap_Out, outSymSeed))},

860 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

861 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

862 TPM2B_PRIVATE_P_UNMARSHAL,

863 TPM2B_NAME_P_UNMARSHAL,

864 TPM2B_ENCRYPTED_SECRET_P_UNMARSHAL,

865 END_OF_LIST,

866 TPM2B_PRIVATE_P_MARSHAL,

867 TPM2B_ENCRYPTED_SECRET_P_MARSHAL,

868 END_OF_LIST}

869 };

870 #define _RewrapDataAddress (&_RewrapData)

871 #else

872 #define _RewrapDataAddress 0

873 #endif // CC_Rewrap

874 #if CC_Import

875 #include "Import_fp.h"

876 typedef TPM_RC (Import_Entry)(

877 Import_In *in,

878 Import_Out *out

879);

880 typedef const struct {

881 Import_Entry *entry;

882 UINT16 inSize;

883 UINT16 outSize;

884 UINT16 offsetOfTypes;

885 UINT16 paramOffsets[5];

886 BYTE types[9];

887 } Import_COMMAND_DESCRIPTOR_t;

888 Import_COMMAND_DESCRIPTOR_t _ImportData = {

889 /* entry */ &TPM2_Import,

890 /* inSize */ (UINT16)(sizeof(Import_In)),

891 /* outSize */ (UINT16)(sizeof(Import_Out)),

Trusted Platform Module Library Part 4: Supporting Routines

Page 38 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

892 /* offsetOfTypes */ offsetof(Import_COMMAND_DESCRIPTOR_t, types),

893 /* offsets */ {(UINT16)(offsetof(Import_In, encryptionKey)),

894 (UINT16)(offsetof(Import_In, objectPublic)),

895 (UINT16)(offsetof(Import_In, duplicate)),

896 (UINT16)(offsetof(Import_In, inSymSeed)),

897 (UINT16)(offsetof(Import_In, symmetricAlg))},

898 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

899 TPM2B_DATA_P_UNMARSHAL,

900 TPM2B_PUBLIC_P_UNMARSHAL,

901 TPM2B_PRIVATE_P_UNMARSHAL,

902 TPM2B_ENCRYPTED_SECRET_P_UNMARSHAL,

903 TPMT_SYM_DEF_OBJECT_P_UNMARSHAL + ADD_FLAG,

904 END_OF_LIST,

905 TPM2B_PRIVATE_P_MARSHAL,

906 END_OF_LIST}

907 };

908 #define _ImportDataAddress (&_ImportData)

909 #else

910 #define _ImportDataAddress 0

911 #endif // CC_Import

912 #if CC_RSA_Encrypt

913 #include "RSA_Encrypt_fp.h"

914 typedef TPM_RC (RSA_Encrypt_Entry)(

915 RSA_Encrypt_In *in,

916 RSA_Encrypt_Out *out

917);

918 typedef const struct {

919 RSA_Encrypt_Entry *entry;

920 UINT16 inSize;

921 UINT16 outSize;

922 UINT16 offsetOfTypes;

923 UINT16 paramOffsets[3];

924 BYTE types[7];

925 } RSA_Encrypt_COMMAND_DESCRIPTOR_t;

926 RSA_Encrypt_COMMAND_DESCRIPTOR_t _RSA_EncryptData = {

927 /* entry */ &TPM2_RSA_Encrypt,

928 /* inSize */ (UINT16)(sizeof(RSA_Encrypt_In)),

929 /* outSize */ (UINT16)(sizeof(RSA_Encrypt_Out)),

930 /* offsetOfTypes */ offsetof(RSA_Encrypt_COMMAND_DESCRIPTOR_t, types),

931 /* offsets */ {(UINT16)(offsetof(RSA_Encrypt_In, message)),

932 (UINT16)(offsetof(RSA_Encrypt_In, inScheme)),

933 (UINT16)(offsetof(RSA_Encrypt_In, label))},

934 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

935 TPM2B_PUBLIC_KEY_RSA_P_UNMARSHAL,

936 TPMT_RSA_DECRYPT_P_UNMARSHAL + ADD_FLAG,

937 TPM2B_DATA_P_UNMARSHAL,

938 END_OF_LIST,

939 TPM2B_PUBLIC_KEY_RSA_P_MARSHAL,

940 END_OF_LIST}

941 };

942 #define _RSA_EncryptDataAddress (&_RSA_EncryptData)

943 #else

944 #define _RSA_EncryptDataAddress 0

945 #endif // CC_RSA_Encrypt

946 #if CC_RSA_Decrypt

947 #include "RSA_Decrypt_fp.h"

948 typedef TPM_RC (RSA_Decrypt_Entry)(

949 RSA_Decrypt_In *in,

950 RSA_Decrypt_Out *out

951);

952 typedef const struct {

953 RSA_Decrypt_Entry *entry;

954 UINT16 inSize;

955 UINT16 outSize;

956 UINT16 offsetOfTypes;

957 UINT16 paramOffsets[3];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

958 BYTE types[7];

959 } RSA_Decrypt_COMMAND_DESCRIPTOR_t;

960 RSA_Decrypt_COMMAND_DESCRIPTOR_t _RSA_DecryptData = {

961 /* entry */ &TPM2_RSA_Decrypt,

962 /* inSize */ (UINT16)(sizeof(RSA_Decrypt_In)),

963 /* outSize */ (UINT16)(sizeof(RSA_Decrypt_Out)),

964 /* offsetOfTypes */ offsetof(RSA_Decrypt_COMMAND_DESCRIPTOR_t, types),

965 /* offsets */ {(UINT16)(offsetof(RSA_Decrypt_In, cipherText)),

966 (UINT16)(offsetof(RSA_Decrypt_In, inScheme)),

967 (UINT16)(offsetof(RSA_Decrypt_In, label))},

968 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

969 TPM2B_PUBLIC_KEY_RSA_P_UNMARSHAL,

970 TPMT_RSA_DECRYPT_P_UNMARSHAL + ADD_FLAG,

971 TPM2B_DATA_P_UNMARSHAL,

972 END_OF_LIST,

973 TPM2B_PUBLIC_KEY_RSA_P_MARSHAL,

974 END_OF_LIST}

975 };

976 #define _RSA_DecryptDataAddress (&_RSA_DecryptData)

977 #else

978 #define _RSA_DecryptDataAddress 0

979 #endif // CC_RSA_Decrypt

980 #if CC_ECDH_KeyGen

981 #include "ECDH_KeyGen_fp.h"

982 typedef TPM_RC (ECDH_KeyGen_Entry)(

983 ECDH_KeyGen_In *in,

984 ECDH_KeyGen_Out *out

985);

986 typedef const struct {

987 ECDH_KeyGen_Entry *entry;

988 UINT16 inSize;

989 UINT16 outSize;

990 UINT16 offsetOfTypes;

991 UINT16 paramOffsets[1];

992 BYTE types[5];

993 } ECDH_KeyGen_COMMAND_DESCRIPTOR_t;

994 ECDH_KeyGen_COMMAND_DESCRIPTOR_t _ECDH_KeyGenData = {

995 /* entry */ &TPM2_ECDH_KeyGen,

996 /* inSize */ (UINT16)(sizeof(ECDH_KeyGen_In)),

997 /* outSize */ (UINT16)(sizeof(ECDH_KeyGen_Out)),

998 /* offsetOfTypes */ offsetof(ECDH_KeyGen_COMMAND_DESCRIPTOR_t, types),

999 /* offsets */ {(UINT16)(offsetof(ECDH_KeyGen_Out, pubPoint))},

1000 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1001 END_OF_LIST,

1002 TPM2B_ECC_POINT_P_MARSHAL,

1003 TPM2B_ECC_POINT_P_MARSHAL,

1004 END_OF_LIST}

1005 };

1006 #define _ECDH_KeyGenDataAddress (&_ECDH_KeyGenData)

1007 #else

1008 #define _ECDH_KeyGenDataAddress 0

1009 #endif // CC_ECDH_KeyGen

1010 #if CC_ECDH_ZGen

1011 #include "ECDH_ZGen_fp.h"

1012 typedef TPM_RC (ECDH_ZGen_Entry)(

1013 ECDH_ZGen_In *in,

1014 ECDH_ZGen_Out *out

1015);

1016 typedef const struct {

1017 ECDH_ZGen_Entry *entry;

1018 UINT16 inSize;

1019 UINT16 outSize;

1020 UINT16 offsetOfTypes;

1021 UINT16 paramOffsets[1];

1022 BYTE types[5];

1023 } ECDH_ZGen_COMMAND_DESCRIPTOR_t;

Trusted Platform Module Library Part 4: Supporting Routines

Page 40 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1024 ECDH_ZGen_COMMAND_DESCRIPTOR_t _ECDH_ZGenData = {

1025 /* entry */ &TPM2_ECDH_ZGen,

1026 /* inSize */ (UINT16)(sizeof(ECDH_ZGen_In)),

1027 /* outSize */ (UINT16)(sizeof(ECDH_ZGen_Out)),

1028 /* offsetOfTypes */ offsetof(ECDH_ZGen_COMMAND_DESCRIPTOR_t, types),

1029 /* offsets */ {(UINT16)(offsetof(ECDH_ZGen_In, inPoint))},

1030 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1031 TPM2B_ECC_POINT_P_UNMARSHAL,

1032 END_OF_LIST,

1033 TPM2B_ECC_POINT_P_MARSHAL,

1034 END_OF_LIST}

1035 };

1036 #define _ECDH_ZGenDataAddress (&_ECDH_ZGenData)

1037 #else

1038 #define _ECDH_ZGenDataAddress 0

1039 #endif // CC_ECDH_ZGen

1040 #if CC_ECC_Parameters

1041 #include "ECC_Parameters_fp.h"

1042 typedef TPM_RC (ECC_Parameters_Entry)(

1043 ECC_Parameters_In *in,

1044 ECC_Parameters_Out *out

1045);

1046 typedef const struct {

1047 ECC_Parameters_Entry *entry;

1048 UINT16 inSize;

1049 UINT16 outSize;

1050 UINT16 offsetOfTypes;

1051 BYTE types[4];

1052 } ECC_Parameters_COMMAND_DESCRIPTOR_t;

1053 ECC_Parameters_COMMAND_DESCRIPTOR_t _ECC_ParametersData = {

1054 /* entry */ &TPM2_ECC_Parameters,

1055 /* inSize */ (UINT16)(sizeof(ECC_Parameters_In)),

1056 /* outSize */ (UINT16)(sizeof(ECC_Parameters_Out)),

1057 /* offsetOfTypes */ offsetof(ECC_Parameters_COMMAND_DESCRIPTOR_t, types),

1058 /* offsets */ // No parameter offsets;

1059 /* types */ {TPMI_ECC_CURVE_P_UNMARSHAL,

1060 END_OF_LIST,

1061 TPMS_ALGORITHM_DETAIL_ECC_P_MARSHAL,

1062 END_OF_LIST}

1063 };

1064 #define _ECC_ParametersDataAddress (&_ECC_ParametersData)

1065 #else

1066 #define _ECC_ParametersDataAddress 0

1067 #endif // CC_ECC_Parameters

1068 #if CC_ZGen_2Phase

1069 #include "ZGen_2Phase_fp.h"

1070 typedef TPM_RC (ZGen_2Phase_Entry)(

1071 ZGen_2Phase_In *in,

1072 ZGen_2Phase_Out *out

1073);

1074 typedef const struct {

1075 ZGen_2Phase_Entry *entry;

1076 UINT16 inSize;

1077 UINT16 outSize;

1078 UINT16 offsetOfTypes;

1079 UINT16 paramOffsets[5];

1080 BYTE types[9];

1081 } ZGen_2Phase_COMMAND_DESCRIPTOR_t;

1082 ZGen_2Phase_COMMAND_DESCRIPTOR_t _ZGen_2PhaseData = {

1083 /* entry */ &TPM2_ZGen_2Phase,

1084 /* inSize */ (UINT16)(sizeof(ZGen_2Phase_In)),

1085 /* outSize */ (UINT16)(sizeof(ZGen_2Phase_Out)),

1086 /* offsetOfTypes */ offsetof(ZGen_2Phase_COMMAND_DESCRIPTOR_t, types),

1087 /* offsets */ {(UINT16)(offsetof(ZGen_2Phase_In, inQsB)),

1088 (UINT16)(offsetof(ZGen_2Phase_In, inQeB)),

1089 (UINT16)(offsetof(ZGen_2Phase_In, inScheme)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1090 (UINT16)(offsetof(ZGen_2Phase_In, counter)),

1091 (UINT16)(offsetof(ZGen_2Phase_Out, outZ2))},

1092 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1093 TPM2B_ECC_POINT_P_UNMARSHAL,

1094 TPM2B_ECC_POINT_P_UNMARSHAL,

1095 TPMI_ECC_KEY_EXCHANGE_P_UNMARSHAL,

1096 UINT16_P_UNMARSHAL,

1097 END_OF_LIST,

1098 TPM2B_ECC_POINT_P_MARSHAL,

1099 TPM2B_ECC_POINT_P_MARSHAL,

1100 END_OF_LIST}

1101 };

1102 #define _ZGen_2PhaseDataAddress (&_ZGen_2PhaseData)

1103 #else

1104 #define _ZGen_2PhaseDataAddress 0

1105 #endif // CC_ZGen_2Phase

1106 #if CC_EncryptDecrypt

1107 #include "EncryptDecrypt_fp.h"

1108 typedef TPM_RC (EncryptDecrypt_Entry)(

1109 EncryptDecrypt_In *in,

1110 EncryptDecrypt_Out *out

1111);

1112 typedef const struct {

1113 EncryptDecrypt_Entry *entry;

1114 UINT16 inSize;

1115 UINT16 outSize;

1116 UINT16 offsetOfTypes;

1117 UINT16 paramOffsets[5];

1118 BYTE types[9];

1119 } EncryptDecrypt_COMMAND_DESCRIPTOR_t;

1120 EncryptDecrypt_COMMAND_DESCRIPTOR_t _EncryptDecryptData = {

1121 /* entry */ &TPM2_EncryptDecrypt,

1122 /* inSize */ (UINT16)(sizeof(EncryptDecrypt_In)),

1123 /* outSize */ (UINT16)(sizeof(EncryptDecrypt_Out)),

1124 /* offsetOfTypes */ offsetof(EncryptDecrypt_COMMAND_DESCRIPTOR_t, types),

1125 /* offsets */ {(UINT16)(offsetof(EncryptDecrypt_In, decrypt)),

1126 (UINT16)(offsetof(EncryptDecrypt_In, mode)),

1127 (UINT16)(offsetof(EncryptDecrypt_In, ivIn)),

1128 (UINT16)(offsetof(EncryptDecrypt_In, inData)),

1129 (UINT16)(offsetof(EncryptDecrypt_Out, ivOut))},

1130 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1131 TPMI_YES_NO_P_UNMARSHAL,

1132 TPMI_ALG_CIPHER_MODE_P_UNMARSHAL + ADD_FLAG,

1133 TPM2B_IV_P_UNMARSHAL,

1134 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1135 END_OF_LIST,

1136 TPM2B_MAX_BUFFER_P_MARSHAL,

1137 TPM2B_IV_P_MARSHAL,

1138 END_OF_LIST}

1139 };

1140 #define _EncryptDecryptDataAddress (&_EncryptDecryptData)

1141 #else

1142 #define _EncryptDecryptDataAddress 0

1143 #endif // CC_EncryptDecrypt

1144 #if CC_EncryptDecrypt2

1145 #include "EncryptDecrypt2_fp.h"

1146 typedef TPM_RC (EncryptDecrypt2_Entry)(

1147 EncryptDecrypt2_In *in,

1148 EncryptDecrypt2_Out *out

1149);

1150 typedef const struct {

1151 EncryptDecrypt2_Entry *entry;

1152 UINT16 inSize;

1153 UINT16 outSize;

1154 UINT16 offsetOfTypes;

1155 UINT16 paramOffsets[5];

Trusted Platform Module Library Part 4: Supporting Routines

Page 42 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1156 BYTE types[9];

1157 } EncryptDecrypt2_COMMAND_DESCRIPTOR_t;

1158 EncryptDecrypt2_COMMAND_DESCRIPTOR_t _EncryptDecrypt2Data = {

1159 /* entry */ &TPM2_EncryptDecrypt2,

1160 /* inSize */ (UINT16)(sizeof(EncryptDecrypt2_In)),

1161 /* outSize */ (UINT16)(sizeof(EncryptDecrypt2_Out)),

1162 /* offsetOfTypes */ offsetof(EncryptDecrypt2_COMMAND_DESCRIPTOR_t, types),

1163 /* offsets */ {(UINT16)(offsetof(EncryptDecrypt2_In, inData)),

1164 (UINT16)(offsetof(EncryptDecrypt2_In, decrypt)),

1165 (UINT16)(offsetof(EncryptDecrypt2_In, mode)),

1166 (UINT16)(offsetof(EncryptDecrypt2_In, ivIn)),

1167 (UINT16)(offsetof(EncryptDecrypt2_Out, ivOut))},

1168 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1169 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1170 TPMI_YES_NO_P_UNMARSHAL,

1171 TPMI_ALG_CIPHER_MODE_P_UNMARSHAL + ADD_FLAG,

1172 TPM2B_IV_P_UNMARSHAL,

1173 END_OF_LIST,

1174 TPM2B_MAX_BUFFER_P_MARSHAL,

1175 TPM2B_IV_P_MARSHAL,

1176 END_OF_LIST}

1177 };

1178 #define _EncryptDecrypt2DataAddress (&_EncryptDecrypt2Data)

1179 #else

1180 #define _EncryptDecrypt2DataAddress 0

1181 #endif // CC_EncryptDecrypt2

1182 #if CC_Hash

1183 #include "Hash_fp.h"

1184 typedef TPM_RC (Hash_Entry)(

1185 Hash_In *in,

1186 Hash_Out *out

1187);

1188 typedef const struct {

1189 Hash_Entry *entry;

1190 UINT16 inSize;

1191 UINT16 outSize;

1192 UINT16 offsetOfTypes;

1193 UINT16 paramOffsets[3];

1194 BYTE types[7];

1195 } Hash_COMMAND_DESCRIPTOR_t;

1196 Hash_COMMAND_DESCRIPTOR_t _HashData = {

1197 /* entry */ &TPM2_Hash,

1198 /* inSize */ (UINT16)(sizeof(Hash_In)),

1199 /* outSize */ (UINT16)(sizeof(Hash_Out)),

1200 /* offsetOfTypes */ offsetof(Hash_COMMAND_DESCRIPTOR_t, types),

1201 /* offsets */ {(UINT16)(offsetof(Hash_In, hashAlg)),

1202 (UINT16)(offsetof(Hash_In, hierarchy)),

1203 (UINT16)(offsetof(Hash_Out, validation))},

1204 /* types */ {TPM2B_MAX_BUFFER_P_UNMARSHAL,

1205 TPMI_ALG_HASH_P_UNMARSHAL,

1206 TPMI_RH_HIERARCHY_P_UNMARSHAL + ADD_FLAG,

1207 END_OF_LIST,

1208 TPM2B_DIGEST_P_MARSHAL,

1209 TPMT_TK_HASHCHECK_P_MARSHAL,

1210 END_OF_LIST}

1211 };

1212 #define _HashDataAddress (&_HashData)

1213 #else

1214 #define _HashDataAddress 0

1215 #endif // CC_Hash

1216 #if CC_HMAC

1217 #include "HMAC_fp.h"

1218 typedef TPM_RC (HMAC_Entry)(

1219 HMAC_In *in,

1220 HMAC_Out *out

1221);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1222 typedef const struct {

1223 HMAC_Entry *entry;

1224 UINT16 inSize;

1225 UINT16 outSize;

1226 UINT16 offsetOfTypes;

1227 UINT16 paramOffsets[2];

1228 BYTE types[6];

1229 } HMAC_COMMAND_DESCRIPTOR_t;

1230 HMAC_COMMAND_DESCRIPTOR_t _HMACData = {

1231 /* entry */ &TPM2_HMAC,

1232 /* inSize */ (UINT16)(sizeof(HMAC_In)),

1233 /* outSize */ (UINT16)(sizeof(HMAC_Out)),

1234 /* offsetOfTypes */ offsetof(HMAC_COMMAND_DESCRIPTOR_t, types),

1235 /* offsets */ {(UINT16)(offsetof(HMAC_In, buffer)),

1236 (UINT16)(offsetof(HMAC_In, hashAlg))},

1237 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1238 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1239 TPMI_ALG_HASH_P_UNMARSHAL + ADD_FLAG,

1240 END_OF_LIST,

1241 TPM2B_DIGEST_P_MARSHAL,

1242 END_OF_LIST}

1243 };

1244 #define _HMACDataAddress (&_HMACData)

1245 #else

1246 #define _HMACDataAddress 0

1247 #endif // CC_HMAC

1248 #if CC_MAC

1249 #include "MAC_fp.h"

1250 typedef TPM_RC (MAC_Entry)(

1251 MAC_In *in,

1252 MAC_Out *out

1253);

1254 typedef const struct {

1255 MAC_Entry *entry;

1256 UINT16 inSize;

1257 UINT16 outSize;

1258 UINT16 offsetOfTypes;

1259 UINT16 paramOffsets[2];

1260 BYTE types[6];

1261 } MAC_COMMAND_DESCRIPTOR_t;

1262 MAC_COMMAND_DESCRIPTOR_t _MACData = {

1263 /* entry */ &TPM2_MAC,

1264 /* inSize */ (UINT16)(sizeof(MAC_In)),

1265 /* outSize */ (UINT16)(sizeof(MAC_Out)),

1266 /* offsetOfTypes */ offsetof(MAC_COMMAND_DESCRIPTOR_t, types),

1267 /* offsets */ {(UINT16)(offsetof(MAC_In, buffer)),

1268 (UINT16)(offsetof(MAC_In, inScheme))},

1269 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1270 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1271 TPMI_ALG_MAC_SCHEME_P_UNMARSHAL + ADD_FLAG,

1272 END_OF_LIST,

1273 TPM2B_DIGEST_P_MARSHAL,

1274 END_OF_LIST}

1275 };

1276 #define _MACDataAddress (&_MACData)

1277 #else

1278 #define _MACDataAddress 0

1279 #endif // CC_MAC

1280 #if CC_GetRandom

1281 #include "GetRandom_fp.h"

1282 typedef TPM_RC (GetRandom_Entry)(

1283 GetRandom_In *in,

1284 GetRandom_Out *out

1285);

1286 typedef const struct {

1287 GetRandom_Entry *entry;

Trusted Platform Module Library Part 4: Supporting Routines

Page 44 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1288 UINT16 inSize;

1289 UINT16 outSize;

1290 UINT16 offsetOfTypes;

1291 BYTE types[4];

1292 } GetRandom_COMMAND_DESCRIPTOR_t;

1293 GetRandom_COMMAND_DESCRIPTOR_t _GetRandomData = {

1294 /* entry */ &TPM2_GetRandom,

1295 /* inSize */ (UINT16)(sizeof(GetRandom_In)),

1296 /* outSize */ (UINT16)(sizeof(GetRandom_Out)),

1297 /* offsetOfTypes */ offsetof(GetRandom_COMMAND_DESCRIPTOR_t, types),

1298 /* offsets */ // No parameter offsets;

1299 /* types */ {UINT16_P_UNMARSHAL,

1300 END_OF_LIST,

1301 TPM2B_DIGEST_P_MARSHAL,

1302 END_OF_LIST}

1303 };

1304 #define _GetRandomDataAddress (&_GetRandomData)

1305 #else

1306 #define _GetRandomDataAddress 0

1307 #endif // CC_GetRandom

1308 #if CC_StirRandom

1309 #include "StirRandom_fp.h"

1310 typedef TPM_RC (StirRandom_Entry)(

1311 StirRandom_In *in

1312);

1313 typedef const struct {

1314 StirRandom_Entry *entry;

1315 UINT16 inSize;

1316 UINT16 outSize;

1317 UINT16 offsetOfTypes;

1318 BYTE types[3];

1319 } StirRandom_COMMAND_DESCRIPTOR_t;

1320 StirRandom_COMMAND_DESCRIPTOR_t _StirRandomData = {

1321 /* entry */ &TPM2_StirRandom,

1322 /* inSize */ (UINT16)(sizeof(StirRandom_In)),

1323 /* outSize */ 0,

1324 /* offsetOfTypes */ offsetof(StirRandom_COMMAND_DESCRIPTOR_t, types),

1325 /* offsets */ // No parameter offsets;

1326 /* types */ {TPM2B_SENSITIVE_DATA_P_UNMARSHAL,

1327 END_OF_LIST,

1328 END_OF_LIST}

1329 };

1330 #define _StirRandomDataAddress (&_StirRandomData)

1331 #else

1332 #define _StirRandomDataAddress 0

1333 #endif // CC_StirRandom

1334 #if CC_HMAC_Start

1335 #include "HMAC_Start_fp.h"

1336 typedef TPM_RC (HMAC_Start_Entry)(

1337 HMAC_Start_In *in,

1338 HMAC_Start_Out *out

1339);

1340 typedef const struct {

1341 HMAC_Start_Entry *entry;

1342 UINT16 inSize;

1343 UINT16 outSize;

1344 UINT16 offsetOfTypes;

1345 UINT16 paramOffsets[2];

1346 BYTE types[6];

1347 } HMAC_Start_COMMAND_DESCRIPTOR_t;

1348 HMAC_Start_COMMAND_DESCRIPTOR_t _HMAC_StartData = {

1349 /* entry */ &TPM2_HMAC_Start,

1350 /* inSize */ (UINT16)(sizeof(HMAC_Start_In)),

1351 /* outSize */ (UINT16)(sizeof(HMAC_Start_Out)),

1352 /* offsetOfTypes */ offsetof(HMAC_Start_COMMAND_DESCRIPTOR_t, types),

1353 /* offsets */ {(UINT16)(offsetof(HMAC_Start_In, auth)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1354 (UINT16)(offsetof(HMAC_Start_In, hashAlg))},

1355 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1356 TPM2B_AUTH_P_UNMARSHAL,

1357 TPMI_ALG_HASH_P_UNMARSHAL + ADD_FLAG,

1358 END_OF_LIST,

1359 TPMI_DH_OBJECT_H_MARSHAL,

1360 END_OF_LIST}

1361 };

1362 #define _HMAC_StartDataAddress (&_HMAC_StartData)

1363 #else

1364 #define _HMAC_StartDataAddress 0

1365 #endif // CC_HMAC_Start

1366 #if CC_MAC_Start

1367 #include "MAC_Start_fp.h"

1368 typedef TPM_RC (MAC_Start_Entry)(

1369 MAC_Start_In *in,

1370 MAC_Start_Out *out

1371);

1372 typedef const struct {

1373 MAC_Start_Entry *entry;

1374 UINT16 inSize;

1375 UINT16 outSize;

1376 UINT16 offsetOfTypes;

1377 UINT16 paramOffsets[2];

1378 BYTE types[6];

1379 } MAC_Start_COMMAND_DESCRIPTOR_t;

1380 MAC_Start_COMMAND_DESCRIPTOR_t _MAC_StartData = {

1381 /* entry */ &TPM2_MAC_Start,

1382 /* inSize */ (UINT16)(sizeof(MAC_Start_In)),

1383 /* outSize */ (UINT16)(sizeof(MAC_Start_Out)),

1384 /* offsetOfTypes */ offsetof(MAC_Start_COMMAND_DESCRIPTOR_t, types),

1385 /* offsets */ {(UINT16)(offsetof(MAC_Start_In, auth)),

1386 (UINT16)(offsetof(MAC_Start_In, inScheme))},

1387 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1388 TPM2B_AUTH_P_UNMARSHAL,

1389 TPMI_ALG_MAC_SCHEME_P_UNMARSHAL + ADD_FLAG,

1390 END_OF_LIST,

1391 TPMI_DH_OBJECT_H_MARSHAL,

1392 END_OF_LIST}

1393 };

1394 #define _MAC_StartDataAddress (&_MAC_StartData)

1395 #else

1396 #define _MAC_StartDataAddress 0

1397 #endif // CC_MAC_Start

1398 #if CC_HashSequenceStart

1399 #include "HashSequenceStart_fp.h"

1400 typedef TPM_RC (HashSequenceStart_Entry)(

1401 HashSequenceStart_In *in,

1402 HashSequenceStart_Out *out

1403);

1404 typedef const struct {

1405 HashSequenceStart_Entry *entry;

1406 UINT16 inSize;

1407 UINT16 outSize;

1408 UINT16 offsetOfTypes;

1409 UINT16 paramOffsets[1];

1410 BYTE types[5];

1411 } HashSequenceStart_COMMAND_DESCRIPTOR_t;

1412 HashSequenceStart_COMMAND_DESCRIPTOR_t _HashSequenceStartData = {

1413 /* entry */ &TPM2_HashSequenceStart,

1414 /* inSize */ (UINT16)(sizeof(HashSequenceStart_In)),

1415 /* outSize */ (UINT16)(sizeof(HashSequenceStart_Out)),

1416 /* offsetOfTypes */ offsetof(HashSequenceStart_COMMAND_DESCRIPTOR_t,

types),

1417 /* offsets */ {(UINT16)(offsetof(HashSequenceStart_In, hashAlg))},

1418 /* types */ {TPM2B_AUTH_P_UNMARSHAL,

Trusted Platform Module Library Part 4: Supporting Routines

Page 46 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1419 TPMI_ALG_HASH_P_UNMARSHAL + ADD_FLAG,

1420 END_OF_LIST,

1421 TPMI_DH_OBJECT_H_MARSHAL,

1422 END_OF_LIST}

1423 };

1424 #define _HashSequenceStartDataAddress (&_HashSequenceStartData)

1425 #else

1426 #define _HashSequenceStartDataAddress 0

1427 #endif // CC_HashSequenceStart

1428 #if CC_SequenceUpdate

1429 #include "SequenceUpdate_fp.h"

1430 typedef TPM_RC (SequenceUpdate_Entry)(

1431 SequenceUpdate_In *in

1432);

1433 typedef const struct {

1434 SequenceUpdate_Entry *entry;

1435 UINT16 inSize;

1436 UINT16 outSize;

1437 UINT16 offsetOfTypes;

1438 UINT16 paramOffsets[1];

1439 BYTE types[4];

1440 } SequenceUpdate_COMMAND_DESCRIPTOR_t;

1441 SequenceUpdate_COMMAND_DESCRIPTOR_t _SequenceUpdateData = {

1442 /* entry */ &TPM2_SequenceUpdate,

1443 /* inSize */ (UINT16)(sizeof(SequenceUpdate_In)),

1444 /* outSize */ 0,

1445 /* offsetOfTypes */ offsetof(SequenceUpdate_COMMAND_DESCRIPTOR_t, types),

1446 /* offsets */ {(UINT16)(offsetof(SequenceUpdate_In, buffer))},

1447 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1448 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1449 END_OF_LIST,

1450 END_OF_LIST}

1451 };

1452 #define _SequenceUpdateDataAddress (&_SequenceUpdateData)

1453 #else

1454 #define _SequenceUpdateDataAddress 0

1455 #endif // CC_SequenceUpdate

1456 #if CC_SequenceComplete

1457 #include "SequenceComplete_fp.h"

1458 typedef TPM_RC (SequenceComplete_Entry)(

1459 SequenceComplete_In *in,

1460 SequenceComplete_Out *out

1461);

1462 typedef const struct {

1463 SequenceComplete_Entry *entry;

1464 UINT16 inSize;

1465 UINT16 outSize;

1466 UINT16 offsetOfTypes;

1467 UINT16 paramOffsets[3];

1468 BYTE types[7];

1469 } SequenceComplete_COMMAND_DESCRIPTOR_t;

1470 SequenceComplete_COMMAND_DESCRIPTOR_t _SequenceCompleteData = {

1471 /* entry */ &TPM2_SequenceComplete,

1472 /* inSize */ (UINT16)(sizeof(SequenceComplete_In)),

1473 /* outSize */ (UINT16)(sizeof(SequenceComplete_Out)),

1474 /* offsetOfTypes */ offsetof(SequenceComplete_COMMAND_DESCRIPTOR_t, types),

1475 /* offsets */ {(UINT16)(offsetof(SequenceComplete_In, buffer)),

1476 (UINT16)(offsetof(SequenceComplete_In, hierarchy)),

1477 (UINT16)(offsetof(SequenceComplete_Out, validation))},

1478 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1479 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1480 TPMI_RH_HIERARCHY_P_UNMARSHAL + ADD_FLAG,

1481 END_OF_LIST,

1482 TPM2B_DIGEST_P_MARSHAL,

1483 TPMT_TK_HASHCHECK_P_MARSHAL,

1484 END_OF_LIST}

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1485 };

1486 #define _SequenceCompleteDataAddress (&_SequenceCompleteData)

1487 #else

1488 #define _SequenceCompleteDataAddress 0

1489 #endif // CC_SequenceComplete

1490 #if CC_EventSequenceComplete

1491 #include "EventSequenceComplete_fp.h"

1492 typedef TPM_RC (EventSequenceComplete_Entry)(

1493 EventSequenceComplete_In *in,

1494 EventSequenceComplete_Out *out

1495);

1496 typedef const struct {

1497 EventSequenceComplete_Entry *entry;

1498 UINT16 inSize;

1499 UINT16 outSize;

1500 UINT16 offsetOfTypes;

1501 UINT16 paramOffsets[2];

1502 BYTE types[6];

1503 } EventSequenceComplete_COMMAND_DESCRIPTOR_t;

1504 EventSequenceComplete_COMMAND_DESCRIPTOR_t _EventSequenceCompleteData = {

1505 /* entry */ &TPM2_EventSequenceComplete,

1506 /* inSize */ (UINT16)(sizeof(EventSequenceComplete_In)),

1507 /* outSize */ (UINT16)(sizeof(EventSequenceComplete_Out)),

1508 /* offsetOfTypes */

offsetof(EventSequenceComplete_COMMAND_DESCRIPTOR_t, types),

1509 /* offsets */ {(UINT16)(offsetof(EventSequenceComplete_In,

sequenceHandle)),

1510 (UINT16)(offsetof(EventSequenceComplete_In,

buffer))},

1511 /* types */ {TPMI_DH_PCR_H_UNMARSHAL + ADD_FLAG,

1512 TPMI_DH_OBJECT_H_UNMARSHAL,

1513 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1514 END_OF_LIST,

1515 TPML_DIGEST_VALUES_P_MARSHAL,

1516 END_OF_LIST}

1517 };

1518 #define _EventSequenceCompleteDataAddress (&_EventSequenceCompleteData)

1519 #else

1520 #define _EventSequenceCompleteDataAddress 0

1521 #endif // CC_EventSequenceComplete

1522 #if CC_Certify

1523 #include "Certify_fp.h"

1524 typedef TPM_RC (Certify_Entry)(

1525 Certify_In *in,

1526 Certify_Out *out

1527);

1528 typedef const struct {

1529 Certify_Entry *entry;

1530 UINT16 inSize;

1531 UINT16 outSize;

1532 UINT16 offsetOfTypes;

1533 UINT16 paramOffsets[4];

1534 BYTE types[8];

1535 } Certify_COMMAND_DESCRIPTOR_t;

1536 Certify_COMMAND_DESCRIPTOR_t _CertifyData = {

1537 /* entry */ &TPM2_Certify,

1538 /* inSize */ (UINT16)(sizeof(Certify_In)),

1539 /* outSize */ (UINT16)(sizeof(Certify_Out)),

1540 /* offsetOfTypes */ offsetof(Certify_COMMAND_DESCRIPTOR_t, types),

1541 /* offsets */ {(UINT16)(offsetof(Certify_In, signHandle)),

1542 (UINT16)(offsetof(Certify_In, qualifyingData)),

1543 (UINT16)(offsetof(Certify_In, inScheme)),

1544 (UINT16)(offsetof(Certify_Out, signature))},

1545 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1546 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1547 TPM2B_DATA_P_UNMARSHAL,

Trusted Platform Module Library Part 4: Supporting Routines

Page 48 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1548 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1549 END_OF_LIST,

1550 TPM2B_ATTEST_P_MARSHAL,

1551 TPMT_SIGNATURE_P_MARSHAL,

1552 END_OF_LIST}

1553 };

1554 #define _CertifyDataAddress (&_CertifyData)

1555 #else

1556 #define _CertifyDataAddress 0

1557 #endif // CC_Certify

1558 #if CC_CertifyCreation

1559 #include "CertifyCreation_fp.h"

1560 typedef TPM_RC (CertifyCreation_Entry)(

1561 CertifyCreation_In *in,

1562 CertifyCreation_Out *out

1563);

1564 typedef const struct {

1565 CertifyCreation_Entry *entry;

1566 UINT16 inSize;

1567 UINT16 outSize;

1568 UINT16 offsetOfTypes;

1569 UINT16 paramOffsets[6];

1570 BYTE types[10];

1571 } CertifyCreation_COMMAND_DESCRIPTOR_t;

1572 CertifyCreation_COMMAND_DESCRIPTOR_t _CertifyCreationData = {

1573 /* entry */ &TPM2_CertifyCreation,

1574 /* inSize */ (UINT16)(sizeof(CertifyCreation_In)),

1575 /* outSize */ (UINT16)(sizeof(CertifyCreation_Out)),

1576 /* offsetOfTypes */ offsetof(CertifyCreation_COMMAND_DESCRIPTOR_t, types),

1577 /* offsets */ {(UINT16)(offsetof(CertifyCreation_In, objectHandle)),

1578 (UINT16)(offsetof(CertifyCreation_In, qualifyingData)),

1579 (UINT16)(offsetof(CertifyCreation_In, creationHash)),

1580 (UINT16)(offsetof(CertifyCreation_In, inScheme)),

1581 (UINT16)(offsetof(CertifyCreation_In, creationTicket)),

1582 (UINT16)(offsetof(CertifyCreation_Out, signature))},

1583 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1584 TPMI_DH_OBJECT_H_UNMARSHAL,

1585 TPM2B_DATA_P_UNMARSHAL,

1586 TPM2B_DIGEST_P_UNMARSHAL,

1587 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1588 TPMT_TK_CREATION_P_UNMARSHAL,

1589 END_OF_LIST,

1590 TPM2B_ATTEST_P_MARSHAL,

1591 TPMT_SIGNATURE_P_MARSHAL,

1592 END_OF_LIST}

1593 };

1594 #define _CertifyCreationDataAddress (&_CertifyCreationData)

1595 #else

1596 #define _CertifyCreationDataAddress 0

1597 #endif // CC_CertifyCreation

1598 #if CC_Quote

1599 #include "Quote_fp.h"

1600 typedef TPM_RC (Quote_Entry)(

1601 Quote_In *in,

1602 Quote_Out *out

1603);

1604 typedef const struct {

1605 Quote_Entry *entry;

1606 UINT16 inSize;

1607 UINT16 outSize;

1608 UINT16 offsetOfTypes;

1609 UINT16 paramOffsets[4];

1610 BYTE types[8];

1611 } Quote_COMMAND_DESCRIPTOR_t;

1612 Quote_COMMAND_DESCRIPTOR_t _QuoteData = {

1613 /* entry */ &TPM2_Quote,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1614 /* inSize */ (UINT16)(sizeof(Quote_In)),

1615 /* outSize */ (UINT16)(sizeof(Quote_Out)),

1616 /* offsetOfTypes */ offsetof(Quote_COMMAND_DESCRIPTOR_t, types),

1617 /* offsets */ {(UINT16)(offsetof(Quote_In, qualifyingData)),

1618 (UINT16)(offsetof(Quote_In, inScheme)),

1619 (UINT16)(offsetof(Quote_In, PCRselect)),

1620 (UINT16)(offsetof(Quote_Out, signature))},

1621 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1622 TPM2B_DATA_P_UNMARSHAL,

1623 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1624 TPML_PCR_SELECTION_P_UNMARSHAL,

1625 END_OF_LIST,

1626 TPM2B_ATTEST_P_MARSHAL,

1627 TPMT_SIGNATURE_P_MARSHAL,

1628 END_OF_LIST}

1629 };

1630 #define _QuoteDataAddress (&_QuoteData)

1631 #else

1632 #define _QuoteDataAddress 0

1633 #endif // CC_Quote

1634 #if CC_GetSessionAuditDigest

1635 #include "GetSessionAuditDigest_fp.h"

1636 typedef TPM_RC (GetSessionAuditDigest_Entry)(

1637 GetSessionAuditDigest_In *in,

1638 GetSessionAuditDigest_Out *out

1639);

1640 typedef const struct {

1641 GetSessionAuditDigest_Entry *entry;

1642 UINT16 inSize;

1643 UINT16 outSize;

1644 UINT16 offsetOfTypes;

1645 UINT16 paramOffsets[5];

1646 BYTE types[9];

1647 } GetSessionAuditDigest_COMMAND_DESCRIPTOR_t;

1648 GetSessionAuditDigest_COMMAND_DESCRIPTOR_t _GetSessionAuditDigestData = {

1649 /* entry */ &TPM2_GetSessionAuditDigest,

1650 /* inSize */ (UINT16)(sizeof(GetSessionAuditDigest_In)),

1651 /* outSize */ (UINT16)(sizeof(GetSessionAuditDigest_Out)),

1652 /* offsetOfTypes */

offsetof(GetSessionAuditDigest_COMMAND_DESCRIPTOR_t, types),

1653 /* offsets */ {(UINT16)(offsetof(GetSessionAuditDigest_In,

signHandle)),

1654 (UINT16)(offsetof(GetSessionAuditDigest_In,

sessionHandle)),

1655 (UINT16)(offsetof(GetSessionAuditDigest_In,

qualifyingData)),

1656 (UINT16)(offsetof(GetSessionAuditDigest_In,

inScheme)),

1657 (UINT16)(offsetof(GetSessionAuditDigest_Out,

signature))},

1658 /* types */ {TPMI_RH_ENDORSEMENT_H_UNMARSHAL,

1659 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1660 TPMI_SH_HMAC_H_UNMARSHAL,

1661 TPM2B_DATA_P_UNMARSHAL,

1662 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1663 END_OF_LIST,

1664 TPM2B_ATTEST_P_MARSHAL,

1665 TPMT_SIGNATURE_P_MARSHAL,

1666 END_OF_LIST}

1667 };

1668 #define _GetSessionAuditDigestDataAddress (&_GetSessionAuditDigestData)

1669 #else

1670 #define _GetSessionAuditDigestDataAddress 0

1671 #endif // CC_GetSessionAuditDigest

1672 #if CC_GetCommandAuditDigest

1673 #include "GetCommandAuditDigest_fp.h"

Trusted Platform Module Library Part 4: Supporting Routines

Page 50 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1674 typedef TPM_RC (GetCommandAuditDigest_Entry)(

1675 GetCommandAuditDigest_In *in,

1676 GetCommandAuditDigest_Out *out

1677);

1678 typedef const struct {

1679 GetCommandAuditDigest_Entry *entry;

1680 UINT16 inSize;

1681 UINT16 outSize;

1682 UINT16 offsetOfTypes;

1683 UINT16 paramOffsets[4];

1684 BYTE types[8];

1685 } GetCommandAuditDigest_COMMAND_DESCRIPTOR_t;

1686 GetCommandAuditDigest_COMMAND_DESCRIPTOR_t _GetCommandAuditDigestData = {

1687 /* entry */ &TPM2_GetCommandAuditDigest,

1688 /* inSize */ (UINT16)(sizeof(GetCommandAuditDigest_In)),

1689 /* outSize */ (UINT16)(sizeof(GetCommandAuditDigest_Out)),

1690 /* offsetOfTypes */

offsetof(GetCommandAuditDigest_COMMAND_DESCRIPTOR_t, types),

1691 /* offsets */ {(UINT16)(offsetof(GetCommandAuditDigest_In,

signHandle)),

1692 (UINT16)(offsetof(GetCommandAuditDigest_In,

qualifyingData)),

1693 (UINT16)(offsetof(GetCommandAuditDigest_In,

inScheme)),

1694 (UINT16)(offsetof(GetCommandAuditDigest_Out,

signature))},

1695 /* types */ {TPMI_RH_ENDORSEMENT_H_UNMARSHAL,

1696 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1697 TPM2B_DATA_P_UNMARSHAL,

1698 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1699 END_OF_LIST,

1700 TPM2B_ATTEST_P_MARSHAL,

1701 TPMT_SIGNATURE_P_MARSHAL,

1702 END_OF_LIST}

1703 };

1704 #define _GetCommandAuditDigestDataAddress (&_GetCommandAuditDigestData)

1705 #else

1706 #define _GetCommandAuditDigestDataAddress 0

1707 #endif // CC_GetCommandAuditDigest

1708 #if CC_GetTime

1709 #include "GetTime_fp.h"

1710 typedef TPM_RC (GetTime_Entry)(

1711 GetTime_In *in,

1712 GetTime_Out *out

1713);

1714 typedef const struct {

1715 GetTime_Entry *entry;

1716 UINT16 inSize;

1717 UINT16 outSize;

1718 UINT16 offsetOfTypes;

1719 UINT16 paramOffsets[4];

1720 BYTE types[8];

1721 } GetTime_COMMAND_DESCRIPTOR_t;

1722 GetTime_COMMAND_DESCRIPTOR_t _GetTimeData = {

1723 /* entry */ &TPM2_GetTime,

1724 /* inSize */ (UINT16)(sizeof(GetTime_In)),

1725 /* outSize */ (UINT16)(sizeof(GetTime_Out)),

1726 /* offsetOfTypes */ offsetof(GetTime_COMMAND_DESCRIPTOR_t, types),

1727 /* offsets */ {(UINT16)(offsetof(GetTime_In, signHandle)),

1728 (UINT16)(offsetof(GetTime_In, qualifyingData)),

1729 (UINT16)(offsetof(GetTime_In, inScheme)),

1730 (UINT16)(offsetof(GetTime_Out, signature))},

1731 /* types */ {TPMI_RH_ENDORSEMENT_H_UNMARSHAL,

1732 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1733 TPM2B_DATA_P_UNMARSHAL,

1734 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1735 END_OF_LIST,

1736 TPM2B_ATTEST_P_MARSHAL,

1737 TPMT_SIGNATURE_P_MARSHAL,

1738 END_OF_LIST}

1739 };

1740 #define _GetTimeDataAddress (&_GetTimeData)

1741 #else

1742 #define _GetTimeDataAddress 0

1743 #endif // CC_GetTime

1744 #if CC_CertifyX509

1745 #include "CertifyX509_fp.h"

1746 typedef TPM_RC (CertifyX509_Entry)(

1747 CertifyX509_In *in,

1748 CertifyX509_Out *out

1749);

1750 typedef const struct {

1751 CertifyX509_Entry *entry;

1752 UINT16 inSize;

1753 UINT16 outSize;

1754 UINT16 offsetOfTypes;

1755 UINT16 paramOffsets[6];

1756 BYTE types[10];

1757 } CertifyX509_COMMAND_DESCRIPTOR_t;

1758 CertifyX509_COMMAND_DESCRIPTOR_t _CertifyX509Data = {

1759 /* entry */ &TPM2_CertifyX509,

1760 /* inSize */ (UINT16)(sizeof(CertifyX509_In)),

1761 /* outSize */ (UINT16)(sizeof(CertifyX509_Out)),

1762 /* offsetOfTypes */ offsetof(CertifyX509_COMMAND_DESCRIPTOR_t, types),

1763 /* offsets */ {(UINT16)(offsetof(CertifyX509_In, signHandle)),

1764 (UINT16)(offsetof(CertifyX509_In, reserved)),

1765 (UINT16)(offsetof(CertifyX509_In, inScheme)),

1766 (UINT16)(offsetof(CertifyX509_In, partialCertificate)),

1767 (UINT16)(offsetof(CertifyX509_Out, tbsDigest)),

1768 (UINT16)(offsetof(CertifyX509_Out, signature))},

1769 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1770 TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

1771 TPM2B_DATA_P_UNMARSHAL,

1772 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1773 TPM2B_MAX_BUFFER_P_UNMARSHAL,

1774 END_OF_LIST,

1775 TPM2B_MAX_BUFFER_P_MARSHAL,

1776 TPM2B_DIGEST_P_MARSHAL,

1777 TPMT_SIGNATURE_P_MARSHAL,

1778 END_OF_LIST}

1779 };

1780 #define _CertifyX509DataAddress (&_CertifyX509Data)

1781 #else

1782 #define _CertifyX509DataAddress 0

1783 #endif // CC_CertifyX509

1784 #if CC_Commit

1785 #include "Commit_fp.h"

1786 typedef TPM_RC (Commit_Entry)(

1787 Commit_In *in,

1788 Commit_Out *out

1789);

1790 typedef const struct {

1791 Commit_Entry *entry;

1792 UINT16 inSize;

1793 UINT16 outSize;

1794 UINT16 offsetOfTypes;

1795 UINT16 paramOffsets[6];

1796 BYTE types[10];

1797 } Commit_COMMAND_DESCRIPTOR_t;

1798 Commit_COMMAND_DESCRIPTOR_t _CommitData = {

1799 /* entry */ &TPM2_Commit,

1800 /* inSize */ (UINT16)(sizeof(Commit_In)),

Trusted Platform Module Library Part 4: Supporting Routines

Page 52 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1801 /* outSize */ (UINT16)(sizeof(Commit_Out)),

1802 /* offsetOfTypes */ offsetof(Commit_COMMAND_DESCRIPTOR_t, types),

1803 /* offsets */ {(UINT16)(offsetof(Commit_In, P1)),

1804 (UINT16)(offsetof(Commit_In, s2)),

1805 (UINT16)(offsetof(Commit_In, y2)),

1806 (UINT16)(offsetof(Commit_Out, L)),

1807 (UINT16)(offsetof(Commit_Out, E)),

1808 (UINT16)(offsetof(Commit_Out, counter))},

1809 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1810 TPM2B_ECC_POINT_P_UNMARSHAL,

1811 TPM2B_SENSITIVE_DATA_P_UNMARSHAL,

1812 TPM2B_ECC_PARAMETER_P_UNMARSHAL,

1813 END_OF_LIST,

1814 TPM2B_ECC_POINT_P_MARSHAL,

1815 TPM2B_ECC_POINT_P_MARSHAL,

1816 TPM2B_ECC_POINT_P_MARSHAL,

1817 UINT16_P_MARSHAL,

1818 END_OF_LIST}

1819 };

1820 #define _CommitDataAddress (&_CommitData)

1821 #else

1822 #define _CommitDataAddress 0

1823 #endif // CC_Commit

1824 #if CC_EC_Ephemeral

1825 #include "EC_Ephemeral_fp.h"

1826 typedef TPM_RC (EC_Ephemeral_Entry)(

1827 EC_Ephemeral_In *in,

1828 EC_Ephemeral_Out *out

1829);

1830 typedef const struct {

1831 EC_Ephemeral_Entry *entry;

1832 UINT16 inSize;

1833 UINT16 outSize;

1834 UINT16 offsetOfTypes;

1835 UINT16 paramOffsets[1];

1836 BYTE types[5];

1837 } EC_Ephemeral_COMMAND_DESCRIPTOR_t;

1838 EC_Ephemeral_COMMAND_DESCRIPTOR_t _EC_EphemeralData = {

1839 /* entry */ &TPM2_EC_Ephemeral,

1840 /* inSize */ (UINT16)(sizeof(EC_Ephemeral_In)),

1841 /* outSize */ (UINT16)(sizeof(EC_Ephemeral_Out)),

1842 /* offsetOfTypes */ offsetof(EC_Ephemeral_COMMAND_DESCRIPTOR_t, types),

1843 /* offsets */ {(UINT16)(offsetof(EC_Ephemeral_Out, counter))},

1844 /* types */ {TPMI_ECC_CURVE_P_UNMARSHAL,

1845 END_OF_LIST,

1846 TPM2B_ECC_POINT_P_MARSHAL,

1847 UINT16_P_MARSHAL,

1848 END_OF_LIST}

1849 };

1850 #define _EC_EphemeralDataAddress (&_EC_EphemeralData)

1851 #else

1852 #define _EC_EphemeralDataAddress 0

1853 #endif // CC_EC_Ephemeral

1854 #if CC_VerifySignature

1855 #include "VerifySignature_fp.h"

1856 typedef TPM_RC (VerifySignature_Entry)(

1857 VerifySignature_In *in,

1858 VerifySignature_Out *out

1859);

1860 typedef const struct {

1861 VerifySignature_Entry *entry;

1862 UINT16 inSize;

1863 UINT16 outSize;

1864 UINT16 offsetOfTypes;

1865 UINT16 paramOffsets[2];

1866 BYTE types[6];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1867 } VerifySignature_COMMAND_DESCRIPTOR_t;

1868 VerifySignature_COMMAND_DESCRIPTOR_t _VerifySignatureData = {

1869 /* entry */ &TPM2_VerifySignature,

1870 /* inSize */ (UINT16)(sizeof(VerifySignature_In)),

1871 /* outSize */ (UINT16)(sizeof(VerifySignature_Out)),

1872 /* offsetOfTypes */ offsetof(VerifySignature_COMMAND_DESCRIPTOR_t, types),

1873 /* offsets */ {(UINT16)(offsetof(VerifySignature_In, digest)),

1874 (UINT16)(offsetof(VerifySignature_In, signature))},

1875 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1876 TPM2B_DIGEST_P_UNMARSHAL,

1877 TPMT_SIGNATURE_P_UNMARSHAL,

1878 END_OF_LIST,

1879 TPMT_TK_VERIFIED_P_MARSHAL,

1880 END_OF_LIST}

1881 };

1882 #define _VerifySignatureDataAddress (&_VerifySignatureData)

1883 #else

1884 #define _VerifySignatureDataAddress 0

1885 #endif // CC_VerifySignature

1886 #if CC_Sign

1887 #include "Sign_fp.h"

1888 typedef TPM_RC (Sign_Entry)(

1889 Sign_In *in,

1890 Sign_Out *out

1891);

1892 typedef const struct {

1893 Sign_Entry *entry;

1894 UINT16 inSize;

1895 UINT16 outSize;

1896 UINT16 offsetOfTypes;

1897 UINT16 paramOffsets[3];

1898 BYTE types[7];

1899 } Sign_COMMAND_DESCRIPTOR_t;

1900 Sign_COMMAND_DESCRIPTOR_t _SignData = {

1901 /* entry */ &TPM2_Sign,

1902 /* inSize */ (UINT16)(sizeof(Sign_In)),

1903 /* outSize */ (UINT16)(sizeof(Sign_Out)),

1904 /* offsetOfTypes */ offsetof(Sign_COMMAND_DESCRIPTOR_t, types),

1905 /* offsets */ {(UINT16)(offsetof(Sign_In, digest)),

1906 (UINT16)(offsetof(Sign_In, inScheme)),

1907 (UINT16)(offsetof(Sign_In, validation))},

1908 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

1909 TPM2B_DIGEST_P_UNMARSHAL,

1910 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

1911 TPMT_TK_HASHCHECK_P_UNMARSHAL,

1912 END_OF_LIST,

1913 TPMT_SIGNATURE_P_MARSHAL,

1914 END_OF_LIST}

1915 };

1916 #define _SignDataAddress (&_SignData)

1917 #else

1918 #define _SignDataAddress 0

1919 #endif // CC_Sign

1920 #if CC_SetCommandCodeAuditStatus

1921 #include "SetCommandCodeAuditStatus_fp.h"

1922 typedef TPM_RC (SetCommandCodeAuditStatus_Entry)(

1923 SetCommandCodeAuditStatus_In *in

1924);

1925 typedef const struct {

1926 SetCommandCodeAuditStatus_Entry *entry;

1927 UINT16 inSize;

1928 UINT16 outSize;

1929 UINT16 offsetOfTypes;

1930 UINT16 paramOffsets[3];

1931 BYTE types[6];

1932 } SetCommandCodeAuditStatus_COMMAND_DESCRIPTOR_t;

Trusted Platform Module Library Part 4: Supporting Routines

Page 54 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1933 SetCommandCodeAuditStatus_COMMAND_DESCRIPTOR_t _SetCommandCodeAuditStatusData = {

1934 /* entry */ &TPM2_SetCommandCodeAuditStatus,

1935 /* inSize */

(UINT16)(sizeof(SetCommandCodeAuditStatus_In)),

1936 /* outSize */ 0,

1937 /* offsetOfTypes */

offsetof(SetCommandCodeAuditStatus_COMMAND_DESCRIPTOR_t, types),

1938 /* offsets */

{(UINT16)(offsetof(SetCommandCodeAuditStatus_In, auditAlg)),

1939

(UINT16)(offsetof(SetCommandCodeAuditStatus_In, setList)),

1940

(UINT16)(offsetof(SetCommandCodeAuditStatus_In, clearList))},

1941 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

1942 TPMI_ALG_HASH_P_UNMARSHAL + ADD_FLAG,

1943 TPML_CC_P_UNMARSHAL,

1944 TPML_CC_P_UNMARSHAL,

1945 END_OF_LIST,

1946 END_OF_LIST}

1947 };

1948 #define _SetCommandCodeAuditStatusDataAddress (&_SetCommandCodeAuditStatusData)

1949 #else

1950 #define _SetCommandCodeAuditStatusDataAddress 0

1951 #endif // CC_SetCommandCodeAuditStatus

1952 #if CC_PCR_Extend

1953 #include "PCR_Extend_fp.h"

1954 typedef TPM_RC (PCR_Extend_Entry)(

1955 PCR_Extend_In *in

1956);

1957 typedef const struct {

1958 PCR_Extend_Entry *entry;

1959 UINT16 inSize;

1960 UINT16 outSize;

1961 UINT16 offsetOfTypes;

1962 UINT16 paramOffsets[1];

1963 BYTE types[4];

1964 } PCR_Extend_COMMAND_DESCRIPTOR_t;

1965 PCR_Extend_COMMAND_DESCRIPTOR_t _PCR_ExtendData = {

1966 /* entry */ &TPM2_PCR_Extend,

1967 /* inSize */ (UINT16)(sizeof(PCR_Extend_In)),

1968 /* outSize */ 0,

1969 /* offsetOfTypes */ offsetof(PCR_Extend_COMMAND_DESCRIPTOR_t, types),

1970 /* offsets */ {(UINT16)(offsetof(PCR_Extend_In, digests))},

1971 /* types */ {TPMI_DH_PCR_H_UNMARSHAL + ADD_FLAG,

1972 TPML_DIGEST_VALUES_P_UNMARSHAL,

1973 END_OF_LIST,

1974 END_OF_LIST}

1975 };

1976 #define _PCR_ExtendDataAddress (&_PCR_ExtendData)

1977 #else

1978 #define _PCR_ExtendDataAddress 0

1979 #endif // CC_PCR_Extend

1980 #if CC_PCR_Event

1981 #include "PCR_Event_fp.h"

1982 typedef TPM_RC (PCR_Event_Entry)(

1983 PCR_Event_In *in,

1984 PCR_Event_Out *out

1985);

1986 typedef const struct {

1987 PCR_Event_Entry *entry;

1988 UINT16 inSize;

1989 UINT16 outSize;

1990 UINT16 offsetOfTypes;

1991 UINT16 paramOffsets[1];

1992 BYTE types[5];

1993 } PCR_Event_COMMAND_DESCRIPTOR_t;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1994 PCR_Event_COMMAND_DESCRIPTOR_t _PCR_EventData = {

1995 /* entry */ &TPM2_PCR_Event,

1996 /* inSize */ (UINT16)(sizeof(PCR_Event_In)),

1997 /* outSize */ (UINT16)(sizeof(PCR_Event_Out)),

1998 /* offsetOfTypes */ offsetof(PCR_Event_COMMAND_DESCRIPTOR_t, types),

1999 /* offsets */ {(UINT16)(offsetof(PCR_Event_In, eventData))},

2000 /* types */ {TPMI_DH_PCR_H_UNMARSHAL + ADD_FLAG,

2001 TPM2B_EVENT_P_UNMARSHAL,

2002 END_OF_LIST,

2003 TPML_DIGEST_VALUES_P_MARSHAL,

2004 END_OF_LIST}

2005 };

2006 #define _PCR_EventDataAddress (&_PCR_EventData)

2007 #else

2008 #define _PCR_EventDataAddress 0

2009 #endif // CC_PCR_Event

2010 #if CC_PCR_Read

2011 #include "PCR_Read_fp.h"

2012 typedef TPM_RC (PCR_Read_Entry)(

2013 PCR_Read_In *in,

2014 PCR_Read_Out *out

2015);

2016 typedef const struct {

2017 PCR_Read_Entry *entry;

2018 UINT16 inSize;

2019 UINT16 outSize;

2020 UINT16 offsetOfTypes;

2021 UINT16 paramOffsets[2];

2022 BYTE types[6];

2023 } PCR_Read_COMMAND_DESCRIPTOR_t;

2024 PCR_Read_COMMAND_DESCRIPTOR_t _PCR_ReadData = {

2025 /* entry */ &TPM2_PCR_Read,

2026 /* inSize */ (UINT16)(sizeof(PCR_Read_In)),

2027 /* outSize */ (UINT16)(sizeof(PCR_Read_Out)),

2028 /* offsetOfTypes */ offsetof(PCR_Read_COMMAND_DESCRIPTOR_t, types),

2029 /* offsets */ {(UINT16)(offsetof(PCR_Read_Out, pcrSelectionOut)),

2030 (UINT16)(offsetof(PCR_Read_Out, pcrValues))},

2031 /* types */ {TPML_PCR_SELECTION_P_UNMARSHAL,

2032 END_OF_LIST,

2033 UINT32_P_MARSHAL,

2034 TPML_PCR_SELECTION_P_MARSHAL,

2035 TPML_DIGEST_P_MARSHAL,

2036 END_OF_LIST}

2037 };

2038 #define _PCR_ReadDataAddress (&_PCR_ReadData)

2039 #else

2040 #define _PCR_ReadDataAddress 0

2041 #endif // CC_PCR_Read

2042 #if CC_PCR_Allocate

2043 #include "PCR_Allocate_fp.h"

2044 typedef TPM_RC (PCR_Allocate_Entry)(

2045 PCR_Allocate_In *in,

2046 PCR_Allocate_Out *out

2047);

2048 typedef const struct {

2049 PCR_Allocate_Entry *entry;

2050 UINT16 inSize;

2051 UINT16 outSize;

2052 UINT16 offsetOfTypes;

2053 UINT16 paramOffsets[4];

2054 BYTE types[8];

2055 } PCR_Allocate_COMMAND_DESCRIPTOR_t;

2056 PCR_Allocate_COMMAND_DESCRIPTOR_t _PCR_AllocateData = {

2057 /* entry */ &TPM2_PCR_Allocate,

2058 /* inSize */ (UINT16)(sizeof(PCR_Allocate_In)),

2059 /* outSize */ (UINT16)(sizeof(PCR_Allocate_Out)),

Trusted Platform Module Library Part 4: Supporting Routines

Page 56 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2060 /* offsetOfTypes */ offsetof(PCR_Allocate_COMMAND_DESCRIPTOR_t, types),

2061 /* offsets */ {(UINT16)(offsetof(PCR_Allocate_In, pcrAllocation)),

2062 (UINT16)(offsetof(PCR_Allocate_Out, maxPCR)),

2063 (UINT16)(offsetof(PCR_Allocate_Out, sizeNeeded)),

2064 (UINT16)(offsetof(PCR_Allocate_Out, sizeAvailable))},

2065 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

2066 TPML_PCR_SELECTION_P_UNMARSHAL,

2067 END_OF_LIST,

2068 TPMI_YES_NO_P_MARSHAL,

2069 UINT32_P_MARSHAL,

2070 UINT32_P_MARSHAL,

2071 UINT32_P_MARSHAL,

2072 END_OF_LIST}

2073 };

2074 #define _PCR_AllocateDataAddress (&_PCR_AllocateData)

2075 #else

2076 #define _PCR_AllocateDataAddress 0

2077 #endif // CC_PCR_Allocate

2078 #if CC_PCR_SetAuthPolicy

2079 #include "PCR_SetAuthPolicy_fp.h"

2080 typedef TPM_RC (PCR_SetAuthPolicy_Entry)(

2081 PCR_SetAuthPolicy_In *in

2082);

2083 typedef const struct {

2084 PCR_SetAuthPolicy_Entry *entry;

2085 UINT16 inSize;

2086 UINT16 outSize;

2087 UINT16 offsetOfTypes;

2088 UINT16 paramOffsets[3];

2089 BYTE types[6];

2090 } PCR_SetAuthPolicy_COMMAND_DESCRIPTOR_t;

2091 PCR_SetAuthPolicy_COMMAND_DESCRIPTOR_t _PCR_SetAuthPolicyData = {

2092 /* entry */ &TPM2_PCR_SetAuthPolicy,

2093 /* inSize */ (UINT16)(sizeof(PCR_SetAuthPolicy_In)),

2094 /* outSize */ 0,

2095 /* offsetOfTypes */ offsetof(PCR_SetAuthPolicy_COMMAND_DESCRIPTOR_t,

types),

2096 /* offsets */ {(UINT16)(offsetof(PCR_SetAuthPolicy_In, authPolicy)),

2097 (UINT16)(offsetof(PCR_SetAuthPolicy_In, hashAlg)),

2098 (UINT16)(offsetof(PCR_SetAuthPolicy_In, pcrNum))},

2099 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

2100 TPM2B_DIGEST_P_UNMARSHAL,

2101 TPMI_ALG_HASH_P_UNMARSHAL + ADD_FLAG,

2102 TPMI_DH_PCR_P_UNMARSHAL,

2103 END_OF_LIST,

2104 END_OF_LIST}

2105 };

2106 #define _PCR_SetAuthPolicyDataAddress (&_PCR_SetAuthPolicyData)

2107 #else

2108 #define _PCR_SetAuthPolicyDataAddress 0

2109 #endif // CC_PCR_SetAuthPolicy

2110 #if CC_PCR_SetAuthValue

2111 #include "PCR_SetAuthValue_fp.h"

2112 typedef TPM_RC (PCR_SetAuthValue_Entry)(

2113 PCR_SetAuthValue_In *in

2114);

2115 typedef const struct {

2116 PCR_SetAuthValue_Entry *entry;

2117 UINT16 inSize;

2118 UINT16 outSize;

2119 UINT16 offsetOfTypes;

2120 UINT16 paramOffsets[1];

2121 BYTE types[4];

2122 } PCR_SetAuthValue_COMMAND_DESCRIPTOR_t;

2123 PCR_SetAuthValue_COMMAND_DESCRIPTOR_t _PCR_SetAuthValueData = {

2124 /* entry */ &TPM2_PCR_SetAuthValue,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2125 /* inSize */ (UINT16)(sizeof(PCR_SetAuthValue_In)),

2126 /* outSize */ 0,

2127 /* offsetOfTypes */ offsetof(PCR_SetAuthValue_COMMAND_DESCRIPTOR_t, types),

2128 /* offsets */ {(UINT16)(offsetof(PCR_SetAuthValue_In, auth))},

2129 /* types */ {TPMI_DH_PCR_H_UNMARSHAL,

2130 TPM2B_DIGEST_P_UNMARSHAL,

2131 END_OF_LIST,

2132 END_OF_LIST}

2133 };

2134 #define _PCR_SetAuthValueDataAddress (&_PCR_SetAuthValueData)

2135 #else

2136 #define _PCR_SetAuthValueDataAddress 0

2137 #endif // CC_PCR_SetAuthValue

2138 #if CC_PCR_Reset

2139 #include "PCR_Reset_fp.h"

2140 typedef TPM_RC (PCR_Reset_Entry)(

2141 PCR_Reset_In *in

2142);

2143 typedef const struct {

2144 PCR_Reset_Entry *entry;

2145 UINT16 inSize;

2146 UINT16 outSize;

2147 UINT16 offsetOfTypes;

2148 BYTE types[3];

2149 } PCR_Reset_COMMAND_DESCRIPTOR_t;

2150 PCR_Reset_COMMAND_DESCRIPTOR_t _PCR_ResetData = {

2151 /* entry */ &TPM2_PCR_Reset,

2152 /* inSize */ (UINT16)(sizeof(PCR_Reset_In)),

2153 /* outSize */ 0,

2154 /* offsetOfTypes */ offsetof(PCR_Reset_COMMAND_DESCRIPTOR_t, types),

2155 /* offsets */ // No parameter offsets;

2156 /* types */ {TPMI_DH_PCR_H_UNMARSHAL,

2157 END_OF_LIST,

2158 END_OF_LIST}

2159 };

2160 #define _PCR_ResetDataAddress (&_PCR_ResetData)

2161 #else

2162 #define _PCR_ResetDataAddress 0

2163 #endif // CC_PCR_Reset

2164 #if CC_PolicySigned

2165 #include "PolicySigned_fp.h"

2166 typedef TPM_RC (PolicySigned_Entry)(

2167 PolicySigned_In *in,

2168 PolicySigned_Out *out

2169);

2170 typedef const struct {

2171 PolicySigned_Entry *entry;

2172 UINT16 inSize;

2173 UINT16 outSize;

2174 UINT16 offsetOfTypes;

2175 UINT16 paramOffsets[7];

2176 BYTE types[11];

2177 } PolicySigned_COMMAND_DESCRIPTOR_t;

2178 PolicySigned_COMMAND_DESCRIPTOR_t _PolicySignedData = {

2179 /* entry */ &TPM2_PolicySigned,

2180 /* inSize */ (UINT16)(sizeof(PolicySigned_In)),

2181 /* outSize */ (UINT16)(sizeof(PolicySigned_Out)),

2182 /* offsetOfTypes */ offsetof(PolicySigned_COMMAND_DESCRIPTOR_t, types),

2183 /* offsets */ {(UINT16)(offsetof(PolicySigned_In, policySession)),

2184 (UINT16)(offsetof(PolicySigned_In, nonceTPM)),

2185 (UINT16)(offsetof(PolicySigned_In, cpHashA)),

2186 (UINT16)(offsetof(PolicySigned_In, policyRef)),

2187 (UINT16)(offsetof(PolicySigned_In, expiration)),

2188 (UINT16)(offsetof(PolicySigned_In, auth)),

2189 (UINT16)(offsetof(PolicySigned_Out, policyTicket))},

2190 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

Trusted Platform Module Library Part 4: Supporting Routines

Page 58 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2191 TPMI_SH_POLICY_H_UNMARSHAL,

2192 TPM2B_NONCE_P_UNMARSHAL,

2193 TPM2B_DIGEST_P_UNMARSHAL,

2194 TPM2B_NONCE_P_UNMARSHAL,

2195 INT32_P_UNMARSHAL,

2196 TPMT_SIGNATURE_P_UNMARSHAL,

2197 END_OF_LIST,

2198 TPM2B_TIMEOUT_P_MARSHAL,

2199 TPMT_TK_AUTH_P_MARSHAL,

2200 END_OF_LIST}

2201 };

2202 #define _PolicySignedDataAddress (&_PolicySignedData)

2203 #else

2204 #define _PolicySignedDataAddress 0

2205 #endif // CC_PolicySigned

2206 #if CC_PolicySecret

2207 #include "PolicySecret_fp.h"

2208 typedef TPM_RC (PolicySecret_Entry)(

2209 PolicySecret_In *in,

2210 PolicySecret_Out *out

2211);

2212 typedef const struct {

2213 PolicySecret_Entry *entry;

2214 UINT16 inSize;

2215 UINT16 outSize;

2216 UINT16 offsetOfTypes;

2217 UINT16 paramOffsets[6];

2218 BYTE types[10];

2219 } PolicySecret_COMMAND_DESCRIPTOR_t;

2220 PolicySecret_COMMAND_DESCRIPTOR_t _PolicySecretData = {

2221 /* entry */ &TPM2_PolicySecret,

2222 /* inSize */ (UINT16)(sizeof(PolicySecret_In)),

2223 /* outSize */ (UINT16)(sizeof(PolicySecret_Out)),

2224 /* offsetOfTypes */ offsetof(PolicySecret_COMMAND_DESCRIPTOR_t, types),

2225 /* offsets */ {(UINT16)(offsetof(PolicySecret_In, policySession)),

2226 (UINT16)(offsetof(PolicySecret_In, nonceTPM)),

2227 (UINT16)(offsetof(PolicySecret_In, cpHashA)),

2228 (UINT16)(offsetof(PolicySecret_In, policyRef)),

2229 (UINT16)(offsetof(PolicySecret_In, expiration)),

2230 (UINT16)(offsetof(PolicySecret_Out, policyTicket))},

2231 /* types */ {TPMI_DH_ENTITY_H_UNMARSHAL,

2232 TPMI_SH_POLICY_H_UNMARSHAL,

2233 TPM2B_NONCE_P_UNMARSHAL,

2234 TPM2B_DIGEST_P_UNMARSHAL,

2235 TPM2B_NONCE_P_UNMARSHAL,

2236 INT32_P_UNMARSHAL,

2237 END_OF_LIST,

2238 TPM2B_TIMEOUT_P_MARSHAL,

2239 TPMT_TK_AUTH_P_MARSHAL,

2240 END_OF_LIST}

2241 };

2242 #define _PolicySecretDataAddress (&_PolicySecretData)

2243 #else

2244 #define _PolicySecretDataAddress 0

2245 #endif // CC_PolicySecret

2246 #if CC_PolicyTicket

2247 #include "PolicyTicket_fp.h"

2248 typedef TPM_RC (PolicyTicket_Entry)(

2249 PolicyTicket_In *in

2250);

2251 typedef const struct {

2252 PolicyTicket_Entry *entry;

2253 UINT16 inSize;

2254 UINT16 outSize;

2255 UINT16 offsetOfTypes;

2256 UINT16 paramOffsets[5];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2257 BYTE types[8];

2258 } PolicyTicket_COMMAND_DESCRIPTOR_t;

2259 PolicyTicket_COMMAND_DESCRIPTOR_t _PolicyTicketData = {

2260 /* entry */ &TPM2_PolicyTicket,

2261 /* inSize */ (UINT16)(sizeof(PolicyTicket_In)),

2262 /* outSize */ 0,

2263 /* offsetOfTypes */ offsetof(PolicyTicket_COMMAND_DESCRIPTOR_t, types),

2264 /* offsets */ {(UINT16)(offsetof(PolicyTicket_In, timeout)),

2265 (UINT16)(offsetof(PolicyTicket_In, cpHashA)),

2266 (UINT16)(offsetof(PolicyTicket_In, policyRef)),

2267 (UINT16)(offsetof(PolicyTicket_In, authName)),

2268 (UINT16)(offsetof(PolicyTicket_In, ticket))},

2269 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2270 TPM2B_TIMEOUT_P_UNMARSHAL,

2271 TPM2B_DIGEST_P_UNMARSHAL,

2272 TPM2B_NONCE_P_UNMARSHAL,

2273 TPM2B_NAME_P_UNMARSHAL,

2274 TPMT_TK_AUTH_P_UNMARSHAL,

2275 END_OF_LIST,

2276 END_OF_LIST}

2277 };

2278 #define _PolicyTicketDataAddress (&_PolicyTicketData)

2279 #else

2280 #define _PolicyTicketDataAddress 0

2281 #endif // CC_PolicyTicket

2282 #if CC_PolicyOR

2283 #include "PolicyOR_fp.h"

2284 typedef TPM_RC (PolicyOR_Entry)(

2285 PolicyOR_In *in

2286);

2287 typedef const struct {

2288 PolicyOR_Entry *entry;

2289 UINT16 inSize;

2290 UINT16 outSize;

2291 UINT16 offsetOfTypes;

2292 UINT16 paramOffsets[1];

2293 BYTE types[4];

2294 } PolicyOR_COMMAND_DESCRIPTOR_t;

2295 PolicyOR_COMMAND_DESCRIPTOR_t _PolicyORData = {

2296 /* entry */ &TPM2_PolicyOR,

2297 /* inSize */ (UINT16)(sizeof(PolicyOR_In)),

2298 /* outSize */ 0,

2299 /* offsetOfTypes */ offsetof(PolicyOR_COMMAND_DESCRIPTOR_t, types),

2300 /* offsets */ {(UINT16)(offsetof(PolicyOR_In, pHashList))},

2301 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2302 TPML_DIGEST_P_UNMARSHAL,

2303 END_OF_LIST,

2304 END_OF_LIST}

2305 };

2306 #define _PolicyORDataAddress (&_PolicyORData)

2307 #else

2308 #define _PolicyORDataAddress 0

2309 #endif // CC_PolicyOR

2310 #if CC_PolicyPCR

2311 #include "PolicyPCR_fp.h"

2312 typedef TPM_RC (PolicyPCR_Entry)(

2313 PolicyPCR_In *in

2314);

2315 typedef const struct {

2316 PolicyPCR_Entry *entry;

2317 UINT16 inSize;

2318 UINT16 outSize;

2319 UINT16 offsetOfTypes;

2320 UINT16 paramOffsets[2];

2321 BYTE types[5];

2322 } PolicyPCR_COMMAND_DESCRIPTOR_t;

Trusted Platform Module Library Part 4: Supporting Routines

Page 60 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2323 PolicyPCR_COMMAND_DESCRIPTOR_t _PolicyPCRData = {

2324 /* entry */ &TPM2_PolicyPCR,

2325 /* inSize */ (UINT16)(sizeof(PolicyPCR_In)),

2326 /* outSize */ 0,

2327 /* offsetOfTypes */ offsetof(PolicyPCR_COMMAND_DESCRIPTOR_t, types),

2328 /* offsets */ {(UINT16)(offsetof(PolicyPCR_In, pcrDigest)),

2329 (UINT16)(offsetof(PolicyPCR_In, pcrs))},

2330 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2331 TPM2B_DIGEST_P_UNMARSHAL,

2332 TPML_PCR_SELECTION_P_UNMARSHAL,

2333 END_OF_LIST,

2334 END_OF_LIST}

2335 };

2336 #define _PolicyPCRDataAddress (&_PolicyPCRData)

2337 #else

2338 #define _PolicyPCRDataAddress 0

2339 #endif // CC_PolicyPCR

2340 #if CC_PolicyLocality

2341 #include "PolicyLocality_fp.h"

2342 typedef TPM_RC (PolicyLocality_Entry)(

2343 PolicyLocality_In *in

2344);

2345 typedef const struct {

2346 PolicyLocality_Entry *entry;

2347 UINT16 inSize;

2348 UINT16 outSize;

2349 UINT16 offsetOfTypes;

2350 UINT16 paramOffsets[1];

2351 BYTE types[4];

2352 } PolicyLocality_COMMAND_DESCRIPTOR_t;

2353 PolicyLocality_COMMAND_DESCRIPTOR_t _PolicyLocalityData = {

2354 /* entry */ &TPM2_PolicyLocality,

2355 /* inSize */ (UINT16)(sizeof(PolicyLocality_In)),

2356 /* outSize */ 0,

2357 /* offsetOfTypes */ offsetof(PolicyLocality_COMMAND_DESCRIPTOR_t, types),

2358 /* offsets */ {(UINT16)(offsetof(PolicyLocality_In, locality))},

2359 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2360 TPMA_LOCALITY_P_UNMARSHAL,

2361 END_OF_LIST,

2362 END_OF_LIST}

2363 };

2364 #define _PolicyLocalityDataAddress (&_PolicyLocalityData)

2365 #else

2366 #define _PolicyLocalityDataAddress 0

2367 #endif // CC_PolicyLocality

2368 #if CC_PolicyNV

2369 #include "PolicyNV_fp.h"

2370 typedef TPM_RC (PolicyNV_Entry)(

2371 PolicyNV_In *in

2372);

2373 typedef const struct {

2374 PolicyNV_Entry *entry;

2375 UINT16 inSize;

2376 UINT16 outSize;

2377 UINT16 offsetOfTypes;

2378 UINT16 paramOffsets[5];

2379 BYTE types[8];

2380 } PolicyNV_COMMAND_DESCRIPTOR_t;

2381 PolicyNV_COMMAND_DESCRIPTOR_t _PolicyNVData = {

2382 /* entry */ &TPM2_PolicyNV,

2383 /* inSize */ (UINT16)(sizeof(PolicyNV_In)),

2384 /* outSize */ 0,

2385 /* offsetOfTypes */ offsetof(PolicyNV_COMMAND_DESCRIPTOR_t, types),

2386 /* offsets */ {(UINT16)(offsetof(PolicyNV_In, nvIndex)),

2387 (UINT16)(offsetof(PolicyNV_In, policySession)),

2388 (UINT16)(offsetof(PolicyNV_In, operandB)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2389 (UINT16)(offsetof(PolicyNV_In, offset)),

2390 (UINT16)(offsetof(PolicyNV_In, operation))},

2391 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

2392 TPMI_RH_NV_INDEX_H_UNMARSHAL,

2393 TPMI_SH_POLICY_H_UNMARSHAL,

2394 TPM2B_OPERAND_P_UNMARSHAL,

2395 UINT16_P_UNMARSHAL,

2396 TPM_EO_P_UNMARSHAL,

2397 END_OF_LIST,

2398 END_OF_LIST}

2399 };

2400 #define _PolicyNVDataAddress (&_PolicyNVData)

2401 #else

2402 #define _PolicyNVDataAddress 0

2403 #endif // CC_PolicyNV

2404 #if CC_PolicyCounterTimer

2405 #include "PolicyCounterTimer_fp.h"

2406 typedef TPM_RC (PolicyCounterTimer_Entry)(

2407 PolicyCounterTimer_In *in

2408);

2409 typedef const struct {

2410 PolicyCounterTimer_Entry *entry;

2411 UINT16 inSize;

2412 UINT16 outSize;

2413 UINT16 offsetOfTypes;

2414 UINT16 paramOffsets[3];

2415 BYTE types[6];

2416 } PolicyCounterTimer_COMMAND_DESCRIPTOR_t;

2417 PolicyCounterTimer_COMMAND_DESCRIPTOR_t _PolicyCounterTimerData = {

2418 /* entry */ &TPM2_PolicyCounterTimer,

2419 /* inSize */ (UINT16)(sizeof(PolicyCounterTimer_In)),

2420 /* outSize */ 0,

2421 /* offsetOfTypes */ offsetof(PolicyCounterTimer_COMMAND_DESCRIPTOR_t,

types),

2422 /* offsets */ {(UINT16)(offsetof(PolicyCounterTimer_In, operandB)),

2423 (UINT16)(offsetof(PolicyCounterTimer_In, offset)),

2424 (UINT16)(offsetof(PolicyCounterTimer_In,

operation))},

2425 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2426 TPM2B_OPERAND_P_UNMARSHAL,

2427 UINT16_P_UNMARSHAL,

2428 TPM_EO_P_UNMARSHAL,

2429 END_OF_LIST,

2430 END_OF_LIST}

2431 };

2432 #define _PolicyCounterTimerDataAddress (&_PolicyCounterTimerData)

2433 #else

2434 #define _PolicyCounterTimerDataAddress 0

2435 #endif // CC_PolicyCounterTimer

2436 #if CC_PolicyCommandCode

2437 #include "PolicyCommandCode_fp.h"

2438 typedef TPM_RC (PolicyCommandCode_Entry)(

2439 PolicyCommandCode_In *in

2440);

2441 typedef const struct {

2442 PolicyCommandCode_Entry *entry;

2443 UINT16 inSize;

2444 UINT16 outSize;

2445 UINT16 offsetOfTypes;

2446 UINT16 paramOffsets[1];

2447 BYTE types[4];

2448 } PolicyCommandCode_COMMAND_DESCRIPTOR_t;

2449 PolicyCommandCode_COMMAND_DESCRIPTOR_t _PolicyCommandCodeData = {

2450 /* entry */ &TPM2_PolicyCommandCode,

2451 /* inSize */ (UINT16)(sizeof(PolicyCommandCode_In)),

2452 /* outSize */ 0,

Trusted Platform Module Library Part 4: Supporting Routines

Page 62 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2453 /* offsetOfTypes */ offsetof(PolicyCommandCode_COMMAND_DESCRIPTOR_t,

types),

2454 /* offsets */ {(UINT16)(offsetof(PolicyCommandCode_In, code))},

2455 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2456 TPM_CC_P_UNMARSHAL,

2457 END_OF_LIST,

2458 END_OF_LIST}

2459 };

2460 #define _PolicyCommandCodeDataAddress (&_PolicyCommandCodeData)

2461 #else

2462 #define _PolicyCommandCodeDataAddress 0

2463 #endif // CC_PolicyCommandCode

2464 #if CC_PolicyPhysicalPresence

2465 #include "PolicyPhysicalPresence_fp.h"

2466 typedef TPM_RC (PolicyPhysicalPresence_Entry)(

2467 PolicyPhysicalPresence_In *in

2468);

2469 typedef const struct {

2470 PolicyPhysicalPresence_Entry *entry;

2471 UINT16 inSize;

2472 UINT16 outSize;

2473 UINT16 offsetOfTypes;

2474 BYTE types[3];

2475 } PolicyPhysicalPresence_COMMAND_DESCRIPTOR_t;

2476 PolicyPhysicalPresence_COMMAND_DESCRIPTOR_t _PolicyPhysicalPresenceData = {

2477 /* entry */ &TPM2_PolicyPhysicalPresence,

2478 /* inSize */ (UINT16)(sizeof(PolicyPhysicalPresence_In)),

2479 /* outSize */ 0,

2480 /* offsetOfTypes */

offsetof(PolicyPhysicalPresence_COMMAND_DESCRIPTOR_t, types),

2481 /* offsets */ // No parameter offsets;

2482 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2483 END_OF_LIST,

2484 END_OF_LIST}

2485 };

2486 #define _PolicyPhysicalPresenceDataAddress (&_PolicyPhysicalPresenceData)

2487 #else

2488 #define _PolicyPhysicalPresenceDataAddress 0

2489 #endif // CC_PolicyPhysicalPresence

2490 #if CC_PolicyCpHash

2491 #include "PolicyCpHash_fp.h"

2492 typedef TPM_RC (PolicyCpHash_Entry)(

2493 PolicyCpHash_In *in

2494);

2495 typedef const struct {

2496 PolicyCpHash_Entry *entry;

2497 UINT16 inSize;

2498 UINT16 outSize;

2499 UINT16 offsetOfTypes;

2500 UINT16 paramOffsets[1];

2501 BYTE types[4];

2502 } PolicyCpHash_COMMAND_DESCRIPTOR_t;

2503 PolicyCpHash_COMMAND_DESCRIPTOR_t _PolicyCpHashData = {

2504 /* entry */ &TPM2_PolicyCpHash,

2505 /* inSize */ (UINT16)(sizeof(PolicyCpHash_In)),

2506 /* outSize */ 0,

2507 /* offsetOfTypes */ offsetof(PolicyCpHash_COMMAND_DESCRIPTOR_t, types),

2508 /* offsets */ {(UINT16)(offsetof(PolicyCpHash_In, cpHashA))},

2509 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2510 TPM2B_DIGEST_P_UNMARSHAL,

2511 END_OF_LIST,

2512 END_OF_LIST}

2513 };

2514 #define _PolicyCpHashDataAddress (&_PolicyCpHashData)

2515 #else

2516 #define _PolicyCpHashDataAddress 0

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2517 #endif // CC_PolicyCpHash

2518 #if CC_PolicyNameHash

2519 #include "PolicyNameHash_fp.h"

2520 typedef TPM_RC (PolicyNameHash_Entry)(

2521 PolicyNameHash_In *in

2522);

2523 typedef const struct {

2524 PolicyNameHash_Entry *entry;

2525 UINT16 inSize;

2526 UINT16 outSize;

2527 UINT16 offsetOfTypes;

2528 UINT16 paramOffsets[1];

2529 BYTE types[4];

2530 } PolicyNameHash_COMMAND_DESCRIPTOR_t;

2531 PolicyNameHash_COMMAND_DESCRIPTOR_t _PolicyNameHashData = {

2532 /* entry */ &TPM2_PolicyNameHash,

2533 /* inSize */ (UINT16)(sizeof(PolicyNameHash_In)),

2534 /* outSize */ 0,

2535 /* offsetOfTypes */ offsetof(PolicyNameHash_COMMAND_DESCRIPTOR_t, types),

2536 /* offsets */ {(UINT16)(offsetof(PolicyNameHash_In, nameHash))},

2537 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2538 TPM2B_DIGEST_P_UNMARSHAL,

2539 END_OF_LIST,

2540 END_OF_LIST}

2541 };

2542 #define _PolicyNameHashDataAddress (&_PolicyNameHashData)

2543 #else

2544 #define _PolicyNameHashDataAddress 0

2545 #endif // CC_PolicyNameHash

2546 #if CC_PolicyDuplicationSelect

2547 #include "PolicyDuplicationSelect_fp.h"

2548 typedef TPM_RC (PolicyDuplicationSelect_Entry)(

2549 PolicyDuplicationSelect_In *in

2550);

2551 typedef const struct {

2552 PolicyDuplicationSelect_Entry *entry;

2553 UINT16 inSize;

2554 UINT16 outSize;

2555 UINT16 offsetOfTypes;

2556 UINT16 paramOffsets[3];

2557 BYTE types[6];

2558 } PolicyDuplicationSelect_COMMAND_DESCRIPTOR_t;

2559 PolicyDuplicationSelect_COMMAND_DESCRIPTOR_t _PolicyDuplicationSelectData = {

2560 /* entry */ &TPM2_PolicyDuplicationSelect,

2561 /* inSize */ (UINT16)(sizeof(PolicyDuplicationSelect_In)),

2562 /* outSize */ 0,

2563 /* offsetOfTypes */

offsetof(PolicyDuplicationSelect_COMMAND_DESCRIPTOR_t, types),

2564 /* offsets */ {(UINT16)(offsetof(PolicyDuplicationSelect_In,

objectName)),

2565 (UINT16)(offsetof(PolicyDuplicationSelect_In,

newParentName)),

2566 (UINT16)(offsetof(PolicyDuplicationSelect_In,

includeObject))},

2567 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2568 TPM2B_NAME_P_UNMARSHAL,

2569 TPM2B_NAME_P_UNMARSHAL,

2570 TPMI_YES_NO_P_UNMARSHAL,

2571 END_OF_LIST,

2572 END_OF_LIST}

2573 };

2574 #define _PolicyDuplicationSelectDataAddress (&_PolicyDuplicationSelectData)

2575 #else

2576 #define _PolicyDuplicationSelectDataAddress 0

2577 #endif // CC_PolicyDuplicationSelect

2578 #if CC_PolicyAuthorize

Trusted Platform Module Library Part 4: Supporting Routines

Page 64 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2579 #include "PolicyAuthorize_fp.h"

2580 typedef TPM_RC (PolicyAuthorize_Entry)(

2581 PolicyAuthorize_In *in

2582);

2583 typedef const struct {

2584 PolicyAuthorize_Entry *entry;

2585 UINT16 inSize;

2586 UINT16 outSize;

2587 UINT16 offsetOfTypes;

2588 UINT16 paramOffsets[4];

2589 BYTE types[7];

2590 } PolicyAuthorize_COMMAND_DESCRIPTOR_t;

2591 PolicyAuthorize_COMMAND_DESCRIPTOR_t _PolicyAuthorizeData = {

2592 /* entry */ &TPM2_PolicyAuthorize,

2593 /* inSize */ (UINT16)(sizeof(PolicyAuthorize_In)),

2594 /* outSize */ 0,

2595 /* offsetOfTypes */ offsetof(PolicyAuthorize_COMMAND_DESCRIPTOR_t, types),

2596 /* offsets */ {(UINT16)(offsetof(PolicyAuthorize_In, approvedPolicy)),

2597 (UINT16)(offsetof(PolicyAuthorize_In, policyRef)),

2598 (UINT16)(offsetof(PolicyAuthorize_In, keySign)),

2599 (UINT16)(offsetof(PolicyAuthorize_In, checkTicket))},

2600 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2601 TPM2B_DIGEST_P_UNMARSHAL,

2602 TPM2B_NONCE_P_UNMARSHAL,

2603 TPM2B_NAME_P_UNMARSHAL,

2604 TPMT_TK_VERIFIED_P_UNMARSHAL,

2605 END_OF_LIST,

2606 END_OF_LIST}

2607 };

2608 #define _PolicyAuthorizeDataAddress (&_PolicyAuthorizeData)

2609 #else

2610 #define _PolicyAuthorizeDataAddress 0

2611 #endif // CC_PolicyAuthorize

2612 #if CC_PolicyAuthValue

2613 #include "PolicyAuthValue_fp.h"

2614 typedef TPM_RC (PolicyAuthValue_Entry)(

2615 PolicyAuthValue_In *in

2616);

2617 typedef const struct {

2618 PolicyAuthValue_Entry *entry;

2619 UINT16 inSize;

2620 UINT16 outSize;

2621 UINT16 offsetOfTypes;

2622 BYTE types[3];

2623 } PolicyAuthValue_COMMAND_DESCRIPTOR_t;

2624 PolicyAuthValue_COMMAND_DESCRIPTOR_t _PolicyAuthValueData = {

2625 /* entry */ &TPM2_PolicyAuthValue,

2626 /* inSize */ (UINT16)(sizeof(PolicyAuthValue_In)),

2627 /* outSize */ 0,

2628 /* offsetOfTypes */ offsetof(PolicyAuthValue_COMMAND_DESCRIPTOR_t, types),

2629 /* offsets */ // No parameter offsets;

2630 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2631 END_OF_LIST,

2632 END_OF_LIST}

2633 };

2634 #define _PolicyAuthValueDataAddress (&_PolicyAuthValueData)

2635 #else

2636 #define _PolicyAuthValueDataAddress 0

2637 #endif // CC_PolicyAuthValue

2638 #if CC_PolicyPassword

2639 #include "PolicyPassword_fp.h"

2640 typedef TPM_RC (PolicyPassword_Entry)(

2641 PolicyPassword_In *in

2642);

2643 typedef const struct {

2644 PolicyPassword_Entry *entry;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2645 UINT16 inSize;

2646 UINT16 outSize;

2647 UINT16 offsetOfTypes;

2648 BYTE types[3];

2649 } PolicyPassword_COMMAND_DESCRIPTOR_t;

2650 PolicyPassword_COMMAND_DESCRIPTOR_t _PolicyPasswordData = {

2651 /* entry */ &TPM2_PolicyPassword,

2652 /* inSize */ (UINT16)(sizeof(PolicyPassword_In)),

2653 /* outSize */ 0,

2654 /* offsetOfTypes */ offsetof(PolicyPassword_COMMAND_DESCRIPTOR_t, types),

2655 /* offsets */ // No parameter offsets;

2656 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2657 END_OF_LIST,

2658 END_OF_LIST}

2659 };

2660 #define _PolicyPasswordDataAddress (&_PolicyPasswordData)

2661 #else

2662 #define _PolicyPasswordDataAddress 0

2663 #endif // CC_PolicyPassword

2664 #if CC_PolicyGetDigest

2665 #include "PolicyGetDigest_fp.h"

2666 typedef TPM_RC (PolicyGetDigest_Entry)(

2667 PolicyGetDigest_In *in,

2668 PolicyGetDigest_Out *out

2669);

2670 typedef const struct {

2671 PolicyGetDigest_Entry *entry;

2672 UINT16 inSize;

2673 UINT16 outSize;

2674 UINT16 offsetOfTypes;

2675 BYTE types[4];

2676 } PolicyGetDigest_COMMAND_DESCRIPTOR_t;

2677 PolicyGetDigest_COMMAND_DESCRIPTOR_t _PolicyGetDigestData = {

2678 /* entry */ &TPM2_PolicyGetDigest,

2679 /* inSize */ (UINT16)(sizeof(PolicyGetDigest_In)),

2680 /* outSize */ (UINT16)(sizeof(PolicyGetDigest_Out)),

2681 /* offsetOfTypes */ offsetof(PolicyGetDigest_COMMAND_DESCRIPTOR_t, types),

2682 /* offsets */ // No parameter offsets;

2683 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2684 END_OF_LIST,

2685 TPM2B_DIGEST_P_MARSHAL,

2686 END_OF_LIST}

2687 };

2688 #define _PolicyGetDigestDataAddress (&_PolicyGetDigestData)

2689 #else

2690 #define _PolicyGetDigestDataAddress 0

2691 #endif // CC_PolicyGetDigest

2692 #if CC_PolicyNvWritten

2693 #include "PolicyNvWritten_fp.h"

2694 typedef TPM_RC (PolicyNvWritten_Entry)(

2695 PolicyNvWritten_In *in

2696);

2697 typedef const struct {

2698 PolicyNvWritten_Entry *entry;

2699 UINT16 inSize;

2700 UINT16 outSize;

2701 UINT16 offsetOfTypes;

2702 UINT16 paramOffsets[1];

2703 BYTE types[4];

2704 } PolicyNvWritten_COMMAND_DESCRIPTOR_t;

2705 PolicyNvWritten_COMMAND_DESCRIPTOR_t _PolicyNvWrittenData = {

2706 /* entry */ &TPM2_PolicyNvWritten,

2707 /* inSize */ (UINT16)(sizeof(PolicyNvWritten_In)),

2708 /* outSize */ 0,

2709 /* offsetOfTypes */ offsetof(PolicyNvWritten_COMMAND_DESCRIPTOR_t, types),

2710 /* offsets */ {(UINT16)(offsetof(PolicyNvWritten_In, writtenSet))},

Trusted Platform Module Library Part 4: Supporting Routines

Page 66 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2711 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2712 TPMI_YES_NO_P_UNMARSHAL,

2713 END_OF_LIST,

2714 END_OF_LIST}

2715 };

2716 #define _PolicyNvWrittenDataAddress (&_PolicyNvWrittenData)

2717 #else

2718 #define _PolicyNvWrittenDataAddress 0

2719 #endif // CC_PolicyNvWritten

2720 #if CC_PolicyTemplate

2721 #include "PolicyTemplate_fp.h"

2722 typedef TPM_RC (PolicyTemplate_Entry)(

2723 PolicyTemplate_In *in

2724);

2725 typedef const struct {

2726 PolicyTemplate_Entry *entry;

2727 UINT16 inSize;

2728 UINT16 outSize;

2729 UINT16 offsetOfTypes;

2730 UINT16 paramOffsets[1];

2731 BYTE types[4];

2732 } PolicyTemplate_COMMAND_DESCRIPTOR_t;

2733 PolicyTemplate_COMMAND_DESCRIPTOR_t _PolicyTemplateData = {

2734 /* entry */ &TPM2_PolicyTemplate,

2735 /* inSize */ (UINT16)(sizeof(PolicyTemplate_In)),

2736 /* outSize */ 0,

2737 /* offsetOfTypes */ offsetof(PolicyTemplate_COMMAND_DESCRIPTOR_t, types),

2738 /* offsets */ {(UINT16)(offsetof(PolicyTemplate_In, templateHash))},

2739 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

2740 TPM2B_DIGEST_P_UNMARSHAL,

2741 END_OF_LIST,

2742 END_OF_LIST}

2743 };

2744 #define _PolicyTemplateDataAddress (&_PolicyTemplateData)

2745 #else

2746 #define _PolicyTemplateDataAddress 0

2747 #endif // CC_PolicyTemplate

2748 #if CC_PolicyAuthorizeNV

2749 #include "PolicyAuthorizeNV_fp.h"

2750 typedef TPM_RC (PolicyAuthorizeNV_Entry)(

2751 PolicyAuthorizeNV_In *in

2752);

2753 typedef const struct {

2754 PolicyAuthorizeNV_Entry *entry;

2755 UINT16 inSize;

2756 UINT16 outSize;

2757 UINT16 offsetOfTypes;

2758 UINT16 paramOffsets[2];

2759 BYTE types[5];

2760 } PolicyAuthorizeNV_COMMAND_DESCRIPTOR_t;

2761 PolicyAuthorizeNV_COMMAND_DESCRIPTOR_t _PolicyAuthorizeNVData = {

2762 /* entry */ &TPM2_PolicyAuthorizeNV,

2763 /* inSize */ (UINT16)(sizeof(PolicyAuthorizeNV_In)),

2764 /* outSize */ 0,

2765 /* offsetOfTypes */ offsetof(PolicyAuthorizeNV_COMMAND_DESCRIPTOR_t,

types),

2766 /* offsets */ {(UINT16)(offsetof(PolicyAuthorizeNV_In, nvIndex)),

2767 (UINT16)(offsetof(PolicyAuthorizeNV_In,

policySession))},

2768 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

2769 TPMI_RH_NV_INDEX_H_UNMARSHAL,

2770 TPMI_SH_POLICY_H_UNMARSHAL,

2771 END_OF_LIST,

2772 END_OF_LIST}

2773 };

2774 #define _PolicyAuthorizeNVDataAddress (&_PolicyAuthorizeNVData)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2775 #else

2776 #define _PolicyAuthorizeNVDataAddress 0

2777 #endif // CC_PolicyAuthorizeNV

2778 #if CC_CreatePrimary

2779 #include "CreatePrimary_fp.h"

2780 typedef TPM_RC (CreatePrimary_Entry)(

2781 CreatePrimary_In *in,

2782 CreatePrimary_Out *out

2783);

2784 typedef const struct {

2785 CreatePrimary_Entry *entry;

2786 UINT16 inSize;

2787 UINT16 outSize;

2788 UINT16 offsetOfTypes;

2789 UINT16 paramOffsets[9];

2790 BYTE types[13];

2791 } CreatePrimary_COMMAND_DESCRIPTOR_t;

2792 CreatePrimary_COMMAND_DESCRIPTOR_t _CreatePrimaryData = {

2793 /* entry */ &TPM2_CreatePrimary,

2794 /* inSize */ (UINT16)(sizeof(CreatePrimary_In)),

2795 /* outSize */ (UINT16)(sizeof(CreatePrimary_Out)),

2796 /* offsetOfTypes */ offsetof(CreatePrimary_COMMAND_DESCRIPTOR_t, types),

2797 /* offsets */ {(UINT16)(offsetof(CreatePrimary_In, inSensitive)),

2798 (UINT16)(offsetof(CreatePrimary_In, inPublic)),

2799 (UINT16)(offsetof(CreatePrimary_In, outsideInfo)),

2800 (UINT16)(offsetof(CreatePrimary_In, creationPCR)),

2801 (UINT16)(offsetof(CreatePrimary_Out, outPublic)),

2802 (UINT16)(offsetof(CreatePrimary_Out, creationData)),

2803 (UINT16)(offsetof(CreatePrimary_Out, creationHash)),

2804 (UINT16)(offsetof(CreatePrimary_Out, creationTicket)),

2805 (UINT16)(offsetof(CreatePrimary_Out, name))},

2806 /* types */ {TPMI_RH_HIERARCHY_H_UNMARSHAL + ADD_FLAG,

2807 TPM2B_SENSITIVE_CREATE_P_UNMARSHAL,

2808 TPM2B_PUBLIC_P_UNMARSHAL,

2809 TPM2B_DATA_P_UNMARSHAL,

2810 TPML_PCR_SELECTION_P_UNMARSHAL,

2811 END_OF_LIST,

2812 TPM_HANDLE_H_MARSHAL,

2813 TPM2B_PUBLIC_P_MARSHAL,

2814 TPM2B_CREATION_DATA_P_MARSHAL,

2815 TPM2B_DIGEST_P_MARSHAL,

2816 TPMT_TK_CREATION_P_MARSHAL,

2817 TPM2B_NAME_P_MARSHAL,

2818 END_OF_LIST}

2819 };

2820 #define _CreatePrimaryDataAddress (&_CreatePrimaryData)

2821 #else

2822 #define _CreatePrimaryDataAddress 0

2823 #endif // CC_CreatePrimary

2824 #if CC_HierarchyControl

2825 #include "HierarchyControl_fp.h"

2826 typedef TPM_RC (HierarchyControl_Entry)(

2827 HierarchyControl_In *in

2828);

2829 typedef const struct {

2830 HierarchyControl_Entry *entry;

2831 UINT16 inSize;

2832 UINT16 outSize;

2833 UINT16 offsetOfTypes;

2834 UINT16 paramOffsets[2];

2835 BYTE types[5];

2836 } HierarchyControl_COMMAND_DESCRIPTOR_t;

2837 HierarchyControl_COMMAND_DESCRIPTOR_t _HierarchyControlData = {

2838 /* entry */ &TPM2_HierarchyControl,

2839 /* inSize */ (UINT16)(sizeof(HierarchyControl_In)),

2840 /* outSize */ 0,

Trusted Platform Module Library Part 4: Supporting Routines

Page 68 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2841 /* offsetOfTypes */ offsetof(HierarchyControl_COMMAND_DESCRIPTOR_t, types),

2842 /* offsets */ {(UINT16)(offsetof(HierarchyControl_In, enable)),

2843 (UINT16)(offsetof(HierarchyControl_In, state))},

2844 /* types */ {TPMI_RH_HIERARCHY_H_UNMARSHAL,

2845 TPMI_RH_ENABLES_P_UNMARSHAL,

2846 TPMI_YES_NO_P_UNMARSHAL,

2847 END_OF_LIST,

2848 END_OF_LIST}

2849 };

2850 #define _HierarchyControlDataAddress (&_HierarchyControlData)

2851 #else

2852 #define _HierarchyControlDataAddress 0

2853 #endif // CC_HierarchyControl

2854 #if CC_SetPrimaryPolicy

2855 #include "SetPrimaryPolicy_fp.h"

2856 typedef TPM_RC (SetPrimaryPolicy_Entry)(

2857 SetPrimaryPolicy_In *in

2858);

2859 typedef const struct {

2860 SetPrimaryPolicy_Entry *entry;

2861 UINT16 inSize;

2862 UINT16 outSize;

2863 UINT16 offsetOfTypes;

2864 UINT16 paramOffsets[2];

2865 BYTE types[5];

2866 } SetPrimaryPolicy_COMMAND_DESCRIPTOR_t;

2867 SetPrimaryPolicy_COMMAND_DESCRIPTOR_t _SetPrimaryPolicyData = {

2868 /* entry */ &TPM2_SetPrimaryPolicy,

2869 /* inSize */ (UINT16)(sizeof(SetPrimaryPolicy_In)),

2870 /* outSize */ 0,

2871 /* offsetOfTypes */ offsetof(SetPrimaryPolicy_COMMAND_DESCRIPTOR_t, types),

2872 /* offsets */ {(UINT16)(offsetof(SetPrimaryPolicy_In, authPolicy)),

2873 (UINT16)(offsetof(SetPrimaryPolicy_In, hashAlg))},

2874 /* types */ {TPMI_RH_HIERARCHY_POLICY_H_UNMARSHAL,

2875 TPM2B_DIGEST_P_UNMARSHAL,

2876 TPMI_ALG_HASH_P_UNMARSHAL + ADD_FLAG,

2877 END_OF_LIST,

2878 END_OF_LIST}

2879 };

2880 #define _SetPrimaryPolicyDataAddress (&_SetPrimaryPolicyData)

2881 #else

2882 #define _SetPrimaryPolicyDataAddress 0

2883 #endif // CC_SetPrimaryPolicy

2884 #if CC_ChangePPS

2885 #include "ChangePPS_fp.h"

2886 typedef TPM_RC (ChangePPS_Entry)(

2887 ChangePPS_In *in

2888);

2889 typedef const struct {

2890 ChangePPS_Entry *entry;

2891 UINT16 inSize;

2892 UINT16 outSize;

2893 UINT16 offsetOfTypes;

2894 BYTE types[3];

2895 } ChangePPS_COMMAND_DESCRIPTOR_t;

2896 ChangePPS_COMMAND_DESCRIPTOR_t _ChangePPSData = {

2897 /* entry */ &TPM2_ChangePPS,

2898 /* inSize */ (UINT16)(sizeof(ChangePPS_In)),

2899 /* outSize */ 0,

2900 /* offsetOfTypes */ offsetof(ChangePPS_COMMAND_DESCRIPTOR_t, types),

2901 /* offsets */ // No parameter offsets;

2902 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

2903 END_OF_LIST,

2904 END_OF_LIST}

2905 };

2906 #define _ChangePPSDataAddress (&_ChangePPSData)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2907 #else

2908 #define _ChangePPSDataAddress 0

2909 #endif // CC_ChangePPS

2910 #if CC_ChangeEPS

2911 #include "ChangeEPS_fp.h"

2912 typedef TPM_RC (ChangeEPS_Entry)(

2913 ChangeEPS_In *in

2914);

2915 typedef const struct {

2916 ChangeEPS_Entry *entry;

2917 UINT16 inSize;

2918 UINT16 outSize;

2919 UINT16 offsetOfTypes;

2920 BYTE types[3];

2921 } ChangeEPS_COMMAND_DESCRIPTOR_t;

2922 ChangeEPS_COMMAND_DESCRIPTOR_t _ChangeEPSData = {

2923 /* entry */ &TPM2_ChangeEPS,

2924 /* inSize */ (UINT16)(sizeof(ChangeEPS_In)),

2925 /* outSize */ 0,

2926 /* offsetOfTypes */ offsetof(ChangeEPS_COMMAND_DESCRIPTOR_t, types),

2927 /* offsets */ // No parameter offsets;

2928 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

2929 END_OF_LIST,

2930 END_OF_LIST}

2931 };

2932 #define _ChangeEPSDataAddress (&_ChangeEPSData)

2933 #else

2934 #define _ChangeEPSDataAddress 0

2935 #endif // CC_ChangeEPS

2936 #if CC_Clear

2937 #include "Clear_fp.h"

2938 typedef TPM_RC (Clear_Entry)(

2939 Clear_In *in

2940);

2941 typedef const struct {

2942 Clear_Entry *entry;

2943 UINT16 inSize;

2944 UINT16 outSize;

2945 UINT16 offsetOfTypes;

2946 BYTE types[3];

2947 } Clear_COMMAND_DESCRIPTOR_t;

2948 Clear_COMMAND_DESCRIPTOR_t _ClearData = {

2949 /* entry */ &TPM2_Clear,

2950 /* inSize */ (UINT16)(sizeof(Clear_In)),

2951 /* outSize */ 0,

2952 /* offsetOfTypes */ offsetof(Clear_COMMAND_DESCRIPTOR_t, types),

2953 /* offsets */ // No parameter offsets;

2954 /* types */ {TPMI_RH_CLEAR_H_UNMARSHAL,

2955 END_OF_LIST,

2956 END_OF_LIST}

2957 };

2958 #define _ClearDataAddress (&_ClearData)

2959 #else

2960 #define _ClearDataAddress 0

2961 #endif // CC_Clear

2962 #if CC_ClearControl

2963 #include "ClearControl_fp.h"

2964 typedef TPM_RC (ClearControl_Entry)(

2965 ClearControl_In *in

2966);

2967 typedef const struct {

2968 ClearControl_Entry *entry;

2969 UINT16 inSize;

2970 UINT16 outSize;

2971 UINT16 offsetOfTypes;

2972 UINT16 paramOffsets[1];

Trusted Platform Module Library Part 4: Supporting Routines

Page 70 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2973 BYTE types[4];

2974 } ClearControl_COMMAND_DESCRIPTOR_t;

2975 ClearControl_COMMAND_DESCRIPTOR_t _ClearControlData = {

2976 /* entry */ &TPM2_ClearControl,

2977 /* inSize */ (UINT16)(sizeof(ClearControl_In)),

2978 /* outSize */ 0,

2979 /* offsetOfTypes */ offsetof(ClearControl_COMMAND_DESCRIPTOR_t, types),

2980 /* offsets */ {(UINT16)(offsetof(ClearControl_In, disable))},

2981 /* types */ {TPMI_RH_CLEAR_H_UNMARSHAL,

2982 TPMI_YES_NO_P_UNMARSHAL,

2983 END_OF_LIST,

2984 END_OF_LIST}

2985 };

2986 #define _ClearControlDataAddress (&_ClearControlData)

2987 #else

2988 #define _ClearControlDataAddress 0

2989 #endif // CC_ClearControl

2990 #if CC_HierarchyChangeAuth

2991 #include "HierarchyChangeAuth_fp.h"

2992 typedef TPM_RC (HierarchyChangeAuth_Entry)(

2993 HierarchyChangeAuth_In *in

2994);

2995 typedef const struct {

2996 HierarchyChangeAuth_Entry *entry;

2997 UINT16 inSize;

2998 UINT16 outSize;

2999 UINT16 offsetOfTypes;

3000 UINT16 paramOffsets[1];

3001 BYTE types[4];

3002 } HierarchyChangeAuth_COMMAND_DESCRIPTOR_t;

3003 HierarchyChangeAuth_COMMAND_DESCRIPTOR_t _HierarchyChangeAuthData = {

3004 /* entry */ &TPM2_HierarchyChangeAuth,

3005 /* inSize */ (UINT16)(sizeof(HierarchyChangeAuth_In)),

3006 /* outSize */ 0,

3007 /* offsetOfTypes */ offsetof(HierarchyChangeAuth_COMMAND_DESCRIPTOR_t,

types),

3008 /* offsets */ {(UINT16)(offsetof(HierarchyChangeAuth_In, newAuth))},

3009 /* types */ {TPMI_RH_HIERARCHY_AUTH_H_UNMARSHAL,

3010 TPM2B_AUTH_P_UNMARSHAL,

3011 END_OF_LIST,

3012 END_OF_LIST}

3013 };

3014 #define _HierarchyChangeAuthDataAddress (&_HierarchyChangeAuthData)

3015 #else

3016 #define _HierarchyChangeAuthDataAddress 0

3017 #endif // CC_HierarchyChangeAuth

3018 #if CC_DictionaryAttackLockReset

3019 #include "DictionaryAttackLockReset_fp.h"

3020 typedef TPM_RC (DictionaryAttackLockReset_Entry)(

3021 DictionaryAttackLockReset_In *in

3022);

3023 typedef const struct {

3024 DictionaryAttackLockReset_Entry *entry;

3025 UINT16 inSize;

3026 UINT16 outSize;

3027 UINT16 offsetOfTypes;

3028 BYTE types[3];

3029 } DictionaryAttackLockReset_COMMAND_DESCRIPTOR_t;

3030 DictionaryAttackLockReset_COMMAND_DESCRIPTOR_t _DictionaryAttackLockResetData = {

3031 /* entry */ &TPM2_DictionaryAttackLockReset,

3032 /* inSize */

(UINT16)(sizeof(DictionaryAttackLockReset_In)),

3033 /* outSize */ 0,

3034 /* offsetOfTypes */

offsetof(DictionaryAttackLockReset_COMMAND_DESCRIPTOR_t, types),

3035 /* offsets */ // No parameter offsets;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3036 /* types */ {TPMI_RH_LOCKOUT_H_UNMARSHAL,

3037 END_OF_LIST,

3038 END_OF_LIST}

3039 };

3040 #define _DictionaryAttackLockResetDataAddress (&_DictionaryAttackLockResetData)

3041 #else

3042 #define _DictionaryAttackLockResetDataAddress 0

3043 #endif // CC_DictionaryAttackLockReset

3044 #if CC_DictionaryAttackParameters

3045 #include "DictionaryAttackParameters_fp.h"

3046 typedef TPM_RC (DictionaryAttackParameters_Entry)(

3047 DictionaryAttackParameters_In *in

3048);

3049 typedef const struct {

3050 DictionaryAttackParameters_Entry *entry;

3051 UINT16 inSize;

3052 UINT16 outSize;

3053 UINT16 offsetOfTypes;

3054 UINT16 paramOffsets[3];

3055 BYTE types[6];

3056 } DictionaryAttackParameters_COMMAND_DESCRIPTOR_t;

3057 DictionaryAttackParameters_COMMAND_DESCRIPTOR_t _DictionaryAttackParametersData =

{

3058 /* entry */ &TPM2_DictionaryAttackParameters,

3059 /* inSize */

(UINT16)(sizeof(DictionaryAttackParameters_In)),

3060 /* outSize */ 0,

3061 /* offsetOfTypes */

offsetof(DictionaryAttackParameters_COMMAND_DESCRIPTOR_t, types),

3062 /* offsets */

{(UINT16)(offsetof(DictionaryAttackParameters_In, newMaxTries)),

3063

(UINT16)(offsetof(DictionaryAttackParameters_In, newRecoveryTime)),

3064

(UINT16)(offsetof(DictionaryAttackParameters_In, lockoutRecovery))},

3065 /* types */ {TPMI_RH_LOCKOUT_H_UNMARSHAL,

3066 UINT32_P_UNMARSHAL,

3067 UINT32_P_UNMARSHAL,

3068 UINT32_P_UNMARSHAL,

3069 END_OF_LIST,

3070 END_OF_LIST}

3071 };

3072 #define _DictionaryAttackParametersDataAddress (&_DictionaryAttackParametersData)

3073 #else

3074 #define _DictionaryAttackParametersDataAddress 0

3075 #endif // CC_DictionaryAttackParameters

3076 #if CC_PP_Commands

3077 #include "PP_Commands_fp.h"

3078 typedef TPM_RC (PP_Commands_Entry)(

3079 PP_Commands_In *in

3080);

3081 typedef const struct {

3082 PP_Commands_Entry *entry;

3083 UINT16 inSize;

3084 UINT16 outSize;

3085 UINT16 offsetOfTypes;

3086 UINT16 paramOffsets[2];

3087 BYTE types[5];

3088 } PP_Commands_COMMAND_DESCRIPTOR_t;

3089 PP_Commands_COMMAND_DESCRIPTOR_t _PP_CommandsData = {

3090 /* entry */ &TPM2_PP_Commands,

3091 /* inSize */ (UINT16)(sizeof(PP_Commands_In)),

3092 /* outSize */ 0,

3093 /* offsetOfTypes */ offsetof(PP_Commands_COMMAND_DESCRIPTOR_t, types),

3094 /* offsets */ {(UINT16)(offsetof(PP_Commands_In, setList)),

3095 (UINT16)(offsetof(PP_Commands_In, clearList))},

Trusted Platform Module Library Part 4: Supporting Routines

Page 72 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3096 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

3097 TPML_CC_P_UNMARSHAL,

3098 TPML_CC_P_UNMARSHAL,

3099 END_OF_LIST,

3100 END_OF_LIST}

3101 };

3102 #define _PP_CommandsDataAddress (&_PP_CommandsData)

3103 #else

3104 #define _PP_CommandsDataAddress 0

3105 #endif // CC_PP_Commands

3106 #if CC_SetAlgorithmSet

3107 #include "SetAlgorithmSet_fp.h"

3108 typedef TPM_RC (SetAlgorithmSet_Entry)(

3109 SetAlgorithmSet_In *in

3110);

3111 typedef const struct {

3112 SetAlgorithmSet_Entry *entry;

3113 UINT16 inSize;

3114 UINT16 outSize;

3115 UINT16 offsetOfTypes;

3116 UINT16 paramOffsets[1];

3117 BYTE types[4];

3118 } SetAlgorithmSet_COMMAND_DESCRIPTOR_t;

3119 SetAlgorithmSet_COMMAND_DESCRIPTOR_t _SetAlgorithmSetData = {

3120 /* entry */ &TPM2_SetAlgorithmSet,

3121 /* inSize */ (UINT16)(sizeof(SetAlgorithmSet_In)),

3122 /* outSize */ 0,

3123 /* offsetOfTypes */ offsetof(SetAlgorithmSet_COMMAND_DESCRIPTOR_t, types),

3124 /* offsets */ {(UINT16)(offsetof(SetAlgorithmSet_In, algorithmSet))},

3125 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

3126 UINT32_P_UNMARSHAL,

3127 END_OF_LIST,

3128 END_OF_LIST}

3129 };

3130 #define _SetAlgorithmSetDataAddress (&_SetAlgorithmSetData)

3131 #else

3132 #define _SetAlgorithmSetDataAddress 0

3133 #endif // CC_SetAlgorithmSet

3134 #if CC_FieldUpgradeStart

3135 #include "FieldUpgradeStart_fp.h"

3136 typedef TPM_RC (FieldUpgradeStart_Entry)(

3137 FieldUpgradeStart_In *in

3138);

3139 typedef const struct {

3140 FieldUpgradeStart_Entry *entry;

3141 UINT16 inSize;

3142 UINT16 outSize;

3143 UINT16 offsetOfTypes;

3144 UINT16 paramOffsets[3];

3145 BYTE types[6];

3146 } FieldUpgradeStart_COMMAND_DESCRIPTOR_t;

3147 FieldUpgradeStart_COMMAND_DESCRIPTOR_t _FieldUpgradeStartData = {

3148 /* entry */ &TPM2_FieldUpgradeStart,

3149 /* inSize */ (UINT16)(sizeof(FieldUpgradeStart_In)),

3150 /* outSize */ 0,

3151 /* offsetOfTypes */ offsetof(FieldUpgradeStart_COMMAND_DESCRIPTOR_t,

types),

3152 /* offsets */ {(UINT16)(offsetof(FieldUpgradeStart_In, keyHandle)),

3153 (UINT16)(offsetof(FieldUpgradeStart_In, fuDigest)),

3154 (UINT16)(offsetof(FieldUpgradeStart_In,

manifestSignature))},

3155 /* types */ {TPMI_RH_PLATFORM_H_UNMARSHAL,

3156 TPMI_DH_OBJECT_H_UNMARSHAL,

3157 TPM2B_DIGEST_P_UNMARSHAL,

3158 TPMT_SIGNATURE_P_UNMARSHAL,

3159 END_OF_LIST,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3160 END_OF_LIST}

3161 };

3162 #define _FieldUpgradeStartDataAddress (&_FieldUpgradeStartData)

3163 #else

3164 #define _FieldUpgradeStartDataAddress 0

3165 #endif // CC_FieldUpgradeStart

3166 #if CC_FieldUpgradeData

3167 #include "FieldUpgradeData_fp.h"

3168 typedef TPM_RC (FieldUpgradeData_Entry)(

3169 FieldUpgradeData_In *in,

3170 FieldUpgradeData_Out *out

3171);

3172 typedef const struct {

3173 FieldUpgradeData_Entry *entry;

3174 UINT16 inSize;

3175 UINT16 outSize;

3176 UINT16 offsetOfTypes;

3177 UINT16 paramOffsets[1];

3178 BYTE types[5];

3179 } FieldUpgradeData_COMMAND_DESCRIPTOR_t;

3180 FieldUpgradeData_COMMAND_DESCRIPTOR_t _FieldUpgradeDataData = {

3181 /* entry */ &TPM2_FieldUpgradeData,

3182 /* inSize */ (UINT16)(sizeof(FieldUpgradeData_In)),

3183 /* outSize */ (UINT16)(sizeof(FieldUpgradeData_Out)),

3184 /* offsetOfTypes */ offsetof(FieldUpgradeData_COMMAND_DESCRIPTOR_t, types),

3185 /* offsets */ {(UINT16)(offsetof(FieldUpgradeData_Out, firstDigest))},

3186 /* types */ {TPM2B_MAX_BUFFER_P_UNMARSHAL,

3187 END_OF_LIST,

3188 TPMT_HA_P_MARSHAL,

3189 TPMT_HA_P_MARSHAL,

3190 END_OF_LIST}

3191 };

3192 #define _FieldUpgradeDataDataAddress (&_FieldUpgradeDataData)

3193 #else

3194 #define _FieldUpgradeDataDataAddress 0

3195 #endif // CC_FieldUpgradeData

3196 #if CC_FirmwareRead

3197 #include "FirmwareRead_fp.h"

3198 typedef TPM_RC (FirmwareRead_Entry)(

3199 FirmwareRead_In *in,

3200 FirmwareRead_Out *out

3201);

3202 typedef const struct {

3203 FirmwareRead_Entry *entry;

3204 UINT16 inSize;

3205 UINT16 outSize;

3206 UINT16 offsetOfTypes;

3207 BYTE types[4];

3208 } FirmwareRead_COMMAND_DESCRIPTOR_t;

3209 FirmwareRead_COMMAND_DESCRIPTOR_t _FirmwareReadData = {

3210 /* entry */ &TPM2_FirmwareRead,

3211 /* inSize */ (UINT16)(sizeof(FirmwareRead_In)),

3212 /* outSize */ (UINT16)(sizeof(FirmwareRead_Out)),

3213 /* offsetOfTypes */ offsetof(FirmwareRead_COMMAND_DESCRIPTOR_t, types),

3214 /* offsets */ // No parameter offsets;

3215 /* types */ {UINT32_P_UNMARSHAL,

3216 END_OF_LIST,

3217 TPM2B_MAX_BUFFER_P_MARSHAL,

3218 END_OF_LIST}

3219 };

3220 #define _FirmwareReadDataAddress (&_FirmwareReadData)

3221 #else

3222 #define _FirmwareReadDataAddress 0

3223 #endif // CC_FirmwareRead

3224 #if CC_ContextSave

3225 #include "ContextSave_fp.h"

Trusted Platform Module Library Part 4: Supporting Routines

Page 74 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3226 typedef TPM_RC (ContextSave_Entry)(

3227 ContextSave_In *in,

3228 ContextSave_Out *out

3229);

3230 typedef const struct {

3231 ContextSave_Entry *entry;

3232 UINT16 inSize;

3233 UINT16 outSize;

3234 UINT16 offsetOfTypes;

3235 BYTE types[4];

3236 } ContextSave_COMMAND_DESCRIPTOR_t;

3237 ContextSave_COMMAND_DESCRIPTOR_t _ContextSaveData = {

3238 /* entry */ &TPM2_ContextSave,

3239 /* inSize */ (UINT16)(sizeof(ContextSave_In)),

3240 /* outSize */ (UINT16)(sizeof(ContextSave_Out)),

3241 /* offsetOfTypes */ offsetof(ContextSave_COMMAND_DESCRIPTOR_t, types),

3242 /* offsets */ // No parameter offsets;

3243 /* types */ {TPMI_DH_CONTEXT_H_UNMARSHAL,

3244 END_OF_LIST,

3245 TPMS_CONTEXT_P_MARSHAL,

3246 END_OF_LIST}

3247 };

3248 #define _ContextSaveDataAddress (&_ContextSaveData)

3249 #else

3250 #define _ContextSaveDataAddress 0

3251 #endif // CC_ContextSave

3252 #if CC_ContextLoad

3253 #include "ContextLoad_fp.h"

3254 typedef TPM_RC (ContextLoad_Entry)(

3255 ContextLoad_In *in,

3256 ContextLoad_Out *out

3257);

3258 typedef const struct {

3259 ContextLoad_Entry *entry;

3260 UINT16 inSize;

3261 UINT16 outSize;

3262 UINT16 offsetOfTypes;

3263 BYTE types[4];

3264 } ContextLoad_COMMAND_DESCRIPTOR_t;

3265 ContextLoad_COMMAND_DESCRIPTOR_t _ContextLoadData = {

3266 /* entry */ &TPM2_ContextLoad,

3267 /* inSize */ (UINT16)(sizeof(ContextLoad_In)),

3268 /* outSize */ (UINT16)(sizeof(ContextLoad_Out)),

3269 /* offsetOfTypes */ offsetof(ContextLoad_COMMAND_DESCRIPTOR_t, types),

3270 /* offsets */ // No parameter offsets;

3271 /* types */ {TPMS_CONTEXT_P_UNMARSHAL,

3272 END_OF_LIST,

3273 TPMI_DH_CONTEXT_H_MARSHAL,

3274 END_OF_LIST}

3275 };

3276 #define _ContextLoadDataAddress (&_ContextLoadData)

3277 #else

3278 #define _ContextLoadDataAddress 0

3279 #endif // CC_ContextLoad

3280 #if CC_FlushContext

3281 #include "FlushContext_fp.h"

3282 typedef TPM_RC (FlushContext_Entry)(

3283 FlushContext_In *in

3284);

3285 typedef const struct {

3286 FlushContext_Entry *entry;

3287 UINT16 inSize;

3288 UINT16 outSize;

3289 UINT16 offsetOfTypes;

3290 BYTE types[3];

3291 } FlushContext_COMMAND_DESCRIPTOR_t;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3292 FlushContext_COMMAND_DESCRIPTOR_t _FlushContextData = {

3293 /* entry */ &TPM2_FlushContext,

3294 /* inSize */ (UINT16)(sizeof(FlushContext_In)),

3295 /* outSize */ 0,

3296 /* offsetOfTypes */ offsetof(FlushContext_COMMAND_DESCRIPTOR_t, types),

3297 /* offsets */ // No parameter offsets;

3298 /* types */ {TPMI_DH_CONTEXT_P_UNMARSHAL,

3299 END_OF_LIST,

3300 END_OF_LIST}

3301 };

3302 #define _FlushContextDataAddress (&_FlushContextData)

3303 #else

3304 #define _FlushContextDataAddress 0

3305 #endif // CC_FlushContext

3306 #if CC_EvictControl

3307 #include "EvictControl_fp.h"

3308 typedef TPM_RC (EvictControl_Entry)(

3309 EvictControl_In *in

3310);

3311 typedef const struct {

3312 EvictControl_Entry *entry;

3313 UINT16 inSize;

3314 UINT16 outSize;

3315 UINT16 offsetOfTypes;

3316 UINT16 paramOffsets[2];

3317 BYTE types[5];

3318 } EvictControl_COMMAND_DESCRIPTOR_t;

3319 EvictControl_COMMAND_DESCRIPTOR_t _EvictControlData = {

3320 /* entry */ &TPM2_EvictControl,

3321 /* inSize */ (UINT16)(sizeof(EvictControl_In)),

3322 /* outSize */ 0,

3323 /* offsetOfTypes */ offsetof(EvictControl_COMMAND_DESCRIPTOR_t, types),

3324 /* offsets */ {(UINT16)(offsetof(EvictControl_In, objectHandle)),

3325 (UINT16)(offsetof(EvictControl_In, persistentHandle))},

3326 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

3327 TPMI_DH_OBJECT_H_UNMARSHAL,

3328 TPMI_DH_PERSISTENT_P_UNMARSHAL,

3329 END_OF_LIST,

3330 END_OF_LIST}

3331 };

3332 #define _EvictControlDataAddress (&_EvictControlData)

3333 #else

3334 #define _EvictControlDataAddress 0

3335 #endif // CC_EvictControl

3336 #if CC_ReadClock

3337 #include "ReadClock_fp.h"

3338 typedef TPM_RC (ReadClock_Entry)(

3339 ReadClock_Out *out

3340);

3341 typedef const struct {

3342 ReadClock_Entry *entry;

3343 UINT16 inSize;

3344 UINT16 outSize;

3345 UINT16 offsetOfTypes;

3346 BYTE types[3];

3347 } ReadClock_COMMAND_DESCRIPTOR_t;

3348 ReadClock_COMMAND_DESCRIPTOR_t _ReadClockData = {

3349 /* entry */ &TPM2_ReadClock,

3350 /* inSize */ 0,

3351 /* outSize */ (UINT16)(sizeof(ReadClock_Out)),

3352 /* offsetOfTypes */ offsetof(ReadClock_COMMAND_DESCRIPTOR_t, types),

3353 /* offsets */ // No parameter offsets;

3354 /* types */ {END_OF_LIST,

3355 TPMS_TIME_INFO_P_MARSHAL,

3356 END_OF_LIST}

3357 };

Trusted Platform Module Library Part 4: Supporting Routines

Page 76 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3358 #define _ReadClockDataAddress (&_ReadClockData)

3359 #else

3360 #define _ReadClockDataAddress 0

3361 #endif // CC_ReadClock

3362 #if CC_ClockSet

3363 #include "ClockSet_fp.h"

3364 typedef TPM_RC (ClockSet_Entry)(

3365 ClockSet_In *in

3366);

3367 typedef const struct {

3368 ClockSet_Entry *entry;

3369 UINT16 inSize;

3370 UINT16 outSize;

3371 UINT16 offsetOfTypes;

3372 UINT16 paramOffsets[1];

3373 BYTE types[4];

3374 } ClockSet_COMMAND_DESCRIPTOR_t;

3375 ClockSet_COMMAND_DESCRIPTOR_t _ClockSetData = {

3376 /* entry */ &TPM2_ClockSet,

3377 /* inSize */ (UINT16)(sizeof(ClockSet_In)),

3378 /* outSize */ 0,

3379 /* offsetOfTypes */ offsetof(ClockSet_COMMAND_DESCRIPTOR_t, types),

3380 /* offsets */ {(UINT16)(offsetof(ClockSet_In, newTime))},

3381 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

3382 UINT64_P_UNMARSHAL,

3383 END_OF_LIST,

3384 END_OF_LIST}

3385 };

3386 #define _ClockSetDataAddress (&_ClockSetData)

3387 #else

3388 #define _ClockSetDataAddress 0

3389 #endif // CC_ClockSet

3390 #if CC_ClockRateAdjust

3391 #include "ClockRateAdjust_fp.h"

3392 typedef TPM_RC (ClockRateAdjust_Entry)(

3393 ClockRateAdjust_In *in

3394);

3395 typedef const struct {

3396 ClockRateAdjust_Entry *entry;

3397 UINT16 inSize;

3398 UINT16 outSize;

3399 UINT16 offsetOfTypes;

3400 UINT16 paramOffsets[1];

3401 BYTE types[4];

3402 } ClockRateAdjust_COMMAND_DESCRIPTOR_t;

3403 ClockRateAdjust_COMMAND_DESCRIPTOR_t _ClockRateAdjustData = {

3404 /* entry */ &TPM2_ClockRateAdjust,

3405 /* inSize */ (UINT16)(sizeof(ClockRateAdjust_In)),

3406 /* outSize */ 0,

3407 /* offsetOfTypes */ offsetof(ClockRateAdjust_COMMAND_DESCRIPTOR_t, types),

3408 /* offsets */ {(UINT16)(offsetof(ClockRateAdjust_In, rateAdjust))},

3409 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

3410 TPM_CLOCK_ADJUST_P_UNMARSHAL,

3411 END_OF_LIST,

3412 END_OF_LIST}

3413 };

3414 #define _ClockRateAdjustDataAddress (&_ClockRateAdjustData)

3415 #else

3416 #define _ClockRateAdjustDataAddress 0

3417 #endif // CC_ClockRateAdjust

3418 #if CC_GetCapability

3419 #include "GetCapability_fp.h"

3420 typedef TPM_RC (GetCapability_Entry)(

3421 GetCapability_In *in,

3422 GetCapability_Out *out

3423);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3424 typedef const struct {

3425 GetCapability_Entry *entry;

3426 UINT16 inSize;

3427 UINT16 outSize;

3428 UINT16 offsetOfTypes;

3429 UINT16 paramOffsets[3];

3430 BYTE types[7];

3431 } GetCapability_COMMAND_DESCRIPTOR_t;

3432 GetCapability_COMMAND_DESCRIPTOR_t _GetCapabilityData = {

3433 /* entry */ &TPM2_GetCapability,

3434 /* inSize */ (UINT16)(sizeof(GetCapability_In)),

3435 /* outSize */ (UINT16)(sizeof(GetCapability_Out)),

3436 /* offsetOfTypes */ offsetof(GetCapability_COMMAND_DESCRIPTOR_t, types),

3437 /* offsets */ {(UINT16)(offsetof(GetCapability_In, property)),

3438 (UINT16)(offsetof(GetCapability_In, propertyCount)),

3439 (UINT16)(offsetof(GetCapability_Out, capabilityData))},

3440 /* types */ {TPM_CAP_P_UNMARSHAL,

3441 UINT32_P_UNMARSHAL,

3442 UINT32_P_UNMARSHAL,

3443 END_OF_LIST,

3444 TPMI_YES_NO_P_MARSHAL,

3445 TPMS_CAPABILITY_DATA_P_MARSHAL,

3446 END_OF_LIST}

3447 };

3448 #define _GetCapabilityDataAddress (&_GetCapabilityData)

3449 #else

3450 #define _GetCapabilityDataAddress 0

3451 #endif // CC_GetCapability

3452 #if CC_TestParms

3453 #include "TestParms_fp.h"

3454 typedef TPM_RC (TestParms_Entry)(

3455 TestParms_In *in

3456);

3457 typedef const struct {

3458 TestParms_Entry *entry;

3459 UINT16 inSize;

3460 UINT16 outSize;

3461 UINT16 offsetOfTypes;

3462 BYTE types[3];

3463 } TestParms_COMMAND_DESCRIPTOR_t;

3464 TestParms_COMMAND_DESCRIPTOR_t _TestParmsData = {

3465 /* entry */ &TPM2_TestParms,

3466 /* inSize */ (UINT16)(sizeof(TestParms_In)),

3467 /* outSize */ 0,

3468 /* offsetOfTypes */ offsetof(TestParms_COMMAND_DESCRIPTOR_t, types),

3469 /* offsets */ // No parameter offsets;

3470 /* types */ {TPMT_PUBLIC_PARMS_P_UNMARSHAL,

3471 END_OF_LIST,

3472 END_OF_LIST}

3473 };

3474 #define _TestParmsDataAddress (&_TestParmsData)

3475 #else

3476 #define _TestParmsDataAddress 0

3477 #endif // CC_TestParms

3478 #if CC_NV_DefineSpace

3479 #include "NV_DefineSpace_fp.h"

3480 typedef TPM_RC (NV_DefineSpace_Entry)(

3481 NV_DefineSpace_In *in

3482);

3483 typedef const struct {

3484 NV_DefineSpace_Entry *entry;

3485 UINT16 inSize;

3486 UINT16 outSize;

3487 UINT16 offsetOfTypes;

3488 UINT16 paramOffsets[2];

3489 BYTE types[5];

Trusted Platform Module Library Part 4: Supporting Routines

Page 78 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3490 } NV_DefineSpace_COMMAND_DESCRIPTOR_t;

3491 NV_DefineSpace_COMMAND_DESCRIPTOR_t _NV_DefineSpaceData = {

3492 /* entry */ &TPM2_NV_DefineSpace,

3493 /* inSize */ (UINT16)(sizeof(NV_DefineSpace_In)),

3494 /* outSize */ 0,

3495 /* offsetOfTypes */ offsetof(NV_DefineSpace_COMMAND_DESCRIPTOR_t, types),

3496 /* offsets */ {(UINT16)(offsetof(NV_DefineSpace_In, auth)),

3497 (UINT16)(offsetof(NV_DefineSpace_In, publicInfo))},

3498 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

3499 TPM2B_AUTH_P_UNMARSHAL,

3500 TPM2B_NV_PUBLIC_P_UNMARSHAL,

3501 END_OF_LIST,

3502 END_OF_LIST}

3503 };

3504 #define _NV_DefineSpaceDataAddress (&_NV_DefineSpaceData)

3505 #else

3506 #define _NV_DefineSpaceDataAddress 0

3507 #endif // CC_NV_DefineSpace

3508 #if CC_NV_UndefineSpace

3509 #include "NV_UndefineSpace_fp.h"

3510 typedef TPM_RC (NV_UndefineSpace_Entry)(

3511 NV_UndefineSpace_In *in

3512);

3513 typedef const struct {

3514 NV_UndefineSpace_Entry *entry;

3515 UINT16 inSize;

3516 UINT16 outSize;

3517 UINT16 offsetOfTypes;

3518 UINT16 paramOffsets[1];

3519 BYTE types[4];

3520 } NV_UndefineSpace_COMMAND_DESCRIPTOR_t;

3521 NV_UndefineSpace_COMMAND_DESCRIPTOR_t _NV_UndefineSpaceData = {

3522 /* entry */ &TPM2_NV_UndefineSpace,

3523 /* inSize */ (UINT16)(sizeof(NV_UndefineSpace_In)),

3524 /* outSize */ 0,

3525 /* offsetOfTypes */ offsetof(NV_UndefineSpace_COMMAND_DESCRIPTOR_t, types),

3526 /* offsets */ {(UINT16)(offsetof(NV_UndefineSpace_In, nvIndex))},

3527 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

3528 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3529 END_OF_LIST,

3530 END_OF_LIST}

3531 };

3532 #define _NV_UndefineSpaceDataAddress (&_NV_UndefineSpaceData)

3533 #else

3534 #define _NV_UndefineSpaceDataAddress 0

3535 #endif // CC_NV_UndefineSpace

3536 #if CC_NV_UndefineSpaceSpecial

3537 #include "NV_UndefineSpaceSpecial_fp.h"

3538 typedef TPM_RC (NV_UndefineSpaceSpecial_Entry)(

3539 NV_UndefineSpaceSpecial_In *in

3540);

3541 typedef const struct {

3542 NV_UndefineSpaceSpecial_Entry *entry;

3543 UINT16 inSize;

3544 UINT16 outSize;

3545 UINT16 offsetOfTypes;

3546 UINT16 paramOffsets[1];

3547 BYTE types[4];

3548 } NV_UndefineSpaceSpecial_COMMAND_DESCRIPTOR_t;

3549 NV_UndefineSpaceSpecial_COMMAND_DESCRIPTOR_t _NV_UndefineSpaceSpecialData = {

3550 /* entry */ &TPM2_NV_UndefineSpaceSpecial,

3551 /* inSize */ (UINT16)(sizeof(NV_UndefineSpaceSpecial_In)),

3552 /* outSize */ 0,

3553 /* offsetOfTypes */

offsetof(NV_UndefineSpaceSpecial_COMMAND_DESCRIPTOR_t, types),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3554 /* offsets */ {(UINT16)(offsetof(NV_UndefineSpaceSpecial_In,

platform))},

3555 /* types */ {TPMI_RH_NV_INDEX_H_UNMARSHAL,

3556 TPMI_RH_PLATFORM_H_UNMARSHAL,

3557 END_OF_LIST,

3558 END_OF_LIST}

3559 };

3560 #define _NV_UndefineSpaceSpecialDataAddress (&_NV_UndefineSpaceSpecialData)

3561 #else

3562 #define _NV_UndefineSpaceSpecialDataAddress 0

3563 #endif // CC_NV_UndefineSpaceSpecial

3564 #if CC_NV_ReadPublic

3565 #include "NV_ReadPublic_fp.h"

3566 typedef TPM_RC (NV_ReadPublic_Entry)(

3567 NV_ReadPublic_In *in,

3568 NV_ReadPublic_Out *out

3569);

3570 typedef const struct {

3571 NV_ReadPublic_Entry *entry;

3572 UINT16 inSize;

3573 UINT16 outSize;

3574 UINT16 offsetOfTypes;

3575 UINT16 paramOffsets[1];

3576 BYTE types[5];

3577 } NV_ReadPublic_COMMAND_DESCRIPTOR_t;

3578 NV_ReadPublic_COMMAND_DESCRIPTOR_t _NV_ReadPublicData = {

3579 /* entry */ &TPM2_NV_ReadPublic,

3580 /* inSize */ (UINT16)(sizeof(NV_ReadPublic_In)),

3581 /* outSize */ (UINT16)(sizeof(NV_ReadPublic_Out)),

3582 /* offsetOfTypes */ offsetof(NV_ReadPublic_COMMAND_DESCRIPTOR_t, types),

3583 /* offsets */ {(UINT16)(offsetof(NV_ReadPublic_Out, nvName))},

3584 /* types */ {TPMI_RH_NV_INDEX_H_UNMARSHAL,

3585 END_OF_LIST,

3586 TPM2B_NV_PUBLIC_P_MARSHAL,

3587 TPM2B_NAME_P_MARSHAL,

3588 END_OF_LIST}

3589 };

3590 #define _NV_ReadPublicDataAddress (&_NV_ReadPublicData)

3591 #else

3592 #define _NV_ReadPublicDataAddress 0

3593 #endif // CC_NV_ReadPublic

3594 #if CC_NV_Write

3595 #include "NV_Write_fp.h"

3596 typedef TPM_RC (NV_Write_Entry)(

3597 NV_Write_In *in

3598);

3599 typedef const struct {

3600 NV_Write_Entry *entry;

3601 UINT16 inSize;

3602 UINT16 outSize;

3603 UINT16 offsetOfTypes;

3604 UINT16 paramOffsets[3];

3605 BYTE types[6];

3606 } NV_Write_COMMAND_DESCRIPTOR_t;

3607 NV_Write_COMMAND_DESCRIPTOR_t _NV_WriteData = {

3608 /* entry */ &TPM2_NV_Write,

3609 /* inSize */ (UINT16)(sizeof(NV_Write_In)),

3610 /* outSize */ 0,

3611 /* offsetOfTypes */ offsetof(NV_Write_COMMAND_DESCRIPTOR_t, types),

3612 /* offsets */ {(UINT16)(offsetof(NV_Write_In, nvIndex)),

3613 (UINT16)(offsetof(NV_Write_In, data)),

3614 (UINT16)(offsetof(NV_Write_In, offset))},

3615 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3616 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3617 TPM2B_MAX_NV_BUFFER_P_UNMARSHAL,

3618 UINT16_P_UNMARSHAL,

Trusted Platform Module Library Part 4: Supporting Routines

Page 80 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3619 END_OF_LIST,

3620 END_OF_LIST}

3621 };

3622 #define _NV_WriteDataAddress (&_NV_WriteData)

3623 #else

3624 #define _NV_WriteDataAddress 0

3625 #endif // CC_NV_Write

3626 #if CC_NV_Increment

3627 #include "NV_Increment_fp.h"

3628 typedef TPM_RC (NV_Increment_Entry)(

3629 NV_Increment_In *in

3630);

3631 typedef const struct {

3632 NV_Increment_Entry *entry;

3633 UINT16 inSize;

3634 UINT16 outSize;

3635 UINT16 offsetOfTypes;

3636 UINT16 paramOffsets[1];

3637 BYTE types[4];

3638 } NV_Increment_COMMAND_DESCRIPTOR_t;

3639 NV_Increment_COMMAND_DESCRIPTOR_t _NV_IncrementData = {

3640 /* entry */ &TPM2_NV_Increment,

3641 /* inSize */ (UINT16)(sizeof(NV_Increment_In)),

3642 /* outSize */ 0,

3643 /* offsetOfTypes */ offsetof(NV_Increment_COMMAND_DESCRIPTOR_t, types),

3644 /* offsets */ {(UINT16)(offsetof(NV_Increment_In, nvIndex))},

3645 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3646 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3647 END_OF_LIST,

3648 END_OF_LIST}

3649 };

3650 #define _NV_IncrementDataAddress (&_NV_IncrementData)

3651 #else

3652 #define _NV_IncrementDataAddress 0

3653 #endif // CC_NV_Increment

3654 #if CC_NV_Extend

3655 #include "NV_Extend_fp.h"

3656 typedef TPM_RC (NV_Extend_Entry)(

3657 NV_Extend_In *in

3658);

3659 typedef const struct {

3660 NV_Extend_Entry *entry;

3661 UINT16 inSize;

3662 UINT16 outSize;

3663 UINT16 offsetOfTypes;

3664 UINT16 paramOffsets[2];

3665 BYTE types[5];

3666 } NV_Extend_COMMAND_DESCRIPTOR_t;

3667 NV_Extend_COMMAND_DESCRIPTOR_t _NV_ExtendData = {

3668 /* entry */ &TPM2_NV_Extend,

3669 /* inSize */ (UINT16)(sizeof(NV_Extend_In)),

3670 /* outSize */ 0,

3671 /* offsetOfTypes */ offsetof(NV_Extend_COMMAND_DESCRIPTOR_t, types),

3672 /* offsets */ {(UINT16)(offsetof(NV_Extend_In, nvIndex)),

3673 (UINT16)(offsetof(NV_Extend_In, data))},

3674 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3675 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3676 TPM2B_MAX_NV_BUFFER_P_UNMARSHAL,

3677 END_OF_LIST,

3678 END_OF_LIST}

3679 };

3680 #define _NV_ExtendDataAddress (&_NV_ExtendData)

3681 #else

3682 #define _NV_ExtendDataAddress 0

3683 #endif // CC_NV_Extend

3684 #if CC_NV_SetBits

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3685 #include "NV_SetBits_fp.h"

3686 typedef TPM_RC (NV_SetBits_Entry)(

3687 NV_SetBits_In *in

3688);

3689 typedef const struct {

3690 NV_SetBits_Entry *entry;

3691 UINT16 inSize;

3692 UINT16 outSize;

3693 UINT16 offsetOfTypes;

3694 UINT16 paramOffsets[2];

3695 BYTE types[5];

3696 } NV_SetBits_COMMAND_DESCRIPTOR_t;

3697 NV_SetBits_COMMAND_DESCRIPTOR_t _NV_SetBitsData = {

3698 /* entry */ &TPM2_NV_SetBits,

3699 /* inSize */ (UINT16)(sizeof(NV_SetBits_In)),

3700 /* outSize */ 0,

3701 /* offsetOfTypes */ offsetof(NV_SetBits_COMMAND_DESCRIPTOR_t, types),

3702 /* offsets */ {(UINT16)(offsetof(NV_SetBits_In, nvIndex)),

3703 (UINT16)(offsetof(NV_SetBits_In, bits))},

3704 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3705 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3706 UINT64_P_UNMARSHAL,

3707 END_OF_LIST,

3708 END_OF_LIST}

3709 };

3710 #define _NV_SetBitsDataAddress (&_NV_SetBitsData)

3711 #else

3712 #define _NV_SetBitsDataAddress 0

3713 #endif // CC_NV_SetBits

3714 #if CC_NV_WriteLock

3715 #include "NV_WriteLock_fp.h"

3716 typedef TPM_RC (NV_WriteLock_Entry)(

3717 NV_WriteLock_In *in

3718);

3719 typedef const struct {

3720 NV_WriteLock_Entry *entry;

3721 UINT16 inSize;

3722 UINT16 outSize;

3723 UINT16 offsetOfTypes;

3724 UINT16 paramOffsets[1];

3725 BYTE types[4];

3726 } NV_WriteLock_COMMAND_DESCRIPTOR_t;

3727 NV_WriteLock_COMMAND_DESCRIPTOR_t _NV_WriteLockData = {

3728 /* entry */ &TPM2_NV_WriteLock,

3729 /* inSize */ (UINT16)(sizeof(NV_WriteLock_In)),

3730 /* outSize */ 0,

3731 /* offsetOfTypes */ offsetof(NV_WriteLock_COMMAND_DESCRIPTOR_t, types),

3732 /* offsets */ {(UINT16)(offsetof(NV_WriteLock_In, nvIndex))},

3733 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3734 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3735 END_OF_LIST,

3736 END_OF_LIST}

3737 };

3738 #define _NV_WriteLockDataAddress (&_NV_WriteLockData)

3739 #else

3740 #define _NV_WriteLockDataAddress 0

3741 #endif // CC_NV_WriteLock

3742 #if CC_NV_GlobalWriteLock

3743 #include "NV_GlobalWriteLock_fp.h"

3744 typedef TPM_RC (NV_GlobalWriteLock_Entry)(

3745 NV_GlobalWriteLock_In *in

3746);

3747 typedef const struct {

3748 NV_GlobalWriteLock_Entry *entry;

3749 UINT16 inSize;

3750 UINT16 outSize;

Trusted Platform Module Library Part 4: Supporting Routines

Page 82 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3751 UINT16 offsetOfTypes;

3752 BYTE types[3];

3753 } NV_GlobalWriteLock_COMMAND_DESCRIPTOR_t;

3754 NV_GlobalWriteLock_COMMAND_DESCRIPTOR_t _NV_GlobalWriteLockData = {

3755 /* entry */ &TPM2_NV_GlobalWriteLock,

3756 /* inSize */ (UINT16)(sizeof(NV_GlobalWriteLock_In)),

3757 /* outSize */ 0,

3758 /* offsetOfTypes */ offsetof(NV_GlobalWriteLock_COMMAND_DESCRIPTOR_t,

types),

3759 /* offsets */ // No parameter offsets;

3760 /* types */ {TPMI_RH_PROVISION_H_UNMARSHAL,

3761 END_OF_LIST,

3762 END_OF_LIST}

3763 };

3764 #define _NV_GlobalWriteLockDataAddress (&_NV_GlobalWriteLockData)

3765 #else

3766 #define _NV_GlobalWriteLockDataAddress 0

3767 #endif // CC_NV_GlobalWriteLock

3768 #if CC_NV_Read

3769 #include "NV_Read_fp.h"

3770 typedef TPM_RC (NV_Read_Entry)(

3771 NV_Read_In *in,

3772 NV_Read_Out *out

3773);

3774 typedef const struct {

3775 NV_Read_Entry *entry;

3776 UINT16 inSize;

3777 UINT16 outSize;

3778 UINT16 offsetOfTypes;

3779 UINT16 paramOffsets[3];

3780 BYTE types[7];

3781 } NV_Read_COMMAND_DESCRIPTOR_t;

3782 NV_Read_COMMAND_DESCRIPTOR_t _NV_ReadData = {

3783 /* entry */ &TPM2_NV_Read,

3784 /* inSize */ (UINT16)(sizeof(NV_Read_In)),

3785 /* outSize */ (UINT16)(sizeof(NV_Read_Out)),

3786 /* offsetOfTypes */ offsetof(NV_Read_COMMAND_DESCRIPTOR_t, types),

3787 /* offsets */ {(UINT16)(offsetof(NV_Read_In, nvIndex)),

3788 (UINT16)(offsetof(NV_Read_In, size)),

3789 (UINT16)(offsetof(NV_Read_In, offset))},

3790 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3791 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3792 UINT16_P_UNMARSHAL,

3793 UINT16_P_UNMARSHAL,

3794 END_OF_LIST,

3795 TPM2B_MAX_NV_BUFFER_P_MARSHAL,

3796 END_OF_LIST}

3797 };

3798 #define _NV_ReadDataAddress (&_NV_ReadData)

3799 #else

3800 #define _NV_ReadDataAddress 0

3801 #endif // CC_NV_Read

3802 #if CC_NV_ReadLock

3803 #include "NV_ReadLock_fp.h"

3804 typedef TPM_RC (NV_ReadLock_Entry)(

3805 NV_ReadLock_In *in

3806);

3807 typedef const struct {

3808 NV_ReadLock_Entry *entry;

3809 UINT16 inSize;

3810 UINT16 outSize;

3811 UINT16 offsetOfTypes;

3812 UINT16 paramOffsets[1];

3813 BYTE types[4];

3814 } NV_ReadLock_COMMAND_DESCRIPTOR_t;

3815 NV_ReadLock_COMMAND_DESCRIPTOR_t _NV_ReadLockData = {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3816 /* entry */ &TPM2_NV_ReadLock,

3817 /* inSize */ (UINT16)(sizeof(NV_ReadLock_In)),

3818 /* outSize */ 0,

3819 /* offsetOfTypes */ offsetof(NV_ReadLock_COMMAND_DESCRIPTOR_t, types),

3820 /* offsets */ {(UINT16)(offsetof(NV_ReadLock_In, nvIndex))},

3821 /* types */ {TPMI_RH_NV_AUTH_H_UNMARSHAL,

3822 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3823 END_OF_LIST,

3824 END_OF_LIST}

3825 };

3826 #define _NV_ReadLockDataAddress (&_NV_ReadLockData)

3827 #else

3828 #define _NV_ReadLockDataAddress 0

3829 #endif // CC_NV_ReadLock

3830 #if CC_NV_ChangeAuth

3831 #include "NV_ChangeAuth_fp.h"

3832 typedef TPM_RC (NV_ChangeAuth_Entry)(

3833 NV_ChangeAuth_In *in

3834);

3835 typedef const struct {

3836 NV_ChangeAuth_Entry *entry;

3837 UINT16 inSize;

3838 UINT16 outSize;

3839 UINT16 offsetOfTypes;

3840 UINT16 paramOffsets[1];

3841 BYTE types[4];

3842 } NV_ChangeAuth_COMMAND_DESCRIPTOR_t;

3843 NV_ChangeAuth_COMMAND_DESCRIPTOR_t _NV_ChangeAuthData = {

3844 /* entry */ &TPM2_NV_ChangeAuth,

3845 /* inSize */ (UINT16)(sizeof(NV_ChangeAuth_In)),

3846 /* outSize */ 0,

3847 /* offsetOfTypes */ offsetof(NV_ChangeAuth_COMMAND_DESCRIPTOR_t, types),

3848 /* offsets */ {(UINT16)(offsetof(NV_ChangeAuth_In, newAuth))},

3849 /* types */ {TPMI_RH_NV_INDEX_H_UNMARSHAL,

3850 TPM2B_AUTH_P_UNMARSHAL,

3851 END_OF_LIST,

3852 END_OF_LIST}

3853 };

3854 #define _NV_ChangeAuthDataAddress (&_NV_ChangeAuthData)

3855 #else

3856 #define _NV_ChangeAuthDataAddress 0

3857 #endif // CC_NV_ChangeAuth

3858 #if CC_NV_Certify

3859 #include "NV_Certify_fp.h"

3860 typedef TPM_RC (NV_Certify_Entry)(

3861 NV_Certify_In *in,

3862 NV_Certify_Out *out

3863);

3864 typedef const struct {

3865 NV_Certify_Entry *entry;

3866 UINT16 inSize;

3867 UINT16 outSize;

3868 UINT16 offsetOfTypes;

3869 UINT16 paramOffsets[7];

3870 BYTE types[11];

3871 } NV_Certify_COMMAND_DESCRIPTOR_t;

3872 NV_Certify_COMMAND_DESCRIPTOR_t _NV_CertifyData = {

3873 /* entry */ &TPM2_NV_Certify,

3874 /* inSize */ (UINT16)(sizeof(NV_Certify_In)),

3875 /* outSize */ (UINT16)(sizeof(NV_Certify_Out)),

3876 /* offsetOfTypes */ offsetof(NV_Certify_COMMAND_DESCRIPTOR_t, types),

3877 /* offsets */ {(UINT16)(offsetof(NV_Certify_In, authHandle)),

3878 (UINT16)(offsetof(NV_Certify_In, nvIndex)),

3879 (UINT16)(offsetof(NV_Certify_In, qualifyingData)),

3880 (UINT16)(offsetof(NV_Certify_In, inScheme)),

3881 (UINT16)(offsetof(NV_Certify_In, size)),

Trusted Platform Module Library Part 4: Supporting Routines

Page 84 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

3882 (UINT16)(offsetof(NV_Certify_In, offset)),

3883 (UINT16)(offsetof(NV_Certify_Out, signature))},

3884 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL + ADD_FLAG,

3885 TPMI_RH_NV_AUTH_H_UNMARSHAL,

3886 TPMI_RH_NV_INDEX_H_UNMARSHAL,

3887 TPM2B_DATA_P_UNMARSHAL,

3888 TPMT_SIG_SCHEME_P_UNMARSHAL + ADD_FLAG,

3889 UINT16_P_UNMARSHAL,

3890 UINT16_P_UNMARSHAL,

3891 END_OF_LIST,

3892 TPM2B_ATTEST_P_MARSHAL,

3893 TPMT_SIGNATURE_P_MARSHAL,

3894 END_OF_LIST}

3895 };

3896 #define _NV_CertifyDataAddress (&_NV_CertifyData)

3897 #else

3898 #define _NV_CertifyDataAddress 0

3899 #endif // CC_NV_Certify

3900 #if CC_AC_GetCapability

3901 #include "AC_GetCapability_fp.h"

3902 typedef TPM_RC (AC_GetCapability_Entry)(

3903 AC_GetCapability_In *in,

3904 AC_GetCapability_Out *out

3905);

3906 typedef const struct {

3907 AC_GetCapability_Entry *entry;

3908 UINT16 inSize;

3909 UINT16 outSize;

3910 UINT16 offsetOfTypes;

3911 UINT16 paramOffsets[3];

3912 BYTE types[7];

3913 } AC_GetCapability_COMMAND_DESCRIPTOR_t;

3914 AC_GetCapability_COMMAND_DESCRIPTOR_t _AC_GetCapabilityData = {

3915 /* entry */ &TPM2_AC_GetCapability,

3916 /* inSize */ (UINT16)(sizeof(AC_GetCapability_In)),

3917 /* outSize */ (UINT16)(sizeof(AC_GetCapability_Out)),

3918 /* offsetOfTypes */ offsetof(AC_GetCapability_COMMAND_DESCRIPTOR_t, types),

3919 /* offsets */ {(UINT16)(offsetof(AC_GetCapability_In, capability)),

3920 (UINT16)(offsetof(AC_GetCapability_In, count)),

3921 (UINT16)(offsetof(AC_GetCapability_Out,

capabilitiesData))},

3922 /* types */ {TPMI_RH_AC_H_UNMARSHAL,

3923 TPM_AT_P_UNMARSHAL,

3924 UINT32_P_UNMARSHAL,

3925 END_OF_LIST,

3926 TPMI_YES_NO_P_MARSHAL,

3927 TPML_AC_CAPABILITIES_P_MARSHAL,

3928 END_OF_LIST}

3929 };

3930 #define _AC_GetCapabilityDataAddress (&_AC_GetCapabilityData)

3931 #else

3932 #define _AC_GetCapabilityDataAddress 0

3933 #endif // CC_AC_GetCapability

3934 #if CC_AC_Send

3935 #include "AC_Send_fp.h"

3936 typedef TPM_RC (AC_Send_Entry)(

3937 AC_Send_In *in,

3938 AC_Send_Out *out

3939);

3940 typedef const struct {

3941 AC_Send_Entry *entry;

3942 UINT16 inSize;

3943 UINT16 outSize;

3944 UINT16 offsetOfTypes;

3945 UINT16 paramOffsets[3];

3946 BYTE types[7];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3947 } AC_Send_COMMAND_DESCRIPTOR_t;

3948 AC_Send_COMMAND_DESCRIPTOR_t _AC_SendData = {

3949 /* entry */ &TPM2_AC_Send,

3950 /* inSize */ (UINT16)(sizeof(AC_Send_In)),

3951 /* outSize */ (UINT16)(sizeof(AC_Send_Out)),

3952 /* offsetOfTypes */ offsetof(AC_Send_COMMAND_DESCRIPTOR_t, types),

3953 /* offsets */ {(UINT16)(offsetof(AC_Send_In, authHandle)),

3954 (UINT16)(offsetof(AC_Send_In, ac)),

3955 (UINT16)(offsetof(AC_Send_In, acDataIn))},

3956 /* types */ {TPMI_DH_OBJECT_H_UNMARSHAL,

3957 TPMI_RH_NV_AUTH_H_UNMARSHAL,

3958 TPMI_RH_AC_H_UNMARSHAL,

3959 TPM2B_MAX_BUFFER_P_UNMARSHAL,

3960 END_OF_LIST,

3961 TPMS_AC_OUTPUT_P_MARSHAL,

3962 END_OF_LIST}

3963 };

3964 #define _AC_SendDataAddress (&_AC_SendData)

3965 #else

3966 #define _AC_SendDataAddress 0

3967 #endif // CC_AC_Send

3968 #if CC_Policy_AC_SendSelect

3969 #include "Policy_AC_SendSelect_fp.h"

3970 typedef TPM_RC (Policy_AC_SendSelect_Entry)(

3971 Policy_AC_SendSelect_In *in

3972);

3973 typedef const struct {

3974 Policy_AC_SendSelect_Entry *entry;

3975 UINT16 inSize;

3976 UINT16 outSize;

3977 UINT16 offsetOfTypes;

3978 UINT16 paramOffsets[4];

3979 BYTE types[7];

3980 } Policy_AC_SendSelect_COMMAND_DESCRIPTOR_t;

3981 Policy_AC_SendSelect_COMMAND_DESCRIPTOR_t _Policy_AC_SendSelectData = {

3982 /* entry */ &TPM2_Policy_AC_SendSelect,

3983 /* inSize */ (UINT16)(sizeof(Policy_AC_SendSelect_In)),

3984 /* outSize */ 0,

3985 /* offsetOfTypes */ offsetof(Policy_AC_SendSelect_COMMAND_DESCRIPTOR_t,

types),

3986 /* offsets */ {(UINT16)(offsetof(Policy_AC_SendSelect_In,

objectName)),

3987 (UINT16)(offsetof(Policy_AC_SendSelect_In,

authHandleName)),

3988 (UINT16)(offsetof(Policy_AC_SendSelect_In, acName)),

3989 (UINT16)(offsetof(Policy_AC_SendSelect_In,

includeObject))},

3990 /* types */ {TPMI_SH_POLICY_H_UNMARSHAL,

3991 TPM2B_NAME_P_UNMARSHAL,

3992 TPM2B_NAME_P_UNMARSHAL,

3993 TPM2B_NAME_P_UNMARSHAL,

3994 TPMI_YES_NO_P_UNMARSHAL,

3995 END_OF_LIST,

3996 END_OF_LIST}

3997 };

3998 #define _Policy_AC_SendSelectDataAddress (&_Policy_AC_SendSelectData)

3999 #else

4000 #define _Policy_AC_SendSelectDataAddress 0

4001 #endif // CC_Policy_AC_SendSelect

4002 #if CC_ACT_SetTimeout

4003 #include "ACT_SetTimeout_fp.h"

4004 typedef TPM_RC (ACT_SetTimeout_Entry)(

4005 ACT_SetTimeout_In *in

4006);

4007 typedef const struct {

4008 ACT_SetTimeout_Entry *entry;

Trusted Platform Module Library Part 4: Supporting Routines

Page 86 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4009 UINT16 inSize;

4010 UINT16 outSize;

4011 UINT16 offsetOfTypes;

4012 UINT16 paramOffsets[1];

4013 BYTE types[4];

4014 } ACT_SetTimeout_COMMAND_DESCRIPTOR_t;

4015 ACT_SetTimeout_COMMAND_DESCRIPTOR_t _ACT_SetTimeoutData = {

4016 /* entry */ &TPM2_ACT_SetTimeout,

4017 /* inSize */ (UINT16)(sizeof(ACT_SetTimeout_In)),

4018 /* outSize */ 0,

4019 /* offsetOfTypes */ offsetof(ACT_SetTimeout_COMMAND_DESCRIPTOR_t, types),

4020 /* offsets */ {(UINT16)(offsetof(ACT_SetTimeout_In, startTimeout))},

4021 /* types */ {TPMI_RH_ACT_H_UNMARSHAL,

4022 UINT32_P_UNMARSHAL,

4023 END_OF_LIST,

4024 END_OF_LIST}

4025 };

4026 #define _ACT_SetTimeoutDataAddress (&_ACT_SetTimeoutData)

4027 #else

4028 #define _ACT_SetTimeoutDataAddress 0

4029 #endif // CC_ACT_SetTimeout

4030 #if CC_Vendor_TCG_Test

4031 #include "Vendor_TCG_Test_fp.h"

4032 typedef TPM_RC (Vendor_TCG_Test_Entry)(

4033 Vendor_TCG_Test_In *in,

4034 Vendor_TCG_Test_Out *out

4035);

4036 typedef const struct {

4037 Vendor_TCG_Test_Entry *entry;

4038 UINT16 inSize;

4039 UINT16 outSize;

4040 UINT16 offsetOfTypes;

4041 BYTE types[4];

4042 } Vendor_TCG_Test_COMMAND_DESCRIPTOR_t;

4043 Vendor_TCG_Test_COMMAND_DESCRIPTOR_t _Vendor_TCG_TestData = {

4044 /* entry */ &TPM2_Vendor_TCG_Test,

4045 /* inSize */ (UINT16)(sizeof(Vendor_TCG_Test_In)),

4046 /* outSize */ (UINT16)(sizeof(Vendor_TCG_Test_Out)),

4047 /* offsetOfTypes */ offsetof(Vendor_TCG_Test_COMMAND_DESCRIPTOR_t, types),

4048 /* offsets */ // No parameter offsets;

4049 /* types */ {TPM2B_DATA_P_UNMARSHAL,

4050 END_OF_LIST,

4051 TPM2B_DATA_P_MARSHAL,

4052 END_OF_LIST}

4053 };

4054 #define _Vendor_TCG_TestDataAddress (&_Vendor_TCG_TestData)

4055 #else

4056 #define _Vendor_TCG_TestDataAddress 0

4057 #endif // CC_Vendor_TCG_Test

4058 COMMAND_DESCRIPTOR_t *s_CommandDataArray[] = {

4059 #if (PAD_LIST || CC_NV_UndefineSpaceSpecial)

4060 (COMMAND_DESCRIPTOR_t *)_NV_UndefineSpaceSpecialDataAddress,

4061 #endif // CC_NV_UndefineSpaceSpecial

4062 #if (PAD_LIST || CC_EvictControl)

4063 (COMMAND_DESCRIPTOR_t *)_EvictControlDataAddress,

4064 #endif // CC_EvictControl

4065 #if (PAD_LIST || CC_HierarchyControl)

4066 (COMMAND_DESCRIPTOR_t *)_HierarchyControlDataAddress,

4067 #endif // CC_HierarchyControl

4068 #if (PAD_LIST || CC_NV_UndefineSpace)

4069 (COMMAND_DESCRIPTOR_t *)_NV_UndefineSpaceDataAddress,

4070 #endif // CC_NV_UndefineSpace

4071 #if (PAD_LIST)

4072 (COMMAND_DESCRIPTOR_t *)0,

4073 #endif //

4074 #if (PAD_LIST || CC_ChangeEPS)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4075 (COMMAND_DESCRIPTOR_t *)_ChangeEPSDataAddress,

4076 #endif // CC_ChangeEPS

4077 #if (PAD_LIST || CC_ChangePPS)

4078 (COMMAND_DESCRIPTOR_t *)_ChangePPSDataAddress,

4079 #endif // CC_ChangePPS

4080 #if (PAD_LIST || CC_Clear)

4081 (COMMAND_DESCRIPTOR_t *)_ClearDataAddress,

4082 #endif // CC_Clear

4083 #if (PAD_LIST || CC_ClearControl)

4084 (COMMAND_DESCRIPTOR_t *)_ClearControlDataAddress,

4085 #endif // CC_ClearControl

4086 #if (PAD_LIST || CC_ClockSet)

4087 (COMMAND_DESCRIPTOR_t *)_ClockSetDataAddress,

4088 #endif // CC_ClockSet

4089 #if (PAD_LIST || CC_HierarchyChangeAuth)

4090 (COMMAND_DESCRIPTOR_t *)_HierarchyChangeAuthDataAddress,

4091 #endif // CC_HierarchyChangeAuth

4092 #if (PAD_LIST || CC_NV_DefineSpace)

4093 (COMMAND_DESCRIPTOR_t *)_NV_DefineSpaceDataAddress,

4094 #endif // CC_NV_DefineSpace

4095 #if (PAD_LIST || CC_PCR_Allocate)

4096 (COMMAND_DESCRIPTOR_t *)_PCR_AllocateDataAddress,

4097 #endif // CC_PCR_Allocate

4098 #if (PAD_LIST || CC_PCR_SetAuthPolicy)

4099 (COMMAND_DESCRIPTOR_t *)_PCR_SetAuthPolicyDataAddress,

4100 #endif // CC_PCR_SetAuthPolicy

4101 #if (PAD_LIST || CC_PP_Commands)

4102 (COMMAND_DESCRIPTOR_t *)_PP_CommandsDataAddress,

4103 #endif // CC_PP_Commands

4104 #if (PAD_LIST || CC_SetPrimaryPolicy)

4105 (COMMAND_DESCRIPTOR_t *)_SetPrimaryPolicyDataAddress,

4106 #endif // CC_SetPrimaryPolicy

4107 #if (PAD_LIST || CC_FieldUpgradeStart)

4108 (COMMAND_DESCRIPTOR_t *)_FieldUpgradeStartDataAddress,

4109 #endif // CC_FieldUpgradeStart

4110 #if (PAD_LIST || CC_ClockRateAdjust)

4111 (COMMAND_DESCRIPTOR_t *)_ClockRateAdjustDataAddress,

4112 #endif // CC_ClockRateAdjust

4113 #if (PAD_LIST || CC_CreatePrimary)

4114 (COMMAND_DESCRIPTOR_t *)_CreatePrimaryDataAddress,

4115 #endif // CC_CreatePrimary

4116 #if (PAD_LIST || CC_NV_GlobalWriteLock)

4117 (COMMAND_DESCRIPTOR_t *)_NV_GlobalWriteLockDataAddress,

4118 #endif // CC_NV_GlobalWriteLock

4119 #if (PAD_LIST || CC_GetCommandAuditDigest)

4120 (COMMAND_DESCRIPTOR_t *)_GetCommandAuditDigestDataAddress,

4121 #endif // CC_GetCommandAuditDigest

4122 #if (PAD_LIST || CC_NV_Increment)

4123 (COMMAND_DESCRIPTOR_t *)_NV_IncrementDataAddress,

4124 #endif // CC_NV_Increment

4125 #if (PAD_LIST || CC_NV_SetBits)

4126 (COMMAND_DESCRIPTOR_t *)_NV_SetBitsDataAddress,

4127 #endif // CC_NV_SetBits

4128 #if (PAD_LIST || CC_NV_Extend)

4129 (COMMAND_DESCRIPTOR_t *)_NV_ExtendDataAddress,

4130 #endif // CC_NV_Extend

4131 #if (PAD_LIST || CC_NV_Write)

4132 (COMMAND_DESCRIPTOR_t *)_NV_WriteDataAddress,

4133 #endif // CC_NV_Write

4134 #if (PAD_LIST || CC_NV_WriteLock)

4135 (COMMAND_DESCRIPTOR_t *)_NV_WriteLockDataAddress,

4136 #endif // CC_NV_WriteLock

4137 #if (PAD_LIST || CC_DictionaryAttackLockReset)

4138 (COMMAND_DESCRIPTOR_t *)_DictionaryAttackLockResetDataAddress,

4139 #endif // CC_DictionaryAttackLockReset

4140 #if (PAD_LIST || CC_DictionaryAttackParameters)

Trusted Platform Module Library Part 4: Supporting Routines

Page 88 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4141 (COMMAND_DESCRIPTOR_t *)_DictionaryAttackParametersDataAddress,

4142 #endif // CC_DictionaryAttackParameters

4143 #if (PAD_LIST || CC_NV_ChangeAuth)

4144 (COMMAND_DESCRIPTOR_t *)_NV_ChangeAuthDataAddress,

4145 #endif // CC_NV_ChangeAuth

4146 #if (PAD_LIST || CC_PCR_Event)

4147 (COMMAND_DESCRIPTOR_t *)_PCR_EventDataAddress,

4148 #endif // CC_PCR_Event

4149 #if (PAD_LIST || CC_PCR_Reset)

4150 (COMMAND_DESCRIPTOR_t *)_PCR_ResetDataAddress,

4151 #endif // CC_PCR_Reset

4152 #if (PAD_LIST || CC_SequenceComplete)

4153 (COMMAND_DESCRIPTOR_t *)_SequenceCompleteDataAddress,

4154 #endif // CC_SequenceComplete

4155 #if (PAD_LIST || CC_SetAlgorithmSet)

4156 (COMMAND_DESCRIPTOR_t *)_SetAlgorithmSetDataAddress,

4157 #endif // CC_SetAlgorithmSet

4158 #if (PAD_LIST || CC_SetCommandCodeAuditStatus)

4159 (COMMAND_DESCRIPTOR_t *)_SetCommandCodeAuditStatusDataAddress,

4160 #endif // CC_SetCommandCodeAuditStatus

4161 #if (PAD_LIST || CC_FieldUpgradeData)

4162 (COMMAND_DESCRIPTOR_t *)_FieldUpgradeDataDataAddress,

4163 #endif // CC_FieldUpgradeData

4164 #if (PAD_LIST || CC_IncrementalSelfTest)

4165 (COMMAND_DESCRIPTOR_t *)_IncrementalSelfTestDataAddress,

4166 #endif // CC_IncrementalSelfTest

4167 #if (PAD_LIST || CC_SelfTest)

4168 (COMMAND_DESCRIPTOR_t *)_SelfTestDataAddress,

4169 #endif // CC_SelfTest

4170 #if (PAD_LIST || CC_Startup)

4171 (COMMAND_DESCRIPTOR_t *)_StartupDataAddress,

4172 #endif // CC_Startup

4173 #if (PAD_LIST || CC_Shutdown)

4174 (COMMAND_DESCRIPTOR_t *)_ShutdownDataAddress,

4175 #endif // CC_Shutdown

4176 #if (PAD_LIST || CC_StirRandom)

4177 (COMMAND_DESCRIPTOR_t *)_StirRandomDataAddress,

4178 #endif // CC_StirRandom

4179 #if (PAD_LIST || CC_ActivateCredential)

4180 (COMMAND_DESCRIPTOR_t *)_ActivateCredentialDataAddress,

4181 #endif // CC_ActivateCredential

4182 #if (PAD_LIST || CC_Certify)

4183 (COMMAND_DESCRIPTOR_t *)_CertifyDataAddress,

4184 #endif // CC_Certify

4185 #if (PAD_LIST || CC_PolicyNV)

4186 (COMMAND_DESCRIPTOR_t *)_PolicyNVDataAddress,

4187 #endif // CC_PolicyNV

4188 #if (PAD_LIST || CC_CertifyCreation)

4189 (COMMAND_DESCRIPTOR_t *)_CertifyCreationDataAddress,

4190 #endif // CC_CertifyCreation

4191 #if (PAD_LIST || CC_Duplicate)

4192 (COMMAND_DESCRIPTOR_t *)_DuplicateDataAddress,

4193 #endif // CC_Duplicate

4194 #if (PAD_LIST || CC_GetTime)

4195 (COMMAND_DESCRIPTOR_t *)_GetTimeDataAddress,

4196 #endif // CC_GetTime

4197 #if (PAD_LIST || CC_GetSessionAuditDigest)

4198 (COMMAND_DESCRIPTOR_t *)_GetSessionAuditDigestDataAddress,

4199 #endif // CC_GetSessionAuditDigest

4200 #if (PAD_LIST || CC_NV_Read)

4201 (COMMAND_DESCRIPTOR_t *)_NV_ReadDataAddress,

4202 #endif // CC_NV_Read

4203 #if (PAD_LIST || CC_NV_ReadLock)

4204 (COMMAND_DESCRIPTOR_t *)_NV_ReadLockDataAddress,

4205 #endif // CC_NV_ReadLock

4206 #if (PAD_LIST || CC_ObjectChangeAuth)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4207 (COMMAND_DESCRIPTOR_t *)_ObjectChangeAuthDataAddress,

4208 #endif // CC_ObjectChangeAuth

4209 #if (PAD_LIST || CC_PolicySecret)

4210 (COMMAND_DESCRIPTOR_t *)_PolicySecretDataAddress,

4211 #endif // CC_PolicySecret

4212 #if (PAD_LIST || CC_Rewrap)

4213 (COMMAND_DESCRIPTOR_t *)_RewrapDataAddress,

4214 #endif // CC_Rewrap

4215 #if (PAD_LIST || CC_Create)

4216 (COMMAND_DESCRIPTOR_t *)_CreateDataAddress,

4217 #endif // CC_Create

4218 #if (PAD_LIST || CC_ECDH_ZGen)

4219 (COMMAND_DESCRIPTOR_t *)_ECDH_ZGenDataAddress,

4220 #endif // CC_ECDH_ZGen

4221 #if (PAD_LIST || (CC_HMAC || CC_MAC))

4222 # if CC_HMAC

4223 (COMMAND_DESCRIPTOR_t *)_HMACDataAddress,

4224 # endif

4225 # if CC_MAC

4226 (COMMAND_DESCRIPTOR_t *)_MACDataAddress,

4227 # endif

4228 # if (CC_HMAC || CC_MAC) > 1

4229 # error "More than one aliased command defined"

4230 # endif

4231 #endif // CC_HMAC CC_MAC

4232 #if (PAD_LIST || CC_Import)

4233 (COMMAND_DESCRIPTOR_t *)_ImportDataAddress,

4234 #endif // CC_Import

4235 #if (PAD_LIST || CC_Load)

4236 (COMMAND_DESCRIPTOR_t *)_LoadDataAddress,

4237 #endif // CC_Load

4238 #if (PAD_LIST || CC_Quote)

4239 (COMMAND_DESCRIPTOR_t *)_QuoteDataAddress,

4240 #endif // CC_Quote

4241 #if (PAD_LIST || CC_RSA_Decrypt)

4242 (COMMAND_DESCRIPTOR_t *)_RSA_DecryptDataAddress,

4243 #endif // CC_RSA_Decrypt

4244 #if (PAD_LIST)

4245 (COMMAND_DESCRIPTOR_t *)0,

4246 #endif //

4247 #if (PAD_LIST || (CC_HMAC_Start || CC_MAC_Start))

4248 # if CC_HMAC_Start

4249 (COMMAND_DESCRIPTOR_t *)_HMAC_StartDataAddress,

4250 # endif

4251 # if CC_MAC_Start

4252 (COMMAND_DESCRIPTOR_t *)_MAC_StartDataAddress,

4253 # endif

4254 # if (CC_HMAC_Start || CC_MAC_Start) > 1

4255 # error "More than one aliased command defined"

4256 # endif

4257 #endif // CC_HMAC_Start CC_MAC_Start

4258 #if (PAD_LIST || CC_SequenceUpdate)

4259 (COMMAND_DESCRIPTOR_t *)_SequenceUpdateDataAddress,

4260 #endif // CC_SequenceUpdate

4261 #if (PAD_LIST || CC_Sign)

4262 (COMMAND_DESCRIPTOR_t *)_SignDataAddress,

4263 #endif // CC_Sign

4264 #if (PAD_LIST || CC_Unseal)

4265 (COMMAND_DESCRIPTOR_t *)_UnsealDataAddress,

4266 #endif // CC_Unseal

4267 #if (PAD_LIST)

4268 (COMMAND_DESCRIPTOR_t *)0,

4269 #endif //

4270 #if (PAD_LIST || CC_PolicySigned)

4271 (COMMAND_DESCRIPTOR_t *)_PolicySignedDataAddress,

4272 #endif // CC_PolicySigned

Trusted Platform Module Library Part 4: Supporting Routines

Page 90 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4273 #if (PAD_LIST || CC_ContextLoad)

4274 (COMMAND_DESCRIPTOR_t *)_ContextLoadDataAddress,

4275 #endif // CC_ContextLoad

4276 #if (PAD_LIST || CC_ContextSave)

4277 (COMMAND_DESCRIPTOR_t *)_ContextSaveDataAddress,

4278 #endif // CC_ContextSave

4279 #if (PAD_LIST || CC_ECDH_KeyGen)

4280 (COMMAND_DESCRIPTOR_t *)_ECDH_KeyGenDataAddress,

4281 #endif // CC_ECDH_KeyGen

4282 #if (PAD_LIST || CC_EncryptDecrypt)

4283 (COMMAND_DESCRIPTOR_t *)_EncryptDecryptDataAddress,

4284 #endif // CC_EncryptDecrypt

4285 #if (PAD_LIST || CC_FlushContext)

4286 (COMMAND_DESCRIPTOR_t *)_FlushContextDataAddress,

4287 #endif // CC_FlushContext

4288 #if (PAD_LIST)

4289 (COMMAND_DESCRIPTOR_t *)0,

4290 #endif //

4291 #if (PAD_LIST || CC_LoadExternal)

4292 (COMMAND_DESCRIPTOR_t *)_LoadExternalDataAddress,

4293 #endif // CC_LoadExternal

4294 #if (PAD_LIST || CC_MakeCredential)

4295 (COMMAND_DESCRIPTOR_t *)_MakeCredentialDataAddress,

4296 #endif // CC_MakeCredential

4297 #if (PAD_LIST || CC_NV_ReadPublic)

4298 (COMMAND_DESCRIPTOR_t *)_NV_ReadPublicDataAddress,

4299 #endif // CC_NV_ReadPublic

4300 #if (PAD_LIST || CC_PolicyAuthorize)

4301 (COMMAND_DESCRIPTOR_t *)_PolicyAuthorizeDataAddress,

4302 #endif // CC_PolicyAuthorize

4303 #if (PAD_LIST || CC_PolicyAuthValue)

4304 (COMMAND_DESCRIPTOR_t *)_PolicyAuthValueDataAddress,

4305 #endif // CC_PolicyAuthValue

4306 #if (PAD_LIST || CC_PolicyCommandCode)

4307 (COMMAND_DESCRIPTOR_t *)_PolicyCommandCodeDataAddress,

4308 #endif // CC_PolicyCommandCode

4309 #if (PAD_LIST || CC_PolicyCounterTimer)

4310 (COMMAND_DESCRIPTOR_t *)_PolicyCounterTimerDataAddress,

4311 #endif // CC_PolicyCounterTimer

4312 #if (PAD_LIST || CC_PolicyCpHash)

4313 (COMMAND_DESCRIPTOR_t *)_PolicyCpHashDataAddress,

4314 #endif // CC_PolicyCpHash

4315 #if (PAD_LIST || CC_PolicyLocality)

4316 (COMMAND_DESCRIPTOR_t *)_PolicyLocalityDataAddress,

4317 #endif // CC_PolicyLocality

4318 #if (PAD_LIST || CC_PolicyNameHash)

4319 (COMMAND_DESCRIPTOR_t *)_PolicyNameHashDataAddress,

4320 #endif // CC_PolicyNameHash

4321 #if (PAD_LIST || CC_PolicyOR)

4322 (COMMAND_DESCRIPTOR_t *)_PolicyORDataAddress,

4323 #endif // CC_PolicyOR

4324 #if (PAD_LIST || CC_PolicyTicket)

4325 (COMMAND_DESCRIPTOR_t *)_PolicyTicketDataAddress,

4326 #endif // CC_PolicyTicket

4327 #if (PAD_LIST || CC_ReadPublic)

4328 (COMMAND_DESCRIPTOR_t *)_ReadPublicDataAddress,

4329 #endif // CC_ReadPublic

4330 #if (PAD_LIST || CC_RSA_Encrypt)

4331 (COMMAND_DESCRIPTOR_t *)_RSA_EncryptDataAddress,

4332 #endif // CC_RSA_Encrypt

4333 #if (PAD_LIST)

4334 (COMMAND_DESCRIPTOR_t *)0,

4335 #endif //

4336 #if (PAD_LIST || CC_StartAuthSession)

4337 (COMMAND_DESCRIPTOR_t *)_StartAuthSessionDataAddress,

4338 #endif // CC_StartAuthSession

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4339 #if (PAD_LIST || CC_VerifySignature)

4340 (COMMAND_DESCRIPTOR_t *)_VerifySignatureDataAddress,

4341 #endif // CC_VerifySignature

4342 #if (PAD_LIST || CC_ECC_Parameters)

4343 (COMMAND_DESCRIPTOR_t *)_ECC_ParametersDataAddress,

4344 #endif // CC_ECC_Parameters

4345 #if (PAD_LIST || CC_FirmwareRead)

4346 (COMMAND_DESCRIPTOR_t *)_FirmwareReadDataAddress,

4347 #endif // CC_FirmwareRead

4348 #if (PAD_LIST || CC_GetCapability)

4349 (COMMAND_DESCRIPTOR_t *)_GetCapabilityDataAddress,

4350 #endif // CC_GetCapability

4351 #if (PAD_LIST || CC_GetRandom)

4352 (COMMAND_DESCRIPTOR_t *)_GetRandomDataAddress,

4353 #endif // CC_GetRandom

4354 #if (PAD_LIST || CC_GetTestResult)

4355 (COMMAND_DESCRIPTOR_t *)_GetTestResultDataAddress,

4356 #endif // CC_GetTestResult

4357 #if (PAD_LIST || CC_Hash)

4358 (COMMAND_DESCRIPTOR_t *)_HashDataAddress,

4359 #endif // CC_Hash

4360 #if (PAD_LIST || CC_PCR_Read)

4361 (COMMAND_DESCRIPTOR_t *)_PCR_ReadDataAddress,

4362 #endif // CC_PCR_Read

4363 #if (PAD_LIST || CC_PolicyPCR)

4364 (COMMAND_DESCRIPTOR_t *)_PolicyPCRDataAddress,

4365 #endif // CC_PolicyPCR

4366 #if (PAD_LIST || CC_PolicyRestart)

4367 (COMMAND_DESCRIPTOR_t *)_PolicyRestartDataAddress,

4368 #endif // CC_PolicyRestart

4369 #if (PAD_LIST || CC_ReadClock)

4370 (COMMAND_DESCRIPTOR_t *)_ReadClockDataAddress,

4371 #endif // CC_ReadClock

4372 #if (PAD_LIST || CC_PCR_Extend)

4373 (COMMAND_DESCRIPTOR_t *)_PCR_ExtendDataAddress,

4374 #endif // CC_PCR_Extend

4375 #if (PAD_LIST || CC_PCR_SetAuthValue)

4376 (COMMAND_DESCRIPTOR_t *)_PCR_SetAuthValueDataAddress,

4377 #endif // CC_PCR_SetAuthValue

4378 #if (PAD_LIST || CC_NV_Certify)

4379 (COMMAND_DESCRIPTOR_t *)_NV_CertifyDataAddress,

4380 #endif // CC_NV_Certify

4381 #if (PAD_LIST || CC_EventSequenceComplete)

4382 (COMMAND_DESCRIPTOR_t *)_EventSequenceCompleteDataAddress,

4383 #endif // CC_EventSequenceComplete

4384 #if (PAD_LIST || CC_HashSequenceStart)

4385 (COMMAND_DESCRIPTOR_t *)_HashSequenceStartDataAddress,

4386 #endif // CC_HashSequenceStart

4387 #if (PAD_LIST || CC_PolicyPhysicalPresence)

4388 (COMMAND_DESCRIPTOR_t *)_PolicyPhysicalPresenceDataAddress,

4389 #endif // CC_PolicyPhysicalPresence

4390 #if (PAD_LIST || CC_PolicyDuplicationSelect)

4391 (COMMAND_DESCRIPTOR_t *)_PolicyDuplicationSelectDataAddress,

4392 #endif // CC_PolicyDuplicationSelect

4393 #if (PAD_LIST || CC_PolicyGetDigest)

4394 (COMMAND_DESCRIPTOR_t *)_PolicyGetDigestDataAddress,

4395 #endif // CC_PolicyGetDigest

4396 #if (PAD_LIST || CC_TestParms)

4397 (COMMAND_DESCRIPTOR_t *)_TestParmsDataAddress,

4398 #endif // CC_TestParms

4399 #if (PAD_LIST || CC_Commit)

4400 (COMMAND_DESCRIPTOR_t *)_CommitDataAddress,

4401 #endif // CC_Commit

4402 #if (PAD_LIST || CC_PolicyPassword)

4403 (COMMAND_DESCRIPTOR_t *)_PolicyPasswordDataAddress,

4404 #endif // CC_PolicyPassword

Trusted Platform Module Library Part 4: Supporting Routines

Page 92 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4405 #if (PAD_LIST || CC_ZGen_2Phase)

4406 (COMMAND_DESCRIPTOR_t *)_ZGen_2PhaseDataAddress,

4407 #endif // CC_ZGen_2Phase

4408 #if (PAD_LIST || CC_EC_Ephemeral)

4409 (COMMAND_DESCRIPTOR_t *)_EC_EphemeralDataAddress,

4410 #endif // CC_EC_Ephemeral

4411 #if (PAD_LIST || CC_PolicyNvWritten)

4412 (COMMAND_DESCRIPTOR_t *)_PolicyNvWrittenDataAddress,

4413 #endif // CC_PolicyNvWritten

4414 #if (PAD_LIST || CC_PolicyTemplate)

4415 (COMMAND_DESCRIPTOR_t *)_PolicyTemplateDataAddress,

4416 #endif // CC_PolicyTemplate

4417 #if (PAD_LIST || CC_CreateLoaded)

4418 (COMMAND_DESCRIPTOR_t *)_CreateLoadedDataAddress,

4419 #endif // CC_CreateLoaded

4420 #if (PAD_LIST || CC_PolicyAuthorizeNV)

4421 (COMMAND_DESCRIPTOR_t *)_PolicyAuthorizeNVDataAddress,

4422 #endif // CC_PolicyAuthorizeNV

4423 #if (PAD_LIST || CC_EncryptDecrypt2)

4424 (COMMAND_DESCRIPTOR_t *)_EncryptDecrypt2DataAddress,

4425 #endif // CC_EncryptDecrypt2

4426 #if (PAD_LIST || CC_AC_GetCapability)

4427 (COMMAND_DESCRIPTOR_t *)_AC_GetCapabilityDataAddress,

4428 #endif // CC_AC_GetCapability

4429 #if (PAD_LIST || CC_AC_Send)

4430 (COMMAND_DESCRIPTOR_t *)_AC_SendDataAddress,

4431 #endif // CC_AC_Send

4432 #if (PAD_LIST || CC_Policy_AC_SendSelect)

4433 (COMMAND_DESCRIPTOR_t *)_Policy_AC_SendSelectDataAddress,

4434 #endif // CC_Policy_AC_SendSelect

4435 #if (PAD_LIST || CC_CertifyX509)

4436 (COMMAND_DESCRIPTOR_t *)_CertifyX509DataAddress,

4437 #endif // CC_CertifyX509

4438 #if (PAD_LIST || CC_ACT_SetTimeout)

4439 (COMMAND_DESCRIPTOR_t *)_ACT_SetTimeoutDataAddress,

4440 #endif // CC_ACT_SetTimeout

4441 #if (PAD_LIST || CC_Vendor_TCG_Test)

4442 (COMMAND_DESCRIPTOR_t *)_Vendor_TCG_TestDataAddress,

4443 #endif // CC_Vendor_TCG_Test

4444 0

4445 };

4446 #endif // _COMMAND_TABLE_DISPATCH_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.7 Commands.h

1 #ifndef _COMMANDS_H_

2 #define _COMMANDS_H_

Start-up

3 #ifdef TPM_CC_Startup

4 #include "Startup_fp.h"

5 #endif

6 #ifdef TPM_CC_Shutdown

7 #include "Shutdown_fp.h"

8 #endif

Testing

9 #ifdef TPM_CC_SelfTest

10 #include "SelfTest_fp.h"

11 #endif

12 #ifdef TPM_CC_IncrementalSelfTest

13 #include "IncrementalSelfTest_fp.h"

14 #endif

15 #ifdef TPM_CC_GetTestResult

16 #include "GetTestResult_fp.h"

17 #endif

Session Commands

18 #ifdef TPM_CC_StartAuthSession

19 #include "StartAuthSession_fp.h"

20 #endif

21 #ifdef TPM_CC_PolicyRestart

22 #include "PolicyRestart_fp.h"

23 #endif

Object Commands

24 #ifdef TPM_CC_Create

25 #include "Create_fp.h"

26 #endif

27 #ifdef TPM_CC_Load

28 #include "Load_fp.h"

29 #endif

30 #ifdef TPM_CC_LoadExternal

31 #include "LoadExternal_fp.h"

32 #endif

33 #ifdef TPM_CC_ReadPublic

34 #include "ReadPublic_fp.h"

35 #endif

36 #ifdef TPM_CC_ActivateCredential

37 #include "ActivateCredential_fp.h"

38 #endif

39 #ifdef TPM_CC_MakeCredential

40 #include "MakeCredential_fp.h"

41 #endif

42 #ifdef TPM_CC_Unseal

43 #include "Unseal_fp.h"

44 #endif

45 #ifdef TPM_CC_ObjectChangeAuth

46 #include "ObjectChangeAuth_fp.h"

47 #endif

48 #ifdef TPM_CC_CreateLoaded

49 #include "CreateLoaded_fp.h"

Trusted Platform Module Library Part 4: Supporting Routines

Page 94 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

50 #endif

Duplication Commands

51 #ifdef TPM_CC_Duplicate

52 #include "Duplicate_fp.h"

53 #endif

54 #ifdef TPM_CC_Rewrap

55 #include "Rewrap_fp.h"

56 #endif

57 #ifdef TPM_CC_Import

58 #include "Import_fp.h"

59 #endif

Asymmetric Primitives

60 #ifdef TPM_CC_RSA_Encrypt

61 #include "RSA_Encrypt_fp.h"

62 #endif

63 #ifdef TPM_CC_RSA_Decrypt

64 #include "RSA_Decrypt_fp.h"

65 #endif

66 #ifdef TPM_CC_ECDH_KeyGen

67 #include "ECDH_KeyGen_fp.h"

68 #endif

69 #ifdef TPM_CC_ECDH_ZGen

70 #include "ECDH_ZGen_fp.h"

71 #endif

72 #ifdef TPM_CC_ECC_Parameters

73 #include "ECC_Parameters_fp.h"

74 #endif

75 #ifdef TPM_CC_ZGen_2Phase

76 #include "ZGen_2Phase_fp.h"

77 #endif

Symmetric Primitives

78 #ifdef TPM_CC_EncryptDecrypt

79 #include "EncryptDecrypt_fp.h"

80 #endif

81 #ifdef TPM_CC_EncryptDecrypt2

82 #include "EncryptDecrypt2_fp.h"

83 #endif

84 #ifdef TPM_CC_Hash

85 #include "Hash_fp.h"

86 #endif

87 #ifdef TPM_CC_HMAC

88 #include "HMAC_fp.h"

89 #endif

90 #ifdef TPM_CC_MAC

91 #include "MAC_fp.h"

92 #endif

Random Number Generator

93 #ifdef TPM_CC_GetRandom

94 #include "GetRandom_fp.h"

95 #endif

96 #ifdef TPM_CC_StirRandom

97 #include "StirRandom_fp.h"

98 #endif

Hash/HMAC/Event Sequences

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

99 #ifdef TPM_CC_HMAC_Start

100 #include "HMAC_Start_fp.h"

101 #endif

102 #ifdef TPM_CC_MAC_Start

103 #include "MAC_Start_fp.h"

104 #endif

105 #ifdef TPM_CC_HashSequenceStart

106 #include "HashSequenceStart_fp.h"

107 #endif

108 #ifdef TPM_CC_SequenceUpdate

109 #include "SequenceUpdate_fp.h"

110 #endif

111 #ifdef TPM_CC_SequenceComplete

112 #include "SequenceComplete_fp.h"

113 #endif

114 #ifdef TPM_CC_EventSequenceComplete

115 #include "EventSequenceComplete_fp.h"

116 #endif

Attestation Commands

117 #ifdef TPM_CC_Certify

118 #include "Certify_fp.h"

119 #endif

120 #ifdef TPM_CC_CertifyCreation

121 #include "CertifyCreation_fp.h"

122 #endif

123 #ifdef TPM_CC_Quote

124 #include "Quote_fp.h"

125 #endif

126 #ifdef TPM_CC_GetSessionAuditDigest

127 #include "GetSessionAuditDigest_fp.h"

128 #endif

129 #ifdef TPM_CC_GetCommandAuditDigest

130 #include "GetCommandAuditDigest_fp.h"

131 #endif

132 #ifdef TPM_CC_GetTime

133 #include "GetTime_fp.h"

134 #endif

135 #ifdef TPM_CC_CertifyX509

136 #include "CertifyX509_fp.h"

137 #endif

Ephemeral EC Keys

138 #ifdef TPM_CC_Commit

139 #include "Commit_fp.h"

140 #endif

141 #ifdef TPM_CC_EC_Ephemeral

142 #include "EC_Ephemeral_fp.h"

143 #endif

Signing and Signature Verification

144 #ifdef TPM_CC_VerifySignature

145 #include "VerifySignature_fp.h"

146 #endif

147 #ifdef TPM_CC_Sign

148 #include "Sign_fp.h"

149 #endif

Command Audit

150 #ifdef TPM_CC_SetCommandCodeAuditStatus

Trusted Platform Module Library Part 4: Supporting Routines

Page 96 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

151 #include "SetCommandCodeAuditStatus_fp.h"

152 #endif

Integrity Collection (PCR)

153 #ifdef TPM_CC_PCR_Extend

154 #include "PCR_Extend_fp.h"

155 #endif

156 #ifdef TPM_CC_PCR_Event

157 #include "PCR_Event_fp.h"

158 #endif

159 #ifdef TPM_CC_PCR_Read

160 #include "PCR_Read_fp.h"

161 #endif

162 #ifdef TPM_CC_PCR_Allocate

163 #include "PCR_Allocate_fp.h"

164 #endif

165 #ifdef TPM_CC_PCR_SetAuthPolicy

166 #include "PCR_SetAuthPolicy_fp.h"

167 #endif

168 #ifdef TPM_CC_PCR_SetAuthValue

169 #include "PCR_SetAuthValue_fp.h"

170 #endif

171 #ifdef TPM_CC_PCR_Reset

172 #include "PCR_Reset_fp.h"

173 #endif

Enhanced Authorization (EA) Commands

174 #ifdef TPM_CC_PolicySigned

175 #include "PolicySigned_fp.h"

176 #endif

177 #ifdef TPM_CC_PolicySecret

178 #include "PolicySecret_fp.h"

179 #endif

180 #ifdef TPM_CC_PolicyTicket

181 #include "PolicyTicket_fp.h"

182 #endif

183 #ifdef TPM_CC_PolicyOR

184 #include "PolicyOR_fp.h"

185 #endif

186 #ifdef TPM_CC_PolicyPCR

187 #include "PolicyPCR_fp.h"

188 #endif

189 #ifdef TPM_CC_PolicyLocality

190 #include "PolicyLocality_fp.h"

191 #endif

192 #ifdef TPM_CC_PolicyNV

193 #include "PolicyNV_fp.h"

194 #endif

195 #ifdef TPM_CC_PolicyCounterTimer

196 #include "PolicyCounterTimer_fp.h"

197 #endif

198 #ifdef TPM_CC_PolicyCommandCode

199 #include "PolicyCommandCode_fp.h"

200 #endif

201 #ifdef TPM_CC_PolicyPhysicalPresence

202 #include "PolicyPhysicalPresence_fp.h"

203 #endif

204 #ifdef TPM_CC_PolicyCpHash

205 #include "PolicyCpHash_fp.h"

206 #endif

207 #ifdef TPM_CC_PolicyNameHash

208 #include "PolicyNameHash_fp.h"

209 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

210 #ifdef TPM_CC_PolicyDuplicationSelect

211 #include "PolicyDuplicationSelect_fp.h"

212 #endif

213 #ifdef TPM_CC_PolicyAuthorize

214 #include "PolicyAuthorize_fp.h"

215 #endif

216 #ifdef TPM_CC_PolicyAuthValue

217 #include "PolicyAuthValue_fp.h"

218 #endif

219 #ifdef TPM_CC_PolicyPassword

220 #include "PolicyPassword_fp.h"

221 #endif

222 #ifdef TPM_CC_PolicyGetDigest

223 #include "PolicyGetDigest_fp.h"

224 #endif

225 #ifdef TPM_CC_PolicyNvWritten

226 #include "PolicyNvWritten_fp.h"

227 #endif

228 #ifdef TPM_CC_PolicyTemplate

229 #include "PolicyTemplate_fp.h"

230 #endif

231 #ifdef TPM_CC_PolicyAuthorizeNV

232 #include "PolicyAuthorizeNV_fp.h"

233 #endif

Hierarchy Commands

234 #ifdef TPM_CC_CreatePrimary

235 #include "CreatePrimary_fp.h"

236 #endif

237 #ifdef TPM_CC_HierarchyControl

238 #include "HierarchyControl_fp.h"

239 #endif

240 #ifdef TPM_CC_SetPrimaryPolicy

241 #include "SetPrimaryPolicy_fp.h"

242 #endif

243 #ifdef TPM_CC_ChangePPS

244 #include "ChangePPS_fp.h"

245 #endif

246 #ifdef TPM_CC_ChangeEPS

247 #include "ChangeEPS_fp.h"

248 #endif

249 #ifdef TPM_CC_Clear

250 #include "Clear_fp.h"

251 #endif

252 #ifdef TPM_CC_ClearControl

253 #include "ClearControl_fp.h"

254 #endif

255 #ifdef TPM_CC_HierarchyChangeAuth

256 #include "HierarchyChangeAuth_fp.h"

257 #endif

Dictionary Attack Functions

258 #ifdef TPM_CC_DictionaryAttackLockReset

259 #include "DictionaryAttackLockReset_fp.h"

260 #endif

261 #ifdef TPM_CC_DictionaryAttackParameters

262 #include "DictionaryAttackParameters_fp.h"

263 #endif

Miscellaneous Management Functions

264 #ifdef TPM_CC_PP_Commands

Trusted Platform Module Library Part 4: Supporting Routines

Page 98 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

265 #include "PP_Commands_fp.h"

266 #endif

267 #ifdef TPM_CC_SetAlgorithmSet

268 #include "SetAlgorithmSet_fp.h"

269 #endif

Field Upgrade

270 #ifdef TPM_CC_FieldUpgradeStart

271 #include "FieldUpgradeStart_fp.h"

272 #endif

273 #ifdef TPM_CC_FieldUpgradeData

274 #include "FieldUpgradeData_fp.h"

275 #endif

276 #ifdef TPM_CC_FirmwareRead

277 #include "FirmwareRead_fp.h"

278 #endif

Context Management

279 #ifdef TPM_CC_ContextSave

280 #include "ContextSave_fp.h"

281 #endif

282 #ifdef TPM_CC_ContextLoad

283 #include "ContextLoad_fp.h"

284 #endif

285 #ifdef TPM_CC_FlushContext

286 #include "FlushContext_fp.h"

287 #endif

288 #ifdef TPM_CC_EvictControl

289 #include "EvictControl_fp.h"

290 #endif

Clocks and Timers

291 #ifdef TPM_CC_ReadClock

292 #include "ReadClock_fp.h"

293 #endif

294 #ifdef TPM_CC_ClockSet

295 #include "ClockSet_fp.h"

296 #endif

297 #ifdef TPM_CC_ClockRateAdjust

298 #include "ClockRateAdjust_fp.h"

299 #endif

Capability Commands

300 #ifdef TPM_CC_GetCapability

301 #include "GetCapability_fp.h"

302 #endif

303 #ifdef TPM_CC_TestParms

304 #include "TestParms_fp.h"

305 #endif

Non-volatile Storage

306 #ifdef TPM_CC_NV_DefineSpace

307 #include "NV_DefineSpace_fp.h"

308 #endif

309 #ifdef TPM_CC_NV_UndefineSpace

310 #include "NV_UndefineSpace_fp.h"

311 #endif

312 #ifdef TPM_CC_NV_UndefineSpaceSpecial

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

313 #include "NV_UndefineSpaceSpecial_fp.h"

314 #endif

315 #ifdef TPM_CC_NV_ReadPublic

316 #include "NV_ReadPublic_fp.h"

317 #endif

318 #ifdef TPM_CC_NV_Write

319 #include "NV_Write_fp.h"

320 #endif

321 #ifdef TPM_CC_NV_Increment

322 #include "NV_Increment_fp.h"

323 #endif

324 #ifdef TPM_CC_NV_Extend

325 #include "NV_Extend_fp.h"

326 #endif

327 #ifdef TPM_CC_NV_SetBits

328 #include "NV_SetBits_fp.h"

329 #endif

330 #ifdef TPM_CC_NV_WriteLock

331 #include "NV_WriteLock_fp.h"

332 #endif

333 #ifdef TPM_CC_NV_GlobalWriteLock

334 #include "NV_GlobalWriteLock_fp.h"

335 #endif

336 #ifdef TPM_CC_NV_Read

337 #include "NV_Read_fp.h"

338 #endif

339 #ifdef TPM_CC_NV_ReadLock

340 #include "NV_ReadLock_fp.h"

341 #endif

342 #ifdef TPM_CC_NV_ChangeAuth

343 #include "NV_ChangeAuth_fp.h"

344 #endif

345 #ifdef TPM_CC_NV_Certify

346 #include "NV_Certify_fp.h"

347 #endif

Attached Components

348 #ifdef TPM_CC_AC_GetCapability

349 #include "AC_GetCapability_fp.h"

350 #endif

351 #ifdef TPM_CC_AC_Send

352 #include "AC_Send_fp.h"

353 #endif

354 #ifdef TPM_CC_Policy_AC_SendSelect

355 #include "Policy_AC_SendSelect_fp.h"

356 #endif

Authenticated Countdown Timer

357 #ifdef TPM_CC_ACT_SetTimeout

358 #include "ACT_SetTimeout_fp.h"

359 #endif

Vendor Specific

360 #ifdef TPM_CC_Vendor_TCG_Test

361 #include "Vendor_TCG_Test_fp.h"

362 #endif

363 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 100 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.8 CompilerDependencies.h

This file contains the build switches. This contains switches for multiple versions of the crypto-library so

some may not apply to your environment.

1 #ifndef _COMPILER_DEPENDENCIES_H_

2 #define _COMPILER_DEPENDENCIES_H_

3 #ifdef GCC

4 # undef _MSC_VER

5 # undef WIN32

6 #endif

7 #ifdef _MSC_VER

These definitions are for the Microsoft compiler Endian conversion for aligned structures

8 # define REVERSE_ENDIAN_16(_Number) _byteswap_ushort(_Number)

9 # define REVERSE_ENDIAN_32(_Number) _byteswap_ulong(_Number)

10 # define REVERSE_ENDIAN_64(_Number) _byteswap_uint64(_Number)

Avoid compiler warning for in line of stdio (or not)

11 //#define _NO_CRT_STDIO_INLINE

This macro is used to handle LIB_EXPORT of function and variable names in lieu of a .def file. Visual

Studio requires that functions be explicitly exported and imported.

12 # define LIB_EXPORT __declspec(dllexport) // VS compatible version

13 # define LIB_IMPORT __declspec(dllimport)

This is defined to indicate a function that does not return. Microsoft compilers do not support the

_Noretrun function parameter.

14 # define NORETURN __declspec(noreturn)

15 # if _MSC_VER >= 1400 // SAL processing when needed

16 # include <sal.h>

17 # endif

18 # ifdef _WIN64

19 # define _INTPTR 2

20 # else

21 # define _INTPTR 1

22 # endif

23 #define NOT_REFERENCED(x) (x)

Lower the compiler error warning for system include files. They tend not to be that clean and there is no

reason to sort through all the spurious errors that they generate when the normal error level is set to /Wall

24 # define _REDUCE_WARNING_LEVEL_(n) \

25 __pragma(warning(push, n))

Restore the compiler warning level

26 # define _NORMAL_WARNING_LEVEL_ \

27 __pragma(warning(pop))

28 # include <stdint.h>

29 #endif

30 #ifndef _MSC_VER

31 #ifndef WINAPI

32 # define WINAPI

33 #endif

34 # define __pragma(x)

35 # define REVERSE_ENDIAN_16(_Number) __builtin_bswap16(_Number)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

36 # define REVERSE_ENDIAN_32(_Number) __builtin_bswap32(_Number)

37 # define REVERSE_ENDIAN_64(_Number) __builtin_bswap64(_Number)

38 #endif

39 #if defined(__GNUC__)

40 # define NORETURN __attribute__((noreturn))

41 # include <stdint.h>

42 #endif

Things that are not defined should be defined as NULL

43 #ifndef NORETURN

44 # define NORETURN

45 #endif

46 #ifndef LIB_EXPORT

47 # define LIB_EXPORT

48 #endif

49 #ifndef LIB_IMPORT

50 # define LIB_IMPORT

51 #endif

52 #ifndef _REDUCE_WARNING_LEVEL_

53 # define _REDUCE_WARNING_LEVEL_(n)

54 #endif

55 #ifndef _NORMAL_WARNING_LEVEL_

56 # define _NORMAL_WARNING_LEVEL_

57 #endif

58 #ifndef NOT_REFERENCED

59 # define NOT_REFERENCED(x) (x = x)

60 #endif

61 #ifdef _POSIX_

62 typedef int SOCKET;

63 #endif

64 #endif // _COMPILER_DEPENDENCIES_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 102 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.9 Global.h

5.9.1 Description

This file contains internal global type definitions and data declarations that are need between

subsystems. The instantiation of global data is in Global.c. The initialization of global data is in the

subsystem that is the primary owner of the data.

The first part of this file has the typedefs for structures and other defines used in many portions of the

code. After the typedef section, is a section that defines global values that are only present in RAM. The

next three sections define the structures for the NV data areas: persistent, orderly, and state save.

Additional sections define the data that is used in specific modules. That data is private to the module but

is collected here to simplify the management of the instance data. All the data is instanced in Global.c.

1 #if !defined _TPM_H_

2 #error "Should only be instanced in TPM.h"

3 #endif

5.9.2 Includes

4 #ifndef GLOBAL_H

5 #define GLOBAL_H

6 _REDUCE_WARNING_LEVEL_(2)

7 #include <string.h>

8 #include <stddef.h>

9 _NORMAL_WARNING_LEVEL_

10

11 #include "Capabilities.h"

12 #include "TpmTypes.h"

13 #include "CommandAttributes.h"

14 #include "CryptTest.h"

15 #include "BnValues.h"

16 #include "CryptHash.h"

17 #include "CryptSym.h"

18 #include "CryptRand.h"

19 #include "CryptEcc.h"

20 #include "CryptRsa.h"

21 #include "CryptTest.h"

22 #include "TpmError.h"

23 #include "NV.h"

24 #include "ACT.h"

25

26 //** Defines and Types

27

28 //*** Size Types

29 // These types are used to differentiate the two different size values used.

30 //

31 // NUMBYTES is used when a size is a number of bytes (usually a TPM2B)

32 typedef UINT16 NUMBYTES;

33

34 //*** Other Types

35 // An AUTH_VALUE is a BYTE array containing a digest (TPMU_HA)

36 typedef BYTE AUTH_VALUE[sizeof(TPMU_HA)];

A TIME_INFO is a BYTE array that can contain a TPMS_TIME_INFO

37 typedef BYTE TIME_INFO[sizeof(TPMS_TIME_INFO)];

A NAME is a BYTE array that can contain a TPMU_NAME

38 typedef BYTE NAME[sizeof(TPMU_NAME)];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Definition for a PROOF value

39 TPM2B_TYPE(PROOF, PROOF_SIZE);

Definition for a Primary Seed value

40 TPM2B_TYPE(SEED, PRIMARY_SEED_SIZE);

A CLOCK_NONCE is used to tag the time value in the authorization session and in the ticket computation

so that the ticket expires when there is a time discontinuity. When the clock stops during normal

operation, the nonce is 64-bit value kept in RAM but it is a 32-bit counter when the clock only stops during

power events.

41 #if CLOCK_STOPS

42 typedef UINT64 CLOCK_NONCE;

43 #else

44 typedef UINT32 CLOCK_NONCE;

45 #endif

5.9.3 Loaded Object Structures

5.9.3.1 Description

The structures in this section define the object layout as it exists in TPM memory.

Two types of objects are defined: an ordinary object such as a key, and a sequence object that may be a

hash, HMAC, or event.

5.9.3.2 OBJECT_ATTRIBUTES

An OBJECT_ATTRIBUTES structure contains the variable attributes of an object. These properties are

not part of the public properties but are used by the TPM in managing the object. An

OBJECT_ATTRIBUTES is used in the definition of the OBJECT data type.

46 typedef struct

47 {

48 unsigned publicOnly : 1; //0) SET if only the public portion of

49 // an object is loaded

50 unsigned epsHierarchy : 1; //1) SET if the object belongs to EPS

51 // Hierarchy

52 unsigned ppsHierarchy : 1; //2) SET if the object belongs to PPS

53 // Hierarchy

54 unsigned spsHierarchy : 1; //3) SET f the object belongs to SPS

55 // Hierarchy

56 unsigned evict : 1; //4) SET if the object is a platform or

57 // owner evict object. Platform-

58 // evict object belongs to PPS

59 // hierarchy, owner-evict object

60 // belongs to SPS or EPS hierarchy.

61 // This bit is also used to mark a

62 // completed sequence object so it

63 // will be flush when the

64 // SequenceComplete command succeeds.

65 unsigned primary : 1; //5) SET for a primary object

66 unsigned temporary : 1; //6) SET for a temporary object

67 unsigned stClear : 1; //7) SET for an stClear object

68 unsigned hmacSeq : 1; //8) SET for an HMAC or MAC sequence

69 // object

70 unsigned hashSeq : 1; //9) SET for a hash sequence object

71 unsigned eventSeq : 1; //10) SET for an event sequence object

Trusted Platform Module Library Part 4: Supporting Routines

Page 104 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

72 unsigned ticketSafe : 1; //11) SET if a ticket is safe to create

73 // for hash sequence object

74 unsigned firstBlock : 1; //12) SET if the first block of hash

75 // data has been received. It

76 // works with ticketSafe bit

77 unsigned isParent : 1; //13) SET if the key has the proper

78 // attributes to be a parent key

79 // unsigned privateExp : 1; //14) SET when the private exponent

80 // // of an RSA key has been validated.

81 unsigned not_used_14 : 1;

82 unsigned occupied : 1; //15) SET when the slot is occupied.

83 unsigned derivation : 1; //16) SET when the key is a derivation

84 // parent

85 unsigned external : 1; //17) SET when the object is loaded with

86 // TPM2_LoadExternal();

87 } OBJECT_ATTRIBUTES;

88 #if ALG_RSA

There is an overload of the sensitive.rsa.t.size field of a TPMT_SENSITIVE when an RSA key is loaded.

When the sensitive->sensitive contains an RSA key with all of the CRT values, then the MSB of the size

field will be set to indicate that the buffer contains all 5 of the CRT private key values.

89 #define RSA_prime_flag 0x8000

90 #endif

5.9.3.3 OBJECT Structure

An OBJECT structure holds the object public, sensitive, and meta-data associated. This structure is

implementation dependent. For this implementation, the structure is not optimized for space but rather for

clarity of the reference implementation. Other implementations may choose to overlap portions of the

structure that are not used simultaneously. These changes would necessitate changes to the source code

but those changes would be compatible with the reference implementation.

91 typedef struct OBJECT

92 {

93 // The attributes field is required to be first followed by the publicArea.

94 // This allows the overlay of the object structure and a sequence structure

95 OBJECT_ATTRIBUTES attributes; // object attributes

96 TPMT_PUBLIC publicArea; // public area of an object

97 TPMT_SENSITIVE sensitive; // sensitive area of an object

98 TPM2B_NAME qualifiedName; // object qualified name

99 TPMI_DH_OBJECT evictHandle; // if the object is an evict object,

100 // the original handle is kept here.

101 // The 'working' handle will be the

102 // handle of an object slot.

103 TPM2B_NAME name; // Name of the object name. Kept here

104 // to avoid repeatedly computing it.

105 } OBJECT;

5.9.3.4 HASH_OBJECT Structure

This structure holds a hash sequence object or an event sequence object.

The first four components of this structure are manually set to be the same as the first four components of

the object structure. This prevents the object from being inadvertently misused as sequence objects

occupy the same memory as a regular object. A debug check is present to make sure that the offsets are

what they are supposed to be.

NOTE: In a future version, this will probably be renamed as SEQUENCE_OBJECT

106 typedef struct HASH_OBJECT

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

107 {

108 OBJECT_ATTRIBUTES attributes; // The attributes of the HASH object

109 TPMI_ALG_PUBLIC type; // algorithm

110 TPMI_ALG_HASH nameAlg; // name algorithm

111 TPMA_OBJECT objectAttributes; // object attributes

112

113 // The data below is unique to a sequence object

114 TPM2B_AUTH auth; // authorization for use of sequence

115 union

116 {

117 HASH_STATE hashState[HASH_COUNT];

118 HMAC_STATE hmacState;

119 } state;

120 } HASH_OBJECT;

121 typedef BYTE HASH_OBJECT_BUFFER[sizeof(HASH_OBJECT)];

5.9.3.5 ANY_OBJECT

This is the union for holding either a sequence object or a regular object. for ContextSave() and

ContextLoad()

122 typedef union ANY_OBJECT

123 {

124 OBJECT entity;

125 HASH_OBJECT hash;

126 } ANY_OBJECT;

127 typedef BYTE ANY_OBJECT_BUFFER[sizeof(ANY_OBJECT)];

5.9.4 AUTH_DUP Types

These values are used in the authorization processing.

128 typedef UINT32 AUTH_ROLE;

129 #define AUTH_NONE ((AUTH_ROLE)(0))

130 #define AUTH_USER ((AUTH_ROLE)(1))

131 #define AUTH_ADMIN ((AUTH_ROLE)(2))

132 #define AUTH_DUP ((AUTH_ROLE)(3))

5.9.5 Active Session Context

5.9.5.1 Description

The structures in this section define the internal structure of a session context.

5.9.5.2 SESSION_ATTRIBUTES

The attributes in the SESSION_ATTRIBUTES structure track the various properties of the session. It

maintains most of the tracking state information for the policy session. It is used within the SESSION

structure.

133 typedef struct SESSION_ATTRIBUTES

134 {

135 unsigned isPolicy : 1; //1) SET if the session may only be used

136 // for policy

137 unsigned isAudit : 1; //2) SET if the session is used for audit

138 unsigned isBound : 1; //3) SET if the session is bound to with an

139 // entity. This attribute will be CLEAR

140 // if either isPolicy or isAudit is SET.

141 unsigned isCpHashDefined : 1; //3) SET if the cpHash has been defined

Trusted Platform Module Library Part 4: Supporting Routines

Page 106 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

142 // This attribute is not SET unless

143 // 'isPolicy' is SET.

144 unsigned isAuthValueNeeded : 1; //5) SET if the authValue is required for

145 // computing the session HMAC. This

146 // attribute is not SET unless 'isPolicy'

147 // is SET.

148 unsigned isPasswordNeeded : 1; //6) SET if a password authValue is required

149 // for authorization This attribute is not

150 // SET unless 'isPolicy' is SET.

151 unsigned isPPRequired : 1; //7) SET if physical presence is required to

152 // be asserted when the authorization is

153 // checked. This attribute is not SET

154 // unless 'isPolicy' is SET.

155 unsigned isTrialPolicy : 1; //8) SET if the policy session is created

156 // for trial of the policy's policyHash

157 // generation. This attribute is not SET

158 // unless 'isPolicy' is SET.

159 unsigned isDaBound : 1; //9) SET if the bind entity had noDA CLEAR.

160 // If this is SET, then an authorization

161 // failure using this session will count

162 // against lockout even if the object

163 // being authorized is exempt from DA.

164 unsigned isLockoutBound : 1; //10) SET if the session is bound to

165 // lockoutAuth.

166 unsigned includeAuth : 1; //11) This attribute is SET when the

167 // authValue of an object is to be

168 // included in the computation of the

169 // HMAC key for the command and response

170 // computations. (was 'requestWasBound')

171 unsigned checkNvWritten : 1; //12) SET if the TPMA_NV_WRITTEN attribute

172 // needs to be checked when the policy is

173 // used for authorization for NV access.

174 // If this is SET for any other type, the

175 // policy will fail.

176 unsigned nvWrittenState : 1; //13) SET if TPMA_NV_WRITTEN is required to

177 // be SET. Used when 'checkNvWritten' is

178 // SET

179 unsigned isTemplateSet : 1; //14) SET if the templateHash needs to be

180 // checked for Create, CreatePrimary, or

181 // CreateLoaded.

182 } SESSION_ATTRIBUTES;

5.9.5.3 SESSION Structure

The SESSION structure contains all the context of a session except for the associated contextID.

NOTE: The contextID of a session is only relevant when the session context is stored off the TPM.

183 typedef struct SESSION

184 {

185 SESSION_ATTRIBUTES attributes; // session attributes

186 UINT32 pcrCounter; // PCR counter value when PCR is

187 // included (policy session)

188 // If no PCR is included, this

189 // value is 0.

190 UINT64 startTime; // The value in g_time when the session

191 // was started (policy session)

192 UINT64 timeout; // The timeout relative to g_time

193 // There is no timeout if this value

194 // is 0.

195 CLOCK_NONCE epoch; // The g_clockEpoch value when the

196 // session was started. If g_clockEpoch

197 // does not match this value when the

198 // timeout is used, then

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

199 // then the command will fail.

200 TPM_CC commandCode; // command code (policy session)

201 TPM_ALG_ID authHashAlg; // session hash algorithm

202 TPMA_LOCALITY commandLocality; // command locality (policy session)

203 TPMT_SYM_DEF symmetric; // session symmetric algorithm (if any)

204 TPM2B_AUTH sessionKey; // session secret value used for

205 // this session

206 TPM2B_NONCE nonceTPM; // last TPM-generated nonce for

207 // generating HMAC and encryption keys

208 union

209 {

210 TPM2B_NAME boundEntity; // value used to track the entity to

211 // which the session is bound

212

213 TPM2B_DIGEST cpHash; // the required cpHash value for the

214 // command being authorized

215 TPM2B_DIGEST nameHash; // the required nameHash

216 TPM2B_DIGEST templateHash; // the required template for creation

217 } u1;

218

219 union

220 {

221 TPM2B_DIGEST auditDigest; // audit session digest

222 TPM2B_DIGEST policyDigest; // policyHash

223 } u2; // audit log and policyHash may

224 // share space to save memory

225 } SESSION;

226 #define EXPIRES_ON_RESET INT32_MIN

227 #define TIMEOUT_ON_RESET UINT64_MAX

228 #define EXPIRES_ON_RESTART (INT32_MIN + 1)

229 #define TIMEOUT_ON_RESTART (UINT64_MAX - 1)

230 typedef BYTE SESSION_BUF[sizeof(SESSION)];

5.9.6 PCR

5.9.6.1 PCR_SAVE Structure

The PCR_SAVE structure type contains the PCR data that are saved across power cycles. Only the static

PCR are required to be saved across power cycles. The DRTM and resettable PCR are not saved. The

number of static and resettable PCR is determined by the platform-specific specification to which the TPM

is built.

231 typedef struct PCR_SAVE

232 {

233 #if ALG_SHA1

234 BYTE sha1[NUM_STATIC_PCR][SHA1_DIGEST_SIZE];

235 #endif

236 #if ALG_SHA256

237 BYTE sha256[NUM_STATIC_PCR][SHA256_DIGEST_SIZE];

238 #endif

239 #if ALG_SHA384

240 BYTE sha384[NUM_STATIC_PCR][SHA384_DIGEST_SIZE];

241 #endif

242 #if ALG_SHA512

243 BYTE sha512[NUM_STATIC_PCR][SHA512_DIGEST_SIZE];

244 #endif

245 #if ALG_SM3_256

246 BYTE sm3_256[NUM_STATIC_PCR][SM3_256_DIGEST_SIZE];

247 #endif

248

249 // This counter increments whenever the PCR are updated.

250 // NOTE: A platform-specific specification may designate

251 // certain PCR changes as not causing this counter

Trusted Platform Module Library Part 4: Supporting Routines

Page 108 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

252 // to increment.

253 UINT32 pcrCounter;

254 } PCR_SAVE;

5.9.6.2 PCR_POLICY

255 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

This structure holds the PCR policies, one for each group of PCR controlled by policy.

256 typedef struct PCR_POLICY

257 {

258 TPMI_ALG_HASH hashAlg[NUM_POLICY_PCR_GROUP];

259 TPM2B_DIGEST a;

260 TPM2B_DIGEST policy[NUM_POLICY_PCR_GROUP];

261 } PCR_POLICY;

262 #endif

5.9.6.3 PCR_AUTHVALUE

This structure holds the PCR policies, one for each group of PCR controlled by policy.

263 typedef struct PCR_AUTH_VALUE

264 {

265 TPM2B_DIGEST auth[NUM_AUTHVALUE_PCR_GROUP];

266 } PCR_AUTHVALUE;

5.9.7 STARTUP_TYPE

This enumeration is the possible startup types. The type is determined by the combination of

TPM2_ShutDown() and TPM2_Startup().

267 typedef enum

268 {

269 SU_RESET,

270 SU_RESTART,

271 SU_RESUME

272 } STARTUP_TYPE;

5.9.8 NV

5.9.8.1 NV_INDEX

The NV_INDEX structure defines the internal format for an NV index. The indexData size varies

according to the type of the index. In this implementation, all of the index is manipulated as a unit.

273 typedef struct NV_INDEX

274 {

275 TPMS_NV_PUBLIC publicArea;

276 TPM2B_AUTH authValue;

277 } NV_INDEX;

5.9.8.2 NV_REF

An NV_REF is an opaque value returned by the NV subsystem. It is used to reference and NV Index in a

relatively efficient way. Rather than having to continually search for an Index, its reference value may be

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

used. In this implementation, an NV_REF is a byte pointer that points to the copy of the NV memory that

is kept in RAM.

278 typedef UINT32 NV_REF;

279 typedef BYTE *NV_RAM_REF;

5.9.8.3 NV_PIN

This structure deals with the possible endianess differences between the canonical form of the

TPMS_NV_PIN_COUNTER_PARAMETERS structure and the internal value. The structures allow the

data in a PIN index to be read as an 8-octet value using NvReadUINT64Data(). That function will byte

swap all the values on a little endian system. This will put the bytes with the 4-octet values in the correct

order but will swap the pinLimit and pinCount values. When written, the PIN index is simply handled as a

normal index with the octets in canonical order.

280 #if BIG_ENDIAN_TPM

281 typedef struct

282 {

283 UINT32 pinCount;

284 UINT32 pinLimit;

285 } PIN_DATA;

286 #else

287 typedef struct

288 {

289 UINT32 pinLimit;

290 UINT32 pinCount;

291 } PIN_DATA;

292 #endif

293 typedef union

294 {

295 UINT64 intVal;

296 PIN_DATA pin;

297 } NV_PIN;

5.9.9 COMMIT_INDEX_MASK

This is the define for the mask value that is used when manipulating the bits in the commit bit array. The

commit counter is a 64-bit value and the low order bits are used to index the commitArray. This mask

value is applied to the commit counter to extract the bit number in the array.

298 #if ALG_ECC

299 #define COMMIT_INDEX_MASK ((UINT16)((sizeof(gr.commitArray)*8)-1))

300 #endif

5.9.10 RAM Global Values

5.9.10.1 Description

The values in this section are only extant in RAM or ROM as constant values.

5.9.10.2 Crypto Self-Test Values

301 EXTERN ALGORITHM_VECTOR g_implementedAlgorithms;

302 EXTERN ALGORITHM_VECTOR g_toTest;

303

304 //*** g_rcIndex[]

305 // This array is used to contain the array of values that are added to a return

306 // code when it is a parameter-, handle-, or session-related error.

Trusted Platform Module Library Part 4: Supporting Routines

Page 110 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

307 // This is an implementation choice and the same result can be achieved by using

308 // a macro.

309 #define g_rcIndexInitializer { TPM_RC_1, TPM_RC_2, TPM_RC_3, TPM_RC_4, \

310 TPM_RC_5, TPM_RC_6, TPM_RC_7, TPM_RC_8,

\

311 TPM_RC_9, TPM_RC_A, TPM_RC_B, TPM_RC_C,

\

312 TPM_RC_D, TPM_RC_E, TPM_RC_F }

313 EXTERN const UINT16 g_rcIndex[15] INITIALIZER(g_rcIndexInitializer);

5.9.10.3 g_exclusiveAuditSession

This location holds the session handle for the current exclusive audit session. If there is no exclusive

audit session, the location is set to TPM_RH_UNASSIGNED.

314 EXTERN TPM_HANDLE g_exclusiveAuditSession;

315

316 //*** g_time

317 // This is the value in which we keep the current command time. This is initialized

318 // at the start of each command. The time is the accumulated time since the last

319 // time that the TPM's timer was last powered up. Clock is the accumulated time

320 // since the last time that the TPM was cleared. g_time is in mS.

321 EXTERN UINT64 g_time;

322

323 //*** g_timeEpoch

324 // This value contains the current clock Epoch. It changes when there is a clock

325 // discontinuity. It may be necessary to place this in NV should the timer be able

326 // to run across a power down of the TPM but not in all cases (e.g. dead battery).

327 // If the nonce is placed in NV, it should go in gp because it should be changing

328 // slowly.

329 #if CLOCK_STOPS

330 EXTERN CLOCK_NONCE g_timeEpoch;

331 #else

332 #define g_timeEpoch gp.timeEpoch

333 #endif

334

335

336 //*** g_phEnable

337 // This is the platform hierarchy control and determines if the platform hierarchy

338 // is available. This value is SET on each TPM2_Startup(). The default value is

339 // SET.

340 EXTERN BOOL g_phEnable;

341

342 //*** g_pcrReConfig

343 // This value is SET if a TPM2_PCR_Allocate command successfully executed since

344 // the last TPM2_Startup(). If so, then the next shutdown is required to be

345 // Shutdown(CLEAR).

346 EXTERN BOOL g_pcrReConfig;

347

348 //*** g_DRTMHandle

349 // This location indicates the sequence object handle that holds the DRTM

350 // sequence data. When not used, it is set to TPM_RH_UNASSIGNED. A sequence

351 // DRTM sequence is started on either _TPM_Init or _TPM_Hash_Start.

352 EXTERN TPMI_DH_OBJECT g_DRTMHandle;

353

354 //*** g_DrtmPreStartup

355 // This value indicates that an H-CRTM occurred after _TPM_Init but before

356 // TPM2_Startup(). The define for PRE_STARTUP_FLAG is used to add the

357 // g_DrtmPreStartup value to gp_orderlyState at shutdown. This hack is to avoid

358 // adding another NV variable.

359 EXTERN BOOL g_DrtmPreStartup;

360

361 //*** g_StartupLocality3

362 // This value indicates that a TPM2_Startup() occurred at locality 3. Otherwise, it

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

363 // at locality 0. The define for STARTUP_LOCALITY_3 is to

364 // indicate that the startup was not at locality 0. This hack is to avoid

365 // adding another NV variable.

366 EXTERN BOOL g_StartupLocality3;

367

368 //***TPM_SU_NONE

369 // Part 2 defines the two shutdown/startup types that may be used in

370 // TPM2_Shutdown() and TPM2_Starup(). This additional define is

371 // used by the TPM to indicate that no shutdown was received.

372 // NOTE: This is a reserved value.

373 #define SU_NONE_VALUE (0xFFFF)

374 #define TPM_SU_NONE (TPM_SU)(SU_NONE_VALUE)

5.9.10.4 TPM_SU_DA_USED

As with TPM_SU_NONE, this value is added to allow indication that the shutdown was not orderly and

that a DA=protected object was reference during the previous cycle.

375 #define SU_DA_USED_VALUE (SU_NONE_VALUE - 1)

376 #define TPM_SU_DA_USED (TPM_SU)(SU_DA_USED_VALUE)

5.9.10.5 Startup Flags

These flags are included in gp.orderlyState. These are hacks and are being used to avoid having to

change the layout of gp. The PRE_STARTUP_FLAG indicates that a _TPM_Hash_Start()/_Data/_End

sequence was received after _TPM_Init() but before TPM2_StartUp(). STARTUP_LOCALITY_3 indicates

that the last TPM2_Startup() was received at locality 3. These flags are only relevant if after a

TPM2_Shutdown(STATE).

377 #define PRE_STARTUP_FLAG 0x8000

378 #define STARTUP_LOCALITY_3 0x4000

379 #if USE_DA_USED

5.9.10.6 g_daUsed

This location indicates if a DA-protected value is accessed during a boot cycle. If none has, then there is

no need to increment failedTries on the next non-orderly startup. This bit is merged with gp.orderlyState

when that gp.orderly is set to SU_NONE_VALUE

380 EXTERN BOOL g_daUsed;

381 #endif

382

383 //*** g_updateNV

384 // This flag indicates if NV should be updated at the end of a command.

385 // This flag is set to UT_NONE at the beginning of each command in ExecuteCommand().

386 // This flag is checked in ExecuteCommand() after the detailed actions of a command

387 // complete. If the command execution was successful and this flag is not UT_NONE,

388 // any pending NV writes will be committed to NV.

389 // UT_ORDERLY causes any RAM data to be written to the orderly space for staging

390 // the write to NV.

391 typedef BYTE UPDATE_TYPE;

392 #define UT_NONE (UPDATE_TYPE)0

393 #define UT_NV (UPDATE_TYPE)1

394 #define UT_ORDERLY (UPDATE_TYPE)(UT_NV + 2)

395 EXTERN UPDATE_TYPE g_updateNV;

396

397 //*** g_powerWasLost

398 // This flag is used to indicate if the power was lost. It is SET in _TPM__Init.

399 // This flag is cleared by TPM2_Startup() after all power-lost activities are

400 // completed.

Trusted Platform Module Library Part 4: Supporting Routines

Page 112 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

401 // Note: When power is applied, this value can come up as anything. However,

402 // _plat__WasPowerLost() will provide the proper indication in that case. So, when

403 // power is actually lost, we get the correct answer. When power was not lost, but

404 // the power-lost processing has not been completed before the next _TPM_Init(),

405 // then the TPM still does the correct thing.

406 EXTERN BOOL g_powerWasLost;

407

408 //*** g_clearOrderly

409 // This flag indicates if the execution of a command should cause the orderly

410 // state to be cleared. This flag is set to FALSE at the beginning of each

411 // command in ExecuteCommand() and is checked in ExecuteCommand() after the

412 // detailed actions of a command complete but before the check of

413 // 'g_updateNV'. If this flag is TRUE, and the orderly state is not

414 // SU_NONE_VALUE, then the orderly state in NV memory will be changed to

415 // SU_NONE_VALUE or SU_DA_USED_VALUE.

416 EXTERN BOOL g_clearOrderly;

417

418 //*** g_prevOrderlyState

419 // This location indicates how the TPM was shut down before the most recent

420 // TPM2_Startup(). This value, along with the startup type, determines if

421 // the TPM should do a TPM Reset, TPM Restart, or TPM Resume.

422 EXTERN TPM_SU g_prevOrderlyState;

423

424 //*** g_nvOk

425 // This value indicates if the NV integrity check was successful or not. If not and

426 // the failure was severe, then the TPM would have been put into failure mode after

427 // it had been re-manufactured. If the NV failure was in the area where the state-save

428 // data is kept, then this variable will have a value of FALSE indicating that

429 // a TPM2_Startup(CLEAR) is required.

430 EXTERN BOOL g_nvOk;

431 // NV availability is sampled as the start of each command and stored here

432 // so that its value remains consistent during the command execution

433 EXTERN TPM_RC g_NvStatus;

434

435 //*** g_platformUnique

436 // This location contains the unique value(s) used to identify the TPM. It is

437 // loaded on every _TPM2_Startup()

438 // The first value is used to seed the RNG. The second value is used as a vendor

439 // authValue. The value used by the RNG would be the value derived from the

440 // chip unique value (such as fused) with a dependency on the authorities of the

441 // code in the TPM boot path. The second would be derived from the chip unique value

442 // with a dependency on the details of the code in the boot path. That is, the

443 // first value depends on the various signers of the code and the second depends on

444 // what was signed. The TPM vendor should not be able to know the first value but

445 // they are expected to know the second.

446 EXTERN TPM2B_AUTH g_platformUniqueAuthorities; // Reserved for RNG

447

448 EXTERN TPM2B_AUTH g_platformUniqueDetails; // referenced by

VENDOR_PERMANENT

449

450 //***

451 //***

452 //** Persistent Global Values

453 //***

454 //***

455 //*** Description

456 // The values in this section are global values that are persistent across power

457 // events. The lifetime of the values determines the structure in which the value

458 // is placed.

459

460 //***

461 //*** PERSISTENT_DATA

462 //***

463 // This structure holds the persistent values that only change as a consequence

464 // of a specific Protected Capability and are not affected by TPM power events

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

465 // (TPM2_Startup() or TPM2_Shutdown().

466 typedef struct

467 {

468 //***

469 // Hierarchy

470 //***

471 // The values in this section are related to the hierarchies.

472

473 BOOL disableClear; // TRUE if TPM2_Clear() using

474 // lockoutAuth is disabled

475

476 // Hierarchy authPolicies

477 TPMI_ALG_HASH ownerAlg;

478 TPMI_ALG_HASH endorsementAlg;

479 TPMI_ALG_HASH lockoutAlg;

480 TPM2B_DIGEST ownerPolicy;

481 TPM2B_DIGEST endorsementPolicy;

482 TPM2B_DIGEST lockoutPolicy;

483

484 // Hierarchy authValues

485 TPM2B_AUTH ownerAuth;

486 TPM2B_AUTH endorsementAuth;

487 TPM2B_AUTH lockoutAuth;

488

489 // Primary Seeds

490 TPM2B_SEED EPSeed;

491 TPM2B_SEED SPSeed;

492 TPM2B_SEED PPSeed;

493 // Note there is a nullSeed in the state_reset memory.

494

495 // Hierarchy proofs

496 TPM2B_PROOF phProof;

497 TPM2B_PROOF shProof;

498 TPM2B_PROOF ehProof;

499 // Note there is a nullProof in the state_reset memory.

500

501 //***

502 // Reset Events

503 //***

504 // A count that increments at each TPM reset and never get reset during the life

505 // time of TPM. The value of this counter is initialized to 1 during TPM

506 // manufacture process. It is used to invalidate all saved contexts after a TPM

507 // Reset.

508 UINT64 totalResetCount;

509

510 // This counter increments on each TPM Reset. The counter is reset by

511 // TPM2_Clear().

512 UINT32 resetCount;

513

514 //***

515 // PCR

516 //***

517 // This structure hold the policies for those PCR that have an update policy.

518 // This implementation only supports a single group of PCR controlled by

519 // policy. If more are required, then this structure would be changed to

520 // an array.

521 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

522 PCR_POLICY pcrPolicies;

523 #endif

524

525 // This structure indicates the allocation of PCR. The structure contains a

526 // list of PCR allocations for each implemented algorithm. If no PCR are

527 // allocated for an algorithm, a list entry still exists but the bit map

528 // will contain no SET bits.

529 TPML_PCR_SELECTION pcrAllocated;

Trusted Platform Module Library Part 4: Supporting Routines

Page 114 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

530

531 //***

532 // Physical Presence

533 //***

534 // The PP_LIST type contains a bit map of the commands that require physical

535 // to be asserted when the authorization is evaluated. Physical presence will be

536 // checked if the corresponding bit in the array is SET and if the authorization

537 // handle is TPM_RH_PLATFORM.

538 //

539 // These bits may be changed with TPM2_PP_Commands().

540 BYTE ppList[(COMMAND_COUNT + 7) / 8];

541

542 //***

543 // Dictionary attack values

544 //***

545 // These values are used for dictionary attack tracking and control.

546 UINT32 failedTries; // the current count of unexpired

547 // authorization failures

548

549 UINT32 maxTries; // number of unexpired authorization

550 // failures before the TPM is in

551 // lockout

552

553 UINT32 recoveryTime; // time between authorization failures

554 // before failedTries is decremented

555

556 UINT32 lockoutRecovery; // time that must expire between

557 // authorization failures associated

558 // with lockoutAuth

559

560 BOOL lockOutAuthEnabled; // TRUE if use of lockoutAuth is

561 // allowed

562

563 //***

564 // Orderly State

565 //***

566 // The orderly state for current cycle

567 TPM_SU orderlyState;

568

569 //***

570 // Command audit values.

571 //***

572 BYTE auditCommands[((COMMAND_COUNT + 1) + 7) / 8];

573 TPMI_ALG_HASH auditHashAlg;

574 UINT64 auditCounter;

575

576 //***

577 // Algorithm selection

578 //***

579 //

580 // The 'algorithmSet' value indicates the collection of algorithms that are

581 // currently in used on the TPM. The interpretation of value is vendor dependent.

582 UINT32 algorithmSet;

583

584 //***

585 // Firmware version

586 //***

587 // The firmwareV1 and firmwareV2 values are instanced in TimeStamp.c. This is

588 // a scheme used in development to allow determination of the linker build time

589 // of the TPM. An actual implementation would implement these values in a way that

590 // is consistent with vendor needs. The values are maintained in RAM for simplified

591 // access with a master version in NV. These values are modified in a

592 // vendor-specific way.

593

594 // g_firmwareV1 contains the more significant 32-bits of the vendor version number.

595 // In the reference implementation, if this value is printed as a hex

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

596 // value, it will have the format of YYYYMMDD

597 UINT32 firmwareV1;

598

599 // g_firmwareV1 contains the less significant 32-bits of the vendor version number.

600 // In the reference implementation, if this value is printed as a hex

601 // value, it will have the format of 00 HH MM SS

602 UINT32 firmwareV2;

603 //***

604 // Timer Epoch

605 //***

606 // timeEpoch contains a nonce that has a vendor=specific size (should not be

607 // less than 8 bytes. This nonce changes when the clock epoch changes. The clock

608 // epoch changes when there is a discontinuity in the timing of the TPM.

609 #if !CLOCK_STOPS

610 CLOCK_NONCE timeEpoch;

611 #endif

612

613 } PERSISTENT_DATA;

614 EXTERN PERSISTENT_DATA gp;

615

616 //***

617 //***

618 //*** ORDERLY_DATA

619 //***

620 //***

621 // The data in this structure is saved to NV on each TPM2_Shutdown().

622 typedef struct orderly_data

623 {

624 //***

625 // TIME

626 //***

627

628 // Clock has two parts. One is the state save part and one is the NV part. The

629 // state save version is updated on each command. When the clock rolls over, the

630 // NV version is updated. When the TPM starts up, if the TPM was shutdown in and

631 // orderly way, then the sClock value is used to initialize the clock. If the

632 // TPM shutdown was not orderly, then the persistent value is used and the safe

633 // attribute is clear.

634

635 UINT64 clock; // The orderly version of clock

636 TPMI_YES_NO clockSafe; // Indicates if the clock value is

637 // safe.

638

639 // In many implementations, the quality of the entropy available is not that

640 // high. To compensate, the current value of the drbgState can be saved and

641 // restored on each power cycle. This prevents the internal state from reverting

642 // to the initial state on each power cycle and starting with a limited amount

643 // of entropy. By keeping the old state and adding entropy, the entropy will

644 // accumulate.

645 DRBG_STATE drbgState;

646

647 // These values allow the accumulation of self-healing time across orderly shutdown

648 // of the TPM.

649 #if ACCUMULATE_SELF_HEAL_TIMER

650 UINT64 selfHealTimer; // current value of s_selfHealTimer

651 UINT64 lockoutTimer; // current value of s_lockoutTimer

652 UINT64 time; // current value of g_time at shutdown

653 #endif // ACCUMULATE_SELF_HEAL_TIMER

654

655 // These are the ACT Timeout values. They are saved with the other timers

656 #define DefineActData(N) ACT_STATE ACT_##N;

657 FOR_EACH_ACT(DefineActData)

658

659 // this is the 'signaled' attribute data for all the ACT. It is done this way so

660 // that they can be manipulated by ACT number rather than having to access a

Trusted Platform Module Library Part 4: Supporting Routines

Page 116 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

661 // structure.

662 UINT32 signaledACT;

663 } ORDERLY_DATA;

664 #if ACCUMULATE_SELF_HEAL_TIMER

665 #define s_selfHealTimer go.selfHealTimer

666 #define s_lockoutTimer go.lockoutTimer

667 #endif // ACCUMULATE_SELF_HEAL_TIMER

668 # define drbgDefault go.drbgState

669 EXTERN ORDERLY_DATA go;

670

671 //***

672 //***

673 //*** STATE_CLEAR_DATA

674 //***

675 //***

676 // This structure contains the data that is saved on Shutdown(STATE)

677 // and restored on Startup(STATE). The values are set to their default

678 // settings on any Startup(Clear). In other words, the data is only persistent

679 // across TPM Resume.

680 //

681 // If the comments associated with a parameter indicate a default reset value, the

682 // value is applied on each Startup(CLEAR).

683

684 typedef struct state_clear_data

685 {

686 //***

687 // Hierarchy Control

688 //***

689 BOOL shEnable; // default reset is SET

690 BOOL ehEnable; // default reset is SET

691 BOOL phEnableNV; // default reset is SET

692 TPMI_ALG_HASH platformAlg; // default reset is TPM_ALG_NULL

693 TPM2B_DIGEST platformPolicy; // default reset is an Empty Buffer

694 TPM2B_AUTH platformAuth; // default reset is an Empty Buffer

695

696 //***

697 // PCR

698 //***

699 // The set of PCR to be saved on Shutdown(STATE)

700 PCR_SAVE pcrSave; // default reset is 0...0

701

702 // This structure hold the authorization values for those PCR that have an

703 // update authorization.

704 // This implementation only supports a single group of PCR controlled by

705 // authorization. If more are required, then this structure would be changed to

706 // an array.

707 PCR_AUTHVALUE pcrAuthValues;

708

709 //***

710 // ACT

711 //***

712 #define DefineActPolicySpace(N) TPMT_HA act_##N;

713 FOR_EACH_ACT(DefineActPolicySpace)

714

715 } STATE_CLEAR_DATA;

716 EXTERN STATE_CLEAR_DATA gc;

717

718 //***

719 //***

720 //*** State Reset Data

721 //***

722 //***

723 // This structure contains data is that is saved on Shutdown(STATE) and restored on

724 // the subsequent Startup(ANY). That is, the data is preserved across TPM Resume

725 // and TPM Restart.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

726 //

727 // If a default value is specified in the comments this value is applied on

728 // TPM Reset.

729

730 typedef struct state_reset_data

731 {

732 //***

733 // Hierarchy Control

734 //***

735 TPM2B_PROOF nullProof; // The proof value associated with

736 // the TPM_RH_NULL hierarchy. The

737 // default reset value is from the RNG.

738

739 TPM2B_SEED nullSeed; // The seed value for the TPM_RN_NULL

740 // hierarchy. The default reset value

741 // is from the RNG.

742

743 //***

744 // Context

745 //***

746 // The 'clearCount' counter is incremented each time the TPM successfully executes

747 // a TPM Resume. The counter is included in each saved context that has 'stClear'

748 // SET (including descendants of keys that have 'stClear' SET). This prevents these

749 // objects from being loaded after a TPM Resume.

750 // If 'clearCount' is at its maximum value when the TPM receives a Shutdown(STATE),

751 // the TPM will return TPM_RC_RANGE and the TPM will only accept Shutdown(CLEAR).

752 UINT32 clearCount; // The default reset value is 0.

753

754 UINT64 objectContextID; // This is the context ID for a saved

755 // object context. The default reset

756 // value is 0.

757 CONTEXT_SLOT contextArray[MAX_ACTIVE_SESSIONS]; // This array

contains

758 // contains the values used to track

759 // the version numbers of saved

760 // contexts (see

761 // Session.c in for details). The

762 // default reset value is {0}.

763

764 CONTEXT_COUNTER contextCounter; // This is the value from which the

765 // 'contextID' is derived. The

766 // default reset value is {0}.

767

768 //***

769 // Command Audit

770 //***

771 // When an audited command completes, ExecuteCommand() checks the return

772 // value. If it is TPM_RC_SUCCESS, and the command is an audited command, the

773 // TPM will extend the cpHash and rpHash for the command to this value. If this

774 // digest was the Zero Digest before the cpHash was extended, the audit counter

775 // is incremented.

776

777 TPM2B_DIGEST commandAuditDigest; // This value is set to an Empty Digest

778 // by TPM2_GetCommandAuditDigest() or a

779 // TPM Reset.

780

781 //***

782 // Boot counter

783 //***

784

785 UINT32 restartCount; // This counter counts TPM Restarts.

786 // The default reset value is 0.

787

788 //***

789 // PCR

Trusted Platform Module Library Part 4: Supporting Routines

Page 118 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

790 //***

791 // This counter increments whenever the PCR are updated. This counter is preserved

792 // across TPM Resume even though the PCR are not preserved. This is because

793 // sessions remain active across TPM Restart and the count value in the session

794 // is compared to this counter so this counter must have values that are unique

795 // as long as the sessions are active.

796 // NOTE: A platform-specific specification may designate that certain PCR changes

797 // do not increment this counter to increment.

798 UINT32 pcrCounter; // The default reset value is 0.

799

800 #if ALG_ECC

801

802 //***

803 // ECDAA

804 //***

805 UINT64 commitCounter; // This counter increments each time

806 // TPM2_Commit() returns

807 // TPM_RC_SUCCESS. The default reset

808 // value is 0.

809

810 TPM2B_NONCE commitNonce; // This random value is used to compute

811 // the commit values. The default reset

812 // value is from the RNG.

813

814 // This implementation relies on the number of bits in g_commitArray being a

815 // power of 2 (8, 16, 32, 64, etc.) and no greater than 64K.

816 BYTE commitArray[16]; // The default reset value is {0}.

817

818 #endif // ALG_ECC

819 } STATE_RESET_DATA;

820

821 EXTERN STATE_RESET_DATA gr;

822

823 //** NV Layout

824 // The NV data organization is

825 // 1) a PERSISTENT_DATA structure

826 // 2) a STATE_RESET_DATA structure

827 // 3) a STATE_CLEAR_DATA structure

828 // 4) an ORDERLY_DATA structure

829 // 5) the user defined NV index space

830 #define NV_PERSISTENT_DATA (0)

831 #define NV_STATE_RESET_DATA (NV_PERSISTENT_DATA + sizeof(PERSISTENT_DATA))

832 #define NV_STATE_CLEAR_DATA (NV_STATE_RESET_DATA + sizeof(STATE_RESET_DATA))

833 #define NV_ORDERLY_DATA (NV_STATE_CLEAR_DATA + sizeof(STATE_CLEAR_DATA))

834 #define NV_INDEX_RAM_DATA (NV_ORDERLY_DATA + sizeof(ORDERLY_DATA))

835 #define NV_USER_DYNAMIC (NV_INDEX_RAM_DATA + sizeof(s_indexOrderlyRam))

836 #define NV_USER_DYNAMIC_END NV_MEMORY_SIZE

5.9.11 Global Macro Definitions

The NV_READ_PERSISTENT and NV_WRITE_PERSISTENT macros are used to access members of

the PERSISTENT_DATA structure in NV.

837 #define NV_READ_PERSISTENT(to, from) \

838 NvRead(&to, offsetof(PERSISTENT_DATA, from), sizeof(to))

839 #define NV_WRITE_PERSISTENT(to, from) \

840 NvWrite(offsetof(PERSISTENT_DATA, to), sizeof(gp.to), &from)

841 #define CLEAR_PERSISTENT(item) \

842 NvClearPersistent(offsetof(PERSISTENT_DATA, item), sizeof(gp.item))

843 #define NV_SYNC_PERSISTENT(item) NV_WRITE_PERSISTENT(item, gp.item)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

At the start of command processing, the index of the command is determined. This index value is used to

access the various data tables that contain per-command information. There are multiple options for how

the per-command tables can be implemented. This is resolved in GetClosestCommandIndex().

844 typedef UINT16 COMMAND_INDEX;

845 #define UNIMPLEMENTED_COMMAND_INDEX ((COMMAND_INDEX)(~0))

846 typedef struct _COMMAND_FLAGS_

847 {

848 unsigned trialPolicy : 1; //1) If SET, one of the handles references a

849 // trial policy and authorization may be

850 // skipped. This is only allowed for a policy

851 // command.

852 } COMMAND_FLAGS;

This structure is used to avoid having to manage a large number of parameters being passed through

various levels of the command input processing.

853 typedef struct _COMMAND_

854 {

855 TPM_ST tag; // the parsed command tag

856 TPM_CC code; // the parsed command code

857 COMMAND_INDEX index; // the computed command index

858 UINT32 handleNum; // the number of entity handles in the

859 // handle area of the command

860 TPM_HANDLE handles[MAX_HANDLE_NUM]; // the parsed handle values

861 UINT32 sessionNum; // the number of sessions found

862 INT32 parameterSize; // starts out with the parsed command size

863 // and is reduced and values are

864 // unmarshaled. Just before calling the

865 // command actions, this should be zero.

866 // After the command actions, this number

867 // should grow as values are marshaled

868 // in to the response buffer.

869 INT32 authSize; // this is initialized with the parsed size

870 // of authorizationSize field and should

871 // be zero when the authorizations are

872 // parsed.

873 BYTE *parameterBuffer; // input to ExecuteCommand

874 BYTE *responseBuffer; // input to ExecuteCommand

875 #if ALG_SHA1

876 TPM2B_SHA1_DIGEST sha1CpHash;

877 TPM2B_SHA1_DIGEST sha1RpHash;

878 #endif

879 #if ALG_SHA256

880 TPM2B_SHA256_DIGEST sha256CpHash;

881 TPM2B_SHA256_DIGEST sha256RpHash;

882 #endif

883 #if ALG_SHA384

884 TPM2B_SHA384_DIGEST sha384CpHash;

885 TPM2B_SHA384_DIGEST sha384RpHash;

886 #endif

887 #if ALG_SHA512

888 TPM2B_SHA512_DIGEST sha512CpHash;

889 TPM2B_SHA512_DIGEST sha512RpHash;

890 #endif

891 #if ALG_SM3_256

892 TPM2B_SM3_256_DIGEST sm3_256CpHash;

893 TPM2B_SM3_256_DIGEST sm3_256RpHash;

894 #endif

895 } COMMAND;

Global sting constants for consistency in KDF function calls. These string constants are shared across

functions to make sure that they are all using consistent sting values.

Trusted Platform Module Library Part 4: Supporting Routines

Page 120 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

896 #define STRING_INITIALIZER(value) {{sizeof(value), {value}}}

897 #define TPM2B_STRING(name, value) \

898 typedef union name##_ { \

899 struct { \

900 UINT16 size; \

901 BYTE buffer[sizeof(value)]; \

902 } t; \

903 TPM2B b; \

904 } TPM2B_##name##_; \

905 EXTERN const TPM2B_##name##_ name##_ INITIALIZER(STRING_INITIALIZER(value)); \

906 EXTERN const TPM2B *name INITIALIZER(&name##_.b)

907 TPM2B_STRING(PRIMARY_OBJECT_CREATION, "Primary Object Creation");

908 TPM2B_STRING(CFB_KEY, "CFB");

909 TPM2B_STRING(CONTEXT_KEY, "CONTEXT");

910 TPM2B_STRING(INTEGRITY_KEY, "INTEGRITY");

911 TPM2B_STRING(SECRET_KEY, "SECRET");

912 TPM2B_STRING(SESSION_KEY, "ATH");

913 TPM2B_STRING(STORAGE_KEY, "STORAGE");

914 TPM2B_STRING(XOR_KEY, "XOR");

915 TPM2B_STRING(COMMIT_STRING, "ECDAA Commit");

916 TPM2B_STRING(DUPLICATE_STRING, "DUPLICATE");

917 TPM2B_STRING(IDENTITY_STRING, "IDENTITY");

918 TPM2B_STRING(OBFUSCATE_STRING, "OBFUSCATE");

919 #if SELF_TEST

920 TPM2B_STRING(OAEP_TEST_STRING, "OAEP Test Value");

921 #endif // SELF_TEST

5.9.12 From CryptTest.c

This structure contains the self-test state values for the cryptographic modules.

922 EXTERN CRYPTO_SELF_TEST_STATE g_cryptoSelfTestState;

923

924 //***

925 //** From Manufacture.c

926 //***

927 EXTERN BOOL g_manufactured INITIALIZER(FALSE);

This value indicates if a TPM2_Startup() commands has been receive since the power on event. This flag

is maintained in power simulation module because this is the only place that may reliably set this flag to

FALSE.

928 EXTERN BOOL g_initialized;

929

930 //** Private data

931

932 //***

933 //*** From SessionProcess.c

934 //***

935 #if defined SESSION_PROCESS_C || defined GLOBAL_C || defined MANUFACTURE_C

936 // The following arrays are used to save command sessions information so that the

937 // command handle/session buffer does not have to be preserved for the duration of

938 // the command. These arrays are indexed by the session index in accordance with

939 // the order of sessions in the session area of the command.

940 //

941 // Array of the authorization session handles

942 EXTERN TPM_HANDLE s_sessionHandles[MAX_SESSION_NUM];

943

944 // Array of authorization session attributes

945 EXTERN TPMA_SESSION s_attributes[MAX_SESSION_NUM];

946

947 // Array of handles authorized by the corresponding authorization sessions;

948 // and if none, then TPM_RH_UNASSIGNED value is used

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

949 EXTERN TPM_HANDLE s_associatedHandles[MAX_SESSION_NUM];

950

951 // Array of nonces provided by the caller for the corresponding sessions

952 EXTERN TPM2B_NONCE s_nonceCaller[MAX_SESSION_NUM];

953

954 // Array of authorization values (HMAC's or passwords) for the corresponding

955 // sessions

956 EXTERN TPM2B_AUTH s_inputAuthValues[MAX_SESSION_NUM];

957

958 // Array of pointers to the SESSION structures for the sessions in a command

959 EXTERN SESSION *s_usedSessions[MAX_SESSION_NUM];

960

961 // Special value to indicate an undefined session index

962 #define UNDEFINED_INDEX (0xFFFF)

Index of the session used for encryption of a response parameter

963 EXTERN UINT32 s_encryptSessionIndex;

964

965 // Index of the session used for decryption of a command parameter

966 EXTERN UINT32 s_decryptSessionIndex;

967

968 // Index of a session used for audit

969 EXTERN UINT32 s_auditSessionIndex;

970

971 // The cpHash for command audit

972 #ifdef TPM_CC_GetCommandAuditDigest

973 EXTERN TPM2B_DIGEST s_cpHashForCommandAudit;

974 #endif

975

976 // Flag indicating if NV update is pending for the lockOutAuthEnabled or

977 // failedTries DA parameter

978 EXTERN BOOL s_DAPendingOnNV;

979

980 #endif // SESSION_PROCESS_C

981

982 //***

983 //*** From DA.c

984 //***

985 #if defined DA_C || defined GLOBAL_C || defined MANUFACTURE_C

986 // This variable holds the accumulated time since the last time

987 // that 'failedTries' was decremented. This value is in millisecond.

988 #if !ACCUMULATE_SELF_HEAL_TIMER

989 EXTERN UINT64 s_selfHealTimer;

990

991 // This variable holds the accumulated time that the lockoutAuth has been

992 // blocked.

993 EXTERN UINT64 s_lockoutTimer;

994 #endif // ACCUMULATE_SELF_HEAL_TIMER

995

996 #endif // DA_C

997

998 //***

999 //*** From NV.c

1000 //***

1001 #if defined NV_C || defined GLOBAL_C

1002 // This marks the end of the NV area. This is a run-time variable as it might

1003 // not be compile-time constant.

1004 EXTERN NV_REF s_evictNvEnd;

1005

1006 // This space is used to hold the index data for an orderly Index. It also contains

1007 // the attributes for the index.

1008 EXTERN BYTE s_indexOrderlyRam[RAM_INDEX_SPACE]; // The orderly NV Index data

1009

1010 // This value contains the current max counter value. It is written to the end of

Trusted Platform Module Library Part 4: Supporting Routines

Page 122 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1011 // allocatable NV space each time an index is deleted or added. This value is

1012 // initialized on Startup. The indices are searched and the maximum of all the

1013 // current counter indices and this value is the initial value for this.

1014 EXTERN UINT64 s_maxCounter;

1015

1016 // This is space used for the NV Index cache. As with a persistent object, the

1017 // contents of a referenced index are copied into the cache so that the

1018 // NV Index memory scanning and data copying can be reduced.

1019 // Only code that operates on NV Index data should use this cache directly. When

1020 // that action code runs, s_lastNvIndex will contain the index header information.

1021 // It will have been loaded when the handles were verified.

1022 // NOTE: An NV index handle can appear in many commands that do not operate on the

1023 // NV data (e.g. TPM2_StartAuthSession). However, only one NV Index at a time is

1024 // ever directly referenced by any command. If that changes, then the NV Index

1025 // caching needs to be changed to accommodate that. Currently, the code will verify

1026 // that only one NV Index is referenced by the handles of the command.

1027 EXTERN NV_INDEX s_cachedNvIndex;

1028 EXTERN NV_REF s_cachedNvRef;

1029 EXTERN BYTE *s_cachedNvRamRef;

1030

1031 // Initial NV Index/evict object iterator value

1032 #define NV_REF_INIT (NV_REF)0xFFFFFFFF

1033 #endif

5.9.12.1 From Object.c

1034 #if defined OBJECT_C || defined GLOBAL_C

This type is the container for an object.

1035 EXTERN OBJECT s_objects[MAX_LOADED_OBJECTS];

1036

1037 #endif // OBJECT_C

1038

1039 //***

1040 //*** From PCR.c

1041 //***

1042 #if defined PCR_C || defined GLOBAL_C

1043 typedef struct

1044 {

1045 #if ALG_SHA1

1046 // SHA1 PCR

1047 BYTE sha1Pcr[SHA1_DIGEST_SIZE];

1048 #endif

1049 #if ALG_SHA256

1050 // SHA256 PCR

1051 BYTE sha256Pcr[SHA256_DIGEST_SIZE];

1052 #endif

1053 #if ALG_SHA384

1054 // SHA384 PCR

1055 BYTE sha384Pcr[SHA384_DIGEST_SIZE];

1056 #endif

1057 #if ALG_SHA512

1058 // SHA512 PCR

1059 BYTE sha512Pcr[SHA512_DIGEST_SIZE];

1060 #endif

1061 #if ALG_SM3_256

1062 // SHA256 PCR

1063 BYTE sm3_256Pcr[SM3_256_DIGEST_SIZE];

1064 #endif

1065 } PCR;

1066

1067 typedef struct

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1068 {

1069 unsigned int stateSave : 1; // if the PCR value should be

1070 // saved in state save

1071 unsigned int resetLocality : 5; // The locality that the PCR

1072 // can be reset

1073 unsigned int extendLocality : 5; // The locality that the PCR

1074 // can be extend

1075 } PCR_Attributes;

1076

1077 EXTERN PCR s_pcrs[IMPLEMENTATION_PCR];

1078

1079 #endif // PCR_C

1080

1081 //***

1082 //*** From Session.c

1083 //***

1084 #if defined SESSION_C || defined GLOBAL_C

1085 // Container for HMAC or policy session tracking information

1086 typedef struct

1087 {

1088 BOOL occupied;

1089 SESSION session; // session structure

1090 } SESSION_SLOT;

1091

1092 EXTERN SESSION_SLOT s_sessions[MAX_LOADED_SESSIONS];

1093

1094 // The index in contextArray that has the value of the oldest saved session

1095 // context. When no context is saved, this will have a value that is greater

1096 // than or equal to MAX_ACTIVE_SESSIONS.

1097 EXTERN UINT32 s_oldestSavedSession;

1098

1099 // The number of available session slot openings. When this is 1,

1100 // a session can't be created or loaded if the GAP is maxed out.

1101 // The exception is that the oldest saved session context can always

1102 // be loaded (assuming that there is a space in memory to put it)

1103 EXTERN int s_freeSessionSlots;

1104

1105 #endif // SESSION_C

1106

1107 //***

1108 //*** From IoBuffers.c

1109 //***

1110 #if defined IO_BUFFER_C || defined GLOBAL_C

1111 // Each command function is allowed a structure for the inputs to the function and

1112 // a structure for the outputs. The command dispatch code unmarshals the input butter

1113 // to the command action input structure starting at the first byte of

1114 // s_actionIoBuffer. The value of s_actionIoAllocation is the number of UINT64 values

1115 // allocated. It is used to set the pointer for the response structure. The command

1116 // dispatch code will marshal the response values into the final output buffer.

1117 EXTERN UINT64 s_actionIoBuffer[768]; // action I/O buffer

1118 EXTERN UINT32 s_actionIoAllocation; // number of UIN64 allocated for the

1119 // action input structure

1120 #endif // IO_BUFFER_C

1121

1122 //***

1123 //*** From TPMFail.c

1124 //***

1125 // This value holds the address of the string containing the name of the function

1126 // in which the failure occurred. This address value isn't useful for anything

1127 // other than helping the vendor to know in which file the failure occurred.

1128 EXTERN BOOL g_inFailureMode; // Indicates that the TPM is in failure mode

1129 #if SIMULATION

1130 EXTERN BOOL g_forceFailureMode; // flag to force failure mode during test

1131 #endif

1132

Trusted Platform Module Library Part 4: Supporting Routines

Page 124 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1133 typedef void(FailFunction)(const char *function, int line, int code);

1134 #if defined TPM_FAIL_C || defined GLOBAL_C

1135 EXTERN UINT32 s_failFunction;

1136 EXTERN UINT32 s_failLine; // the line in the file at which

1137 // the error was signaled

1138 EXTERN UINT32 s_failCode; // the error code used

1139

1140 EXTERN FailFunction *LibFailCallback;

1141

1142 #endif // TPM_FAIL_C

1143

1144 //***

1145 //*** From ACT_spt.c

1146 //***

1147 // This value is used to indicate if an ACT has been updated since the last

1148 // TPM2_Startup() (one bit for each ACT). If the ACT is not updated

1149 // (TPM2_ACT_SetTimeout()) after a startup, then on each TPM2_Shutdown() the TPM will

1150 // save 1/2 of the current timer value. This prevents an attack on the ACT by saving

1151 // the counter and then running for a long period of time before doing a TPM Restart.

1152 // A quick TPM2_Shutdown() after each

1153 EXTERN UINT16 s_ActUpdated;

1154

1155 //***

1156 //*** From CommandCodeAttributes.c

1157 //***

1158 // This array is instanced in CommandCodeAttributes.c when it includes

1159 // CommandCodeAttributes.h. Don't change the extern to EXTERN.

1160 extern const TPMA_CC s_ccAttr[];

1161 extern const COMMAND_ATTRIBUTES s_commandAttributes[];

1162

1163 #endif // GLOBAL_H

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.10 GpMacros.h

5.10.1 Introduction

This file is a collection of miscellaneous macros.

1 #ifndef GP_MACROS_H

2 #define GP_MACROS_H

3 #ifndef NULL

4 #define NULL 0

5 #endif

6 #include "swap.h"

7 #include "VendorString.h"

5.10.2 For Self-test

These macros are used in CryptUtil() to invoke the incremental self test.

8 #if SELF_TEST

9 # define TEST(alg) if(TEST_BIT(alg, g_toTest)) CryptTestAlgorithm(alg, NULL)

Use of TPM_ALG_NULL is reserved for RSAEP/RSADP testing. If someone is wanting to test a hash with

that value, don't do it.

10 # define TEST_HASH(alg) \

11 if(TEST_BIT(alg, g_toTest) \

12 && (alg != ALG_NULL_VALUE)) \

13 CryptTestAlgorithm(alg, NULL)

14 #else

15 # define TEST(alg)

16 # define TEST_HASH(alg)

17 #endif // SELF_TEST

5.10.3 For Failures

18 #if defined _POSIX_

19 # define FUNCTION_NAME 0

20 #else

21 # define FUNCTION_NAME __FUNCTION__

22 #endif

23 #if !FAIL_TRACE

24 # define FAIL(errorCode) (TpmFail(errorCode))

25 # define LOG_FAILURE(errorCode) (TpmLogFailure(errorCode))

26 #else

27 # define FAIL(errorCode) TpmFail(FUNCTION_NAME, __LINE__, errorCode)

28 # define LOG_FAILURE(errorCode) TpmLogFailure(FUNCTION_NAME, __LINE__, errorCode)

29 #endif

If implementation is using longjmp, then the call to TpmFail() does not return and the compiler will

complain about unreachable code that comes after. To allow for not having longjmp, TpmFail() will return

and the subsequent code will be executed. This macro accounts for the difference.

30 #ifndef NO_LONGJMP

31 # define FAIL_RETURN(returnCode)

32 # define TPM_FAIL_RETURN NORETURN void

33 #else

34 # define FAIL_RETURN(returnCode) return (returnCode)

35 # define TPM_FAIL_RETURN void

36 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 126 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

This macro tests that a condition is TRUE and puts the TPM into failure mode if it is not. If longjmp is

being used, then the FAIL(FATAL_ERROR_) macro makes a call from which there is no return.

Otherwise, it returns and the function will exit with the appropriate return code.

37 #define REQUIRE(condition, errorCode, returnCode) \

38 { \

39 if(!!(condition)) \

40 { \

41 FAIL(FATAL_ERROR_errorCode); \

42 FAIL_RETURN(returnCode); \

43 } \

44 }

45 #define PARAMETER_CHECK(condition, returnCode) \

46 REQUIRE((condition), PARAMETER, returnCode)

47 #if (defined EMPTY_ASSERT) && (EMPTY_ASSERT != NO)

48 # define pAssert(a) ((void)0)

49 #else

50 # define pAssert(a) {if(!(a)) FAIL(FATAL_ERROR_PARAMETER);}

51 #endif

5.10.4 Derived from Vendor-specific values

Values derived from vendor specific settings in TpmProfile.h

52 #define PCR_SELECT_MIN ((PLATFORM_PCR+7)/8)

53 #define PCR_SELECT_MAX ((IMPLEMENTATION_PCR+7)/8)

54 #define MAX_ORDERLY_COUNT ((1 << ORDERLY_BITS) - 1)

55 #define RSA_MAX_PRIME (MAX_RSA_KEY_BYTES / 2)

56 #define RSA_PRIVATE_SIZE (RSA_MAX_PRIME * 5)

5.10.5 Compile-time Checks

In some cases, the relationship between two values may be dependent on things that change based on

various selections like the chosen cryptographic libraries. It is possible that these selections will result in

incompatible settings. These are often detectable by the compiler but it isn't always possible to do the

check in the preprocessor code. For example, when the check requires use of sizeof then the

preprocessor can't do the comparison. For these cases, we include a special macro that, depending on

the compiler will generate a warning to indicate if the check always passes or always fails because it

involves fixed constants. To run these checks, define COMPILER_CHECKS in TpmBuildSwitches.h

57 #if COMPILER_CHECKS

58 # define cAssert pAssert

59 #else

60 # define cAssert(value)

61 #endif

This is used commonly in the Crypt code as a way to keep listings from getting too long. This is not to

save paper but to allow one to see more useful stuff on the screen at any given time.

62 #define ERROR_RETURN(returnCode) \

63 { \

64 retVal = returnCode; \

65 goto Exit; \

66 }

67 #ifndef MAX

68 # define MAX(a, b) ((a) > (b) ? (a) : (b))

69 #endif

70 #ifndef MIN

71 # define MIN(a, b) ((a) < (b) ? (a) : (b))

72 #endif

73 #ifndef IsOdd

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

74 # define IsOdd(a) (((a) & 1) != 0)

75 #endif

76 #ifndef BITS_TO_BYTES

77 # define BITS_TO_BYTES(bits) (((bits) + 7) >> 3)

78 #endif

These are defined for use when the size of the vector being checked is known at compile time.

79 #define TEST_BIT(bit, vector) TestBit((bit), (BYTE *)&(vector), sizeof(vector))

80 #define SET_BIT(bit, vector) SetBit((bit), (BYTE *)&(vector), sizeof(vector))

81 #define CLEAR_BIT(bit, vector) ClearBit((bit), (BYTE *)&(vector), sizeof(vector))

The following definitions are used if they have not already been defined. The defaults for these settings

are compatible with ISO/IEC 9899:2011 (E)

82 #ifndef LIB_EXPORT

83 # define LIB_EXPORT

84 # define LIB_IMPORT

85 #endif

86 #ifndef NORETURN

87 # define NORETURN _Noreturn

88 #endif

89 #ifndef NOT_REFERENCED

90 # define NOT_REFERENCED(x = x) ((void) (x))

91 #endif

92 #define STD_RESPONSE_HEADER (sizeof(TPM_ST) + sizeof(UINT32) + sizeof(TPM_RC))

93 #define JOIN(x, y) x##y

94 #define JOIN3(x, y, z) x##y##z

95 #define CONCAT(x, y) JOIN(x, y)

96 #define CONCAT3(x, y, z) JOIN3(x,y,z)

If CONTEXT_INTEGRITY_HASH_ALG is defined, then the vendor is using the old style table. Otherwise,

pick the strongest implemented hash algorithm as the context hash.

97 #ifndef CONTEXT_HASH_ALGORITHM

98 # if defined ALG_SHA512 && ALG_SHA512 == YES

99 # define CONTEXT_HASH_ALGORITHM SHA512

100 # elif defined ALG_SHA384 && ALG_SHA384 == YES

101 # define CONTEXT_HASH_ALGORITHM SHA384

102 # elif defined ALG_SHA256 && ALG_SHA256 == YES

103 # define CONTEXT_HASH_ALGORITHM SHA256

104 # elif defined ALG_SM3_256 && ALG_SM3_256 == YES

105 # define CONTEXT_HASH_ALGORITHM SM3_256

106 # elif defined ALG_SHA1 && ALG_SHA1 == YES

107 # define CONTEXT_HASH_ALGORITHM SHA1

108 # endif

109 # define CONTEXT_INTEGRITY_HASH_ALG CONCAT(TPM_ALG_, CONTEXT_HASH_ALGORITHM)

110 #endif

111 #ifndef CONTEXT_INTEGRITY_HASH_SIZE

112 #define CONTEXT_INTEGRITY_HASH_SIZE CONCAT(CONTEXT_HASH_ALGORITHM, _DIGEST_SIZE)

113 #endif

114 #if ALG_RSA

115 #define RSA_SECURITY_STRENGTH (MAX_RSA_KEY_BITS >= 15360 ? 256 : \

116 (MAX_RSA_KEY_BITS >= 7680 ? 192 : \

117 (MAX_RSA_KEY_BITS >= 3072 ? 128 : \

118 (MAX_RSA_KEY_BITS >= 2048 ? 112 : \

119 (MAX_RSA_KEY_BITS >= 1024 ? 80 : 0)))))

120 #else

121 #define RSA_SECURITY_STRENGTH 0

122 #endif // ALG_RSA

123 #if ALG_ECC

124 #define ECC_SECURITY_STRENGTH (MAX_ECC_KEY_BITS >= 521 ? 256 : \

125 (MAX_ECC_KEY_BITS >= 384 ? 192 : \

126 (MAX_ECC_KEY_BITS >= 256 ? 128 : 0)))

Trusted Platform Module Library Part 4: Supporting Routines

Page 128 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

127 #else

128 #define ECC_SECURITY_STRENGTH 0

129 #endif // ALG_ECC

130 #define MAX_ASYM_SECURITY_STRENGTH \

131 MAX(RSA_SECURITY_STRENGTH, ECC_SECURITY_STRENGTH)

132 #define MAX_HASH_SECURITY_STRENGTH ((CONTEXT_INTEGRITY_HASH_SIZE * 8) / 2)

Unless some algorithm is broken...

133 #define MAX_SYM_SECURITY_STRENGTH MAX_SYM_KEY_BITS

134 #define MAX_SECURITY_STRENGTH_BITS \

135 MAX(MAX_ASYM_SECURITY_STRENGTH, \

136 MAX(MAX_SYM_SECURITY_STRENGTH, \

137 MAX_HASH_SECURITY_STRENGTH))

This is the size that was used before the 1.38 errata requiring that P1.14.4 be followed

138 #define PROOF_SIZE CONTEXT_INTEGRITY_HASH_SIZE

As required by P1.14.4

139 #define COMPLIANT_PROOF_SIZE \

140 (MAX(CONTEXT_INTEGRITY_HASH_SIZE, (2 * MAX_SYM_KEY_BYTES)))

As required by P1.14.3.1

141 #define COMPLIANT_PRIMARY_SEED_SIZE \

142 BITS_TO_BYTES(MAX_SECURITY_STRENGTH_BITS * 2)

This is the pre-errata version

143 #ifndef PRIMARY_SEED_SIZE

144 # define PRIMARY_SEED_SIZE PROOF_SIZE

145 #endif

146 #if USE_SPEC_COMPLIANT_PROOFS

147 # undef PROOF_SIZE

148 # define PROOF_SIZE COMPLIANT_PROOF_SIZE

149 # undef PRIMARY_SEED_SIZE

150 # define PRIMARY_SEED_SIZE COMPLIANT_PRIMARY_SEED_SIZE

151 #endif // USE_SPEC_COMPLIANT_PROOFS

152 #if !SKIP_PROOF_ERRORS

153 # if PROOF_SIZE < COMPLIANT_PROOF_SIZE

154 # error "PROOF_SIZE is not compliant with TPM specification"

155 # endif

156 # if PRIMARY_SEED_SIZE < COMPLIANT_PRIMARY_SEED_SIZE

157 # error Non-compliant PRIMARY_SEED_SIZE

158 # endif

159 #endif // !SKIP_PROOF_ERRORS

If CONTEXT_ENCRYPT_ALG is defined, then the vendor is using the old style table

160 #if defined CONTEXT_ENCRYPT_ALG

161 # undef CONTEXT_ENCRYPT_ALGORITHM

162 # if CONTEXT_ENCRYPT_ALG == ALG_AES_VALUE

163 # define CONTEXT_ENCRYPT_ALGORITHM AES

164 # elif CONTEXT_ENCRYPT_ALG == ALG_SM4_VALUE

165 # define CONTEXT_ENCRYPT_ALGORITHM SM4

166 # elif CONTEXT_ENCRYPT_ALG == ALG_CAMELLIA_VALUE

167 # define CONTEXT_ENCRYPT_ALGORITHM CAMELLIA

168 # elif CONTEXT_ENCRYPT_ALG == ALG_TDES_VALUE

169 # error Are you kidding?

170 # else

171 # error Unknown value for CONTEXT_ENCRYPT_ALG

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

172 # endif // CONTEXT_ENCRYPT_ALG == ALG_AES_VALUE

173 #else

174 # define CONTEXT_ENCRYPT_ALG \

175 CONCAT3(ALG_, CONTEXT_ENCRYPT_ALGORITHM, _VALUE)

176 #endif // CONTEXT_ENCRYPT_ALG

177 #define CONTEXT_ENCRYPT_KEY_BITS \

178 CONCAT(CONTEXT_ENCRYPT_ALGORITHM, _MAX_KEY_SIZE_BITS)

179 #define CONTEXT_ENCRYPT_KEY_BYTES ((CONTEXT_ENCRYPT_KEY_BITS+7)/8)

This is updated to follow the requirement of P2 that the label not be larger than 32 bytes.

180 #ifndef LABEL_MAX_BUFFER

181 #define LABEL_MAX_BUFFER MIN(32, MAX(MAX_ECC_KEY_BYTES, MAX_DIGEST_SIZE))

182 #endif

This bit is used to indicate that an authorization ticket expires on TPM Reset and TPM Restart. It is added

to the timeout value returned by TPM2_PoliySigned() and TPM2_PolicySecret() and used by

TPM2_PolicyTicket(). The timeout value is relative to Time (g_time). Time is reset whenever the TPM

loses power and cannot be moved forward by the user (as can Clock). g_time is a 64-bit value expressing

time in ms. Stealing the MSb for a flag means that the TPM needs to be reset at least once every

292,471,208 years rather than once every 584,942,417 years.

183 #define EXPIRATION_BIT ((UINT64)1 << 63)

Check for consistency of the bit ordering of bit fields

184 #if BIG_ENDIAN_TPM && MOST_SIGNIFICANT_BIT_0 && USE_BIT_FIELD_STRUCTURES

185 # error "Settings not consistent"

186 #endif

These macros are used to handle the variation in handling of bit fields. If

187 #if USE_BIT_FIELD_STRUCTURES // The default, old version, with bit fields

188 # define IS_ATTRIBUTE(a, type, b) ((a.b) != 0)

189 # define SET_ATTRIBUTE(a, type, b) (a.b = SET)

190 # define CLEAR_ATTRIBUTE(a, type, b) (a.b = CLEAR)

191 # define GET_ATTRIBUTE(a, type, b) (a.b)

192 # define TPMA_ZERO_INITIALIZER() {0}

193 #else

194 # define IS_ATTRIBUTE(a, type, b) ((a & type##_##b) != 0)

195 # define SET_ATTRIBUTE(a, type, b) (a |= type##_##b)

196 # define CLEAR_ATTRIBUTE(a, type, b) (a &= ~type##_##b)

197 # define GET_ATTRIBUTE(a, type, b) \

198 (type)((a & type##_##b) >> type##_##b##_SHIFT)

199 # define TPMA_ZERO_INITIALIZER() (0)

200 #endif

201 #define VERIFY(_X) if(!(_X)) goto Error

These macros determine if the values in this file are referenced or instanced. Global.c defines

GLOBAL_C so all the values in this file will be instanced in Global.obj. For all other files that include this

file, the values will simply be external references. For constants, there can be an initializer.

202 #ifdef GLOBAL_C

203 #define EXTERN

204 #define INITIALIZER(_value_) = _value_

205 #else

206 #define EXTERN extern

207 #define INITIALIZER(_value_)

208 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 130 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

This macro will create an OID. All OIDs are in DER form with a first octet of 0x06 indicating an OID

fallowed by an octet indicating the number of octets in the rest of the OID. This allows a user of this OID

to know how much/little to copy.

209 #define MAKE_OID(NAME) \

210 EXTERN const BYTE OID##NAME[] INITIALIZER({OID##NAME##_VALUE})

This definition is moved from TpmProfile.h because it is not actually vendor- specific. It has to be the

same size as the sequence parameter of a TPMS_CONTEXT and that is a UINT64. So, this is an

invariant value

211 #define CONTEXT_COUNTER UINT64

212 #endif // GP_MACROS_H

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.11 InternalRoutines.h

1 #ifndef INTERNAL_ROUTINES_H

2 #define INTERNAL_ROUTINES_H

3 #if !defined _LIB_SUPPORT_H_ && !defined _TPM_H_

4 #error "Should not be called"

5 #endif

DRTM functions

6 #include "_TPM_Hash_Start_fp.h"

7 #include "_TPM_Hash_Data_fp.h"

8 #include "_TPM_Hash_End_fp.h"

Internal subsystem functions

9 #include "Object_fp.h"

10 #include "Context_spt_fp.h"

11 #include "Object_spt_fp.h"

12 #include "Entity_fp.h"

13 #include "Session_fp.h"

14 #include "Hierarchy_fp.h"

15 #include "NvReserved_fp.h"

16 #include "NvDynamic_fp.h"

17 #include "NV_spt_fp.h"

18 #include "ACT_spt_fp.h"

19 #include "PCR_fp.h"

20 #include "DA_fp.h"

21 #include "TpmFail_fp.h"

22 #include "SessionProcess_fp.h"

Internal support functions

23 #include "CommandCodeAttributes_fp.h"

24 #include "Marshal.h"

25 #include "Time_fp.h"

26 #include "Locality_fp.h"

27 #include "PP_fp.h"

28 #include "CommandAudit_fp.h"

29 #include "Manufacture_fp.h"

30 #include "Handle_fp.h"

31 #include "Power_fp.h"

32 #include "Response_fp.h"

33 #include "CommandDispatcher_fp.h"

34 #ifdef CC_AC_Send

35 # include "AC_spt_fp.h"

36 #endif // CC_AC_Send

Miscellaneous

37 #include "Bits_fp.h"

38 #include "AlgorithmCap_fp.h"

39 #include "PropertyCap_fp.h"

40 #include "IoBuffers_fp.h"

41 #include "Memory_fp.h"

42 #include "ResponseCodeProcessing_fp.h"

Internal cryptographic functions

43 #include "BnConvert_fp.h"

44 #include "BnMath_fp.h"

45 #include "BnMemory_fp.h"

Trusted Platform Module Library Part 4: Supporting Routines

Page 132 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

46 #include "Ticket_fp.h"

47 #include "CryptUtil_fp.h"

48 #include "CryptHash_fp.h"

49 #include "CryptSym_fp.h"

50 #include "CryptDes_fp.h"

51 #include "CryptPrime_fp.h"

52 #include "CryptRand_fp.h"

53 #include "CryptSelfTest_fp.h"

54 #include "MathOnByteBuffers_fp.h"

55 #include "CryptSym_fp.h"

56 #include "AlgorithmTests_fp.h"

57 #if ALG_RSA

58 #include "CryptRsa_fp.h"

59 #include "CryptPrimeSieve_fp.h"

60 #endif

61 #if ALG_ECC

62 #include "CryptEccMain_fp.h"

63 #include "CryptEccSignature_fp.h"

64 #include "CryptEccKeyExchange_fp.h"

65 #endif

66 #if CC_MAC || CC_MAC_Start

67 # include "CryptSmac_fp.h"

68 # if ALG_CMAC

69 # include "CryptCmac_fp.h"

70 # endif

71 #endif

Support library

72 #include "SupportLibraryFunctionPrototypes_fp.h"

Linkage to platform functions

73 #include "Platform_fp.h"

74 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.12 LibSupport.h

This header file is used to select the library code that gets included in the TPM build.

1 #ifndef _LIB_SUPPORT_H_

2 #define _LIB_SUPPORT_H_

3 #ifndef RADIX_BITS

4 # if defined(__x86_64__) || defined(__x86_64)

\

5 || defined(__amd64__) || defined(__amd64) || defined(_WIN64) ||

defined(_M_X64) \

6 || defined(_M_ARM64) || defined(__aarch64__)

7 # define RADIX_BITS 64

8 # elif defined(__i386__) || defined(__i386) || defined(i386)

\

9 || defined(_WIN32) || defined(_M_IX86)

\

10 || defined(_M_ARM) || defined(__arm__) || defined(__thumb__)

11 # define RADIX_BITS 32

12 # else

13 # error Unable to determine RADIX_BITS from compiler environment

14 # endif

15 #endif // RADIX_BITS

These macros use the selected libraries to the proper include files.

16 #define LIB_QUOTE(_STRING_) #_STRING_

17 #define LIB_INCLUDE2(_LIB_, _TYPE_) LIB_QUOTE(_LIB_/TpmTo##_LIB_##_TYPE_.h)

18 #define LIB_INCLUDE(_LIB_, _TYPE_) LIB_INCLUDE2(_LIB_, _TYPE_)

Include the options for hashing and symmetric. Defer the load of the math package Until the bignum

parameters are defined.

19 #include LIB_INCLUDE(SYM_LIB, Sym)

20 #include LIB_INCLUDE(HASH_LIB, Hash)

21 #undef MIN

22 #undef MAX

23 #endif // _LIB_SUPPORT_H_

5.13 MinMax.h

1 #ifndef _MIN_MAX_H_

2 #define _MIN_MAX_H_

3 #ifndef MAX

4 #define MAX(a, b) ((a) > (b) ? (a) : (b))

5 #endif

6 #ifndef MIN

7 #define MIN(a, b) ((a) < (b) ? (a) : (b))

8 #endif

9 #endif // _MIN_MAX_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 134 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.14 NV.h

5.14.1 Index Type Definitions

These definitions allow the same code to be used pre and post 1.21. The main action is to redefine the

index type values from the bit values. Use TPM_NT_ORDINARY to indicate if the TPM_NT type is

defined

1 #ifndef _NV_H_

2 #define _NV_H_

3 #ifdef TPM_NT_ORDINARY

If TPM_NT_ORDINARY is defined, then the TPM_NT field is present in a TPMA_NV

4 # define GET_TPM_NT(attributes) GET_ATTRIBUTE(attributes, TPMA_NV, TPM_NT)

5 #else

If TPM_NT_ORDINARY is not defined, then need to synthesize it from the attributes

6 # define GetNv_TPM_NV(attributes) \

7 (IS_ATTRIBUTE(attributes, TPMA_NV, COUNTER) \

8 + (IS_ATTRIBUTE(attributes, TPMA_NV, BITS) << 1) \

9 + (IS_ATTRIBUTE(attributes, TPMA_NV, EXTEND) << 2) \

10)

11 # define TPM_NT_ORDINARY (0)

12 # define TPM_NT_COUNTER (1)

13 # define TPM_NT_BITS (2)

14 # define TPM_NT_EXTEND (4)

15 #endif

5.14.2 Attribute Macros

These macros are used to isolate the differences in the way that the index type changed in version 1.21

of the specification

16 # define IsNvOrdinaryIndex(attributes) \

17 (GET_TPM_NT(attributes) == TPM_NT_ORDINARY)

18 # define IsNvCounterIndex(attributes) \

19 (GET_TPM_NT(attributes) == TPM_NT_COUNTER)

20 # define IsNvBitsIndex(attributes) \

21 (GET_TPM_NT(attributes) == TPM_NT_BITS)

22 # define IsNvExtendIndex(attributes) \

23 (GET_TPM_NT(attributes) == TPM_NT_EXTEND)

24 #ifdef TPM_NT_PIN_PASS

25 # define IsNvPinPassIndex(attributes) \

26 (GET_TPM_NT(attributes) == TPM_NT_PIN_PASS)

27 #endif

28 #ifdef TPM_NT_PIN_FAIL

29 # define IsNvPinFailIndex(attributes) \

30 (GET_TPM_NT(attributes) == TPM_NT_PIN_FAIL)

31 #endif

32 typedef struct {

33 UINT32 size;

34 TPM_HANDLE handle;

35 } NV_ENTRY_HEADER;

36 #define NV_EVICT_OBJECT_SIZE \

37 (sizeof(UINT32) + sizeof(TPM_HANDLE) + sizeof(OBJECT))

38 #define NV_INDEX_COUNTER_SIZE \

39 (sizeof(UINT32) + sizeof(NV_INDEX) + sizeof(UINT64))

40 #define NV_RAM_INDEX_COUNTER_SIZE \

41 (sizeof(NV_RAM_HEADER) + sizeof(UINT64))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

42 typedef struct {

43 UINT32 size;

44 TPM_HANDLE handle;

45 TPMA_NV attributes;

46 } NV_RAM_HEADER;

Defines the end-of-list marker for NV. The list terminator is a UINT32 of zero, followed by the current

value of s_maxCounter which is a 64-bit value. The structure is defined as an array of 3 UINT32 values

so that there is no padding between the UINT32 list end marker and the UINT64 maxCounter value.

47 typedef UINT32 NV_LIST_TERMINATOR[3];

5.14.3 Orderly RAM Values

The following defines are for accessing orderly RAM values. This is the initialize for the RAM reference

iterator.

48 #define NV_RAM_REF_INIT 0

This is the starting address of the RAM space used for orderly data

49 #define RAM_ORDERLY_START \

50 (&s_indexOrderlyRam[0])

This is the offset within NV that is used to save the orderly data on an orderly shutdown.

51 #define NV_ORDERLY_START \

52 (NV_INDEX_RAM_DATA)

This is the end of the orderly RAM space. It is actually the first byte after the last byte of orderly RAM data

53 #define RAM_ORDERLY_END \

54 (RAM_ORDERLY_START + sizeof(s_indexOrderlyRam))

This is the end of the orderly space in NV memory. As with RAM_ORDERLY_END, it is actually the offset

of the first byte after the end of the NV orderly data.

55 #define NV_ORDERLY_END \

56 (NV_ORDERLY_START + sizeof(s_indexOrderlyRam))

Macro to check that an orderly RAM address is with range.

57 #define ORDERLY_RAM_ADDRESS_OK(start, offset) \

58 ((start >= RAM_ORDERLY_START) && ((start + offset - 1) < RAM_ORDERLY_END))

59 #define RETURN_IF_NV_IS_NOT_AVAILABLE \

60 { \

61 if(g_NvStatus != TPM_RC_SUCCESS) \

62 return g_NvStatus; \

63 }

Routinely have to clear the orderly flag and fail if the NV is not available so that it can be cleared.

64 #define RETURN_IF_ORDERLY \

65 { \

66 if(NvClearOrderly() != TPM_RC_SUCCESS) \

67 return g_NvStatus; \

68 }

69 #define NV_IS_AVAILABLE (g_NvStatus == TPM_RC_SUCCESS)

70 #define IS_ORDERLY(value) (value < SU_DA_USED_VALUE)

71 #define NV_IS_ORDERLY (IS_ORDERLY(gp.orderlyState))

Trusted Platform Module Library Part 4: Supporting Routines

Page 136 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Macro to set the NV UPDATE_TYPE. This deals with the fact that the update is possibly a combination of

UT_NV and UT_ORDERLY.

72 #define SET_NV_UPDATE(type) g_updateNV |= (type)

73 #endif // _NV_H_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.15 TPMB.h

This file contains extra TPM2B structures

1 #ifndef _TPMB_H

2 #define _TPMB_H

TPM2B Types

3 typedef struct {

4 UINT16 size;

5 BYTE buffer[1];

6 } TPM2B, *P2B;

7 typedef const TPM2B *PC2B;

This macro helps avoid having to type in the structure in order to create a new TPM2B type that is used in

a function.

8 #define TPM2B_TYPE(name, bytes) \

9 typedef union { \

10 struct { \

11 UINT16 size; \

12 BYTE buffer[(bytes)]; \

13 } t; \

14 TPM2B b; \

15 } TPM2B_##name

This macro defines a TPM2B with a constant character value. This macro sets the size of the string to the

size minus the terminating zero byte. This lets the user of the label add their terminating 0. This method is

chosen so that existing code that provides a label will continue to work correctly. Macro to instance and

initialize a TPM2B value

16 #define TPM2B_INIT(TYPE, name) \

17 TPM2B_##TYPE name = {sizeof(name.t.buffer), {0}}

18 #define TPM2B_BYTE_VALUE(bytes) TPM2B_TYPE(bytes##_BYTE_VALUE, bytes)

19 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 138 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.16 Tpm.h

Root header file for building any TPM.lib code

1 #ifndef _TPM_H_

2 #define _TPM_H_

3 #include "TpmBuildSwitches.h"

4 #include "BaseTypes.h"

5 #include "TPMB.h"

6 #include "MinMax.h"

7 #include "TpmProfile.h"

8 #include "TpmAlgorithmDefines.h"

9 #include "LibSupport.h" // Types from the library. These need to come before

10 // Global.h because some of the structures in

11 // that file depend on the structures used by the

12 // cryptographic libraries.

13 #include "GpMacros.h" // Define additional macros

14 #include "Global.h" // Define other TPM types

15 #include "InternalRoutines.h" // Function prototypes

16 #endif // _TPM_H_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.17 TpmBuildSwitches.h

This file contains the build switches. This contains switches for multiple versions of the crypto-library so

some may not apply to your environment.

The switches are guarded so that they can either be set on the command line or set here. If the switch is

listed on the command line (-DSOME_SWITCH) with NO setting, then the switch will be set to YES. If the

switch setting is not on the command line or if the setting is other than YES or NO, then the switch will be

set to the default value. The default can either be YES or NO as indicated on each line where the default

is selected.

A caution. Do not try to test these macros by inserting #defines in this file. For some curious reason, a

variable set on the command line with no setting will have a value of 1. An #if SOME_VARIABLE will work

if the variable is not defined or is defined on the command line with no initial setting. However, a "#define

SOME_VARIABLE" is a null string and when used in "#if SOME_VARIABLE" will not be a proper

expression If you want to test various switches, either use the command line or change the default.

1 #ifndef _TPM_BUILD_SWITCHES_H_

2 #define _TPM_BUILD_SWITCHES_H_

3 #undef YES

4 #define YES 1

5 #undef NO

6 #define NO 0

Allow the command line to specify a profile file

7 #ifdef PROFILE

8 # define PROFILE_QUOTE(a) #a

9 # define PROFILE_INCLUDE(a) PROFILE_QUOTE(a)

10 # include PROFILE_INCLUDE(PROFILE)

11 #endif

Need an unambiguous definition for DEBUG. Don't change this

12 #ifndef DEBUG

13 # ifdef NDEBUG

14 # define DEBUG NO

15 # else

16 # define DEBUG YES

17 # endif

18 #elif (DEBUG != NO) && (DEBUG != YES)

19 # undef DEBUG

20 # define DEBUG YES // Default: Either YES or NO

21 #endif

22 #include "CompilerDependencies.h"

This definition is required for the re-factored code

23 #if (!defined USE_BN_ECC_DATA) \

24 || ((USE_BN_ECC_DATA != NO) && (USE_BN_ECC_DATA != YES))

25 # undef USE_BN_ECC_DATA

26 # define USE_BN_ECC_DATA YES // Default: Either YES or NO

27 #endif

The SIMULATION switch allows certain other macros to be enabled. The things that can be enabled in a

simulation include key caching, reproducible random sequences, instrumentation of the RSA key

generation process, and certain other debug code. SIMULATION Needs to be defined as either YES or

NO. This grouping of macros will make sure that it is set correctly. A simulated TPM would include a

Virtual TPM. The interfaces for a Virtual TPM should be modified from the standard ones in the Simulator

project.

Trusted Platform Module Library Part 4: Supporting Routines

Page 140 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

If SIMULATION is in the compile parameters without modifiers, make SIMULATION == YES

28 #if !(defined SIMULATION) || ((SIMULATION != NO) && (SIMULATION != YES))

29 # undef SIMULATION

30 # define SIMULATION YES // Default: Either YES or NO

31 #endif

Define this to run the function that checks the compatibility between the chosen big number math library

and the TPM code. Not all ports use this.

32 #if !(defined LIBRARY_COMPATIBILITY_CHECK) \

33 || ((LIBRARY_COMPATIBILITY_CHECK != NO) \

34 && (LIBRARY_COMPATIBILITY_CHECK != YES))

35 # undef LIBRARY_COMPATIBILITY_CHECK

36 # define LIBRARY_COMPATIBILITY_CHECK YES // Default: Either YES or NO

37 #endif

38 #if !(defined FIPS_COMPLIANT) || ((FIPS_COMPLIANT != NO) && (FIPS_COMPLIANT != YES))

39 # undef FIPS_COMPLIANT

40 # define FIPS_COMPLIANT YES // Default: Either YES or NO

41 #endif

Definition to allow alternate behavior for non-orderly startup. If there is a chance that the TPM could not

update failedTries

42 #if !(defined USE_DA_USED) || ((USE_DA_USED != NO) && (USE_DA_USED != YES))

43 # undef USE_DA_USED

44 # define USE_DA_USED YES // Default: Either YES or NO

45 #endif

Define TABLE_DRIVEN_DISPATCH to use tables rather than case statements for command dispatch

and handle unmarshaling

46 #if !(defined TABLE_DRIVEN_DISPATCH) \

47 || ((TABLE_DRIVEN_DISPATCH != NO) && (TABLE_DRIVEN_DISPATCH != YES))

48 # undef TABLE_DRIVEN_DISPATCH

49 # define TABLE_DRIVEN_DISPATCH YES // Default: Either YES or NO

50 #endif

This switch is used to enable the self-test capability in AlgorithmTests.c

51 #if !(defined SELF_TEST) || ((SELF_TEST != NO) && (SELF_TEST != YES))

52 # undef SELF_TEST

53 # define SELF_TEST YES // Default: Either YES or NO

54 #endif

Enable the generation of RSA primes using a sieve.

55 #if !(defined RSA_KEY_SIEVE) || ((RSA_KEY_SIEVE != NO) && (RSA_KEY_SIEVE != YES))

56 # undef RSA_KEY_SIEVE

57 # define RSA_KEY_SIEVE YES // Default: Either YES or NO

58 #endif

Enable the instrumentation of the sieve process. This is used to tune the sieve variables.

59 #if RSA_KEY_SIEVE && SIMULATION

60 # if !(defined RSA_INSTRUMENT) \

61 || ((RSA_INSTRUMENT != NO) && (RSA_INSTRUMENT != YES))

62 # undef RSA_INSTRUMENT

63 # define RSA_INSTRUMENT NO // Default: Either YES or NO

64 # endif

65 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 141

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

This switch enables the RNG state save and restore

66 #if !(defined _DRBG_STATE_SAVE) \

67 || ((_DRBG_STATE_SAVE != NO) && (_DRBG_STATE_SAVE != YES))

68 # undef _DRBG_STATE_SAVE

69 # define _DRBG_STATE_SAVE YES // Default: Either YES or NO

70 #endif

Switch added to support packed lists that leave out space associated with unimplemented commands.

Comment this out to use linear lists.

NOTE: if vendor specific commands are present, the associated list is always in compressed form.

71 #if !(defined COMPRESSED_LISTS) \

72 || ((COMPRESSED_LISTS != NO) && (COMPRESSED_LISTS != YES))

73 # undef COMPRESSED_LISTS

74 # define COMPRESSED_LISTS YES // Default: Either YES or NO

75 #endif

This switch indicates where clock epoch value should be stored. If this value defined, then it is assumed

that the timer will change at any time so the nonce should be a random number kept in RAM. When it is

not defined, then the timer only stops during power outages.

76 #if !(defined CLOCK_STOPS) || ((CLOCK_STOPS != NO) && (CLOCK_STOPS != YES))

77 # undef CLOCK_STOPS

78 # define CLOCK_STOPS NO // Default: Either YES or NO

79 #endif

This switch allows use of #defines in place of pass-through marshaling or unmarshaling code. A pass-

through function just calls another function to do the required function and does no parameter checking of

its own. The table-driven dispatcher calls directly to the lowest level marshaling/unmarshaling code and

by-passes any pass-through functions.

80 #if (defined USE_MARSHALING_DEFINES) && (USE_MARSHALING_DEFINES != NO)

81 # undef USE_MARSHALING_DEFINES

82 # define USE_MARSHALING_DEFINES YES

83 #else

84 # define USE_MARSHALING_DEFINES YES // Default: Either YES or NO

85 #endif

The switches in this group can only be enabled when doing debug during simulation

86 #if SIMULATION && DEBUG

This forces the use of a smaller context slot size. This reduction reduces the range of the epoch allowing

the tester to force the epoch to occur faster than the normal defined in TpmProfile.h

87 # if !(defined CONTEXT_SLOT)

88 # define CONTEXT_SLOT UINT8

89 # endif

Enables use of the key cache. Default is YES

90 # if !(defined USE_RSA_KEY_CACHE) \

91 || ((USE_RSA_KEY_CACHE != NO) && (USE_RSA_KEY_CACHE != YES))

92 # undef USE_RSA_KEY_CACHE

93 # define USE_RSA_KEY_CACHE YES // Default: Either YES or NO

94 # endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 142 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Enables use of a file to store the key cache values so that the TPM will start faster during debug. Default

for this is YES

95 # if USE_RSA_KEY_CACHE

96 # if !(defined USE_KEY_CACHE_FILE) \

97 || ((USE_KEY_CACHE_FILE != NO) && (USE_KEY_CACHE_FILE != YES))

98 # undef USE_KEY_CACHE_FILE

99 # define USE_KEY_CACHE_FILE YES // Default: Either YES or NO

100 # endif

101 # else

102 # undef USE_KEY_CACHE_FILE

103 # define USE_KEY_CACHE_FILE NO

104 # endif // USE_RSA_KEY_CACHE

This provides fixed seeding of the RNG when doing debug on a simulator. This should allow consistent

results on test runs as long as the input parameters to the functions remains the same. There is no

default value.

105 # if !(defined USE_DEBUG_RNG) || ((USE_DEBUG_RNG != NO) && (USE_DEBUG_RNG != YES))

106 # undef USE_DEBUG_RNG

107 # define USE_DEBUG_RNG YES // Default: Either YES or NO

108 # endif

Don't change these. They are the settings needed when not doing a simulation and not doing debug.

Can't use the key cache except during debug. Otherwise, all of the key values end up being the same

109 #else

110 # define USE_RSA_KEY_CACHE NO

111 # define USE_RSA_KEY_CACHE_FILE NO

112 # define USE_DEBUG_RNG NO

113 #endif // DEBUG && SIMULATION

114 #if DEBUG

In some cases, the relationship between two values may be dependent on things that change based on

various selections like the chosen cryptographic libraries. It is possible that these selections will result in

incompatible settings. These are often detectable by the compiler but it isn't always possible to do the

check in the preprocessor code. For example, when the check requires use of 'sizeof()' then the

preprocessor can't do the comparison. For these cases, we include a special macro that, depending on

the compiler will generate a warning to indicate if the check always passes or always fails because it

involves fixed constants. To run these checks, define COMPILER_CHECKS.

115 # if !(defined COMPILER_CHECKS) \

116 || ((COMPILER_CHECKS != NO) && (COMPILER_CHECKS != YES))

117 # undef COMPILER_CHECKS

118 # define COMPILER_CHECKS NO // Default: Either YES or NO

119 # endif

Some of the values (such as sizes) are the result of different options set in TpmProfile.h. The combination

might not be consistent. A function is defined (TpmSizeChecks()) that is used to verify the sizes at run

time. To enable the function, define this parameter.

120 # if !(defined RUNTIME_SIZE_CHECKS) \

121 || ((RUNTIME_SIZE_CHECKS != NO) && (RUNTIME_SIZE_CHECKS != YES))

122 # undef RUNTIME_SIZE_CHECKS

123 # define RUNTIME_SIZE_CHECKS YES // Default: Either YES or NO

124 # endif

If doing debug, can set the DRBG to print out the intermediate test values. Before enabling this, make

sure that the dbgDumpMemBlock() function has been added someplace (preferably, somewhere in

CryptRand.c)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 143

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

125 # if !(defined DRBG_DEBUG_PRINT) \

126 || ((DRBG_DEBUG_PRINT != NO) && (DRBG_DEBUG_PRINT != YES))

127 # undef DRBG_DEBUG_PRINT

128 # define DRBG_DEBUG_PRINT NO // Default: Either YES or NO

129 # endif

If an assertion event it not going to produce any trace information (function and line number) then make

FAIL_TRACE == NO

130 # if !(defined FAIL_TRACE) || ((FAIL_TRACE != NO) && (FAIL_TRACE != YES))

131 # undef FAIL_TRACE

132 # define FAIL_TRACE YES // Default: Either YES or NO

133 # endif

134 #endif // DEBUG

Indicate if the implementation is going to give lockout time credit for time up to the last orderly shutdown.

135 #if !(defined ACCUMULATE_SELF_HEAL_TIMER) \

136 || ((ACCUMULATE_SELF_HEAL_TIMER != NO) && (ACCUMULATE_SELF_HEAL_TIMER != YES))

137 # undef ACCUMULATE_SELF_HEAL_TIMER

138 # define ACCUMULATE_SELF_HEAL_TIMER YES // Default: Either YES or NO

139 #endif

Indicates if the implementation is to compute the sizes of the proof and primary seed size values based

on the implemented algorithms.

140 #if !(defined USE_SPEC_COMPLIANT_PROOFS) \

141 || ((USE_SPEC_COMPLIANT_PROOFS != NO) && (USE_SPEC_COMPLIANT_PROOFS != YES))

142 # undef USE_SPEC_COMPLIANT_PROOFS

143 # define USE_SPEC_COMPLIANT_PROOFS YES // Default: Either YES or NO

144 #endif

Comment this out to allow compile to continue even though the chosen proof values do not match the

compliant values. This is written so that someone would have to proactively ignore errors.

145 #if !(defined SKIP_PROOF_ERRORS) \

146 || ((SKIP_PROOF_ERRORS != NO) && (SKIP_PROOF_ERRORS != YES))

147 # undef SKIP_PROOF_ERRORS

148 # define SKIP_PROOF_ERRORS NO // Default: Either YES or NO

149 #endif

This define is used to eliminate the use of bit-fields. It can be enabled for big- or little-endian machines.

For big-endian architectures that numbers bits in registers from left to right (MSb0) this must be enabled.

Little-endian machines number from right to left with the least significant bit having assigned a bit number

of 0. These are LSb0 machines (they are also little-endian so they are also least-significant byte 0 (LSB0)

machines. Big-endian (MSB0) machines may number in either direction (MSb0 or LSb0). For an

MSB0+MSb0 machine this value is required to be NO

150 #if !(defined USE_BIT_FIELD_STRUCTURES) \

151 || ((USE_BIT_FIELD_STRUCTURES != NO) && (USE_BIT_FIELD_STRUCTURES != YES))

152 # undef USE_BIT_FIELD_STRUCTURES

153 # define USE_BIT_FIELD_STRUCTURES DEBUG // Default: Either YES or NO

154 #endif

This define is used to control the debug for the CertifyX509() command.

155 #if !(defined CERTIFYX509_DEBUG) \

156 || ((CERTIFYX509_DEBUG != NO) && (CERTIFYX509_DEBUG != YES))

157 # undef CERTIFYX509_DEBUG

158 # define CERTIFYX509_DEBUG YES // Default: Either YES or NO

159 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 144 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

This define is used to enable the new table-driven marshaling code.

160 #if !(defined TABLE_DRIVEN_MARSHAL) \

161 || ((TABLE_DRIVEN_MARSHAL != NO) && (TABLE_DRIVEN_MARSHAL != YES))

162 # undef TABLE_DRIVEN_MARSHAL

163 # define TABLE_DRIVEN_MARSHAL YES // Default: Either YES or NO

164 #endif

Change these definitions to turn all algorithms or commands ON or OFF. That is, to turn all algorithms on,

set ALG_NO to YES. This is mostly useful as a debug feature.

165 #define ALG_YES YES

166 #define ALG_NO NO

167 #define CC_YES YES

168 #define CC_NO NO

169 #endif // _TPM_BUILD_SWITCHES_H_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 145

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.18 TpmError.h

1 #ifndef _TPM_ERROR_H

2 #define _TPM_ERROR_H

3 #define FATAL_ERROR_ALLOCATION (1)

4 #define FATAL_ERROR_DIVIDE_ZERO (2)

5 #define FATAL_ERROR_INTERNAL (3)

6 #define FATAL_ERROR_PARAMETER (4)

7 #define FATAL_ERROR_ENTROPY (5)

8 #define FATAL_ERROR_SELF_TEST (6)

9 #define FATAL_ERROR_CRYPTO (7)

10 #define FATAL_ERROR_NV_UNRECOVERABLE (8)

11 #define FATAL_ERROR_REMANUFACTURED (9) // indicates that the TPM has

12 // been re-manufactured after an

13 // unrecoverable NV error

14 #define FATAL_ERROR_DRBG (10)

15 #define FATAL_ERROR_MOVE_SIZE (11)

16 #define FATAL_ERROR_COUNTER_OVERFLOW (12)

17 #define FATAL_ERROR_SUBTRACT (13)

18 #define FATAL_ERROR_MATHLIBRARY (14)

19 #define FATAL_ERROR_FORCED (666)

20 #endif // _TPM_ERROR_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 146 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.19 TpmTypes.h

1 #ifndef _TPM_TYPES_H_

2 #define _TPM_TYPES_H_

Table 1:2 - Definition of TPM_ALG_ID Constants

3 typedef UINT16 TPM_ALG_ID;

4 #define TYPE_OF_TPM_ALG_ID UINT16

5 #define ALG_ERROR_VALUE 0x0000

6 #define TPM_ALG_ERROR (TPM_ALG_ID)(ALG_ERROR_VALUE)

7 #define ALG_RSA_VALUE 0x0001

8 #define TPM_ALG_RSA (TPM_ALG_ID)(ALG_RSA_VALUE)

9 #define ALG_TDES_VALUE 0x0003

10 #define TPM_ALG_TDES (TPM_ALG_ID)(ALG_TDES_VALUE)

11 #define ALG_SHA_VALUE 0x0004

12 #define TPM_ALG_SHA (TPM_ALG_ID)(ALG_SHA_VALUE)

13 #define ALG_SHA1_VALUE 0x0004

14 #define TPM_ALG_SHA1 (TPM_ALG_ID)(ALG_SHA1_VALUE)

15 #define ALG_HMAC_VALUE 0x0005

16 #define TPM_ALG_HMAC (TPM_ALG_ID)(ALG_HMAC_VALUE)

17 #define ALG_AES_VALUE 0x0006

18 #define TPM_ALG_AES (TPM_ALG_ID)(ALG_AES_VALUE)

19 #define ALG_MGF1_VALUE 0x0007

20 #define TPM_ALG_MGF1 (TPM_ALG_ID)(ALG_MGF1_VALUE)

21 #define ALG_KEYEDHASH_VALUE 0x0008

22 #define TPM_ALG_KEYEDHASH (TPM_ALG_ID)(ALG_KEYEDHASH_VALUE)

23 #define ALG_XOR_VALUE 0x000A

24 #define TPM_ALG_XOR (TPM_ALG_ID)(ALG_XOR_VALUE)

25 #define ALG_SHA256_VALUE 0x000B

26 #define TPM_ALG_SHA256 (TPM_ALG_ID)(ALG_SHA256_VALUE)

27 #define ALG_SHA384_VALUE 0x000C

28 #define TPM_ALG_SHA384 (TPM_ALG_ID)(ALG_SHA384_VALUE)

29 #define ALG_SHA512_VALUE 0x000D

30 #define TPM_ALG_SHA512 (TPM_ALG_ID)(ALG_SHA512_VALUE)

31 #define ALG_NULL_VALUE 0x0010

32 #define TPM_ALG_NULL (TPM_ALG_ID)(ALG_NULL_VALUE)

33 #define ALG_SM3_256_VALUE 0x0012

34 #define TPM_ALG_SM3_256 (TPM_ALG_ID)(ALG_SM3_256_VALUE)

35 #define ALG_SM4_VALUE 0x0013

36 #define TPM_ALG_SM4 (TPM_ALG_ID)(ALG_SM4_VALUE)

37 #define ALG_RSASSA_VALUE 0x0014

38 #define TPM_ALG_RSASSA (TPM_ALG_ID)(ALG_RSASSA_VALUE)

39 #define ALG_RSAES_VALUE 0x0015

40 #define TPM_ALG_RSAES (TPM_ALG_ID)(ALG_RSAES_VALUE)

41 #define ALG_RSAPSS_VALUE 0x0016

42 #define TPM_ALG_RSAPSS (TPM_ALG_ID)(ALG_RSAPSS_VALUE)

43 #define ALG_OAEP_VALUE 0x0017

44 #define TPM_ALG_OAEP (TPM_ALG_ID)(ALG_OAEP_VALUE)

45 #define ALG_ECDSA_VALUE 0x0018

46 #define TPM_ALG_ECDSA (TPM_ALG_ID)(ALG_ECDSA_VALUE)

47 #define ALG_ECDH_VALUE 0x0019

48 #define TPM_ALG_ECDH (TPM_ALG_ID)(ALG_ECDH_VALUE)

49 #define ALG_ECDAA_VALUE 0x001A

50 #define TPM_ALG_ECDAA (TPM_ALG_ID)(ALG_ECDAA_VALUE)

51 #define ALG_SM2_VALUE 0x001B

52 #define TPM_ALG_SM2 (TPM_ALG_ID)(ALG_SM2_VALUE)

53 #define ALG_ECSCHNORR_VALUE 0x001C

54 #define TPM_ALG_ECSCHNORR (TPM_ALG_ID)(ALG_ECSCHNORR_VALUE)

55 #define ALG_ECMQV_VALUE 0x001D

56 #define TPM_ALG_ECMQV (TPM_ALG_ID)(ALG_ECMQV_VALUE)

57 #define ALG_KDF1_SP800_56A_VALUE 0x0020

58 #define TPM_ALG_KDF1_SP800_56A (TPM_ALG_ID)(ALG_KDF1_SP800_56A_VALUE)

59 #define ALG_KDF2_VALUE 0x0021

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 147

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

60 #define TPM_ALG_KDF2 (TPM_ALG_ID)(ALG_KDF2_VALUE)

61 #define ALG_KDF1_SP800_108_VALUE 0x0022

62 #define TPM_ALG_KDF1_SP800_108 (TPM_ALG_ID)(ALG_KDF1_SP800_108_VALUE)

63 #define ALG_ECC_VALUE 0x0023

64 #define TPM_ALG_ECC (TPM_ALG_ID)(ALG_ECC_VALUE)

65 #define ALG_SYMCIPHER_VALUE 0x0025

66 #define TPM_ALG_SYMCIPHER (TPM_ALG_ID)(ALG_SYMCIPHER_VALUE)

67 #define ALG_CAMELLIA_VALUE 0x0026

68 #define TPM_ALG_CAMELLIA (TPM_ALG_ID)(ALG_CAMELLIA_VALUE)

69 #define ALG_SHA3_256_VALUE 0x0027

70 #define TPM_ALG_SHA3_256 (TPM_ALG_ID)(ALG_SHA3_256_VALUE)

71 #define ALG_SHA3_384_VALUE 0x0028

72 #define TPM_ALG_SHA3_384 (TPM_ALG_ID)(ALG_SHA3_384_VALUE)

73 #define ALG_SHA3_512_VALUE 0x0029

74 #define TPM_ALG_SHA3_512 (TPM_ALG_ID)(ALG_SHA3_512_VALUE)

75 #define ALG_CMAC_VALUE 0x003F

76 #define TPM_ALG_CMAC (TPM_ALG_ID)(ALG_CMAC_VALUE)

77 #define ALG_CTR_VALUE 0x0040

78 #define TPM_ALG_CTR (TPM_ALG_ID)(ALG_CTR_VALUE)

79 #define ALG_OFB_VALUE 0x0041

80 #define TPM_ALG_OFB (TPM_ALG_ID)(ALG_OFB_VALUE)

81 #define ALG_CBC_VALUE 0x0042

82 #define TPM_ALG_CBC (TPM_ALG_ID)(ALG_CBC_VALUE)

83 #define ALG_CFB_VALUE 0x0043

84 #define TPM_ALG_CFB (TPM_ALG_ID)(ALG_CFB_VALUE)

85 #define ALG_ECB_VALUE 0x0044

86 #define TPM_ALG_ECB (TPM_ALG_ID)(ALG_ECB_VALUE)

Values derived from Table 1:2

87 #define ALG_FIRST_VALUE 0x0001

88 #define TPM_ALG_FIRST (TPM_ALG_ID)(ALG_FIRST_VALUE)

89 #define ALG_LAST_VALUE 0x0044

90 #define TPM_ALG_LAST (TPM_ALG_ID)(ALG_LAST_VALUE)

Table 1:4 - Definition of TPM_ECC_CURVE Constants

91 typedef UINT16 TPM_ECC_CURVE;

92 #define TYPE_OF_TPM_ECC_CURVE UINT16

93 #define TPM_ECC_NONE (TPM_ECC_CURVE)(0x0000)

94 #define TPM_ECC_NIST_P192 (TPM_ECC_CURVE)(0x0001)

95 #define TPM_ECC_NIST_P224 (TPM_ECC_CURVE)(0x0002)

96 #define TPM_ECC_NIST_P256 (TPM_ECC_CURVE)(0x0003)

97 #define TPM_ECC_NIST_P384 (TPM_ECC_CURVE)(0x0004)

98 #define TPM_ECC_NIST_P521 (TPM_ECC_CURVE)(0x0005)

99 #define TPM_ECC_BN_P256 (TPM_ECC_CURVE)(0x0010)

100 #define TPM_ECC_BN_P638 (TPM_ECC_CURVE)(0x0011)

101 #define TPM_ECC_SM2_P256 (TPM_ECC_CURVE)(0x0020)

Table 2:12 - Definition of TPM_CC Constants

102 typedef UINT32 TPM_CC;

103 #define TYPE_OF_TPM_CC UINT32

104 #define TPM_CC_NV_UndefineSpaceSpecial (TPM_CC)(0x0000011F)

105 #define TPM_CC_EvictControl (TPM_CC)(0x00000120)

106 #define TPM_CC_HierarchyControl (TPM_CC)(0x00000121)

107 #define TPM_CC_NV_UndefineSpace (TPM_CC)(0x00000122)

108 #define TPM_CC_ChangeEPS (TPM_CC)(0x00000124)

109 #define TPM_CC_ChangePPS (TPM_CC)(0x00000125)

110 #define TPM_CC_Clear (TPM_CC)(0x00000126)

111 #define TPM_CC_ClearControl (TPM_CC)(0x00000127)

112 #define TPM_CC_ClockSet (TPM_CC)(0x00000128)

113 #define TPM_CC_HierarchyChangeAuth (TPM_CC)(0x00000129)

114 #define TPM_CC_NV_DefineSpace (TPM_CC)(0x0000012A)

Trusted Platform Module Library Part 4: Supporting Routines

Page 148 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

115 #define TPM_CC_PCR_Allocate (TPM_CC)(0x0000012B)

116 #define TPM_CC_PCR_SetAuthPolicy (TPM_CC)(0x0000012C)

117 #define TPM_CC_PP_Commands (TPM_CC)(0x0000012D)

118 #define TPM_CC_SetPrimaryPolicy (TPM_CC)(0x0000012E)

119 #define TPM_CC_FieldUpgradeStart (TPM_CC)(0x0000012F)

120 #define TPM_CC_ClockRateAdjust (TPM_CC)(0x00000130)

121 #define TPM_CC_CreatePrimary (TPM_CC)(0x00000131)

122 #define TPM_CC_NV_GlobalWriteLock (TPM_CC)(0x00000132)

123 #define TPM_CC_GetCommandAuditDigest (TPM_CC)(0x00000133)

124 #define TPM_CC_NV_Increment (TPM_CC)(0x00000134)

125 #define TPM_CC_NV_SetBits (TPM_CC)(0x00000135)

126 #define TPM_CC_NV_Extend (TPM_CC)(0x00000136)

127 #define TPM_CC_NV_Write (TPM_CC)(0x00000137)

128 #define TPM_CC_NV_WriteLock (TPM_CC)(0x00000138)

129 #define TPM_CC_DictionaryAttackLockReset (TPM_CC)(0x00000139)

130 #define TPM_CC_DictionaryAttackParameters (TPM_CC)(0x0000013A)

131 #define TPM_CC_NV_ChangeAuth (TPM_CC)(0x0000013B)

132 #define TPM_CC_PCR_Event (TPM_CC)(0x0000013C)

133 #define TPM_CC_PCR_Reset (TPM_CC)(0x0000013D)

134 #define TPM_CC_SequenceComplete (TPM_CC)(0x0000013E)

135 #define TPM_CC_SetAlgorithmSet (TPM_CC)(0x0000013F)

136 #define TPM_CC_SetCommandCodeAuditStatus (TPM_CC)(0x00000140)

137 #define TPM_CC_FieldUpgradeData (TPM_CC)(0x00000141)

138 #define TPM_CC_IncrementalSelfTest (TPM_CC)(0x00000142)

139 #define TPM_CC_SelfTest (TPM_CC)(0x00000143)

140 #define TPM_CC_Startup (TPM_CC)(0x00000144)

141 #define TPM_CC_Shutdown (TPM_CC)(0x00000145)

142 #define TPM_CC_StirRandom (TPM_CC)(0x00000146)

143 #define TPM_CC_ActivateCredential (TPM_CC)(0x00000147)

144 #define TPM_CC_Certify (TPM_CC)(0x00000148)

145 #define TPM_CC_PolicyNV (TPM_CC)(0x00000149)

146 #define TPM_CC_CertifyCreation (TPM_CC)(0x0000014A)

147 #define TPM_CC_Duplicate (TPM_CC)(0x0000014B)

148 #define TPM_CC_GetTime (TPM_CC)(0x0000014C)

149 #define TPM_CC_GetSessionAuditDigest (TPM_CC)(0x0000014D)

150 #define TPM_CC_NV_Read (TPM_CC)(0x0000014E)

151 #define TPM_CC_NV_ReadLock (TPM_CC)(0x0000014F)

152 #define TPM_CC_ObjectChangeAuth (TPM_CC)(0x00000150)

153 #define TPM_CC_PolicySecret (TPM_CC)(0x00000151)

154 #define TPM_CC_Rewrap (TPM_CC)(0x00000152)

155 #define TPM_CC_Create (TPM_CC)(0x00000153)

156 #define TPM_CC_ECDH_ZGen (TPM_CC)(0x00000154)

157 #define TPM_CC_HMAC (TPM_CC)(0x00000155)

158 #define TPM_CC_MAC (TPM_CC)(0x00000155)

159 #define TPM_CC_Import (TPM_CC)(0x00000156)

160 #define TPM_CC_Load (TPM_CC)(0x00000157)

161 #define TPM_CC_Quote (TPM_CC)(0x00000158)

162 #define TPM_CC_RSA_Decrypt (TPM_CC)(0x00000159)

163 #define TPM_CC_HMAC_Start (TPM_CC)(0x0000015B)

164 #define TPM_CC_MAC_Start (TPM_CC)(0x0000015B)

165 #define TPM_CC_SequenceUpdate (TPM_CC)(0x0000015C)

166 #define TPM_CC_Sign (TPM_CC)(0x0000015D)

167 #define TPM_CC_Unseal (TPM_CC)(0x0000015E)

168 #define TPM_CC_PolicySigned (TPM_CC)(0x00000160)

169 #define TPM_CC_ContextLoad (TPM_CC)(0x00000161)

170 #define TPM_CC_ContextSave (TPM_CC)(0x00000162)

171 #define TPM_CC_ECDH_KeyGen (TPM_CC)(0x00000163)

172 #define TPM_CC_EncryptDecrypt (TPM_CC)(0x00000164)

173 #define TPM_CC_FlushContext (TPM_CC)(0x00000165)

174 #define TPM_CC_LoadExternal (TPM_CC)(0x00000167)

175 #define TPM_CC_MakeCredential (TPM_CC)(0x00000168)

176 #define TPM_CC_NV_ReadPublic (TPM_CC)(0x00000169)

177 #define TPM_CC_PolicyAuthorize (TPM_CC)(0x0000016A)

178 #define TPM_CC_PolicyAuthValue (TPM_CC)(0x0000016B)

179 #define TPM_CC_PolicyCommandCode (TPM_CC)(0x0000016C)

180 #define TPM_CC_PolicyCounterTimer (TPM_CC)(0x0000016D)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 149

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

181 #define TPM_CC_PolicyCpHash (TPM_CC)(0x0000016E)

182 #define TPM_CC_PolicyLocality (TPM_CC)(0x0000016F)

183 #define TPM_CC_PolicyNameHash (TPM_CC)(0x00000170)

184 #define TPM_CC_PolicyOR (TPM_CC)(0x00000171)

185 #define TPM_CC_PolicyTicket (TPM_CC)(0x00000172)

186 #define TPM_CC_ReadPublic (TPM_CC)(0x00000173)

187 #define TPM_CC_RSA_Encrypt (TPM_CC)(0x00000174)

188 #define TPM_CC_StartAuthSession (TPM_CC)(0x00000176)

189 #define TPM_CC_VerifySignature (TPM_CC)(0x00000177)

190 #define TPM_CC_ECC_Parameters (TPM_CC)(0x00000178)

191 #define TPM_CC_FirmwareRead (TPM_CC)(0x00000179)

192 #define TPM_CC_GetCapability (TPM_CC)(0x0000017A)

193 #define TPM_CC_GetRandom (TPM_CC)(0x0000017B)

194 #define TPM_CC_GetTestResult (TPM_CC)(0x0000017C)

195 #define TPM_CC_Hash (TPM_CC)(0x0000017D)

196 #define TPM_CC_PCR_Read (TPM_CC)(0x0000017E)

197 #define TPM_CC_PolicyPCR (TPM_CC)(0x0000017F)

198 #define TPM_CC_PolicyRestart (TPM_CC)(0x00000180)

199 #define TPM_CC_ReadClock (TPM_CC)(0x00000181)

200 #define TPM_CC_PCR_Extend (TPM_CC)(0x00000182)

201 #define TPM_CC_PCR_SetAuthValue (TPM_CC)(0x00000183)

202 #define TPM_CC_NV_Certify (TPM_CC)(0x00000184)

203 #define TPM_CC_EventSequenceComplete (TPM_CC)(0x00000185)

204 #define TPM_CC_HashSequenceStart (TPM_CC)(0x00000186)

205 #define TPM_CC_PolicyPhysicalPresence (TPM_CC)(0x00000187)

206 #define TPM_CC_PolicyDuplicationSelect (TPM_CC)(0x00000188)

207 #define TPM_CC_PolicyGetDigest (TPM_CC)(0x00000189)

208 #define TPM_CC_TestParms (TPM_CC)(0x0000018A)

209 #define TPM_CC_Commit (TPM_CC)(0x0000018B)

210 #define TPM_CC_PolicyPassword (TPM_CC)(0x0000018C)

211 #define TPM_CC_ZGen_2Phase (TPM_CC)(0x0000018D)

212 #define TPM_CC_EC_Ephemeral (TPM_CC)(0x0000018E)

213 #define TPM_CC_PolicyNvWritten (TPM_CC)(0x0000018F)

214 #define TPM_CC_PolicyTemplate (TPM_CC)(0x00000190)

215 #define TPM_CC_CreateLoaded (TPM_CC)(0x00000191)

216 #define TPM_CC_PolicyAuthorizeNV (TPM_CC)(0x00000192)

217 #define TPM_CC_EncryptDecrypt2 (TPM_CC)(0x00000193)

218 #define TPM_CC_AC_GetCapability (TPM_CC)(0x00000194)

219 #define TPM_CC_AC_Send (TPM_CC)(0x00000195)

220 #define TPM_CC_Policy_AC_SendSelect (TPM_CC)(0x00000196)

221 #define TPM_CC_CertifyX509 (TPM_CC)(0x00000197)

222 #define TPM_CC_ACT_SetTimeout (TPM_CC)(0x00000198)

223 #define CC_VEND 0x20000000

224 #define TPM_CC_Vendor_TCG_Test (TPM_CC)(0x20000000)

Table 2:5 - Definition of Types for Documentation Clarity

225 typedef UINT32 TPM_ALGORITHM_ID;

226 #define TYPE_OF_TPM_ALGORITHM_ID UINT32

227 typedef UINT32 TPM_MODIFIER_INDICATOR;

228 #define TYPE_OF_TPM_MODIFIER_INDICATOR UINT32

229 typedef UINT32 TPM_AUTHORIZATION_SIZE;

230 #define TYPE_OF_TPM_AUTHORIZATION_SIZE UINT32

231 typedef UINT32 TPM_PARAMETER_SIZE;

232 #define TYPE_OF_TPM_PARAMETER_SIZE UINT32

233 typedef UINT16 TPM_KEY_SIZE;

234 #define TYPE_OF_TPM_KEY_SIZE UINT16

235 typedef UINT16 TPM_KEY_BITS;

236 #define TYPE_OF_TPM_KEY_BITS UINT16

Table 2:6 - Definition of TPM_SPEC Constants

237 typedef UINT32 TPM_SPEC;

238 #define TYPE_OF_TPM_SPEC UINT32

239 #define SPEC_FAMILY 0x322E3000

Trusted Platform Module Library Part 4: Supporting Routines

Page 150 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

240 #define TPM_SPEC_FAMILY (TPM_SPEC)(SPEC_FAMILY)

241 #define SPEC_LEVEL 00

242 #define TPM_SPEC_LEVEL (TPM_SPEC)(SPEC_LEVEL)

243 #define SPEC_VERSION 159

244 #define TPM_SPEC_VERSION (TPM_SPEC)(SPEC_VERSION)

245 #define SPEC_YEAR 2019

246 #define TPM_SPEC_YEAR (TPM_SPEC)(SPEC_YEAR)

247 #define SPEC_DAY_OF_YEAR 312

248 #define TPM_SPEC_DAY_OF_YEAR (TPM_SPEC)(SPEC_DAY_OF_YEAR)

Table 2:7 - Definition of TPM_GENERATED Constants

249 typedef UINT32 TPM_GENERATED;

250 #define TYPE_OF_TPM_GENERATED UINT32

251 #define TPM_GENERATED_VALUE (TPM_GENERATED)(0xFF544347)

Table 2:16 - Definition of TPM_RC Constants

252 typedef UINT32 TPM_RC;

253 #define TYPE_OF_TPM_RC UINT32

254 #define TPM_RC_SUCCESS (TPM_RC)(0x000)

255 #define TPM_RC_BAD_TAG (TPM_RC)(0x01E)

256 #define RC_VER1 (TPM_RC)(0x100)

257 #define TPM_RC_INITIALIZE (TPM_RC)(RC_VER1+0x000)

258 #define TPM_RC_FAILURE (TPM_RC)(RC_VER1+0x001)

259 #define TPM_RC_SEQUENCE (TPM_RC)(RC_VER1+0x003)

260 #define TPM_RC_PRIVATE (TPM_RC)(RC_VER1+0x00B)

261 #define TPM_RC_HMAC (TPM_RC)(RC_VER1+0x019)

262 #define TPM_RC_DISABLED (TPM_RC)(RC_VER1+0x020)

263 #define TPM_RC_EXCLUSIVE (TPM_RC)(RC_VER1+0x021)

264 #define TPM_RC_AUTH_TYPE (TPM_RC)(RC_VER1+0x024)

265 #define TPM_RC_AUTH_MISSING (TPM_RC)(RC_VER1+0x025)

266 #define TPM_RC_POLICY (TPM_RC)(RC_VER1+0x026)

267 #define TPM_RC_PCR (TPM_RC)(RC_VER1+0x027)

268 #define TPM_RC_PCR_CHANGED (TPM_RC)(RC_VER1+0x028)

269 #define TPM_RC_UPGRADE (TPM_RC)(RC_VER1+0x02D)

270 #define TPM_RC_TOO_MANY_CONTEXTS (TPM_RC)(RC_VER1+0x02E)

271 #define TPM_RC_AUTH_UNAVAILABLE (TPM_RC)(RC_VER1+0x02F)

272 #define TPM_RC_REBOOT (TPM_RC)(RC_VER1+0x030)

273 #define TPM_RC_UNBALANCED (TPM_RC)(RC_VER1+0x031)

274 #define TPM_RC_COMMAND_SIZE (TPM_RC)(RC_VER1+0x042)

275 #define TPM_RC_COMMAND_CODE (TPM_RC)(RC_VER1+0x043)

276 #define TPM_RC_AUTHSIZE (TPM_RC)(RC_VER1+0x044)

277 #define TPM_RC_AUTH_CONTEXT (TPM_RC)(RC_VER1+0x045)

278 #define TPM_RC_NV_RANGE (TPM_RC)(RC_VER1+0x046)

279 #define TPM_RC_NV_SIZE (TPM_RC)(RC_VER1+0x047)

280 #define TPM_RC_NV_LOCKED (TPM_RC)(RC_VER1+0x048)

281 #define TPM_RC_NV_AUTHORIZATION (TPM_RC)(RC_VER1+0x049)

282 #define TPM_RC_NV_UNINITIALIZED (TPM_RC)(RC_VER1+0x04A)

283 #define TPM_RC_NV_SPACE (TPM_RC)(RC_VER1+0x04B)

284 #define TPM_RC_NV_DEFINED (TPM_RC)(RC_VER1+0x04C)

285 #define TPM_RC_BAD_CONTEXT (TPM_RC)(RC_VER1+0x050)

286 #define TPM_RC_CPHASH (TPM_RC)(RC_VER1+0x051)

287 #define TPM_RC_PARENT (TPM_RC)(RC_VER1+0x052)

288 #define TPM_RC_NEEDS_TEST (TPM_RC)(RC_VER1+0x053)

289 #define TPM_RC_NO_RESULT (TPM_RC)(RC_VER1+0x054)

290 #define TPM_RC_SENSITIVE (TPM_RC)(RC_VER1+0x055)

291 #define RC_MAX_FM0 (TPM_RC)(RC_VER1+0x07F)

292 #define RC_FMT1 (TPM_RC)(0x080)

293 #define TPM_RC_ASYMMETRIC (TPM_RC)(RC_FMT1+0x001)

294 #define TPM_RCS_ASYMMETRIC (TPM_RC)(RC_FMT1+0x001)

295 #define TPM_RC_ATTRIBUTES (TPM_RC)(RC_FMT1+0x002)

296 #define TPM_RCS_ATTRIBUTES (TPM_RC)(RC_FMT1+0x002)

297 #define TPM_RC_HASH (TPM_RC)(RC_FMT1+0x003)

298 #define TPM_RCS_HASH (TPM_RC)(RC_FMT1+0x003)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 151

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

299 #define TPM_RC_VALUE (TPM_RC)(RC_FMT1+0x004)

300 #define TPM_RCS_VALUE (TPM_RC)(RC_FMT1+0x004)

301 #define TPM_RC_HIERARCHY (TPM_RC)(RC_FMT1+0x005)

302 #define TPM_RCS_HIERARCHY (TPM_RC)(RC_FMT1+0x005)

303 #define TPM_RC_KEY_SIZE (TPM_RC)(RC_FMT1+0x007)

304 #define TPM_RCS_KEY_SIZE (TPM_RC)(RC_FMT1+0x007)

305 #define TPM_RC_MGF (TPM_RC)(RC_FMT1+0x008)

306 #define TPM_RCS_MGF (TPM_RC)(RC_FMT1+0x008)

307 #define TPM_RC_MODE (TPM_RC)(RC_FMT1+0x009)

308 #define TPM_RCS_MODE (TPM_RC)(RC_FMT1+0x009)

309 #define TPM_RC_TYPE (TPM_RC)(RC_FMT1+0x00A)

310 #define TPM_RCS_TYPE (TPM_RC)(RC_FMT1+0x00A)

311 #define TPM_RC_HANDLE (TPM_RC)(RC_FMT1+0x00B)

312 #define TPM_RCS_HANDLE (TPM_RC)(RC_FMT1+0x00B)

313 #define TPM_RC_KDF (TPM_RC)(RC_FMT1+0x00C)

314 #define TPM_RCS_KDF (TPM_RC)(RC_FMT1+0x00C)

315 #define TPM_RC_RANGE (TPM_RC)(RC_FMT1+0x00D)

316 #define TPM_RCS_RANGE (TPM_RC)(RC_FMT1+0x00D)

317 #define TPM_RC_AUTH_FAIL (TPM_RC)(RC_FMT1+0x00E)

318 #define TPM_RCS_AUTH_FAIL (TPM_RC)(RC_FMT1+0x00E)

319 #define TPM_RC_NONCE (TPM_RC)(RC_FMT1+0x00F)

320 #define TPM_RCS_NONCE (TPM_RC)(RC_FMT1+0x00F)

321 #define TPM_RC_PP (TPM_RC)(RC_FMT1+0x010)

322 #define TPM_RCS_PP (TPM_RC)(RC_FMT1+0x010)

323 #define TPM_RC_SCHEME (TPM_RC)(RC_FMT1+0x012)

324 #define TPM_RCS_SCHEME (TPM_RC)(RC_FMT1+0x012)

325 #define TPM_RC_SIZE (TPM_RC)(RC_FMT1+0x015)

326 #define TPM_RCS_SIZE (TPM_RC)(RC_FMT1+0x015)

327 #define TPM_RC_SYMMETRIC (TPM_RC)(RC_FMT1+0x016)

328 #define TPM_RCS_SYMMETRIC (TPM_RC)(RC_FMT1+0x016)

329 #define TPM_RC_TAG (TPM_RC)(RC_FMT1+0x017)

330 #define TPM_RCS_TAG (TPM_RC)(RC_FMT1+0x017)

331 #define TPM_RC_SELECTOR (TPM_RC)(RC_FMT1+0x018)

332 #define TPM_RCS_SELECTOR (TPM_RC)(RC_FMT1+0x018)

333 #define TPM_RC_INSUFFICIENT (TPM_RC)(RC_FMT1+0x01A)

334 #define TPM_RCS_INSUFFICIENT (TPM_RC)(RC_FMT1+0x01A)

335 #define TPM_RC_SIGNATURE (TPM_RC)(RC_FMT1+0x01B)

336 #define TPM_RCS_SIGNATURE (TPM_RC)(RC_FMT1+0x01B)

337 #define TPM_RC_KEY (TPM_RC)(RC_FMT1+0x01C)

338 #define TPM_RCS_KEY (TPM_RC)(RC_FMT1+0x01C)

339 #define TPM_RC_POLICY_FAIL (TPM_RC)(RC_FMT1+0x01D)

340 #define TPM_RCS_POLICY_FAIL (TPM_RC)(RC_FMT1+0x01D)

341 #define TPM_RC_INTEGRITY (TPM_RC)(RC_FMT1+0x01F)

342 #define TPM_RCS_INTEGRITY (TPM_RC)(RC_FMT1+0x01F)

343 #define TPM_RC_TICKET (TPM_RC)(RC_FMT1+0x020)

344 #define TPM_RCS_TICKET (TPM_RC)(RC_FMT1+0x020)

345 #define TPM_RC_RESERVED_BITS (TPM_RC)(RC_FMT1+0x021)

346 #define TPM_RCS_RESERVED_BITS (TPM_RC)(RC_FMT1+0x021)

347 #define TPM_RC_BAD_AUTH (TPM_RC)(RC_FMT1+0x022)

348 #define TPM_RCS_BAD_AUTH (TPM_RC)(RC_FMT1+0x022)

349 #define TPM_RC_EXPIRED (TPM_RC)(RC_FMT1+0x023)

350 #define TPM_RCS_EXPIRED (TPM_RC)(RC_FMT1+0x023)

351 #define TPM_RC_POLICY_CC (TPM_RC)(RC_FMT1+0x024)

352 #define TPM_RCS_POLICY_CC (TPM_RC)(RC_FMT1+0x024)

353 #define TPM_RC_BINDING (TPM_RC)(RC_FMT1+0x025)

354 #define TPM_RCS_BINDING (TPM_RC)(RC_FMT1+0x025)

355 #define TPM_RC_CURVE (TPM_RC)(RC_FMT1+0x026)

356 #define TPM_RCS_CURVE (TPM_RC)(RC_FMT1+0x026)

357 #define TPM_RC_ECC_POINT (TPM_RC)(RC_FMT1+0x027)

358 #define TPM_RCS_ECC_POINT (TPM_RC)(RC_FMT1+0x027)

359 #define RC_WARN (TPM_RC)(0x900)

360 #define TPM_RC_CONTEXT_GAP (TPM_RC)(RC_WARN+0x001)

361 #define TPM_RC_OBJECT_MEMORY (TPM_RC)(RC_WARN+0x002)

362 #define TPM_RC_SESSION_MEMORY (TPM_RC)(RC_WARN+0x003)

363 #define TPM_RC_MEMORY (TPM_RC)(RC_WARN+0x004)

364 #define TPM_RC_SESSION_HANDLES (TPM_RC)(RC_WARN+0x005)

Trusted Platform Module Library Part 4: Supporting Routines

Page 152 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

365 #define TPM_RC_OBJECT_HANDLES (TPM_RC)(RC_WARN+0x006)

366 #define TPM_RC_LOCALITY (TPM_RC)(RC_WARN+0x007)

367 #define TPM_RC_YIELDED (TPM_RC)(RC_WARN+0x008)

368 #define TPM_RC_CANCELED (TPM_RC)(RC_WARN+0x009)

369 #define TPM_RC_TESTING (TPM_RC)(RC_WARN+0x00A)

370 #define TPM_RC_REFERENCE_H0 (TPM_RC)(RC_WARN+0x010)

371 #define TPM_RC_REFERENCE_H1 (TPM_RC)(RC_WARN+0x011)

372 #define TPM_RC_REFERENCE_H2 (TPM_RC)(RC_WARN+0x012)

373 #define TPM_RC_REFERENCE_H3 (TPM_RC)(RC_WARN+0x013)

374 #define TPM_RC_REFERENCE_H4 (TPM_RC)(RC_WARN+0x014)

375 #define TPM_RC_REFERENCE_H5 (TPM_RC)(RC_WARN+0x015)

376 #define TPM_RC_REFERENCE_H6 (TPM_RC)(RC_WARN+0x016)

377 #define TPM_RC_REFERENCE_S0 (TPM_RC)(RC_WARN+0x018)

378 #define TPM_RC_REFERENCE_S1 (TPM_RC)(RC_WARN+0x019)

379 #define TPM_RC_REFERENCE_S2 (TPM_RC)(RC_WARN+0x01A)

380 #define TPM_RC_REFERENCE_S3 (TPM_RC)(RC_WARN+0x01B)

381 #define TPM_RC_REFERENCE_S4 (TPM_RC)(RC_WARN+0x01C)

382 #define TPM_RC_REFERENCE_S5 (TPM_RC)(RC_WARN+0x01D)

383 #define TPM_RC_REFERENCE_S6 (TPM_RC)(RC_WARN+0x01E)

384 #define TPM_RC_NV_RATE (TPM_RC)(RC_WARN+0x020)

385 #define TPM_RC_LOCKOUT (TPM_RC)(RC_WARN+0x021)

386 #define TPM_RC_RETRY (TPM_RC)(RC_WARN+0x022)

387 #define TPM_RC_NV_UNAVAILABLE (TPM_RC)(RC_WARN+0x023)

388 #define TPM_RC_NOT_USED (TPM_RC)(RC_WARN+0x7F)

389 #define TPM_RC_H (TPM_RC)(0x000)

390 #define TPM_RC_P (TPM_RC)(0x040)

391 #define TPM_RC_S (TPM_RC)(0x800)

392 #define TPM_RC_1 (TPM_RC)(0x100)

393 #define TPM_RC_2 (TPM_RC)(0x200)

394 #define TPM_RC_3 (TPM_RC)(0x300)

395 #define TPM_RC_4 (TPM_RC)(0x400)

396 #define TPM_RC_5 (TPM_RC)(0x500)

397 #define TPM_RC_6 (TPM_RC)(0x600)

398 #define TPM_RC_7 (TPM_RC)(0x700)

399 #define TPM_RC_8 (TPM_RC)(0x800)

400 #define TPM_RC_9 (TPM_RC)(0x900)

401 #define TPM_RC_A (TPM_RC)(0xA00)

402 #define TPM_RC_B (TPM_RC)(0xB00)

403 #define TPM_RC_C (TPM_RC)(0xC00)

404 #define TPM_RC_D (TPM_RC)(0xD00)

405 #define TPM_RC_E (TPM_RC)(0xE00)

406 #define TPM_RC_F (TPM_RC)(0xF00)

407 #define TPM_RC_N_MASK (TPM_RC)(0xF00)

Table 2:17 - Definition of TPM_CLOCK_ADJUST Constants

408 typedef INT8 TPM_CLOCK_ADJUST;

409 #define TYPE_OF_TPM_CLOCK_ADJUST UINT8

410 #define TPM_CLOCK_COARSE_SLOWER (TPM_CLOCK_ADJUST)(-3)

411 #define TPM_CLOCK_MEDIUM_SLOWER (TPM_CLOCK_ADJUST)(-2)

412 #define TPM_CLOCK_FINE_SLOWER (TPM_CLOCK_ADJUST)(-1)

413 #define TPM_CLOCK_NO_CHANGE (TPM_CLOCK_ADJUST)(0)

414 #define TPM_CLOCK_FINE_FASTER (TPM_CLOCK_ADJUST)(1)

415 #define TPM_CLOCK_MEDIUM_FASTER (TPM_CLOCK_ADJUST)(2)

416 #define TPM_CLOCK_COARSE_FASTER (TPM_CLOCK_ADJUST)(3)

Table 2:18 - Definition of TPM_EO Constants

417 typedef UINT16 TPM_EO;

418 #define TYPE_OF_TPM_EO UINT16

419 #define TPM_EO_EQ (TPM_EO)(0x0000)

420 #define TPM_EO_NEQ (TPM_EO)(0x0001)

421 #define TPM_EO_SIGNED_GT (TPM_EO)(0x0002)

422 #define TPM_EO_UNSIGNED_GT (TPM_EO)(0x0003)

423 #define TPM_EO_SIGNED_LT (TPM_EO)(0x0004)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 153

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

424 #define TPM_EO_UNSIGNED_LT (TPM_EO)(0x0005)

425 #define TPM_EO_SIGNED_GE (TPM_EO)(0x0006)

426 #define TPM_EO_UNSIGNED_GE (TPM_EO)(0x0007)

427 #define TPM_EO_SIGNED_LE (TPM_EO)(0x0008)

428 #define TPM_EO_UNSIGNED_LE (TPM_EO)(0x0009)

429 #define TPM_EO_BITSET (TPM_EO)(0x000A)

430 #define TPM_EO_BITCLEAR (TPM_EO)(0x000B)

Table 2:19 - Definition of TPM_ST Constants

431 typedef UINT16 TPM_ST;

432 #define TYPE_OF_TPM_ST UINT16

433 #define TPM_ST_RSP_COMMAND (TPM_ST)(0x00C4)

434 #define TPM_ST_NULL (TPM_ST)(0x8000)

435 #define TPM_ST_NO_SESSIONS (TPM_ST)(0x8001)

436 #define TPM_ST_SESSIONS (TPM_ST)(0x8002)

437 #define TPM_ST_ATTEST_NV (TPM_ST)(0x8014)

438 #define TPM_ST_ATTEST_COMMAND_AUDIT (TPM_ST)(0x8015)

439 #define TPM_ST_ATTEST_SESSION_AUDIT (TPM_ST)(0x8016)

440 #define TPM_ST_ATTEST_CERTIFY (TPM_ST)(0x8017)

441 #define TPM_ST_ATTEST_QUOTE (TPM_ST)(0x8018)

442 #define TPM_ST_ATTEST_TIME (TPM_ST)(0x8019)

443 #define TPM_ST_ATTEST_CREATION (TPM_ST)(0x801A)

444 #define TPM_ST_ATTEST_NV_DIGEST (TPM_ST)(0x801C)

445 #define TPM_ST_CREATION (TPM_ST)(0x8021)

446 #define TPM_ST_VERIFIED (TPM_ST)(0x8022)

447 #define TPM_ST_AUTH_SECRET (TPM_ST)(0x8023)

448 #define TPM_ST_HASHCHECK (TPM_ST)(0x8024)

449 #define TPM_ST_AUTH_SIGNED (TPM_ST)(0x8025)

450 #define TPM_ST_FU_MANIFEST (TPM_ST)(0x8029)

Table 2:20 - Definition of TPM_SU Constants

451 typedef UINT16 TPM_SU;

452 #define TYPE_OF_TPM_SU UINT16

453 #define TPM_SU_CLEAR (TPM_SU)(0x0000)

454 #define TPM_SU_STATE (TPM_SU)(0x0001)

Table 2:21 - Definition of TPM_SE Constants

455 typedef UINT8 TPM_SE;

456 #define TYPE_OF_TPM_SE UINT8

457 #define TPM_SE_HMAC (TPM_SE)(0x00)

458 #define TPM_SE_POLICY (TPM_SE)(0x01)

459 #define TPM_SE_TRIAL (TPM_SE)(0x03)

Table 2:22 - Definition of TPM_CAP Constants

460 typedef UINT32 TPM_CAP;

461 #define TYPE_OF_TPM_CAP UINT32

462 #define TPM_CAP_FIRST (TPM_CAP)(0x00000000)

463 #define TPM_CAP_ALGS (TPM_CAP)(0x00000000)

464 #define TPM_CAP_HANDLES (TPM_CAP)(0x00000001)

465 #define TPM_CAP_COMMANDS (TPM_CAP)(0x00000002)

466 #define TPM_CAP_PP_COMMANDS (TPM_CAP)(0x00000003)

467 #define TPM_CAP_AUDIT_COMMANDS (TPM_CAP)(0x00000004)

468 #define TPM_CAP_PCRS (TPM_CAP)(0x00000005)

469 #define TPM_CAP_TPM_PROPERTIES (TPM_CAP)(0x00000006)

470 #define TPM_CAP_PCR_PROPERTIES (TPM_CAP)(0x00000007)

471 #define TPM_CAP_ECC_CURVES (TPM_CAP)(0x00000008)

472 #define TPM_CAP_AUTH_POLICIES (TPM_CAP)(0x00000009)

473 #define TPM_CAP_ACT (TPM_CAP)(0x0000000A)

474 #define TPM_CAP_LAST (TPM_CAP)(0x0000000A)

475 #define TPM_CAP_VENDOR_PROPERTY (TPM_CAP)(0x00000100)

Trusted Platform Module Library Part 4: Supporting Routines

Page 154 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 2:23 - Definition of TPM_PT Constants

476 typedef UINT32 TPM_PT;

477 #define TYPE_OF_TPM_PT UINT32

478 #define TPM_PT_NONE (TPM_PT)(0x00000000)

479 #define PT_GROUP (TPM_PT)(0x00000100)

480 #define PT_FIXED (TPM_PT)(PT_GROUP*1)

481 #define TPM_PT_FAMILY_INDICATOR (TPM_PT)(PT_FIXED+0)

482 #define TPM_PT_LEVEL (TPM_PT)(PT_FIXED+1)

483 #define TPM_PT_REVISION (TPM_PT)(PT_FIXED+2)

484 #define TPM_PT_DAY_OF_YEAR (TPM_PT)(PT_FIXED+3)

485 #define TPM_PT_YEAR (TPM_PT)(PT_FIXED+4)

486 #define TPM_PT_MANUFACTURER (TPM_PT)(PT_FIXED+5)

487 #define TPM_PT_VENDOR_STRING_1 (TPM_PT)(PT_FIXED+6)

488 #define TPM_PT_VENDOR_STRING_2 (TPM_PT)(PT_FIXED+7)

489 #define TPM_PT_VENDOR_STRING_3 (TPM_PT)(PT_FIXED+8)

490 #define TPM_PT_VENDOR_STRING_4 (TPM_PT)(PT_FIXED+9)

491 #define TPM_PT_VENDOR_TPM_TYPE (TPM_PT)(PT_FIXED+10)

492 #define TPM_PT_FIRMWARE_VERSION_1 (TPM_PT)(PT_FIXED+11)

493 #define TPM_PT_FIRMWARE_VERSION_2 (TPM_PT)(PT_FIXED+12)

494 #define TPM_PT_INPUT_BUFFER (TPM_PT)(PT_FIXED+13)

495 #define TPM_PT_HR_TRANSIENT_MIN (TPM_PT)(PT_FIXED+14)

496 #define TPM_PT_HR_PERSISTENT_MIN (TPM_PT)(PT_FIXED+15)

497 #define TPM_PT_HR_LOADED_MIN (TPM_PT)(PT_FIXED+16)

498 #define TPM_PT_ACTIVE_SESSIONS_MAX (TPM_PT)(PT_FIXED+17)

499 #define TPM_PT_PCR_COUNT (TPM_PT)(PT_FIXED+18)

500 #define TPM_PT_PCR_SELECT_MIN (TPM_PT)(PT_FIXED+19)

501 #define TPM_PT_CONTEXT_GAP_MAX (TPM_PT)(PT_FIXED+20)

502 #define TPM_PT_NV_COUNTERS_MAX (TPM_PT)(PT_FIXED+22)

503 #define TPM_PT_NV_INDEX_MAX (TPM_PT)(PT_FIXED+23)

504 #define TPM_PT_MEMORY (TPM_PT)(PT_FIXED+24)

505 #define TPM_PT_CLOCK_UPDATE (TPM_PT)(PT_FIXED+25)

506 #define TPM_PT_CONTEXT_HASH (TPM_PT)(PT_FIXED+26)

507 #define TPM_PT_CONTEXT_SYM (TPM_PT)(PT_FIXED+27)

508 #define TPM_PT_CONTEXT_SYM_SIZE (TPM_PT)(PT_FIXED+28)

509 #define TPM_PT_ORDERLY_COUNT (TPM_PT)(PT_FIXED+29)

510 #define TPM_PT_MAX_COMMAND_SIZE (TPM_PT)(PT_FIXED+30)

511 #define TPM_PT_MAX_RESPONSE_SIZE (TPM_PT)(PT_FIXED+31)

512 #define TPM_PT_MAX_DIGEST (TPM_PT)(PT_FIXED+32)

513 #define TPM_PT_MAX_OBJECT_CONTEXT (TPM_PT)(PT_FIXED+33)

514 #define TPM_PT_MAX_SESSION_CONTEXT (TPM_PT)(PT_FIXED+34)

515 #define TPM_PT_PS_FAMILY_INDICATOR (TPM_PT)(PT_FIXED+35)

516 #define TPM_PT_PS_LEVEL (TPM_PT)(PT_FIXED+36)

517 #define TPM_PT_PS_REVISION (TPM_PT)(PT_FIXED+37)

518 #define TPM_PT_PS_DAY_OF_YEAR (TPM_PT)(PT_FIXED+38)

519 #define TPM_PT_PS_YEAR (TPM_PT)(PT_FIXED+39)

520 #define TPM_PT_SPLIT_MAX (TPM_PT)(PT_FIXED+40)

521 #define TPM_PT_TOTAL_COMMANDS (TPM_PT)(PT_FIXED+41)

522 #define TPM_PT_LIBRARY_COMMANDS (TPM_PT)(PT_FIXED+42)

523 #define TPM_PT_VENDOR_COMMANDS (TPM_PT)(PT_FIXED+43)

524 #define TPM_PT_NV_BUFFER_MAX (TPM_PT)(PT_FIXED+44)

525 #define TPM_PT_MODES (TPM_PT)(PT_FIXED+45)

526 #define TPM_PT_MAX_CAP_BUFFER (TPM_PT)(PT_FIXED+46)

527 #define PT_VAR (TPM_PT)(PT_GROUP*2)

528 #define TPM_PT_PERMANENT (TPM_PT)(PT_VAR+0)

529 #define TPM_PT_STARTUP_CLEAR (TPM_PT)(PT_VAR+1)

530 #define TPM_PT_HR_NV_INDEX (TPM_PT)(PT_VAR+2)

531 #define TPM_PT_HR_LOADED (TPM_PT)(PT_VAR+3)

532 #define TPM_PT_HR_LOADED_AVAIL (TPM_PT)(PT_VAR+4)

533 #define TPM_PT_HR_ACTIVE (TPM_PT)(PT_VAR+5)

534 #define TPM_PT_HR_ACTIVE_AVAIL (TPM_PT)(PT_VAR+6)

535 #define TPM_PT_HR_TRANSIENT_AVAIL (TPM_PT)(PT_VAR+7)

536 #define TPM_PT_HR_PERSISTENT (TPM_PT)(PT_VAR+8)

537 #define TPM_PT_HR_PERSISTENT_AVAIL (TPM_PT)(PT_VAR+9)

538 #define TPM_PT_NV_COUNTERS (TPM_PT)(PT_VAR+10)

539 #define TPM_PT_NV_COUNTERS_AVAIL (TPM_PT)(PT_VAR+11)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 155

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

540 #define TPM_PT_ALGORITHM_SET (TPM_PT)(PT_VAR+12)

541 #define TPM_PT_LOADED_CURVES (TPM_PT)(PT_VAR+13)

542 #define TPM_PT_LOCKOUT_COUNTER (TPM_PT)(PT_VAR+14)

543 #define TPM_PT_MAX_AUTH_FAIL (TPM_PT)(PT_VAR+15)

544 #define TPM_PT_LOCKOUT_INTERVAL (TPM_PT)(PT_VAR+16)

545 #define TPM_PT_LOCKOUT_RECOVERY (TPM_PT)(PT_VAR+17)

546 #define TPM_PT_NV_WRITE_RECOVERY (TPM_PT)(PT_VAR+18)

547 #define TPM_PT_AUDIT_COUNTER_0 (TPM_PT)(PT_VAR+19)

548 #define TPM_PT_AUDIT_COUNTER_1 (TPM_PT)(PT_VAR+20)

Table 2:24 - Definition of TPM_PT_PCR Constants

549 typedef UINT32 TPM_PT_PCR;

550 #define TYPE_OF_TPM_PT_PCR UINT32

551 #define TPM_PT_PCR_FIRST (TPM_PT_PCR)(0x00000000)

552 #define TPM_PT_PCR_SAVE (TPM_PT_PCR)(0x00000000)

553 #define TPM_PT_PCR_EXTEND_L0 (TPM_PT_PCR)(0x00000001)

554 #define TPM_PT_PCR_RESET_L0 (TPM_PT_PCR)(0x00000002)

555 #define TPM_PT_PCR_EXTEND_L1 (TPM_PT_PCR)(0x00000003)

556 #define TPM_PT_PCR_RESET_L1 (TPM_PT_PCR)(0x00000004)

557 #define TPM_PT_PCR_EXTEND_L2 (TPM_PT_PCR)(0x00000005)

558 #define TPM_PT_PCR_RESET_L2 (TPM_PT_PCR)(0x00000006)

559 #define TPM_PT_PCR_EXTEND_L3 (TPM_PT_PCR)(0x00000007)

560 #define TPM_PT_PCR_RESET_L3 (TPM_PT_PCR)(0x00000008)

561 #define TPM_PT_PCR_EXTEND_L4 (TPM_PT_PCR)(0x00000009)

562 #define TPM_PT_PCR_RESET_L4 (TPM_PT_PCR)(0x0000000A)

563 #define TPM_PT_PCR_NO_INCREMENT (TPM_PT_PCR)(0x00000011)

564 #define TPM_PT_PCR_DRTM_RESET (TPM_PT_PCR)(0x00000012)

565 #define TPM_PT_PCR_POLICY (TPM_PT_PCR)(0x00000013)

566 #define TPM_PT_PCR_AUTH (TPM_PT_PCR)(0x00000014)

567 #define TPM_PT_PCR_LAST (TPM_PT_PCR)(0x00000014)

Table 2:25 - Definition of TPM_PS Constants

568 typedef UINT32 TPM_PS;

569 #define TYPE_OF_TPM_PS UINT32

570 #define TPM_PS_MAIN (TPM_PS)(0x00000000)

571 #define TPM_PS_PC (TPM_PS)(0x00000001)

572 #define TPM_PS_PDA (TPM_PS)(0x00000002)

573 #define TPM_PS_CELL_PHONE (TPM_PS)(0x00000003)

574 #define TPM_PS_SERVER (TPM_PS)(0x00000004)

575 #define TPM_PS_PERIPHERAL (TPM_PS)(0x00000005)

576 #define TPM_PS_TSS (TPM_PS)(0x00000006)

577 #define TPM_PS_STORAGE (TPM_PS)(0x00000007)

578 #define TPM_PS_AUTHENTICATION (TPM_PS)(0x00000008)

579 #define TPM_PS_EMBEDDED (TPM_PS)(0x00000009)

580 #define TPM_PS_HARDCOPY (TPM_PS)(0x0000000A)

581 #define TPM_PS_INFRASTRUCTURE (TPM_PS)(0x0000000B)

582 #define TPM_PS_VIRTUALIZATION (TPM_PS)(0x0000000C)

583 #define TPM_PS_TNC (TPM_PS)(0x0000000D)

584 #define TPM_PS_MULTI_TENANT (TPM_PS)(0x0000000E)

585 #define TPM_PS_TC (TPM_PS)(0x0000000F)

Table 2:26 - Definition of Types for Handles

586 typedef UINT32 TPM_HANDLE;

587 #define TYPE_OF_TPM_HANDLE UINT32

Table 2:27 - Definition of TPM_HT Constants

588 typedef UINT8 TPM_HT;

589 #define TYPE_OF_TPM_HT UINT8

590 #define TPM_HT_PCR (TPM_HT)(0x00)

591 #define TPM_HT_NV_INDEX (TPM_HT)(0x01)

Trusted Platform Module Library Part 4: Supporting Routines

Page 156 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

592 #define TPM_HT_HMAC_SESSION (TPM_HT)(0x02)

593 #define TPM_HT_LOADED_SESSION (TPM_HT)(0x02)

594 #define TPM_HT_POLICY_SESSION (TPM_HT)(0x03)

595 #define TPM_HT_SAVED_SESSION (TPM_HT)(0x03)

596 #define TPM_HT_PERMANENT (TPM_HT)(0x40)

597 #define TPM_HT_TRANSIENT (TPM_HT)(0x80)

598 #define TPM_HT_PERSISTENT (TPM_HT)(0x81)

599 #define TPM_HT_AC (TPM_HT)(0x90)

Table 2:28 - Definition of TPM_RH Constants

600 typedef TPM_HANDLE TPM_RH;

601 #define TPM_RH_FIRST (TPM_RH)(0x40000000)

602 #define TPM_RH_SRK (TPM_RH)(0x40000000)

603 #define TPM_RH_OWNER (TPM_RH)(0x40000001)

604 #define TPM_RH_REVOKE (TPM_RH)(0x40000002)

605 #define TPM_RH_TRANSPORT (TPM_RH)(0x40000003)

606 #define TPM_RH_OPERATOR (TPM_RH)(0x40000004)

607 #define TPM_RH_ADMIN (TPM_RH)(0x40000005)

608 #define TPM_RH_EK (TPM_RH)(0x40000006)

609 #define TPM_RH_NULL (TPM_RH)(0x40000007)

610 #define TPM_RH_UNASSIGNED (TPM_RH)(0x40000008)

611 #define TPM_RS_PW (TPM_RH)(0x40000009)

612 #define TPM_RH_LOCKOUT (TPM_RH)(0x4000000A)

613 #define TPM_RH_ENDORSEMENT (TPM_RH)(0x4000000B)

614 #define TPM_RH_PLATFORM (TPM_RH)(0x4000000C)

615 #define TPM_RH_PLATFORM_NV (TPM_RH)(0x4000000D)

616 #define TPM_RH_AUTH_00 (TPM_RH)(0x40000010)

617 #define TPM_RH_AUTH_FF (TPM_RH)(0x4000010F)

618 #define TPM_RH_ACT_0 (TPM_RH)(0x40000110)

619 #define TPM_RH_ACT_F (TPM_RH)(0x4000011F)

620 #define TPM_RH_LAST (TPM_RH)(0x4000011F)

Table 2:29 - Definition of TPM_HC Constants

621 typedef TPM_HANDLE TPM_HC;

622 #define HR_HANDLE_MASK (TPM_HC)(0x00FFFFFF)

623 #define HR_RANGE_MASK (TPM_HC)(0xFF000000)

624 #define HR_SHIFT (TPM_HC)(24)

625 #define HR_PCR (TPM_HC)((TPM_HT_PCR<<HR_SHIFT))

626 #define HR_HMAC_SESSION (TPM_HC)((TPM_HT_HMAC_SESSION<<HR_SHIFT))

627 #define HR_POLICY_SESSION (TPM_HC)((TPM_HT_POLICY_SESSION<<HR_SHIFT))

628 #define HR_TRANSIENT (TPM_HC)((TPM_HT_TRANSIENT<<HR_SHIFT))

629 #define HR_PERSISTENT (TPM_HC)((TPM_HT_PERSISTENT<<HR_SHIFT))

630 #define HR_NV_INDEX (TPM_HC)((TPM_HT_NV_INDEX<<HR_SHIFT))

631 #define HR_PERMANENT (TPM_HC)((TPM_HT_PERMANENT<<HR_SHIFT))

632 #define PCR_FIRST (TPM_HC)((HR_PCR+0))

633 #define PCR_LAST (TPM_HC)((PCR_FIRST+IMPLEMENTATION_PCR-1))

634 #define HMAC_SESSION_FIRST (TPM_HC)((HR_HMAC_SESSION+0))

635 #define HMAC_SESSION_LAST (TPM_HC)((HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1))

636 #define LOADED_SESSION_FIRST (TPM_HC)(HMAC_SESSION_FIRST)

637 #define LOADED_SESSION_LAST (TPM_HC)(HMAC_SESSION_LAST)

638 #define POLICY_SESSION_FIRST (TPM_HC)((HR_POLICY_SESSION+0))

639 #define POLICY_SESSION_LAST \

640 (TPM_HC)((POLICY_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1))

641 #define TRANSIENT_FIRST (TPM_HC)((HR_TRANSIENT+0))

642 #define ACTIVE_SESSION_FIRST (TPM_HC)(POLICY_SESSION_FIRST)

643 #define ACTIVE_SESSION_LAST (TPM_HC)(POLICY_SESSION_LAST)

644 #define TRANSIENT_LAST (TPM_HC)((TRANSIENT_FIRST+MAX_LOADED_OBJECTS-1))

645 #define PERSISTENT_FIRST (TPM_HC)((HR_PERSISTENT+0))

646 #define PERSISTENT_LAST (TPM_HC)((PERSISTENT_FIRST+0x00FFFFFF))

647 #define PLATFORM_PERSISTENT (TPM_HC)((PERSISTENT_FIRST+0x00800000))

648 #define NV_INDEX_FIRST (TPM_HC)((HR_NV_INDEX+0))

649 #define NV_INDEX_LAST (TPM_HC)((NV_INDEX_FIRST+0x00FFFFFF))

650 #define PERMANENT_FIRST (TPM_HC)(TPM_RH_FIRST)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 157

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

651 #define PERMANENT_LAST (TPM_HC)(TPM_RH_LAST)

652 #define HR_NV_AC (TPM_HC)(((TPM_HT_NV_INDEX<<HR_SHIFT)+0xD00000))

653 #define NV_AC_FIRST (TPM_HC)((HR_NV_AC+0))

654 #define NV_AC_LAST (TPM_HC)((HR_NV_AC+0x0000FFFF))

655 #define HR_AC (TPM_HC)((TPM_HT_AC<<HR_SHIFT))

656 #define AC_FIRST (TPM_HC)((HR_AC+0))

657 #define AC_LAST (TPM_HC)((HR_AC+0x0000FFFF))

658 #define TYPE_OF_TPMA_ALGORITHM UINT32

659 #define TPMA_ALGORITHM_TO_UINT32(a) (*((UINT32 *)&(a)))

660 #define UINT32_TO_TPMA_ALGORITHM(a) (*((TPMA_ALGORITHM *)&(a)))

661 #define TPMA_ALGORITHM_TO_BYTE_ARRAY(i, a) \

662 UINT32_TO_BYTE_ARRAY((TPMA_ALGORITHM_TO_UINT32(i)), (a))

663 #define BYTE_ARRAY_TO_TPMA_ALGORITHM(i, a) \

664 {UINT32 x = BYTE_ARRAY_TO_UINT32(a); \

665 i = UINT32_TO_TPMA_ALGORITHM(x); \

666 }

667 #if USE_BIT_FIELD_STRUCTURES

668 typedef struct TPMA_ALGORITHM { // Table 2:30

669 unsigned asymmetric : 1;

670 unsigned symmetric : 1;

671 unsigned hash : 1;

672 unsigned object : 1;

673 unsigned Reserved_bits_at_4 : 4;

674 unsigned signing : 1;

675 unsigned encrypting : 1;

676 unsigned method : 1;

677 unsigned Reserved_bits_at_11 : 21;

678 } TPMA_ALGORITHM; /* Bits */

This is the initializer for a TPMA_ALGORITHM structure

679 #define TPMA_ALGORITHM_INITIALIZER(\

680 asymmetric, symmetric, hash, object, bits_at_4, \

681 signing, encrypting, method, bits_at_11) \

682 {asymmetric, symmetric, hash, object, bits_at_4, \

683 signing, encrypting, method, bits_at_11}

684 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:30 TPMA_ALGORITHM using bit masking

685 typedef UINT32 TPMA_ALGORITHM;

686 #define TYPE_OF_TPMA_ALGORITHM UINT32

687 #define TPMA_ALGORITHM_asymmetric ((TPMA_ALGORITHM)1 << 0)

688 #define TPMA_ALGORITHM_symmetric ((TPMA_ALGORITHM)1 << 1)

689 #define TPMA_ALGORITHM_hash ((TPMA_ALGORITHM)1 << 2)

690 #define TPMA_ALGORITHM_object ((TPMA_ALGORITHM)1 << 3)

691 #define TPMA_ALGORITHM_signing ((TPMA_ALGORITHM)1 << 8)

692 #define TPMA_ALGORITHM_encrypting ((TPMA_ALGORITHM)1 << 9)

693 #define TPMA_ALGORITHM_method ((TPMA_ALGORITHM)1 << 10)

This is the initializer for a TPMA_ALGORITHM bit array.

694 #define TPMA_ALGORITHM_INITIALIZER(\

695 asymmetric, symmetric, hash, object, bits_at_4, \

696 signing, encrypting, method, bits_at_11) \

697 {(asymmetric << 0) + (symmetric << 1) + (hash << 2) + \

698 (object << 3) + (signing << 8) + (encrypting << 9) + \

699 (method << 10)}

700 #endif // USE_BIT_FIELD_STRUCTURES

701 #define TYPE_OF_TPMA_OBJECT UINT32

702 #define TPMA_OBJECT_TO_UINT32(a) (*((UINT32 *)&(a)))

703 #define UINT32_TO_TPMA_OBJECT(a) (*((TPMA_OBJECT *)&(a)))

704 #define TPMA_OBJECT_TO_BYTE_ARRAY(i, a) \

705 UINT32_TO_BYTE_ARRAY((TPMA_OBJECT_TO_UINT32(i)), (a))

Trusted Platform Module Library Part 4: Supporting Routines

Page 158 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

706 #define BYTE_ARRAY_TO_TPMA_OBJECT(i, a) \

707 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPMA_OBJECT(x); }

708 #if USE_BIT_FIELD_STRUCTURES

709 typedef struct TPMA_OBJECT { // Table 2:31

710 unsigned Reserved_bit_at_0 : 1;

711 unsigned fixedTPM : 1;

712 unsigned stClear : 1;

713 unsigned Reserved_bit_at_3 : 1;

714 unsigned fixedParent : 1;

715 unsigned sensitiveDataOrigin : 1;

716 unsigned userWithAuth : 1;

717 unsigned adminWithPolicy : 1;

718 unsigned Reserved_bits_at_8 : 2;

719 unsigned noDA : 1;

720 unsigned encryptedDuplication : 1;

721 unsigned Reserved_bits_at_12 : 4;

722 unsigned restricted : 1;

723 unsigned decrypt : 1;

724 unsigned sign : 1;

725 unsigned x509sign : 1;

726 unsigned Reserved_bits_at_20 : 12;

727 } TPMA_OBJECT; /* Bits */

This is the initializer for a TPMA_OBJECT structure

728 #define TPMA_OBJECT_INITIALIZER(\

729 bit_at_0, fixedtpm, stclear, \

730 bit_at_3, fixedparent, sensitivedataorigin, \

731 userwithauth, adminwithpolicy, bits_at_8, \

732 noda, encryptedduplication, bits_at_12, \

733 restricted, decrypt, sign, \

734 x509sign, bits_at_20) \

735 {bit_at_0, fixedtpm, stclear, \

736 bit_at_3, fixedparent, sensitivedataorigin, \

737 userwithauth, adminwithpolicy, bits_at_8, \

738 noda, encryptedduplication, bits_at_12, \

739 restricted, decrypt, sign, \

740 x509sign, bits_at_20}

741 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:31 TPMA_OBJECT using bit masking

742 typedef UINT32 TPMA_OBJECT;

743 #define TYPE_OF_TPMA_OBJECT UINT32

744 #define TPMA_OBJECT_fixedTPM ((TPMA_OBJECT)1 << 1)

745 #define TPMA_OBJECT_stClear ((TPMA_OBJECT)1 << 2)

746 #define TPMA_OBJECT_fixedParent ((TPMA_OBJECT)1 << 4)

747 #define TPMA_OBJECT_sensitiveDataOrigin ((TPMA_OBJECT)1 << 5)

748 #define TPMA_OBJECT_userWithAuth ((TPMA_OBJECT)1 << 6)

749 #define TPMA_OBJECT_adminWithPolicy ((TPMA_OBJECT)1 << 7)

750 #define TPMA_OBJECT_noDA ((TPMA_OBJECT)1 << 10)

751 #define TPMA_OBJECT_encryptedDuplication ((TPMA_OBJECT)1 << 11)

752 #define TPMA_OBJECT_restricted ((TPMA_OBJECT)1 << 16)

753 #define TPMA_OBJECT_decrypt ((TPMA_OBJECT)1 << 17)

754 #define TPMA_OBJECT_sign ((TPMA_OBJECT)1 << 18)

755 #define TPMA_OBJECT_x509sign ((TPMA_OBJECT)1 << 19)

This is the initializer for a TPMA_OBJECT bit array.

756 #define TPMA_OBJECT_INITIALIZER(\

757 bit_at_0, fixedtpm, stclear, \

758 bit_at_3, fixedparent, sensitivedataorigin, \

759 userwithauth, adminwithpolicy, bits_at_8, \

760 noda, encryptedduplication, bits_at_12, \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 159

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

761 restricted, decrypt, sign, \

762 x509sign, bits_at_20) \

763 {(fixedtpm << 1) + (stclear << 2) + \

764 (fixedparent << 4) + (sensitivedataorigin << 5) + \

765 (userwithauth << 6) + (adminwithpolicy << 7) + \

766 (noda << 10) + (encryptedduplication << 11) + \

767 (restricted << 16) + (decrypt << 17) + \

768 (sign << 18) + (x509sign << 19)}

769 #endif // USE_BIT_FIELD_STRUCTURES

770 #define TYPE_OF_TPMA_SESSION UINT8

771 #define TPMA_SESSION_TO_UINT8(a) (*((UINT8 *)&(a)))

772 #define UINT8_TO_TPMA_SESSION(a) (*((TPMA_SESSION *)&(a)))

773 #define TPMA_SESSION_TO_BYTE_ARRAY(i, a) \

774 UINT8_TO_BYTE_ARRAY((TPMA_SESSION_TO_UINT8(i)), (a))

775 #define BYTE_ARRAY_TO_TPMA_SESSION(i, a) \

776 { UINT8 x = BYTE_ARRAY_TO_UINT8(a); i = UINT8_TO_TPMA_SESSION(x); }

777 #if USE_BIT_FIELD_STRUCTURES

778 typedef struct TPMA_SESSION { // Table 2:32

779 unsigned continueSession : 1;

780 unsigned auditExclusive : 1;

781 unsigned auditReset : 1;

782 unsigned Reserved_bits_at_3 : 2;

783 unsigned decrypt : 1;

784 unsigned encrypt : 1;

785 unsigned audit : 1;

786 } TPMA_SESSION; /* Bits */

This is the initializer for a TPMA_SESSION structure

787 #define TPMA_SESSION_INITIALIZER(\

788 continuesession, auditexclusive, auditreset, bits_at_3, \

789 decrypt, encrypt, audit) \

790 {continuesession, auditexclusive, auditreset, bits_at_3, \

791 decrypt, encrypt, audit}

792 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:32 TPMA_SESSION using bit masking

793 typedef UINT8 TPMA_SESSION;

794 #define TYPE_OF_TPMA_SESSION UINT8

795 #define TPMA_SESSION_continueSession ((TPMA_SESSION)1 << 0)

796 #define TPMA_SESSION_auditExclusive ((TPMA_SESSION)1 << 1)

797 #define TPMA_SESSION_auditReset ((TPMA_SESSION)1 << 2)

798 #define TPMA_SESSION_decrypt ((TPMA_SESSION)1 << 5)

799 #define TPMA_SESSION_encrypt ((TPMA_SESSION)1 << 6)

800 #define TPMA_SESSION_audit ((TPMA_SESSION)1 << 7)

This is the initializer for a TPMA_SESSION bit array.

801 #define TPMA_SESSION_INITIALIZER(\

802 continuesession, auditexclusive, auditreset, bits_at_3, \

803 decrypt, encrypt, audit) \

804 {(continuesession << 0) + (auditexclusive << 1) + \

805 (auditreset << 2) + (decrypt << 5) + \

806 (encrypt << 6) + (audit << 7)}

807 #endif // USE_BIT_FIELD_STRUCTURES

808 #define TYPE_OF_TPMA_LOCALITY UINT8

809 #define TPMA_LOCALITY_TO_UINT8(a) (*((UINT8 *)&(a)))

810 #define UINT8_TO_TPMA_LOCALITY(a) (*((TPMA_LOCALITY *)&(a)))

811 #define TPMA_LOCALITY_TO_BYTE_ARRAY(i, a) \

812 UINT8_TO_BYTE_ARRAY((TPMA_LOCALITY_TO_UINT8(i)), (a))

813 #define BYTE_ARRAY_TO_TPMA_LOCALITY(i, a) \

814 { UINT8 x = BYTE_ARRAY_TO_UINT8(a); i = UINT8_TO_TPMA_LOCALITY(x); }

815 #if USE_BIT_FIELD_STRUCTURES

Trusted Platform Module Library Part 4: Supporting Routines

Page 160 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

816 typedef struct TPMA_LOCALITY { // Table 2:33

817 unsigned TPM_LOC_ZERO : 1;

818 unsigned TPM_LOC_ONE : 1;

819 unsigned TPM_LOC_TWO : 1;

820 unsigned TPM_LOC_THREE : 1;

821 unsigned TPM_LOC_FOUR : 1;

822 unsigned Extended : 3;

823 } TPMA_LOCALITY; /* Bits */

This is the initializer for a TPMA_LOCALITY structure

824 #define TPMA_LOCALITY_INITIALIZER(\

825 tpm_loc_zero, tpm_loc_one, tpm_loc_two, tpm_loc_three, \

826 tpm_loc_four, extended) \

827 {tpm_loc_zero, tpm_loc_one, tpm_loc_two, tpm_loc_three, \

828 tpm_loc_four, extended}

829 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:33 TPMA_LOCALITY using bit masking

830 typedef UINT8 TPMA_LOCALITY;

831 #define TYPE_OF_TPMA_LOCALITY UINT8

832 #define TPMA_LOCALITY_TPM_LOC_ZERO ((TPMA_LOCALITY)1 << 0)

833 #define TPMA_LOCALITY_TPM_LOC_ONE ((TPMA_LOCALITY)1 << 1)

834 #define TPMA_LOCALITY_TPM_LOC_TWO ((TPMA_LOCALITY)1 << 2)

835 #define TPMA_LOCALITY_TPM_LOC_THREE ((TPMA_LOCALITY)1 << 3)

836 #define TPMA_LOCALITY_TPM_LOC_FOUR ((TPMA_LOCALITY)1 << 4)

837 #define TPMA_LOCALITY_Extended_SHIFT 5

838 #define TPMA_LOCALITY_Extended ((TPMA_LOCALITY)0x7 << 5)

This is the initializer for a TPMA_LOCALITY bit array.

839 #define TPMA_LOCALITY_INITIALIZER(\

840 tpm_loc_zero, tpm_loc_one, tpm_loc_two, tpm_loc_three, \

841 tpm_loc_four, extended) \

842 {(tpm_loc_zero << 0) + (tpm_loc_one << 1) + (tpm_loc_two << 2) + \

843 (tpm_loc_three << 3) + (tpm_loc_four << 4) + (extended << 5)}

844 #endif // USE_BIT_FIELD_STRUCTURES

845 #define TYPE_OF_TPMA_PERMANENT UINT32

846 #define TPMA_PERMANENT_TO_UINT32(a) (*((UINT32 *)&(a)))

847 #define UINT32_TO_TPMA_PERMANENT(a) (*((TPMA_PERMANENT *)&(a)))

848 #define TPMA_PERMANENT_TO_BYTE_ARRAY(i, a) \

849 UINT32_TO_BYTE_ARRAY((TPMA_PERMANENT_TO_UINT32(i)), (a))

850 #define BYTE_ARRAY_TO_TPMA_PERMANENT(i, a) \

851 {UINT32 x = BYTE_ARRAY_TO_UINT32(a); \

852 i = UINT32_TO_TPMA_PERMANENT(x); \

853 }

854 #if USE_BIT_FIELD_STRUCTURES

855 typedef struct TPMA_PERMANENT { // Table 2:34

856 unsigned ownerAuthSet : 1;

857 unsigned endorsementAuthSet : 1;

858 unsigned lockoutAuthSet : 1;

859 unsigned Reserved_bits_at_3 : 5;

860 unsigned disableClear : 1;

861 unsigned inLockout : 1;

862 unsigned tpmGeneratedEPS : 1;

863 unsigned Reserved_bits_at_11 : 21;

864 } TPMA_PERMANENT; /* Bits */

This is the initializer for a TPMA_PERMANENT structure

865 #define TPMA_PERMANENT_INITIALIZER(\

866 ownerauthset, endorsementauthset, lockoutauthset, \

867 bits_at_3, disableclear, inlockout, \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 161

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

868 tpmgeneratedeps, bits_at_11) \

869 {ownerauthset, endorsementauthset, lockoutauthset, \

870 bits_at_3, disableclear, inlockout, \

871 tpmgeneratedeps, bits_at_11}

872 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:34 TPMA_PERMANENT using bit masking

873 typedef UINT32 TPMA_PERMANENT;

874 #define TYPE_OF_TPMA_PERMANENT UINT32

875 #define TPMA_PERMANENT_ownerAuthSet ((TPMA_PERMANENT)1 << 0)

876 #define TPMA_PERMANENT_endorsementAuthSet ((TPMA_PERMANENT)1 << 1)

877 #define TPMA_PERMANENT_lockoutAuthSet ((TPMA_PERMANENT)1 << 2)

878 #define TPMA_PERMANENT_disableClear ((TPMA_PERMANENT)1 << 8)

879 #define TPMA_PERMANENT_inLockout ((TPMA_PERMANENT)1 << 9)

880 #define TPMA_PERMANENT_tpmGeneratedEPS ((TPMA_PERMANENT)1 << 10)

This is the initializer for a TPMA_PERMANENT bit array.

881 #define TPMA_PERMANENT_INITIALIZER(\

882 ownerauthset, endorsementauthset, lockoutauthset, \

883 bits_at_3, disableclear, inlockout, \

884 tpmgeneratedeps, bits_at_11) \

885 {(ownerauthset << 0) + (endorsementauthset << 1) + \

886 (lockoutauthset << 2) + (disableclear << 8) + \

887 (inlockout << 9) + (tpmgeneratedeps << 10)}

888 #endif // USE_BIT_FIELD_STRUCTURES

889 #define TYPE_OF_TPMA_STARTUP_CLEAR UINT32

890 #define TPMA_STARTUP_CLEAR_TO_UINT32(a) (*((UINT32 *)&(a)))

891 #define UINT32_TO_TPMA_STARTUP_CLEAR(a) (*((TPMA_STARTUP_CLEAR *)&(a)))

892 #define TPMA_STARTUP_CLEAR_TO_BYTE_ARRAY(i, a) \

893 UINT32_TO_BYTE_ARRAY((TPMA_STARTUP_CLEAR_TO_UINT32(i)), (a))

894 #define BYTE_ARRAY_TO_TPMA_STARTUP_CLEAR(i, a) \

895 {UINT32 x = BYTE_ARRAY_TO_UINT32(a); \

896 i = UINT32_TO_TPMA_STARTUP_CLEAR(x); \

897 }

898 #if USE_BIT_FIELD_STRUCTURES

899 typedef struct TPMA_STARTUP_CLEAR { // Table 2:35

900 unsigned phEnable : 1;

901 unsigned shEnable : 1;

902 unsigned ehEnable : 1;

903 unsigned phEnableNV : 1;

904 unsigned Reserved_bits_at_4 : 27;

905 unsigned orderly : 1;

906 } TPMA_STARTUP_CLEAR; /* Bits */

This is the initializer for a TPMA_STARTUP_CLEAR structure

907 #define TPMA_STARTUP_CLEAR_INITIALIZER(\

908 phenable, shenable, ehenable, phenablenv, bits_at_4, orderly) \

909 {phenable, shenable, ehenable, phenablenv, bits_at_4, orderly}

910 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:35 TPMA_STARTUP_CLEAR using bit masking

911 typedef UINT32 TPMA_STARTUP_CLEAR;

912 #define TYPE_OF_TPMA_STARTUP_CLEAR UINT32

913 #define TPMA_STARTUP_CLEAR_phEnable ((TPMA_STARTUP_CLEAR)1 << 0)

914 #define TPMA_STARTUP_CLEAR_shEnable ((TPMA_STARTUP_CLEAR)1 << 1)

915 #define TPMA_STARTUP_CLEAR_ehEnable ((TPMA_STARTUP_CLEAR)1 << 2)

916 #define TPMA_STARTUP_CLEAR_phEnableNV ((TPMA_STARTUP_CLEAR)1 << 3)

917 #define TPMA_STARTUP_CLEAR_orderly ((TPMA_STARTUP_CLEAR)1 << 31)

Trusted Platform Module Library Part 4: Supporting Routines

Page 162 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

This is the initializer for a TPMA_STARTUP_CLEAR bit array.

918 #define TPMA_STARTUP_CLEAR_INITIALIZER(\

919 phenable, shenable, ehenable, phenablenv, bits_at_4, orderly) \

920 {(phenable << 0) + (shenable << 1) + (ehenable << 2) + \

921 (phenablenv << 3) + (orderly << 31)}

922 #endif // USE_BIT_FIELD_STRUCTURES

923 #define TYPE_OF_TPMA_MEMORY UINT32

924 #define TPMA_MEMORY_TO_UINT32(a) (*((UINT32 *)&(a)))

925 #define UINT32_TO_TPMA_MEMORY(a) (*((TPMA_MEMORY *)&(a)))

926 #define TPMA_MEMORY_TO_BYTE_ARRAY(i, a) \

927 UINT32_TO_BYTE_ARRAY((TPMA_MEMORY_TO_UINT32(i)), (a))

928 #define BYTE_ARRAY_TO_TPMA_MEMORY(i, a) \

929 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPMA_MEMORY(x); }

930 #if USE_BIT_FIELD_STRUCTURES

931 typedef struct TPMA_MEMORY { // Table 2:36

932 unsigned sharedRAM : 1;

933 unsigned sharedNV : 1;

934 unsigned objectCopiedToRam : 1;

935 unsigned Reserved_bits_at_3 : 29;

936 } TPMA_MEMORY; /* Bits */

This is the initializer for a TPMA_MEMORY structure

937 #define TPMA_MEMORY_INITIALIZER(\

938 sharedram, sharednv, objectcopiedtoram, bits_at_3) \

939 {sharedram, sharednv, objectcopiedtoram, bits_at_3}

940 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:36 TPMA_MEMORY using bit masking

941 typedef UINT32 TPMA_MEMORY;

942 #define TYPE_OF_TPMA_MEMORY UINT32

943 #define TPMA_MEMORY_sharedRAM ((TPMA_MEMORY)1 << 0)

944 #define TPMA_MEMORY_sharedNV ((TPMA_MEMORY)1 << 1)

945 #define TPMA_MEMORY_objectCopiedToRam ((TPMA_MEMORY)1 << 2)

This is the initializer for a TPMA_MEMORY bit array.

946 #define TPMA_MEMORY_INITIALIZER(\

947 sharedram, sharednv, objectcopiedtoram, bits_at_3) \

948 {(sharedram << 0) + (sharednv << 1) + (objectcopiedtoram << 2)}

949 #endif // USE_BIT_FIELD_STRUCTURES

950 #define TYPE_OF_TPMA_CC UINT32

951 #define TPMA_CC_TO_UINT32(a) (*((UINT32 *)&(a)))

952 #define UINT32_TO_TPMA_CC(a) (*((TPMA_CC *)&(a)))

953 #define TPMA_CC_TO_BYTE_ARRAY(i, a) \

954 UINT32_TO_BYTE_ARRAY((TPMA_CC_TO_UINT32(i)), (a))

955 #define BYTE_ARRAY_TO_TPMA_CC(i, a) \

956 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPMA_CC(x); }

957 #if USE_BIT_FIELD_STRUCTURES

958 typedef struct TPMA_CC { // Table 2:37

959 unsigned commandIndex : 16;

960 unsigned Reserved_bits_at_16 : 6;

961 unsigned nv : 1;

962 unsigned extensive : 1;

963 unsigned flushed : 1;

964 unsigned cHandles : 3;

965 unsigned rHandle : 1;

966 unsigned V : 1;

967 unsigned Reserved_bits_at_30 : 2;

968 } TPMA_CC; /* Bits */

This is the initializer for a TPMA_CC structure

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 163

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

969 #define TPMA_CC_INITIALIZER(\

970 commandindex, bits_at_16, nv, extensive, flushed, \

971 chandles, rhandle, v, bits_at_30) \

972 {commandindex, bits_at_16, nv, extensive, flushed, \

973 chandles, rhandle, v, bits_at_30}

974 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:37 TPMA_CC using bit masking

975 typedef UINT32 TPMA_CC;

976 #define TYPE_OF_TPMA_CC UINT32

977 #define TPMA_CC_commandIndex_SHIFT 0

978 #define TPMA_CC_commandIndex ((TPMA_CC)0xffff << 0)

979 #define TPMA_CC_nv ((TPMA_CC)1 << 22)

980 #define TPMA_CC_extensive ((TPMA_CC)1 << 23)

981 #define TPMA_CC_flushed ((TPMA_CC)1 << 24)

982 #define TPMA_CC_cHandles_SHIFT 25

983 #define TPMA_CC_cHandles ((TPMA_CC)0x7 << 25)

984 #define TPMA_CC_rHandle ((TPMA_CC)1 << 28)

985 #define TPMA_CC_V ((TPMA_CC)1 << 29)

This is the initializer for a TPMA_CC bit array.

986 #define TPMA_CC_INITIALIZER(\

987 commandindex, bits_at_16, nv, extensive, flushed, \

988 chandles, rhandle, v, bits_at_30) \

989 {(commandindex << 0) + (nv << 22) + (extensive << 23) + \

990 (flushed << 24) + (chandles << 25) + (rhandle << 28) + \

991 (v << 29)}

992 #endif // USE_BIT_FIELD_STRUCTURES

993 #define TYPE_OF_TPMA_MODES UINT32

994 #define TPMA_MODES_TO_UINT32(a) (*((UINT32 *)&(a)))

995 #define UINT32_TO_TPMA_MODES(a) (*((TPMA_MODES *)&(a)))

996 #define TPMA_MODES_TO_BYTE_ARRAY(i, a) \

997 UINT32_TO_BYTE_ARRAY((TPMA_MODES_TO_UINT32(i)), (a))

998 #define BYTE_ARRAY_TO_TPMA_MODES(i, a) \

999 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPMA_MODES(x); }

1000 #if USE_BIT_FIELD_STRUCTURES

1001 typedef struct TPMA_MODES { // Table 2:38

1002 unsigned FIPS_140_2 : 1;

1003 unsigned Reserved_bits_at_1 : 31;

1004 } TPMA_MODES; /* Bits */

This is the initializer for a TPMA_MODES structure

1005 #define TPMA_MODES_INITIALIZER(fips_140_2, bits_at_1) {fips_140_2, bits_at_1}

1006 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:38 TPMA_MODES using bit masking

1007 typedef UINT32 TPMA_MODES;

1008 #define TYPE_OF_TPMA_MODES UINT32

1009 #define TPMA_MODES_FIPS_140_2 ((TPMA_MODES)1 << 0)

This is the initializer for a TPMA_MODES bit array.

1010 #define TPMA_MODES_INITIALIZER(fips_140_2, bits_at_1) {(fips_140_2 << 0)}

1011 #endif // USE_BIT_FIELD_STRUCTURES

1012 #define TYPE_OF_TPMA_X509_KEY_USAGE UINT32

1013 #define TPMA_X509_KEY_USAGE_TO_UINT32(a) (*((UINT32 *)&(a)))

1014 #define UINT32_TO_TPMA_X509_KEY_USAGE(a) (*((TPMA_X509_KEY_USAGE *)&(a)))

1015 #define TPMA_X509_KEY_USAGE_TO_BYTE_ARRAY(i, a) \

1016 UINT32_TO_BYTE_ARRAY((TPMA_X509_KEY_USAGE_TO_UINT32(i)), (a))

Trusted Platform Module Library Part 4: Supporting Routines

Page 164 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1017 #define BYTE_ARRAY_TO_TPMA_X509_KEY_USAGE(i, a) \

1018 {UINT32 x = BYTE_ARRAY_TO_UINT32(a); \

1019 i = UINT32_TO_TPMA_X509_KEY_USAGE(x); \

1020 }

1021 #if USE_BIT_FIELD_STRUCTURES

1022 typedef struct TPMA_X509_KEY_USAGE { // Table 2:39

1023 unsigned Reserved_bits_at_0 : 23;

1024 unsigned decipherOnly : 1;

1025 unsigned encipherOnly : 1;

1026 unsigned cRLSign : 1;

1027 unsigned keyCertSign : 1;

1028 unsigned keyAgreement : 1;

1029 unsigned dataEncipherment : 1;

1030 unsigned keyEncipherment : 1;

1031 unsigned nonrepudiation : 1;

1032 unsigned digitalSignature : 1;

1033 } TPMA_X509_KEY_USAGE; /* Bits */

This is the initializer for a TPMA_X509_KEY_USAGE structure

1034 #define TPMA_X509_KEY_USAGE_INITIALIZER(\

1035 bits_at_0, decipheronly, encipheronly, \

1036 crlsign, keycertsign, keyagreement, \

1037 dataencipherment, keyencipherment, nonrepudiation, \

1038 digitalsignature) \

1039 {bits_at_0, decipheronly, encipheronly, \

1040 crlsign, keycertsign, keyagreement, \

1041 dataencipherment, keyencipherment, nonrepudiation, \

1042 digitalsignature}

1043 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:39 TPMA_X509_KEY_USAGE using bit masking

1044 typedef UINT32 TPMA_X509_KEY_USAGE;

1045 #define TYPE_OF_TPMA_X509_KEY_USAGE UINT32

1046 #define TPMA_X509_KEY_USAGE_decipherOnly ((TPMA_X509_KEY_USAGE)1 << 23)

1047 #define TPMA_X509_KEY_USAGE_encipherOnly ((TPMA_X509_KEY_USAGE)1 << 24)

1048 #define TPMA_X509_KEY_USAGE_cRLSign ((TPMA_X509_KEY_USAGE)1 << 25)

1049 #define TPMA_X509_KEY_USAGE_keyCertSign ((TPMA_X509_KEY_USAGE)1 << 26)

1050 #define TPMA_X509_KEY_USAGE_keyAgreement ((TPMA_X509_KEY_USAGE)1 << 27)

1051 #define TPMA_X509_KEY_USAGE_dataEncipherment ((TPMA_X509_KEY_USAGE)1 << 28)

1052 #define TPMA_X509_KEY_USAGE_keyEncipherment ((TPMA_X509_KEY_USAGE)1 << 29)

1053 #define TPMA_X509_KEY_USAGE_nonrepudiation ((TPMA_X509_KEY_USAGE)1 << 30)

1054 #define TPMA_X509_KEY_USAGE_digitalSignature ((TPMA_X509_KEY_USAGE)1 << 31)

This is the initializer for a TPMA_X509_KEY_USAGE bit array.

1055 #define TPMA_X509_KEY_USAGE_INITIALIZER(\

1056 bits_at_0, decipheronly, encipheronly, \

1057 crlsign, keycertsign, keyagreement, \

1058 dataencipherment, keyencipherment, nonrepudiation, \

1059 digitalsignature) \

1060 {(decipheronly << 23) + (encipheronly << 24) + \

1061 (crlsign << 25) + (keycertsign << 26) + \

1062 (keyagreement << 27) + (dataencipherment << 28) + \

1063 (keyencipherment << 29) + (nonrepudiation << 30) + \

1064 (digitalsignature << 31)}

1065 #endif // USE_BIT_FIELD_STRUCTURES

1066 #define TYPE_OF_TPMA_ACT UINT32

1067 #define TPMA_ACT_TO_UINT32(a) (*((UINT32 *)&(a)))

1068 #define UINT32_TO_TPMA_ACT(a) (*((TPMA_ACT *)&(a)))

1069 #define TPMA_ACT_TO_BYTE_ARRAY(i, a) \

1070 UINT32_TO_BYTE_ARRAY((TPMA_ACT_TO_UINT32(i)), (a))

1071 #define BYTE_ARRAY_TO_TPMA_ACT(i, a) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 165

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1072 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPMA_ACT(x); }

1073 #if USE_BIT_FIELD_STRUCTURES

1074 typedef struct TPMA_ACT { // Table 2:40

1075 unsigned signaled : 1;

1076 unsigned preserveSignaled : 1;

1077 unsigned Reserved_bits_at_2 : 30;

1078 } TPMA_ACT; /* Bits */

This is the initializer for a TPMA_ACT structure

1079 #define TPMA_ACT_INITIALIZER(signaled, preservesignaled, bits_at_2) \

1080 {signaled, preservesignaled, bits_at_2}

1081 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:40 TPMA_ACT using bit masking

1082 typedef UINT32 TPMA_ACT;

1083 #define TYPE_OF_TPMA_ACT UINT32

1084 #define TPMA_ACT_signaled ((TPMA_ACT)1 << 0)

1085 #define TPMA_ACT_preserveSignaled ((TPMA_ACT)1 << 1)

This is the initializer for a TPMA_ACT bit array.

1086 #define TPMA_ACT_INITIALIZER(signaled, preservesignaled, bits_at_2) \

1087 {(signaled << 0) + (preservesignaled << 1)}

1088 #endif // USE_BIT_FIELD_STRUCTURES

1089 typedef BYTE TPMI_YES_NO; // Table 2:41 /* Interface */

1090 typedef TPM_HANDLE TPMI_DH_OBJECT; // Table 2:42 /* Interface */

1091 typedef TPM_HANDLE TPMI_DH_PARENT; // Table 2:43 /* Interface */

1092 typedef TPM_HANDLE TPMI_DH_PERSISTENT; // Table 2:44 /* Interface */

1093 typedef TPM_HANDLE TPMI_DH_ENTITY; // Table 2:45 /* Interface */

1094 typedef TPM_HANDLE TPMI_DH_PCR; // Table 2:46 /* Interface */

1095 typedef TPM_HANDLE TPMI_SH_AUTH_SESSION; // Table 2:47 /* Interface */

1096 typedef TPM_HANDLE TPMI_SH_HMAC; // Table 2:48 /* Interface */

1097 typedef TPM_HANDLE TPMI_SH_POLICY; // Table 2:49 /* Interface */

1098 typedef TPM_HANDLE TPMI_DH_CONTEXT; // Table 2:50 /* Interface */

1099 typedef TPM_HANDLE TPMI_DH_SAVED; // Table 2:51 /* Interface */

1100 typedef TPM_HANDLE TPMI_RH_HIERARCHY; // Table 2:52 /* Interface */

1101 typedef TPM_HANDLE TPMI_RH_ENABLES; // Table 2:53 /* Interface */

1102 typedef TPM_HANDLE TPMI_RH_HIERARCHY_AUTH; // Table 2:54 /* Interface */

1103 typedef TPM_HANDLE TPMI_RH_HIERARCHY_POLICY;

1104 typedef TPM_HANDLE TPMI_RH_PLATFORM; // Table 2:56 /* Interface */

1105 typedef TPM_HANDLE TPMI_RH_OWNER; // Table 2:57 /* Interface */

1106 typedef TPM_HANDLE TPMI_RH_ENDORSEMENT; // Table 2:58 /* Interface */

1107 typedef TPM_HANDLE TPMI_RH_PROVISION; // Table 2:59 /* Interface */

1108 typedef TPM_HANDLE TPMI_RH_CLEAR; // Table 2:60 /* Interface */

1109 typedef TPM_HANDLE TPMI_RH_NV_AUTH; // Table 2:61 /* Interface */

1110 typedef TPM_HANDLE TPMI_RH_LOCKOUT; // Table 2:62 /* Interface */

1111 typedef TPM_HANDLE TPMI_RH_NV_INDEX; // Table 2:63 /* Interface */

1112 typedef TPM_HANDLE TPMI_RH_AC; // Table 2:64 /* Interface */

1113 typedef TPM_HANDLE TPMI_RH_ACT; // Table 2:65 /* Interface */

1114 typedef TPM_ALG_ID TPMI_ALG_HASH; // Table 2:66 /* Interface */

1115 typedef TPM_ALG_ID TPMI_ALG_ASYM; // Table 2:67 /* Interface */

1116 typedef TPM_ALG_ID TPMI_ALG_SYM; // Table 2:68 /* Interface */

1117 typedef TPM_ALG_ID TPMI_ALG_SYM_OBJECT; // Table 2:69 /* Interface */

1118 typedef TPM_ALG_ID TPMI_ALG_SYM_MODE; // Table 2:70 /* Interface */

1119 typedef TPM_ALG_ID TPMI_ALG_KDF; // Table 2:71 /* Interface */

1120 typedef TPM_ALG_ID TPMI_ALG_SIG_SCHEME; // Table 2:72 /* Interface */

1121 typedef TPM_ALG_ID TPMI_ECC_KEY_EXCHANGE; // Table 2:73 /* Interface */

1122 typedef TPM_ST TPMI_ST_COMMAND_TAG; // Table 2:74 /* Interface */

1123 typedef TPM_ALG_ID TPMI_ALG_MAC_SCHEME; // Table 2:75 /* Interface */

1124 typedef TPM_ALG_ID TPMI_ALG_CIPHER_MODE; // Table 2:76 /* Interface */

1125 typedef BYTE TPMS_EMPTY; // Table 2:77

1126 typedef struct { // Table 2:78

Trusted Platform Module Library Part 4: Supporting Routines

Page 166 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1127 TPM_ALG_ID alg;

1128 TPMA_ALGORITHM attributes;

1129 } TPMS_ALGORITHM_DESCRIPTION; /* Structure */

1130 typedef union { // Table 2:79

1131 #if ALG_SHA1

1132 BYTE sha1[SHA1_DIGEST_SIZE];

1133 #endif // ALG_SHA1

1134 #if ALG_SHA256

1135 BYTE sha256[SHA256_DIGEST_SIZE];

1136 #endif // ALG_SHA256

1137 #if ALG_SHA384

1138 BYTE sha384[SHA384_DIGEST_SIZE];

1139 #endif // ALG_SHA384

1140 #if ALG_SHA512

1141 BYTE sha512[SHA512_DIGEST_SIZE];

1142 #endif // ALG_SHA512

1143 #if ALG_SM3_256

1144 BYTE sm3_256[SM3_256_DIGEST_SIZE];

1145 #endif // ALG_SM3_256

1146 #if ALG_SHA3_256

1147 BYTE sha3_256[SHA3_256_DIGEST_SIZE];

1148 #endif // ALG_SHA3_256

1149 #if ALG_SHA3_384

1150 BYTE sha3_384[SHA3_384_DIGEST_SIZE];

1151 #endif // ALG_SHA3_384

1152 #if ALG_SHA3_512

1153 BYTE sha3_512[SHA3_512_DIGEST_SIZE];

1154 #endif // ALG_SHA3_512

1155 } TPMU_HA; /* Structure */

1156 typedef struct { // Table 2:80

1157 TPMI_ALG_HASH hashAlg;

1158 TPMU_HA digest;

1159 } TPMT_HA; /* Structure */

1160 typedef union { // Table 2:81

1161 struct {

1162 UINT16 size;

1163 BYTE buffer[sizeof(TPMU_HA)];

1164 } t;

1165 TPM2B b;

1166 } TPM2B_DIGEST; /* Structure */

1167 typedef union { // Table 2:82

1168 struct {

1169 UINT16 size;

1170 BYTE buffer[sizeof(TPMT_HA)];

1171 } t;

1172 TPM2B b;

1173 } TPM2B_DATA; /* Structure */

Table 2:83 - Definition of Types for TPM2B_NONCE

1174 typedef TPM2B_DIGEST TPM2B_NONCE;

Table 2:84 - Definition of Types for TPM2B_AUTH

1175 typedef TPM2B_DIGEST TPM2B_AUTH;

Table 2:85 - Definition of Types for TPM2B_OPERAND

1176 typedef TPM2B_DIGEST TPM2B_OPERAND;

1177 typedef union { // Table 2:86

1178 struct {

1179 UINT16 size;

1180 BYTE buffer[1024];

1181 } t;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 167

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1182 TPM2B b;

1183 } TPM2B_EVENT; /* Structure */

1184 typedef union { // Table 2:87

1185 struct {

1186 UINT16 size;

1187 BYTE buffer[MAX_DIGEST_BUFFER];

1188 } t;

1189 TPM2B b;

1190 } TPM2B_MAX_BUFFER; /* Structure */

1191 typedef union { // Table 2:88

1192 struct {

1193 UINT16 size;

1194 BYTE buffer[MAX_NV_BUFFER_SIZE];

1195 } t;

1196 TPM2B b;

1197 } TPM2B_MAX_NV_BUFFER; /* Structure */

1198 typedef union { // Table 2:89

1199 struct {

1200 UINT16 size;

1201 BYTE buffer[sizeof(UINT64)];

1202 } t;

1203 TPM2B b;

1204 } TPM2B_TIMEOUT; /* Structure */

1205 typedef union { // Table 2:90

1206 struct {

1207 UINT16 size;

1208 BYTE buffer[MAX_SYM_BLOCK_SIZE];

1209 } t;

1210 TPM2B b;

1211 } TPM2B_IV; /* Structure */

1212 typedef union { // Table 2:91

1213 TPMT_HA digest;

1214 TPM_HANDLE handle;

1215 } TPMU_NAME; /* Structure */

1216 typedef union { // Table 2:92

1217 struct {

1218 UINT16 size;

1219 BYTE name[sizeof(TPMU_NAME)];

1220 } t;

1221 TPM2B b;

1222 } TPM2B_NAME; /* Structure */

1223 typedef struct { // Table 2:93

1224 UINT8 sizeofSelect;

1225 BYTE pcrSelect[PCR_SELECT_MAX];

1226 } TPMS_PCR_SELECT; /* Structure */

1227 typedef struct { // Table 2:94

1228 TPMI_ALG_HASH hash;

1229 UINT8 sizeofSelect;

1230 BYTE pcrSelect[PCR_SELECT_MAX];

1231 } TPMS_PCR_SELECTION; /* Structure */

1232 typedef struct { // Table 2:97

1233 TPM_ST tag;

1234 TPMI_RH_HIERARCHY hierarchy;

1235 TPM2B_DIGEST digest;

1236 } TPMT_TK_CREATION; /* Structure */

1237 typedef struct { // Table 2:98

1238 TPM_ST tag;

1239 TPMI_RH_HIERARCHY hierarchy;

1240 TPM2B_DIGEST digest;

1241 } TPMT_TK_VERIFIED; /* Structure */

1242 typedef struct { // Table 2:99

1243 TPM_ST tag;

1244 TPMI_RH_HIERARCHY hierarchy;

1245 TPM2B_DIGEST digest;

1246 } TPMT_TK_AUTH; /* Structure */

1247 typedef struct { // Table 2:100

Trusted Platform Module Library Part 4: Supporting Routines

Page 168 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1248 TPM_ST tag;

1249 TPMI_RH_HIERARCHY hierarchy;

1250 TPM2B_DIGEST digest;

1251 } TPMT_TK_HASHCHECK; /* Structure */

1252 typedef struct { // Table 2:101

1253 TPM_ALG_ID alg;

1254 TPMA_ALGORITHM algProperties;

1255 } TPMS_ALG_PROPERTY; /* Structure */

1256 typedef struct { // Table 2:102

1257 TPM_PT property;

1258 UINT32 value;

1259 } TPMS_TAGGED_PROPERTY; /* Structure */

1260 typedef struct { // Table 2:103

1261 TPM_PT_PCR tag;

1262 UINT8 sizeofSelect;

1263 BYTE pcrSelect[PCR_SELECT_MAX];

1264 } TPMS_TAGGED_PCR_SELECT; /* Structure */

1265 typedef struct { // Table 2:104

1266 TPM_HANDLE handle;

1267 TPMT_HA policyHash;

1268 } TPMS_TAGGED_POLICY; /* Structure */

1269 typedef struct { // Table 2:105

1270 TPM_HANDLE handle;

1271 UINT32 timeout;

1272 TPMA_ACT attributes;

1273 } TPMS_ACT_DATA; /* Structure */

1274 typedef struct { // Table 2:106

1275 UINT32 count;

1276 TPM_CC commandCodes[MAX_CAP_CC];

1277 } TPML_CC; /* Structure */

1278 typedef struct { // Table 2:107

1279 UINT32 count;

1280 TPMA_CC commandAttributes[MAX_CAP_CC];

1281 } TPML_CCA; /* Structure */

1282 typedef struct { // Table 2:108

1283 UINT32 count;

1284 TPM_ALG_ID algorithms[MAX_ALG_LIST_SIZE];

1285 } TPML_ALG; /* Structure */

1286 typedef struct { // Table 2:109

1287 UINT32 count;

1288 TPM_HANDLE handle[MAX_CAP_HANDLES];

1289 } TPML_HANDLE; /* Structure */

1290 typedef struct { // Table 2:110

1291 UINT32 count;

1292 TPM2B_DIGEST digests[8];

1293 } TPML_DIGEST; /* Structure */

1294 typedef struct { // Table 2:111

1295 UINT32 count;

1296 TPMT_HA digests[HASH_COUNT];

1297 } TPML_DIGEST_VALUES; /* Structure */

1298 typedef struct { // Table 2:112

1299 UINT32 count;

1300 TPMS_PCR_SELECTION pcrSelections[HASH_COUNT];

1301 } TPML_PCR_SELECTION; /* Structure */

1302 typedef struct { // Table 2:113

1303 UINT32 count;

1304 TPMS_ALG_PROPERTY algProperties[MAX_CAP_ALGS];

1305 } TPML_ALG_PROPERTY; /* Structure */

1306 typedef struct { // Table 2:114

1307 UINT32 count;

1308 TPMS_TAGGED_PROPERTY tpmProperty[MAX_TPM_PROPERTIES];

1309 } TPML_TAGGED_TPM_PROPERTY; /* Structure */

1310 typedef struct { // Table 2:115

1311 UINT32 count;

1312 TPMS_TAGGED_PCR_SELECT pcrProperty[MAX_PCR_PROPERTIES];

1313 } TPML_TAGGED_PCR_PROPERTY; /* Structure */

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 169

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1314 typedef struct { // Table 2:116

1315 UINT32 count;

1316 TPM_ECC_CURVE eccCurves[MAX_ECC_CURVES];

1317 } TPML_ECC_CURVE; /* Structure */

1318 typedef struct { // Table 2:117

1319 UINT32 count;

1320 TPMS_TAGGED_POLICY policies[MAX_TAGGED_POLICIES];

1321 } TPML_TAGGED_POLICY; /* Structure */

1322 typedef struct { // Table 2:118

1323 UINT32 count;

1324 TPMS_ACT_DATA actData[MAX_ACT_DATA];

1325 } TPML_ACT_DATA; /* Structure */

1326 typedef union { // Table 2:119

1327 TPML_ALG_PROPERTY algorithms;

1328 TPML_HANDLE handles;

1329 TPML_CCA command;

1330 TPML_CC ppCommands;

1331 TPML_CC auditCommands;

1332 TPML_PCR_SELECTION assignedPCR;

1333 TPML_TAGGED_TPM_PROPERTY tpmProperties;

1334 TPML_TAGGED_PCR_PROPERTY pcrProperties;

1335 #if ALG_ECC

1336 TPML_ECC_CURVE eccCurves;

1337 #endif // ALG_ECC

1338 TPML_TAGGED_POLICY authPolicies;

1339 TPML_ACT_DATA actData;

1340 } TPMU_CAPABILITIES; /* Structure */

1341 typedef struct { // Table 2:120

1342 TPM_CAP capability;

1343 TPMU_CAPABILITIES data;

1344 } TPMS_CAPABILITY_DATA; /* Structure */

1345 typedef struct { // Table 2:121

1346 UINT64 clock;

1347 UINT32 resetCount;

1348 UINT32 restartCount;

1349 TPMI_YES_NO safe;

1350 } TPMS_CLOCK_INFO; /* Structure */

1351 typedef struct { // Table 2:122

1352 UINT64 time;

1353 TPMS_CLOCK_INFO clockInfo;

1354 } TPMS_TIME_INFO; /* Structure */

1355 typedef struct { // Table 2:123

1356 TPMS_TIME_INFO time;

1357 UINT64 firmwareVersion;

1358 } TPMS_TIME_ATTEST_INFO; /* Structure */

1359 typedef struct { // Table 2:124

1360 TPM2B_NAME name;

1361 TPM2B_NAME qualifiedName;

1362 } TPMS_CERTIFY_INFO; /* Structure */

1363 typedef struct { // Table 2:125

1364 TPML_PCR_SELECTION pcrSelect;

1365 TPM2B_DIGEST pcrDigest;

1366 } TPMS_QUOTE_INFO; /* Structure */

1367 typedef struct { // Table 2:126

1368 UINT64 auditCounter;

1369 TPM_ALG_ID digestAlg;

1370 TPM2B_DIGEST auditDigest;

1371 TPM2B_DIGEST commandDigest;

1372 } TPMS_COMMAND_AUDIT_INFO; /* Structure */

1373 typedef struct { // Table 2:127

1374 TPMI_YES_NO exclusiveSession;

1375 TPM2B_DIGEST sessionDigest;

1376 } TPMS_SESSION_AUDIT_INFO; /* Structure */

1377 typedef struct { // Table 2:128

1378 TPM2B_NAME objectName;

1379 TPM2B_DIGEST creationHash;

Trusted Platform Module Library Part 4: Supporting Routines

Page 170 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1380 } TPMS_CREATION_INFO; /* Structure */

1381 typedef struct { // Table 2:129

1382 TPM2B_NAME indexName;

1383 UINT16 offset;

1384 TPM2B_MAX_NV_BUFFER nvContents;

1385 } TPMS_NV_CERTIFY_INFO; /* Structure */

1386 typedef struct { // Table 2:130

1387 TPM2B_NAME indexName;

1388 TPM2B_DIGEST nvDigest;

1389 } TPMS_NV_DIGEST_CERTIFY_INFO; /* Structure */

1390 typedef TPM_ST TPMI_ST_ATTEST; // Table 2:131 /* Interface */

1391 typedef union { // Table 2:132

1392 TPMS_CERTIFY_INFO certify;

1393 TPMS_CREATION_INFO creation;

1394 TPMS_QUOTE_INFO quote;

1395 TPMS_COMMAND_AUDIT_INFO commandAudit;

1396 TPMS_SESSION_AUDIT_INFO sessionAudit;

1397 TPMS_TIME_ATTEST_INFO time;

1398 TPMS_NV_CERTIFY_INFO nv;

1399 TPMS_NV_DIGEST_CERTIFY_INFO nvDigest;

1400 } TPMU_ATTEST; /* Structure */

1401 typedef struct { // Table 2:133

1402 TPM_GENERATED magic;

1403 TPMI_ST_ATTEST type;

1404 TPM2B_NAME qualifiedSigner;

1405 TPM2B_DATA extraData;

1406 TPMS_CLOCK_INFO clockInfo;

1407 UINT64 firmwareVersion;

1408 TPMU_ATTEST attested;

1409 } TPMS_ATTEST; /* Structure */

1410 typedef union { // Table 2:134

1411 struct {

1412 UINT16 size;

1413 BYTE attestationData[sizeof(TPMS_ATTEST)];

1414 } t;

1415 TPM2B b;

1416 } TPM2B_ATTEST; /* Structure */

1417 typedef struct { // Table 2:135

1418 TPMI_SH_AUTH_SESSION sessionHandle;

1419 TPM2B_NONCE nonce;

1420 TPMA_SESSION sessionAttributes;

1421 TPM2B_AUTH hmac;

1422 } TPMS_AUTH_COMMAND; /* Structure */

1423 typedef struct { // Table 2:136

1424 TPM2B_NONCE nonce;

1425 TPMA_SESSION sessionAttributes;

1426 TPM2B_AUTH hmac;

1427 } TPMS_AUTH_RESPONSE; /* Structure */

1428 typedef TPM_KEY_BITS TPMI_TDES_KEY_BITS; // Table 2:137 /* Interface */

1429 typedef TPM_KEY_BITS TPMI_AES_KEY_BITS; // Table 2:137 /* Interface */

1430 typedef TPM_KEY_BITS TPMI_SM4_KEY_BITS; // Table 2:137 /* Interface */

1431 typedef TPM_KEY_BITS TPMI_CAMELLIA_KEY_BITS; // Table 2:137 /* Interface */

1432 typedef union { // Table 2:138

1433 #if ALG_TDES

1434 TPMI_TDES_KEY_BITS tdes;

1435 #endif // ALG_TDES

1436 #if ALG_AES

1437 TPMI_AES_KEY_BITS aes;

1438 #endif // ALG_AES

1439 #if ALG_SM4

1440 TPMI_SM4_KEY_BITS sm4;

1441 #endif // ALG_SM4

1442 #if ALG_CAMELLIA

1443 TPMI_CAMELLIA_KEY_BITS camellia;

1444 #endif // ALG_CAMELLIA

1445 TPM_KEY_BITS sym;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 171

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1446 #if ALG_XOR

1447 TPMI_ALG_HASH xor;

1448 #endif // ALG_XOR

1449 } TPMU_SYM_KEY_BITS; /* Structure */

1450 typedef union { // Table 2:139

1451 #if ALG_TDES

1452 TPMI_ALG_SYM_MODE tdes;

1453 #endif // ALG_TDES

1454 #if ALG_AES

1455 TPMI_ALG_SYM_MODE aes;

1456 #endif // ALG_AES

1457 #if ALG_SM4

1458 TPMI_ALG_SYM_MODE sm4;

1459 #endif // ALG_SM4

1460 #if ALG_CAMELLIA

1461 TPMI_ALG_SYM_MODE camellia;

1462 #endif // ALG_CAMELLIA

1463 TPMI_ALG_SYM_MODE sym;

1464 } TPMU_SYM_MODE; /* Structure */

1465 typedef struct { // Table 2:141

1466 TPMI_ALG_SYM algorithm;

1467 TPMU_SYM_KEY_BITS keyBits;

1468 TPMU_SYM_MODE mode;

1469 } TPMT_SYM_DEF; /* Structure */

1470 typedef struct { // Table 2:142

1471 TPMI_ALG_SYM_OBJECT algorithm;

1472 TPMU_SYM_KEY_BITS keyBits;

1473 TPMU_SYM_MODE mode;

1474 } TPMT_SYM_DEF_OBJECT; /* Structure */

1475 typedef union { // Table 2:143

1476 struct {

1477 UINT16 size;

1478 BYTE buffer[MAX_SYM_KEY_BYTES];

1479 } t;

1480 TPM2B b;

1481 } TPM2B_SYM_KEY; /* Structure */

1482 typedef struct { // Table 2:144

1483 TPMT_SYM_DEF_OBJECT sym;

1484 } TPMS_SYMCIPHER_PARMS; /* Structure */

1485 typedef union { // Table 2:145

1486 struct {

1487 UINT16 size;

1488 BYTE buffer[LABEL_MAX_BUFFER];

1489 } t;

1490 TPM2B b;

1491 } TPM2B_LABEL; /* Structure */

1492 typedef struct { // Table 2:146

1493 TPM2B_LABEL label;

1494 TPM2B_LABEL context;

1495 } TPMS_DERIVE; /* Structure */

1496 typedef union { // Table 2:147

1497 struct {

1498 UINT16 size;

1499 BYTE buffer[sizeof(TPMS_DERIVE)];

1500 } t;

1501 TPM2B b;

1502 } TPM2B_DERIVE; /* Structure */

1503 typedef union { // Table 2:148

1504 BYTE create[MAX_SYM_DATA];

1505 TPMS_DERIVE derive;

1506 } TPMU_SENSITIVE_CREATE; /* Structure */

1507 typedef union { // Table 2:149

1508 struct {

1509 UINT16 size;

1510 BYTE buffer[sizeof(TPMU_SENSITIVE_CREATE)];

1511 } t;

Trusted Platform Module Library Part 4: Supporting Routines

Page 172 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1512 TPM2B b;

1513 } TPM2B_SENSITIVE_DATA; /* Structure */

1514 typedef struct { // Table 2:150

1515 TPM2B_AUTH userAuth;

1516 TPM2B_SENSITIVE_DATA data;

1517 } TPMS_SENSITIVE_CREATE; /* Structure */

1518 typedef struct { // Table 2:151

1519 UINT16 size;

1520 TPMS_SENSITIVE_CREATE sensitive;

1521 } TPM2B_SENSITIVE_CREATE; /* Structure */

1522 typedef struct { // Table 2:152

1523 TPMI_ALG_HASH hashAlg;

1524 } TPMS_SCHEME_HASH; /* Structure */

1525 typedef struct { // Table 2:153

1526 TPMI_ALG_HASH hashAlg;

1527 UINT16 count;

1528 } TPMS_SCHEME_ECDAA; /* Structure */

1529 typedef TPM_ALG_ID TPMI_ALG_KEYEDHASH_SCHEME;

Table 2:155 - Definition of Types for HMAC_SIG_SCHEME

1530 typedef TPMS_SCHEME_HASH TPMS_SCHEME_HMAC;

1531 typedef struct { // Table 2:156

1532 TPMI_ALG_HASH hashAlg;

1533 TPMI_ALG_KDF kdf;

1534 } TPMS_SCHEME_XOR; /* Structure */

1535 typedef union { // Table 2:157

1536 #if ALG_HMAC

1537 TPMS_SCHEME_HMAC hmac;

1538 #endif // ALG_HMAC

1539 #if ALG_XOR

1540 TPMS_SCHEME_XOR xor;

1541 #endif // ALG_XOR

1542 } TPMU_SCHEME_KEYEDHASH; /* Structure */

1543 typedef struct { // Table 2:158

1544 TPMI_ALG_KEYEDHASH_SCHEME scheme;

1545 TPMU_SCHEME_KEYEDHASH details;

1546 } TPMT_KEYEDHASH_SCHEME; /* Structure */

Table 2:159 - Definition of Types for RSA Signature Schemes

1547 typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_RSASSA;

1548 typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_RSAPSS;

Table 2:160 - Definition of Types for ECC Signature Schemes

1549 typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_ECDSA;

1550 typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_SM2;

1551 typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_ECSCHNORR;

1552 typedef TPMS_SCHEME_ECDAA TPMS_SIG_SCHEME_ECDAA;

1553 typedef union { // Table 2:161

1554 #if ALG_ECC

1555 TPMS_SIG_SCHEME_ECDAA ecdaa;

1556 #endif // ALG_ECC

1557 #if ALG_RSASSA

1558 TPMS_SIG_SCHEME_RSASSA rsassa;

1559 #endif // ALG_RSASSA

1560 #if ALG_RSAPSS

1561 TPMS_SIG_SCHEME_RSAPSS rsapss;

1562 #endif // ALG_RSAPSS

1563 #if ALG_ECDSA

1564 TPMS_SIG_SCHEME_ECDSA ecdsa;

1565 #endif // ALG_ECDSA

1566 #if ALG_SM2

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 173

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1567 TPMS_SIG_SCHEME_SM2 sm2;

1568 #endif // ALG_SM2

1569 #if ALG_ECSCHNORR

1570 TPMS_SIG_SCHEME_ECSCHNORR ecschnorr;

1571 #endif // ALG_ECSCHNORR

1572 #if ALG_HMAC

1573 TPMS_SCHEME_HMAC hmac;

1574 #endif // ALG_HMAC

1575 TPMS_SCHEME_HASH any;

1576 } TPMU_SIG_SCHEME; /* Structure */

1577 typedef struct { // Table 2:162

1578 TPMI_ALG_SIG_SCHEME scheme;

1579 TPMU_SIG_SCHEME details;

1580 } TPMT_SIG_SCHEME; /* Structure */

Table 2:163 - Definition of Types for Encryption Schemes

1581 typedef TPMS_SCHEME_HASH TPMS_ENC_SCHEME_OAEP;

1582 typedef TPMS_EMPTY TPMS_ENC_SCHEME_RSAES;

Table 2:164 - Definition of Types for ECC Key Exchange

1583 typedef TPMS_SCHEME_HASH TPMS_KEY_SCHEME_ECDH;

1584 typedef TPMS_SCHEME_HASH TPMS_KEY_SCHEME_ECMQV;

Table 2:165 - Definition of Types for KDF Schemes

1585 typedef TPMS_SCHEME_HASH TPMS_SCHEME_MGF1;

1586 typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF1_SP800_56A;

1587 typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF2;

1588 typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF1_SP800_108;

1589 typedef union { // Table 2:166

1590 #if ALG_MGF1

1591 TPMS_SCHEME_MGF1 mgf1;

1592 #endif // ALG_MGF1

1593 #if ALG_KDF1_SP800_56A

1594 TPMS_SCHEME_KDF1_SP800_56A kdf1_sp800_56a;

1595 #endif // ALG_KDF1_SP800_56A

1596 #if ALG_KDF2

1597 TPMS_SCHEME_KDF2 kdf2;

1598 #endif // ALG_KDF2

1599 #if ALG_KDF1_SP800_108

1600 TPMS_SCHEME_KDF1_SP800_108 kdf1_sp800_108;

1601 #endif // ALG_KDF1_SP800_108

1602 } TPMU_KDF_SCHEME; /* Structure */

1603 typedef struct { // Table 2:167

1604 TPMI_ALG_KDF scheme;

1605 TPMU_KDF_SCHEME details;

1606 } TPMT_KDF_SCHEME; /* Structure */

1607 typedef TPM_ALG_ID TPMI_ALG_ASYM_SCHEME; // Table 2:168 /* Interface */

1608 typedef union { // Table 2:169

1609 #if ALG_ECDH

1610 TPMS_KEY_SCHEME_ECDH ecdh;

1611 #endif // ALG_ECDH

1612 #if ALG_ECMQV

1613 TPMS_KEY_SCHEME_ECMQV ecmqv;

1614 #endif // ALG_ECMQV

1615 #if ALG_ECC

1616 TPMS_SIG_SCHEME_ECDAA ecdaa;

1617 #endif // ALG_ECC

1618 #if ALG_RSASSA

1619 TPMS_SIG_SCHEME_RSASSA rsassa;

1620 #endif // ALG_RSASSA

1621 #if ALG_RSAPSS

Trusted Platform Module Library Part 4: Supporting Routines

Page 174 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1622 TPMS_SIG_SCHEME_RSAPSS rsapss;

1623 #endif // ALG_RSAPSS

1624 #if ALG_ECDSA

1625 TPMS_SIG_SCHEME_ECDSA ecdsa;

1626 #endif // ALG_ECDSA

1627 #if ALG_SM2

1628 TPMS_SIG_SCHEME_SM2 sm2;

1629 #endif // ALG_SM2

1630 #if ALG_ECSCHNORR

1631 TPMS_SIG_SCHEME_ECSCHNORR ecschnorr;

1632 #endif // ALG_ECSCHNORR

1633 #if ALG_RSAES

1634 TPMS_ENC_SCHEME_RSAES rsaes;

1635 #endif // ALG_RSAES

1636 #if ALG_OAEP

1637 TPMS_ENC_SCHEME_OAEP oaep;

1638 #endif // ALG_OAEP

1639 TPMS_SCHEME_HASH anySig;

1640 } TPMU_ASYM_SCHEME; /* Structure */

1641 typedef struct { // Table 2:170

1642 TPMI_ALG_ASYM_SCHEME scheme;

1643 TPMU_ASYM_SCHEME details;

1644 } TPMT_ASYM_SCHEME; /* Structure */

1645 typedef TPM_ALG_ID TPMI_ALG_RSA_SCHEME; // Table 2:171 /* Interface */

1646 typedef struct { // Table 2:172

1647 TPMI_ALG_RSA_SCHEME scheme;

1648 TPMU_ASYM_SCHEME details;

1649 } TPMT_RSA_SCHEME; /* Structure */

1650 typedef TPM_ALG_ID TPMI_ALG_RSA_DECRYPT; // Table 2:173 /* Interface */

1651 typedef struct { // Table 2:174

1652 TPMI_ALG_RSA_DECRYPT scheme;

1653 TPMU_ASYM_SCHEME details;

1654 } TPMT_RSA_DECRYPT; /* Structure */

1655 typedef union { // Table 2:175

1656 struct {

1657 UINT16 size;

1658 BYTE buffer[MAX_RSA_KEY_BYTES];

1659 } t;

1660 TPM2B b;

1661 } TPM2B_PUBLIC_KEY_RSA; /* Structure */

1662 typedef TPM_KEY_BITS TPMI_RSA_KEY_BITS; // Table 2:176 /* Interface */

1663 typedef union { // Table 2:177

1664 struct {

1665 UINT16 size;

1666 BYTE buffer[RSA_PRIVATE_SIZE];

1667 } t;

1668 TPM2B b;

1669 } TPM2B_PRIVATE_KEY_RSA; /* Structure */

1670 typedef union { // Table 2:178

1671 struct {

1672 UINT16 size;

1673 BYTE buffer[MAX_ECC_KEY_BYTES];

1674 } t;

1675 TPM2B b;

1676 } TPM2B_ECC_PARAMETER; /* Structure */

1677 typedef struct { // Table 2:179

1678 TPM2B_ECC_PARAMETER x;

1679 TPM2B_ECC_PARAMETER y;

1680 } TPMS_ECC_POINT; /* Structure */

1681 typedef struct { // Table 2:180

1682 UINT16 size;

1683 TPMS_ECC_POINT point;

1684 } TPM2B_ECC_POINT; /* Structure */

1685 typedef TPM_ALG_ID TPMI_ALG_ECC_SCHEME; // Table 2:181 /* Interface */

1686 typedef TPM_ECC_CURVE TPMI_ECC_CURVE; // Table 2:182 /* Interface */

1687 typedef struct { // Table 2:183

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 175

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1688 TPMI_ALG_ECC_SCHEME scheme;

1689 TPMU_ASYM_SCHEME details;

1690 } TPMT_ECC_SCHEME; /* Structure */

1691 typedef struct { // Table 2:184

1692 TPM_ECC_CURVE curveID;

1693 UINT16 keySize;

1694 TPMT_KDF_SCHEME kdf;

1695 TPMT_ECC_SCHEME sign;

1696 TPM2B_ECC_PARAMETER p;

1697 TPM2B_ECC_PARAMETER a;

1698 TPM2B_ECC_PARAMETER b;

1699 TPM2B_ECC_PARAMETER gX;

1700 TPM2B_ECC_PARAMETER gY;

1701 TPM2B_ECC_PARAMETER n;

1702 TPM2B_ECC_PARAMETER h;

1703 } TPMS_ALGORITHM_DETAIL_ECC; /* Structure */

1704 typedef struct { // Table 2:185

1705 TPMI_ALG_HASH hash;

1706 TPM2B_PUBLIC_KEY_RSA sig;

1707 } TPMS_SIGNATURE_RSA; /* Structure */

Table 2:186 - Definition of Types for Signature

1708 typedef TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSASSA;

1709 typedef TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSAPSS;

1710 typedef struct { // Table 2:187

1711 TPMI_ALG_HASH hash;

1712 TPM2B_ECC_PARAMETER signatureR;

1713 TPM2B_ECC_PARAMETER signatureS;

1714 } TPMS_SIGNATURE_ECC; /* Structure */

Table 2:188 - Definition of Types for TPMS_SIGNATURE_ECC

1715 typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECDAA;

1716 typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECDSA;

1717 typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_SM2;

1718 typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECSCHNORR;

1719 typedef union { // Table 2:189

1720 #if ALG_ECC

1721 TPMS_SIGNATURE_ECDAA ecdaa;

1722 #endif // ALG_ECC

1723 #if ALG_RSA

1724 TPMS_SIGNATURE_RSASSA rsassa;

1725 #endif // ALG_RSA

1726 #if ALG_RSA

1727 TPMS_SIGNATURE_RSAPSS rsapss;

1728 #endif // ALG_RSA

1729 #if ALG_ECC

1730 TPMS_SIGNATURE_ECDSA ecdsa;

1731 #endif // ALG_ECC

1732 #if ALG_ECC

1733 TPMS_SIGNATURE_SM2 sm2;

1734 #endif // ALG_ECC

1735 #if ALG_ECC

1736 TPMS_SIGNATURE_ECSCHNORR ecschnorr;

1737 #endif // ALG_ECC

1738 #if ALG_HMAC

1739 TPMT_HA hmac;

1740 #endif // ALG_HMAC

1741 TPMS_SCHEME_HASH any;

1742 } TPMU_SIGNATURE; /* Structure */

1743 typedef struct { // Table 2:190

1744 TPMI_ALG_SIG_SCHEME sigAlg;

1745 TPMU_SIGNATURE signature;

1746 } TPMT_SIGNATURE; /* Structure */

Trusted Platform Module Library Part 4: Supporting Routines

Page 176 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1747 typedef union { // Table 2:191

1748 #if ALG_ECC

1749 BYTE ecc[sizeof(TPMS_ECC_POINT)];

1750 #endif // ALG_ECC

1751 #if ALG_RSA

1752 BYTE rsa[MAX_RSA_KEY_BYTES];

1753 #endif // ALG_RSA

1754 #if ALG_SYMCIPHER

1755 BYTE symmetric[sizeof(TPM2B_DIGEST)];

1756 #endif // ALG_SYMCIPHER

1757 #if ALG_KEYEDHASH

1758 BYTE keyedHash[sizeof(TPM2B_DIGEST)];

1759 #endif // ALG_KEYEDHASH

1760 } TPMU_ENCRYPTED_SECRET; /* Structure */

1761 typedef union { // Table 2:192

1762 struct {

1763 UINT16 size;

1764 BYTE secret[sizeof(TPMU_ENCRYPTED_SECRET)];

1765 } t;

1766 TPM2B b;

1767 } TPM2B_ENCRYPTED_SECRET; /* Structure */

1768 typedef TPM_ALG_ID TPMI_ALG_PUBLIC; // Table 2:193 /* Interface */

1769 typedef union { // Table 2:194

1770 #if ALG_KEYEDHASH

1771 TPM2B_DIGEST keyedHash;

1772 #endif // ALG_KEYEDHASH

1773 #if ALG_SYMCIPHER

1774 TPM2B_DIGEST sym;

1775 #endif // ALG_SYMCIPHER

1776 #if ALG_RSA

1777 TPM2B_PUBLIC_KEY_RSA rsa;

1778 #endif // ALG_RSA

1779 #if ALG_ECC

1780 TPMS_ECC_POINT ecc;

1781 #endif // ALG_ECC

1782 TPMS_DERIVE derive;

1783 } TPMU_PUBLIC_ID; /* Structure */

1784 typedef struct { // Table 2:195

1785 TPMT_KEYEDHASH_SCHEME scheme;

1786 } TPMS_KEYEDHASH_PARMS; /* Structure */

1787 typedef struct { // Table 2:196

1788 TPMT_SYM_DEF_OBJECT symmetric;

1789 TPMT_ASYM_SCHEME scheme;

1790 } TPMS_ASYM_PARMS; /* Structure */

1791 typedef struct { // Table 2:197

1792 TPMT_SYM_DEF_OBJECT symmetric;

1793 TPMT_RSA_SCHEME scheme;

1794 TPMI_RSA_KEY_BITS keyBits;

1795 UINT32 exponent;

1796 } TPMS_RSA_PARMS; /* Structure */

1797 typedef struct { // Table 2:198

1798 TPMT_SYM_DEF_OBJECT symmetric;

1799 TPMT_ECC_SCHEME scheme;

1800 TPMI_ECC_CURVE curveID;

1801 TPMT_KDF_SCHEME kdf;

1802 } TPMS_ECC_PARMS; /* Structure */

1803 typedef union { // Table 2:199

1804 #if ALG_KEYEDHASH

1805 TPMS_KEYEDHASH_PARMS keyedHashDetail;

1806 #endif // ALG_KEYEDHASH

1807 #if ALG_SYMCIPHER

1808 TPMS_SYMCIPHER_PARMS symDetail;

1809 #endif // ALG_SYMCIPHER

1810 #if ALG_RSA

1811 TPMS_RSA_PARMS rsaDetail;

1812 #endif // ALG_RSA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 177

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1813 #if ALG_ECC

1814 TPMS_ECC_PARMS eccDetail;

1815 #endif // ALG_ECC

1816 TPMS_ASYM_PARMS asymDetail;

1817 } TPMU_PUBLIC_PARMS; /* Structure */

1818 typedef struct { // Table 2:200

1819 TPMI_ALG_PUBLIC type;

1820 TPMU_PUBLIC_PARMS parameters;

1821 } TPMT_PUBLIC_PARMS; /* Structure */

1822 typedef struct { // Table 2:201

1823 TPMI_ALG_PUBLIC type;

1824 TPMI_ALG_HASH nameAlg;

1825 TPMA_OBJECT objectAttributes;

1826 TPM2B_DIGEST authPolicy;

1827 TPMU_PUBLIC_PARMS parameters;

1828 TPMU_PUBLIC_ID unique;

1829 } TPMT_PUBLIC; /* Structure */

1830 typedef struct { // Table 2:202

1831 UINT16 size;

1832 TPMT_PUBLIC publicArea;

1833 } TPM2B_PUBLIC; /* Structure */

1834 typedef union { // Table 2:203

1835 struct {

1836 UINT16 size;

1837 BYTE buffer[sizeof(TPMT_PUBLIC)];

1838 } t;

1839 TPM2B b;

1840 } TPM2B_TEMPLATE; /* Structure */

1841 typedef union { // Table 2:204

1842 struct {

1843 UINT16 size;

1844 BYTE buffer[PRIVATE_VENDOR_SPECIFIC_BYTES];

1845 } t;

1846 TPM2B b;

1847 } TPM2B_PRIVATE_VENDOR_SPECIFIC; /* Structure */

1848 typedef union { // Table 2:205

1849 #if ALG_RSA

1850 TPM2B_PRIVATE_KEY_RSA rsa;

1851 #endif // ALG_RSA

1852 #if ALG_ECC

1853 TPM2B_ECC_PARAMETER ecc;

1854 #endif // ALG_ECC

1855 #if ALG_KEYEDHASH

1856 TPM2B_SENSITIVE_DATA bits;

1857 #endif // ALG_KEYEDHASH

1858 #if ALG_SYMCIPHER

1859 TPM2B_SYM_KEY sym;

1860 #endif // ALG_SYMCIPHER

1861 TPM2B_PRIVATE_VENDOR_SPECIFIC any;

1862 } TPMU_SENSITIVE_COMPOSITE; /* Structure */

1863 typedef struct { // Table 2:206

1864 TPMI_ALG_PUBLIC sensitiveType;

1865 TPM2B_AUTH authValue;

1866 TPM2B_DIGEST seedValue;

1867 TPMU_SENSITIVE_COMPOSITE sensitive;

1868 } TPMT_SENSITIVE; /* Structure */

1869 typedef struct { // Table 2:207

1870 UINT16 size;

1871 TPMT_SENSITIVE sensitiveArea;

1872 } TPM2B_SENSITIVE; /* Structure */

1873 typedef struct { // Table 2:208

1874 TPM2B_DIGEST integrityOuter;

1875 TPM2B_DIGEST integrityInner;

1876 TPM2B_SENSITIVE sensitive;

1877 } _PRIVATE; /* Structure */

1878 typedef union { // Table 2:209

Trusted Platform Module Library Part 4: Supporting Routines

Page 178 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1879 struct {

1880 UINT16 size;

1881 BYTE buffer[sizeof(_PRIVATE)];

1882 } t;

1883 TPM2B b;

1884 } TPM2B_PRIVATE; /* Structure */

1885 typedef struct { // Table 2:210

1886 TPM2B_DIGEST integrityHMAC;

1887 TPM2B_DIGEST encIdentity;

1888 } TPMS_ID_OBJECT; /* Structure */

1889 typedef union { // Table 2:211

1890 struct {

1891 UINT16 size;

1892 BYTE credential[sizeof(TPMS_ID_OBJECT)];

1893 } t;

1894 TPM2B b;

1895 } TPM2B_ID_OBJECT; /* Structure */

1896 #define TYPE_OF_TPM_NV_INDEX UINT32

1897 #define TPM_NV_INDEX_TO_UINT32(a) (*((UINT32 *)&(a)))

1898 #define UINT32_TO_TPM_NV_INDEX(a) (*((TPM_NV_INDEX *)&(a)))

1899 #define TPM_NV_INDEX_TO_BYTE_ARRAY(i, a) \

1900 UINT32_TO_BYTE_ARRAY((TPM_NV_INDEX_TO_UINT32(i)), (a))

1901 #define BYTE_ARRAY_TO_TPM_NV_INDEX(i, a) \

1902 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPM_NV_INDEX(x); }

1903 #if USE_BIT_FIELD_STRUCTURES

1904 typedef struct TPM_NV_INDEX { // Table 2:212

1905 unsigned index : 24;

1906 unsigned RH_NV : 8;

1907 } TPM_NV_INDEX; /* Bits */

This is the initializer for a TPM_NV_INDEX structure

1908 #define TPM_NV_INDEX_INITIALIZER(index, rh_nv) {index, rh_nv}

1909 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:212 TPM_NV_INDEX using bit masking

1910 typedef UINT32 TPM_NV_INDEX;

1911 #define TYPE_OF_TPM_NV_INDEX UINT32

1912 #define TPM_NV_INDEX_index_SHIFT 0

1913 #define TPM_NV_INDEX_index ((TPM_NV_INDEX)0xffffff << 0)

1914 #define TPM_NV_INDEX_RH_NV_SHIFT 24

1915 #define TPM_NV_INDEX_RH_NV ((TPM_NV_INDEX)0xff << 24)

This is the initializer for a TPM_NV_INDEX bit array.

1916 #define TPM_NV_INDEX_INITIALIZER(index, rh_nv) {(index << 0) + (rh_nv << 24)}

1917 #endif // USE_BIT_FIELD_STRUCTURES

Table 2:213 - Definition of TPM_NT Constants

1918 typedef UINT32 TPM_NT;

1919 #define TYPE_OF_TPM_NT UINT32

1920 #define TPM_NT_ORDINARY (TPM_NT)(0x0)

1921 #define TPM_NT_COUNTER (TPM_NT)(0x1)

1922 #define TPM_NT_BITS (TPM_NT)(0x2)

1923 #define TPM_NT_EXTEND (TPM_NT)(0x4)

1924 #define TPM_NT_PIN_FAIL (TPM_NT)(0x8)

1925 #define TPM_NT_PIN_PASS (TPM_NT)(0x9)

1926 typedef struct { // Table 2:214

1927 UINT32 pinCount;

1928 UINT32 pinLimit;

1929 } TPMS_NV_PIN_COUNTER_PARAMETERS; /* Structure */

1930 #define TYPE_OF_TPMA_NV UINT32

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 179

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1931 #define TPMA_NV_TO_UINT32(a) (*((UINT32 *)&(a)))

1932 #define UINT32_TO_TPMA_NV(a) (*((TPMA_NV *)&(a)))

1933 #define TPMA_NV_TO_BYTE_ARRAY(i, a) \

1934 UINT32_TO_BYTE_ARRAY((TPMA_NV_TO_UINT32(i)), (a))

1935 #define BYTE_ARRAY_TO_TPMA_NV(i, a) \

1936 { UINT32 x = BYTE_ARRAY_TO_UINT32(a); i = UINT32_TO_TPMA_NV(x); }

1937 #if USE_BIT_FIELD_STRUCTURES

1938 typedef struct TPMA_NV { // Table 2:215

1939 unsigned PPWRITE : 1;

1940 unsigned OWNERWRITE : 1;

1941 unsigned AUTHWRITE : 1;

1942 unsigned POLICYWRITE : 1;

1943 unsigned TPM_NT : 4;

1944 unsigned Reserved_bits_at_8 : 2;

1945 unsigned POLICY_DELETE : 1;

1946 unsigned WRITELOCKED : 1;

1947 unsigned WRITEALL : 1;

1948 unsigned WRITEDEFINE : 1;

1949 unsigned WRITE_STCLEAR : 1;

1950 unsigned GLOBALLOCK : 1;

1951 unsigned PPREAD : 1;

1952 unsigned OWNERREAD : 1;

1953 unsigned AUTHREAD : 1;

1954 unsigned POLICYREAD : 1;

1955 unsigned Reserved_bits_at_20 : 5;

1956 unsigned NO_DA : 1;

1957 unsigned ORDERLY : 1;

1958 unsigned CLEAR_STCLEAR : 1;

1959 unsigned READLOCKED : 1;

1960 unsigned WRITTEN : 1;

1961 unsigned PLATFORMCREATE : 1;

1962 unsigned READ_STCLEAR : 1;

1963 } TPMA_NV; /* Bits */

This is the initializer for a TPMA_NV structure

1964 #define TPMA_NV_INITIALIZER(\

1965 ppwrite, ownerwrite, authwrite, policywrite, \

1966 tpm_nt, bits_at_8, policy_delete, writelocked, \

1967 writeall, writedefine, write_stclear, globallock, \

1968 ppread, ownerread, authread, policyread, \

1969 bits_at_20, no_da, orderly, clear_stclear, \

1970 readlocked, written, platformcreate, read_stclear) \

1971 {ppwrite, ownerwrite, authwrite, policywrite, \

1972 tpm_nt, bits_at_8, policy_delete, writelocked, \

1973 writeall, writedefine, write_stclear, globallock, \

1974 ppread, ownerread, authread, policyread, \

1975 bits_at_20, no_da, orderly, clear_stclear, \

1976 readlocked, written, platformcreate, read_stclear}

1977 #else // USE_BIT_FIELD_STRUCTURES

This implements Table 2:215 TPMA_NV using bit masking

1978 typedef UINT32 TPMA_NV;

1979 #define TYPE_OF_TPMA_NV UINT32

1980 #define TPMA_NV_PPWRITE ((TPMA_NV)1 << 0)

1981 #define TPMA_NV_OWNERWRITE ((TPMA_NV)1 << 1)

1982 #define TPMA_NV_AUTHWRITE ((TPMA_NV)1 << 2)

1983 #define TPMA_NV_POLICYWRITE ((TPMA_NV)1 << 3)

1984 #define TPMA_NV_TPM_NT_SHIFT 4

1985 #define TPMA_NV_TPM_NT ((TPMA_NV)0xf << 4)

1986 #define TPMA_NV_POLICY_DELETE ((TPMA_NV)1 << 10)

1987 #define TPMA_NV_WRITELOCKED ((TPMA_NV)1 << 11)

1988 #define TPMA_NV_WRITEALL ((TPMA_NV)1 << 12)

1989 #define TPMA_NV_WRITEDEFINE ((TPMA_NV)1 << 13)

Trusted Platform Module Library Part 4: Supporting Routines

Page 180 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1990 #define TPMA_NV_WRITE_STCLEAR ((TPMA_NV)1 << 14)

1991 #define TPMA_NV_GLOBALLOCK ((TPMA_NV)1 << 15)

1992 #define TPMA_NV_PPREAD ((TPMA_NV)1 << 16)

1993 #define TPMA_NV_OWNERREAD ((TPMA_NV)1 << 17)

1994 #define TPMA_NV_AUTHREAD ((TPMA_NV)1 << 18)

1995 #define TPMA_NV_POLICYREAD ((TPMA_NV)1 << 19)

1996 #define TPMA_NV_NO_DA ((TPMA_NV)1 << 25)

1997 #define TPMA_NV_ORDERLY ((TPMA_NV)1 << 26)

1998 #define TPMA_NV_CLEAR_STCLEAR ((TPMA_NV)1 << 27)

1999 #define TPMA_NV_READLOCKED ((TPMA_NV)1 << 28)

2000 #define TPMA_NV_WRITTEN ((TPMA_NV)1 << 29)

2001 #define TPMA_NV_PLATFORMCREATE ((TPMA_NV)1 << 30)

2002 #define TPMA_NV_READ_STCLEAR ((TPMA_NV)1 << 31)

This is the initializer for a TPMA_NV bit array.

2003 #define TPMA_NV_INITIALIZER(\

2004 ppwrite, ownerwrite, authwrite, policywrite, \

2005 tpm_nt, bits_at_8, policy_delete, writelocked, \

2006 writeall, writedefine, write_stclear, globallock, \

2007 ppread, ownerread, authread, policyread, \

2008 bits_at_20, no_da, orderly, clear_stclear, \

2009 readlocked, written, platformcreate, read_stclear) \

2010 {(ppwrite << 0) + (ownerwrite << 1) + \

2011 (authwrite << 2) + (policywrite << 3) + \

2012 (tpm_nt << 4) + (policy_delete << 10) + \

2013 (writelocked << 11) + (writeall << 12) + \

2014 (writedefine << 13) + (write_stclear << 14) + \

2015 (globallock << 15) + (ppread << 16) + \

2016 (ownerread << 17) + (authread << 18) + \

2017 (policyread << 19) + (no_da << 25) + \

2018 (orderly << 26) + (clear_stclear << 27) + \

2019 (readlocked << 28) + (written << 29) + \

2020 (platformcreate << 30) + (read_stclear << 31)}

2021 #endif // USE_BIT_FIELD_STRUCTURES

2022 typedef struct { // Table 2:216

2023 TPMI_RH_NV_INDEX nvIndex;

2024 TPMI_ALG_HASH nameAlg;

2025 TPMA_NV attributes;

2026 TPM2B_DIGEST authPolicy;

2027 UINT16 dataSize;

2028 } TPMS_NV_PUBLIC; /* Structure */

2029 typedef struct { // Table 2:217

2030 UINT16 size;

2031 TPMS_NV_PUBLIC nvPublic;

2032 } TPM2B_NV_PUBLIC; /* Structure */

2033 typedef union { // Table 2:218

2034 struct {

2035 UINT16 size;

2036 BYTE buffer[MAX_CONTEXT_SIZE];

2037 } t;

2038 TPM2B b;

2039 } TPM2B_CONTEXT_SENSITIVE; /* Structure */

2040 typedef struct { // Table 2:219

2041 TPM2B_DIGEST integrity;

2042 TPM2B_CONTEXT_SENSITIVE encrypted;

2043 } TPMS_CONTEXT_DATA; /* Structure */

2044 typedef union { // Table 2:220

2045 struct {

2046 UINT16 size;

2047 BYTE buffer[sizeof(TPMS_CONTEXT_DATA)];

2048 } t;

2049 TPM2B b;

2050 } TPM2B_CONTEXT_DATA; /* Structure */

2051 typedef struct { // Table 2:221

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 181

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2052 UINT64 sequence;

2053 TPMI_DH_SAVED savedHandle;

2054 TPMI_RH_HIERARCHY hierarchy;

2055 TPM2B_CONTEXT_DATA contextBlob;

2056 } TPMS_CONTEXT; /* Structure */

2057 typedef struct { // Table 2:223

2058 TPML_PCR_SELECTION pcrSelect;

2059 TPM2B_DIGEST pcrDigest;

2060 TPMA_LOCALITY locality;

2061 TPM_ALG_ID parentNameAlg;

2062 TPM2B_NAME parentName;

2063 TPM2B_NAME parentQualifiedName;

2064 TPM2B_DATA outsideInfo;

2065 } TPMS_CREATION_DATA; /* Structure */

2066 typedef struct { // Table 2:224

2067 UINT16 size;

2068 TPMS_CREATION_DATA creationData;

2069 } TPM2B_CREATION_DATA; /* Structure */

Table 2:225 - Definition of TPM_AT Constants

2070 typedef UINT32 TPM_AT;

2071 #define TYPE_OF_TPM_AT UINT32

2072 #define TPM_AT_ANY (TPM_AT)(0x00000000)

2073 #define TPM_AT_ERROR (TPM_AT)(0x00000001)

2074 #define TPM_AT_PV1 (TPM_AT)(0x00000002)

2075 #define TPM_AT_VEND (TPM_AT)(0x80000000)

Table 2:226 - Definition of TPM_AE Constants

2076 typedef UINT32 TPM_AE;

2077 #define TYPE_OF_TPM_AE UINT32

2078 #define TPM_AE_NONE (TPM_AE)(0x00000000)

2079 typedef struct { // Table 2:227

2080 TPM_AT tag;

2081 UINT32 data;

2082 } TPMS_AC_OUTPUT; /* Structure */

2083 typedef struct { // Table 2:228

2084 UINT32 count;

2085 TPMS_AC_OUTPUT acCapabilities[MAX_AC_CAPABILITIES];

2086 } TPML_AC_CAPABILITIES; /* Structure */

2087 #endif // _TPM_TYPES_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 182 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.20 VendorString.h

1 #ifndef _VENDOR_STRING_H

2 #define _VENDOR_STRING_H

Define up to 4-byte values for MANUFACTURER. This value defines the response for

TPM_PT_MANUFACTURER in TPM2_GetCapability(). The following line should be un-commented and a

vendor specific string should be provided here.

3 #define MANUFACTURER "MSFT"

The following #if macro may be deleted after a proper MANUFACTURER is provided.

4 #ifndef MANUFACTURER

5 #error MANUFACTURER is not provided. \

6 Please modify include/VendorString.h to provide a specific \

7 manufacturer name.

8 #endif

Define up to 4, 4-byte values. The values must each be 4 bytes long and the last value used may contain

trailing zeros. These values define the response for TPM_PT_VENDOR_STRING_(1-4) in

TPM2_GetCapability(). The following line should be un-commented and a vendor specific string should

be provided here. The vendor strings 2-4 may also be defined as appropriate.

9 #define VENDOR_STRING_1 "xCG "

10 #define VENDOR_STRING_2 "fTPM"

11 // #define VENDOR_STRING_3

12 // #define VENDOR_STRING_4

The following #if macro may be deleted after a proper VENDOR_STRING_1 is provided.

13 #ifndef VENDOR_STRING_1

14 #error VENDOR_STRING_1 is not provided. \

15 Please modify include/VendorString.h to provide a vendor-specific string.

16 #endif

the more significant 32-bits of a vendor-specific value indicating the version of the firmware The following

line should be un-commented and a vendor specific firmware V1 should be provided here. The

FIRMWARE_V2 may also be defined as appropriate.

17 #define FIRMWARE_V1 (0x20170619)

the less significant 32-bits of a vendor-specific value indicating the version of the firmware

18 #define FIRMWARE_V2 (0x00163636)

The following #if macro may be deleted after a proper FIRMWARE_V1 is provided.

19 #ifndef FIRMWARE_V1

20 #error FIRMWARE_V1 is not provided. \

21 Please modify include/VendorString.h to provide a vendor-specific firmware \

22 version

23 #endif

24 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 183

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.21 swap.h

1 #ifndef _SWAP_H

2 #define _SWAP_H

3 #if LITTLE_ENDIAN_TPM

4 #define TO_BIG_ENDIAN_UINT16(i) REVERSE_ENDIAN_16(i)

5 #define FROM_BIG_ENDIAN_UINT16(i) REVERSE_ENDIAN_16(i)

6 #define TO_BIG_ENDIAN_UINT32(i) REVERSE_ENDIAN_32(i)

7 #define FROM_BIG_ENDIAN_UINT32(i) REVERSE_ENDIAN_32(i)

8 #define TO_BIG_ENDIAN_UINT64(i) REVERSE_ENDIAN_64(i)

9 #define FROM_BIG_ENDIAN_UINT64(i) REVERSE_ENDIAN_64(i)

10 #else

11 #define TO_BIG_ENDIAN_UINT16(i) (i)

12 #define FROM_BIG_ENDIAN_UINT16(i) (i)

13 #define TO_BIG_ENDIAN_UINT32(i) (i)

14 #define FROM_BIG_ENDIAN_UINT32(i) (i)

15 #define TO_BIG_ENDIAN_UINT64(i) (i)

16 #define FROM_BIG_ENDIAN_UINT64(i) (i)

17 #endif

18 #if AUTO_ALIGN == NO

The aggregation macros for machines that do not allow unaligned access or for little-endian machines.

Aggregate bytes into an UINT

19 #define BYTE_ARRAY_TO_UINT8(b) (uint8_t)((b)[0])

20 #define BYTE_ARRAY_TO_UINT16(b) ByteArrayToUint16((BYTE *)(b))

21 #define BYTE_ARRAY_TO_UINT32(b) ByteArrayToUint32((BYTE *)(b))

22 #define BYTE_ARRAY_TO_UINT64(b) ByteArrayToUint64((BYTE *)(b))

23 #define UINT8_TO_BYTE_ARRAY(i, b) ((b)[0] = (uint8_t)(i))

24 #define UINT16_TO_BYTE_ARRAY(i, b) Uint16ToByteArray((i), (BYTE *)(b))

25 #define UINT32_TO_BYTE_ARRAY(i, b) Uint32ToByteArray((i), (BYTE *)(b))

26 #define UINT64_TO_BYTE_ARRAY(i, b) Uint64ToByteArray((i), (BYTE *)(b))

27 #else // AUTO_ALIGN

28 #if BIG_ENDIAN_TPM

the big-endian macros for machines that allow unaligned memory access Aggregate a byte array into a

UINT

29 #define BYTE_ARRAY_TO_UINT8(b) *((uint8_t *)(b))

30 #define BYTE_ARRAY_TO_UINT16(b) *((uint16_t *)(b))

31 #define BYTE_ARRAY_TO_UINT32(b) *((uint32_t *)(b))

32 #define BYTE_ARRAY_TO_UINT64(b) *((uint64_t *)(b))

Disaggregate a UINT into a byte array

33 #define UINT8_TO_BYTE_ARRAY(i, b) {*((uint8_t *)(b)) = (i);}

34 #define UINT16_TO_BYTE_ARRAY(i, b) {*((uint16_t *)(b)) = (i);}

35 #define UINT32_TO_BYTE_ARRAY(i, b) {*((uint32_t *)(b)) = (i);}

36 #define UINT64_TO_BYTE_ARRAY(i, b) {*((uint64_t *)(b)) = (i);}

37 #else

the little endian macros for machines that allow unaligned memory access the big-endian macros for

machines that allow unaligned memory access Aggregate a byte array into a UINT

38 #define BYTE_ARRAY_TO_UINT8(b) *((uint8_t *)(b))

39 #define BYTE_ARRAY_TO_UINT16(b) REVERSE_ENDIAN_16(*((uint16_t *)(b)))

40 #define BYTE_ARRAY_TO_UINT32(b) REVERSE_ENDIAN_32(*((uint32_t *)(b)))

41 #define BYTE_ARRAY_TO_UINT64(b) REVERSE_ENDIAN_64(*((uint64_t *)(b)))

Disaggregate a UINT into a byte array

42 #define UINT8_TO_BYTE_ARRAY(i, b) {*((uint8_t *)(b)) = (i);}

Trusted Platform Module Library Part 4: Supporting Routines

Page 184 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

43 #define UINT16_TO_BYTE_ARRAY(i, b) {*((uint16_t *)(b)) = REVERSE_ENDIAN_16(i);}

44 #define UINT32_TO_BYTE_ARRAY(i, b) {*((uint32_t *)(b)) = REVERSE_ENDIAN_32(i);}

45 #define UINT64_TO_BYTE_ARRAY(i, b) {*((uint64_t *)(b)) = REVERSE_ENDIAN_64(i);}

46 #endif // BIG_ENDIAN_TPM

47 #endif // AUTO_ALIGN == NO

48 #endif // _SWAP_H

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 185

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.22 ACT.h

1 #ifndef _ACT_H_

2 #define _ACT_H_

3 #include "TpmProfile.h"

4 #if !(defined RH_ACT_0) || (RH_ACT_0 != YES)

5 # undef RH_ACT_0

6 # define RH_ACT_0 NO

7 # define IF_ACT_0_IMPLEMENTED(op)

8 #else

9 # define IF_ACT_0_IMPLEMENTED(op) op(0)

10 #endif

11 #if !(defined RH_ACT_1) || (RH_ACT_1 != YES)

12 # undef RH_ACT_1

13 # define RH_ACT_1 NO

14 # define IF_ACT_1_IMPLEMENTED(op)

15 #else

16 # define IF_ACT_1_IMPLEMENTED(op) op(1)

17 #endif

18 #if !(defined RH_ACT_2) || (RH_ACT_2 != YES)

19 # undef RH_ACT_2

20 # define RH_ACT_2 NO

21 # define IF_ACT_2_IMPLEMENTED(op)

22 #else

23 # define IF_ACT_2_IMPLEMENTED(op) op(2)

24 #endif

25 #if !(defined RH_ACT_3) || (RH_ACT_3 != YES)

26 # undef RH_ACT_3

27 # define RH_ACT_3 NO

28 # define IF_ACT_3_IMPLEMENTED(op)

29 #else

30 # define IF_ACT_3_IMPLEMENTED(op) op(3)

31 #endif

32 #if !(defined RH_ACT_4) || (RH_ACT_4 != YES)

33 # undef RH_ACT_4

34 # define RH_ACT_4 NO

35 # define IF_ACT_4_IMPLEMENTED(op)

36 #else

37 # define IF_ACT_4_IMPLEMENTED(op) op(4)

38 #endif

39 #if !(defined RH_ACT_5) || (RH_ACT_5 != YES)

40 # undef RH_ACT_5

41 # define RH_ACT_5 NO

42 # define IF_ACT_5_IMPLEMENTED(op)

43 #else

44 # define IF_ACT_5_IMPLEMENTED(op) op(5)

45 #endif

46 #if !(defined RH_ACT_6) || (RH_ACT_6 != YES)

47 # undef RH_ACT_6

48 # define RH_ACT_6 NO

49 # define IF_ACT_6_IMPLEMENTED(op)

50 #else

51 # define IF_ACT_6_IMPLEMENTED(op) op(6)

52 #endif

53 #if !(defined RH_ACT_7) || (RH_ACT_7 != YES)

54 # undef RH_ACT_7

55 # define RH_ACT_7 NO

56 # define IF_ACT_7_IMPLEMENTED(op)

57 #else

58 # define IF_ACT_7_IMPLEMENTED(op) op(7)

59 #endif

60 #if !(defined RH_ACT_8) || (RH_ACT_8 != YES)

61 # undef RH_ACT_8

62 # define RH_ACT_8 NO

63 # define IF_ACT_8_IMPLEMENTED(op)

Trusted Platform Module Library Part 4: Supporting Routines

Page 186 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

64 #else

65 # define IF_ACT_8_IMPLEMENTED(op) op(8)

66 #endif

67 #if !(defined RH_ACT_9) || (RH_ACT_9 != YES)

68 # undef RH_ACT_9

69 # define RH_ACT_9 NO

70 # define IF_ACT_9_IMPLEMENTED(op)

71 #else

72 # define IF_ACT_9_IMPLEMENTED(op) op(9)

73 #endif

74 #if !(defined RH_ACT_A) || (RH_ACT_A != YES)

75 # undef RH_ACT_A

76 # define RH_ACT_A NO

77 # define IF_ACT_A_IMPLEMENTED(op)

78 #else

79 # define IF_ACT_A_IMPLEMENTED(op) op(A)

80 #endif

81 #if !(defined RH_ACT_B) || (RH_ACT_B != YES)

82 # undef RH_ACT_B

83 # define RH_ACT_B NO

84 # define IF_ACT_B_IMPLEMENTED(op)

85 #else

86 # define IF_ACT_B_IMPLEMENTED(op) op(B)

87 #endif

88 #if !(defined RH_ACT_C) || (RH_ACT_C != YES)

89 # undef RH_ACT_C

90 # define RH_ACT_C NO

91 # define IF_ACT_C_IMPLEMENTED(op)

92 #else

93 # define IF_ACT_C_IMPLEMENTED(op) op(C)

94 #endif

95 #if !(defined RH_ACT_D) || (RH_ACT_D != YES)

96 # undef RH_ACT_D

97 # define RH_ACT_D NO

98 # define IF_ACT_D_IMPLEMENTED(op)

99 #else

100 # define IF_ACT_D_IMPLEMENTED(op) op(D)

101 #endif

102 #if !(defined RH_ACT_E) || (RH_ACT_E != YES)

103 # undef RH_ACT_E

104 # define RH_ACT_E NO

105 # define IF_ACT_E_IMPLEMENTED(op)

106 #else

107 # define IF_ACT_E_IMPLEMENTED(op) op(E)

108 #endif

109 #if !(defined RH_ACT_F) || (RH_ACT_F != YES)

110 # undef RH_ACT_F

111 # define RH_ACT_F NO

112 # define IF_ACT_F_IMPLEMENTED(op)

113 #else

114 # define IF_ACT_F_IMPLEMENTED(op) op(F)

115 #endif

116 #ifndef TPM_RH_ACT_0

117 #error Need numeric definition for TPM_RH_ACT_0

118 #endif

119 #ifndef TPM_RH_ACT_1

120 # define TPM_RH_ACT_1 (TPM_RH_ACT_0 + 1)

121 #endif

122 #ifndef TPM_RH_ACT_2

123 # define TPM_RH_ACT_2 (TPM_RH_ACT_0 + 2)

124 #endif

125 #ifndef TPM_RH_ACT_3

126 # define TPM_RH_ACT_3 (TPM_RH_ACT_0 + 3)

127 #endif

128 #ifndef TPM_RH_ACT_4

129 # define TPM_RH_ACT_4 (TPM_RH_ACT_0 + 4)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 187

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

130 #endif

131 #ifndef TPM_RH_ACT_5

132 # define TPM_RH_ACT_5 (TPM_RH_ACT_0 + 5)

133 #endif

134 #ifndef TPM_RH_ACT_6

135 # define TPM_RH_ACT_6 (TPM_RH_ACT_0 + 6)

136 #endif

137 #ifndef TPM_RH_ACT_7

138 # define TPM_RH_ACT_7 (TPM_RH_ACT_0 + 7)

139 #endif

140 #ifndef TPM_RH_ACT_8

141 # define TPM_RH_ACT_8 (TPM_RH_ACT_0 + 8)

142 #endif

143 #ifndef TPM_RH_ACT_9

144 # define TPM_RH_ACT_9 (TPM_RH_ACT_0 + 9)

145 #endif

146 #ifndef TPM_RH_ACT_A

147 # define TPM_RH_ACT_A (TPM_RH_ACT_0 + 0xA)

148 #endif

149 #ifndef TPM_RH_ACT_B

150 # define TPM_RH_ACT_B (TPM_RH_ACT_0 + 0xB)

151 #endif

152 #ifndef TPM_RH_ACT_C

153 # define TPM_RH_ACT_C (TPM_RH_ACT_0 + 0xC)

154 #endif

155 #ifndef TPM_RH_ACT_D

156 # define TPM_RH_ACT_D (TPM_RH_ACT_0 + 0xD)

157 #endif

158 #ifndef TPM_RH_ACT_E

159 # define TPM_RH_ACT_E (TPM_RH_ACT_0 + 0xE)

160 #endif

161 #ifndef TPM_RH_ACT_F

162 # define TPM_RH_ACT_F (TPM_RH_ACT_0 + 0xF)

163 #endif

164 #define FOR_EACH_ACT(op) \

165 IF_ACT_0_IMPLEMENTED(op) \

166 IF_ACT_1_IMPLEMENTED(op) \

167 IF_ACT_2_IMPLEMENTED(op) \

168 IF_ACT_3_IMPLEMENTED(op) \

169 IF_ACT_4_IMPLEMENTED(op) \

170 IF_ACT_5_IMPLEMENTED(op) \

171 IF_ACT_6_IMPLEMENTED(op) \

172 IF_ACT_7_IMPLEMENTED(op) \

173 IF_ACT_8_IMPLEMENTED(op) \

174 IF_ACT_9_IMPLEMENTED(op) \

175 IF_ACT_A_IMPLEMENTED(op) \

176 IF_ACT_B_IMPLEMENTED(op) \

177 IF_ACT_C_IMPLEMENTED(op) \

178 IF_ACT_D_IMPLEMENTED(op) \

179 IF_ACT_E_IMPLEMENTED(op) \

180 IF_ACT_F_IMPLEMENTED(op)

This is the mask for ACT that are implemented

181 //#define ACT_MASK(N) | (1 << 0x##N)

182 //#define ACT_IMPLEMENTED_MASK (0 FOR_EACH_ACT(ACT_MASK))

183 #define CASE_ACT_HANDLE(N) case TPM_RH_ACT_##N:

184 #define CASE_ACT_NUMBER(N) case 0x##N:

185 typedef struct ACT_STATE

186 {

187 UINT32 remaining;

188 TPM_ALG_ID hashAlg;

189 TPM2B_DIGEST authPolicy;

190 } ACT_STATE, *P_ACT_STATE;

191 #endif // _ACT_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 188 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6 Main

6.1 Introduction

The files in this section are the main processing blocks for the TPM. ExecuteCommand.c contains the

entry point into the TPM code and the parsing of the command header. SessionProcess.c handles the

parsing of the session area and the authorization checks, and CommandDispatch.c does the parameter

unmarshaling and command dispatch.

6.2 ExecCommand.c

6.2.1 Introduction

This file contains the entry function ExecuteCommand() which provides the main control flow for TPM

command execution.

6.2.2 Includes

1 #include "Tpm.h"

2 #include "ExecCommand_fp.h"

Uncomment this next #include if doing static command/response buffer sizing

3 // #include "CommandResponseSizes_fp.h"

6.2.3 ExecuteCommand()

The function performs the following steps.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 189

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Parses the command header from input buffer.

 Calls ParseHandleBuffer() to parse the handle area of the command.

 Validates that each of the handles references a loaded entity.

 Calls ParseSessionBuffer() () to:

1) unmarshal and parse the session area;

2) check the authorizations; and

3) when necessary, decrypt a parameter.

 Calls CommandDispatcher() to:

1) unmarshal the command parameters from the command buffer;

2) call the routine that performs the command actions; and

3) marshal the responses into the response buffer.

 If any error occurs in any of the steps above create the error response and return.

 Calls BuildResponseSessions() to:

1) when necessary, encrypt a parameter

2) build the response authorization sessions

3) update the audit sessions and nonces

 Calls BuildResponseHeader() to complete the construction of the response.

responseSize is set by the caller to the maximum number of bytes available in the output buffer.

ExecuteCommand() will adjust the value and return the number of bytes placed in the buffer.

response is also set by the caller to indicate the buffer into which ExecuteCommand() is to place the

response.

request and response may point to the same buffer

NOTE: As of February, 2016, the failure processing has been moved to the platform-specific code. When the TPM
code encounters an unrecoverable failure, it will SET g_inFailureMode and call _plat__Fail(). That function
should not return but may call ExecuteCommand().

4 LIB_EXPORT void

5 ExecuteCommand(

6 uint32_t requestSize, // IN: command buffer size

7 unsigned char *request, // IN: command buffer

8 uint32_t *responseSize, // IN/OUT: response buffer size

9 unsigned char **response // IN/OUT: response buffer

10)

11 {

12 // Command local variables

13 UINT32 commandSize;

14 COMMAND command;

15

16 // Response local variables

17 UINT32 maxResponse = *responseSize;

18 TPM_RC result; // return code for the command

19

20 // This next function call is used in development to size the command and response

21 // buffers. The values printed are the sizes of the internal structures and

22 // not the sizes of the canonical forms of the command response structures. Also,

23 // the sizes do not include the tag, command.code, requestSize, or the authorization

24 // fields.

25 //CommandResponseSizes();

26 // Set flags for NV access state. This should happen before any other

27 // operation that may require a NV write. Note, that this needs to be done

Trusted Platform Module Library Part 4: Supporting Routines

Page 190 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

28 // even when in failure mode. Otherwise, g_updateNV would stay SET while in

29 // Failure mode and the NV would be written on each call.

30 g_updateNV = UT_NONE;

31 g_clearOrderly = FALSE;

32 if(g_inFailureMode)

33 {

34 // Do failure mode processing

35 TpmFailureMode(requestSize, request, responseSize, response);

36 return;

37 }

38 // Query platform to get the NV state. The result state is saved internally

39 // and will be reported by NvIsAvailable(). The reference code requires that

40 // accessibility of NV does not change during the execution of a command.

41 // Specifically, if NV is available when the command execution starts and then

42 // is not available later when it is necessary to write to NV, then the TPM

43 // will go into failure mode.

44 NvCheckState();

45

46 // Due to the limitations of the simulation, TPM clock must be explicitly

47 // synchronized with the system clock whenever a command is received.

48 // This function call is not necessary in a hardware TPM. However, taking

49 // a snapshot of the hardware timer at the beginning of the command allows

50 // the time value to be consistent for the duration of the command execution.

51 TimeUpdateToCurrent();

52

53 // Any command through this function will unceremoniously end the

54 // _TPM_Hash_Data/_TPM_Hash_End sequence.

55 if(g_DRTMHandle != TPM_RH_UNASSIGNED)

56 ObjectTerminateEvent();

57

58 // Get command buffer size and command buffer.

59 command.parameterBuffer = request;

60 command.parameterSize = requestSize;

61

62 // Parse command header: tag, commandSize and command.code.

63 // First parse the tag. The unmarshaling routine will validate

64 // that it is either TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS.

65 result = TPMI_ST_COMMAND_TAG_Unmarshal(&command.tag,

66 &command.parameterBuffer,

67 &command.parameterSize);

68 if(result != TPM_RC_SUCCESS)

69 goto Cleanup;

70 // Unmarshal the commandSize indicator.

71 result = UINT32_Unmarshal(&commandSize,

72 &command.parameterBuffer,

73 &command.parameterSize);

74 if(result != TPM_RC_SUCCESS)

75 goto Cleanup;

76 // On a TPM that receives bytes on a port, the number of bytes that were

77 // received on that port is requestSize it must be identical to commandSize.

78 // In addition, commandSize must not be larger than MAX_COMMAND_SIZE allowed

79 // by the implementation. The check against MAX_COMMAND_SIZE may be redundant

80 // as the input processing (the function that receives the command bytes and

81 // places them in the input buffer) would likely have the input truncated when

82 // it reaches MAX_COMMAND_SIZE, and requestSize would not equal commandSize.

83 if(commandSize != requestSize || commandSize > MAX_COMMAND_SIZE)

84 {

85 result = TPM_RC_COMMAND_SIZE;

86 goto Cleanup;

87 }

88 // Unmarshal the command code.

89 result = TPM_CC_Unmarshal(&command.code, &command.parameterBuffer,

90 &command.parameterSize);

91 if(result != TPM_RC_SUCCESS)

92 goto Cleanup;

93 // Check to see if the command is implemented.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 191

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

94 command.index = CommandCodeToCommandIndex(command.code);

95 if(UNIMPLEMENTED_COMMAND_INDEX == command.index)

96 {

97 result = TPM_RC_COMMAND_CODE;

98 goto Cleanup;

99 }

100 #if FIELD_UPGRADE_IMPLEMENTED == YES

101 // If the TPM is in FUM, then the only allowed command is

102 // TPM_CC_FieldUpgradeData.

103 if(IsFieldUgradeMode() && (command.code != TPM_CC_FieldUpgradeData))

104 {

105 result = TPM_RC_UPGRADE;

106 goto Cleanup;

107 }

108 else

109 #endif

110 // Excepting FUM, the TPM only accepts TPM2_Startup() after

111 // _TPM_Init. After getting a TPM2_Startup(), TPM2_Startup()

112 // is no longer allowed.

113 if((!TPMIsStarted() && command.code != TPM_CC_Startup)

114 || (TPMIsStarted() && command.code == TPM_CC_Startup))

115 {

116 result = TPM_RC_INITIALIZE;

117 goto Cleanup;

118 }

119 // Start regular command process.

120 NvIndexCacheInit();

121 // Parse Handle buffer.

122 result = ParseHandleBuffer(&command);

123 if(result != TPM_RC_SUCCESS)

124 goto Cleanup;

125 // All handles in the handle area are required to reference TPM-resident

126 // entities.

127 result = EntityGetLoadStatus(&command);

128 if(result != TPM_RC_SUCCESS)

129 goto Cleanup;

130 // Authorization session handling for the command.

131 ClearCpRpHashes(&command);

132 if(command.tag == TPM_ST_SESSIONS)

133 {

134 // Find out session buffer size.

135 result = UINT32_Unmarshal((UINT32 *)&command.authSize,

136 &command.parameterBuffer,

137 &command.parameterSize);

138 if(result != TPM_RC_SUCCESS)

139 goto Cleanup;

140 // Perform sanity check on the unmarshaled value. If it is smaller than

141 // the smallest possible session or larger than the remaining size of

142 // the command, then it is an error. NOTE: This check could pass but the

143 // session size could still be wrong. That will be determined after the

144 // sessions are unmarshaled.

145 if(command.authSize < 9

146 || command.authSize > command.parameterSize)

147 {

148 result = TPM_RC_SIZE;

149 goto Cleanup;

150 }

151 command.parameterSize -= command.authSize;

152

153 // The actions of ParseSessionBuffer() are described in the introduction.

154 // As the sessions are parsed command.parameterBuffer is advanced so, on a

155 // successful return, command.parameterBuffer should be pointing at the

156 // first byte of the parameters.

157 result = ParseSessionBuffer(&command);

158 if(result != TPM_RC_SUCCESS)

159 goto Cleanup;

Trusted Platform Module Library Part 4: Supporting Routines

Page 192 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

160 }

161 else

162 {

163 command.authSize = 0;

164 // The command has no authorization sessions.

165 // If the command requires authorizations, then CheckAuthNoSession() will

166 // return an error.

167 result = CheckAuthNoSession(&command);

168 if(result != TPM_RC_SUCCESS)

169 goto Cleanup;

170 }

171 // Set up the response buffer pointers. CommandDispatch will marshal the

172 // response parameters starting at the address in command.responseBuffer.

173 //*response = MemoryGetResponseBuffer(command.index);

174 // leave space for the command header

175 command.responseBuffer = *response + STD_RESPONSE_HEADER;

176

177 // leave space for the parameter size field if needed

178 if(command.tag == TPM_ST_SESSIONS)

179 command.responseBuffer += sizeof(UINT32);

180 if(IsHandleInResponse(command.index))

181 command.responseBuffer += sizeof(TPM_HANDLE);

182

183 // CommandDispatcher returns a response handle buffer and a response parameter

184 // buffer if it succeeds. It will also set the parameterSize field in the

185 // buffer if the tag is TPM_RC_SESSIONS.

186 result = CommandDispatcher(&command);

187 if(result != TPM_RC_SUCCESS)

188 goto Cleanup;

189

190 // Build the session area at the end of the parameter area.

191 BuildResponseSession(&command);

192

193 Cleanup:

194 if(g_clearOrderly == TRUE

195 && NV_IS_ORDERLY)

196 {

197 #if USE_DA_USED

198 gp.orderlyState = g_daUsed ? SU_DA_USED_VALUE : SU_NONE_VALUE;

199 #else

200 gp.orderlyState = SU_NONE_VALUE;

201 #endif

202 NV_SYNC_PERSISTENT(orderlyState);

203 }

204 // This implementation loads an "evict" object to a transient object slot in

205 // RAM whenever an "evict" object handle is used in a command so that the

206 // access to any object is the same. These temporary objects need to be

207 // cleared from RAM whether the command succeeds or fails.

208 ObjectCleanupEvict();

209

210 // The parameters and sessions have been marshaled. Now tack on the header and

211 // set the sizes

212 BuildResponseHeader(&command, *response, result);

213

214 // Try to commit all the writes to NV if any NV write happened during this

215 // command execution. This check should be made for both succeeded and failed

216 // commands, because a failed one may trigger a NV write in DA logic as well.

217 // This is the only place in the command execution path that may call the NV

218 // commit. If the NV commit fails, the TPM should be put in failure mode.

219 if((g_updateNV != UT_NONE) && !g_inFailureMode)

220 {

221 if(g_updateNV == UT_ORDERLY)

222 NvUpdateIndexOrderlyData();

223 if(!NvCommit())

224 FAIL(FATAL_ERROR_INTERNAL);

225 g_updateNV = UT_NONE;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 193

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

226 }

227 pAssert((UINT32)command.parameterSize <= maxResponse);

228

229 // Clear unused bits in response buffer.

230 MemorySet(*response + *responseSize, 0, maxResponse - *responseSize);

231

232 // as a final act, and not before, update the response size.

233 *responseSize = (UINT32)command.parameterSize;

234

235 return;

236 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 194 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.3 CommandDispatcher.c

6.3.1 Introduction

CommandDispatcher() performs the following operations:

• unmarshals command parameters from the input buffer;

NOTE 1 Unlike other unmarshaling functions, parmBufferStart does not advance. parmBufferSize Is reduced.

• invokes the function that performs the command actions;

• marshals the returned handles, if any; and

• marshals the returned parameters, if any, into the output buffer putting in the parameterSize field if
authorization sessions are present.

NOTE 2 The output buffer is the return from the MemoryGetResponseBuffer() function. It includes the header, handles,
response parameters, and authorization area. respParmSize is the response parameter size, and does not
include the header, handles, or authorization area.

NOTE 3 The reference implementation is permitted to do compare operations over a union as a byte array. Therefore,
the command parameter in structure must be initialized (e.g., zeroed) before unmarshaling so that the compare
operation is valid in cases where some bytes are unused.

6.3.1.1 Includes and Typedefs

1 #include "Tpm.h"

2 #include "Marshal.h"

3 #if TABLE_DRIVEN_DISPATCH

4 typedef TPM_RC(NoFlagFunction)(void *target, BYTE **buffer, INT32 *size);

5 typedef TPM_RC(FlagFunction)(void *target, BYTE **buffer, INT32 *size, BOOL flag);

6 typedef FlagFunction *UNMARSHAL_t;

7 typedef INT16(MarshalFunction)(void *source, BYTE **buffer, INT32 *size);

8 typedef MarshalFunction *MARSHAL_t;

9 typedef TPM_RC(COMMAND_NO_ARGS)(void);

10 typedef TPM_RC(COMMAND_IN_ARG)(void *in);

11 typedef TPM_RC(COMMAND_OUT_ARG)(void *out);

12 typedef TPM_RC(COMMAND_INOUT_ARG)(void *in, void *out);

13 typedef union COMMAND_t

14 {

15 COMMAND_NO_ARGS *noArgs;

16 COMMAND_IN_ARG *inArg;

17 COMMAND_OUT_ARG *outArg;

18 COMMAND_INOUT_ARG *inOutArg;

19 } COMMAND_t;

This structure is used by ParseHandleBuffer() and CommandDispatcher(). The parameters in this

structure are unique for each command. The parameters are:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 195

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

command holds the address of the command processing function
that is called by Command Dispatcher.

inSize this is the size of the command-dependent input structure. The input
structure holds the unmarshaled handles and command parameters.
If the command takes no arguments (handles or parameters) then
inSize will have a value of 0.

outSize this is the size of the command-dependent output structure. The
output structure holds the results of the command in an unmarshaled
form. When command processing is completed, these values are
marshaled into the output buffer. It is always the case that the
unmarshaled version of an output structure is larger then the
marshaled version. This is because the marshaled version contains
the exact same number of significant bytes but with padding
removed.

typesOffsets this parameter points to the list of data types that are to be marshaled
or unmarshaled. The list of types follows the offsets array. The offsets
array is variable sized so the typesOffset filed is necessary for the
handle and command processing to be able to find the types that are
being handled. The offsets array may be empty. The types structure
is described below.

offsets this is an array of offsets of each of the parameters in the command
or response. When processing the command parameters (not
handles) the list contains the offset of the next parameter. For
example, if the first command parameter has a size of 4 and there is
a second command parameter, then the offset would be 4, indicating
that the second parameter starts at 4. If the second parameter has a
size of 8, and there is a third parameter, then the second entry in
offsets is 12 (4 for the first parameter and 8 for the second). An offset
value of 0 in the list indicates the start of the response parameter list.
When CommandDispatcher() hits this value, it will stop unmarshaling
the parameters and call command. If a command has no response
parameters and only one command parameter, then offsets can be
an empty list.

20 typedef struct COMMAND_DESCRIPTOR_t

21 {

22 COMMAND_t command; // Address of the command

23 UINT16 inSize; // Maximum size of the input structure

24 UINT16 outSize; // Maximum size of the output structure

25 UINT16 typesOffset; // address of the types field

26 UINT16 offsets[1];

27 } COMMAND_DESCRIPTOR_t;

The types list is an encoded byte array. The byte value has two parts. The most significant bit is used

when a parameter takes a flag and indicates if the flag should be SET or not. The remaining 7 bits are an

index into an array of addresses of marshaling and unmarshaling functions. The array of functions is

divided into 6 sections with a value assigned to denote the start of that section (and the end of the

previous section). The defined offset values for each section are:

Trusted Platform Module Library Part 4: Supporting Routines

Page 196 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

0 unmarshaling for handles that do not take flags

HANDLE_FIRST_FLAG_TYPE unmarshaling for handles that take flags

PARAMETER_FIRST_TYPE unmarshaling for parameters that do not take flags

PARAMETER_FIRST_FLAG_TYPE unmarshaling for parameters that take flags

1 marshaling for handles

RESPONSE_PARAMETER_FIRST_TYPE marshaling for parameters

RESPONSE_PARAMETER_LAST_TYPE is the last value in the list of marshaling and unmarshaling
functions.

The types list is constructed with a byte of 0xff at the end of the command parameters and with an 0xff at

the end of the response parameters.

28 #if COMPRESSED_LISTS

29 # define PAD_LIST 0

30 #else

31 # define PAD_LIST 1

32 #endif

33 #define _COMMAND_TABLE_DISPATCH_

34 #include "CommandDispatchData.h"

35 #define TEST_COMMAND TPM_CC_Startup

36 #define NEW_CC

37 #else

38 #include "Commands.h"

39 #endif

6.3.1.2 Marshal/Unmarshal Functions

6.3.1.2.1 ParseHandleBuffer()

This is the table-driven version of the handle buffer unmarshaling code

40 TPM_RC

41 ParseHandleBuffer(

42 COMMAND *command

43)

44 {

45 TPM_RC result;

46 #if TABLE_DRIVEN_DISPATCH

47 COMMAND_DESCRIPTOR_t *desc;

48 BYTE *types;

49 BYTE type;

50 BYTE dType;

51

52 // Make sure that nothing strange has happened

53 pAssert(command->index

54 < sizeof(s_CommandDataArray) / sizeof(COMMAND_DESCRIPTOR_t *));

55 // Get the address of the descriptor for this command

56 desc = s_CommandDataArray[command->index];

57

58 pAssert(desc != NULL);

59 // Get the associated list of unmarshaling data types.

60 types = &((BYTE *)desc)[desc->typesOffset];

61

62 // if(s_ccAttr[commandIndex].commandIndex == TEST_COMMAND)

63 // commandIndex = commandIndex;

64 // No handles yet

65 command->handleNum = 0;

66

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 197

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

67 // Get the first type value

68 for(type = *types++;

69 // check each byte to make sure that we have not hit the start

70 // of the parameters

71 (dType = (type & 0x7F)) < PARAMETER_FIRST_TYPE;

72 // get the next type

73 type = *types++)

74 {

75 #if TABLE_DRIVEN_MARSHAL

76 marshalIndex_t index;

77 index = UnmarshalArray[dType] | ((type & 0x80) ? NULL_FLAG : 0);

78 result = Unmarshal(index, &(command->handles[command->handleNum]),

79 &command->parameterBuffer, &command->parameterSize);

80

81 #else

82 // See if unmarshaling of this handle type requires a flag

83 if(dType < HANDLE_FIRST_FLAG_TYPE)

84 {

85 // Look up the function to do the unmarshaling

86 NoFlagFunction *f = (NoFlagFunction *)UnmarshalArray[dType];

87 // call it

88 result = f(&(command->handles[command->handleNum]),

89 &command->parameterBuffer,

90 &command->parameterSize);

91 }

92 else

93 {

94 // Look up the function

95 FlagFunction *f = UnmarshalArray[dType];

96

97 // Call it setting the flag to the appropriate value

98 result = f(&(command->handles[command->handleNum]),

99 &command->parameterBuffer,

100 &command->parameterSize, (type & 0x80) != 0);

101 }

102 #endif

103

104 // Got a handle

105 // We do this first so that the match for the handle offset of the

106 // response code works correctly.

107 command->handleNum += 1;

108 if(result != TPM_RC_SUCCESS)

109 // if the unmarshaling failed, return the response code with the

110 // handle indication set

111 return result + TPM_RC_H + (command->handleNum * TPM_RC_1);

112 }

113 #else

114 BYTE **handleBufferStart = &command->parameterBuffer;

115 INT32 *bufferRemainingSize = &command->parameterSize;

116 TPM_HANDLE *handles = &command->handles[0];

117 UINT32 *handleCount = &command->handleNum;

118 *handleCount = 0;

119 switch(command->code)

120 {

121 #include "HandleProcess.h"

122 #undef handles

123 default:

124 FAIL(FATAL_ERROR_INTERNAL);

125 break;

126 }

127 #endif

128 return TPM_RC_SUCCESS;

129 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 198 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.3.1.2.2 CommandDispatcher()

Function to unmarshal the command parameters, call the selected action code, and marshal the

response parameters.

130 TPM_RC

131 CommandDispatcher(

132 COMMAND *command

133)

134 {

135 #if !TABLE_DRIVEN_DISPATCH

136 TPM_RC result;

137 BYTE **paramBuffer = &command->parameterBuffer;

138 INT32 *paramBufferSize = &command->parameterSize;

139 BYTE **responseBuffer = &command->responseBuffer;

140 INT32 *respParmSize = &command->parameterSize;

141 INT32 rSize;

142 TPM_HANDLE *handles = &command->handles[0];

143 //

144 command->handleNum = 0; // The command-specific code knows how

145 // many handles there are. This is for

146 // cataloging the number of response

147 // handles

148 MemoryIoBufferAllocationReset(); // Initialize so that allocation will

149 // work properly

150 switch(GetCommandCode(command->index))

151 {

152 #include "CommandDispatcher.h"

153

154 default:

155 FAIL(FATAL_ERROR_INTERNAL);

156 break;

157 }

158 Exit:

159 MemoryIoBufferZero();

160 return result;

161 #else

162 COMMAND_DESCRIPTOR_t *desc;

163 BYTE *types;

164 BYTE type;

165 UINT16 *offsets;

166 UINT16 offset = 0;

167 UINT32 maxInSize;

168 BYTE *commandIn;

169 INT32 maxOutSize;

170 BYTE *commandOut;

171 COMMAND_t cmd;

172 TPM_HANDLE *handles;

173 UINT32 hasInParameters = 0;

174 BOOL hasOutParameters = FALSE;

175 UINT32 pNum = 0;

176 BYTE dType; // dispatch type

177 TPM_RC result;

178 //

179 // Get the address of the descriptor for this command

180 pAssert(command->index

181 < sizeof(s_CommandDataArray) / sizeof(COMMAND_DESCRIPTOR_t *));

182 desc = s_CommandDataArray[command->index];

183

184 // Get the list of parameter types for this command

185 pAssert(desc != NULL);

186 types = &((BYTE *)desc)[desc->typesOffset];

187

188 // Get a pointer to the list of parameter offsets

189 offsets = &desc->offsets[0];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 199

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

190 // pointer to handles

191 handles = command->handles;

192

193 // Get the size required to hold all the unmarshaled parameters for this command

194 maxInSize = desc->inSize;

195 // and the size of the output parameter structure returned by this command

196 maxOutSize = desc->outSize;

197

198 MemoryIoBufferAllocationReset();

199 // Get a buffer for the input parameters

200 commandIn = MemoryGetInBuffer(maxInSize);

201 // And the output parameters

202 commandOut = (BYTE *)MemoryGetOutBuffer((UINT32)maxOutSize);

203

204 // Get the address of the action code dispatch

205 cmd = desc->command;

206

207 // Copy any handles into the input buffer

208 for(type = *types++; (type & 0x7F) < PARAMETER_FIRST_TYPE; type = *types++)

209 {

210 // 'offset' was initialized to zero so the first unmarshaling will always

211 // be to the start of the data structure

212 *(TPM_HANDLE *)&(commandIn[offset]) = *handles++;

213 // This check is used so that we don't have to add an additional offset

214 // value to the offsets list to correspond to the stop value in the

215 // command parameter list.

216 if(*types != 0xFF)

217 offset = *offsets++;

218 // maxInSize -= sizeof(TPM_HANDLE);

219 hasInParameters++;

220 }

221 // Exit loop with type containing the last value read from types

222 // maxInSize has the amount of space remaining in the command action input

223 // buffer. Make sure that we don't have more data to unmarshal than is going to

224 // fit.

225

226 // type contains the last value read from types so it is not necessary to

227 // reload it, which is good because *types now points to the next value

228 for(; (dType = (type & 0x7F)) <= PARAMETER_LAST_TYPE; type = *types++)

229 {

230 pNum++;

231 #if TABLE_DRIVEN_MARSHAL

232 {

233 marshalIndex_t index = UnmarshalArray[dType];

234 index |= (type & 0x80) ? NULL_FLAG : 0;

235 result = Unmarshal(index, &commandIn[offset], &command->parameterBuffer,

236 &command->parameterSize);

237 }

238 #else

239 if(dType < PARAMETER_FIRST_FLAG_TYPE)

240 {

241 NoFlagFunction *f = (NoFlagFunction *)UnmarshalArray[dType];

242 result = f(&commandIn[offset], &command->parameterBuffer,

243 &command->parameterSize);

244 }

245 else

246 {

247 FlagFunction *f = UnmarshalArray[dType];

248 result = f(&commandIn[offset], &command->parameterBuffer,

249 &command->parameterSize,

250 (type & 0x80) != 0);

251 }

252 #endif

253 if(result != TPM_RC_SUCCESS)

254 {

255 result += TPM_RC_P + (TPM_RC_1 * pNum);

Trusted Platform Module Library Part 4: Supporting Routines

Page 200 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

256 goto Exit;

257 }

258 // This check is used so that we don't have to add an additional offset

259 // value to the offsets list to correspond to the stop value in the

260 // command parameter list.

261 if(*types != 0xFF)

262 offset = *offsets++;

263 hasInParameters++;

264 }

265 // Should have used all the bytes in the input

266 if(command->parameterSize != 0)

267 {

268 result = TPM_RC_SIZE;

269 goto Exit;

270 }

271

272 // The command parameter unmarshaling stopped when it hit a value that was out

273 // of range for unmarshaling values and left *types pointing to the first

274 // marshaling type. If that type happens to be the STOP value, then there

275 // are no response parameters. So, set the flag to indicate if there are

276 // output parameters.

277 hasOutParameters = *types != 0xFF;

278

279 // There are four cases for calling, with and without input parameters and with

280 // and without output parameters.

281 if(hasInParameters > 0)

282 {

283 if(hasOutParameters)

284 result = cmd.inOutArg(commandIn, commandOut);

285 else

286 result = cmd.inArg(commandIn);

287 }

288 else

289 {

290 if(hasOutParameters)

291 result = cmd.outArg(commandOut);

292 else

293 result = cmd.noArgs();

294 }

295 if(result != TPM_RC_SUCCESS)

296 goto Exit;

297

298 // Offset in the marshaled output structure

299 offset = 0;

300

301 // Process the return handles, if any

302 command->handleNum = 0;

303

304 // Could make this a loop to process output handles but there is only ever

305 // one handle in the outputs (for now).

306 type = *types++;

307 if((dType = (type & 0x7F)) < RESPONSE_PARAMETER_FIRST_TYPE)

308 {

309 // The out->handle value was referenced as TPM_HANDLE in the

310 // action code so it has to be properly aligned.

311 command->handles[command->handleNum++] =

312 *((TPM_HANDLE *)&(commandOut[offset]));

313 maxOutSize -= sizeof(UINT32);

314 type = *types++;

315 offset = *offsets++;

316 }

317 // Use the size of the command action output buffer as the maximum for the

318 // number of bytes that can get marshaled. Since the marshaling code has

319 // no pointers to data, all of the data being returned has to be in the

320 // command action output buffer. If we try to marshal more bytes than

321 // could fit into the output buffer, we need to fail.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 201

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

322 for(;(dType = (type & 0x7F)) <= RESPONSE_PARAMETER_LAST_TYPE

323 && !g_inFailureMode; type = *types++)

324 {

325 #if TABLE_DRIVEN_MARSHAL

326 marshalIndex_t index = MarshalArray[dType];

327 command->parameterSize += Marshal(index, &commandOut[offset],

328 &command->responseBuffer,

329 &maxOutSize);

330 #else

331 const MARSHAL_t f = MarshalArray[dType];

332

333 command->parameterSize += f(&commandOut[offset],

334 &command->responseBuffer,

335 &maxOutSize);

336 #endif

337 offset = *offsets++;

338 }

339 result = (maxOutSize < 0) ? TPM_RC_FAILURE : TPM_RC_SUCCESS;

340 Exit:

341 MemoryIoBufferZero();

342 return result;

343 #endif

344 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 202 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.4 SessionProcess.c

6.4.1 Introduction

This file contains the subsystem that process the authorization sessions including implementation of the

Dictionary Attack logic. ExecCommand() uses ParseSessionBuffer() to process the authorization session

area of a command and BuildResponseSession() to create the authorization session area of a response.

6.4.2 Includes and Data Definitions

1 #define SESSION_PROCESS_C

2 #include "Tpm.h"

3 #include "ACT.h"

6.4.3 Authorization Support Functions

6.4.3.1 IsDAExempted()

This function indicates if a handle is exempted from DA logic. A handle is exempted if it is

 a primary seed handle,

 an object with noDA bit SET,

 an NV Index with TPMA_NV_NO_DA bit SET, or

 a PCR handle.

Return Value Meaning

TRUE(1) handle is exempted from DA logic

FALSE(0) handle is not exempted from DA logic

4 BOOL

5 IsDAExempted(

6 TPM_HANDLE handle // IN: entity handle

7)

8 {

9 BOOL result = FALSE;

10 //

11 switch(HandleGetType(handle))

12 {

13 case TPM_HT_PERMANENT:

14 // All permanent handles, other than TPM_RH_LOCKOUT, are exempt from

15 // DA protection.

16 result = (handle != TPM_RH_LOCKOUT);

17 break;

18 // When this function is called, a persistent object will have been loaded

19 // into an object slot and assigned a transient handle.

20 case TPM_HT_TRANSIENT:

21 {

22 TPMA_OBJECT attributes = ObjectGetPublicAttributes(handle);

23 result = IS_ATTRIBUTE(attributes, TPMA_OBJECT, noDA);

24 break;

25 }

26 case TPM_HT_NV_INDEX:

27 {

28 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

29 result = IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, NO_DA);

30 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 203

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

31 }

32 case TPM_HT_PCR:

33 // PCRs are always exempted from DA.

34 result = TRUE;

35 break;

36 default:

37 break;

38 }

39 return result;

40 }

6.4.3.2 IncrementLockout()

This function is called after an authorization failure that involves use of an authValue. If the entity

referenced by the handle is not exempt from DA protection, then the failedTries counter will be

incremented.

Error Returns Meaning

TPM_RC_AUTH_FAIL authorization failure that caused DA lockout to increment

TPM_RC_BAD_AUTH authorization failure did not cause DA lockout to increment

41 static TPM_RC

42 IncrementLockout(

43 UINT32 sessionIndex

44)

45 {

46 TPM_HANDLE handle = s_associatedHandles[sessionIndex];

47 TPM_HANDLE sessionHandle = s_sessionHandles[sessionIndex];

48 SESSION *session = NULL;

49 //

50 // Don't increment lockout unless the handle associated with the session

51 // is DA protected or the session is bound to a DA protected entity.

52 if(sessionHandle == TPM_RS_PW)

53 {

54 if(IsDAExempted(handle))

55 return TPM_RC_BAD_AUTH;

56 }

57 else

58 {

59 session = SessionGet(sessionHandle);

60 // If the session is bound to lockout, then use that as the relevant

61 // handle. This means that an authorization failure with a bound session

62 // bound to lockoutAuth will take precedence over any other

63 // lockout check

64 if(session->attributes.isLockoutBound == SET)

65 handle = TPM_RH_LOCKOUT;

66 if(session->attributes.isDaBound == CLEAR

67 && (IsDAExempted(handle) || session->attributes.includeAuth == CLEAR))

68 // If the handle was changed to TPM_RH_LOCKOUT, this will not return

69 // TPM_RC_BAD_AUTH

70 return TPM_RC_BAD_AUTH;

71 }

72 if(handle == TPM_RH_LOCKOUT)

73 {

74 pAssert(gp.lockOutAuthEnabled == TRUE);

75

76 // lockout is no longer enabled

77 gp.lockOutAuthEnabled = FALSE;

78

79 // For TPM_RH_LOCKOUT, if lockoutRecovery is 0, no need to update NV since

80 // the lockout authorization will be reset at startup.

81 if(gp.lockoutRecovery != 0)

Trusted Platform Module Library Part 4: Supporting Routines

Page 204 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

82 {

83 if(NV_IS_AVAILABLE)

84 // Update NV.

85 NV_SYNC_PERSISTENT(lockOutAuthEnabled);

86 else

87 // No NV access for now. Put the TPM in pending mode.

88 s_DAPendingOnNV = TRUE;

89 }

90 }

91 else

92 {

93 if(gp.recoveryTime != 0)

94 {

95 gp.failedTries++;

96 if(NV_IS_AVAILABLE)

97 // Record changes to NV. NvWrite will SET g_updateNV

98 NV_SYNC_PERSISTENT(failedTries);

99 else

100 // No NV access for now. Put the TPM in pending mode.

101 s_DAPendingOnNV = TRUE;

102 }

103 }

104 // Register a DA failure and reset the timers.

105 DARegisterFailure(handle);

106

107 return TPM_RC_AUTH_FAIL;

108 }

6.4.3.3 IsSessionBindEntity()

This function indicates if the entity associated with the handle is the entity, to which this session is bound.

The binding would occur by making the bind parameter in TPM2_StartAuthSession() not equal to

TPM_RH_NULL. The binding only occurs if the session is an HMAC session. The bind value is a

combination of the Name and the authValue of the entity.

Return Value Meaning

TRUE(1) handle points to the session start entity

FALSE(0) handle does not point to the session start entity

109 static BOOL

110 IsSessionBindEntity(

111 TPM_HANDLE associatedHandle, // IN: handle to be authorized

112 SESSION *session // IN: associated session

113)

114 {

115 TPM2B_NAME entity; // The bind value for the entity

116 //

117 // If the session is not bound, return FALSE.

118 if(session->attributes.isBound)

119 {

120 // Compute the bind value for the entity.

121 SessionComputeBoundEntity(associatedHandle, &entity);

122

123 // Compare to the bind value in the session.

124 return MemoryEqual2B(&entity.b, &session->u1.boundEntity.b);

125 }

126 return FALSE;

127 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 205

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.4.3.4 IsPolicySessionRequired()

Checks if a policy session is required for a command. If a command requires DUP or ADMIN role

authorization, then the handle that requires that role is the first handle in the command. This simplifies

this checking. If a new command is created that requires multiple ADMIN role authorizations, then it will

have to be special-cased in this function. A policy session is required if:

 the command requires the DUP role,

 the command requires the ADMIN role and the authorized entity is an object and its adminWithPolicy

bit is SET, or

 the command requires the ADMIN role and the authorized entity is a permanent handle or an NV

Index.

 The authorized entity is a PCR belonging to a policy group, and has its policy initialized

Return Value Meaning

TRUE(1) policy session is required

FALSE(0) policy session is not required

128 static BOOL

129 IsPolicySessionRequired(

130 COMMAND_INDEX commandIndex, // IN: command index

131 UINT32 sessionIndex // IN: session index

132)

133 {

134 AUTH_ROLE role = CommandAuthRole(commandIndex, sessionIndex);

135 TPM_HT type = HandleGetType(s_associatedHandles[sessionIndex]);

136 //

137 if(role == AUTH_DUP)

138 return TRUE;

139 if(role == AUTH_ADMIN)

140 {

141 // We allow an exception for ADMIN role in a transient object. If the object

142 // allows ADMIN role actions with authorization, then policy is not

143 // required. For all other cases, there is no way to override the command

144 // requirement that a policy be used

145 if(type == TPM_HT_TRANSIENT)

146 {

147 OBJECT *object = HandleToObject(s_associatedHandles[sessionIndex]);

148

149 if(!IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT,

150 adminWithPolicy))

151 return FALSE;

152 }

153 return TRUE;

154 }

155

156 if(type == TPM_HT_PCR)

157 {

158 if(PCRPolicyIsAvailable(s_associatedHandles[sessionIndex]))

159 {

160 TPM2B_DIGEST policy;

161 TPMI_ALG_HASH policyAlg;

162 policyAlg = PCRGetAuthPolicy(s_associatedHandles[sessionIndex],

163 &policy);

164 if(policyAlg != TPM_ALG_NULL)

165 return TRUE;

166 }

167 }

168 return FALSE;

169 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 206 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.4.3.5 IsAuthValueAvailable()

This function indicates if authValue is available and allowed for USER role authorization of an entity.

This function is similar to IsAuthPolicyAvailable() except that it does not check the size of the authValue

as IsAuthPolicyAvailable() does (a null authValue is a valid authorization, but a null policy is not a valid

policy).

This function does not check that the handle reference is valid or if the entity is in an enabled hierarchy.

Those checks are assumed to have been performed during the handle unmarshaling.

Return Value Meaning

TRUE(1) authValue is available

FALSE(0) authValue is not available

170 static BOOL

171 IsAuthValueAvailable(

172 TPM_HANDLE handle, // IN: handle of entity

173 COMMAND_INDEX commandIndex, // IN: command index

174 UINT32 sessionIndex // IN: session index

175)

176 {

177 BOOL result = FALSE;

178 //

179 switch(HandleGetType(handle))

180 {

181 case TPM_HT_PERMANENT:

182 switch(handle)

183 {

184 // At this point hierarchy availability has already been

185 // checked so primary seed handles are always available here

186 case TPM_RH_OWNER:

187 case TPM_RH_ENDORSEMENT:

188 case TPM_RH_PLATFORM:

189 #ifdef VENDOR_PERMANENT

190 // This vendor defined handle associated with the

191 // manufacturer's shared secret

192 case VENDOR_PERMANENT:

193 #endif

194 // The DA checking has been performed on LockoutAuth but we

195 // bypass the DA logic if we are using lockout policy. The

196 // policy would allow execution to continue an lockoutAuth

197 // could be used, even if direct use of lockoutAuth is disabled

198 case TPM_RH_LOCKOUT:

199 // NullAuth is always available.

200 case TPM_RH_NULL:

201 result = TRUE;

202 break;

203 FOR_EACH_ACT(CASE_ACT_HANDLE)

204 {

205 // The ACT auth value is not available if the platform is disabled

206 result = g_phEnable == SET;

207 break;

208 }

209 default:

210 // Otherwise authValue is not available.

211 break;

212 }

213 break;

214 case TPM_HT_TRANSIENT:

215 // A persistent object has already been loaded and the internal

216 // handle changed.

217 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 207

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

218 OBJECT *object;

219 TPMA_OBJECT attributes;

220 //

221 object = HandleToObject(handle);

222 attributes = object->publicArea.objectAttributes;

223

224 // authValue is always available for a sequence object.

225 // An alternative for this is to

226 // SET_ATTRIBUTE(object->publicArea, TPMA_OBJECT, userWithAuth) when the

227 // sequence is started.

228 if(ObjectIsSequence(object))

229 {

230 result = TRUE;

231 break;

232 }

233 // authValue is available for an object if it has its sensitive

234 // portion loaded and

235 // 1. userWithAuth bit is SET, or

236 // 2. ADMIN role is required

237 if(object->attributes.publicOnly == CLEAR

238 && (IS_ATTRIBUTE(attributes, TPMA_OBJECT, userWithAuth)

239 || (CommandAuthRole(commandIndex, sessionIndex) == AUTH_ADMIN

240 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, adminWithPolicy))))

241 result = TRUE;

242 }

243 break;

244 case TPM_HT_NV_INDEX:

245 // NV Index.

246 {

247 NV_REF locator;

248 NV_INDEX *nvIndex = NvGetIndexInfo(handle, &locator);

249 TPMA_NV nvAttributes;

250 //

251 pAssert(nvIndex != 0);

252

253 nvAttributes = nvIndex->publicArea.attributes;

254

255 if(IsWriteOperation(commandIndex))

256 {

257 // AuthWrite can't be set for a PIN index

258 if(IS_ATTRIBUTE(nvAttributes, TPMA_NV, AUTHWRITE))

259 result = TRUE;

260 }

261 else

262 {

263 // A "read" operation

264 // For a PIN Index, the authValue is available as long as the

265 // Index has been written and the pinCount is less than pinLimit

266 if(IsNvPinFailIndex(nvAttributes)

267 || IsNvPinPassIndex(nvAttributes))

268 {

269 NV_PIN pin;

270 if(!IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITTEN))

271 break; // return false

272 // get the index values

273 pin.intVal = NvGetUINT64Data(nvIndex, locator);

274 if(pin.pin.pinCount < pin.pin.pinLimit)

275 result = TRUE;

276 }

277 // For non-PIN Indexes, need to allow use of the authValue

278 else if(IS_ATTRIBUTE(nvAttributes, TPMA_NV, AUTHREAD))

279 result = TRUE;

280 }

281 }

282 break;

283 case TPM_HT_PCR:

Trusted Platform Module Library Part 4: Supporting Routines

Page 208 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

284 // PCR handle.

285 // authValue is always allowed for PCR

286 result = TRUE;

287 break;

288 default:

289 // Otherwise, authValue is not available

290 break;

291 }

292 return result;

293 }

6.4.3.6 IsAuthPolicyAvailable()

This function indicates if an authPolicy is available and allowed.

This function does not check that the handle reference is valid or if the entity is in an enabled hierarchy.

Those checks are assumed to have been performed during the handle unmarshaling.

Return Value Meaning

TRUE(1) authPolicy is available

FALSE(0) authPolicy is not available

294 static BOOL

295 IsAuthPolicyAvailable(

296 TPM_HANDLE handle, // IN: handle of entity

297 COMMAND_INDEX commandIndex, // IN: command index

298 UINT32 sessionIndex // IN: session index

299)

300 {

301 BOOL result = FALSE;

302 //

303 switch(HandleGetType(handle))

304 {

305 case TPM_HT_PERMANENT:

306 switch(handle)

307 {

308 // At this point hierarchy availability has already been checked.

309 case TPM_RH_OWNER:

310 if(gp.ownerPolicy.t.size != 0)

311 result = TRUE;

312 break;

313 case TPM_RH_ENDORSEMENT:

314 if(gp.endorsementPolicy.t.size != 0)

315 result = TRUE;

316 break;

317 case TPM_RH_PLATFORM:

318 if(gc.platformPolicy.t.size != 0)

319 result = TRUE;

320 break;

321 #define ACT_GET_POLICY(N) \

322 case TPM_RH_ACT_##N: \

323 if(go.ACT_##N.authPolicy.t.size != 0) \

324 result = TRUE; \

325 break;

326

327 FOR_EACH_ACT(ACT_GET_POLICY)

328

329 case TPM_RH_LOCKOUT:

330 if(gp.lockoutPolicy.t.size != 0)

331 result = TRUE;

332 break;

333 default:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 209

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

334 break;

335 }

336 break;

337 case TPM_HT_TRANSIENT:

338 {

339 // Object handle.

340 // An evict object would already have been loaded and given a

341 // transient object handle by this point.

342 OBJECT *object = HandleToObject(handle);

343 // Policy authorization is not available for an object with only

344 // public portion loaded.

345 if(object->attributes.publicOnly == CLEAR)

346 {

347 // Policy authorization is always available for an object but

348 // is never available for a sequence.

349 if(!ObjectIsSequence(object))

350 result = TRUE;

351 }

352 break;

353 }

354 case TPM_HT_NV_INDEX:

355 // An NV Index.

356 {

357 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

358 TPMA_NV nvAttributes = nvIndex->publicArea.attributes;

359 //

360 // If the policy size is not zero, check if policy can be used.

361 if(nvIndex->publicArea.authPolicy.t.size != 0)

362 {

363 // If policy session is required for this handle, always

364 // uses policy regardless of the attributes bit setting

365 if(IsPolicySessionRequired(commandIndex, sessionIndex))

366 result = TRUE;

367 // Otherwise, the presence of the policy depends on the NV

368 // attributes.

369 else if(IsWriteOperation(commandIndex))

370 {

371 if(IS_ATTRIBUTE(nvAttributes, TPMA_NV, POLICYWRITE))

372 result = TRUE;

373 }

374 else

375 {

376 if(IS_ATTRIBUTE(nvAttributes, TPMA_NV, POLICYREAD))

377 result = TRUE;

378 }

379 }

380 }

381 break;

382 case TPM_HT_PCR:

383 // PCR handle.

384 if(PCRPolicyIsAvailable(handle))

385 result = TRUE;

386 break;

387 default:

388 break;

389 }

390 return result;

391 }

6.4.4 Session Parsing Functions

6.4.4.1 ClearCpRpHashes()

392 void

Trusted Platform Module Library Part 4: Supporting Routines

Page 210 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

393 ClearCpRpHashes(

394 COMMAND *command

395)

396 {

397 #if ALG_SHA1

398 command->sha1CpHash.t.size = 0;

399 command->sha1RpHash.t.size = 0;

400 #endif

401 #if ALG_SHA256

402 command->sha256CpHash.t.size = 0;

403 command->sha256RpHash.t.size = 0;

404 #endif

405 #if ALG_SHA384

406 command->sha384CpHash.t.size = 0;

407 command->sha384RpHash.t.size = 0;

408 #endif

409 #if ALG_SHA512

410 command->sha512CpHash.t.size = 0;

411 command->sha512RpHash.t.size = 0;

412 #endif

413 #if ALG_SM3_256

414 command->sm3_256CpHash.t.size = 0;

415 command->sm3_256RpHash.t.size = 0;

416 #endif

417 }

6.4.4.2 GetCpHashPointer()

Function to get a pointer to the cpHash of the command

418 static TPM2B_DIGEST *

419 GetCpHashPointer(

420 COMMAND *command,

421 TPMI_ALG_HASH hashAlg

422)

423 {

424 TPM2B_DIGEST *retVal;

425 //

426 switch(hashAlg)

427 {

428 #if ALG_SHA1

429 case ALG_SHA1_VALUE:

430 retVal = (TPM2B_DIGEST *)&command->sha1CpHash;

431 break;

432 #endif

433 #if ALG_SHA256

434 case ALG_SHA256_VALUE:

435 retVal = (TPM2B_DIGEST *)&command->sha256CpHash;

436 break;

437 #endif

438 #if ALG_SHA384

439 case ALG_SHA384_VALUE:

440 retVal = (TPM2B_DIGEST *)&command->sha384CpHash;

441 break;

442 #endif

443 #if ALG_SHA512

444 case ALG_SHA512_VALUE:

445 retVal = (TPM2B_DIGEST *)&command->sha512CpHash;

446 break;

447 #endif

448 #if ALG_SM3_256

449 case ALG_SM3_256_VALUE:

450 retVal = (TPM2B_DIGEST *)&command->sm3_256CpHash;

451 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 211

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

452 #endif

453 default:

454 retVal = NULL;

455 break;

456 }

457 return retVal;

458 }

6.4.4.3 GetRpHashPointer()

Function to get a pointer to the RpHash() of the command

459 static TPM2B_DIGEST *

460 GetRpHashPointer(

461 COMMAND *command,

462 TPMI_ALG_HASH hashAlg

463)

464 {

465 TPM2B_DIGEST *retVal;

466 //

467 switch(hashAlg)

468 {

469 #if ALG_SHA1

470 case ALG_SHA1_VALUE:

471 retVal = (TPM2B_DIGEST *)&command->sha1RpHash;

472 break;

473 #endif

474 #if ALG_SHA256

475 case ALG_SHA256_VALUE:

476 retVal = (TPM2B_DIGEST *)&command->sha256RpHash;

477 break;

478 #endif

479 #if ALG_SHA384

480 case ALG_SHA384_VALUE:

481 retVal = (TPM2B_DIGEST *)&command->sha384RpHash;

482 break;

483 #endif

484 #if ALG_SHA512

485 case ALG_SHA512_VALUE:

486 retVal = (TPM2B_DIGEST *)&command->sha512RpHash;

487 break;

488 #endif

489 #if ALG_SM3_256

490 case ALG_SM3_256_VALUE:

491 retVal = (TPM2B_DIGEST *)&command->sm3_256RpHash;

492 break;

493 #endif

494 default:

495 retVal = NULL;

496 break;

497 }

498 return retVal;

499 }

6.4.4.4 ComputeCpHash()

This function computes the cpHash as defined in Part 2 and described in Part 1.

500 static TPM2B_DIGEST *

501 ComputeCpHash(

502 COMMAND *command, // IN: command parsing structure

503 TPMI_ALG_HASH hashAlg // IN: hash algorithm

504)

Trusted Platform Module Library Part 4: Supporting Routines

Page 212 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

505 {

506 UINT32 i;

507 HASH_STATE hashState;

508 TPM2B_NAME name;

509 TPM2B_DIGEST *cpHash;

510 //

511 // cpHash = hash(commandCode [|| authName1

512 // [|| authName2

513 // [|| authName 3]]]

514 // [|| parameters])

515 // A cpHash can contain just a commandCode only if the lone session is

516 // an audit session.

517 // Get pointer to the hash value

518 cpHash = GetCpHashPointer(command, hashAlg);

519 if(cpHash->t.size == 0)

520 {

521 cpHash->t.size = CryptHashStart(&hashState, hashAlg);

522 // Add commandCode.

523 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), command->code);

524 // Add authNames for each of the handles.

525 for(i = 0; i < command->handleNum; i++)

526 CryptDigestUpdate2B(&hashState, &EntityGetName(command->handles[i],

527 &name)->b);

528 // Add the parameters.

529 CryptDigestUpdate(&hashState, command->parameterSize,

530 command->parameterBuffer);

531 // Complete the hash.

532 CryptHashEnd2B(&hashState, &cpHash->b);

533 }

534 return cpHash;

535 }

6.4.4.5 GetCpHash()

This function is used to access a precomputed cpHash.

536 static TPM2B_DIGEST *

537 GetCpHash(

538 COMMAND *command,

539 TPMI_ALG_HASH hashAlg

540)

541 {

542 TPM2B_DIGEST *cpHash = GetCpHashPointer(command, hashAlg);

543 //

544 pAssert(cpHash->t.size != 0);

545 return cpHash;

546 }

6.4.4.6 CompareTemplateHash()

This function computes the template hash and compares it to the session templateHash. It is the hash of

the second parameter assuming that the command is TPM2_Create(), TPM2_CreatePrimary(), or

TPM2_CreateLoaded()

Return Value Meaning

TRUE(1) template hash equal to session->templateHash

FALSE(0) template hash not equal to session->templateHash

547 static BOOL

548 CompareTemplateHash(

549 COMMAND *command, // IN: parsing structure

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 213

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

550 SESSION *session // IN: session data

551)

552 {

553 BYTE *pBuffer = command->parameterBuffer;

554 INT32 pSize = command->parameterSize;

555 TPM2B_DIGEST tHash;

556 UINT16 size;

557 //

558 // Only try this for the three commands for which it is intended

559 if(command->code != TPM_CC_Create

560 && command->code != TPM_CC_CreatePrimary

561 #if CC_CreateLoaded

562 && command->code != TPM_CC_CreateLoaded

563 #endif

564)

565 return FALSE;

566 // Assume that the first parameter is a TPM2B and unmarshal the size field

567 // Note: this will not affect the parameter buffer and size in the calling

568 // function.

569 if(UINT16_Unmarshal(&size, &pBuffer, &pSize) != TPM_RC_SUCCESS)

570 return FALSE;

571 // reduce the space in the buffer.

572 // NOTE: this could make pSize go negative if the parameters are not correct but

573 // the unmarshaling code does not try to unmarshal if the remaining size is

574 // negative.

575 pSize -= size;

576

577 // Advance the pointer

578 pBuffer += size;

579

580 // Get the size of what should be the template

581 if(UINT16_Unmarshal(&size, &pBuffer, &pSize) != TPM_RC_SUCCESS)

582 return FALSE;

583 // See if this is reasonable

584 if(size > pSize)

585 return FALSE;

586 // Hash the template data

587 tHash.t.size = CryptHashBlock(session->authHashAlg, size, pBuffer,

588 sizeof(tHash.t.buffer), tHash.t.buffer);

589 return(MemoryEqual2B(&session->u1.templateHash.b, &tHash.b));

590 }

6.4.4.7 CompareNameHash()

This function computes the name hash and compares it to the nameHash in the session data.

591 BOOL

592 CompareNameHash(

593 COMMAND *command, // IN: main parsing structure

594 SESSION *session // IN: session structure with nameHash

595)

596 {

597 HASH_STATE hashState;

598 TPM2B_DIGEST nameHash;

599 UINT32 i;

600 TPM2B_NAME name;

601 //

602 nameHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

603 // Add names.

604 for(i = 0; i < command->handleNum; i++)

605 CryptDigestUpdate2B(&hashState, &EntityGetName(command->handles[i],

606 &name)->b);

607 // Complete hash.

608 CryptHashEnd2B(&hashState, &nameHash.b);

Trusted Platform Module Library Part 4: Supporting Routines

Page 214 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

609 // and compare

610 return MemoryEqual(session->u1.nameHash.t.buffer, nameHash.t.buffer,

611 nameHash.t.size);

612 }

6.4.4.8 CheckPWAuthSession()

This function validates the authorization provided in a PWAP session. It compares the input value to

authValue of the authorized entity. Argument sessionIndex is used to get handles handle of the

referenced entities from s_inputAuthValues[] and s_associatedHandles[].

Error Returns Meaning

TPM_RC_AUTH_FAIL authorization fails and increments DA failure count

TPM_RC_BAD_AUTH authorization fails but DA does not apply

613 static TPM_RC

614 CheckPWAuthSession(

615 UINT32 sessionIndex // IN: index of session to be processed

616)

617 {

618 TPM2B_AUTH authValue;

619 TPM_HANDLE associatedHandle = s_associatedHandles[sessionIndex];

620 //

621 // Strip trailing zeros from the password.

622 MemoryRemoveTrailingZeros(&s_inputAuthValues[sessionIndex]);

623

624 // Get the authValue with trailing zeros removed

625 EntityGetAuthValue(associatedHandle, &authValue);

626

627 // Success if the values are identical.

628 if(MemoryEqual2B(&s_inputAuthValues[sessionIndex].b, &authValue.b))

629 {

630 return TPM_RC_SUCCESS;

631 }

632 else // if the digests are not identical

633 {

634 // Invoke DA protection if applicable.

635 return IncrementLockout(sessionIndex);

636 }

637 }

6.4.4.9 ComputeCommandHMAC()

This function computes the HMAC for an authorization session in a command.

638 static TPM2B_DIGEST *

639 ComputeCommandHMAC(

640 COMMAND *command, // IN: primary control structure

641 UINT32 sessionIndex, // IN: index of session to be processed

642 TPM2B_DIGEST *hmac // OUT: authorization HMAC

643)

644 {

645 TPM2B_TYPE(KEY, (sizeof(AUTH_VALUE) * 2));

646 TPM2B_KEY key;

647 BYTE marshalBuffer[sizeof(TPMA_SESSION)];

648 BYTE *buffer;

649 UINT32 marshalSize;

650 HMAC_STATE hmacState;

651 TPM2B_NONCE *nonceDecrypt;

652 TPM2B_NONCE *nonceEncrypt;

653 SESSION *session;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 215

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

654 //

655 nonceDecrypt = NULL;

656 nonceEncrypt = NULL;

657

658 // Determine if extra nonceTPM values are going to be required.

659 // If this is the first session (sessionIndex = 0) and it is an authorization

660 // session that uses an HMAC, then check if additional session nonces are to be

661 // included.

662 if(sessionIndex == 0

663 && s_associatedHandles[sessionIndex] != TPM_RH_UNASSIGNED)

664 {

665 // If there is a decrypt session and if this is not the decrypt session,

666 // then an extra nonce may be needed.

667 if(s_decryptSessionIndex != UNDEFINED_INDEX

668 && s_decryptSessionIndex != sessionIndex)

669 {

670 // Will add the nonce for the decrypt session.

671 SESSION *decryptSession

672 = SessionGet(s_sessionHandles[s_decryptSessionIndex]);

673 nonceDecrypt = &decryptSession->nonceTPM;

674 }

675 // Now repeat for the encrypt session.

676 if(s_encryptSessionIndex != UNDEFINED_INDEX

677 && s_encryptSessionIndex != sessionIndex

678 && s_encryptSessionIndex != s_decryptSessionIndex)

679 {

680 // Have to have the nonce for the encrypt session.

681 SESSION *encryptSession

682 = SessionGet(s_sessionHandles[s_encryptSessionIndex]);

683 nonceEncrypt = &encryptSession->nonceTPM;

684 }

685 }

686

687 // Continue with the HMAC processing.

688 session = SessionGet(s_sessionHandles[sessionIndex]);

689

690 // Generate HMAC key.

691 MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));

692

693 // Check if the session has an associated handle and if the associated entity

694 // is the one to which the session is bound. If not, add the authValue of

695 // this entity to the HMAC key.

696 // If the session is bound to the object or the session is a policy session

697 // with no authValue required, do not include the authValue in the HMAC key.

698 // Note: For a policy session, its isBound attribute is CLEARED.

699 //

700 // Include the entity authValue if it is needed

701 if(session->attributes.includeAuth == SET)

702 {

703 TPM2B_AUTH authValue;

704 // Get the entity authValue with trailing zeros removed

705 EntityGetAuthValue(s_associatedHandles[sessionIndex], &authValue);

706 // add the authValue to the HMAC key

707 MemoryConcat2B(&key.b, &authValue.b, sizeof(key.t.buffer));

708 }

709 // if the HMAC key size is 0, a NULL string HMAC is allowed

710 if(key.t.size == 0

711 && s_inputAuthValues[sessionIndex].t.size == 0)

712 {

713 hmac->t.size = 0;

714 return hmac;

715 }

716 // Start HMAC

717 hmac->t.size = CryptHmacStart2B(&hmacState, session->authHashAlg, &key.b);

718

719 // Add cpHash

Trusted Platform Module Library Part 4: Supporting Routines

Page 216 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

720 CryptDigestUpdate2B(&hmacState.hashState,

721 &ComputeCpHash(command, session->authHashAlg)->b);

722 // Add nonces as required

723 CryptDigestUpdate2B(&hmacState.hashState, &s_nonceCaller[sessionIndex].b);

724 CryptDigestUpdate2B(&hmacState.hashState, &session->nonceTPM.b);

725 if(nonceDecrypt != NULL)

726 CryptDigestUpdate2B(&hmacState.hashState, &nonceDecrypt->b);

727 if(nonceEncrypt != NULL)

728 CryptDigestUpdate2B(&hmacState.hashState, &nonceEncrypt->b);

729 // Add sessionAttributes

730 buffer = marshalBuffer;

731 marshalSize = TPMA_SESSION_Marshal(&(s_attributes[sessionIndex]),

732 &buffer, NULL);

733 CryptDigestUpdate(&hmacState.hashState, marshalSize, marshalBuffer);

734 // Complete the HMAC computation

735 CryptHmacEnd2B(&hmacState, &hmac->b);

736

737 return hmac;

738 }

6.4.4.10 CheckSessionHMAC()

This function checks the HMAC of in a session. It uses ComputeCommandHMAC() to compute the

expected HMAC value and then compares the result with the HMAC in the authorization session. The

authorization is successful if they are the same.

If the authorizations are not the same, IncrementLockout() is called. It will return TPM_RC_AUTH_FAIL if

the failure caused the failureCount to increment. Otherwise, it will return TPM_RC_BAD_AUTH.

Error Returns Meaning

TPM_RC_AUTH_FAIL authorization failure caused failureCount increment

TPM_RC_BAD_AUTH authorization failure did not cause failureCount increment

739 static TPM_RC

740 CheckSessionHMAC(

741 COMMAND *command, // IN: primary control structure

742 UINT32 sessionIndex // IN: index of session to be processed

743)

744 {

745 TPM2B_DIGEST hmac; // authHMAC for comparing

746 //

747 // Compute authHMAC

748 ComputeCommandHMAC(command, sessionIndex, &hmac);

749

750 // Compare the input HMAC with the authHMAC computed above.

751 if(!MemoryEqual2B(&s_inputAuthValues[sessionIndex].b, &hmac.b))

752 {

753 // If an HMAC session has a failure, invoke the anti-hammering

754 // if it applies to the authorized entity or the session.

755 // Otherwise, just indicate that the authorization is bad.

756 return IncrementLockout(sessionIndex);

757 }

758 return TPM_RC_SUCCESS;

759 }

6.4.4.11 CheckPolicyAuthSession()

This function is used to validate the authorization in a policy session. This function performs the following

comparisons to see if a policy authorization is properly provided. The check are:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 217

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 compare policyDigest in session with authPolicy associated with the entity to be authorized;

 compare timeout if applicable;

 compare commandCode if applicable;

 compare cpHash if applicable; and

 see if PCR values have changed since computed.

If all the above checks succeed, the handle is authorized. The order of these comparisons is not

important because any failure will result in the same error code.

Error Returns Meaning

TPM_RC_PCR_CHANGED PCR value is not current

TPM_RC_POLICY_FAIL policy session fails

TPM_RC_LOCALITY command locality is not allowed

TPM_RC_POLICY_CC CC doesn't match

TPM_RC_EXPIRED policy session has expired

TPM_RC_PP PP is required but not asserted

TPM_RC_NV_UNAVAILABLE NV is not available for write

TPM_RC_NV_RATE NV is rate limiting

760 static TPM_RC

761 CheckPolicyAuthSession(

762 COMMAND *command, // IN: primary parsing structure

763 UINT32 sessionIndex // IN: index of session to be processed

764)

765 {

766 SESSION *session;

767 TPM2B_DIGEST authPolicy;

768 TPMI_ALG_HASH policyAlg;

769 UINT8 locality;

770 //

771 // Initialize pointer to the authorization session.

772 session = SessionGet(s_sessionHandles[sessionIndex]);

773

774 // If the command is TPM2_PolicySecret(), make sure that

775 // either password or authValue is required

776 if(command->code == TPM_CC_PolicySecret

777 && session->attributes.isPasswordNeeded == CLEAR

778 && session->attributes.isAuthValueNeeded == CLEAR)

779 return TPM_RC_MODE;

780 // See if the PCR counter for the session is still valid.

781 if(!SessionPCRValueIsCurrent(session))

782 return TPM_RC_PCR_CHANGED;

783 // Get authPolicy.

784 policyAlg = EntityGetAuthPolicy(s_associatedHandles[sessionIndex],

785 &authPolicy);

786 // Compare authPolicy.

787 if(!MemoryEqual2B(&session->u2.policyDigest.b, &authPolicy.b))

788 return TPM_RC_POLICY_FAIL;

789 // Policy is OK so check if the other factors are correct

790

791 // Compare policy hash algorithm.

792 if(policyAlg != session->authHashAlg)

793 return TPM_RC_POLICY_FAIL;

794

795 // Compare timeout.

796 if(session->timeout != 0)

Trusted Platform Module Library Part 4: Supporting Routines

Page 218 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

797 {

798 // Cannot compare time if clock stop advancing. An TPM_RC_NV_UNAVAILABLE

799 // or TPM_RC_NV_RATE error may be returned here. This doesn't mean that

800 // a new nonce will be created just that, because TPM time can't advance

801 // we can't do time-based operations.

802 RETURN_IF_NV_IS_NOT_AVAILABLE;

803

804 if((session->timeout < g_time)

805 || (session->epoch != g_timeEpoch))

806 return TPM_RC_EXPIRED;

807 }

808 // If command code is provided it must match

809 if(session->commandCode != 0)

810 {

811 if(session->commandCode != command->code)

812 return TPM_RC_POLICY_CC;

813 }

814 else

815 {

816 // If command requires a DUP or ADMIN authorization, the session must have

817 // command code set.

818 AUTH_ROLE role = CommandAuthRole(command->index, sessionIndex);

819 if(role == AUTH_ADMIN || role == AUTH_DUP)

820 return TPM_RC_POLICY_FAIL;

821 }

822 // Check command locality.

823 {

824 BYTE sessionLocality[sizeof(TPMA_LOCALITY)];

825 BYTE *buffer = sessionLocality;

826

827 // Get existing locality setting in canonical form

828 sessionLocality[0] = 0;

829 TPMA_LOCALITY_Marshal(&session->commandLocality, &buffer, NULL);

830

831 // See if the locality has been set

832 if(sessionLocality[0] != 0)

833 {

834 // If so, get the current locality

835 locality = _plat__LocalityGet();

836 if(locality < 5)

837 {

838 if(((sessionLocality[0] & (1 << locality)) == 0)

839 || sessionLocality[0] > 31)

840 return TPM_RC_LOCALITY;

841 }

842 else if(locality > 31)

843 {

844 if(sessionLocality[0] != locality)

845 return TPM_RC_LOCALITY;

846 }

847 else

848 {

849 // Could throw an assert here but a locality error is just

850 // as good. It just means that, whatever the locality is, it isn't

851 // the locality requested so...

852 return TPM_RC_LOCALITY;

853 }

854 }

855 } // end of locality check

856 // Check physical presence.

857 if(session->attributes.isPPRequired == SET

858 && !_plat__PhysicalPresenceAsserted())

859 return TPM_RC_PP;

860 // Compare cpHash/nameHash if defined, or if the command requires an ADMIN or

861 // DUP role for this handle.

862 if(session->u1.cpHash.b.size != 0)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 219

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

863 {

864 BOOL OK;

865 if(session->attributes.isCpHashDefined)

866 // Compare cpHash.

867 OK = MemoryEqual2B(&session->u1.cpHash.b,

868 &ComputeCpHash(command, session->authHashAlg)->b);

869 else if(session->attributes.isTemplateSet)

870 OK = CompareTemplateHash(command, session);

871 else

872 OK = CompareNameHash(command, session);

873 if(!OK)

874 return TPM_RCS_POLICY_FAIL;

875 }

876 if(session->attributes.checkNvWritten)

877 {

878 NV_REF locator;

879 NV_INDEX *nvIndex;

880 //

881 // If this is not an NV index, the policy makes no sense so fail it.

882 if(HandleGetType(s_associatedHandles[sessionIndex]) != TPM_HT_NV_INDEX)

883 return TPM_RC_POLICY_FAIL;

884 // Get the index data

885 nvIndex = NvGetIndexInfo(s_associatedHandles[sessionIndex], &locator);

886

887 // Make sure that the TPMA_WRITTEN_ATTRIBUTE has the desired state

888 if((IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

889 != (session->attributes.nvWrittenState == SET))

890 return TPM_RC_POLICY_FAIL;

891 }

892 return TPM_RC_SUCCESS;

893 }

6.4.4.12 RetrieveSessionData()

This function will unmarshal the sessions in the session area of a command. The values are placed in the

arrays that are defined at the beginning of this file. The normal unmarshaling errors are possible.

Error Returns Meaning

TPM_RC_SUCCSS unmarshaled without error

TPM_RC_SIZE the number of bytes unmarshaled is not the same as the value for
authorizationSize in the command

894 static TPM_RC

895 RetrieveSessionData(

896 COMMAND *command // IN: main parsing structure for command

897)

898 {

899 int i;

900 TPM_RC result;

901 SESSION *session;

902 TPMA_SESSION sessionAttributes;

903 TPM_HT sessionType;

904 INT32 sessionIndex;

905 TPM_RC errorIndex;

906 //

907 s_decryptSessionIndex = UNDEFINED_INDEX;

908 s_encryptSessionIndex = UNDEFINED_INDEX;

909 s_auditSessionIndex = UNDEFINED_INDEX;

910

911 for(sessionIndex = 0; command->authSize > 0; sessionIndex++)

912 {

913 errorIndex = TPM_RC_S + g_rcIndex[sessionIndex];

Trusted Platform Module Library Part 4: Supporting Routines

Page 220 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

914

915 // If maximum allowed number of sessions has been parsed, return a size

916 // error with a session number that is larger than the number of allowed

917 // sessions

918 if(sessionIndex == MAX_SESSION_NUM)

919 return TPM_RCS_SIZE + errorIndex;

920 // make sure that the associated handle for each session starts out

921 // unassigned

922 s_associatedHandles[sessionIndex] = TPM_RH_UNASSIGNED;

923

924 // First parameter: Session handle.

925 result = TPMI_SH_AUTH_SESSION_Unmarshal(

926 &s_sessionHandles[sessionIndex],

927 &command->parameterBuffer,

928 &command->authSize, TRUE);

929 if(result != TPM_RC_SUCCESS)

930 return result + TPM_RC_S + g_rcIndex[sessionIndex];

931 // Second parameter: Nonce.

932 result = TPM2B_NONCE_Unmarshal(&s_nonceCaller[sessionIndex],

933 &command->parameterBuffer,

934 &command->authSize);

935 if(result != TPM_RC_SUCCESS)

936 return result + TPM_RC_S + g_rcIndex[sessionIndex];

937 // Third parameter: sessionAttributes.

938 result = TPMA_SESSION_Unmarshal(&s_attributes[sessionIndex],

939 &command->parameterBuffer,

940 &command->authSize);

941 if(result != TPM_RC_SUCCESS)

942 return result + TPM_RC_S + g_rcIndex[sessionIndex];

943 // Fourth parameter: authValue (PW or HMAC).

944 result = TPM2B_AUTH_Unmarshal(&s_inputAuthValues[sessionIndex],

945 &command->parameterBuffer,

946 &command->authSize);

947 if(result != TPM_RC_SUCCESS)

948 return result + errorIndex;

949

950 sessionAttributes = s_attributes[sessionIndex];

951 if(s_sessionHandles[sessionIndex] == TPM_RS_PW)

952 {

953 // A PWAP session needs additional processing.

954 // Can't have any attributes set other than continueSession bit

955 if(IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, encrypt)

956 || IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, decrypt)

957 || IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, audit)

958 || IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, auditExclusive)

959 || IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, auditReset))

960 return TPM_RCS_ATTRIBUTES + errorIndex;

961 // The nonce size must be zero.

962 if(s_nonceCaller[sessionIndex].t.size != 0)

963 return TPM_RCS_NONCE + errorIndex;

964 continue;

965 }

966 // For not password sessions...

967 // Find out if the session is loaded.

968 if(!SessionIsLoaded(s_sessionHandles[sessionIndex]))

969 return TPM_RC_REFERENCE_S0 + sessionIndex;

970 sessionType = HandleGetType(s_sessionHandles[sessionIndex]);

971 session = SessionGet(s_sessionHandles[sessionIndex]);

972

973 // Check if the session is an HMAC/policy session.

974 if((session->attributes.isPolicy == SET

975 && sessionType == TPM_HT_HMAC_SESSION)

976 || (session->attributes.isPolicy == CLEAR

977 && sessionType == TPM_HT_POLICY_SESSION))

978 return TPM_RCS_HANDLE + errorIndex;

979 // Check that this handle has not previously been used.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 221

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

980 for(i = 0; i < sessionIndex; i++)

981 {

982 if(s_sessionHandles[i] == s_sessionHandles[sessionIndex])

983 return TPM_RCS_HANDLE + errorIndex;

984 }

985 // If the session is used for parameter encryption or audit as well, set

986 // the corresponding Indexes.

987

988 // First process decrypt.

989 if(IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, decrypt))

990 {

991 // Check if the commandCode allows command parameter encryption.

992 if(DecryptSize(command->index) == 0)

993 return TPM_RCS_ATTRIBUTES + errorIndex;

994 // Encrypt attribute can only appear in one session

995 if(s_decryptSessionIndex != UNDEFINED_INDEX)

996 return TPM_RCS_ATTRIBUTES + errorIndex;

997 // Can't decrypt if the session's symmetric algorithm is TPM_ALG_NULL

998 if(session->symmetric.algorithm == TPM_ALG_NULL)

999 return TPM_RCS_SYMMETRIC + errorIndex;

1000 // All checks passed, so set the index for the session used to decrypt

1001 // a command parameter.

1002 s_decryptSessionIndex = sessionIndex;

1003 }

1004 // Now process encrypt.

1005 if(IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, encrypt))

1006 {

1007 // Check if the commandCode allows response parameter encryption.

1008 if(EncryptSize(command->index) == 0)

1009 return TPM_RCS_ATTRIBUTES + errorIndex;

1010 // Encrypt attribute can only appear in one session.

1011 if(s_encryptSessionIndex != UNDEFINED_INDEX)

1012 return TPM_RCS_ATTRIBUTES + errorIndex;

1013 // Can't encrypt if the session's symmetric algorithm is TPM_ALG_NULL

1014 if(session->symmetric.algorithm == TPM_ALG_NULL)

1015 return TPM_RCS_SYMMETRIC + errorIndex;

1016 // All checks passed, so set the index for the session used to encrypt

1017 // a response parameter.

1018 s_encryptSessionIndex = sessionIndex;

1019 }

1020 // At last process audit.

1021 if(IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, audit))

1022 {

1023 // Audit attribute can only appear in one session.

1024 if(s_auditSessionIndex != UNDEFINED_INDEX)

1025 return TPM_RCS_ATTRIBUTES + errorIndex;

1026 // An audit session can not be policy session.

1027 if(HandleGetType(s_sessionHandles[sessionIndex])

1028 == TPM_HT_POLICY_SESSION)

1029 return TPM_RCS_ATTRIBUTES + errorIndex;

1030 // If this is a reset of the audit session, or the first use

1031 // of the session as an audit session, it doesn't matter what

1032 // the exclusive state is. The session will become exclusive.

1033 if(!IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, auditReset)

1034 && session->attributes.isAudit == SET)

1035 {

1036 // Not first use or reset. If auditExlusive is SET, then this

1037 // session must be the current exclusive session.

1038 if(IS_ATTRIBUTE(sessionAttributes, TPMA_SESSION, auditExclusive)

1039 && g_exclusiveAuditSession != s_sessionHandles[sessionIndex])

1040 return TPM_RC_EXCLUSIVE;

1041 }

1042 s_auditSessionIndex = sessionIndex;

1043 }

1044 // Initialize associated handle as undefined. This will be changed when

1045 // the handles are processed.

Trusted Platform Module Library Part 4: Supporting Routines

Page 222 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1046 s_associatedHandles[sessionIndex] = TPM_RH_UNASSIGNED;

1047 }

1048 command->sessionNum = sessionIndex;

1049 return TPM_RC_SUCCESS;

1050 }

6.4.4.13 CheckLockedOut()

This function checks to see if the TPM is in lockout. This function should only be called if the entity being

checked is subject to DA protection. The TPM is in lockout if the NV is not available and a DA write is

pending. Otherwise the TPM is locked out if checking for lockoutAuth (lockoutAuthCheck == TRUE) and

use of lockoutAuth is disabled, or failedTries >= maxTries

Error Returns Meaning

TPM_RC_NV_RATE NV is rate limiting

TPM_RC_NV_UNAVAILABLE NV is not available at this time

TPM_RC_LOCKOUT TPM is in lockout

1051 static TPM_RC

1052 CheckLockedOut(

1053 BOOL lockoutAuthCheck // IN: TRUE if checking is for lockoutAuth

1054)

1055 {

1056 // If NV is unavailable, and current cycle state recorded in NV is not

1057 // SU_NONE_VALUE, refuse to check any authorization because we would

1058 // not be able to handle a DA failure.

1059 if(!NV_IS_AVAILABLE && NV_IS_ORDERLY)

1060 return g_NvStatus;

1061 // Check if DA info needs to be updated in NV.

1062 if(s_DAPendingOnNV)

1063 {

1064 // If NV is accessible,

1065 RETURN_IF_NV_IS_NOT_AVAILABLE;

1066

1067 // ... write the pending DA data and proceed.

1068 NV_SYNC_PERSISTENT(lockOutAuthEnabled);

1069 NV_SYNC_PERSISTENT(failedTries);

1070 s_DAPendingOnNV = FALSE;

1071 }

1072 // Lockout is in effect if checking for lockoutAuth and use of lockoutAuth

1073 // is disabled...

1074 if(lockoutAuthCheck)

1075 {

1076 if(gp.lockOutAuthEnabled == FALSE)

1077 return TPM_RC_LOCKOUT;

1078 }

1079 else

1080 {

1081 // ... or if the number of failed tries has been maxed out.

1082 if(gp.failedTries >= gp.maxTries)

1083 return TPM_RC_LOCKOUT;

1084 #if USE_DA_USED

1085 // If the daUsed flag is not SET, then no DA validation until the

1086 // daUsed state is written to NV

1087 if(!g_daUsed)

1088 {

1089 RETURN_IF_NV_IS_NOT_AVAILABLE;

1090 g_daUsed = TRUE;

1091 gp.orderlyState = SU_DA_USED_VALUE;

1092 NV_SYNC_PERSISTENT(orderlyState);

1093 return TPM_RC_RETRY;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 223

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1094 }

1095 #endif

1096 }

1097 return TPM_RC_SUCCESS;

1098 }

6.4.4.14 CheckAuthSession()

This function checks that the authorization session properly authorizes the use of the associated handle.

Error Returns Meaning

TPM_RC_LOCKOUT entity is protected by DA and TPM is in lockout, or TPM is locked out
on NV update pending on DA parameters

TPM_RC_PP Physical Presence is required but not provided

TPM_RC_AUTH_FAIL HMAC or PW authorization failed with DA side-effects (can be a
policy session)

TPM_RC_BAD_AUTH HMAC or PW authorization failed without DA side-effects (can be a
policy session)

TPM_RC_POLICY_FAIL if policy session fails

TPM_RC_POLICY_CC command code of policy was wrong

TPM_RC_EXPIRED the policy session has expired

TPM_RC_PCR ???

TPM_RC_AUTH_UNAVAILABLE authValue or authPolicy unavailable

1099 static TPM_RC

1100 CheckAuthSession(

1101 COMMAND *command, // IN: primary parsing structure

1102 UINT32 sessionIndex // IN: index of session to be processed

1103)

1104 {

1105 TPM_RC result = TPM_RC_SUCCESS;

1106 SESSION *session = NULL;

1107 TPM_HANDLE sessionHandle = s_sessionHandles[sessionIndex];

1108 TPM_HANDLE associatedHandle = s_associatedHandles[sessionIndex];

1109 TPM_HT sessionHandleType = HandleGetType(sessionHandle);

1110 BOOL authUsed;

1111 //

1112 pAssert(sessionHandle != TPM_RH_UNASSIGNED);

1113

1114 // Take care of physical presence

1115 if(associatedHandle == TPM_RH_PLATFORM)

1116 {

1117 // If the physical presence is required for this command, check for PP

1118 // assertion. If it isn't asserted, no point going any further.

1119 if(PhysicalPresenceIsRequired(command->index)

1120 && !_plat__PhysicalPresenceAsserted())

1121 return TPM_RC_PP;

1122 }

1123 if(sessionHandle != TPM_RS_PW)

1124 {

1125 session = SessionGet(sessionHandle);

1126

1127 // Set includeAuth to indicate if DA checking will be required and if the

1128 // authValue will be included in any HMAC.

1129 if(sessionHandleType == TPM_HT_POLICY_SESSION)

1130 {

1131 // For a policy session, will check the DA status of the entity if either

Trusted Platform Module Library Part 4: Supporting Routines

Page 224 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1132 // isAuthValueNeeded or isPasswordNeeded is SET.

1133 session->attributes.includeAuth =

1134 session->attributes.isAuthValueNeeded

1135 || session->attributes.isPasswordNeeded;

1136 }

1137 else

1138 {

1139 // For an HMAC session, need to check unless the session

1140 // is bound.

1141 session->attributes.includeAuth =

1142 !IsSessionBindEntity(s_associatedHandles[sessionIndex], session);

1143 }

1144 authUsed = session->attributes.includeAuth;

1145 }

1146 else

1147 // Password session

1148 authUsed = TRUE;

1149 // If the authorization session is going to use an authValue, then make sure

1150 // that access to that authValue isn't locked out.

1151 if(authUsed)

1152 {

1153 // See if entity is subject to lockout.

1154 if(!IsDAExempted(associatedHandle))

1155 {

1156 // See if in lockout

1157 result = CheckLockedOut(associatedHandle == TPM_RH_LOCKOUT);

1158 if(result != TPM_RC_SUCCESS)

1159 return result;

1160 }

1161 }

1162 // Policy or HMAC+PW?

1163 if(sessionHandleType != TPM_HT_POLICY_SESSION)

1164 {

1165 // for non-policy session make sure that a policy session is not required

1166 if(IsPolicySessionRequired(command->index, sessionIndex))

1167 return TPM_RC_AUTH_TYPE;

1168 // The authValue must be available.

1169 // Note: The authValue is going to be "used" even if it is an EmptyAuth.

1170 // and the session is bound.

1171 if(!IsAuthValueAvailable(associatedHandle, command->index, sessionIndex))

1172 return TPM_RC_AUTH_UNAVAILABLE;

1173 }

1174 else

1175 {

1176 // ... see if the entity has a policy, ...

1177 // Note: IsAuthPolicyAvalable will return FALSE if the sensitive area of the

1178 // object is not loaded

1179 if(!IsAuthPolicyAvailable(associatedHandle, command->index, sessionIndex))

1180 return TPM_RC_AUTH_UNAVAILABLE;

1181 // ... and check the policy session.

1182 result = CheckPolicyAuthSession(command, sessionIndex);

1183 if(result != TPM_RC_SUCCESS)

1184 return result;

1185 }

1186 // Check authorization according to the type

1187 if((TPM_RS_PW == sessionHandle) || (session->attributes.isPasswordNeeded == SET))

1188 result = CheckPWAuthSession(sessionIndex);

1189 else

1190 result = CheckSessionHMAC(command, sessionIndex);

1191 // Do processing for PIN Indexes are only three possibilities for 'result' at

1192 // this point: TPM_RC_SUCCESS, TPM_RC_AUTH_FAIL, and TPM_RC_BAD_AUTH.

1193 // For all these cases, we would have to process a PIN index if the

1194 // authValue of the index was used for authorization.

1195 if((TPM_HT_NV_INDEX == HandleGetType(associatedHandle)) && authUsed)

1196 {

1197 NV_REF locator;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 225

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1198 NV_INDEX *nvIndex = NvGetIndexInfo(associatedHandle, &locator);

1199 NV_PIN pinData;

1200 TPMA_NV nvAttributes;

1201 //

1202 pAssert(nvIndex != NULL);

1203 nvAttributes = nvIndex->publicArea.attributes;

1204 // If this is a PIN FAIL index and the value has been written

1205 // then we can update the counter (increment or clear)

1206 if(IsNvPinFailIndex(nvAttributes)

1207 && IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITTEN))

1208 {

1209 pinData.intVal = NvGetUINT64Data(nvIndex, locator);

1210 if(result != TPM_RC_SUCCESS)

1211 pinData.pin.pinCount++;

1212 else

1213 pinData.pin.pinCount = 0;

1214 NvWriteUINT64Data(nvIndex, pinData.intVal);

1215 }

1216 // If this is a PIN PASS Index, increment if we have used the

1217 // authorization value.

1218 // NOTE: If the counter has already hit the limit, then we

1219 // would not get here because the authorization value would not

1220 // be available and the TPM would have returned before it gets here

1221 else if(IsNvPinPassIndex(nvAttributes)

1222 && IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITTEN)

1223 && result == TPM_RC_SUCCESS)

1224 {

1225 // If the access is valid, then increment the use counter

1226 pinData.intVal = NvGetUINT64Data(nvIndex, locator);

1227 pinData.pin.pinCount++;

1228 NvWriteUINT64Data(nvIndex, pinData.intVal);

1229 }

1230 }

1231 return result;

1232 }

1233 #ifdef TPM_CC_GetCommandAuditDigest

6.4.4.15 CheckCommandAudit()

This function is called before the command is processed if audit is enabled for the command. It will check

to see if the audit can be performed and will ensure that the cpHash is available for the audit.

Error Returns Meaning

TPM_RC_NV_UNAVAILABLE NV is not available for write

TPM_RC_NV_RATE NV is rate limiting

1234 static TPM_RC

1235 CheckCommandAudit(

1236 COMMAND *command

1237)

1238 {

1239 // If the audit digest is clear and command audit is required, NV must be

1240 // available so that TPM2_GetCommandAuditDigest() is able to increment

1241 // audit counter. If NV is not available, the function bails out to prevent

1242 // the TPM from attempting an operation that would fail anyway.

1243 if(gr.commandAuditDigest.t.size == 0

1244 || GetCommandCode(command->index) == TPM_CC_GetCommandAuditDigest)

1245 {

1246 RETURN_IF_NV_IS_NOT_AVAILABLE;

1247 }

1248 // Make sure that the cpHash is computed for the algorithm

1249 ComputeCpHash(command, gp.auditHashAlg);

Trusted Platform Module Library Part 4: Supporting Routines

Page 226 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1250 return TPM_RC_SUCCESS;

1251 }

1252 #endif

6.4.4.16 ParseSessionBuffer()

This function is the entry function for command session processing. It iterates sessions in session area

and reports if the required authorization has been properly provided. It also processes audit session and

passes the information of encryption sessions to parameter encryption module.

Error Returns Meaning

various parsing failure or authorization failure

1253 TPM_RC

1254 ParseSessionBuffer(

1255 COMMAND *command // IN: the structure that contains

1256)

1257 {

1258 TPM_RC result;

1259 UINT32 i;

1260 INT32 size = 0;

1261 TPM2B_AUTH extraKey;

1262 UINT32 sessionIndex;

1263 TPM_RC errorIndex;

1264 SESSION *session = NULL;

1265 //

1266 // Check if a command allows any session in its session area.

1267 if(!IsSessionAllowed(command->index))

1268 return TPM_RC_AUTH_CONTEXT;

1269 // Default-initialization.

1270 command->sessionNum = 0;

1271

1272 result = RetrieveSessionData(command);

1273 if(result != TPM_RC_SUCCESS)

1274 return result;

1275 // There is no command in the TPM spec that has more handles than

1276 // MAX_SESSION_NUM.

1277 pAssert(command->handleNum <= MAX_SESSION_NUM);

1278

1279 // Associate the session with an authorization handle.

1280 for(i = 0; i < command->handleNum; i++)

1281 {

1282 if(CommandAuthRole(command->index, i) != AUTH_NONE)

1283 {

1284 // If the received session number is less than the number of handles

1285 // that requires authorization, an error should be returned.

1286 // Note: for all the TPM 2.0 commands, handles requiring

1287 // authorization come first in a command input and there are only ever

1288 // two values requiring authorization

1289 if(i > (command->sessionNum - 1))

1290 return TPM_RC_AUTH_MISSING;

1291 // Record the handle associated with the authorization session

1292 s_associatedHandles[i] = command->handles[i];

1293 }

1294 }

1295 // Consistency checks are done first to avoid authorization failure when the

1296 // command will not be executed anyway.

1297 for(sessionIndex = 0; sessionIndex < command->sessionNum; sessionIndex++)

1298 {

1299 errorIndex = TPM_RC_S + g_rcIndex[sessionIndex];

1300 // PW session must be an authorization session

1301 if(s_sessionHandles[sessionIndex] == TPM_RS_PW)

1302 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 227

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1303 if(s_associatedHandles[sessionIndex] == TPM_RH_UNASSIGNED)

1304 return TPM_RCS_HANDLE + errorIndex;

1305 // a password session can't be audit, encrypt or decrypt

1306 if(IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, audit)

1307 || IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, encrypt)

1308 || IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, decrypt))

1309 return TPM_RCS_ATTRIBUTES + errorIndex;

1310 session = NULL;

1311 }

1312 else

1313 {

1314 session = SessionGet(s_sessionHandles[sessionIndex]);

1315

1316 // A trial session can not appear in session area, because it cannot

1317 // be used for authorization, audit or encrypt/decrypt.

1318 if(session->attributes.isTrialPolicy == SET)

1319 return TPM_RCS_ATTRIBUTES + errorIndex;

1320

1321 // See if the session is bound to a DA protected entity

1322 // NOTE: Since a policy session is never bound, a policy is still

1323 // usable even if the object is DA protected and the TPM is in

1324 // lockout.

1325 if(session->attributes.isDaBound == SET)

1326 {

1327 result = CheckLockedOut(session->attributes.isLockoutBound == SET);

1328 if(result != TPM_RC_SUCCESS)

1329 return result;

1330 }

1331 // If this session is for auditing, make sure the cpHash is computed.

1332 if(IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, audit))

1333 ComputeCpHash(command, session->authHashAlg);

1334 }

1335

1336 // if the session has an associated handle, check the authorization

1337 if(s_associatedHandles[sessionIndex] != TPM_RH_UNASSIGNED)

1338 {

1339 result = CheckAuthSession(command, sessionIndex);

1340 if(result != TPM_RC_SUCCESS)

1341 return RcSafeAddToResult(result, errorIndex);

1342 }

1343 else

1344 {

1345 // a session that is not for authorization must either be encrypt,

1346 // decrypt, or audit

1347 if(!IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, audit)

1348 && !IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, encrypt)

1349 && !IS_ATTRIBUTE(s_attributes[sessionIndex], TPMA_SESSION, decrypt))

1350 return TPM_RCS_ATTRIBUTES + errorIndex;

1351

1352 // no authValue included in any of the HMAC computations

1353 pAssert(session != NULL);

1354 session->attributes.includeAuth = CLEAR;

1355

1356 // check HMAC for encrypt/decrypt/audit only sessions

1357 result = CheckSessionHMAC(command, sessionIndex);

1358 if(result != TPM_RC_SUCCESS)

1359 return RcSafeAddToResult(result, errorIndex);

1360 }

1361 }

1362 #ifdef TPM_CC_GetCommandAuditDigest

1363 // Check if the command should be audited. Need to do this before any parameter

1364 // encryption so that the cpHash for the audit is correct

1365 if(CommandAuditIsRequired(command->index))

1366 {

1367 result = CheckCommandAudit(command);

1368 if(result != TPM_RC_SUCCESS)

Trusted Platform Module Library Part 4: Supporting Routines

Page 228 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1369 return result; // No session number to reference

1370 }

1371 #endif

1372 // Decrypt the first parameter if applicable. This should be the last operation

1373 // in session processing.

1374 // If the encrypt session is associated with a handle and the handle's

1375 // authValue is available, then authValue is concatenated with sessionKey to

1376 // generate encryption key, no matter if the handle is the session bound entity

1377 // or not.

1378 if(s_decryptSessionIndex != UNDEFINED_INDEX)

1379 {

1380 // If this is an authorization session, include the authValue in the

1381 // generation of the decryption key

1382 if(s_associatedHandles[s_decryptSessionIndex] != TPM_RH_UNASSIGNED)

1383 {

1384 EntityGetAuthValue(s_associatedHandles[s_decryptSessionIndex],

1385 &extraKey);

1386 }

1387 else

1388 {

1389 extraKey.b.size = 0;

1390 }

1391 size = DecryptSize(command->index);

1392 result = CryptParameterDecryption(s_sessionHandles[s_decryptSessionIndex],

1393 &s_nonceCaller[s_decryptSessionIndex].b,

1394 command->parameterSize, (UINT16)size,

1395 &extraKey,

1396 command->parameterBuffer);

1397 if(result != TPM_RC_SUCCESS)

1398 return RcSafeAddToResult(result,

1399 TPM_RC_S + g_rcIndex[s_decryptSessionIndex]);

1400 }

1401

1402 return TPM_RC_SUCCESS;

1403 }

6.4.4.17 CheckAuthNoSession()

Function to process a command with no session associated. The function makes sure all the handles in

the command require no authorization.

Error Returns Meaning

TPM_RC_AUTH_MISSING failure - one or more handles require authorization

1404 TPM_RC

1405 CheckAuthNoSession(

1406 COMMAND *command // IN: command parsing structure

1407)

1408 {

1409 UINT32 i;

1410 TPM_RC result = TPM_RC_SUCCESS;

1411 //

1412 // Check if the command requires authorization

1413 for(i = 0; i < command->handleNum; i++)

1414 {

1415 if(CommandAuthRole(command->index, i) != AUTH_NONE)

1416 return TPM_RC_AUTH_MISSING;

1417 }

1418 #ifdef TPM_CC_GetCommandAuditDigest

1419 // Check if the command should be audited.

1420 if(CommandAuditIsRequired(command->index))

1421 {

1422 result = CheckCommandAudit(command);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 229

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1423 if(result != TPM_RC_SUCCESS)

1424 return result;

1425 }

1426 #endif

1427 // Initialize number of sessions to be 0

1428 command->sessionNum = 0;

1429

1430 return TPM_RC_SUCCESS;

1431 }

6.4.5 Response Session Processing

6.4.5.1 Introduction

The following functions build the session area in a response and handle the audit sessions (if present).

6.4.5.2 ComputeRpHash()

Function to compute rpHash (Response Parameter Hash). The rpHash is only computed if there is an

HMAC authorization session and the return code is TPM_RC_SUCCESS.

1432 static TPM2B_DIGEST *

1433 ComputeRpHash(

1434 COMMAND *command, // IN: command structure

1435 TPM_ALG_ID hashAlg // IN: hash algorithm to compute rpHash

1436)

1437 {

1438 TPM2B_DIGEST *rpHash = GetRpHashPointer(command, hashAlg);

1439 HASH_STATE hashState;

1440 //

1441 if(rpHash->t.size == 0)

1442 {

1443 // rpHash := hash(responseCode || commandCode || parameters)

1444

1445 // Initiate hash creation.

1446 rpHash->t.size = CryptHashStart(&hashState, hashAlg);

1447

1448 // Add hash constituents.

1449 CryptDigestUpdateInt(&hashState, sizeof(TPM_RC), TPM_RC_SUCCESS);

1450 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), command->code);

1451 CryptDigestUpdate(&hashState, command->parameterSize,

1452 command->parameterBuffer);

1453 // Complete hash computation.

1454 CryptHashEnd2B(&hashState, &rpHash->b);

1455 }

1456 return rpHash;

1457 }

6.4.5.3 InitAuditSession()

This function initializes the audit data in an audit session.

1458 static void

1459 InitAuditSession(

1460 SESSION *session // session to be initialized

1461)

1462 {

1463 // Mark session as an audit session.

1464 session->attributes.isAudit = SET;

1465

Trusted Platform Module Library Part 4: Supporting Routines

Page 230 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1466 // Audit session can not be bound.

1467 session->attributes.isBound = CLEAR;

1468

1469 // Size of the audit log is the size of session hash algorithm digest.

1470 session->u2.auditDigest.t.size = CryptHashGetDigestSize(session->authHashAlg);

1471

1472 // Set the original digest value to be 0.

1473 MemorySet(&session->u2.auditDigest.t.buffer,

1474 0,

1475 session->u2.auditDigest.t.size);

1476 return;

1477 }

6.4.5.4 UpdateAuditDigest

Function to update an audit digest

1478 static void

1479 UpdateAuditDigest(

1480 COMMAND *command,

1481 TPMI_ALG_HASH hashAlg,

1482 TPM2B_DIGEST *digest

1483)

1484 {

1485 HASH_STATE hashState;

1486 TPM2B_DIGEST *cpHash = GetCpHash(command, hashAlg);

1487 TPM2B_DIGEST *rpHash = ComputeRpHash(command, hashAlg);

1488 //

1489 pAssert(cpHash != NULL);

1490

1491 // digestNew := hash (digestOld || cpHash || rpHash)

1492 // Start hash computation.

1493 digest->t.size = CryptHashStart(&hashState, hashAlg);

1494 // Add old digest.

1495 CryptDigestUpdate2B(&hashState, &digest->b);

1496 // Add cpHash

1497 CryptDigestUpdate2B(&hashState, &cpHash->b);

1498 // Add rpHash

1499 CryptDigestUpdate2B(&hashState, &rpHash->b);

1500 // Finalize the hash.

1501 CryptHashEnd2B(&hashState, &digest->b);

1502 }

6.4.5.5 Audit()

This function updates the audit digest in an audit session.

1503 static void

1504 Audit(

1505 COMMAND *command, // IN: primary control structure

1506 SESSION *auditSession // IN: loaded audit session

1507)

1508 {

1509 UpdateAuditDigest(command, auditSession->authHashAlg,

1510 &auditSession->u2.auditDigest);

1511 return;

1512 }

1513 #ifdef TPM_CC_GetCommandAuditDigest

6.4.5.6 CommandAudit()

This function updates the command audit digest.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 231

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1514 static void

1515 CommandAudit(

1516 COMMAND *command // IN:

1517)

1518 {

1519 // If the digest.size is one, it indicates the special case of changing

1520 // the audit hash algorithm. For this case, no audit is done on exit.

1521 // NOTE: When the hash algorithm is changed, g_updateNV is set in order to

1522 // force an update to the NV on exit so that the change in digest will

1523 // be recorded. So, it is safe to exit here without setting any flags

1524 // because the digest change will be written to NV when this code exits.

1525 if(gr.commandAuditDigest.t.size == 1)

1526 {

1527 gr.commandAuditDigest.t.size = 0;

1528 return;

1529 }

1530 // If the digest size is zero, need to start a new digest and increment

1531 // the audit counter.

1532 if(gr.commandAuditDigest.t.size == 0)

1533 {

1534 gr.commandAuditDigest.t.size = CryptHashGetDigestSize(gp.auditHashAlg);

1535 MemorySet(gr.commandAuditDigest.t.buffer,

1536 0,

1537 gr.commandAuditDigest.t.size);

1538

1539 // Bump the counter and save its value to NV.

1540 gp.auditCounter++;

1541 NV_SYNC_PERSISTENT(auditCounter);

1542 }

1543 UpdateAuditDigest(command, gp.auditHashAlg, &gr.commandAuditDigest);

1544 return;

1545 }

1546 #endif

6.4.5.7 UpdateAuditSessionStatus()

Function to update the internal audit related states of a session. It

 initializes the session as audit session and sets it to be exclusive if this is the first time it is used for

audit or audit reset was requested;

 reports exclusive audit session;

 extends audit log; and

 clears exclusive audit session if no audit session found in the command.

1547 static void

1548 UpdateAuditSessionStatus(

1549 COMMAND *command // IN: primary control structure

1550)

1551 {

1552 UINT32 i;

1553 TPM_HANDLE auditSession = TPM_RH_UNASSIGNED;

1554 //

1555 // Iterate through sessions

1556 for(i = 0; i < command->sessionNum; i++)

1557 {

1558 SESSION *session;

1559 //

1560 // PW session do not have a loaded session and can not be an audit

1561 // session either. Skip it.

1562 if(s_sessionHandles[i] == TPM_RS_PW)

1563 continue;

1564 session = SessionGet(s_sessionHandles[i]);

Trusted Platform Module Library Part 4: Supporting Routines

Page 232 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1565

1566 // If a session is used for audit

1567 if(IS_ATTRIBUTE(s_attributes[i], TPMA_SESSION, audit))

1568 {

1569 // An audit session has been found

1570 auditSession = s_sessionHandles[i];

1571

1572 // If the session has not been an audit session yet, or

1573 // the auditSetting bits indicate a reset, initialize it and set

1574 // it to be the exclusive session

1575 if(session->attributes.isAudit == CLEAR

1576 || IS_ATTRIBUTE(s_attributes[i], TPMA_SESSION, auditReset))

1577 {

1578 InitAuditSession(session);

1579 g_exclusiveAuditSession = auditSession;

1580 }

1581 else

1582 {

1583 // Check if the audit session is the current exclusive audit

1584 // session and, if not, clear previous exclusive audit session.

1585 if(g_exclusiveAuditSession != auditSession)

1586 g_exclusiveAuditSession = TPM_RH_UNASSIGNED;

1587 }

1588 // Report audit session exclusivity.

1589 if(g_exclusiveAuditSession == auditSession)

1590 {

1591 SET_ATTRIBUTE(s_attributes[i], TPMA_SESSION, auditExclusive);

1592 }

1593 else

1594 {

1595 CLEAR_ATTRIBUTE(s_attributes[i], TPMA_SESSION, auditExclusive);

1596 }

1597 // Extend audit log.

1598 Audit(command, session);

1599 }

1600 }

1601 // If no audit session is found in the command, and the command allows

1602 // a session then, clear the current exclusive

1603 // audit session.

1604 if(auditSession == TPM_RH_UNASSIGNED && IsSessionAllowed(command->index))

1605 {

1606 g_exclusiveAuditSession = TPM_RH_UNASSIGNED;

1607 }

1608 return;

1609 }

6.4.5.8 ComputeResponseHMAC()

Function to compute HMAC for authorization session in a response.

1610 static void

1611 ComputeResponseHMAC(

1612 COMMAND *command, // IN: command structure

1613 UINT32 sessionIndex, // IN: session index to be processed

1614 SESSION *session, // IN: loaded session

1615 TPM2B_DIGEST *hmac // OUT: authHMAC

1616)

1617 {

1618 TPM2B_TYPE(KEY, (sizeof(AUTH_VALUE) * 2));

1619 TPM2B_KEY key; // HMAC key

1620 BYTE marshalBuffer[sizeof(TPMA_SESSION)];

1621 BYTE *buffer;

1622 UINT32 marshalSize;

1623 HMAC_STATE hmacState;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 233

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1624 TPM2B_DIGEST *rpHash = ComputeRpHash(command, session->authHashAlg);

1625 //

1626 // Generate HMAC key

1627 MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));

1628

1629 // Add the object authValue if required

1630 if(session->attributes.includeAuth == SET)

1631 {

1632 // Note: includeAuth may be SET for a policy that is used in

1633 // UndefineSpaceSpecial(). At this point, the Index has been deleted

1634 // so the includeAuth will have no meaning. However, the

1635 // s_associatedHandles[] value for the session is now set to TPM_RH_NULL so

1636 // this will return the authValue associated with TPM_RH_NULL and that is

1637 // and empty buffer.

1638 TPM2B_AUTH authValue;

1639 //

1640 // Get the authValue with trailing zeros removed

1641 EntityGetAuthValue(s_associatedHandles[sessionIndex], &authValue);

1642

1643 // Add it to the key

1644 MemoryConcat2B(&key.b, &authValue.b, sizeof(key.t.buffer));

1645 }

1646

1647 // if the HMAC key size is 0, the response HMAC is computed according to the

1648 // input HMAC

1649 if(key.t.size == 0

1650 && s_inputAuthValues[sessionIndex].t.size == 0)

1651 {

1652 hmac->t.size = 0;

1653 return;

1654 }

1655 // Start HMAC computation.

1656 hmac->t.size = CryptHmacStart2B(&hmacState, session->authHashAlg, &key.b);

1657

1658 // Add hash components.

1659 CryptDigestUpdate2B(&hmacState.hashState, &rpHash->b);

1660 CryptDigestUpdate2B(&hmacState.hashState, &session->nonceTPM.b);

1661 CryptDigestUpdate2B(&hmacState.hashState, &s_nonceCaller[sessionIndex].b);

1662

1663 // Add session attributes.

1664 buffer = marshalBuffer;

1665 marshalSize = TPMA_SESSION_Marshal(&s_attributes[sessionIndex], &buffer, NULL);

1666 CryptDigestUpdate(&hmacState.hashState, marshalSize, marshalBuffer);

1667

1668 // Finalize HMAC.

1669 CryptHmacEnd2B(&hmacState, &hmac->b);

1670

1671 return;

1672 }

6.4.5.9 UpdateInternalSession()

Updates internal sessions:

 Restarts session time.

 Clears a policy session since nonce is rolling.

1673 static void

1674 UpdateInternalSession(

1675 SESSION *session, // IN: the session structure

1676 UINT32 i // IN: session number

1677)

1678 {

1679 // If nonce is rolling in a policy session, the policy related data

Trusted Platform Module Library Part 4: Supporting Routines

Page 234 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1680 // will be re-initialized.

1681 if(HandleGetType(s_sessionHandles[i]) == TPM_HT_POLICY_SESSION

1682 && IS_ATTRIBUTE(s_attributes[i], TPMA_SESSION, continueSession))

1683 {

1684 // When the nonce rolls it starts a new timing interval for the

1685 // policy session.

1686 SessionResetPolicyData(session);

1687 SessionSetStartTime(session);

1688 }

1689 return;

1690 }

6.4.5.10 BuildSingleResponseAuth()

Function to compute response HMAC value for a policy or HMAC session.

1691 static TPM2B_NONCE *

1692 BuildSingleResponseAuth(

1693 COMMAND *command, // IN: command structure

1694 UINT32 sessionIndex, // IN: session index to be processed

1695 TPM2B_AUTH *auth // OUT: authHMAC

1696)

1697 {

1698 // Fill in policy/HMAC based session response.

1699 SESSION *session = SessionGet(s_sessionHandles[sessionIndex]);

1700 //

1701 // If the session is a policy session with isPasswordNeeded SET, the

1702 // authorization field is empty.

1703 if(HandleGetType(s_sessionHandles[sessionIndex]) == TPM_HT_POLICY_SESSION

1704 && session->attributes.isPasswordNeeded == SET)

1705 auth->t.size = 0;

1706 else

1707 // Compute response HMAC.

1708 ComputeResponseHMAC(command, sessionIndex, session, auth);

1709

1710 UpdateInternalSession(session, sessionIndex);

1711 return &session->nonceTPM;

1712 }

6.4.5.11 UpdateAllNonceTPM()

Updates TPM nonce for all sessions in command.

1713 static void

1714 UpdateAllNonceTPM(

1715 COMMAND *command // IN: controlling structure

1716)

1717 {

1718 UINT32 i;

1719 SESSION *session;

1720 //

1721 for(i = 0; i < command->sessionNum; i++)

1722 {

1723 // If not a PW session, compute the new nonceTPM.

1724 if(s_sessionHandles[i] != TPM_RS_PW)

1725 {

1726 session = SessionGet(s_sessionHandles[i]);

1727 // Update nonceTPM in both internal session and response.

1728 CryptRandomGenerate(session->nonceTPM.t.size,

1729 session->nonceTPM.t.buffer);

1730 }

1731 }

1732 return;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 235

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1733 }

6.4.5.12 BuildResponseSession()

Function to build Session buffer in a response. The authorization data is added to the end of command-

>responseBuffer. The size of the authorization area is accumulated in command->authSize. When this is

called, command->responseBuffer is pointing at the next location in the response buffer to be filled. This

is where the authorization sessions will go, if any. command->parameterSize is the number of bytes that

have been marshaled as parameters in the output buffer.

1734 void

1735 BuildResponseSession(

1736 COMMAND *command // IN: structure that has relevant command

1737 // information

1738)

1739 {

1740 pAssert(command->authSize == 0);

1741

1742 // Reset the parameter buffer to point to the start of the parameters so that

1743 // there is a starting point for any rpHash that might be generated and so there

1744 // is a place where parameter encryption would start

1745 command->parameterBuffer = command->responseBuffer - command->parameterSize;

1746

1747 // Session nonces should be updated before parameter encryption

1748 if(command->tag == TPM_ST_SESSIONS)

1749 {

1750 UpdateAllNonceTPM(command);

1751

1752 // Encrypt first parameter if applicable. Parameter encryption should

1753 // happen after nonce update and before any rpHash is computed.

1754 // If the encrypt session is associated with a handle, the authValue of

1755 // this handle will be concatenated with sessionKey to generate

1756 // encryption key, no matter if the handle is the session bound entity

1757 // or not. The authValue is added to sessionKey only when the authValue

1758 // is available.

1759 if(s_encryptSessionIndex != UNDEFINED_INDEX)

1760 {

1761 UINT32 size;

1762 TPM2B_AUTH extraKey;

1763 //

1764 extraKey.b.size = 0;

1765 // If this is an authorization session, include the authValue in the

1766 // generation of the encryption key

1767 if(s_associatedHandles[s_encryptSessionIndex] != TPM_RH_UNASSIGNED)

1768 {

1769 EntityGetAuthValue(s_associatedHandles[s_encryptSessionIndex],

1770 &extraKey);

1771 }

1772 size = EncryptSize(command->index);

1773 CryptParameterEncryption(s_sessionHandles[s_encryptSessionIndex],

1774 &s_nonceCaller[s_encryptSessionIndex].b,

1775 (UINT16)size,

1776 &extraKey,

1777 command->parameterBuffer);

1778 }

1779 }

1780 // Audit sessions should be processed regardless of the tag because

1781 // a command with no session may cause a change of the exclusivity state.

1782 UpdateAuditSessionStatus(command);

1783 #if CC_GetCommandAuditDigest

1784 // Command Audit

1785 if(CommandAuditIsRequired(command->index))

1786 CommandAudit(command);

1787 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 236 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1788 // Process command with sessions.

1789 if(command->tag == TPM_ST_SESSIONS)

1790 {

1791 UINT32 i;

1792 //

1793 pAssert(command->sessionNum > 0);

1794

1795 // Iterate over each session in the command session area, and create

1796 // corresponding sessions for response.

1797 for(i = 0; i < command->sessionNum; i++)

1798 {

1799 TPM2B_NONCE *nonceTPM;

1800 TPM2B_DIGEST responseAuth;

1801 // Make sure that continueSession is SET on any Password session.

1802 // This makes it marginally easier for the management software

1803 // to keep track of the closed sessions.

1804 if(s_sessionHandles[i] == TPM_RS_PW)

1805 {

1806 SET_ATTRIBUTE(s_attributes[i], TPMA_SESSION, continueSession);

1807 responseAuth.t.size = 0;

1808 nonceTPM = (TPM2B_NONCE *)&responseAuth;

1809 }

1810 else

1811 {

1812 // Compute the response HMAC and get a pointer to the nonce used.

1813 // This function will also update the values if needed. Note, the

1814 nonceTPM = BuildSingleResponseAuth(command, i, &responseAuth);

1815 }

1816 command->authSize += TPM2B_NONCE_Marshal(nonceTPM,

1817 &command->responseBuffer,

1818 NULL);

1819 command->authSize += TPMA_SESSION_Marshal(&s_attributes[i],

1820 &command->responseBuffer,

1821 NULL);

1822 command->authSize += TPM2B_DIGEST_Marshal(&responseAuth,

1823 &command->responseBuffer,

1824 NULL);

1825 if(!IS_ATTRIBUTE(s_attributes[i], TPMA_SESSION, continueSession))

1826 SessionFlush(s_sessionHandles[i]);

1827 }

1828 }

1829 return;

1830 }

6.4.5.13 SessionRemoveAssociationToHandle()

This function deals with the case where an entity associated with an authorization is deleted during

command processing. The primary use of this is to support UndefineSpaceSpecial().

1831 void

1832 SessionRemoveAssociationToHandle(

1833 TPM_HANDLE handle

1834)

1835 {

1836 UINT32 i;

1837 //

1838 for(i = 0; i < MAX_SESSION_NUM; i++)

1839 {

1840 if(s_associatedHandles[i] == handle)

1841 {

1842 s_associatedHandles[i] = TPM_RH_NULL;

1843 }

1844 }

1845 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 237

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7 Command Support Functions

7.1 Introduction

This clause contains support routines that are called by the command action code in TPM 2.0 Part 3. The

functions are grouped by the command group that is supported by the functions.

7.2 Attestation Command Support (Attest_spt.c)

7.2.1 Includes

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

7.2.2 Functions

7.2.2.1 FillInAttestInfo()

Fill in common fields of TPMS_ATTEST structure.

3 void

4 FillInAttestInfo(

5 TPMI_DH_OBJECT signHandle, // IN: handle of signing object

6 TPMT_SIG_SCHEME *scheme, // IN/OUT: scheme to be used for signing

7 TPM2B_DATA *data, // IN: qualifying data

8 TPMS_ATTEST *attest // OUT: attest structure

9)

10 {

11 OBJECT *signObject = HandleToObject(signHandle);

12

13 // Magic number

14 attest->magic = TPM_GENERATED_VALUE;

15

16 if(signObject == NULL)

17 {

18 // The name for a null handle is TPM_RH_NULL

19 // This is defined because UINT32_TO_BYTE_ARRAY does a cast. If the

20 // size of the cast is smaller than a constant, the compiler warns

21 // about the truncation of a constant value.

22 TPM_HANDLE nullHandle = TPM_RH_NULL;

23 attest->qualifiedSigner.t.size = sizeof(TPM_HANDLE);

24 UINT32_TO_BYTE_ARRAY(nullHandle, attest->qualifiedSigner.t.name);

25 }

26 else

27 {

28 // Certifying object qualified name

29 // if the scheme is anonymous, this is an empty buffer

30 if(CryptIsSchemeAnonymous(scheme->scheme))

31 attest->qualifiedSigner.t.size = 0;

32 else

33 attest->qualifiedSigner = signObject->qualifiedName;

34 }

35 // current clock in plain text

36 TimeFillInfo(&attest->clockInfo);

37

38 // Firmware version in plain text

39 attest->firmwareVersion = ((UINT64)gp.firmwareV1 << (sizeof(UINT32) * 8));

40 attest->firmwareVersion += gp.firmwareV2;

41

Trusted Platform Module Library Part 4: Supporting Routines

Page 238 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

42 // Check the hierarchy of sign object. For NULL sign handle, the hierarchy

43 // will be TPM_RH_NULL

44 if((signObject == NULL)

45 || (!signObject->attributes.epsHierarchy

46 && !signObject->attributes.ppsHierarchy))

47 {

48 // For signing key that is not in platform or endorsement hierarchy,

49 // obfuscate the reset, restart and firmware version information

50 UINT64 obfuscation[2];

51 CryptKDFa(CONTEXT_INTEGRITY_HASH_ALG, &gp.shProof.b, OBFUSCATE_STRING,

52 &attest->qualifiedSigner.b, NULL, 128,

53 (BYTE *)&obfuscation[0], NULL, FALSE);

54 // Obfuscate data

55 attest->firmwareVersion += obfuscation[0];

56 attest->clockInfo.resetCount += (UINT32)(obfuscation[1] >> 32);

57 attest->clockInfo.restartCount += (UINT32)obfuscation[1];

58 }

59 // External data

60 if(CryptIsSchemeAnonymous(scheme->scheme))

61 attest->extraData.t.size = 0;

62 else

63 {

64 // If we move the data to the attestation structure, then it is not

65 // used in the signing operation except as part of the signed data

66 attest->extraData = *data;

67 data->t.size = 0;

68 }

69 }

7.2.2.2 SignAttestInfo()

Sign a TPMS_ATTEST structure. If signHandle is TPM_RH_NULL, a null signature is returned.

Error Returns Meaning

TPM_RC_ATTRIBUTES signHandle references not a signing key

TPM_RC_SCHEME scheme is not compatible with signHandle type

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

70 TPM_RC

71 SignAttestInfo(

72 OBJECT *signKey, // IN: sign object

73 TPMT_SIG_SCHEME *scheme, // IN: sign scheme

74 TPMS_ATTEST *certifyInfo, // IN: the data to be signed

75 TPM2B_DATA *qualifyingData, // IN: extra data for the signing

76 // process

77 TPM2B_ATTEST *attest, // OUT: marshaled attest blob to be

78 // signed

79 TPMT_SIGNATURE *signature // OUT: signature

80)

81 {

82 BYTE *buffer;

83 HASH_STATE hashState;

84 TPM2B_DIGEST digest;

85 TPM_RC result;

86

87 // Marshal TPMS_ATTEST structure for hash

88 buffer = attest->t.attestationData;

89 attest->t.size = TPMS_ATTEST_Marshal(certifyInfo, &buffer, NULL);

90

91 if(signKey == NULL)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 239

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

92 {

93 signature->sigAlg = TPM_ALG_NULL;

94 result = TPM_RC_SUCCESS;

95 }

96 else

97 {

98 TPMI_ALG_HASH hashAlg;

99 // Compute hash

100 hashAlg = scheme->details.any.hashAlg;

101 // need to set the receive buffer to get something put in it

102 digest.t.size = sizeof(digest.t.buffer);

103 digest.t.size = CryptHashBlock(hashAlg, attest->t.size,

104 attest->t.attestationData,

105 digest.t.size, digest.t.buffer);

106 // If there is qualifying data, need to rehash the data

107 // hash(qualifyingData || hash(attestationData))

108 if(qualifyingData->t.size != 0)

109 {

110 CryptHashStart(&hashState, hashAlg);

111 CryptDigestUpdate2B(&hashState, &qualifyingData->b);

112 CryptDigestUpdate2B(&hashState, &digest.b);

113 CryptHashEnd2B(&hashState, &digest.b);

114 }

115 // Sign the hash. A TPM_RC_VALUE, TPM_RC_SCHEME, or

116 // TPM_RC_ATTRIBUTES error may be returned at this point

117 result = CryptSign(signKey, scheme, &digest, signature);

118

119 // Since the clock is used in an attestation, the state in NV is no longer

120 // "orderly" with respect to the data in RAM if the signature is valid

121 if(result == TPM_RC_SUCCESS)

122 {

123 // Command uses the clock so need to clear the orderly state if it is

124 // set.

125 result = NvClearOrderly();

126 }

127 }

128 return result;

129 }

7.2.2.3 IsSigningObject()

Checks to see if the object is OK for signing. This is here rather than in Object_spt.c because all the

attestation commands use this file but not Object_spt.c.

Return Value Meaning

TRUE(1) object may sign

FALSE(0) object may not sign

130 BOOL

131 IsSigningObject(

132 OBJECT *object // IN:

133)

134 {

135 return ((object == NULL)

136 || ((IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, sign)

137 && object->publicArea.type != TPM_ALG_SYMCIPHER)));

138 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 240 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.3 Context Management Command Support (Context_spt.c)

7.3.1 Includes

1 #include "Tpm.h"

2 #include "Context_spt_fp.h"

7.3.2 Functions

7.3.2.1 ComputeContextProtectionKey()

This function retrieves the symmetric protection key for context encryption It is used by

TPM2_ConextSave() and TPM2_ContextLoad() to create the symmetric encryption key and iv

3 void

4 ComputeContextProtectionKey(

5 TPMS_CONTEXT *contextBlob, // IN: context blob

6 TPM2B_SYM_KEY *symKey, // OUT: the symmetric key

7 TPM2B_IV *iv // OUT: the IV.

8)

9 {

10 UINT16 symKeyBits; // number of bits in the parent's

11 // symmetric key

12 TPM2B_PROOF *proof = NULL; // the proof value to use. Is null for

13 // everything but a primary object in

14 // the Endorsement Hierarchy

15

16 BYTE kdfResult[sizeof(TPMU_HA) * 2];// Value produced by the KDF

17

18 TPM2B_DATA sequence2B, handle2B;

19

20 // Get proof value

21 proof = HierarchyGetProof(contextBlob->hierarchy);

22

23 // Get sequence value in 2B format

24 sequence2B.t.size = sizeof(contextBlob->sequence);

25 cAssert(sizeof(contextBlob->sequence) <= sizeof(sequence2B.t.buffer));

26 MemoryCopy(sequence2B.t.buffer, &contextBlob->sequence,

27 sizeof(contextBlob->sequence));

28

29 // Get handle value in 2B format

30 handle2B.t.size = sizeof(contextBlob->savedHandle);

31 cAssert(sizeof(contextBlob->savedHandle) <= sizeof(handle2B.t.buffer));

32 MemoryCopy(handle2B.t.buffer, &contextBlob->savedHandle,

33 sizeof(contextBlob->savedHandle));

34

35 // Get the symmetric encryption key size

36 symKey->t.size = CONTEXT_ENCRYPT_KEY_BYTES;

37 symKeyBits = CONTEXT_ENCRYPT_KEY_BITS;

38 // Get the size of the IV for the algorithm

39 iv->t.size = CryptGetSymmetricBlockSize(CONTEXT_ENCRYPT_ALG, symKeyBits);

40

41 // KDFa to generate symmetric key and IV value

42 CryptKDFa(CONTEXT_INTEGRITY_HASH_ALG, &proof->b, CONTEXT_KEY, &sequence2B.b,

43 &handle2B.b, (symKey->t.size + iv->t.size) * 8, kdfResult, NULL,

44 FALSE);

45

46 // Copy part of the returned value as the key

47 pAssert(symKey->t.size <= sizeof(symKey->t.buffer));

48 MemoryCopy(symKey->t.buffer, kdfResult, symKey->t.size);

49

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 241

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

50 // Copy the rest as the IV

51 pAssert(iv->t.size <= sizeof(iv->t.buffer));

52 MemoryCopy(iv->t.buffer, &kdfResult[symKey->t.size], iv->t.size);

53

54 return;

55 }

7.3.2.2 ComputeContextIntegrity()

Generate the integrity hash for a context It is used by TPM2_ContextSave() to create an integrity hash

and by TPM2_ContextLoad() to compare an integrity hash

56 void

57 ComputeContextIntegrity(

58 TPMS_CONTEXT *contextBlob, // IN: context blob

59 TPM2B_DIGEST *integrity // OUT: integrity

60)

61 {

62 HMAC_STATE hmacState;

63 TPM2B_PROOF *proof;

64 UINT16 integritySize;

65

66 // Get proof value

67 proof = HierarchyGetProof(contextBlob->hierarchy);

68

69 // Start HMAC

70 integrity->t.size = CryptHmacStart2B(&hmacState, CONTEXT_INTEGRITY_HASH_ALG,

71 &proof->b);

72

73 // Compute integrity size at the beginning of context blob

74 integritySize = sizeof(integrity->t.size) + integrity->t.size;

75

76 // Adding total reset counter so that the context cannot be

77 // used after a TPM Reset

78 CryptDigestUpdateInt(&hmacState.hashState, sizeof(gp.totalResetCount),

79 gp.totalResetCount);

80

81 // If this is a ST_CLEAR object, add the clear count

82 // so that this contest cannot be loaded after a TPM Restart

83 if(contextBlob->savedHandle == 0x80000002)

84 CryptDigestUpdateInt(&hmacState.hashState, sizeof(gr.clearCount),

85 gr.clearCount);

86

87 // Adding sequence number to the HMAC to make sure that it doesn't

88 // get changed

89 CryptDigestUpdateInt(&hmacState.hashState, sizeof(contextBlob->sequence),

90 contextBlob->sequence);

91

92 // Protect the handle

93 CryptDigestUpdateInt(&hmacState.hashState, sizeof(contextBlob->savedHandle),

94 contextBlob->savedHandle);

95

96 // Adding sensitive contextData, skip the leading integrity area

97 CryptDigestUpdate(&hmacState.hashState,

98 contextBlob->contextBlob.t.size - integritySize,

99 contextBlob->contextBlob.t.buffer + integritySize);

100

101 // Complete HMAC

102 CryptHmacEnd2B(&hmacState, &integrity->b);

103

104 return;

105 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 242 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.3.2.3 SequenceDataExport()

This function is used scan through the sequence object and either modify the hash state data for export

(contextSave) or to import it into the internal format (contextLoad). This function should only be called

after the sequence object has been copied to the context buffer (contextSave) or from the context buffer

into the sequence object. The presumption is that the context buffer version of the data is the same size

as the internal representation so nothing outsize of the hash context area gets modified.

106 void

107 SequenceDataExport(

108 HASH_OBJECT *object, // IN: an internal hash object

109 HASH_OBJECT_BUFFER *exportObject // OUT: a sequence context in a buffer

110)

111 {

112 // If the hash object is not an event, then only one hash context is needed

113 int count = (object->attributes.eventSeq) ? HASH_COUNT : 1;

114

115 for(count--; count >= 0; count--)

116 {

117 HASH_STATE *hash = &object->state.hashState[count];

118 size_t offset = (BYTE *)hash - (BYTE *)object;

119 BYTE *exportHash = &((BYTE *)exportObject)[offset];

120

121 CryptHashExportState(hash, (EXPORT_HASH_STATE *)exportHash);

122 }

123 }

7.3.2.4 SequenceDataImport()

This function is used scan through the sequence object and either modify the hash state data for export

(contextSave) or to import it into the internal format (contextLoad). This function should only be called

after the sequence object has been copied to the context buffer (contextSave) or from the context buffer

into the sequence object. The presumption is that the context buffer version of the data is the same size

as the internal representation so nothing outsize of the hash context area gets modified.

124 void

125 SequenceDataImport(

126 HASH_OBJECT *object, // IN/OUT: an internal hash object

127 HASH_OBJECT_BUFFER *exportObject // IN/OUT: a sequence context in a buffer

128)

129 {

130 // If the hash object is not an event, then only one hash context is needed

131 int count = (object->attributes.eventSeq) ? HASH_COUNT : 1;

132

133 for(count--; count >= 0; count--)

134 {

135 HASH_STATE *hash = &object->state.hashState[count];

136 size_t offset = (BYTE *)hash - (BYTE *)object;

137 BYTE *importHash = &((BYTE *)exportObject)[offset];

138 //

139 CryptHashImportState(hash, (EXPORT_HASH_STATE *)importHash);

140 }

141 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 243

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.4 Policy Command Support (Policy_spt.c)

7.4.1 Includes

1 #include "Tpm.h"

2 #include "Policy_spt_fp.h"

3 #include "PolicySigned_fp.h"

4 #include "PolicySecret_fp.h"

5 #include "PolicyTicket_fp.h"

7.4.2 Functions

7.4.2.1 PolicyParameterChecks()

This function validates the common parameters of TPM2_PolicySiged() and TPM2_PolicySecret(). The

common parameters are nonceTPM, expiration, and cpHashA.

6 TPM_RC

7 PolicyParameterChecks(

8 SESSION *session,

9 UINT64 authTimeout,

10 TPM2B_DIGEST *cpHashA,

11 TPM2B_NONCE *nonce,

12 TPM_RC blameNonce,

13 TPM_RC blameCpHash,

14 TPM_RC blameExpiration

15)

16 {

17 // Validate that input nonceTPM is correct if present

18 if(nonce != NULL && nonce->t.size != 0)

19 {

20 if(!MemoryEqual2B(&nonce->b, &session->nonceTPM.b))

21 return TPM_RCS_NONCE + blameNonce;

22 }

23 // If authTimeout is set (expiration != 0...

24 if(authTimeout != 0)

25 {

26 // Validate input expiration.

27 // Cannot compare time if clock stop advancing. A TPM_RC_NV_UNAVAILABLE

28 // or TPM_RC_NV_RATE error may be returned here.

29 RETURN_IF_NV_IS_NOT_AVAILABLE;

30

31 // if the time has already passed or the time epoch has changed then the

32 // time value is no longer good.

33 if((authTimeout < g_time)

34 || (session->epoch != g_timeEpoch))

35 return TPM_RCS_EXPIRED + blameExpiration;

36 }

37 // If the cpHash is present, then check it

38 if(cpHashA != NULL && cpHashA->t.size != 0)

39 {

40 // The cpHash input has to have the correct size

41 if(cpHashA->t.size != session->u2.policyDigest.t.size)

42 return TPM_RCS_SIZE + blameCpHash;

43

44 // If the cpHash has already been set, then this input value

45 // must match the current value.

46 if(session->u1.cpHash.b.size != 0

47 && !MemoryEqual2B(&cpHashA->b, &session->u1.cpHash.b))

48 return TPM_RC_CPHASH;

49 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 244 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

50 return TPM_RC_SUCCESS;

51 }

7.4.2.2 PolicyContextUpdate()

Update policy hash Update the policyDigest in policy session by extending policyRef and objectName to

it. This will also update the cpHash if it is present.

52 void

53 PolicyContextUpdate(

54 TPM_CC commandCode, // IN: command code

55 TPM2B_NAME *name, // IN: name of entity

56 TPM2B_NONCE *ref, // IN: the reference data

57 TPM2B_DIGEST *cpHash, // IN: the cpHash (optional)

58 UINT64 policyTimeout, // IN: the timeout value for the policy

59 SESSION *session // IN/OUT: policy session to be updated

60)

61 {

62 HASH_STATE hashState;

63

64 // Start hash

65 CryptHashStart(&hashState, session->authHashAlg);

66

67 // policyDigest size should always be the digest size of session hash algorithm.

68 pAssert(session->u2.policyDigest.t.size

69 == CryptHashGetDigestSize(session->authHashAlg));

70

71 // add old digest

72 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

73

74 // add commandCode

75 CryptDigestUpdateInt(&hashState, sizeof(commandCode), commandCode);

76

77 // add name if applicable

78 if(name != NULL)

79 CryptDigestUpdate2B(&hashState, &name->b);

80

81 // Complete the digest and get the results

82 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

83

84 // If the policy reference is not null, do a second update to the digest.

85 if(ref != NULL)

86 {

87

88 // Start second hash computation

89 CryptHashStart(&hashState, session->authHashAlg);

90

91 // add policyDigest

92 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

93

94 // add policyRef

95 CryptDigestUpdate2B(&hashState, &ref->b);

96

97 // Complete second digest

98 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

99 }

100 // Deal with the cpHash. If the cpHash value is present

101 // then it would have already been checked to make sure that

102 // it is compatible with the current value so all we need

103 // to do here is copy it and set the isCpHashDefined attribute

104 if(cpHash != NULL && cpHash->t.size != 0)

105 {

106 session->u1.cpHash = *cpHash;

107 session->attributes.isCpHashDefined = SET;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 245

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

108 }

109

110 // update the timeout if it is specified

111 if(policyTimeout != 0)

112 {

113 // If the timeout has not been set, then set it to the new value

114 // than the current timeout then set it to the new value

115 if(session->timeout == 0 || session->timeout > policyTimeout)

116 session->timeout = policyTimeout;

117 }

118 return;

119 }

7.4.2.3 ComputeAuthTimeout()

This function is used to determine what the authorization timeout value for the session should be.

120 UINT64

121 ComputeAuthTimeout(

122 SESSION *session, // IN: the session containing the time

123 // values

124 INT32 expiration, // IN: either the number of seconds from

125 // the start of the session or the

126 // time in g_timer;

127 TPM2B_NONCE *nonce // IN: indicator of the time base

128)

129 {

130 UINT64 policyTime;

131 // If no expiration, policy time is 0

132 if(expiration == 0)

133 policyTime = 0;

134 else

135 {

136 if(expiration < 0)

137 expiration = -expiration;

138 if(nonce->t.size == 0)

139 // The input time is absolute Time (not Clock), but it is expressed

140 // in seconds. To make sure that we don't time out too early, take the

141 // current value of milliseconds in g_time and add that to the input

142 // seconds value.

143 policyTime = (((UINT64)expiration) * 1000) + g_time % 1000;

144 else

145 // The policy timeout is the absolute value of the expiration in seconds

146 // added to the start time of the policy.

147 policyTime = session->startTime + (((UINT64)expiration) * 1000);

148

149 }

150 return policyTime;

151 }

7.4.2.4 PolicyDigestClear()

Function to reset the policyDigest of a session

152 void

153 PolicyDigestClear(

154 SESSION *session

155)

156 {

157 session->u2.policyDigest.t.size = CryptHashGetDigestSize(session->authHashAlg);

158 MemorySet(session->u2.policyDigest.t.buffer, 0,

159 session->u2.policyDigest.t.size);

160 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 246 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

161 BOOL

162 PolicySptCheckCondition(

163 TPM_EO operation,

164 BYTE *opA,

165 BYTE *opB,

166 UINT16 size

167)

168 {

169 // Arithmetic Comparison

170 switch(operation)

171 {

172 case TPM_EO_EQ:

173 // compare A = B

174 return (UnsignedCompareB(size, opA, size, opB) == 0);

175 break;

176 case TPM_EO_NEQ:

177 // compare A != B

178 return (UnsignedCompareB(size, opA, size, opB) != 0);

179 break;

180 case TPM_EO_SIGNED_GT:

181 // compare A > B signed

182 return (SignedCompareB(size, opA, size, opB) > 0);

183 break;

184 case TPM_EO_UNSIGNED_GT:

185 // compare A > B unsigned

186 return (UnsignedCompareB(size, opA, size, opB) > 0);

187 break;

188 case TPM_EO_SIGNED_LT:

189 // compare A < B signed

190 return (SignedCompareB(size, opA, size, opB) < 0);

191 break;

192 case TPM_EO_UNSIGNED_LT:

193 // compare A < B unsigned

194 return (UnsignedCompareB(size, opA, size, opB) < 0);

195 break;

196 case TPM_EO_SIGNED_GE:

197 // compare A >= B signed

198 return (SignedCompareB(size, opA, size, opB) >= 0);

199 break;

200 case TPM_EO_UNSIGNED_GE:

201 // compare A >= B unsigned

202 return (UnsignedCompareB(size, opA, size, opB) >= 0);

203 break;

204 case TPM_EO_SIGNED_LE:

205 // compare A <= B signed

206 return (SignedCompareB(size, opA, size, opB) <= 0);

207 break;

208 case TPM_EO_UNSIGNED_LE:

209 // compare A <= B unsigned

210 return (UnsignedCompareB(size, opA, size, opB) <= 0);

211 break;

212 case TPM_EO_BITSET:

213 // All bits SET in B are SET in A. ((A&B)=B)

214 {

215 UINT32 i;

216 for(i = 0; i < size; i++)

217 if((opA[i] & opB[i]) != opB[i])

218 return FALSE;

219 }

220 break;

221 case TPM_EO_BITCLEAR:

222 // All bits SET in B are CLEAR in A. ((A&B)=0)

223 {

224 UINT32 i;

225 for(i = 0; i < size; i++)

226 if((opA[i] & opB[i]) != 0)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 247

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

227 return FALSE;

228 }

229 break;

230 default:

231 FAIL(FATAL_ERROR_INTERNAL);

232 break;

233 }

234 return TRUE;

235 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 248 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.5 NV Command Support (NV_spt.c)

7.5.1 Includes

1 #include "Tpm.h"

2 #include "NV_spt_fp.h"

7.5.2 Functions

7.5.2.1 NvReadAccessChecks()

Common routine for validating a read Used by TPM2_NV_Read(), TPM2_NV_ReadLock() and

TPM2_PolicyNV()

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION autHandle is not allowed to authorize read of the index

TPM_RC_NV_LOCKED Read locked

TPM_RC_NV_UNINITIALIZED Try to read an uninitialized index

3 TPM_RC

4 NvReadAccessChecks(

5 TPM_HANDLE authHandle, // IN: the handle that provided the

6 // authorization

7 TPM_HANDLE nvHandle, // IN: the handle of the NV index to be read

8 TPMA_NV attributes // IN: the attributes of 'nvHandle'

9)

10 {

11 // If data is read locked, returns an error

12 if(IS_ATTRIBUTE(attributes, TPMA_NV, READLOCKED))

13 return TPM_RC_NV_LOCKED;

14 // If the authorization was provided by the owner or platform, then check

15 // that the attributes allow the read. If the authorization handle

16 // is the same as the index, then the checks were made when the authorization

17 // was checked..

18 if(authHandle == TPM_RH_OWNER)

19 {

20 // If Owner provided authorization then ONWERWRITE must be SET

21 if(!IS_ATTRIBUTE(attributes, TPMA_NV, OWNERREAD))

22 return TPM_RC_NV_AUTHORIZATION;

23 }

24 else if(authHandle == TPM_RH_PLATFORM)

25 {

26 // If Platform provided authorization then PPWRITE must be SET

27 if(!IS_ATTRIBUTE(attributes, TPMA_NV, PPREAD))

28 return TPM_RC_NV_AUTHORIZATION;

29 }

30 // If neither Owner nor Platform provided authorization, make sure that it was

31 // provided by this index.

32 else if(authHandle != nvHandle)

33 return TPM_RC_NV_AUTHORIZATION;

34

35 // If the index has not been written, then the value cannot be read

36 // NOTE: This has to come after other access checks to make sure that

37 // the proper authorization is given to TPM2_NV_ReadLock()

38 if(!IS_ATTRIBUTE(attributes, TPMA_NV, WRITTEN))

39 return TPM_RC_NV_UNINITIALIZED;

40

41 return TPM_RC_SUCCESS;

42 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 249

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.5.2.2 NvWriteAccessChecks()

Common routine for validating a write Used by TPM2_NV_Write(), TPM2_NV_Increment(),

TPM2_SetBits(), and TPM2_NV_WriteLock()

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION Authorization fails

TPM_RC_NV_LOCKED Write locked

43 TPM_RC

44 NvWriteAccessChecks(

45 TPM_HANDLE authHandle, // IN: the handle that provided the

46 // authorization

47 TPM_HANDLE nvHandle, // IN: the handle of the NV index to be written

48 TPMA_NV attributes // IN: the attributes of 'nvHandle'

49)

50 {

51 // If data is write locked, returns an error

52 if(IS_ATTRIBUTE(attributes, TPMA_NV, WRITELOCKED))

53 return TPM_RC_NV_LOCKED;

54 // If the authorization was provided by the owner or platform, then check

55 // that the attributes allow the write. If the authorization handle

56 // is the same as the index, then the checks were made when the authorization

57 // was checked..

58 if(authHandle == TPM_RH_OWNER)

59 {

60 // If Owner provided authorization then ONWERWRITE must be SET

61 if(!IS_ATTRIBUTE(attributes, TPMA_NV, OWNERWRITE))

62 return TPM_RC_NV_AUTHORIZATION;

63 }

64 else if(authHandle == TPM_RH_PLATFORM)

65 {

66 // If Platform provided authorization then PPWRITE must be SET

67 if(!IS_ATTRIBUTE(attributes, TPMA_NV, PPWRITE))

68 return TPM_RC_NV_AUTHORIZATION;

69 }

70 // If neither Owner nor Platform provided authorization, make sure that it was

71 // provided by this index.

72 else if(authHandle != nvHandle)

73 return TPM_RC_NV_AUTHORIZATION;

74 return TPM_RC_SUCCESS;

75 }

7.5.2.3 NvClearOrderly()

This function is used to cause gp.orderlyState to be cleared to the non-orderly state.

76 TPM_RC

77 NvClearOrderly(

78 void

79)

80 {

81 if(gp.orderlyState < SU_DA_USED_VALUE)

82 RETURN_IF_NV_IS_NOT_AVAILABLE;

83 g_clearOrderly = TRUE;

84 return TPM_RC_SUCCESS;

85 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 250 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.5.2.4 NvIsPinPassIndex()

Function to check to see if an NV index is a PIN Pass Index

Return Value Meaning

TRUE(1) is pin pass

FALSE(0) is not pin pass

86 BOOL

87 NvIsPinPassIndex(

88 TPM_HANDLE index // IN: Handle to check

89)

90 {

91 if(HandleGetType(index) == TPM_HT_NV_INDEX)

92 {

93 NV_INDEX *nvIndex = NvGetIndexInfo(index, NULL);

94

95 return IsNvPinPassIndex(nvIndex->publicArea.attributes);

96 }

97 return FALSE;

98 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 251

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.6 Object Command Support (Object_spt.c)

7.6.1 Includes

1 #include "Tpm.h"

2 #include "Object_spt_fp.h"

7.6.2 Local Functions

7.6.2.1 GetIV2BSize()

Get the size of TPM2B_IV in canonical form that will be append to the start of the sensitive data. It

includes both size of size field and size of iv data

3 static UINT16

4 GetIV2BSize(

5 OBJECT *protector // IN: the protector handle

6)

7 {

8 TPM_ALG_ID symAlg;

9 UINT16 keyBits;

10

11 // Determine the symmetric algorithm and size of key

12 if(protector == NULL)

13 {

14 // Use the context encryption algorithm and key size

15 symAlg = CONTEXT_ENCRYPT_ALG;

16 keyBits = CONTEXT_ENCRYPT_KEY_BITS;

17 }

18 else

19 {

20 symAlg = protector->publicArea.parameters.asymDetail.symmetric.algorithm;

21 keyBits = protector->publicArea.parameters.asymDetail.symmetric.keyBits.sym;

22 }

23

24 // The IV size is a UINT16 size field plus the block size of the symmetric

25 // algorithm

26 return sizeof(UINT16) + CryptGetSymmetricBlockSize(symAlg, keyBits);

27 }

7.6.2.2 ComputeProtectionKeyParms()

This function retrieves the symmetric protection key parameters for the sensitive data The parameters

retrieved from this function include encryption algorithm, key size in bit, and a TPM2B_SYM_KEY

containing the key material as well as the key size in bytes This function is used for any action that

requires encrypting or decrypting of the sensitive area of an object or a credential blob

28 static void

29 ComputeProtectionKeyParms(

30 OBJECT *protector, // IN: the protector object

31 TPM_ALG_ID hashAlg, // IN: hash algorithm for KDFa

32 TPM2B *name, // IN: name of the object

33 TPM2B *seedIn, // IN: optional seed for duplication blob.

34 // For non duplication blob, this

35 // parameter should be NULL

36 TPM_ALG_ID *symAlg, // OUT: the symmetric algorithm

37 UINT16 *keyBits, // OUT: the symmetric key size in bits

38 TPM2B_SYM_KEY *symKey // OUT: the symmetric key

39)

Trusted Platform Module Library Part 4: Supporting Routines

Page 252 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

40 {

41 const TPM2B *seed = seedIn;

42

43 // Determine the algorithms for the KDF and the encryption/decryption

44 // For TPM_RH_NULL, using context settings

45 if(protector == NULL)

46 {

47 // Use the context encryption algorithm and key size

48 *symAlg = CONTEXT_ENCRYPT_ALG;

49 symKey->t.size = CONTEXT_ENCRYPT_KEY_BYTES;

50 *keyBits = CONTEXT_ENCRYPT_KEY_BITS;

51 }

52 else

53 {

54 TPMT_SYM_DEF_OBJECT *symDef;

55 symDef = &protector->publicArea.parameters.asymDetail.symmetric;

56 *symAlg = symDef->algorithm;

57 *keyBits = symDef->keyBits.sym;

58 symKey->t.size = (*keyBits + 7) / 8;

59 }

60 // Get seed for KDF

61 if(seed == NULL)

62 seed = GetSeedForKDF(protector);

63 // KDFa to generate symmetric key and IV value

64 CryptKDFa(hashAlg, seed, STORAGE_KEY, name, NULL,

65 symKey->t.size * 8, symKey->t.buffer, NULL, FALSE);

66 return;

67 }

7.6.2.3 ComputeOuterIntegrity()

The sensitive area parameter is a buffer that holds a space for the integrity value and the marshaled

sensitive area. The caller should skip over the area set aside for the integrity value and compute the hash

of the remainder of the object. The size field of sensitive is in unmarshaled form and the sensitive area

contents is an array of bytes.

68 static void

69 ComputeOuterIntegrity(

70 TPM2B *name, // IN: the name of the object

71 OBJECT *protector, // IN: the object that

72 // provides protection. For an object,

73 // it is a parent. For a credential, it

74 // is the encrypt object. For

75 // a Temporary Object, it is NULL

76 TPMI_ALG_HASH hashAlg, // IN: algorithm to use for integrity

77 TPM2B *seedIn, // IN: an external seed may be provided for

78 // duplication blob. For non duplication

79 // blob, this parameter should be NULL

80 UINT32 sensitiveSize, // IN: size of the marshaled sensitive data

81 BYTE *sensitiveData, // IN: sensitive area

82 TPM2B_DIGEST *integrity // OUT: integrity

83)

84 {

85 HMAC_STATE hmacState;

86 TPM2B_DIGEST hmacKey;

87 const TPM2B *seed = seedIn;

88 //

89 // Get seed for KDF

90 if(seed == NULL)

91 seed = GetSeedForKDF(protector);

92 // Determine the HMAC key bits

93 hmacKey.t.size = CryptHashGetDigestSize(hashAlg);

94

95 // KDFa to generate HMAC key

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 253

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

96 CryptKDFa(hashAlg, seed, INTEGRITY_KEY, NULL, NULL,

97 hmacKey.t.size * 8, hmacKey.t.buffer, NULL, FALSE);

98 // Start HMAC and get the size of the digest which will become the integrity

99 integrity->t.size = CryptHmacStart2B(&hmacState, hashAlg, &hmacKey.b);

100

101 // Adding the marshaled sensitive area to the integrity value

102 CryptDigestUpdate(&hmacState.hashState, sensitiveSize, sensitiveData);

103

104 // Adding name

105 CryptDigestUpdate2B(&hmacState.hashState, name);

106

107 // Compute HMAC

108 CryptHmacEnd2B(&hmacState, &integrity->b);

109

110 return;

111 }

7.6.2.4 ComputeInnerIntegrity()

This function computes the integrity of an inner wrap

112 static void

113 ComputeInnerIntegrity(

114 TPM_ALG_ID hashAlg, // IN: hash algorithm for inner wrap

115 TPM2B *name, // IN: the name of the object

116 UINT16 dataSize, // IN: the size of sensitive data

117 BYTE *sensitiveData, // IN: sensitive data

118 TPM2B_DIGEST *integrity // OUT: inner integrity

119)

120 {

121 HASH_STATE hashState;

122 //

123 // Start hash and get the size of the digest which will become the integrity

124 integrity->t.size = CryptHashStart(&hashState, hashAlg);

125

126 // Adding the marshaled sensitive area to the integrity value

127 CryptDigestUpdate(&hashState, dataSize, sensitiveData);

128

129 // Adding name

130 CryptDigestUpdate2B(&hashState, name);

131

132 // Compute hash

133 CryptHashEnd2B(&hashState, &integrity->b);

134

135 return;

136 }

7.6.2.5 ProduceInnerIntegrity()

This function produces an inner integrity for regular private, credential or duplication blob It requires the

sensitive data being marshaled to the innerBuffer, with the leading bytes reserved for integrity hash. It

assume the sensitive data starts at address (innerBuffer + integrity size). This function integrity at the

beginning of the inner buffer It returns the total size of buffer with the inner wrap

137 static UINT16

138 ProduceInnerIntegrity(

139 TPM2B *name, // IN: the name of the object

140 TPM_ALG_ID hashAlg, // IN: hash algorithm for inner wrap

141 UINT16 dataSize, // IN: the size of sensitive data, excluding the

142 // leading integrity buffer size

143 BYTE *innerBuffer // IN/OUT: inner buffer with sensitive data in

144 // it. At input, the leading bytes of this

Trusted Platform Module Library Part 4: Supporting Routines

Page 254 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

145 // buffer is reserved for integrity

146)

147 {

148 BYTE *sensitiveData; // pointer to the sensitive data

149 TPM2B_DIGEST integrity;

150 UINT16 integritySize;

151 BYTE *buffer; // Auxiliary buffer pointer

152 //

153 // sensitiveData points to the beginning of sensitive data in innerBuffer

154 integritySize = sizeof(UINT16) + CryptHashGetDigestSize(hashAlg);

155 sensitiveData = innerBuffer + integritySize;

156

157 ComputeInnerIntegrity(hashAlg, name, dataSize, sensitiveData, &integrity);

158

159 // Add integrity at the beginning of inner buffer

160 buffer = innerBuffer;

161 TPM2B_DIGEST_Marshal(&integrity, &buffer, NULL);

162

163 return dataSize + integritySize;

164 }

7.6.2.6 CheckInnerIntegrity()

This function check integrity of inner blob

Error Returns Meaning

TPM_RC_INTEGRITY if the outer blob integrity is bad

errors unmarshal errors while unmarshaling integrity

165 static TPM_RC

166 CheckInnerIntegrity(

167 TPM2B *name, // IN: the name of the object

168 TPM_ALG_ID hashAlg, // IN: hash algorithm for inner wrap

169 UINT16 dataSize, // IN: the size of sensitive data, including the

170 // leading integrity buffer size

171 BYTE *innerBuffer // IN/OUT: inner buffer with sensitive data in

172 // it

173)

174 {

175 TPM_RC result;

176 TPM2B_DIGEST integrity;

177 TPM2B_DIGEST integrityToCompare;

178 BYTE *buffer; // Auxiliary buffer pointer

179 INT32 size;

180 //

181 // Unmarshal integrity

182 buffer = innerBuffer;

183 size = (INT32)dataSize;

184 result = TPM2B_DIGEST_Unmarshal(&integrity, &buffer, &size);

185 if(result == TPM_RC_SUCCESS)

186 {

187 // Compute integrity to compare

188 ComputeInnerIntegrity(hashAlg, name, (UINT16)size, buffer,

189 &integrityToCompare);

190 // Compare outer blob integrity

191 if(!MemoryEqual2B(&integrity.b, &integrityToCompare.b))

192 result = TPM_RC_INTEGRITY;

193 }

194 return result;

195 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 255

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.6.3 Public Functions

7.6.3.1 AdjustAuthSize()

This function will validate that the input authValue is no larger than the digestSize for the nameAlg. It will

then pad with zeros to the size of the digest.

196 BOOL

197 AdjustAuthSize(

198 TPM2B_AUTH *auth, // IN/OUT: value to adjust

199 TPMI_ALG_HASH nameAlg // IN:

200)

201 {

202 UINT16 digestSize;

203 //

204 // If there is no nameAlg, then this is a LoadExternal and the authVale can

205 // be any size up to the maximum allowed by the

206 digestSize = (nameAlg == TPM_ALG_NULL) ? sizeof(TPMU_HA)

207 : CryptHashGetDigestSize(nameAlg);

208 if(digestSize < MemoryRemoveTrailingZeros(auth))

209 return FALSE;

210 else if(digestSize > auth->t.size)

211 MemoryPad2B(&auth->b, digestSize);

212 auth->t.size = digestSize;

213

214 return TRUE;

215 }

7.6.3.2 AreAttributesForParent()

This function is called by create, load, and import functions.

NOTE: The isParent attribute is SET when an object is loaded and it has attributes that are suitable for a parent object.

Return Value Meaning

TRUE(1) properties are those of a parent

FALSE(0) properties are not those of a parent

216 BOOL

217 ObjectIsParent(

218 OBJECT *parentObject // IN: parent handle

219)

220 {

221 return parentObject->attributes.isParent;

222 }

7.6.3.3 CreateChecks()

Attribute checks that are unique to creation.

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is not consistent with the object type

other returns from PublicAttributesValidation()

223 TPM_RC

224 CreateChecks(

Trusted Platform Module Library Part 4: Supporting Routines

Page 256 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

225 OBJECT *parentObject,

226 TPMT_PUBLIC *publicArea,

227 UINT16 sensitiveDataSize

228)

229 {

230 TPMA_OBJECT attributes = publicArea->objectAttributes;

231 TPM_RC result = TPM_RC_SUCCESS;

232 //

233 // If the caller indicates that they have provided the data, then make sure that

234 // they have provided some data.

235 if((!IS_ATTRIBUTE(attributes, TPMA_OBJECT, sensitiveDataOrigin))

236 && (sensitiveDataSize == 0))

237 return TPM_RCS_ATTRIBUTES;

238 // For an ordinary object, data can only be provided when sensitiveDataOrigin

239 // is CLEAR

240 if((parentObject != NULL)

241 && (IS_ATTRIBUTE(attributes, TPMA_OBJECT, sensitiveDataOrigin))

242 && (sensitiveDataSize != 0))

243 return TPM_RCS_ATTRIBUTES;

244 switch(publicArea->type)

245 {

246 case ALG_KEYEDHASH_VALUE:

247 // if this is a data object (sign == decrypt == CLEAR) then the

248 // TPM cannot be the data source.

249 if(!IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign)

250 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt)

251 && IS_ATTRIBUTE(attributes, TPMA_OBJECT, sensitiveDataOrigin))

252 result = TPM_RC_ATTRIBUTES;

253 // comment out the next line in order to prevent a fixedTPM derivation

254 // parent

255 // break;

256 case ALG_SYMCIPHER_VALUE:

257 // A restricted key symmetric key (SYMCIPHER and KEYEDHASH)

258 // must have sensitiveDataOrigin SET unless it has fixedParent and

259 // fixedTPM CLEAR.

260 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted))

261 if(!IS_ATTRIBUTE(attributes, TPMA_OBJECT, sensitiveDataOrigin))

262 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedParent)

263 || IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM))

264 result = TPM_RCS_ATTRIBUTES;

265 break;

266 default: // Asymmetric keys cannot have the sensitive portion provided

267 if(!IS_ATTRIBUTE(attributes, TPMA_OBJECT, sensitiveDataOrigin))

268 result = TPM_RCS_ATTRIBUTES;

269 break;

270 }

271 if(TPM_RC_SUCCESS == result)

272 {

273 result = PublicAttributesValidation(parentObject, publicArea);

274 }

275 return result;

276 }

7.6.3.4 SchemeChecks

This function is called by TPM2_LoadExternal() and PublicAttributesValidation(). This function validates

the schemes in the public area of an object.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 257

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Error Returns Meaning

TPM_RC_HASH non-duplicable storage key and its parent have different name
algorithm

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY invalid key size values in an asymmetric key public area

TPM_RCS_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID;
or hash algorithm is inconsistent with the scheme ID for keyed hash
object

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

277 TPM_RC

278 SchemeChecks(

279 OBJECT *parentObject, // IN: parent (null if primary seed)

280 TPMT_PUBLIC *publicArea // IN: public area of the object

281)

282 {

283 TPMT_SYM_DEF_OBJECT *symAlgs = NULL;

284 TPM_ALG_ID scheme = TPM_ALG_NULL;

285 TPMA_OBJECT attributes = publicArea->objectAttributes;

286 TPMU_PUBLIC_PARMS *parms = &publicArea->parameters;

287 //

288 switch(publicArea->type)

289 {

290 case ALG_SYMCIPHER_VALUE:

291 symAlgs = &parms->symDetail.sym;

292 // If this is a decrypt key, then only the block cipher modes (not

293 // SMAC) are valid. TPM_ALG_NULL is OK too. If this is a 'sign' key,

294 // then any mode that got through the unmarshaling is OK.

295 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt)

296 && !CryptSymModeIsValid(symAlgs->mode.sym, TRUE))

297 return TPM_RCS_SCHEME;

298 break;

299 case ALG_KEYEDHASH_VALUE:

300 scheme = parms->keyedHashDetail.scheme.scheme;

301 // if both sign and decrypt

302 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign)

303 == IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

304 {

305 // if both sign and decrypt are set or clear, then need

306 // TPM_ALG_NULL as scheme

307 if(scheme != TPM_ALG_NULL)

308 return TPM_RCS_SCHEME;

309 }

310 else if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign)

311 && scheme != TPM_ALG_HMAC)

312 return TPM_RCS_SCHEME;

313 else if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

314 {

315 if(scheme != TPM_ALG_XOR)

316 return TPM_RCS_SCHEME;

317 // If this is a derivation parent, then the KDF needs to be

318 // SP800-108 for this implementation. This is the only derivation

319 // supported by this implementation. Other implementations could

320 // support additional schemes. There is no default.

321 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted))

322 {

323 if(parms->keyedHashDetail.scheme.details.xor.kdf

324 != TPM_ALG_KDF1_SP800_108)

325 return TPM_RCS_SCHEME;

326 // Must select a digest.

Trusted Platform Module Library Part 4: Supporting Routines

Page 258 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

327 if(CryptHashGetDigestSize(

328 parms->keyedHashDetail.scheme.details.xor.hashAlg) == 0)

329 return TPM_RCS_HASH;

330 }

331 }

332 break;

333 default: // handling for asymmetric

334 scheme = parms->asymDetail.scheme.scheme;

335 symAlgs = &parms->asymDetail.symmetric;

336 // if the key is both sign and decrypt, then the scheme must be

337 // TPM_ALG_NULL because there is no way to specify both a sign and a

338 // decrypt scheme in the key.

339 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign)

340 == IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

341 {

342 // scheme must be TPM_ALG_NULL

343 if(scheme != TPM_ALG_NULL)

344 return TPM_RCS_SCHEME;

345 }

346 else if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign))

347 {

348 // If this is a signing key, see if it has a signing scheme

349 if(CryptIsAsymSignScheme(publicArea->type, scheme))

350 {

351 // if proper signing scheme then it needs a proper hash

352 if(parms->asymDetail.scheme.details.anySig.hashAlg

353 == TPM_ALG_NULL)

354 return TPM_RCS_SCHEME;

355 }

356 else

357 {

358 // signing key that does not have a proper signing scheme.

359 // This is OK if the key is not restricted and its scheme

360 // is TPM_ALG_NULL

361 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted)

362 || scheme != TPM_ALG_NULL)

363 return TPM_RCS_SCHEME;

364 }

365 }

366 else if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

367 {

368 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted))

369 {

370 // for a restricted decryption key (a parent), scheme

371 // is required to be TPM_ALG_NULL

372 if(scheme != TPM_ALG_NULL)

373 return TPM_RCS_SCHEME;

374 }

375 else

376 {

377 // For an unrestricted decryption key, the scheme has to

378 // be a valid scheme or TPM_ALG_NULL

379 if(scheme != TPM_ALG_NULL &&

380 !CryptIsAsymDecryptScheme(publicArea->type, scheme))

381 return TPM_RCS_SCHEME;

382 }

383 }

384 if(!IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted)

385 || !IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

386 {

387 // For an asymmetric key that is not a parent, the symmetric

388 // algorithms must be TPM_ALG_NULL

389 if(symAlgs->algorithm != TPM_ALG_NULL)

390 return TPM_RCS_SYMMETRIC;

391 }

392 // Special checks for an ECC key

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 259

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

393 #if ALG_ECC

394 if(publicArea->type == TPM_ALG_ECC)

395 {

396 TPM_ECC_CURVE curveID;

397 const TPMT_ECC_SCHEME *curveScheme;

398

399 curveID = publicArea->parameters.eccDetail.curveID;

400 curveScheme = CryptGetCurveSignScheme(curveID);

401 // The curveId must be valid or the unmarshaling is busted.

402 pAssert(curveScheme != NULL);

403

404 // If the curveID requires a specific scheme, then the key must

405 // select the same scheme

406 if(curveScheme->scheme != TPM_ALG_NULL)

407 {

408 TPMS_ECC_PARMS *ecc = &publicArea->parameters.eccDetail;

409 if(scheme != curveScheme->scheme)

410 return TPM_RCS_SCHEME;

411 // The scheme can allow any hash, or not...

412 if(curveScheme->details.anySig.hashAlg != TPM_ALG_NULL

413 && (ecc->scheme.details.anySig.hashAlg

414 != curveScheme->details.anySig.hashAlg))

415 return TPM_RCS_SCHEME;

416 }

417 // For now, the KDF must be TPM_ALG_NULL

418 if(publicArea->parameters.eccDetail.kdf.scheme != TPM_ALG_NULL)

419 return TPM_RCS_KDF;

420 }

421 #endif

422 break;

423 }

424 // If this is a restricted decryption key with symmetric algorithms, then it

425 // is an ordinary parent (not a derivation parent). It needs to specific

426 // symmetric algorithms other than TPM_ALG_NULL

427 if(symAlgs != NULL

428 && IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted)

429 && IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

430 {

431 if(symAlgs->algorithm == TPM_ALG_NULL)

432 return TPM_RCS_SYMMETRIC;

433 #if 0 //??

434 // This next check is under investigation. Need to see if it will break Windows

435 // before it is enabled. If it does not, then it should be default because a

436 // the mode used with a parent is always CFB and Part 2 indicates as much.

437 if(symAlgs->mode.sym != TPM_ALG_CFB)

438 return TPM_RCS_MODE;

439 #endif

440 // If this parent is not duplicable, then the symmetric algorithms

441 // (encryption and hash) must match those of its parent

442 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedParent)

443 && (parentObject != NULL))

444 {

445 if(publicArea->nameAlg != parentObject->publicArea.nameAlg)

446 return TPM_RCS_HASH;

447 if(!MemoryEqual(symAlgs, &parentObject->publicArea.parameters,

448 sizeof(TPMT_SYM_DEF_OBJECT)))

449 return TPM_RCS_SYMMETRIC;

450 }

451 }

452 return TPM_RC_SUCCESS;

453 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 260 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.6.3.5 PublicAttributesValidation()

This function validates the values in the public area of an object. This function is used in the processing of

TPM2_Create(), TPM2_CreatePrimary(), TPM2_CreateLoaded(), TPM2_Load(), TPM2_Import(), and

TPM2_LoadExternal(). For TPM2_Import() this is only used if the new parent has fixedTPM SET. For

TPM2_LoadExternal(), this is not used for a public-only key

Error Returns Meaning

TPM_RC_ATTRIBUTES fixedTPM, fixedParent, or encryptedDuplication attributes are
inconsistent between themselves or with those of the parent object;
inconsistent restricted, decrypt and sign attributes; attempt to inject
sensitive data for an asymmetric key; attempt to create a symmetric
cipher key that is not a decryption key

TPM_RC_HASH nameAlg is TPM_ALG_NULL

TPM_RC_SIZE authPolicy size does not match digest size of the name algorithm in
publicArea

other returns from SchemeChecks()

454 TPM_RC

455 PublicAttributesValidation(

456 OBJECT *parentObject, // IN: input parent object

457 TPMT_PUBLIC *publicArea // IN: public area of the object

458)

459 {

460 TPMA_OBJECT attributes = publicArea->objectAttributes;

461 TPMA_OBJECT parentAttributes = TPMA_ZERO_INITIALIZER();

462 //

463 if(parentObject != NULL)

464 parentAttributes = parentObject->publicArea.objectAttributes;

465 if(publicArea->nameAlg == TPM_ALG_NULL)

466 return TPM_RCS_HASH;

467 // If there is an authPolicy, it needs to be the size of the digest produced

468 // by the nameAlg of the object

469 if((publicArea->authPolicy.t.size != 0

470 && (publicArea->authPolicy.t.size

471 != CryptHashGetDigestSize(publicArea->nameAlg))))

472 return TPM_RCS_SIZE;

473 // If the parent is fixedTPM (including a Primary Object) the object must have

474 // the same value for fixedTPM and fixedParent

475 if(parentObject == NULL

476 || IS_ATTRIBUTE(parentAttributes, TPMA_OBJECT, fixedTPM))

477 {

478 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedParent)

479 != IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM))

480 return TPM_RCS_ATTRIBUTES;

481 }

482 else

483 {

484 // The parent is not fixedTPM so the object can't be fixedTPM

485 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM))

486 return TPM_RCS_ATTRIBUTES;

487 }

488 // See if sign and decrypt are the same

489 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign)

490 == IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt))

491 {

492 // a restricted key cannot have both SET or both CLEAR

493 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted))

494 return TPM_RC_ATTRIBUTES;

495 // only a data object may have both sign and decrypt CLEAR

496 // BTW, since we know that decrypt==sign, no need to check both

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 261

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

497 if(publicArea->type != TPM_ALG_KEYEDHASH

498 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign))

499 return TPM_RC_ATTRIBUTES;

500 }

501 // If the object can't be duplicated (directly or indirectly) then there

502 // is no justification for having encryptedDuplication SET

503 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM)

504 && IS_ATTRIBUTE(attributes, TPMA_OBJECT, encryptedDuplication))

505 return TPM_RCS_ATTRIBUTES;

506 // If a parent object has fixedTPM CLEAR, the child must have the

507 // same encryptedDuplication value as its parent.

508 // Primary objects are considered to have a fixedTPM parent (the seeds).

509 if(parentObject != NULL

510 && !IS_ATTRIBUTE(parentAttributes, TPMA_OBJECT, fixedTPM))

511 {

512 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, encryptedDuplication)

513 != IS_ATTRIBUTE(parentAttributes, TPMA_OBJECT, encryptedDuplication))

514 return TPM_RCS_ATTRIBUTES;

515 }

516 // Special checks for derived objects

517 if((parentObject != NULL) && (parentObject->attributes.derivation == SET))

518 {

519 // A derived object has the same settings for fixedTPM as its parent

520 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM)

521 != IS_ATTRIBUTE(parentAttributes, TPMA_OBJECT, fixedTPM))

522 return TPM_RCS_ATTRIBUTES;

523 // A derived object is required to be fixedParent

524 if(!IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedParent))

525 return TPM_RCS_ATTRIBUTES;

526 }

527 return SchemeChecks(parentObject, publicArea);

528 }

7.6.3.6 FillInCreationData()

Fill in creation data for an object.

529 void

530 FillInCreationData(

531 TPMI_DH_OBJECT parentHandle, // IN: handle of parent

532 TPMI_ALG_HASH nameHashAlg, // IN: name hash algorithm

533 TPML_PCR_SELECTION *creationPCR, // IN: PCR selection

534 TPM2B_DATA *outsideData, // IN: outside data

535 TPM2B_CREATION_DATA *outCreation, // OUT: creation data for output

536 TPM2B_DIGEST *creationDigest // OUT: creation digest

537)

538 {

539 BYTE creationBuffer[sizeof(TPMS_CREATION_DATA)];

540 BYTE *buffer;

541 HASH_STATE hashState;

542 //

543 // Fill in TPMS_CREATION_DATA in outCreation

544

545 // Compute PCR digest

546 PCRComputeCurrentDigest(nameHashAlg, creationPCR,

547 &outCreation->creationData.pcrDigest);

548

549 // Put back PCR selection list

550 outCreation->creationData.pcrSelect = *creationPCR;

551

552 // Get locality

553 outCreation->creationData.locality

554 = LocalityGetAttributes(_plat__LocalityGet());

555 outCreation->creationData.parentNameAlg = TPM_ALG_NULL;

Trusted Platform Module Library Part 4: Supporting Routines

Page 262 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

556

557 // If the parent is either a primary seed or TPM_ALG_NULL, then the Name

558 // and QN of the parent are the parent's handle.

559 if(HandleGetType(parentHandle) == TPM_HT_PERMANENT)

560 {

561 buffer = &outCreation->creationData.parentName.t.name[0];

562 outCreation->creationData.parentName.t.size =

563 TPM_HANDLE_Marshal(&parentHandle, &buffer, NULL);

564 // For a primary or temporary object, the parent name (a handle) and the

565 // parent's QN are the same

566 outCreation->creationData.parentQualifiedName

567 = outCreation->creationData.parentName;

568 }

569 else // Regular object

570 {

571 OBJECT *parentObject = HandleToObject(parentHandle);

572 //

573 // Set name algorithm

574 outCreation->creationData.parentNameAlg = parentObject->publicArea.nameAlg;

575

576 // Copy parent name

577 outCreation->creationData.parentName = parentObject->name;

578

579 // Copy parent qualified name

580 outCreation->creationData.parentQualifiedName = parentObject->qualifiedName;

581 }

582 // Copy outside information

583 outCreation->creationData.outsideInfo = *outsideData;

584

585 // Marshal creation data to canonical form

586 buffer = creationBuffer;

587 outCreation->size = TPMS_CREATION_DATA_Marshal(&outCreation->creationData,

588 &buffer, NULL);

589 // Compute hash for creation field in public template

590 creationDigest->t.size = CryptHashStart(&hashState, nameHashAlg);

591 CryptDigestUpdate(&hashState, outCreation->size, creationBuffer);

592 CryptHashEnd2B(&hashState, &creationDigest->b);

593

594 return;

595 }

7.6.3.7 GetSeedForKDF()

Get a seed for KDF. The KDF for encryption and HMAC key use the same seed.

596 const TPM2B *

597 GetSeedForKDF(

598 OBJECT *protector // IN: the protector handle

599)

600 {

601 // Get seed for encryption key. Use input seed if provided.

602 // Otherwise, using protector object's seedValue. TPM_RH_NULL is the only

603 // exception that we may not have a loaded object as protector. In such a

604 // case, use nullProof as seed.

605 if(protector == NULL)

606 return &gr.nullProof.b;

607 else

608 return &protector->sensitive.seedValue.b;

609 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 263

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.6.3.8 ProduceOuterWrap()

This function produce outer wrap for a buffer containing the sensitive data. It requires the sensitive data

being marshaled to the outerBuffer, with the leading bytes reserved for integrity hash. If iv is used, iv

space should be reserved at the beginning of the buffer. It assumes the sensitive data starts at address

(outerBuffer + integrity size [+ iv size]). This function performs:

 Add IV before sensitive area if required

 encrypt sensitive data, if iv is required, encrypt by iv. otherwise, encrypted by a NULL iv

 add HMAC integrity at the beginning of the buffer It returns the total size of blob with outer wrap

610 UINT16

611 ProduceOuterWrap(

612 OBJECT *protector, // IN: The handle of the object that provides

613 // protection. For object, it is parent

614 // handle. For credential, it is the handle

615 // of encrypt object.

616 TPM2B *name, // IN: the name of the object

617 TPM_ALG_ID hashAlg, // IN: hash algorithm for outer wrap

618 TPM2B *seed, // IN: an external seed may be provided for

619 // duplication blob. For non duplication

620 // blob, this parameter should be NULL

621 BOOL useIV, // IN: indicate if an IV is used

622 UINT16 dataSize, // IN: the size of sensitive data, excluding the

623 // leading integrity buffer size or the

624 // optional iv size

625 BYTE *outerBuffer // IN/OUT: outer buffer with sensitive data in

626 // it

627)

628 {

629 TPM_ALG_ID symAlg;

630 UINT16 keyBits;

631 TPM2B_SYM_KEY symKey;

632 TPM2B_IV ivRNG; // IV from RNG

633 TPM2B_IV *iv = NULL;

634 UINT16 ivSize = 0; // size of iv area, including the size field

635 BYTE *sensitiveData; // pointer to the sensitive data

636 TPM2B_DIGEST integrity;

637 UINT16 integritySize;

638 BYTE *buffer; // Auxiliary buffer pointer

639 //

640 // Compute the beginning of sensitive data. The outer integrity should

641 // always exist if this function is called to make an outer wrap

642 integritySize = sizeof(UINT16) + CryptHashGetDigestSize(hashAlg);

643 sensitiveData = outerBuffer + integritySize;

644

645 // If iv is used, adjust the pointer of sensitive data and add iv before it

646 if(useIV)

647 {

648 ivSize = GetIV2BSize(protector);

649

650 // Generate IV from RNG. The iv data size should be the total IV area

651 // size minus the size of size field

652 ivRNG.t.size = ivSize - sizeof(UINT16);

653 CryptRandomGenerate(ivRNG.t.size, ivRNG.t.buffer);

654

655 // Marshal IV to buffer

656 buffer = sensitiveData;

657 TPM2B_IV_Marshal(&ivRNG, &buffer, NULL);

658

659 // adjust sensitive data starting after IV area

660 sensitiveData += ivSize;

661

Trusted Platform Module Library Part 4: Supporting Routines

Page 264 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

662 // Use iv for encryption

663 iv = &ivRNG;

664 }

665 // Compute symmetric key parameters for outer buffer encryption

666 ComputeProtectionKeyParms(protector, hashAlg, name, seed,

667 &symAlg, &keyBits, &symKey);

668 // Encrypt inner buffer in place

669 CryptSymmetricEncrypt(sensitiveData, symAlg, keyBits,

670 symKey.t.buffer, iv, TPM_ALG_CFB, dataSize,

671 sensitiveData);

672 // Compute outer integrity. Integrity computation includes the optional IV

673 // area

674 ComputeOuterIntegrity(name, protector, hashAlg, seed, dataSize + ivSize,

675 outerBuffer + integritySize, &integrity);

676 // Add integrity at the beginning of outer buffer

677 buffer = outerBuffer;

678 TPM2B_DIGEST_Marshal(&integrity, &buffer, NULL);

679

680 // return the total size in outer wrap

681 return dataSize + integritySize + ivSize;

682 }

7.6.3.9 UnwrapOuter()

This function remove the outer wrap of a blob containing sensitive data This function performs:

 check integrity of outer blob

 decrypt outer blob

Error Returns Meaning

TPM_RCS_INSUFFICIENT error during sensitive data unmarshaling

TPM_RCS_INTEGRITY sensitive data integrity is broken

TPM_RCS_SIZE error during sensitive data unmarshaling

TPM_RCS_VALUE IV size for CFB does not match the encryption algorithm block size

683 TPM_RC

684 UnwrapOuter(

685 OBJECT *protector, // IN: The object that provides

686 // protection. For object, it is parent

687 // handle. For credential, it is the

688 // encrypt object.

689 TPM2B *name, // IN: the name of the object

690 TPM_ALG_ID hashAlg, // IN: hash algorithm for outer wrap

691 TPM2B *seed, // IN: an external seed may be provided for

692 // duplication blob. For non duplication

693 // blob, this parameter should be NULL.

694 BOOL useIV, // IN: indicates if an IV is used

695 UINT16 dataSize, // IN: size of sensitive data in outerBuffer,

696 // including the leading integrity buffer

697 // size, and an optional iv area

698 BYTE *outerBuffer // IN/OUT: sensitive data

699)

700 {

701 TPM_RC result;

702 TPM_ALG_ID symAlg = TPM_ALG_NULL;

703 TPM2B_SYM_KEY symKey;

704 UINT16 keyBits = 0;

705 TPM2B_IV ivIn; // input IV retrieved from input buffer

706 TPM2B_IV *iv = NULL;

707 BYTE *sensitiveData; // pointer to the sensitive data

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 265

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

708 TPM2B_DIGEST integrityToCompare;

709 TPM2B_DIGEST integrity;

710 INT32 size;

711 //

712 // Unmarshal integrity

713 sensitiveData = outerBuffer;

714 size = (INT32)dataSize;

715 result = TPM2B_DIGEST_Unmarshal(&integrity, &sensitiveData, &size);

716 if(result == TPM_RC_SUCCESS)

717 {

718 // Compute integrity to compare

719 ComputeOuterIntegrity(name, protector, hashAlg, seed,

720 (UINT16)size, sensitiveData,

721 &integrityToCompare);

722 // Compare outer blob integrity

723 if(!MemoryEqual2B(&integrity.b, &integrityToCompare.b))

724 return TPM_RCS_INTEGRITY;

725 // Get the symmetric algorithm parameters used for encryption

726 ComputeProtectionKeyParms(protector, hashAlg, name, seed,

727 &symAlg, &keyBits, &symKey);

728 // Retrieve IV if it is used

729 if(useIV)

730 {

731 result = TPM2B_IV_Unmarshal(&ivIn, &sensitiveData, &size);

732 if(result == TPM_RC_SUCCESS)

733 {

734 // The input iv size for CFB must match the encryption algorithm

735 // block size

736 if(ivIn.t.size != CryptGetSymmetricBlockSize(symAlg, keyBits))

737 result = TPM_RC_VALUE;

738 else

739 iv = &ivIn;

740 }

741 }

742 }

743 // If no errors, decrypt private in place. Since this function uses CFB,

744 // CryptSymmetricDecrypt() will not return any errors. It may fail but it will

745 // not return an error.

746 if(result == TPM_RC_SUCCESS)

747 CryptSymmetricDecrypt(sensitiveData, symAlg, keyBits,

748 symKey.t.buffer, iv, TPM_ALG_CFB,

749 (UINT16)size, sensitiveData);

750 return result;

751 }

7.6.3.10 MarshalSensitive()

This function is used to marshal a sensitive area. Among other things, it adjusts the size of the authValue

to be no smaller than the digest of nameAlg Returns the size of the marshaled area.

752 static UINT16

753 MarshalSensitive(

754 OBJECT *parent, // IN: the object parent (optional)

755 BYTE *buffer, // OUT: receiving buffer

756 TPMT_SENSITIVE *sensitive, // IN: the sensitive area to marshal

757 TPMI_ALG_HASH nameAlg // IN:

758)

759 {

760 BYTE *sizeField = buffer; // saved so that size can be

761 // marshaled after it is known

762 UINT16 retVal;

763 //

764 // Pad the authValue if needed

765 MemoryPad2B(&sensitive->authValue.b, CryptHashGetDigestSize(nameAlg));

Trusted Platform Module Library Part 4: Supporting Routines

Page 266 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

766 buffer += 2;

767

768 // Marshal the structure

769 #if ALG_RSA

770 // If the sensitive size is the special case for a prime in the type

771 if((sensitive->sensitive.rsa.t.size & RSA_prime_flag) > 0)

772 {

773 UINT16 sizeSave = sensitive->sensitive.rsa.t.size;

774 //

775 // Turn off the flag that indicates that the sensitive->sensitive contains

776 // the CRT form of the exponent.

777 sensitive->sensitive.rsa.t.size &= ~(RSA_prime_flag);

778 // If the parent isn't fixedTPM, then truncate the sensitive data to be

779 // the size of the prime. Otherwise, leave it at the current size which

780 // is the full CRT size.

781 if(parent == NULL

782 || !IS_ATTRIBUTE(parent->publicArea.objectAttributes,

783 TPMA_OBJECT, fixedTPM))

784 sensitive->sensitive.rsa.t.size /= 5;

785 retVal = TPMT_SENSITIVE_Marshal(sensitive, &buffer, NULL);

786 // Restore the flag and the size.

787 sensitive->sensitive.rsa.t.size = sizeSave;

788 }

789 else

790 #endif

791 retVal = TPMT_SENSITIVE_Marshal(sensitive, &buffer, NULL);

792

793 // Marshal the size

794 retVal = (UINT16)(retVal + UINT16_Marshal(&retVal, &sizeField, NULL));

795

796 return retVal;

797 }

7.6.3.11 SensitiveToPrivate()

This function prepare the private blob for off the chip storage The operations in this function:

 marshal TPM2B_SENSITIVE structure into the buffer of TPM2B_PRIVATE

 apply encryption to the sensitive area.

 apply outer integrity computation.

798 void

799 SensitiveToPrivate(

800 TPMT_SENSITIVE *sensitive, // IN: sensitive structure

801 TPM2B_NAME *name, // IN: the name of the object

802 OBJECT *parent, // IN: The parent object

803 TPM_ALG_ID nameAlg, // IN: hash algorithm in public area. This

804 // parameter is used when parentHandle is

805 // NULL, in which case the object is

806 // temporary.

807 TPM2B_PRIVATE *outPrivate // OUT: output private structure

808)

809 {

810 BYTE *sensitiveData; // pointer to the sensitive data

811 UINT16 dataSize; // data blob size

812 TPMI_ALG_HASH hashAlg; // hash algorithm for integrity

813 UINT16 integritySize;

814 UINT16 ivSize;

815 //

816 pAssert(name != NULL && name->t.size != 0);

817

818 // Find the hash algorithm for integrity computation

819 if(parent == NULL)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 267

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

820 {

821 // For Temporary Object, using self name algorithm

822 hashAlg = nameAlg;

823 }

824 else

825 {

826 // Otherwise, using parent's name algorithm

827 hashAlg = parent->publicArea.nameAlg;

828 }

829 // Starting of sensitive data without wrappers

830 sensitiveData = outPrivate->t.buffer;

831

832 // Compute the integrity size

833 integritySize = sizeof(UINT16) + CryptHashGetDigestSize(hashAlg);

834

835 // Reserve space for integrity

836 sensitiveData += integritySize;

837

838 // Get iv size

839 ivSize = GetIV2BSize(parent);

840

841 // Reserve space for iv

842 sensitiveData += ivSize;

843

844 // Marshal the sensitive area including authValue size adjustments.

845 dataSize = MarshalSensitive(parent, sensitiveData, sensitive, nameAlg);

846

847 //Produce outer wrap, including encryption and HMAC

848 outPrivate->t.size = ProduceOuterWrap(parent, &name->b, hashAlg, NULL,

849 TRUE, dataSize, outPrivate->t.buffer);

850 return;

851 }

7.6.3.12 PrivateToSensitive()

Unwrap a input private area. Check the integrity, decrypt and retrieve data to a sensitive structure. The

operations in this function:

 check the integrity HMAC of the input private area

 decrypt the private buffer

 unmarshal TPMT_SENSITIVE structure into the buffer of TPMT_SENSITIVE

Error Returns Meaning

TPM_RCS_INTEGRITY if the private area integrity is bad

TPM_RC_SENSITIVE unmarshal errors while unmarshaling TPMS_ENCRYPT from input
private

TPM_RCS_SIZE error during sensitive data unmarshaling

TPM_RCS_VALUE outer wrapper does not have an iV of the correct size

852 TPM_RC

853 PrivateToSensitive(

854 TPM2B *inPrivate, // IN: input private structure

855 TPM2B *name, // IN: the name of the object

856 OBJECT *parent, // IN: parent object

857 TPM_ALG_ID nameAlg, // IN: hash algorithm in public area. It is

858 // passed separately because we only pass

859 // name, rather than the whole public area

860 // of the object. This parameter is used in

861 // the following two cases: 1. primary

862 // objects. 2. duplication blob with inner

Trusted Platform Module Library Part 4: Supporting Routines

Page 268 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

863 // wrap. In other cases, this parameter

864 // will be ignored

865 TPMT_SENSITIVE *sensitive // OUT: sensitive structure

866)

867 {

868 TPM_RC result;

869 BYTE *buffer;

870 INT32 size;

871 BYTE *sensitiveData; // pointer to the sensitive data

872 UINT16 dataSize;

873 UINT16 dataSizeInput;

874 TPMI_ALG_HASH hashAlg; // hash algorithm for integrity

875 UINT16 integritySize;

876 UINT16 ivSize;

877 //

878 // Make sure that name is provided

879 pAssert(name != NULL && name->size != 0);

880

881 // Find the hash algorithm for integrity computation

882 // For Temporary Object (parent == NULL) use self name algorithm;

883 // Otherwise, using parent's name algorithm

884 hashAlg = (parent == NULL) ? nameAlg : parent->publicArea.nameAlg;

885

886 // unwrap outer

887 result = UnwrapOuter(parent, name, hashAlg, NULL, TRUE,

888 inPrivate->size, inPrivate->buffer);

889 if(result != TPM_RC_SUCCESS)

890 return result;

891 // Compute the inner integrity size.

892 integritySize = sizeof(UINT16) + CryptHashGetDigestSize(hashAlg);

893

894 // Get iv size

895 ivSize = GetIV2BSize(parent);

896

897 // The starting of sensitive data and data size without outer wrapper

898 sensitiveData = inPrivate->buffer + integritySize + ivSize;

899 dataSize = inPrivate->size - integritySize - ivSize;

900

901 // Unmarshal input data size

902 buffer = sensitiveData;

903 size = (INT32)dataSize;

904 result = UINT16_Unmarshal(&dataSizeInput, &buffer, &size);

905 if(result == TPM_RC_SUCCESS)

906 {

907 if((dataSizeInput + sizeof(UINT16)) != dataSize)

908 result = TPM_RC_SENSITIVE;

909 else

910 {

911 // Unmarshal sensitive buffer to sensitive structure

912 result = TPMT_SENSITIVE_Unmarshal(sensitive, &buffer, &size);

913 if(result != TPM_RC_SUCCESS || size != 0)

914 {

915 result = TPM_RC_SENSITIVE;

916 }

917 }

918 }

919 return result;

920 }

7.6.3.13 SensitiveToDuplicate()

This function prepare the duplication blob from the sensitive area. The operations in this function:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 269

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 marshal TPMT_SENSITIVE structure into the buffer of TPM2B_PRIVATE

 apply inner wrap to the sensitive area if required

 apply outer wrap if required

921 void

922 SensitiveToDuplicate(

923 TPMT_SENSITIVE *sensitive, // IN: sensitive structure

924 TPM2B *name, // IN: the name of the object

925 OBJECT *parent, // IN: The new parent object

926 TPM_ALG_ID nameAlg, // IN: hash algorithm in public area. It

927 // is passed separately because we

928 // only pass name, rather than the

929 // whole public area of the object.

930 TPM2B *seed, // IN: the external seed. If external

931 // seed is provided with size of 0,

932 // no outer wrap should be applied

933 // to duplication blob.

934 TPMT_SYM_DEF_OBJECT *symDef, // IN: Symmetric key definition. If the

935 // symmetric key algorithm is NULL,

936 // no inner wrap should be applied.

937 TPM2B_DATA *innerSymKey, // IN/OUT: a symmetric key may be

938 // provided to encrypt the inner

939 // wrap of a duplication blob. May

940 // be generated here if needed.

941 TPM2B_PRIVATE *outPrivate // OUT: output private structure

942)

943 {

944 BYTE *sensitiveData; // pointer to the sensitive data

945 TPMI_ALG_HASH outerHash = TPM_ALG_NULL;// The hash algorithm for outer wrap

946 TPMI_ALG_HASH innerHash = TPM_ALG_NULL;// The hash algorithm for inner wrap

947 UINT16 dataSize; // data blob size

948 BOOL doInnerWrap = FALSE;

949 BOOL doOuterWrap = FALSE;

950 //

951 // Make sure that name is provided

952 pAssert(name != NULL && name->size != 0);

953

954 // Make sure symDef and innerSymKey are not NULL

955 pAssert(symDef != NULL && innerSymKey != NULL);

956

957 // Starting of sensitive data without wrappers

958 sensitiveData = outPrivate->t.buffer;

959

960 // Find out if inner wrap is required

961 if(symDef->algorithm != TPM_ALG_NULL)

962 {

963 doInnerWrap = TRUE;

964

965 // Use self nameAlg as inner hash algorithm

966 innerHash = nameAlg;

967

968 // Adjust sensitive data pointer

969 sensitiveData += sizeof(UINT16) + CryptHashGetDigestSize(innerHash);

970 }

971 // Find out if outer wrap is required

972 if(seed->size != 0)

973 {

974 doOuterWrap = TRUE;

975

976 // Use parent nameAlg as outer hash algorithm

977 outerHash = parent->publicArea.nameAlg;

978

979 // Adjust sensitive data pointer

980 sensitiveData += sizeof(UINT16) + CryptHashGetDigestSize(outerHash);

Trusted Platform Module Library Part 4: Supporting Routines

Page 270 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

981 }

982 // Marshal sensitive area

983 dataSize = MarshalSensitive(NULL, sensitiveData, sensitive, nameAlg);

984

985 // Apply inner wrap for duplication blob. It includes both integrity and

986 // encryption

987 if(doInnerWrap)

988 {

989 BYTE *innerBuffer = NULL;

990 BOOL symKeyInput = TRUE;

991 innerBuffer = outPrivate->t.buffer;

992 // Skip outer integrity space

993 if(doOuterWrap)

994 innerBuffer += sizeof(UINT16) + CryptHashGetDigestSize(outerHash);

995 dataSize = ProduceInnerIntegrity(name, innerHash, dataSize,

996 innerBuffer);

997 // Generate inner encryption key if needed

998 if(innerSymKey->t.size == 0)

999 {

1000 innerSymKey->t.size = (symDef->keyBits.sym + 7) / 8;

1001 CryptRandomGenerate(innerSymKey->t.size, innerSymKey->t.buffer);

1002

1003 // TPM generates symmetric encryption. Set the flag to FALSE

1004 symKeyInput = FALSE;

1005 }

1006 else

1007 {

1008 // assume the input key size should matches the symmetric definition

1009 pAssert(innerSymKey->t.size == (symDef->keyBits.sym + 7) / 8);

1010 }

1011

1012 // Encrypt inner buffer in place

1013 CryptSymmetricEncrypt(innerBuffer, symDef->algorithm,

1014 symDef->keyBits.sym, innerSymKey->t.buffer, NULL,

1015 TPM_ALG_CFB, dataSize, innerBuffer);

1016

1017 // If the symmetric encryption key is imported, clear the buffer for

1018 // output

1019 if(symKeyInput)

1020 innerSymKey->t.size = 0;

1021 }

1022 // Apply outer wrap for duplication blob. It includes both integrity and

1023 // encryption

1024 if(doOuterWrap)

1025 {

1026 dataSize = ProduceOuterWrap(parent, name, outerHash, seed, FALSE,

1027 dataSize, outPrivate->t.buffer);

1028 }

1029 // Data size for output

1030 outPrivate->t.size = dataSize;

1031

1032 return;

1033 }

7.6.3.14 DuplicateToSensitive()

Unwrap a duplication blob. Check the integrity, decrypt and retrieve data to a sensitive structure. The

operations in this function:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 271

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 check the integrity HMAC of the input private area

 decrypt the private buffer

 unmarshal TPMT_SENSITIVE structure into the buffer of TPMT_SENSITIVE

Error Returns Meaning

TPM_RC_INSUFFICIENT unmarshaling sensitive data from inPrivate failed

TPM_RC_INTEGRITY inPrivate data integrity is broken

TPM_RC_SIZE unmarshaling sensitive data from inPrivate failed

1034 TPM_RC

1035 DuplicateToSensitive(

1036 TPM2B *inPrivate, // IN: input private structure

1037 TPM2B *name, // IN: the name of the object

1038 OBJECT *parent, // IN: the parent

1039 TPM_ALG_ID nameAlg, // IN: hash algorithm in public area.

1040 TPM2B *seed, // IN: an external seed may be provided.

1041 // If external seed is provided with

1042 // size of 0, no outer wrap is

1043 // applied

1044 TPMT_SYM_DEF_OBJECT *symDef, // IN: Symmetric key definition. If the

1045 // symmetric key algorithm is NULL,

1046 // no inner wrap is applied

1047 TPM2B *innerSymKey, // IN: a symmetric key may be provided

1048 // to decrypt the inner wrap of a

1049 // duplication blob.

1050 TPMT_SENSITIVE *sensitive // OUT: sensitive structure

1051)

1052 {

1053 TPM_RC result;

1054 BYTE *buffer;

1055 INT32 size;

1056 BYTE *sensitiveData; // pointer to the sensitive data

1057 UINT16 dataSize;

1058 UINT16 dataSizeInput;

1059 //

1060 // Make sure that name is provided

1061 pAssert(name != NULL && name->size != 0);

1062

1063 // Make sure symDef and innerSymKey are not NULL

1064 pAssert(symDef != NULL && innerSymKey != NULL);

1065

1066 // Starting of sensitive data

1067 sensitiveData = inPrivate->buffer;

1068 dataSize = inPrivate->size;

1069

1070 // Find out if outer wrap is applied

1071 if(seed->size != 0)

1072 {

1073 // Use parent nameAlg as outer hash algorithm

1074 TPMI_ALG_HASH outerHash = parent->publicArea.nameAlg;

1075

1076 result = UnwrapOuter(parent, name, outerHash, seed, FALSE,

1077 dataSize, sensitiveData);

1078 if(result != TPM_RC_SUCCESS)

1079 return result;

1080 // Adjust sensitive data pointer and size

1081 sensitiveData += sizeof(UINT16) + CryptHashGetDigestSize(outerHash);

1082 dataSize -= sizeof(UINT16) + CryptHashGetDigestSize(outerHash);

1083 }

1084 // Find out if inner wrap is applied

1085 if(symDef->algorithm != TPM_ALG_NULL)

Trusted Platform Module Library Part 4: Supporting Routines

Page 272 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1086 {

1087 // assume the input key size matches the symmetric definition

1088 pAssert(innerSymKey->size == (symDef->keyBits.sym + 7) / 8);

1089

1090 // Decrypt inner buffer in place

1091 CryptSymmetricDecrypt(sensitiveData, symDef->algorithm,

1092 symDef->keyBits.sym, innerSymKey->buffer, NULL,

1093 TPM_ALG_CFB, dataSize, sensitiveData);

1094 // Check inner integrity

1095 result = CheckInnerIntegrity(name, nameAlg, dataSize, sensitiveData);

1096 if(result != TPM_RC_SUCCESS)

1097 return result;

1098 // Adjust sensitive data pointer and size

1099 sensitiveData += sizeof(UINT16) + CryptHashGetDigestSize(nameAlg);

1100 dataSize -= sizeof(UINT16) + CryptHashGetDigestSize(nameAlg);

1101 }

1102 // Unmarshal input data size

1103 buffer = sensitiveData;

1104 size = (INT32)dataSize;

1105 result = UINT16_Unmarshal(&dataSizeInput, &buffer, &size);

1106 if(result == TPM_RC_SUCCESS)

1107 {

1108 if((dataSizeInput + sizeof(UINT16)) != dataSize)

1109 result = TPM_RC_SIZE;

1110 else

1111 {

1112 // Unmarshal sensitive buffer to sensitive structure

1113 result = TPMT_SENSITIVE_Unmarshal(sensitive, &buffer, &size);

1114

1115 // if the results is OK make sure that all the data was unmarshaled

1116 if(result == TPM_RC_SUCCESS && size != 0)

1117 result = TPM_RC_SIZE;

1118 }

1119 }

1120 return result;

1121 }

7.6.3.15 SecretToCredential()

This function prepare the credential blob from a secret (a TPM2B_DIGEST) The operations in this

function:

 marshal TPM2B_DIGEST structure into the buffer of TPM2B_ID_OBJECT

 encrypt the private buffer, excluding the leading integrity HMAC area

 compute integrity HMAC and append to the beginning of the buffer.

 Set the total size of TPM2B_ID_OBJECT buffer

1122 void

1123 SecretToCredential(

1124 TPM2B_DIGEST *secret, // IN: secret information

1125 TPM2B *name, // IN: the name of the object

1126 TPM2B *seed, // IN: an external seed.

1127 OBJECT *protector, // IN: the protector

1128 TPM2B_ID_OBJECT *outIDObject // OUT: output credential

1129)

1130 {

1131 BYTE *buffer; // Auxiliary buffer pointer

1132 BYTE *sensitiveData; // pointer to the sensitive data

1133 TPMI_ALG_HASH outerHash; // The hash algorithm for outer wrap

1134 UINT16 dataSize; // data blob size

1135 //

1136 pAssert(secret != NULL && outIDObject != NULL);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 273

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1137

1138 // use protector's name algorithm as outer hash ????

1139 outerHash = protector->publicArea.nameAlg;

1140

1141 // Marshal secret area to credential buffer, leave space for integrity

1142 sensitiveData = outIDObject->t.credential

1143 + sizeof(UINT16) + CryptHashGetDigestSize(outerHash);

1144 // Marshal secret area

1145 buffer = sensitiveData;

1146 dataSize = TPM2B_DIGEST_Marshal(secret, &buffer, NULL);

1147

1148 // Apply outer wrap

1149 outIDObject->t.size = ProduceOuterWrap(protector, name, outerHash, seed, FALSE,

1150 dataSize, outIDObject->t.credential);

1151 return;

1152 }

7.6.3.16 CredentialToSecret()

Unwrap a credential. Check the integrity, decrypt and retrieve data to a TPM2B_DIGEST structure. The

operations in this function:

 check the integrity HMAC of the input credential area

 decrypt the credential buffer

 unmarshal TPM2B_DIGEST structure into the buffer of TPM2B_DIGEST

Error Returns Meaning

TPM_RC_INSUFFICIENT error during credential unmarshaling

TPM_RC_INTEGRITY credential integrity is broken

TPM_RC_SIZE error during credential unmarshaling

TPM_RC_VALUE IV size does not match the encryption algorithm block size

1153 TPM_RC

1154 CredentialToSecret(

1155 TPM2B *inIDObject, // IN: input credential blob

1156 TPM2B *name, // IN: the name of the object

1157 TPM2B *seed, // IN: an external seed.

1158 OBJECT *protector, // IN: the protector

1159 TPM2B_DIGEST *secret // OUT: secret information

1160)

1161 {

1162 TPM_RC result;

1163 BYTE *buffer;

1164 INT32 size;

1165 TPMI_ALG_HASH outerHash; // The hash algorithm for outer wrap

1166 BYTE *sensitiveData; // pointer to the sensitive data

1167 UINT16 dataSize;

1168 //

1169 // use protector's name algorithm as outer hash

1170 outerHash = protector->publicArea.nameAlg;

1171

1172 // Unwrap outer, a TPM_RC_INTEGRITY error may be returned at this point

1173 result = UnwrapOuter(protector, name, outerHash, seed, FALSE,

1174 inIDObject->size, inIDObject->buffer);

1175 if(result == TPM_RC_SUCCESS)

1176 {

1177 // Compute the beginning of sensitive data

1178 sensitiveData = inIDObject->buffer

1179 + sizeof(UINT16) + CryptHashGetDigestSize(outerHash);

1180 dataSize = inIDObject->size

Trusted Platform Module Library Part 4: Supporting Routines

Page 274 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1181 - (sizeof(UINT16) + CryptHashGetDigestSize(outerHash));

1182 // Unmarshal secret buffer to TPM2B_DIGEST structure

1183 buffer = sensitiveData;

1184 size = (INT32)dataSize;

1185 result = TPM2B_DIGEST_Unmarshal(secret, &buffer, &size);

1186

1187 // If there were no other unmarshaling errors, make sure that the

1188 // expected amount of data was recovered

1189 if(result == TPM_RC_SUCCESS && size != 0)

1190 return TPM_RC_SIZE;

1191 }

1192 return result;

1193 }

7.6.3.17 MemoryRemoveTrailingZeros()

This function is used to adjust the length of an authorization value. It adjusts the size of the TPM2B so

that it does not include octets at the end of the buffer that contain zero. The function returns the number

of non-zero octets in the buffer.

1194 UINT16

1195 MemoryRemoveTrailingZeros(

1196 TPM2B_AUTH *auth // IN/OUT: value to adjust

1197)

1198 {

1199 while((auth->t.size > 0) && (auth->t.buffer[auth->t.size - 1] == 0))

1200 auth->t.size--;

1201 return auth->t.size;

1202 }

7.6.3.18 SetLabelAndContext()

This function sets the label and context for a derived key. It is possible that label or context can end up

being an Empty Buffer.

1203 TPM_RC

1204 SetLabelAndContext(

1205 TPMS_DERIVE *labelContext, // IN/OUT: the recovered label and

1206 // context

1207 TPM2B_SENSITIVE_DATA *sensitive // IN: the sensitive data

1208)

1209 {

1210 TPMS_DERIVE sensitiveValue;

1211 TPM_RC result;

1212 INT32 size;

1213 BYTE *buff;

1214 //

1215 // Unmarshal a TPMS_DERIVE from the TPM2B_SENSITIVE_DATA buffer

1216 // If there is something to unmarshal...

1217 if(sensitive->t.size != 0)

1218 {

1219 size = sensitive->t.size;

1220 buff = sensitive->t.buffer;

1221 result = TPMS_DERIVE_Unmarshal(&sensitiveValue, &buff, &size);

1222 if(result != TPM_RC_SUCCESS)

1223 return result;

1224 // If there was a label in the public area leave it there, otherwise, copy

1225 // the new value

1226 if(labelContext->label.t.size == 0)

1227 MemoryCopy2B(&labelContext->label.b, &sensitiveValue.label.b,

1228 sizeof(labelContext->label.t.buffer));

1229 // if there was a context string in publicArea, it overrides

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 275

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1230 if(labelContext->context.t.size == 0)

1231 MemoryCopy2B(&labelContext->context.b, &sensitiveValue.context.b,

1232 sizeof(labelContext->label.t.buffer));

1233 }

1234 return TPM_RC_SUCCESS;

1235 }

7.6.3.19 UnmarshalToPublic()

Support function to unmarshal the template. This is used because the Input may be a TPMT_TEMPLATE

and that structure does not have the same size as a TPMT_PUBLIC because of the difference between

the unique and seed fields. If derive is not NULL, then the seed field is assumed to contain a label and

context that are unmarshaled into derive.

1236 TPM_RC

1237 UnmarshalToPublic(

1238 TPMT_PUBLIC *tOut, // OUT: output

1239 TPM2B_TEMPLATE *tIn, // IN:

1240 BOOL derivation, // IN: indicates if this is for a derivation

1241 TPMS_DERIVE *labelContext// OUT: label and context if derivation

1242)

1243 {

1244 BYTE *buffer = tIn->t.buffer;

1245 INT32 size = tIn->t.size;

1246 TPM_RC result;

1247 //

1248 // make sure that tOut is zeroed so that there are no remnants from previous

1249 // uses

1250 MemorySet(tOut, 0, sizeof(TPMT_PUBLIC));

1251 // Unmarshal the components of the TPMT_PUBLIC up to the unique field

1252 result = TPMI_ALG_PUBLIC_Unmarshal(&tOut->type, &buffer, &size);

1253 if(result != TPM_RC_SUCCESS)

1254 return result;

1255 result = TPMI_ALG_HASH_Unmarshal(&tOut->nameAlg, &buffer, &size, FALSE);

1256 if(result != TPM_RC_SUCCESS)

1257 return result;

1258 result = TPMA_OBJECT_Unmarshal(&tOut->objectAttributes, &buffer, &size);

1259 if(result != TPM_RC_SUCCESS)

1260 return result;

1261 result = TPM2B_DIGEST_Unmarshal(&tOut->authPolicy, &buffer, &size);

1262 if(result != TPM_RC_SUCCESS)

1263 return result;

1264 result = TPMU_PUBLIC_PARMS_Unmarshal(&tOut->parameters, &buffer, &size,

1265 tOut->type);

1266 if(result != TPM_RC_SUCCESS)

1267 return result;

1268 // Now unmarshal a TPMS_DERIVE if this is for derivation

1269 if(derivation)

1270 result = TPMS_DERIVE_Unmarshal(labelContext, &buffer, &size);

1271 else

1272 // otherwise, unmarshal a TPMU_PUBLIC_ID

1273 result = TPMU_PUBLIC_ID_Unmarshal(&tOut->unique, &buffer, &size,

1274 tOut->type);

1275 // Make sure the template was used up

1276 if((result == TPM_RC_SUCCESS) && (size != 0))

1277 result = TPM_RC_SIZE;

1278 return result;

1279 }

7.6.3.20 ObjectSetExternal()

Set the external attributes for an object.

Trusted Platform Module Library Part 4: Supporting Routines

Page 276 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1280 void

1281 ObjectSetExternal(

1282 OBJECT *object

1283)

1284 {

1285 object->attributes.external = SET;

1286 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 277

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.7 Encrypt Decrypt Support (EncryptDecrypt_spt.c)

1 #include "Tpm.h"

2 #include "EncryptDecrypt_fp.h"

3 #include "EncryptDecrypt_spt_fp.h"

4 #if CC_EncryptDecrypt2

Error Returns Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private
portions loaded

TPM_RC_SIZE IvIn size is incompatible with the block cipher mode; or inData size is
not an even multiple of the block size for CBC or ECB mode

TPM_RC_VALUE keyHandle is restricted and the argument mode does not match the
key's mode

5 TPM_RC

6 EncryptDecryptShared(

7 TPMI_DH_OBJECT keyHandleIn,

8 TPMI_YES_NO decryptIn,

9 TPMI_ALG_SYM_MODE modeIn,

10 TPM2B_IV *ivIn,

11 TPM2B_MAX_BUFFER *inData,

12 EncryptDecrypt_Out *out

13)

14 {

15 OBJECT *symKey;

16 UINT16 keySize;

17 UINT16 blockSize;

18 BYTE *key;

19 TPM_ALG_ID alg;

20 TPM_ALG_ID mode;

21 TPM_RC result;

22 BOOL OK;

23 // Input Validation

24 symKey = HandleToObject(keyHandleIn);

25 mode = symKey->publicArea.parameters.symDetail.sym.mode.sym;

26

27 // The input key should be a symmetric key

28 if(symKey->publicArea.type != TPM_ALG_SYMCIPHER)

29 return TPM_RCS_KEY + RC_EncryptDecrypt_keyHandle;

30 // The key must be unrestricted and allow the selected operation

31 OK = !IS_ATTRIBUTE(symKey->publicArea.objectAttributes,

32 TPMA_OBJECT, restricted);

33 if(YES == decryptIn)

34 OK = OK && IS_ATTRIBUTE(symKey->publicArea.objectAttributes,

35 TPMA_OBJECT, decrypt);

36 else

37 OK = OK && IS_ATTRIBUTE(symKey->publicArea.objectAttributes,

38 TPMA_OBJECT, sign);

39 if(!OK)

40 return TPM_RCS_ATTRIBUTES + RC_EncryptDecrypt_keyHandle;

41

42 // Make sure that key is an encrypt/decrypt key and not SMAC

43 if(!CryptSymModeIsValid(mode, TRUE))

44 return TPM_RCS_MODE + RC_EncryptDecrypt_keyHandle;

45

46 // If the key mode is not TPM_ALG_NULL...

47 // or TPM_ALG_NULL

48 if(mode != TPM_ALG_NULL)

49 {

50 // then the input mode has to be TPM_ALG_NULL or the same as the key

Trusted Platform Module Library Part 4: Supporting Routines

Page 278 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

51 if((modeIn != TPM_ALG_NULL) && (modeIn != mode))

52 return TPM_RCS_MODE + RC_EncryptDecrypt_mode;

53 }

54 else

55 {

56 // if the key mode is null, then the input can't be null

57 if(modeIn == TPM_ALG_NULL)

58 return TPM_RCS_MODE + RC_EncryptDecrypt_mode;

59 mode = modeIn;

60 }

61 // The input iv for ECB mode should be an Empty Buffer. All the other modes

62 // should have an iv size same as encryption block size

63 keySize = symKey->publicArea.parameters.symDetail.sym.keyBits.sym;

64 alg = symKey->publicArea.parameters.symDetail.sym.algorithm;

65 blockSize = CryptGetSymmetricBlockSize(alg, keySize);

66

67 // reverify the algorithm. This is mainly to keep static analysis tools happy

68 if(blockSize == 0)

69 return TPM_RCS_KEY + RC_EncryptDecrypt_keyHandle;

70

71 // Note: When an algorithm is not supported by a TPM, the TPM_ALG_xxx for that

72 // algorithm is not defined. However, it is assumed that the ALG_xxx_VALUE for

73 // the algorithm is always defined. Both have the same numeric value.

74 // ALG_xxx_VALUE is used here so that the code does not get cluttered with

75 // #ifdef's. Having this check does not mean that the algorithm is supported.

76 // If it was not supported the unmarshaling code would have rejected it before

77 // this function were called. This means that, depending on the implementation,

78 // the check could be redundant but it doesn't hurt.

79 if(((mode == ALG_ECB_VALUE) && (ivIn->t.size != 0))

80 || ((mode != ALG_ECB_VALUE) && (ivIn->t.size != blockSize)))

81 return TPM_RCS_SIZE + RC_EncryptDecrypt_ivIn;

82

83 // The input data size of CBC mode or ECB mode must be an even multiple of

84 // the symmetric algorithm's block size

85 if(((mode == ALG_CBC_VALUE) || (mode == ALG_ECB_VALUE))

86 && ((inData->t.size % blockSize) != 0))

87 return TPM_RCS_SIZE + RC_EncryptDecrypt_inData;

88

89 // Copy IV

90 // Note: This is copied here so that the calls to the encrypt/decrypt functions

91 // will modify the output buffer, not the input buffer

92 out->ivOut = *ivIn;

93

94 // Command Output

95 key = symKey->sensitive.sensitive.sym.t.buffer;

96 // For symmetric encryption, the cipher data size is the same as plain data

97 // size.

98 out->outData.t.size = inData->t.size;

99 if(decryptIn == YES)

100 {

101 // Decrypt data to output

102 result = CryptSymmetricDecrypt(out->outData.t.buffer, alg, keySize, key,

103 &(out->ivOut), mode, inData->t.size,

104 inData->t.buffer);

105 }

106 else

107 {

108 // Encrypt data to output

109 result = CryptSymmetricEncrypt(out->outData.t.buffer, alg, keySize, key,

110 &(out->ivOut), mode, inData->t.size,

111 inData->t.buffer);

112 }

113 return result;

114 }

115 #endif // CC_EncryptDecrypt

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 279

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.8 ACT Support (ACT_spt.c)

7.8.1 Introduction

This code implements the ACT update code. It does not use a mutex. This code uses a platform service

(_plat__ACT_UpdateCounter()) that returns false if the update is not accepted. If this occurs, then

TPM_RC_RETRY should be sent to the caller so that they can retry the operation later. The

implementation of this is platform dependent but the reference uses a simple flag to indicate that an

update is pending and the only process that can clear that flag is the process that does the actual update.

7.8.2 Includes

1 #include "Tpm.h"

2 #include "ACT_spt_fp.h"

3 #include "Platform_fp.h"

7.8.3 Functions

7.8.3.1 _ActResume()

This function does the resume processing for an ACT. It updates the saved count and turns signaling

back on if necessary.

4 static void

5 _ActResume(

6 UINT32 act, //IN: the act number

7 ACT_STATE *actData //IN: pointer to the saved ACT data

8)

9 {

10 // If the act was non-zero, then restore the counter value.

11 if(actData->remaining > 0)

12 _plat__ACT_UpdateCounter(act, actData->remaining);

13 // if the counter was zero and the ACT signaling, enable the signaling.

14 else if(go.signaledACT & (1 << act))

15 _plat__ACT_SetSignaled(act, TRUE);

16 }

7.8.3.2 ActStartup()

This function is called by TPM2_Startup() to initialize the ACT counter values.

17 BOOL

18 ActStartup(

19 STARTUP_TYPE type

20)

21 {

22 // Reset all the ACT hardware

23 _plat__ACT_Initialize();

24

25 // For TPM_RESET or TPM_RESTART, the ACTs will all be disabled and the output

26 // de-asserted.

27 if(type != SU_RESUME)

28 {

29 go.signaledACT = 0;

30 #define CLEAR_ACT_POLICY(N) \

31 go.ACT_##N.hashAlg = TPM_ALG_NULL; \

32 go.ACT_##N.authPolicy.b.size = 0;

33

Trusted Platform Module Library Part 4: Supporting Routines

Page 280 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

34 FOR_EACH_ACT(CLEAR_ACT_POLICY)

35

36 }

37 else

38 {

39 // Resume each of the implemented ACT

40 #define RESUME_ACT(N) _ActResume(0x##N, &go.ACT_##N);

41

42 FOR_EACH_ACT(RESUME_ACT)

43 }

44 s_ActUpdated = 0;

45 _plat__ACT_EnableTicks(TRUE);

46 return TRUE;

47 }

7.8.3.3 _ActSaveState()

Get the counter state and the signaled state for an ACT. If the ACT has not been updated since the last

time it was saved, then divide the count by 2.

48 static void

49 _ActSaveState(

50 UINT32 act,

51 P_ACT_STATE actData

52)

53 {

54 actData->remaining = _plat__ACT_GetRemaining(act);

55 // If the ACT hasn't been updated since the last startup, then it should be

56 // be halved.

57 if((s_ActUpdated & (1 << act)) == 0)

58 {

59 // Don't halve if the count is set to max or if halving would make it zero

60 if((actData->remaining != UINT32_MAX) && (actData->remaining > 1))

61 actData->remaining /= 2;

62 }

63 if(_plat__ACT_GetSignaled(act))

64 go.signaledACT |= (1 << act);

65 }

7.8.3.4 ActGetSignaled()

This function returns the state of the signaled flag associated with an ACT.

66 BOOL

67 ActGetSignaled(

68 TPM_RH actHandle

69)

70 {

71 UINT32 act = actHandle - TPM_RH_ACT_0;

72 //

73 return _plat__ACT_GetSignaled(act);

74 }

7.8.3.5 ActShutdown()

This function saves the current state of the counters

75 BOOL

76 ActShutdown(

77 TPM_SU state //IN: the type of the shutdown.

78)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 281

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

79 {

80 // if this is not shutdown state, then the only type of startup is TPM_RESTART

81 // so the timer values will be cleared. If this is shutdown state, get the current

82 // countdown and signaled values. Plus, if the counter has not been updated

83 // since the last restart, divide the time by 2 so that there is no attack on the

84 // countdown by saving the countdown state early and then not using the TPM.

85 if(state == TPM_SU_STATE)

86 {

87 // This will be populated as each of the ACT is queried

88 go.signaledACT = 0;

89 // Get the current count and the signaled state

90 #define SAVE_ACT_STATE(N) _ActSaveState(0x##N, &go.ACT_##N);

91

92 FOR_EACH_ACT(SAVE_ACT_STATE);

93 }

94 return TRUE;

95 }

7.8.3.6 ActIsImplemented()

This function determines if an ACT is implemented in both the TPM and the platform code.

96 BOOL

97 ActIsImplemented(

98 UINT32 act

99)

100 {

101 #define CASE_ACT_

102 // This switch accounts for the TPM implemente values.

103 switch(act)

104 {

105 FOR_EACH_ACT(CASE_ACT_NUMBER)

106 // This ensures that the platorm implementes the values implemented by

107 // the TPM

108 return _plat__ACT_GetImplemented(act);

109 default:

110 break;

111 }

112 return FALSE;

113 }

7.8.3.7 ActCounterUpdate()

This function updates the ACT counter. If the counter already has a pending update, it returns

TPM_RC_RETRY so that the update can be tried again later.

114 TPM_RC

115 ActCounterUpdate(

116 TPM_RH handle, //IN: the handle of the act

117 UINT32 newValue //IN: the value to set in the ACT

118)

119 {

120 UINT32 act;

121 TPM_RC result;

122 //

123 act = handle - TPM_RH_ACT_0;

124 // This should never fail, but...

125 if(!_plat__ACT_GetImplemented(act))

126 result = TPM_RC_VALUE;

127 else

128 {

129 // Will need to clear orderly so fail if we are orderly and NV is not available

130 if(NV_IS_ORDERLY)

Trusted Platform Module Library Part 4: Supporting Routines

Page 282 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

131 RETURN_IF_NV_IS_NOT_AVAILABLE;

132 // if the attempt to update the counter fails, it means that there is an

133 // update pending so wait until it has occurred and then do an update.

134 if(!_plat__ACT_UpdateCounter(act, newValue))

135 result = TPM_RC_RETRY;

136 else

137 {

138 // Indicate that the ACT has been updated since last TPM2_Startup().

139 s_ActUpdated |= (UINT16)(1 << act);

140

141 // Need to clear the orderly flag

142 g_clearOrderly = TRUE;

143

144 result = TPM_RC_SUCCESS;

145 }

146 }

147 return result;

148 }

7.8.3.8 ActGetCapabilityData()

This function returns the list of ACT data

Return Value Meaning

YES if more ACT data is available

NO if no more ACT data to

149 TPMI_YES_NO

150 ActGetCapabilityData(

151 TPM_HANDLE actHandle, // IN: the handle for the starting ACT

152 UINT32 maxCount, // IN: maximum allowed return values

153 TPML_ACT_DATA *actList // OUT: ACT data list

154)

155 {

156 // Initialize output property list

157 actList->count = 0;

158

159 // Make sure that the starting handle value is in range (again)

160 if((actHandle < TPM_RH_ACT_0) || (actHandle > TPM_RH_ACT_F))

161 return FALSE;

162 // The maximum count of curves we may return is MAX_ECC_CURVES

163 if(maxCount > MAX_ACT_DATA)

164 maxCount = MAX_ACT_DATA;

165 // Scan the ACT data from the starting ACT

166 for(; actHandle <= TPM_RH_ACT_F; actHandle++)

167 {

168 UINT32 act = actHandle - TPM_RH_ACT_0;

169 if(actList->count < maxCount)

170 {

171 if(ActIsImplemented(act))

172 {

173 TPMS_ACT_DATA *actData = &actList->actData[actList->count];

174 //

175 memset(&actData->attributes, 0, sizeof(actData->attributes));

176 actData->handle = actHandle;

177 actData->timeout = _plat__ACT_GetRemaining(act);

178 actData->attributes.signaled = _plat__ACT_GetSignaled(act);

179 actList->count++;

180 }

181 }

182 else

183 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 283

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

184 if(_plat__ACT_GetImplemented(act))

185 return YES;

186 }

187 }

188 // If we get here, either all of the ACT values were put in the list, or the list

189 // was filled and there are no more ACT values to return

190 return NO;

191 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 284 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8 Subsystem

8.1 CommandAudit.c

8.1.1 Introduction

This file contains the functions that support command audit.

8.1.2 Includes

1 #include "Tpm.h"

8.1.3 Functions

8.1.3.1 CommandAuditPreInstall_Init()

This function initializes the command audit list. This function simulates the behavior of manufacturing. A

function is used instead of a structure definition because this is easier than figuring out the initialization

value for a bit array.

This function would not be implemented outside of a manufacturing or simulation environment.

2 void

3 CommandAuditPreInstall_Init(

4 void

5)

6 {

7 // Clear all the audit commands

8 MemorySet(gp.auditCommands, 0x00, sizeof(gp.auditCommands));

9

10 // TPM_CC_SetCommandCodeAuditStatus always being audited

11 CommandAuditSet(TPM_CC_SetCommandCodeAuditStatus);

12

13 // Set initial command audit hash algorithm to be context integrity hash

14 // algorithm

15 gp.auditHashAlg = CONTEXT_INTEGRITY_HASH_ALG;

16

17 // Set up audit counter to be 0

18 gp.auditCounter = 0;

19

20 // Write command audit persistent data to NV

21 NV_SYNC_PERSISTENT(auditCommands);

22 NV_SYNC_PERSISTENT(auditHashAlg);

23 NV_SYNC_PERSISTENT(auditCounter);

24

25 return;

26 }

8.1.3.2 CommandAuditStartup()

This function clears the command audit digest on a TPM Reset.

27 BOOL

28 CommandAuditStartup(

29 STARTUP_TYPE type // IN: start up type

30)

31 {

32 if((type != SU_RESTART) && (type != SU_RESUME))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 285

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

33 {

34 // Reset the digest size to initialize the digest

35 gr.commandAuditDigest.t.size = 0;

36 }

37 return TRUE;

38 }

8.1.3.3 CommandAuditSet()

This function will SET the audit flag for a command. This function will not SET the audit flag for a

command that is not implemented. This ensures that the audit status is not SET when

TPM2_GetCapability() is used to read the list of audited commands.

This function is only used by TPM2_SetCommandCodeAuditStatus().

The actions in TPM2_SetCommandCodeAuditStatus() are expected to cause the changes to be saved to

NV after it is setting and clearing bits.

Return Value Meaning

TRUE(1) command code audit status was changed

FALSE(0) command code audit status was not changed

39 BOOL

40 CommandAuditSet(

41 TPM_CC commandCode // IN: command code

42)

43 {

44 COMMAND_INDEX commandIndex = CommandCodeToCommandIndex(commandCode);

45

46 // Only SET a bit if the corresponding command is implemented

47 if(commandIndex != UNIMPLEMENTED_COMMAND_INDEX)

48 {

49 // Can't audit shutdown

50 if(commandCode != TPM_CC_Shutdown)

51 {

52 if(!TEST_BIT(commandIndex, gp.auditCommands))

53 {

54 // Set bit

55 SET_BIT(commandIndex, gp.auditCommands);

56 return TRUE;

57 }

58 }

59 }

60 // No change

61 return FALSE;

62 }

8.1.3.4 CommandAuditClear()

This function will CLEAR the audit flag for a command. It will not CLEAR the audit flag for

TPM_CC_SetCommandCodeAuditStatus().

This function is only used by TPM2_SetCommandCodeAuditStatus().

The actions in TPM2_SetCommandCodeAuditStatus() are expected to cause the changes to be saved to

NV after it is setting and clearing bits.

Trusted Platform Module Library Part 4: Supporting Routines

Page 286 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Return Value Meaning

TRUE(1) command code audit status was changed

FALSE(0) command code audit status was not changed

63 BOOL

64 CommandAuditClear(

65 TPM_CC commandCode // IN: command code

66)

67 {

68 COMMAND_INDEX commandIndex = CommandCodeToCommandIndex(commandCode);

69

70 // Do nothing if the command is not implemented

71 if(commandIndex != UNIMPLEMENTED_COMMAND_INDEX)

72 {

73 // The bit associated with TPM_CC_SetCommandCodeAuditStatus() cannot be

74 // cleared

75 if(commandCode != TPM_CC_SetCommandCodeAuditStatus)

76 {

77 if(TEST_BIT(commandIndex, gp.auditCommands))

78 {

79 // Clear bit

80 CLEAR_BIT(commandIndex, gp.auditCommands);

81 return TRUE;

82 }

83 }

84 }

85 // No change

86 return FALSE;

87 }

8.1.3.5 CommandAuditIsRequired()

This function indicates if the audit flag is SET for a command.

Return Value Meaning

TRUE(1) command is audited

FALSE(0) command is not audited

88 BOOL

89 CommandAuditIsRequired(

90 COMMAND_INDEX commandIndex // IN: command index

91)

92 {

93 // Check the bit map. If the bit is SET, command audit is required

94 return(TEST_BIT(commandIndex, gp.auditCommands));

95 }

8.1.3.6 CommandAuditCapGetCCList()

This function returns a list of commands that have their audit bit SET.

The list starts at the input commandCode.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 287

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

YES if there are more command code available

NO all the available command code has been returned

96 TPMI_YES_NO

97 CommandAuditCapGetCCList(

98 TPM_CC commandCode, // IN: start command code

99 UINT32 count, // IN: count of returned TPM_CC

100 TPML_CC *commandList // OUT: list of TPM_CC

101)

102 {

103 TPMI_YES_NO more = NO;

104 COMMAND_INDEX commandIndex;

105

106 // Initialize output handle list

107 commandList->count = 0;

108

109 // The maximum count of command we may return is MAX_CAP_CC

110 if(count > MAX_CAP_CC) count = MAX_CAP_CC;

111

112 // Find the implemented command that has a command code that is the same or

113 // higher than the input

114 // Collect audit commands

115 for(commandIndex = GetClosestCommandIndex(commandCode);

116 commandIndex != UNIMPLEMENTED_COMMAND_INDEX;

117 commandIndex = GetNextCommandIndex(commandIndex))

118 {

119 if(CommandAuditIsRequired(commandIndex))

120 {

121 if(commandList->count < count)

122 {

123 // If we have not filled up the return list, add this command

124 // code to its

125 TPM_CC cc = GET_ATTRIBUTE(s_ccAttr[commandIndex],

126 TPMA_CC, commandIndex);

127 if(IS_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, V))

128 cc += (1 << 29);

129 commandList->commandCodes[commandList->count] = cc;

130 commandList->count++;

131 }

132 else

133 {

134 // If the return list is full but we still have command

135 // available, report this and stop iterating

136 more = YES;

137 break;

138 }

139 }

140 }

141

142 return more;

143 }

8.1.3.7 CommandAuditGetDigest

This command is used to create a digest of the commands being audited. The commands are processed

in ascending numeric order with a list of TPM_CC being added to a hash. This operates as if all the

audited command codes were concatenated and then hashed.

144 void

145 CommandAuditGetDigest(

Trusted Platform Module Library Part 4: Supporting Routines

Page 288 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

146 TPM2B_DIGEST *digest // OUT: command digest

147)

148 {

149 TPM_CC commandCode;

150 COMMAND_INDEX commandIndex;

151 HASH_STATE hashState;

152

153 // Start hash

154 digest->t.size = CryptHashStart(&hashState, gp.auditHashAlg);

155

156 // Add command code

157 for(commandIndex = 0; commandIndex < COMMAND_COUNT; commandIndex++)

158 {

159 if(CommandAuditIsRequired(commandIndex))

160 {

161 commandCode = GetCommandCode(commandIndex);

162 CryptDigestUpdateInt(&hashState, sizeof(commandCode), commandCode);

163 }

164 }

165

166 // Complete hash

167 CryptHashEnd2B(&hashState, &digest->b);

168

169 return;

170 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 289

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.2 DA.c

8.2.1 Introduction

This file contains the functions and data definitions relating to the dictionary attack logic.

8.2.2 Includes and Data Definitions

1 #define DA_C

2 #include "Tpm.h"

8.2.3 Functions

8.2.3.1 DAPreInstall_Init()

This function initializes the DA parameters to their manufacturer-default values. The default values are

determined by a platform-specific specification.

This function should not be called outside of a manufacturing or simulation environment.

The DA parameters will be restored to these initial values by TPM2_Clear().

3 void

4 DAPreInstall_Init(

5 void

6)

7 {

8 gp.failedTries = 0;

9 gp.maxTries = 3;

10 gp.recoveryTime = 1000; // in seconds (~16.67 minutes)

11 gp.lockoutRecovery = 1000; // in seconds

12 gp.lockOutAuthEnabled = TRUE; // Use of lockoutAuth is enabled

13

14 // Record persistent DA parameter changes to NV

15 NV_SYNC_PERSISTENT(failedTries);

16 NV_SYNC_PERSISTENT(maxTries);

17 NV_SYNC_PERSISTENT(recoveryTime);

18 NV_SYNC_PERSISTENT(lockoutRecovery);

19 NV_SYNC_PERSISTENT(lockOutAuthEnabled);

20

21 return;

22 }

8.2.3.2 DAStartup()

This function is called by TPM2_Startup() to initialize the DA parameters. In the case of Startup(CLEAR),

use of lockoutAuth will be enabled if the lockout recovery time is 0. Otherwise, lockoutAuth will not be

enabled until the TPM has been continuously powered for the lockoutRecovery time.

This function requires that NV be available and not rate limiting.

23 BOOL

24 DAStartup(

25 STARTUP_TYPE type // IN: startup type

26)

27 {

28 NOT_REFERENCED(type);

29 #if !ACCUMULATE_SELF_HEAL_TIMER

30 _plat__TimerWasReset();

Trusted Platform Module Library Part 4: Supporting Routines

Page 290 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

31 s_selfHealTimer = 0;

32 s_lockoutTimer = 0;

33 #else

34 if(_plat__TimerWasReset())

35 {

36 if(!NV_IS_ORDERLY)

37 {

38 // If shutdown was not orderly, then don't really know if go.time has

39 // any useful value so reset the timer to 0. This is what the tick

40 // was reset to

41 s_selfHealTimer = 0;

42 s_lockoutTimer = 0;

43 }

44 else

45 {

46 // If we know how much time was accumulated at the last orderly shutdown

47 // subtract that from the saved timer values so that they effectively

48 // have the accumulated values

49 s_selfHealTimer -= go.time;

50 s_lockoutTimer -= go.time;

51 }

52 }

53 #endif

54

55 // For any Startup(), if lockoutRecovery is 0, enable use of lockoutAuth.

56 if(gp.lockoutRecovery == 0)

57 {

58 gp.lockOutAuthEnabled = TRUE;

59 // Record the changes to NV

60 NV_SYNC_PERSISTENT(lockOutAuthEnabled);

61 }

62

63 // If DA has not been disabled and the previous shutdown is not orderly

64 // failedTries is not already at its maximum then increment 'failedTries'

65 if(gp.recoveryTime != 0

66 && gp.failedTries < gp.maxTries

67 && !IS_ORDERLY(g_prevOrderlyState))

68 {

69 #if USE_DA_USED

70 gp.failedTries += g_daUsed;

71 g_daUsed = FALSE;

72 #else

73 gp.failedTries++;

74 #endif

75 // Record the change to NV

76 NV_SYNC_PERSISTENT(failedTries);

77 }

78 // Before Startup, the TPM will not do clock updates. At startup, need to

79 // do a time update which will do the DA update.

80 TimeUpdate();

81

82 return TRUE;

83 }

8.2.3.3 DARegisterFailure()

This function is called when a authorization failure occurs on an entity that is subject to dictionary-attack

protection. When a DA failure is triggered, register the failure by resetting the relevant self-healing timer

to the current time.

84 void

85 DARegisterFailure(

86 TPM_HANDLE handle // IN: handle for failure

87)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 291

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

88 {

89 // Reset the timer associated with lockout if the handle is the lockoutAuth.

90 if(handle == TPM_RH_LOCKOUT)

91 s_lockoutTimer = g_time;

92 else

93 s_selfHealTimer = g_time;

94 return;

95 }

8.2.3.4 DASelfHeal()

This function is called to check if sufficient time has passed to allow decrement of failedTries or to re-

enable use of lockoutAuth.

This function should be called when the time interval is updated.

96 void

97 DASelfHeal(

98 void

99)

100 {

101 // Regular authorization self healing logic

102 // If no failed authorization tries, do nothing. Otherwise, try to

103 // decrease failedTries

104 if(gp.failedTries != 0)

105 {

106 // if recovery time is 0, DA logic has been disabled. Clear failed tries

107 // immediately

108 if(gp.recoveryTime == 0)

109 {

110 gp.failedTries = 0;

111 // Update NV record

112 NV_SYNC_PERSISTENT(failedTries);

113 }

114 else

115 {

116 UINT64 decreaseCount;

117 #if 0 // Errata eliminates this code

118 // In the unlikely event that failedTries should become larger than

119 // maxTries

120 if(gp.failedTries > gp.maxTries)

121 gp.failedTries = gp.maxTries;

122 #endif

123 // How much can failedTries be decreased

124

125 // Cast s_selfHealTimer to an int in case it became negative at

126 // startup

127 decreaseCount = ((g_time - (INT64)s_selfHealTimer) / 1000)

128 / gp.recoveryTime;

129

130 if(gp.failedTries <= (UINT32)decreaseCount)

131 // should not set failedTries below zero

132 gp.failedTries = 0;

133 else

134 gp.failedTries -= (UINT32)decreaseCount;

135

136 // the cast prevents overflow of the product

137 s_selfHealTimer += (decreaseCount * (UINT64)gp.recoveryTime) * 1000;

138 if(decreaseCount != 0)

139 // If there was a change to the failedTries, record the changes

140 // to NV

141 NV_SYNC_PERSISTENT(failedTries);

142 }

143 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 292 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

144

145 // LockoutAuth self healing logic

146 // If lockoutAuth is enabled, do nothing. Otherwise, try to see if we

147 // may enable it

148 if(!gp.lockOutAuthEnabled)

149 {

150 // if lockout authorization recovery time is 0, a reboot is required to

151 // re-enable use of lockout authorization. Self-healing would not

152 // apply in this case.

153 if(gp.lockoutRecovery != 0)

154 {

155 if(((g_time - (INT64)s_lockoutTimer) / 1000) >= gp.lockoutRecovery)

156 {

157 gp.lockOutAuthEnabled = TRUE;

158 // Record the changes to NV

159 NV_SYNC_PERSISTENT(lockOutAuthEnabled);

160 }

161 }

162 }

163 return;

164 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 293

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.3 Hierarchy.c

8.3.1 Introduction

This file contains the functions used for managing and accessing the hierarchy-related values.

8.3.2 Includes

1 #include "Tpm.h"

8.3.3 Functions

8.3.3.1 HierarchyPreInstall()

This function performs the initialization functions for the hierarchy when the TPM is simulated. This

function should not be called if the TPM is not in a manufacturing mode at the manufacturer, or in a

simulated environment.

2 void

3 HierarchyPreInstall_Init(

4 void

5)

6 {

7 // Allow lockout clear command

8 gp.disableClear = FALSE;

9

10 // Initialize Primary Seeds

11 gp.EPSeed.t.size = sizeof(gp.EPSeed.t.buffer);

12 gp.SPSeed.t.size = sizeof(gp.SPSeed.t.buffer);

13 gp.PPSeed.t.size = sizeof(gp.PPSeed.t.buffer);

14 #if (defined USE_PLATFORM_EPS) && (USE_PLATFORM_EPS != NO)

15 _plat__GetEPS(gp.EPSeed.t.size, gp.EPSeed.t.buffer);

16 #else

17 CryptRandomGenerate(gp.EPSeed.t.size, gp.EPSeed.t.buffer);

18 #endif

19 CryptRandomGenerate(gp.SPSeed.t.size, gp.SPSeed.t.buffer);

20 CryptRandomGenerate(gp.PPSeed.t.size, gp.PPSeed.t.buffer);

21

22 // Initialize owner, endorsement and lockout authorization

23 gp.ownerAuth.t.size = 0;

24 gp.endorsementAuth.t.size = 0;

25 gp.lockoutAuth.t.size = 0;

26

27 // Initialize owner, endorsement, and lockout policy

28 gp.ownerAlg = TPM_ALG_NULL;

29 gp.ownerPolicy.t.size = 0;

30 gp.endorsementAlg = TPM_ALG_NULL;

31 gp.endorsementPolicy.t.size = 0;

32 gp.lockoutAlg = TPM_ALG_NULL;

33 gp.lockoutPolicy.t.size = 0;

34

35 // Initialize ehProof, shProof and phProof

36 gp.phProof.t.size = sizeof(gp.phProof.t.buffer);

37 gp.shProof.t.size = sizeof(gp.shProof.t.buffer);

38 gp.ehProof.t.size = sizeof(gp.ehProof.t.buffer);

39 CryptRandomGenerate(gp.phProof.t.size, gp.phProof.t.buffer);

40 CryptRandomGenerate(gp.shProof.t.size, gp.shProof.t.buffer);

41 CryptRandomGenerate(gp.ehProof.t.size, gp.ehProof.t.buffer);

42

43 // Write hierarchy data to NV

Trusted Platform Module Library Part 4: Supporting Routines

Page 294 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

44 NV_SYNC_PERSISTENT(disableClear);

45 NV_SYNC_PERSISTENT(EPSeed);

46 NV_SYNC_PERSISTENT(SPSeed);

47 NV_SYNC_PERSISTENT(PPSeed);

48 NV_SYNC_PERSISTENT(ownerAuth);

49 NV_SYNC_PERSISTENT(endorsementAuth);

50 NV_SYNC_PERSISTENT(lockoutAuth);

51 NV_SYNC_PERSISTENT(ownerAlg);

52 NV_SYNC_PERSISTENT(ownerPolicy);

53 NV_SYNC_PERSISTENT(endorsementAlg);

54 NV_SYNC_PERSISTENT(endorsementPolicy);

55 NV_SYNC_PERSISTENT(lockoutAlg);

56 NV_SYNC_PERSISTENT(lockoutPolicy);

57 NV_SYNC_PERSISTENT(phProof);

58 NV_SYNC_PERSISTENT(shProof);

59 NV_SYNC_PERSISTENT(ehProof);

60

61 return;

62 }

8.3.3.2 HierarchyStartup()

This function is called at TPM2_Startup() to initialize the hierarchy related values.

63 BOOL

64 HierarchyStartup(

65 STARTUP_TYPE type // IN: start up type

66)

67 {

68 // phEnable is SET on any startup

69 g_phEnable = TRUE;

70

71 // Reset platformAuth, platformPolicy; enable SH and EH at TPM_RESET and

72 // TPM_RESTART

73 if(type != SU_RESUME)

74 {

75 gc.platformAuth.t.size = 0;

76 gc.platformPolicy.t.size = 0;

77 gc.platformAlg = TPM_ALG_NULL;

78

79 // enable the storage and endorsement hierarchies and the platformNV

80 gc.shEnable = gc.ehEnable = gc.phEnableNV = TRUE;

81 }

82

83 // nullProof and nullSeed are updated at every TPM_RESET

84 if((type != SU_RESTART) && (type != SU_RESUME))

85 {

86 gr.nullProof.t.size = sizeof(gr.nullProof.t.buffer);

87 CryptRandomGenerate(gr.nullProof.t.size, gr.nullProof.t.buffer);

88 gr.nullSeed.t.size = sizeof(gr.nullSeed.t.buffer);

89 CryptRandomGenerate(gr.nullSeed.t.size, gr.nullSeed.t.buffer);

90 }

91

92 return TRUE;

93 }

8.3.3.3 HierarchyGetProof()

This function finds the proof value associated with a hierarchy.It returns a pointer to the proof value.

94 TPM2B_PROOF *

95 HierarchyGetProof(

96 TPMI_RH_HIERARCHY hierarchy // IN: hierarchy constant

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 295

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

97)

98 {

99 TPM2B_PROOF *proof = NULL;

100

101 switch(hierarchy)

102 {

103 case TPM_RH_PLATFORM:

104 // phProof for TPM_RH_PLATFORM

105 proof = &gp.phProof;

106 break;

107 case TPM_RH_ENDORSEMENT:

108 // ehProof for TPM_RH_ENDORSEMENT

109 proof = &gp.ehProof;

110 break;

111 case TPM_RH_OWNER:

112 // shProof for TPM_RH_OWNER

113 proof = &gp.shProof;

114 break;

115 default:

116 // nullProof for TPM_RH_NULL or anything else

117 proof = &gr.nullProof;

118 break;

119 }

120 return proof;

121 }

8.3.3.4 HierarchyGetPrimarySeed()

This function returns the primary seed of a hierarchy.

122 TPM2B_SEED *

123 HierarchyGetPrimarySeed(

124 TPMI_RH_HIERARCHY hierarchy // IN: hierarchy

125)

126 {

127 TPM2B_SEED *seed = NULL;

128 switch(hierarchy)

129 {

130 case TPM_RH_PLATFORM:

131 seed = &gp.PPSeed;

132 break;

133 case TPM_RH_OWNER:

134 seed = &gp.SPSeed;

135 break;

136 case TPM_RH_ENDORSEMENT:

137 seed = &gp.EPSeed;

138 break;

139 default:

140 seed = &gr.nullSeed;

141 break;

142 }

143 return seed;

144 }

8.3.3.5 HierarchyIsEnabled()

This function checks to see if a hierarchy is enabled.

Trusted Platform Module Library Part 4: Supporting Routines

Page 296 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

NOTE: The TPM_RH_NULL hierarchy is always enabled.

Return Value Meaning

TRUE(1) hierarchy is enabled

FALSE(0) hierarchy is disabled

145 BOOL

146 HierarchyIsEnabled(

147 TPMI_RH_HIERARCHY hierarchy // IN: hierarchy

148)

149 {

150 BOOL enabled = FALSE;

151

152 switch(hierarchy)

153 {

154 case TPM_RH_PLATFORM:

155 enabled = g_phEnable;

156 break;

157 case TPM_RH_OWNER:

158 enabled = gc.shEnable;

159 break;

160 case TPM_RH_ENDORSEMENT:

161 enabled = gc.ehEnable;

162 break;

163 case TPM_RH_NULL:

164 enabled = TRUE;

165 break;

166 default:

167 enabled = FALSE;

168 break;

169 }

170 return enabled;

171 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 297

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.4 NvDynamic.c

8.4.1 Introduction

The NV memory is divided into two area: dynamic space for user defined NV indexes and evict objects,

and reserved space for TPM persistent and state save data.

The entries in dynamic space are a linked list of entries. Each entry has, as its first field, a size. If the size

field is zero, it marks the end of the list.

An Index allocation will contain an NV_INDEX structure. If the Index does not have the orderly attribute,

the NV_INDEX is followed immediately by the NV data.

An evict object entry contains a handle followed by an OBJECT structure. This results in both the Index

and Evict Object having an identifying handle as the first field following the size field.

When an Index has the orderly attribute, the data is kept in RAM. This RAM is saved to backing store in

NV memory on any orderly shutdown. The entries in orderly memory are also a linked list using a size

field as the first entry.

The attributes of an orderly index are maintained in RAM memory in order to reduce the number of NV

writes needed for orderly data. When an orderly index is created, an entry is made in the dynamic NV

memory space that holds the Index authorizations (authPolicy and authValue) and the size of the data.

This entry is only modified if the authValue of the index is changed. The more volatile data of the index is

kept in RAM. When an orderly Index is created or deleted, the RAM data is copied to NV backing store so

that the image in the backing store matches the layout of RAM. In normal operation. The RAM data is

also copied on any orderly shutdown. In normal operation, the only other reason for writing to the backing

store for RAM is when a counter is first written (TPMA_NV_WRITTEN changes from CLEAR to SET) or

when a counter "rolls over."

Static space contains items that are individually modifiable. The values are in the gp

PERSISTEND_DATA structure in RAM and mapped to locations in NV.

8.4.2 Includes, Defines and Data Definitions

1 #define NV_C

2 #include "Tpm.h"

8.4.3 Local Functions

8.4.3.1 NvNext()

This function provides a method to traverse every data entry in NV dynamic area.

To begin with, parameter iter should be initialized to NV_REF_INIT indicating the first element. Every time

this function is called, the value in iter would be adjusted pointing to the next element in traversal. If there

is no next element, iter value would be 0. This function returns the address of the 'data entry' pointed by

the iter. If there is no more element in the set, a 0 value is returned indicating the end of traversal.

3 static NV_REF

4 NvNext(

5 NV_REF *iter, // IN/OUT: the list iterator

6 TPM_HANDLE *handle // OUT: the handle of the next item.

7)

8 {

9 NV_REF currentAddr;

10 NV_ENTRY_HEADER header;

11 //

12 // If iterator is at the beginning of list

Trusted Platform Module Library Part 4: Supporting Routines

Page 298 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

13 if(*iter == NV_REF_INIT)

14 {

15 // Initialize iterator

16 *iter = NV_USER_DYNAMIC;

17 }

18 // Step over the size field and point to the handle

19 currentAddr = *iter + sizeof(UINT32);

20

21 // read the header of the next entry

22 NvRead(&header, *iter, sizeof(NV_ENTRY_HEADER));

23

24 // if the size field is zero, then we have hit the end of the list

25 if(header.size == 0)

26 // leave the *iter pointing at the end of the list

27 return 0;

28 // advance the header by the size of the entry

29 *iter += header.size;

30

31 if(handle != NULL)

32 *handle = header.handle;

33 return currentAddr;

34 }

8.4.3.2 NvNextByType()

This function returns a reference to the next NV entry of the desired type

Return Value Meaning

0 end of list

0 the next entry of the indicated type

35 static NV_REF

36 NvNextByType(

37 TPM_HANDLE *handle, // OUT: the handle of the found type

38 NV_REF *iter, // IN: the iterator

39 TPM_HT type // IN: the handle type to look for

40)

41 {

42 NV_REF addr;

43 TPM_HANDLE nvHandle;

44 //

45 while((addr = NvNext(iter, &nvHandle)) != 0)

46 {

47 // addr: the address of the location containing the handle of the value

48 // iter: the next location.

49 if(HandleGetType(nvHandle) == type)

50 break;

51 }

52 if(handle != NULL)

53 *handle = nvHandle;

54 return addr;

55 }

8.4.3.3 NvNextIndex()

This function returns the reference to the next NV Index entry. A value of 0 indicates the end of the list.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 299

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

0 end of list

0 the next reference

56 #define NvNextIndex(handle, iter) \

57 NvNextByType(handle, iter, TPM_HT_NV_INDEX)

8.4.3.4 NvNextEvict()

This function returns the offset in NV of the next evict object entry. A value of 0 indicates the end of the

list.

58 #define NvNextEvict(handle, iter) \

59 NvNextByType(handle, iter, TPM_HT_PERSISTENT)

8.4.3.5 NvGetEnd()

Function to find the end of the NV dynamic data list

60 static NV_REF

61 NvGetEnd(

62 void

63)

64 {

65 NV_REF iter = NV_REF_INIT;

66 NV_REF currentAddr;

67 //

68 // Scan until the next address is 0

69 while((currentAddr = NvNext(&iter, NULL)) != 0);

70 return iter;

71 }

8.4.3.6 NvGetFreeBytes

This function returns the number of free octets in NV space.

72 static UINT32

73 NvGetFreeBytes(

74 void

75)

76 {

77 // This does not have an overflow issue because NvGetEnd() cannot return a value

78 // that is larger than s_evictNvEnd. This is because there is always a 'stop'

79 // word in the NV memory that terminates the search for the end before the

80 // value can go past s_evictNvEnd.

81 return s_evictNvEnd - NvGetEnd();

82 }

8.4.3.7 NvTestSpace()

This function will test if there is enough space to add a new entity.

Trusted Platform Module Library Part 4: Supporting Routines

Page 300 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Return Value Meaning

TRUE(1) space available

FALSE(0) no enough space

83 static BOOL

84 NvTestSpace(

85 UINT32 size, // IN: size of the entity to be added

86 BOOL isIndex, // IN: TRUE if the entity is an index

87 BOOL isCounter // IN: TRUE if the index is a counter

88)

89 {

90 UINT32 remainBytes = NvGetFreeBytes();

91 UINT32 reserved = sizeof(UINT32) // size of the forward pointer

92 + sizeof(NV_LIST_TERMINATOR);

93 //

94 // Do a compile time sanity check on the setting for NV_MEMORY_SIZE

95 #if NV_MEMORY_SIZE < 1024

96 #error "NV_MEMORY_SIZE probably isn't large enough"

97 #endif

98

99 // For NV Index, need to make sure that we do not allocate an Index if this

100 // would mean that the TPM cannot allocate the minimum number of evict

101 // objects.

102 if(isIndex)

103 {

104 // Get the number of persistent objects allocated

105 UINT32 persistentNum = NvCapGetPersistentNumber();

106

107 // If we have not allocated the requisite number of evict objects, then we

108 // need to reserve space for them.

109 // NOTE: some of this is not written as simply as it might seem because

110 // the values are all unsigned and subtracting needs to be done carefully

111 // so that an underflow doesn't cause problems.

112 if(persistentNum < MIN_EVICT_OBJECTS)

113 reserved += (MIN_EVICT_OBJECTS - persistentNum) * NV_EVICT_OBJECT_SIZE;

114 }

115 // If this is not an index or is not a counter, reserve space for the

116 // required number of counter indexes

117 if(!isIndex || !isCounter)

118 {

119 // Get the number of counters

120 UINT32 counterNum = NvCapGetCounterNumber();

121

122 // If the required number of counters have not been allocated, reserved

123 // space for the extra needed counters

124 if(counterNum < MIN_COUNTER_INDICES)

125 reserved += (MIN_COUNTER_INDICES - counterNum) * NV_INDEX_COUNTER_SIZE;

126 }

127 // Check that the requested allocation will fit after making sure that there

128 // will be no chance of overflow

129 return ((reserved < remainBytes)

130 && (size <= remainBytes)

131 && (size + reserved <= remainBytes));

132 }

8.4.3.8 NvWriteNvListEnd()

Function to write the list terminator.

133 NV_REF

134 NvWriteNvListEnd(

135 NV_REF end

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 301

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

136)

137 {

138 // Marker is initialized with zeros

139 BYTE listEndMarker[sizeof(NV_LIST_TERMINATOR)] = {0};

140 UINT64 maxCount = NvReadMaxCount();

141 //

142 // This is a constant check that can be resolved at compile time.

143 cAssert(sizeof(UINT64) <= sizeof(NV_LIST_TERMINATOR) - sizeof(UINT32));

144

145 // Copy the maxCount value to the marker buffer

146 MemoryCopy(&listEndMarker[sizeof(UINT32)], &maxCount, sizeof(UINT64));

147 pAssert(end + sizeof(NV_LIST_TERMINATOR) <= s_evictNvEnd);

148

149 // Write it to memory

150 NvWrite(end, sizeof(NV_LIST_TERMINATOR), &listEndMarker);

151 return end + sizeof(NV_LIST_TERMINATOR);

152 }

8.4.3.9 NvAdd()

This function adds a new entity to NV.

This function requires that there is enough space to add a new entity (i.e., that NvTestSpace() has been

called and the available space is at least as large as the required space).

The totalSize will be the size of entity. If a handle is added, this function will increase the size accordingly.

153 static TPM_RC

154 NvAdd(

155 UINT32 totalSize, // IN: total size needed for this entity For

156 // evict object, totalSize is the same as

157 // bufferSize. For NV Index, totalSize is

158 // bufferSize plus index data size

159 UINT32 bufferSize, // IN: size of initial buffer

160 TPM_HANDLE handle, // IN: optional handle

161 BYTE *entity // IN: initial buffer

162)

163 {

164 NV_REF newAddr; // IN: where the new entity will start

165 NV_REF nextAddr;

166 //

167 RETURN_IF_NV_IS_NOT_AVAILABLE;

168

169 // Get the end of data list

170 newAddr = NvGetEnd();

171

172 // Step over the forward pointer

173 nextAddr = newAddr + sizeof(UINT32);

174

175 // Optionally write the handle. For indexes, the handle is TPM_RH_UNASSIGNED

176 // so that the handle in the nvIndex is used instead of writing this value

177 if(handle != TPM_RH_UNASSIGNED)

178 {

179 NvWrite((UINT32)nextAddr, sizeof(TPM_HANDLE), &handle);

180 nextAddr += sizeof(TPM_HANDLE);

181 }

182 // Write entity data

183 NvWrite((UINT32)nextAddr, bufferSize, entity);

184

185 // Advance the pointer by the amount of the total

186 nextAddr += totalSize;

187

188 // Finish by writing the link value

189

190 // Write the next offset (relative addressing)

Trusted Platform Module Library Part 4: Supporting Routines

Page 302 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

191 totalSize = nextAddr - newAddr;

192

193 // Write link value

194 NvWrite((UINT32)newAddr, sizeof(UINT32), &totalSize);

195

196 // Write the list terminator

197 NvWriteNvListEnd(nextAddr);

198

199 return TPM_RC_SUCCESS;

200 }

8.4.3.10 NvDelete()

This function is used to delete an NV Index or persistent object from NV memory.

201 static TPM_RC

202 NvDelete(

203 NV_REF entityRef // IN: reference to entity to be deleted

204)

205 {

206 UINT32 entrySize;

207 // adjust entityAddr to back up and point to the forward pointer

208 NV_REF entryRef = entityRef - sizeof(UINT32);

209 NV_REF endRef = NvGetEnd();

210 NV_REF nextAddr; // address of the next entry

211 //

212 RETURN_IF_NV_IS_NOT_AVAILABLE;

213

214 // Get the offset of the next entry. That is, back up and point to the size

215 // field of the entry

216 NvRead(&entrySize, entryRef, sizeof(UINT32));

217

218 // The next entry after the one being deleted is at a relative offset

219 // from the current entry

220 nextAddr = entryRef + entrySize;

221

222 // If this is not the last entry, move everything up

223 if(nextAddr < endRef)

224 {

225 pAssert(nextAddr > entryRef);

226 _plat__NvMemoryMove(nextAddr,

227 entryRef,

228 (endRef - nextAddr));

229 }

230 // The end of the used space is now moved up by the amount of space we just

231 // reclaimed

232 endRef -= entrySize;

233

234 // Write the end marker, and make the new end equal to the first byte after

235 // the just added end value. This will automatically update the NV value for

236 // maxCounter.

237 // NOTE: This is the call that sets flag to cause NV to be updated

238 endRef = NvWriteNvListEnd(endRef);

239

240 // Clear the reclaimed memory

241 _plat__NvMemoryClear(endRef, entrySize);

242

243 return TPM_RC_SUCCESS;

244 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 303

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.4.4 RAM-based NV Index Data Access Functions

8.4.4.1 Introduction

The data layout in ram buffer is {size of(NV_handle + attributes + data NV_handle, attributes, data} for

each NV Index data stored in RAM.

NV storage associated with orderly data is updated when a NV Index is added but NOT when the data or

attributes are changed. Orderly data is only updated to NV on an orderly shutdown (TPM2_Shutdown())

8.4.4.2 NvRamNext()

This function is used to iterate trough the list of Ram Index values. *iter needs to be initialized by calling

245 static NV_RAM_REF

246 NvRamNext(

247 NV_RAM_REF *iter, // IN/OUT: the list iterator

248 TPM_HANDLE *handle // OUT: the handle of the next item.

249)

250 {

251 NV_RAM_REF currentAddr;

252 NV_RAM_HEADER header;

253 //

254 // If iterator is at the beginning of list

255 if(*iter == NV_RAM_REF_INIT)

256 {

257 // Initialize iterator

258 *iter = &s_indexOrderlyRam[0];

259 }

260 // if we are going to return what the iter is currently pointing to...

261 currentAddr = *iter;

262

263 // If iterator reaches the end of NV space, then don't advance and return

264 // that we are at the end of the list. The end of the list occurs when

265 // we don't have space for a size and a handle

266 if(currentAddr + sizeof(NV_RAM_HEADER) > RAM_ORDERLY_END)

267 return NULL;

268 // read the header of the next entry

269 MemoryCopy(&header, currentAddr, sizeof(NV_RAM_HEADER));

270

271 // if the size field is zero, then we have hit the end of the list

272 if(header.size == 0)

273 // leave the *iter pointing at the end of the list

274 return NULL;

275 // advance the header by the size of the entry

276 *iter = currentAddr + header.size;

277

278 // pAssert(*iter <= RAM_ORDERLY_END);

279 if(handle != NULL)

280 *handle = header.handle;

281 return currentAddr;

282 }

8.4.4.3 NvRamGetEnd()

This routine performs the same function as NvGetEnd() but for the RAM data.

283 static NV_RAM_REF

284 NvRamGetEnd(

285 void

286)

Trusted Platform Module Library Part 4: Supporting Routines

Page 304 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

287 {

288 NV_RAM_REF iter = NV_RAM_REF_INIT;

289 NV_RAM_REF currentAddr;

290 //

291 // Scan until the next address is 0

292 while((currentAddr = NvRamNext(&iter, NULL)) != 0);

293 return iter;

294 }

8.4.4.4 NvRamTestSpaceIndex()

This function indicates if there is enough RAM space to add a data for a new NV Index.

Return Value Meaning

TRUE(1) space available

FALSE(0) no enough space

295 static BOOL

296 NvRamTestSpaceIndex(

297 UINT32 size // IN: size of the data to be added to RAM

298)

299 {

300 UINT32 remaining = (UINT32)(RAM_ORDERLY_END - NvRamGetEnd());

301 UINT32 needed = sizeof(NV_RAM_HEADER) + size;

302 //

303 // NvRamGetEnd points to the next available byte.

304 return remaining >= needed;

305 }

8.4.4.5 NvRamGetIndex()

This function returns the offset of NV data in the RAM buffer

This function requires that NV Index is in RAM. That is, the index must be known to exist.

306 static NV_RAM_REF

307 NvRamGetIndex(

308 TPMI_RH_NV_INDEX handle // IN: NV handle

309)

310 {

311 NV_RAM_REF iter = NV_RAM_REF_INIT;

312 NV_RAM_REF currentAddr;

313 TPM_HANDLE foundHandle;

314 //

315 while((currentAddr = NvRamNext(&iter, &foundHandle)) != 0)

316 {

317 if(handle == foundHandle)

318 break;

319 }

320 return currentAddr;

321 }

8.4.4.6 NvUpdateIndexOrderlyData()

This function is used to cause an update of the orderly data to the NV backing store.

322 void

323 NvUpdateIndexOrderlyData(

324 void

325)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 305

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

326 {

327 // Write reserved RAM space to NV

328 NvWrite(NV_INDEX_RAM_DATA, sizeof(s_indexOrderlyRam), s_indexOrderlyRam);

329 }

8.4.4.7 NvAddRAM()

This function adds a new data area to RAM.

This function requires that enough free RAM space is available to add the new data.

This function should be called after the NV Index space has been updated and the index removed. This

insures that NV is available so that checking for NV availability is not required during this function.

330 static void

331 NvAddRAM(

332 TPMS_NV_PUBLIC *index // IN: the index descriptor

333)

334 {

335 NV_RAM_HEADER header;

336 NV_RAM_REF end = NvRamGetEnd();

337 //

338 header.size = sizeof(NV_RAM_HEADER) + index->dataSize;

339 header.handle = index->nvIndex;

340 MemoryCopy(&header.attributes, &index->attributes, sizeof(TPMA_NV));

341

342 pAssert(ORDERLY_RAM_ADDRESS_OK(end, header.size));

343

344 // Copy the header to the memory

345 MemoryCopy(end, &header, sizeof(NV_RAM_HEADER));

346

347 // Clear the data area (just in case)

348 MemorySet(end + sizeof(NV_RAM_HEADER), 0, index->dataSize);

349

350 // Step over this new entry

351 end += header.size;

352

353 // If the end marker will fit, add it

354 if(end + sizeof(UINT32) < RAM_ORDERLY_END)

355 MemorySet(end, 0, sizeof(UINT32));

356 // Write reserved RAM space to NV to reflect the newly added NV Index

357 SET_NV_UPDATE(UT_ORDERLY);

358

359 return;

360 }

8.4.4.8 NvDeleteRAM()

This function is used to delete a RAM-backed NV Index data area. The space used by the entry are

overwritten by the contents of the Index data that comes after (the data is moved up to fill the hole left by

removing this index. The reclaimed space is cleared to zeros. This function assumes the data of NV Index

exists in RAM.

This function should be called after the NV Index space has been updated and the index removed. This

insures that NV is available so that checking for NV availability is not required during this function.

361 static void

362 NvDeleteRAM(

363 TPMI_RH_NV_INDEX handle // IN: NV handle

364)

365 {

366 NV_RAM_REF nodeAddress;

367 NV_RAM_REF nextNode;

Trusted Platform Module Library Part 4: Supporting Routines

Page 306 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

368 UINT32 size;

369 NV_RAM_REF lastUsed = NvRamGetEnd();

370 //

371 nodeAddress = NvRamGetIndex(handle);

372

373 pAssert(nodeAddress != 0);

374

375 // Get node size

376 MemoryCopy(&size, nodeAddress, sizeof(size));

377

378 // Get the offset of next node

379 nextNode = nodeAddress + size;

380

381 // Copy the data

382 MemoryCopy(nodeAddress, nextNode, (int)(lastUsed - nextNode));

383

384 // Clear out the reclaimed space

385 MemorySet(lastUsed - size, 0, size);

386

387 // Write reserved RAM space to NV to reflect the newly delete NV Index

388 SET_NV_UPDATE(UT_ORDERLY);

389

390 return;

391 }

8.4.4.9 NvReadIndex()

This function is used to read the NV Index NV_INDEX. This is used so that the index information can be

compressed and only this function would be needed to decompress it. Mostly, compression would only be

able to save the space needed by the policy.

392 void

393 NvReadNvIndexInfo(

394 NV_REF ref, // IN: points to NV where index is located

395 NV_INDEX *nvIndex // OUT: place to receive index data

396)

397 {

398 pAssert(nvIndex != NULL);

399 NvRead(nvIndex, ref, sizeof(NV_INDEX));

400 return;

401 }

8.4.4.10 NvReadObject()

This function is used to read a persistent object. This is used so that the object information can be

compressed and only this function would be needed to uncompress it.

402 void

403 NvReadObject(

404 NV_REF ref, // IN: points to NV where index is located

405 OBJECT *object // OUT: place to receive the object data

406)

407 {

408 NvRead(object, (ref + sizeof(TPM_HANDLE)), sizeof(OBJECT));

409 return;

410 }

8.4.4.11 NvFindEvict()

This function will return the NV offset of an evict object

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 307

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

0 evict object not found

0 offset of evict object

411 static NV_REF

412 NvFindEvict(

413 TPM_HANDLE nvHandle,

414 OBJECT *object

415)

416 {

417 NV_REF found = NvFindHandle(nvHandle);

418 //

419 // If we found the handle and the request included an object pointer, fill it in

420 if(found != 0 && object != NULL)

421 NvReadObject(found, object);

422 return found;

423 }

8.4.4.12 NvIndexIsDefined()

See if an index is already defined

424 BOOL

425 NvIndexIsDefined(

426 TPM_HANDLE nvHandle // IN: Index to look for

427)

428 {

429 return (NvFindHandle(nvHandle) != 0);

430 }

8.4.4.13 NvConditionallyWrite()

Function to check if the data to be written has changed and write it if it has

Error Returns Meaning

TPM_RC_NV_RATE NV is unavailable because of rate limit

TPM_RC_NV_UNAVAILABLE NV is inaccessible

431 static TPM_RC

432 NvConditionallyWrite(

433 NV_REF entryAddr, // IN: stating address

434 UINT32 size, // IN: size of the data to write

435 void *data // IN: the data to write

436)

437 {

438 // If the index data is actually changed, then a write to NV is required

439 if(_plat__NvIsDifferent(entryAddr, size, data))

440 {

441 // Write the data if NV is available

442 if(g_NvStatus == TPM_RC_SUCCESS)

443 {

444 NvWrite(entryAddr, size, data);

445 }

446 return g_NvStatus;

447 }

448 return TPM_RC_SUCCESS;

449 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 308 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.4.4.14 NvReadNvIndexAttributes()

This function returns the attributes of an NV Index.

450 static TPMA_NV

451 NvReadNvIndexAttributes(

452 NV_REF locator // IN: reference to an NV index

453)

454 {

455 TPMA_NV attributes;

456 //

457 NvRead(&attributes,

458 locator + offsetof(NV_INDEX, publicArea.attributes),

459 sizeof(TPMA_NV));

460 return attributes;

461 }

8.4.4.15 NvReadRamIndexAttributes()

This function returns the attributes from the RAM header structure. This function is used to deal with the

fact that the header structure is only byte aligned.

462 static TPMA_NV

463 NvReadRamIndexAttributes(

464 NV_RAM_REF ref // IN: pointer to a NV_RAM_HEADER

465)

466 {

467 TPMA_NV attributes;

468 //

469 MemoryCopy(&attributes, ref + offsetof(NV_RAM_HEADER, attributes),

470 sizeof(TPMA_NV));

471 return attributes;

472 }

8.4.4.16 NvWriteNvIndexAttributes()

This function is used to write just the attributes of an index to NV.

Error Returns Meaning

TPM_RC_NV_RATE NV is rate limiting so retry

TPM_RC_NV_UNAVAILABLE NV is not available

473 static TPM_RC

474 NvWriteNvIndexAttributes(

475 NV_REF locator, // IN: location of the index

476 TPMA_NV attributes // IN: attributes to write

477)

478 {

479 return NvConditionallyWrite(

480 locator + offsetof(NV_INDEX, publicArea.attributes),

481 sizeof(TPMA_NV),

482 &attributes);

483 }

8.4.4.17 NvWriteRamIndexAttributes()

This function is used to write the index attributes into an unaligned structure

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 309

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

484 static void

485 NvWriteRamIndexAttributes(

486 NV_RAM_REF ref, // IN: address of the header

487 TPMA_NV attributes // IN: the attributes to write

488)

489 {

490 MemoryCopy(ref + offsetof(NV_RAM_HEADER, attributes), &attributes,

491 sizeof(TPMA_NV));

492 return;

493 }

8.4.5 Externally Accessible Functions

8.4.5.1 NvIsPlatformPersistentHandle()

This function indicates if a handle references a persistent object in the range belonging to the platform.

Return Value Meaning

TRUE(1) handle references a platform persistent object and may reference an
owner persistent object either

FALSE(0) handle does not reference platform persistent object

494 BOOL

495 NvIsPlatformPersistentHandle(

496 TPM_HANDLE handle // IN: handle

497)

498 {

499 return (handle >= PLATFORM_PERSISTENT && handle <= PERSISTENT_LAST);

500 }

8.4.5.2 NvIsOwnerPersistentHandle()

This function indicates if a handle references a persistent object in the range belonging to the owner.

Return Value Meaning

TRUE(1) handle is owner persistent handle

FALSE(0) handle is not owner persistent handle and may not be a persistent
handle at all

501 BOOL

502 NvIsOwnerPersistentHandle(

503 TPM_HANDLE handle // IN: handle

504)

505 {

506 return (handle >= PERSISTENT_FIRST && handle < PLATFORM_PERSISTENT);

507 }

8.4.5.3 NvIndexIsAccessible()

This function validates that a handle references a defined NV Index and that the Index is currently

accessible.

Trusted Platform Module Library Part 4: Supporting Routines

Page 310 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Error Returns Meaning

TPM_RC_HANDLE the handle points to an undefined NV Index If shEnable is CLEAR,
this would include an index created using ownerAuth. If phEnableNV
is CLEAR, this would include and index created using platformAuth

TPM_RC_NV_READLOCKED Index is present but locked for reading and command does not write
to the index

TPM_RC_NV_WRITELOCKED Index is present but locked for writing and command writes to the
index

508 TPM_RC

509 NvIndexIsAccessible(

510 TPMI_RH_NV_INDEX handle // IN: handle

511)

512 {

513 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

514 //

515 if(nvIndex == NULL)

516 // If index is not found, return TPM_RC_HANDLE

517 return TPM_RC_HANDLE;

518 if(gc.shEnable == FALSE || gc.phEnableNV == FALSE)

519 {

520 // if shEnable is CLEAR, an ownerCreate NV Index should not be

521 // indicated as present

522 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, PLATFORMCREATE))

523 {

524 if(gc.shEnable == FALSE)

525 return TPM_RC_HANDLE;

526 }

527 // if phEnableNV is CLEAR, a platform created Index should not

528 // be visible

529 else if(gc.phEnableNV == FALSE)

530 return TPM_RC_HANDLE;

531 }

532 #if 0 // Writelock test for debug

533 // If the Index is write locked and this is an NV Write operation...

534 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITELOCKED)

535 && IsWriteOperation(commandIndex))

536 {

537 // then return a locked indication unless the command is TPM2_NV_WriteLock

538 if(GetCommandCode(commandIndex) != TPM_CC_NV_WriteLock)

539 return TPM_RC_NV_LOCKED;

540 return TPM_RC_SUCCESS;

541 }

542 #endif

543 #if 0 // Readlock Test for debug

544 // If the Index is read locked and this is an NV Read operation...

545 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, READLOCKED)

546 && IsReadOperation(commandIndex))

547 {

548 // then return a locked indication unless the command is TPM2_NV_ReadLock

549 if(GetCommandCode(commandIndex) != TPM_CC_NV_ReadLock)

550 return TPM_RC_NV_LOCKED;

551 }

552 #endif

553 // NV Index is accessible

554 return TPM_RC_SUCCESS;

555 }

8.4.5.4 NvGetEvictObject()

This function is used to dereference an evict object handle and get a pointer to the object.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 311

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Error Returns Meaning

TPM_RC_HANDLE the handle does not point to an existing persistent object

556 TPM_RC

557 NvGetEvictObject(

558 TPM_HANDLE handle, // IN: handle

559 OBJECT *object // OUT: object data

560)

561 {

562 NV_REF entityAddr; // offset points to the entity

563 //

564 // Find the address of evict object and copy to object

565 entityAddr = NvFindEvict(handle, object);

566

567 // whether there is an error or not, make sure that the evict

568 // status of the object is set so that the slot will get freed on exit

569 // Must do this after NvFindEvict loads the object

570 object->attributes.evict = SET;

571

572 // If handle is not found, return an error

573 if(entityAddr == 0)

574 return TPM_RC_HANDLE;

575 return TPM_RC_SUCCESS;

576 }

8.4.5.5 NvIndexCacheInit()

Function to initialize the Index cache

577 void

578 NvIndexCacheInit(

579 void

580)

581 {

582 s_cachedNvRef = NV_REF_INIT;

583 s_cachedNvRamRef = NV_RAM_REF_INIT;

584 s_cachedNvIndex.publicArea.nvIndex = TPM_RH_UNASSIGNED;

585 return;

586 }

8.4.5.6 NvGetIndexData()

This function is used to access the data in an NV Index. The data is returned as a byte sequence.

This function requires that the NV Index be defined, and that the required data is within the data range. It

also requires that TPMA_NV_WRITTEN of the Index is SET.

587 void

588 NvGetIndexData(

589 NV_INDEX *nvIndex, // IN: the in RAM index descriptor

590 NV_REF locator, // IN: where the data is located

591 UINT32 offset, // IN: offset of NV data

592 UINT16 size, // IN: number of octets of NV data to read

593 void *data // OUT: data buffer

594)

595 {

596 TPMA_NV nvAttributes;

597 //

598 pAssert(nvIndex != NULL);

599

600 nvAttributes = nvIndex->publicArea.attributes;

Trusted Platform Module Library Part 4: Supporting Routines

Page 312 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

601

602 pAssert(IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITTEN));

603

604 if(IS_ATTRIBUTE(nvAttributes, TPMA_NV, ORDERLY))

605 {

606 // Get data from RAM buffer

607 NV_RAM_REF ramAddr = NvRamGetIndex(nvIndex->publicArea.nvIndex);

608 pAssert(ramAddr != 0 && (size <=

609 ((NV_RAM_HEADER *)ramAddr)->size - sizeof(NV_RAM_HEADER) - offset));

610 MemoryCopy(data, ramAddr + sizeof(NV_RAM_HEADER) + offset, size);

611 }

612 else

613 {

614 // Validate that read falls within range of the index

615 pAssert(offset <= nvIndex->publicArea.dataSize

616 && size <= (nvIndex->publicArea.dataSize - offset));

617 NvRead(data, locator + sizeof(NV_INDEX) + offset, size);

618 }

619 return;

620 }

8.4.5.7 NvHashIndexData()

This function adds Index data to a hash. It does this in parts to avoid large stack buffers.

621 void

622 NvHashIndexData(

623 HASH_STATE *hashState, // IN: Initialized hash state

624 NV_INDEX *nvIndex, // IN: Index

625 NV_REF locator, // IN: where the data is located

626 UINT32 offset, // IN: starting offset

627 UINT16 size // IN: amount to hash

628)

629 {

630 #define BUFFER_SIZE 64

631 BYTE buffer[BUFFER_SIZE];

632 if (offset > nvIndex->publicArea.dataSize)

633 return;

634 // Make sure that we don't try to read off the end.

635 if ((offset + size) > nvIndex->publicArea.dataSize)

636 size = nvIndex->publicArea.dataSize - (UINT16)offset;

637 #if BUFFER_SIZE >= MAX_NV_INDEX_SIZE

638 NvGetIndexData(nvIndex, locator, offset, size, buffer);

639 CryptDigestUpdate(hashState, size, buffer);

640 #else

641 {

642 INT16 i;

643 UINT16 readSize;

644 //

645 for (i = size; i > 0; offset += readSize, i -= readSize)

646 {

647 readSize = (i < BUFFER_SIZE) ? i : BUFFER_SIZE;

648 NvGetIndexData(nvIndex, locator, offset, readSize, buffer);

649 CryptDigestUpdate(hashState, readSize, buffer);

650 }

651 }

652 #endif // BUFFER_SIZE >= MAX_NV_INDEX_SIZE

653 #undef BUFFER_SIZE

654 }

8.4.5.8 NvGetUINT64Data()

Get data in integer format of a bit or counter NV Index.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 313

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

This function requires that the NV Index is defined and that the NV Index previously has been written.

655 UINT64

656 NvGetUINT64Data(

657 NV_INDEX *nvIndex, // IN: the in RAM index descriptor

658 NV_REF locator // IN: where index exists in NV

659)

660 {

661 UINT64 intVal;

662 //

663 // Read the value and convert it to internal format

664 NvGetIndexData(nvIndex, locator, 0, 8, &intVal);

665 return BYTE_ARRAY_TO_UINT64(((BYTE *)&intVal));

666 }

8.4.5.9 NvWriteIndexAttributes()

This function is used to write just the attributes of an index.

Error Returns Meaning

TPM_RC_NV_RATE NV is rate limiting so retry

TPM_RC_NV_UNAVAILABLE NV is not available

667 TPM_RC

668 NvWriteIndexAttributes(

669 TPM_HANDLE handle,

670 NV_REF locator, // IN: location of the index

671 TPMA_NV attributes // IN: attributes to write

672)

673 {

674 TPM_RC result;

675 //

676 if(IS_ATTRIBUTE(attributes, TPMA_NV, ORDERLY))

677 {

678 NV_RAM_REF ram = NvRamGetIndex(handle);

679 NvWriteRamIndexAttributes(ram, attributes);

680 result = TPM_RC_SUCCESS;

681 }

682 else

683 {

684 result = NvWriteNvIndexAttributes(locator, attributes);

685 }

686 return result;

687 }

8.4.5.10 NvWriteIndexAuth()

This function is used to write the authValue of an index. It is used by TPM2_NV_ChangeAuth()

Error Returns Meaning

TPM_RC_NV_RATE NV is rate limiting so retry

TPM_RC_NV_UNAVAILABLE NV is not available

688 TPM_RC

689 NvWriteIndexAuth(

690 NV_REF locator, // IN: location of the index

691 TPM2B_AUTH *authValue // IN: the authValue to write

692)

Trusted Platform Module Library Part 4: Supporting Routines

Page 314 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

693 {

694 TPM_RC result;

695 //

696 // If the locator is pointing to the cached index value...

697 if(locator == s_cachedNvRef)

698 {

699 // copy the authValue to the cached index so it will be there if we

700 // look for it. This is a safety thing.

701 MemoryCopy2B(&s_cachedNvIndex.authValue.b, &authValue->b,

702 sizeof(s_cachedNvIndex.authValue.t.buffer));

703 }

704 result = NvConditionallyWrite(

705 locator + offsetof(NV_INDEX, authValue),

706 sizeof(UINT16) + authValue->t.size,

707 authValue);

708 return result;

709 }

8.4.5.11 NvGetIndexInfo()

This function loads the nvIndex Info into the NV cache and returns a pointer to the NV_INDEX. If the

returned value is zero, the index was not found. The locator parameter, if not NULL, will be set to the

offset in NV of the Index (the location of the handle of the Index).

This function will set the index cache. If the index is orderly, the attributes from RAM are substituted for

the attributes in the cached index

710 NV_INDEX *

711 NvGetIndexInfo(

712 TPM_HANDLE nvHandle, // IN: the index handle

713 NV_REF *locator // OUT: location of the index

714)

715 {

716 if(s_cachedNvIndex.publicArea.nvIndex != nvHandle)

717 {

718 s_cachedNvIndex.publicArea.nvIndex = TPM_RH_UNASSIGNED;

719 s_cachedNvRamRef = 0;

720 s_cachedNvRef = NvFindHandle(nvHandle);

721 if(s_cachedNvRef == 0)

722 return NULL;

723 NvReadNvIndexInfo(s_cachedNvRef, &s_cachedNvIndex);

724 if(IS_ATTRIBUTE(s_cachedNvIndex.publicArea.attributes, TPMA_NV, ORDERLY))

725 {

726 s_cachedNvRamRef = NvRamGetIndex(nvHandle);

727 s_cachedNvIndex.publicArea.attributes =

728 NvReadRamIndexAttributes(s_cachedNvRamRef);

729 }

730 }

731 if(locator != NULL)

732 *locator = s_cachedNvRef;

733 return &s_cachedNvIndex;

734 }

8.4.5.12 NvWriteIndexData()

This function is used to write NV index data. It is intended to be used to update the data associated with

the default index.

This function requires that the NV Index is defined, and the data is within the defined data range for the

index.

Index data is only written due to a command that modifies the data in a single index. There is no case

where changes are made to multiple indexes data at the same time. Multiple attributes may be change

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 315

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

but not multiple index data. This is important because we will normally be handling the index for which we

have the cached pointer values.

Error Returns Meaning

TPM_RC_NV_RATE NV is rate limiting so retry

TPM_RC_NV_UNAVAILABLE NV is not available

735 TPM_RC

736 NvWriteIndexData(

737 NV_INDEX *nvIndex, // IN: the description of the index

738 UINT32 offset, // IN: offset of NV data

739 UINT32 size, // IN: size of NV data

740 void *data // IN: data buffer

741)

742 {

743 TPM_RC result = TPM_RC_SUCCESS;

744 //

745 pAssert(nvIndex != NULL);

746 // Make sure that this is dealing with the 'default' index.

747 // Note: it is tempting to change the calling sequence so that the 'default' is

748 // presumed.

749 pAssert(nvIndex->publicArea.nvIndex == s_cachedNvIndex.publicArea.nvIndex);

750

751 // Validate that write falls within range of the index

752 pAssert(offset <= nvIndex->publicArea.dataSize

753 && size <= (nvIndex->publicArea.dataSize - offset));

754

755 // Update TPMA_NV_WRITTEN bit if necessary

756 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

757 {

758 // Update the in memory version of the attributes

759 SET_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN);

760

761 // If this is not orderly, then update the NV version of

762 // the attributes

763 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, ORDERLY))

764 {

765 result = NvWriteNvIndexAttributes(s_cachedNvRef,

766 nvIndex->publicArea.attributes);

767 if(result != TPM_RC_SUCCESS)

768 return result;

769 // If this is a partial write of an ordinary index, clear the whole

770 // index.

771 if(IsNvOrdinaryIndex(nvIndex->publicArea.attributes)

772 && (nvIndex->publicArea.dataSize > size))

773 _plat__NvMemoryClear(s_cachedNvRef + sizeof(NV_INDEX),

774 nvIndex->publicArea.dataSize);

775 }

776 else

777 {

778 // This is orderly so update the RAM version

779 MemoryCopy(s_cachedNvRamRef + offsetof(NV_RAM_HEADER, attributes),

780 &nvIndex->publicArea.attributes, sizeof(TPMA_NV));

781 // If setting WRITTEN for an orderly counter, make sure that the

782 // state saved version of the counter is saved

783 if(IsNvCounterIndex(nvIndex->publicArea.attributes))

784 SET_NV_UPDATE(UT_ORDERLY);

785 // If setting the written attribute on an ordinary index, make sure that

786 // the data is all cleared out in case there is a partial write. This

787 // is only necessary for ordinary indexes because all of the other types

788 // are always written in total.

789 else if(IsNvOrdinaryIndex(nvIndex->publicArea.attributes))

790 MemorySet(s_cachedNvRamRef + sizeof(NV_RAM_HEADER),

Trusted Platform Module Library Part 4: Supporting Routines

Page 316 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

791 0, nvIndex->publicArea.dataSize);

792 }

793 }

794 // If this is orderly data, write it to RAM

795 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, ORDERLY))

796 {

797 // Note: if this is the first write to a counter, the code above will queue

798 // the write to NV of the RAM data in order to update TPMA_NV_WRITTEN. In

799 // process of doing that write, it will also write the initial counter value

800

801 // Update RAM

802 MemoryCopy(s_cachedNvRamRef + sizeof(NV_RAM_HEADER) + offset, data, size);

803

804 // And indicate that the TPM is no longer orderly

805 g_clearOrderly = TRUE;

806 }

807 else

808 {

809 // Offset into the index to the first byte of the data to be written to NV

810 result = NvConditionallyWrite(s_cachedNvRef + sizeof(NV_INDEX) + offset,

811 size, data);

812 }

813 return result;

814 }

8.4.5.13 NvWriteUINT64Data()

This function to write back a UINT64 value. The various UINT64 values (bits, counters, and PINs) are

kept in canonical format but manipulate in native format. This takes a native format value converts it and

saves it back as in canonical format.

This function will return the value from NV or RAM depending on the type of the index (orderly or not)

815 TPM_RC

816 NvWriteUINT64Data(

817 NV_INDEX *nvIndex, // IN: the description of the index

818 UINT64 intValue // IN: the value to write

819)

820 {

821 BYTE bytes[8];

822 UINT64_TO_BYTE_ARRAY(intValue, bytes);

823 //

824 return NvWriteIndexData(nvIndex, 0, 8, &bytes);

825 }

8.4.5.14 NvGetIndexName()

This function computes the Name of an index The name buffer receives the bytes of the Name and the

return value is the number of octets in the Name.

This function requires that the NV Index is defined.

826 TPM2B_NAME *

827 NvGetIndexName(

828 NV_INDEX *nvIndex, // IN: the index over which the name is to be

829 // computed

830 TPM2B_NAME *name // OUT: name of the index

831)

832 {

833 UINT16 dataSize, digestSize;

834 BYTE marshalBuffer[sizeof(TPMS_NV_PUBLIC)];

835 BYTE *buffer;

836 HASH_STATE hashState;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 317

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

837 //

838 // Marshal public area

839 buffer = marshalBuffer;

840 dataSize = TPMS_NV_PUBLIC_Marshal(&nvIndex->publicArea, &buffer, NULL);

841

842 // hash public area

843 digestSize = CryptHashStart(&hashState, nvIndex->publicArea.nameAlg);

844 CryptDigestUpdate(&hashState, dataSize, marshalBuffer);

845

846 // Complete digest leaving room for the nameAlg

847 CryptHashEnd(&hashState, digestSize, &name->b.buffer[2]);

848

849 // Include the nameAlg

850 UINT16_TO_BYTE_ARRAY(nvIndex->publicArea.nameAlg, name->b.buffer);

851 name->t.size = digestSize + 2;

852 return name;

853 }

8.4.5.15 NvGetNameByIndexHandle()

This function is used to compute the Name of an NV Index referenced by handle.

The name buffer receives the bytes of the Name and the return value is the number of octets in the

Name.

This function requires that the NV Index is defined.

854 TPM2B_NAME *

855 NvGetNameByIndexHandle(

856 TPMI_RH_NV_INDEX handle, // IN: handle of the index

857 TPM2B_NAME *name // OUT: name of the index

858)

859 {

860 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

861 //

862 return NvGetIndexName(nvIndex, name);

863 }

8.4.5.16 NvDefineIndex()

This function is used to assign NV memory to an NV Index.

Error Returns Meaning

TPM_RC_NV_SPACE insufficient NV space

864 TPM_RC

865 NvDefineIndex(

866 TPMS_NV_PUBLIC *publicArea, // IN: A template for an area to create.

867 TPM2B_AUTH *authValue // IN: The initial authorization value

868)

869 {

870 // The buffer to be written to NV memory

871 NV_INDEX nvIndex; // the index data

872 UINT16 entrySize; // size of entry

873 TPM_RC result;

874 //

875 entrySize = sizeof(NV_INDEX);

876

877 // only allocate data space for indexes that are going to be written to NV.

878 // Orderly indexes don't need space.

879 if(!IS_ATTRIBUTE(publicArea->attributes, TPMA_NV, ORDERLY))

880 entrySize += publicArea->dataSize;

Trusted Platform Module Library Part 4: Supporting Routines

Page 318 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

881 // Check if we have enough space to create the NV Index

882 // In this implementation, the only resource limitation is the available NV

883 // space (and possibly RAM space.) Other implementation may have other

884 // limitation on counter or on NV slots

885 if(!NvTestSpace(entrySize, TRUE, IsNvCounterIndex(publicArea->attributes)))

886 return TPM_RC_NV_SPACE;

887

888 // if the index to be defined is RAM backed, check RAM space availability

889 // as well

890 if(IS_ATTRIBUTE(publicArea->attributes, TPMA_NV, ORDERLY)

891 && !NvRamTestSpaceIndex(publicArea->dataSize))

892 return TPM_RC_NV_SPACE;

893 // Copy input value to nvBuffer

894 nvIndex.publicArea = *publicArea;

895

896 // Copy the authValue

897 nvIndex.authValue = *authValue;

898

899 // Add index to NV memory

900 result = NvAdd(entrySize, sizeof(NV_INDEX), TPM_RH_UNASSIGNED,

901 (BYTE *)&nvIndex);

902 if(result == TPM_RC_SUCCESS)

903 {

904 // If the data of NV Index is RAM backed, add the data area in RAM as well

905 if(IS_ATTRIBUTE(publicArea->attributes, TPMA_NV, ORDERLY))

906 NvAddRAM(publicArea);

907 }

908 return result;

909 }

8.4.5.17 NvAddEvictObject()

This function is used to assign NV memory to a persistent object.

Error Returns Meaning

TPM_RC_NV_HANDLE the requested handle is already in use

TPM_RC_NV_SPACE insufficient NV space

910 TPM_RC

911 NvAddEvictObject(

912 TPMI_DH_OBJECT evictHandle, // IN: new evict handle

913 OBJECT *object // IN: object to be added

914)

915 {

916 TPM_HANDLE temp = object->evictHandle;

917 TPM_RC result;

918 //

919 // Check if we have enough space to add the evict object

920 // An evict object needs 8 bytes in index table + sizeof OBJECT

921 // In this implementation, the only resource limitation is the available NV

922 // space. Other implementation may have other limitation on evict object

923 // handle space

924 if(!NvTestSpace(sizeof(OBJECT) + sizeof(TPM_HANDLE), FALSE, FALSE))

925 return TPM_RC_NV_SPACE;

926

927 // Set evict attribute and handle

928 object->attributes.evict = SET;

929 object->evictHandle = evictHandle;

930

931 // Now put this in NV

932 result = NvAdd(sizeof(OBJECT), sizeof(OBJECT), evictHandle, (BYTE *)object);

933

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 319

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

934 // Put things back the way they were

935 object->attributes.evict = CLEAR;

936 object->evictHandle = temp;

937

938 return result;

939 }

8.4.5.18 NvDeleteIndex()

This function is used to delete an NV Index.

Error Returns Meaning

TPM_RC_NV_UNAVAILABLE NV is not accessible

TPM_RC_NV_RATE NV is rate limiting

940 TPM_RC

941 NvDeleteIndex(

942 NV_INDEX *nvIndex, // IN: an in RAM index descriptor

943 NV_REF entityAddr // IN: location in NV

944)

945 {

946 TPM_RC result;

947 //

948 if(nvIndex != NULL)

949 {

950 // Whenever a counter is deleted, make sure that the MaxCounter value is

951 // updated to reflect the value

952 if(IsNvCounterIndex(nvIndex->publicArea.attributes)

953 && IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

954 NvUpdateMaxCount(NvGetUINT64Data(nvIndex, entityAddr));

955 result = NvDelete(entityAddr);

956 if(result != TPM_RC_SUCCESS)

957 return result;

958 // If the NV Index is RAM backed, delete the RAM data as well

959 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, ORDERLY))

960 NvDeleteRAM(nvIndex->publicArea.nvIndex);

961 NvIndexCacheInit();

962 }

963 return TPM_RC_SUCCESS;

964 }

8.4.5.19 NvDeleteEvict()

This function will delete a NV evict object. Will return success if object deleted or if it does not exist

965 TPM_RC

966 NvDeleteEvict(

967 TPM_HANDLE handle // IN: handle of entity to be deleted

968)

969 {

970 NV_REF entityAddr = NvFindEvict(handle, NULL); // pointer to entity

971 TPM_RC result = TPM_RC_SUCCESS;

972 //

973 if(entityAddr != 0)

974 result = NvDelete(entityAddr);

975 return result;

976 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 320 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.4.5.20 NvFlushHierarchy()

This function will delete persistent objects belonging to the indicated hierarchy. If the storage hierarchy is

selected, the function will also delete any NV Index defined using ownerAuth.

Error Returns Meaning

TPM_RC_NV_RATE NV is unavailable because of rate limit

TPM_RC_NV_UNAVAILABLE NV is inaccessible

977 TPM_RC

978 NvFlushHierarchy(

979 TPMI_RH_HIERARCHY hierarchy // IN: hierarchy to be flushed.

980)

981 {

982 NV_REF iter = NV_REF_INIT;

983 NV_REF currentAddr;

984 TPM_HANDLE entityHandle;

985 TPM_RC result = TPM_RC_SUCCESS;

986 //

987 while((currentAddr = NvNext(&iter, &entityHandle)) != 0)

988 {

989 if(HandleGetType(entityHandle) == TPM_HT_NV_INDEX)

990 {

991 NV_INDEX nvIndex;

992 //

993 // If flush endorsement or platform hierarchy, no NV Index would be

994 // flushed

995 if(hierarchy == TPM_RH_ENDORSEMENT || hierarchy == TPM_RH_PLATFORM)

996 continue;

997 // Get the index information

998 NvReadNvIndexInfo(currentAddr, &nvIndex);

999

1000 // For storage hierarchy, flush OwnerCreated index

1001 if(!IS_ATTRIBUTE(nvIndex.publicArea.attributes, TPMA_NV,

1002 PLATFORMCREATE))

1003 {

1004 // Delete the index (including RAM for orderly)

1005 result = NvDeleteIndex(&nvIndex, currentAddr);

1006 if(result != TPM_RC_SUCCESS)

1007 break;

1008 // Re-iterate from beginning after a delete

1009 iter = NV_REF_INIT;

1010 }

1011 }

1012 else if(HandleGetType(entityHandle) == TPM_HT_PERSISTENT)

1013 {

1014 OBJECT_ATTRIBUTES attributes;

1015 //

1016 NvRead(&attributes,

1017 (UINT32)(currentAddr

1018 + sizeof(TPM_HANDLE)

1019 + offsetof(OBJECT, attributes)),

1020 sizeof(OBJECT_ATTRIBUTES));

1021 // If the evict object belongs to the hierarchy to be flushed...

1022 if((hierarchy == TPM_RH_PLATFORM && attributes.ppsHierarchy == SET)

1023 || (hierarchy == TPM_RH_OWNER && attributes.spsHierarchy == SET)

1024 || (hierarchy == TPM_RH_ENDORSEMENT

1025 && attributes.epsHierarchy == SET))

1026 {

1027 // ...then delete the evict object

1028 result = NvDelete(currentAddr);

1029 if(result != TPM_RC_SUCCESS)

1030 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 321

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1031 // Re-iterate from beginning after a delete

1032 iter = NV_REF_INIT;

1033 }

1034 }

1035 else

1036 {

1037 FAIL(FATAL_ERROR_INTERNAL);

1038 }

1039 }

1040 return result;

1041 }

8.4.5.21 NvSetGlobalLock()

This function is used to SET the TPMA_NV_WRITELOCKED attribute for all NV indexes that have

TPMA_NV_GLOBALLOCK SET. This function is use by TPM2_NV_GlobalWriteLock().

Error Returns Meaning

TPM_RC_NV_RATE NV is unavailable because of rate limit

TPM_RC_NV_UNAVAILABLE NV is inaccessible

1042 TPM_RC

1043 NvSetGlobalLock(

1044 void

1045)

1046 {

1047 NV_REF iter = NV_REF_INIT;

1048 NV_RAM_REF ramIter = NV_RAM_REF_INIT;

1049 NV_REF currentAddr;

1050 NV_RAM_REF currentRamAddr;

1051 TPM_RC result = TPM_RC_SUCCESS;

1052 //

1053 // Check all normal indexes

1054 while((currentAddr = NvNextIndex(NULL, &iter)) != 0)

1055 {

1056 TPMA_NV attributes = NvReadNvIndexAttributes(currentAddr);

1057 //

1058 // See if it should be locked

1059 if(!IS_ATTRIBUTE(attributes, TPMA_NV, ORDERLY)

1060 && IS_ATTRIBUTE(attributes, TPMA_NV, GLOBALLOCK))

1061 {

1062 SET_ATTRIBUTE(attributes, TPMA_NV, WRITELOCKED);

1063 result = NvWriteNvIndexAttributes(currentAddr, attributes);

1064 if(result != TPM_RC_SUCCESS)

1065 return result;

1066 }

1067 }

1068 // Now search all the orderly attributes

1069 while((currentRamAddr = NvRamNext(&ramIter, NULL)) != 0)

1070 {

1071 // See if it should be locked

1072 TPMA_NV attributes = NvReadRamIndexAttributes(currentRamAddr);

1073 if(IS_ATTRIBUTE(attributes, TPMA_NV, GLOBALLOCK))

1074 {

1075 SET_ATTRIBUTE(attributes, TPMA_NV, WRITELOCKED);

1076 NvWriteRamIndexAttributes(currentRamAddr, attributes);

1077 }

1078 }

1079 return result;

1080 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 322 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.4.5.22 InsertSort()

Sort a handle into handle list in ascending order. The total handle number in the list should not exceed

MAX_CAP_HANDLES

1081 static void

1082 InsertSort(

1083 TPML_HANDLE *handleList, // IN/OUT: sorted handle list

1084 UINT32 count, // IN: maximum count in the handle list

1085 TPM_HANDLE entityHandle // IN: handle to be inserted

1086)

1087 {

1088 UINT32 i, j;

1089 UINT32 originalCount;

1090 //

1091 // For a corner case that the maximum count is 0, do nothing

1092 if(count == 0)

1093 return;

1094 // For empty list, add the handle at the beginning and return

1095 if(handleList->count == 0)

1096 {

1097 handleList->handle[0] = entityHandle;

1098 handleList->count++;

1099 return;

1100 }

1101 // Check if the maximum of the list has been reached

1102 originalCount = handleList->count;

1103 if(originalCount < count)

1104 handleList->count++;

1105 // Insert the handle to the list

1106 for(i = 0; i < originalCount; i++)

1107 {

1108 if(handleList->handle[i] > entityHandle)

1109 {

1110 for(j = handleList->count - 1; j > i; j--)

1111 {

1112 handleList->handle[j] = handleList->handle[j - 1];

1113 }

1114 break;

1115 }

1116 }

1117 // If a slot was found, insert the handle in this position

1118 if(i < originalCount || handleList->count > originalCount)

1119 handleList->handle[i] = entityHandle;

1120 return;

1121 }

8.4.5.23 NvCapGetPersistent()

This function is used to get a list of handles of the persistent objects, starting at handle.

Handle must be in valid persistent object handle range, but does not have to reference an existing

persistent object.

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

1122 TPMI_YES_NO

1123 NvCapGetPersistent(

1124 TPMI_DH_OBJECT handle, // IN: start handle

1125 UINT32 count, // IN: maximum number of returned handles

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 323

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1126 TPML_HANDLE *handleList // OUT: list of handle

1127)

1128 {

1129 TPMI_YES_NO more = NO;

1130 NV_REF iter = NV_REF_INIT;

1131 NV_REF currentAddr;

1132 TPM_HANDLE entityHandle;

1133 //

1134 pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);

1135

1136 // Initialize output handle list

1137 handleList->count = 0;

1138

1139 // The maximum count of handles we may return is MAX_CAP_HANDLES

1140 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

1141

1142 while((currentAddr = NvNextEvict(&entityHandle, &iter)) != 0)

1143 {

1144 // Ignore persistent handles that have values less than the input handle

1145 if(entityHandle < handle)

1146 continue;

1147 // if the handles in the list have reached the requested count, and there

1148 // are still handles need to be inserted, indicate that there are more.

1149 if(handleList->count == count)

1150 more = YES;

1151 // A handle with a value larger than start handle is a candidate

1152 // for return. Insert sort it to the return list. Insert sort algorithm

1153 // is chosen here for simplicity based on the assumption that the total

1154 // number of NV indexes is small. For an implementation that may allow

1155 // large number of NV indexes, a more efficient sorting algorithm may be

1156 // used here.

1157 InsertSort(handleList, count, entityHandle);

1158 }

1159 return more;

1160 }

8.4.5.24 NvCapGetIndex()

This function returns a list of handles of NV indexes, starting from handle. Handle must be in the range of

NV indexes, but does not have to reference an existing NV Index.

Return Value Meaning

YES if there are more handles to report

NO all the available handles has been reported

1161 TPMI_YES_NO

1162 NvCapGetIndex(

1163 TPMI_DH_OBJECT handle, // IN: start handle

1164 UINT32 count, // IN: max number of returned handles

1165 TPML_HANDLE *handleList // OUT: list of handle

1166)

1167 {

1168 TPMI_YES_NO more = NO;

1169 NV_REF iter = NV_REF_INIT;

1170 NV_REF currentAddr;

1171 TPM_HANDLE nvHandle;

1172 //

1173 pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);

1174

1175 // Initialize output handle list

1176 handleList->count = 0;

1177

Trusted Platform Module Library Part 4: Supporting Routines

Page 324 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1178 // The maximum count of handles we may return is MAX_CAP_HANDLES

1179 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

1180

1181 while((currentAddr = NvNextIndex(&nvHandle, &iter)) != 0)

1182 {

1183 // Ignore index handles that have values less than the 'handle'

1184 if(nvHandle < handle)

1185 continue;

1186 // if the count of handles in the list has reached the requested count,

1187 // and there are still handles to report, set more.

1188 if(handleList->count == count)

1189 more = YES;

1190 // A handle with a value larger than start handle is a candidate

1191 // for return. Insert sort it to the return list. Insert sort algorithm

1192 // is chosen here for simplicity based on the assumption that the total

1193 // number of NV indexes is small. For an implementation that may allow

1194 // large number of NV indexes, a more efficient sorting algorithm may be

1195 // used here.

1196 InsertSort(handleList, count, nvHandle);

1197 }

1198 return more;

1199 }

8.4.5.25 NvCapGetIndexNumber()

This function returns the count of NV Indexes currently defined.

1200 UINT32

1201 NvCapGetIndexNumber(

1202 void

1203)

1204 {

1205 UINT32 num = 0;

1206 NV_REF iter = NV_REF_INIT;

1207 //

1208 while(NvNextIndex(NULL, &iter) != 0)

1209 num++;

1210 return num;

1211 }

8.4.5.26 NvCapGetPersistentNumber()

Function returns the count of persistent objects currently in NV memory.

1212 UINT32

1213 NvCapGetPersistentNumber(

1214 void

1215)

1216 {

1217 UINT32 num = 0;

1218 NV_REF iter = NV_REF_INIT;

1219 TPM_HANDLE handle;

1220 //

1221 while(NvNextEvict(&handle, &iter) != 0)

1222 num++;

1223 return num;

1224 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 325

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.4.5.27 NvCapGetPersistentAvail()

This function returns an estimate of the number of additional persistent objects that could be loaded into

NV memory.

1225 UINT32

1226 NvCapGetPersistentAvail(

1227 void

1228)

1229 {

1230 UINT32 availNVSpace;

1231 UINT32 counterNum = NvCapGetCounterNumber();

1232 UINT32 reserved = sizeof(NV_LIST_TERMINATOR);

1233 //

1234 // Get the available space in NV storage

1235 availNVSpace = NvGetFreeBytes();

1236

1237 if(counterNum < MIN_COUNTER_INDICES)

1238 {

1239 // Some space has to be reserved for counter objects.

1240 reserved += (MIN_COUNTER_INDICES - counterNum) * NV_INDEX_COUNTER_SIZE;

1241 if(reserved > availNVSpace)

1242 availNVSpace = 0;

1243 else

1244 availNVSpace -= reserved;

1245 }

1246 return availNVSpace / NV_EVICT_OBJECT_SIZE;

1247 }

8.4.5.28 NvCapGetCounterNumber()

Get the number of defined NV Indexes that are counter indexes.

1248 UINT32

1249 NvCapGetCounterNumber(

1250 void

1251)

1252 {

1253 NV_REF iter = NV_REF_INIT;

1254 NV_REF currentAddr;

1255 UINT32 num = 0;

1256 //

1257 while((currentAddr = NvNextIndex(NULL, &iter)) != 0)

1258 {

1259 TPMA_NV attributes = NvReadNvIndexAttributes(currentAddr);

1260 if(IsNvCounterIndex(attributes))

1261 num++;

1262 }

1263 return num;

1264 }

8.4.5.29 NvSetStartupAttributes()

Local function to set the attributes of an Index at TPM Reset and TPM Restart.

1265 static TPMA_NV

1266 NvSetStartupAttributes(

1267 TPMA_NV attributes, // IN: attributes to change

1268 STARTUP_TYPE type // IN: start up type

1269)

1270 {

1271 // Clear read lock

Trusted Platform Module Library Part 4: Supporting Routines

Page 326 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1272 CLEAR_ATTRIBUTE(attributes, TPMA_NV, READLOCKED);

1273

1274 // Will change a non counter index to the unwritten state if:

1275 // a) TPMA_NV_CLEAR_STCLEAR is SET

1276 // b) orderly and TPM Reset

1277 if(!IsNvCounterIndex(attributes))

1278 {

1279 if(IS_ATTRIBUTE(attributes, TPMA_NV, CLEAR_STCLEAR)

1280 || (IS_ATTRIBUTE(attributes, TPMA_NV, ORDERLY)

1281 && (type == SU_RESET)))

1282 CLEAR_ATTRIBUTE(attributes, TPMA_NV, WRITTEN);

1283 }

1284 // Unlock any index that is not written or that does not have

1285 // TPMA_NV_WRITEDEFINE SET.

1286 if(!IS_ATTRIBUTE(attributes, TPMA_NV, WRITTEN)

1287 || !IS_ATTRIBUTE(attributes, TPMA_NV, WRITEDEFINE))

1288 CLEAR_ATTRIBUTE(attributes, TPMA_NV, WRITELOCKED);

1289 return attributes;

1290 }

8.4.5.30 NvEntityStartup()

This function is called at TPM_Startup(). If the startup completes a TPM Resume cycle, no action is

taken. If the startup is a TPM Reset or a TPM Restart, then this function will:

 clear read/write lock;

 reset NV Index data that has TPMA_NV_CLEAR_STCLEAR SET; and

 set the lower bits in orderly counters to 1 for a non-orderly startup

It is a prerequisite that NV be available for writing before this function is called.

1291 BOOL

1292 NvEntityStartup(

1293 STARTUP_TYPE type // IN: start up type

1294)

1295 {

1296 NV_REF iter = NV_REF_INIT;

1297 NV_RAM_REF ramIter = NV_RAM_REF_INIT;

1298 NV_REF currentAddr; // offset points to the current entity

1299 NV_RAM_REF currentRamAddr;

1300 TPM_HANDLE nvHandle;

1301 TPMA_NV attributes;

1302 //

1303 // Restore RAM index data

1304 NvRead(s_indexOrderlyRam, NV_INDEX_RAM_DATA, sizeof(s_indexOrderlyRam));

1305

1306 // Initialize the max NV counter value

1307 NvSetMaxCount(NvGetMaxCount());

1308

1309 // If recovering from state save, do nothing else

1310 if(type == SU_RESUME)

1311 return TRUE;

1312 // Iterate all the NV Index to clear the locks

1313 while((currentAddr = NvNextIndex(&nvHandle, &iter)) != 0)

1314 {

1315 attributes = NvReadNvIndexAttributes(currentAddr);

1316

1317 // If this is an orderly index, defer processing until loop below

1318 if(IS_ATTRIBUTE(attributes, TPMA_NV, ORDERLY))

1319 continue;

1320 // Set the attributes appropriate for this startup type

1321 attributes = NvSetStartupAttributes(attributes, type);

1322 NvWriteNvIndexAttributes(currentAddr, attributes);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 327

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1323 }

1324 // Iterate all the orderly indexes to clear the locks and initialize counters

1325 while((currentRamAddr = NvRamNext(&ramIter, NULL)) != 0)

1326 {

1327 attributes = NvReadRamIndexAttributes(currentRamAddr);

1328

1329 attributes = NvSetStartupAttributes(attributes, type);

1330

1331 // update attributes in RAM

1332 NvWriteRamIndexAttributes(currentRamAddr, attributes);

1333

1334 // Set the lower bits in an orderly counter to 1 for a non-orderly startup

1335 if(IsNvCounterIndex(attributes)

1336 && (g_prevOrderlyState == SU_NONE_VALUE))

1337 {

1338 UINT64 counter;

1339 //

1340 // Read the counter value last saved to NV.

1341 counter = BYTE_ARRAY_TO_UINT64(currentRamAddr + sizeof(NV_RAM_HEADER));

1342

1343 // Set the lower bits of counter to 1's

1344 counter |= MAX_ORDERLY_COUNT;

1345

1346 // Write back to RAM

1347 // NOTE: Do not want to force a write to NV here. The counter value will

1348 // stay in RAM until the next shutdown or rollover.

1349 UINT64_TO_BYTE_ARRAY(counter, currentRamAddr + sizeof(NV_RAM_HEADER));

1350 }

1351 }

1352 return TRUE;

1353 }

8.4.5.31 NvCapGetCounterAvail()

This function returns an estimate of the number of additional counter type NV indexes that can be

defined.

1354 UINT32

1355 NvCapGetCounterAvail(

1356 void

1357)

1358 {

1359 UINT32 availNVSpace;

1360 UINT32 availRAMSpace;

1361 UINT32 persistentNum = NvCapGetPersistentNumber();

1362 UINT32 reserved = sizeof(NV_LIST_TERMINATOR);

1363 //

1364 // Get the available space in NV storage

1365 availNVSpace = NvGetFreeBytes();

1366

1367 if(persistentNum < MIN_EVICT_OBJECTS)

1368 {

1369 // Some space has to be reserved for evict object. Adjust availNVSpace.

1370 reserved += (MIN_EVICT_OBJECTS - persistentNum) * NV_EVICT_OBJECT_SIZE;

1371 if(reserved > availNVSpace)

1372 availNVSpace = 0;

1373 else

1374 availNVSpace -= reserved;

1375 }

1376 // Compute the available space in RAM

1377 availRAMSpace = (int)(RAM_ORDERLY_END - NvRamGetEnd());

1378

1379 // Return the min of counter number in NV and in RAM

1380 if(availNVSpace / NV_INDEX_COUNTER_SIZE

Trusted Platform Module Library Part 4: Supporting Routines

Page 328 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1381 > availRAMSpace / NV_RAM_INDEX_COUNTER_SIZE)

1382 return availRAMSpace / NV_RAM_INDEX_COUNTER_SIZE;

1383 else

1384 return availNVSpace / NV_INDEX_COUNTER_SIZE;

1385 }

8.4.5.32 NvFindHandle()

this function returns the offset in NV memory of the entity associated with the input handle. A value of

zero indicates that handle does not exist reference an existing persistent object or defined NV Index.

1386 NV_REF

1387 NvFindHandle(

1388 TPM_HANDLE handle

1389)

1390 {

1391 NV_REF addr;

1392 NV_REF iter = NV_REF_INIT;

1393 TPM_HANDLE nextHandle;

1394 //

1395 while((addr = NvNext(&iter, &nextHandle)) != 0)

1396 {

1397 if(nextHandle == handle)

1398 break;

1399 }

1400 return addr;

1401 }

8.4.6 NV Max Counter

8.4.6.1 Introduction

The TPM keeps track of the highest value of a deleted counter index. When an index is deleted, this

value is updated if the deleted counter index is greater than the previous value. When a new index is

created and first incremented, it will get a value that is at least one greater than any other index than any

previously deleted index. This insures that it is not possible to roll back an index.

The highest counter value is keep in NV in a special end-of-list marker. This marker is only updated when

an index is deleted. Otherwise it just moves.

When the TPM starts up, it searches NV for the end of list marker and initializes an in memory value

(s_maxCounter).

8.4.6.2 NvReadMaxCount()

This function returns the max NV counter value.

1402 UINT64

1403 NvReadMaxCount(

1404 void

1405)

1406 {

1407 return s_maxCounter;

1408 }

8.4.6.3 NvUpdateMaxCount()

This function updates the max counter value to NV memory. This is just staging for the actual write that

will occur when the NV index memory is modified.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 329

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1409 void

1410 NvUpdateMaxCount(

1411 UINT64 count

1412)

1413 {

1414 if(count > s_maxCounter)

1415 s_maxCounter = count;

1416 }

8.4.6.4 NvSetMaxCount()

This function is used at NV initialization time to set the initial value of the maximum counter.

1417 void

1418 NvSetMaxCount(

1419 UINT64 value

1420)

1421 {

1422 s_maxCounter = value;

1423 }

8.4.6.5 NvGetMaxCount()

Function to get the NV max counter value from the end-of-list marker

1424 UINT64

1425 NvGetMaxCount(

1426 void

1427)

1428 {

1429 NV_REF iter = NV_REF_INIT;

1430 NV_REF currentAddr;

1431 UINT64 maxCount;

1432 //

1433 // Find the end of list marker and initialize the NV Max Counter value.

1434 while((currentAddr = NvNext(&iter, NULL)) != 0);

1435 // 'iter' should be pointing at the end of list marker so read in the current

1436 // value of the s_maxCounter.

1437 NvRead(&maxCount, iter + sizeof(UINT32), sizeof(maxCount));

1438

1439 return maxCount;

1440 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 330 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.5 NvReserved.c

8.5.1 Introduction

The NV memory is divided into two areas: dynamic space for user defined NV Indices and evict objects,

and reserved space for TPM persistent and state save data.

The entries in dynamic space are a linked list of entries. Each entry has, as its first field, a size. If the size

field is zero, it marks the end of the list.

An allocation of an Index or evict object may use almost all of the remaining NV space such that the size

field will not fit. The functions that search the list are aware of this and will terminate the search if they

either find a zero size or recognize that there is insufficient space for the size field.

An Index allocation will contain an NV_INDEX structure. If the Index does not have the orderly attribute,

the NV_INDEX is followed immediately by the NV data.

An evict object entry contains a handle followed by an OBJECT structure. This results in both the Index

and Evict Object having an identifying handle as the first field following the size field.

When an Index has the orderly attribute, the data is kept in RAM. This RAM is saved to backing store in

NV memory on any orderly shutdown. The entries in orderly memory are also a linked list using a size

field as the first entry. As with the NV memory, the list is terminated by a zero size field or when the last

entry leaves insufficient space for the terminating size field.

The attributes of an orderly index are maintained in RAM memory in order to reduce the number of NV

writes needed for orderly data. When an orderly index is created, an entry is made in the dynamic NV

memory space that holds the Index authorizations (authPolicy and authValue) and the size of the data.

This entry is only modified if the authValue of the index is changed. The more volatile data of the index is

kept in RAM. When an orderly Index is created or deleted, the RAM data is copied to NV backing store so

that the image in the backing store matches the layout of RAM. In normal operation. The RAM data is

also copied on any orderly shutdown. In normal operation, the only other reason for writing to the backing

store for RAM is when a counter is first written (TPMA_NV_WRITTEN changes from CLEAR to SET) or

when a counter "rolls over."

Static space contains items that are individually modifiable. The values are in the gp

PERSISTEND_DATA structure in RAM and mapped to locations in NV.

8.5.2 Includes, Defines

1 #define NV_C

2 #include "Tpm.h"

8.5.3 Functions

8.5.3.1 NvInitStatic()

This function initializes the static variables used in the NV subsystem.

3 static void

4 NvInitStatic(

5 void

6)

7 {

8 // In some implementations, the end of NV is variable and is set at boot time.

9 // This value will be the same for each boot, but is not necessarily known

10 // at compile time.

11 s_evictNvEnd = (NV_REF)NV_MEMORY_SIZE;

12 return;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 331

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

13 }

8.5.3.2 NvCheckState()

Function to check the NV state by accessing the platform-specific function to get the NV state. The result

state is registered in s_NvIsAvailable that will be reported by NvIsAvailable().

This function is called at the beginning of ExecuteCommand() before any potential check of g_NvStatus.

14 void

15 NvCheckState(

16 void

17)

18 {

19 int func_return;

20 //

21 func_return = _plat__IsNvAvailable();

22 if(func_return == 0)

23 g_NvStatus = TPM_RC_SUCCESS;

24 else if(func_return == 1)

25 g_NvStatus = TPM_RC_NV_UNAVAILABLE;

26 else

27 g_NvStatus = TPM_RC_NV_RATE;

28 return;

29 }

8.5.3.3 NvCommit

This is a wrapper for the platform function to commit pending NV writes.

30 BOOL

31 NvCommit(

32 void

33)

34 {

35 return (_plat__NvCommit() == 0);

36 }

8.5.3.4 NvPowerOn()

This function is called at _TPM_Init() to initialize the NV environment.

Return Value Meaning

TRUE(1) all NV was initialized

FALSE(0) the NV containing saved state had an error and
TPM2_Startup(CLEAR) is required

37 BOOL

38 NvPowerOn(

39 void

40)

41 {

42 int nvError = 0;

43 // If power was lost, need to re-establish the RAM data that is loaded from

44 // NV and initialize the static variables

45 if(g_powerWasLost)

46 {

47 if((nvError = _plat__NVEnable(0)) < 0)

48 FAIL(FATAL_ERROR_NV_UNRECOVERABLE);

Trusted Platform Module Library Part 4: Supporting Routines

Page 332 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

49 NvInitStatic();

50 }

51 return nvError == 0;

52 }

8.5.3.5 NvManufacture()

This function initializes the NV system at pre-install time.

This function should only be called in a manufacturing environment or in a simulation.

The layout of NV memory space is an implementation choice.

53 void

54 NvManufacture(

55 void

56)

57 {

58 #if SIMULATION

59 // Simulate the NV memory being in the erased state.

60 _plat__NvMemoryClear(0, NV_MEMORY_SIZE);

61 #endif

62 // Initialize static variables

63 NvInitStatic();

64 // Clear the RAM used for Orderly Index data

65 MemorySet(s_indexOrderlyRam, 0, RAM_INDEX_SPACE);

66 // Write that Orderly Index data to NV

67 NvUpdateIndexOrderlyData();

68 // Initialize the next offset of the first entry in evict/index list to 0 (the

69 // end of list marker) and the initial s_maxCounterValue;

70 NvSetMaxCount(0);

71 // Put the end of list marker at the end of memory. This contains the MaxCount

72 // value as well as the end marker.

73 NvWriteNvListEnd(NV_USER_DYNAMIC);

74 return;

75 }

8.5.3.6 NvRead()

This function is used to move reserved data from NV memory to RAM.

76 void

77 NvRead(

78 void *outBuffer, // OUT: buffer to receive data

79 UINT32 nvOffset, // IN: offset in NV of value

80 UINT32 size // IN: size of the value to read

81)

82 {

83 // Input type should be valid

84 pAssert(nvOffset + size < NV_MEMORY_SIZE);

85 _plat__NvMemoryRead(nvOffset, size, outBuffer);

86 return;

87 }

8.5.3.7 NvWrite()

This function is used to post reserved data for writing to NV memory. Before the TPM completes the

operation, the value will be written.

88 BOOL

89 NvWrite(

90 UINT32 nvOffset, // IN: location in NV to receive data

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 333

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

91 UINT32 size, // IN: size of the data to move

92 void *inBuffer // IN: location containing data to write

93)

94 {

95 // Input type should be valid

96 if(nvOffset + size <= NV_MEMORY_SIZE)

97 {

98 // Set the flag that a NV write happened

99 SET_NV_UPDATE(UT_NV);

100 return _plat__NvMemoryWrite(nvOffset, size, inBuffer);

101 }

102 return FALSE;

103 }

8.5.3.8 NvUpdatePersistent()

This function is used to update a value in the PERSISTENT_DATA structure and commits the value to

NV.

104 void

105 NvUpdatePersistent(

106 UINT32 offset, // IN: location in PERMANENT_DATA to be updated

107 UINT32 size, // IN: size of the value

108 void *buffer // IN: the new data

109)

110 {

111 pAssert(offset + size <= sizeof(gp));

112 MemoryCopy(&gp + offset, buffer, size);

113 NvWrite(offset, size, buffer);

114 }

8.5.3.9 NvClearPersistent()

This function is used to clear a persistent data entry and commit it to NV

115 void

116 NvClearPersistent(

117 UINT32 offset, // IN: the offset in the PERMANENT_DATA

118 // structure to be cleared (zeroed)

119 UINT32 size // IN: number of bytes to clear

120)

121 {

122 pAssert(offset + size <= sizeof(gp));

123 MemorySet((&gp) + offset, 0, size);

124 NvWrite(offset, size, (&gp) + offset);

125 }

8.5.3.10 NvReadPersistent()

This function reads persistent data to the RAM copy of the gp structure.

126 void

127 NvReadPersistent(

128 void

129)

130 {

131 NvRead(&gp, NV_PERSISTENT_DATA, sizeof(gp));

132 return;

133 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 334 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.6 Object.c

8.6.1 Introduction

This file contains the functions that manage the object store of the TPM.

8.6.2 Includes and Data Definitions

1 #define OBJECT_C

2 #include "Tpm.h"

8.6.3 Functions

8.6.3.1 ObjectFlush()

This function marks an object slot as available. Since there is no checking of the input parameters, it

should be used judiciously.

NOTE: This could be converted to a macro.

3 void

4 ObjectFlush(

5 OBJECT *object

6)

7 {

8 object->attributes.occupied = CLEAR;

9 }

8.6.3.2 ObjectSetInUse()

This access function sets the occupied attribute of an object slot.

10 void

11 ObjectSetInUse(

12 OBJECT *object

13)

14 {

15 object->attributes.occupied = SET;

16 }

8.6.3.3 ObjectStartup()

This function is called at TPM2_Startup() to initialize the object subsystem.

17 BOOL

18 ObjectStartup(

19 void

20)

21 {

22 UINT32 i;

23 //

24 // object slots initialization

25 for(i = 0; i < MAX_LOADED_OBJECTS; i++)

26 {

27 //Set the slot to not occupied

28 ObjectFlush(&s_objects[i]);

29 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 335

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

30 return TRUE;

31 }

8.6.3.4 ObjectCleanupEvict()

In this implementation, a persistent object is moved from NV into an object slot for processing. It is

flushed after command execution. This function is called from ExecuteCommand().

32 void

33 ObjectCleanupEvict(

34 void

35)

36 {

37 UINT32 i;

38 //

39 // This has to be iterated because a command may have two handles

40 // and they may both be persistent.

41 // This could be made to be more efficient so that a search is not needed.

42 for(i = 0; i < MAX_LOADED_OBJECTS; i++)

43 {

44 // If an object is a temporary evict object, flush it from slot

45 OBJECT *object = &s_objects[i];

46 if(object->attributes.evict == SET)

47 ObjectFlush(object);

48 }

49 return;

50 }

8.6.3.5 IsObjectPresent()

This function checks to see if a transient handle references a loaded object. This routine should not be

called if the handle is not a transient handle. The function validates that the handle is in the

implementation-dependent allowed in range for loaded transient objects.

Return Value Meaning

TRUE(1) handle references a loaded object

FALSE(0) handle is not an object handle, or it does not reference to a loaded
object

51 BOOL

52 IsObjectPresent(

53 TPMI_DH_OBJECT handle // IN: handle to be checked

54)

55 {

56 UINT32 slotIndex = handle - TRANSIENT_FIRST;

57 // Since the handle is just an index into the array that is zero based, any

58 // handle value outsize of the range of:

59 // TRANSIENT_FIRST -- (TRANSIENT_FIRST + MAX_LOADED_OBJECT - 1)

60 // will now be greater than or equal to MAX_LOADED_OBJECTS

61 if(slotIndex >= MAX_LOADED_OBJECTS)

62 return FALSE;

63 // Indicate if the slot is occupied

64 return (s_objects[slotIndex].attributes.occupied == TRUE);

65 }

8.6.3.6 ObjectIsSequence()

This function is used to check if the object is a sequence object. This function should not be called if the

handle does not reference a loaded object.

Trusted Platform Module Library Part 4: Supporting Routines

Page 336 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Return Value Meaning

TRUE(1) object is an HMAC, hash, or event sequence object

FALSE(0) object is not an HMAC, hash, or event sequence object

66 BOOL

67 ObjectIsSequence(

68 OBJECT *object // IN: handle to be checked

69)

70 {

71 pAssert(object != NULL);

72 return (object->attributes.hmacSeq == SET

73 || object->attributes.hashSeq == SET

74 || object->attributes.eventSeq == SET);

75 }

8.6.3.7 HandleToObject()

This function is used to find the object structure associated with a handle.

This function requires that handle references a loaded object or a permanent handle.

76 OBJECT*

77 HandleToObject(

78 TPMI_DH_OBJECT handle // IN: handle of the object

79)

80 {

81 UINT32 index;

82 //

83 // Return NULL if the handle references a permanent handle because there is no

84 // associated OBJECT.

85 if(HandleGetType(handle) == TPM_HT_PERMANENT)

86 return NULL;

87 // In this implementation, the handle is determined by the slot occupied by the

88 // object.

89 index = handle - TRANSIENT_FIRST;

90 pAssert(index < MAX_LOADED_OBJECTS);

91 pAssert(s_objects[index].attributes.occupied);

92 return &s_objects[index];

93 }

8.6.3.8 GetQualifiedName()

This function returns the Qualified Name of the object. In this implementation, the Qualified Name is

computed when the object is loaded and is saved in the internal representation of the object. The

alternative would be to retain the Name of the parent and compute the QN when needed. This would take

the same amount of space so it is not recommended that the alternate be used.

This function requires that handle references a loaded object.

94 void

95 GetQualifiedName(

96 TPMI_DH_OBJECT handle, // IN: handle of the object

97 TPM2B_NAME *qualifiedName // OUT: qualified name of the object

98)

99 {

100 OBJECT *object;

101 //

102 switch(HandleGetType(handle))

103 {

104 case TPM_HT_PERMANENT:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 337

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

105 qualifiedName->t.size = sizeof(TPM_HANDLE);

106 UINT32_TO_BYTE_ARRAY(handle, qualifiedName->t.name);

107 break;

108 case TPM_HT_TRANSIENT:

109 object = HandleToObject(handle);

110 if(object == NULL || object->publicArea.nameAlg == TPM_ALG_NULL)

111 qualifiedName->t.size = 0;

112 else

113 // Copy the name

114 *qualifiedName = object->qualifiedName;

115 break;

116 default:

117 FAIL(FATAL_ERROR_INTERNAL);

118 }

119 return;

120 }

8.6.3.9 ObjectGetHierarchy()

This function returns the handle for the hierarchy of an object.

121 TPMI_RH_HIERARCHY

122 ObjectGetHierarchy(

123 OBJECT *object // IN :object

124)

125 {

126 if(object->attributes.spsHierarchy)

127 {

128 return TPM_RH_OWNER;

129 }

130 else if(object->attributes.epsHierarchy)

131 {

132 return TPM_RH_ENDORSEMENT;

133 }

134 else if(object->attributes.ppsHierarchy)

135 {

136 return TPM_RH_PLATFORM;

137 }

138 else

139 {

140 return TPM_RH_NULL;

141 }

142 }

8.6.3.10 GetHeriarchy()

This function returns the handle of the hierarchy to which a handle belongs. This function is similar to

ObjectGetHierarchy() but this routine takes a handle while ObjectGetHierarchy() takes an pointer to an

object.

This function requires that handle references a loaded object.

143 TPMI_RH_HIERARCHY

144 GetHeriarchy(

145 TPMI_DH_OBJECT handle // IN :object handle

146)

147 {

148 OBJECT *object = HandleToObject(handle);

149 //

150 return ObjectGetHierarchy(object);

151 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 338 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.6.3.11 FindEmptyObjectSlot()

This function finds an open object slot, if any. It will clear the attributes but will not set the occupied

attribute. This is so that a slot may be used and discarded if everything does not go as planned.

Return Value Meaning

NULL no open slot found

NULL pointer to available slot

152 OBJECT *

153 FindEmptyObjectSlot(

154 TPMI_DH_OBJECT *handle // OUT: (optional)

155)

156 {

157 UINT32 i;

158 OBJECT *object;

159 //

160 for(i = 0; i < MAX_LOADED_OBJECTS; i++)

161 {

162 object = &s_objects[i];

163 if(object->attributes.occupied == CLEAR)

164 {

165 if(handle)

166 *handle = i + TRANSIENT_FIRST;

167 // Initialize the object attributes

168 MemorySet(&object->attributes, 0, sizeof(OBJECT_ATTRIBUTES));

169 return object;

170 }

171 }

172 return NULL;

173 }

8.6.3.12 ObjectAllocateSlot()

This function is used to allocate a slot in internal object array.

174 OBJECT *

175 ObjectAllocateSlot(

176 TPMI_DH_OBJECT *handle // OUT: handle of allocated object

177)

178 {

179 OBJECT *object = FindEmptyObjectSlot(handle);

180 //

181 if(object != NULL)

182 {

183 // if found, mark as occupied

184 ObjectSetInUse(object);

185 }

186 return object;

187 }

8.6.3.13 ObjectSetLoadedAttributes()

This function sets the internal attributes for a loaded object. It is called to finalize the OBJECT attributes

(not the TPMA_OBJECT attributes) for a loaded object.

188 void

189 ObjectSetLoadedAttributes(

190 OBJECT *object, // IN: object attributes to finalize

191 TPM_HANDLE parentHandle // IN: the parent handle

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 339

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

192)

193 {

194 OBJECT *parent = HandleToObject(parentHandle);

195 TPMA_OBJECT objectAttributes = object->publicArea.objectAttributes;

196 //

197 // Copy the stClear attribute from the public area. This could be overwritten

198 // if the parent has stClear SET

199 object->attributes.stClear =

200 IS_ATTRIBUTE(objectAttributes, TPMA_OBJECT, stClear);

201 // If parent handle is a permanent handle, it is a primary (unless it is NULL

202 if(parent == NULL)

203 {

204 object->attributes.primary = SET;

205 switch(parentHandle)

206 {

207 case TPM_RH_ENDORSEMENT:

208 object->attributes.epsHierarchy = SET;

209 break;

210 case TPM_RH_OWNER:

211 object->attributes.spsHierarchy = SET;

212 break;

213 case TPM_RH_PLATFORM:

214 object->attributes.ppsHierarchy = SET;

215 break;

216 default:

217 // Treat the temporary attribute as a hierarchy

218 object->attributes.temporary = SET;

219 object->attributes.primary = CLEAR;

220 break;

221 }

222 }

223 else

224 {

225 // is this a stClear object

226 object->attributes.stClear =

227 (IS_ATTRIBUTE(objectAttributes, TPMA_OBJECT, stClear)

228 || (parent->attributes.stClear == SET));

229 object->attributes.epsHierarchy = parent->attributes.epsHierarchy;

230 object->attributes.spsHierarchy = parent->attributes.spsHierarchy;

231 object->attributes.ppsHierarchy = parent->attributes.ppsHierarchy;

232 // An object is temporary if its parent is temporary or if the object

233 // is external

234 object->attributes.temporary = parent->attributes.temporary

235 || object->attributes.external;

236 }

237 // If this is an external object, set the QN == name but don't SET other

238 // key properties ('parent' or 'derived')

239 if(object->attributes.external)

240 object->qualifiedName = object->name;

241 else

242 {

243 // check attributes for different types of parents

244 if(IS_ATTRIBUTE(objectAttributes, TPMA_OBJECT, restricted)

245 && !object->attributes.publicOnly

246 && IS_ATTRIBUTE(objectAttributes, TPMA_OBJECT, decrypt)

247 && object->publicArea.nameAlg != TPM_ALG_NULL)

248 {

249 // This is a parent. If it is not a KEYEDHASH, it is an ordinary parent.

250 // Otherwise, it is a derivation parent.

251 if(object->publicArea.type == TPM_ALG_KEYEDHASH)

252 object->attributes.derivation = SET;

253 else

254 object->attributes.isParent = SET;

255 }

256 ComputeQualifiedName(parentHandle, object->publicArea.nameAlg,

257 &object->name, &object->qualifiedName);

Trusted Platform Module Library Part 4: Supporting Routines

Page 340 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

258 }

259 // Set slot occupied

260 ObjectSetInUse(object);

261 return;

262 }

8.6.3.14 ObjectLoad()

Common function to load an object. A loaded object has its public area validated (unless its nameAlg is

TPM_ALG_NULL). If a sensitive part is loaded, it is verified to be correct and if both public and sensitive

parts are loaded, then the cryptographic binding between the objects is validated. This function does not

cause the allocated slot to be marked as in use.

263 TPM_RC

264 ObjectLoad(

265 OBJECT *object, // IN: pointer to object slot

266 // object

267 OBJECT *parent, // IN: (optional) the parent object

268 TPMT_PUBLIC *publicArea, // IN: public area to be installed in the object

269 TPMT_SENSITIVE *sensitive, // IN: (optional) sensitive area to be

270 // installed in the object

271 TPM_RC blamePublic, // IN: parameter number to associate with the

272 // publicArea errors

273 TPM_RC blameSensitive,// IN: parameter number to associate with the

274 // sensitive area errors

275 TPM2B_NAME *name // IN: (optional)

276)

277 {

278 TPM_RC result = TPM_RC_SUCCESS;

279 //

280 // Do validations of public area object descriptions

281 pAssert(publicArea != NULL);

282

283 // Is this public only or a no-name object?

284 if(sensitive == NULL || publicArea->nameAlg == TPM_ALG_NULL)

285 {

286 // Need to have schemes checked so that we do the right thing with the

287 // public key.

288 result = SchemeChecks(NULL, publicArea);

289 }

290 else

291 {

292 // For any sensitive area, make sure that the seedSize is no larger than the

293 // digest size of nameAlg

294 if(sensitive->seedValue.t.size > CryptHashGetDigestSize(publicArea->nameAlg))

295 return TPM_RCS_KEY_SIZE + blameSensitive;

296 // Check attributes and schemes for consistency

297 result = PublicAttributesValidation(parent, publicArea);

298 }

299 if(result != TPM_RC_SUCCESS)

300 return RcSafeAddToResult(result, blamePublic);

301

302 // Sensitive area and binding checks

303

304 // On load, check nothing if the parent is fixedTPM. For all other cases, validate

305 // the keys.

306 if((parent == NULL)

307 || ((parent != NULL) && !IS_ATTRIBUTE(parent->publicArea.objectAttributes,

308 TPMA_OBJECT, fixedTPM)))

309 {

310 // Do the cryptographic key validation

311 result = CryptValidateKeys(publicArea, sensitive, blamePublic,

312 blameSensitive);

313 if(result != TPM_RC_SUCCESS)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 341

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

314 return result;

315 }

316 #if ALG_RSA

317 // If this is an RSA key, then expand the private exponent.

318 // Note: ObjectLoad() is only called by TPM2_Import() if the parent is fixedTPM.

319 // For any key that does not have a fixedTPM parent, the exponent is computed

320 // whenever it is loaded

321 if((publicArea->type == TPM_ALG_RSA) && (sensitive != NULL))

322 {

323 result = CryptRsaLoadPrivateExponent(publicArea, sensitive);

324 if(result != TPM_RC_SUCCESS)

325 return result;

326 }

327 #endif // ALG_RSA

328 // See if there is an object to populate

329 if((result == TPM_RC_SUCCESS) && (object != NULL))

330 {

331 // Initialize public

332 object->publicArea = *publicArea;

333 // Copy sensitive if there is one

334 if(sensitive == NULL)

335 object->attributes.publicOnly = SET;

336 else

337 object->sensitive = *sensitive;

338 // Set the name, if one was provided

339 if(name != NULL)

340 object->name = *name;

341 else

342 object->name.t.size = 0;

343 }

344 return result;

345 }

8.6.3.15 AllocateSequenceSlot()

This function allocates a sequence slot and initializes the parts that are used by the normal objects so

that a sequence object is not inadvertently used for an operation that is not appropriate for a sequence.

346 static HASH_OBJECT *

347 AllocateSequenceSlot(

348 TPM_HANDLE *newHandle, // OUT: receives the allocated handle

349 TPM2B_AUTH *auth // IN: the authValue for the slot

350)

351 {

352 HASH_OBJECT *object = (HASH_OBJECT *)ObjectAllocateSlot(newHandle);

353 //

354 // Validate that the proper location of the hash state data relative to the

355 // object state data. It would be good if this could have been done at compile

356 // time but it can't so do it in something that can be removed after debug.

357 cAssert(offsetof(HASH_OBJECT, auth) == offsetof(OBJECT, publicArea.authPolicy));

358

359 if(object != NULL)

360 {

361

362 // Set the common values that a sequence object shares with an ordinary object

363 // First, clear all attributes

364 MemorySet(&object->objectAttributes, 0, sizeof(TPMA_OBJECT));

365

366 // The type is TPM_ALG_NULL

367 object->type = TPM_ALG_NULL;

368

369 // This has no name algorithm and the name is the Empty Buffer

370 object->nameAlg = TPM_ALG_NULL;

371

Trusted Platform Module Library Part 4: Supporting Routines

Page 342 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

372 // A sequence object is considered to be in the NULL hierarchy so it should

373 // be marked as temporary so that it can't be persisted

374 object->attributes.temporary = SET;

375

376 // A sequence object is DA exempt.

377 SET_ATTRIBUTE(object->objectAttributes, TPMA_OBJECT, noDA);

378

379 // Copy the authorization value

380 if(auth != NULL)

381 object->auth = *auth;

382 else

383 object->auth.t.size = 0;

384 }

385 return object;

386 }

387 #if CC_HMAC_Start || CC_MAC_Start

8.6.3.16 ObjectCreateHMACSequence()

This function creates an internal HMAC sequence object.

Error Returns Meaning

TPM_RC_OBJECT_MEMORY if there is no free slot for an object

388 TPM_RC

389 ObjectCreateHMACSequence(

390 TPMI_ALG_HASH hashAlg, // IN: hash algorithm

391 OBJECT *keyObject, // IN: the object containing the HMAC key

392 TPM2B_AUTH *auth, // IN: authValue

393 TPMI_DH_OBJECT *newHandle // OUT: HMAC sequence object handle

394)

395 {

396 HASH_OBJECT *hmacObject;

397 //

398 // Try to allocate a slot for new object

399 hmacObject = AllocateSequenceSlot(newHandle, auth);

400

401 if(hmacObject == NULL)

402 return TPM_RC_OBJECT_MEMORY;

403 // Set HMAC sequence bit

404 hmacObject->attributes.hmacSeq = SET;

405

406 #if !SMAC_IMPLEMENTED

407 if(CryptHmacStart(&hmacObject->state.hmacState, hashAlg,

408 keyObject->sensitive.sensitive.bits.b.size,

409 keyObject->sensitive.sensitive.bits.b.buffer) == 0)

410 #else

411 if(CryptMacStart(&hmacObject->state.hmacState,

412 &keyObject->publicArea.parameters,

413 hashAlg, &keyObject->sensitive.sensitive.any.b) == 0)

414 #endif // SMAC_IMPLEMENTED

415 return TPM_RC_FAILURE;

416 return TPM_RC_SUCCESS;

417 }

418 #endif

8.6.3.17 ObjectCreateHashSequence()

This function creates a hash sequence object.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 343

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Error Returns Meaning

TPM_RC_OBJECT_MEMORY if there is no free slot for an object

419 TPM_RC

420 ObjectCreateHashSequence(

421 TPMI_ALG_HASH hashAlg, // IN: hash algorithm

422 TPM2B_AUTH *auth, // IN: authValue

423 TPMI_DH_OBJECT *newHandle // OUT: sequence object handle

424)

425 {

426 HASH_OBJECT *hashObject = AllocateSequenceSlot(newHandle, auth);

427 //

428 // See if slot allocated

429 if(hashObject == NULL)

430 return TPM_RC_OBJECT_MEMORY;

431 // Set hash sequence bit

432 hashObject->attributes.hashSeq = SET;

433

434 // Start hash for hash sequence

435 CryptHashStart(&hashObject->state.hashState[0], hashAlg);

436

437 return TPM_RC_SUCCESS;

438 }

8.6.3.18 ObjectCreateEventSequence()

This function creates an event sequence object.

Error Returns Meaning

TPM_RC_OBJECT_MEMORY if there is no free slot for an object

439 TPM_RC

440 ObjectCreateEventSequence(

441 TPM2B_AUTH *auth, // IN: authValue

442 TPMI_DH_OBJECT *newHandle // OUT: sequence object handle

443)

444 {

445 HASH_OBJECT *hashObject = AllocateSequenceSlot(newHandle, auth);

446 UINT32 count;

447 TPM_ALG_ID hash;

448 //

449 // See if slot allocated

450 if(hashObject == NULL)

451 return TPM_RC_OBJECT_MEMORY;

452 // Set the event sequence attribute

453 hashObject->attributes.eventSeq = SET;

454

455 // Initialize hash states for each implemented PCR algorithms

456 for(count = 0; (hash = CryptHashGetAlgByIndex(count)) != TPM_ALG_NULL; count++)

457 CryptHashStart(&hashObject->state.hashState[count], hash);

458 return TPM_RC_SUCCESS;

459 }

8.6.3.19 ObjectTerminateEvent()

This function is called to close out the event sequence and clean up the hash context states.

460 void

461 ObjectTerminateEvent(

462 void

Trusted Platform Module Library Part 4: Supporting Routines

Page 344 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

463)

464 {

465 HASH_OBJECT *hashObject;

466 int count;

467 BYTE buffer[MAX_DIGEST_SIZE];

468 //

469 hashObject = (HASH_OBJECT *)HandleToObject(g_DRTMHandle);

470

471 // Don't assume that this is a proper sequence object

472 if(hashObject->attributes.eventSeq)

473 {

474 // If it is, close any open hash contexts. This is done in case

475 // the cryptographic implementation has some context values that need to be

476 // cleaned up (hygiene).

477 //

478 for(count = 0; CryptHashGetAlgByIndex(count) != TPM_ALG_NULL; count++)

479 {

480 CryptHashEnd(&hashObject->state.hashState[count], 0, buffer);

481 }

482 // Flush sequence object

483 FlushObject(g_DRTMHandle);

484 }

485 g_DRTMHandle = TPM_RH_UNASSIGNED;

486 }

8.6.3.20 ObjectContextLoad()

This function loads an object from a saved object context.

Return Value Meaning

NULL if there is no free slot for an object

NULL points to the loaded object

487 OBJECT *

488 ObjectContextLoad(

489 ANY_OBJECT_BUFFER *object, // IN: pointer to object structure in saved

490 // context

491 TPMI_DH_OBJECT *handle // OUT: object handle

492)

493 {

494 OBJECT *newObject = ObjectAllocateSlot(handle);

495 //

496 // Try to allocate a slot for new object

497 if(newObject != NULL)

498 {

499 // Copy the first part of the object

500 MemoryCopy(newObject, object, offsetof(HASH_OBJECT, state));

501 // See if this is a sequence object

502 if(ObjectIsSequence(newObject))

503 {

504 // If this is a sequence object, import the data

505 SequenceDataImport((HASH_OBJECT *)newObject,

506 (HASH_OBJECT_BUFFER *)object);

507 }

508 else

509 {

510 // Copy input object data to internal structure

511 MemoryCopy(newObject, object, sizeof(OBJECT));

512 }

513 }

514 return newObject;

515 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 345

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.6.3.21 FlushObject()

This function frees an object slot.

This function requires that the object is loaded.

516 void

517 FlushObject(

518 TPMI_DH_OBJECT handle // IN: handle to be freed

519)

520 {

521 UINT32 index = handle - TRANSIENT_FIRST;

522 //

523 pAssert(index < MAX_LOADED_OBJECTS);

524 // Clear all the object attributes

525 MemorySet((BYTE*)&(s_objects[index].attributes),

526 0, sizeof(OBJECT_ATTRIBUTES));

527 return;

528 }

8.6.3.22 ObjectFlushHierarchy()

This function is called to flush all the loaded transient objects associated with a hierarchy when the

hierarchy is disabled.

529 void

530 ObjectFlushHierarchy(

531 TPMI_RH_HIERARCHY hierarchy // IN: hierarchy to be flush

532)

533 {

534 UINT16 i;

535 //

536 // iterate object slots

537 for(i = 0; i < MAX_LOADED_OBJECTS; i++)

538 {

539 if(s_objects[i].attributes.occupied) // If found an occupied slot

540 {

541 switch(hierarchy)

542 {

543 case TPM_RH_PLATFORM:

544 if(s_objects[i].attributes.ppsHierarchy == SET)

545 s_objects[i].attributes.occupied = FALSE;

546 break;

547 case TPM_RH_OWNER:

548 if(s_objects[i].attributes.spsHierarchy == SET)

549 s_objects[i].attributes.occupied = FALSE;

550 break;

551 case TPM_RH_ENDORSEMENT:

552 if(s_objects[i].attributes.epsHierarchy == SET)

553 s_objects[i].attributes.occupied = FALSE;

554 break;

555 default:

556 FAIL(FATAL_ERROR_INTERNAL);

557 break;

558 }

559 }

560 }

561

562 return;

563 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 346 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.6.3.23 ObjectLoadEvict()

This function loads a persistent object into a transient object slot.

This function requires that handle is associated with a persistent object.

Error Returns Meaning

TPM_RC_HANDLE the persistent object does not exist or the associated hierarchy is
disabled.

TPM_RC_OBJECT_MEMORY no object slot

564 TPM_RC

565 ObjectLoadEvict(

566 TPM_HANDLE *handle, // IN:OUT: evict object handle. If success, it

567 // will be replace by the loaded object handle

568 COMMAND_INDEX commandIndex // IN: the command being processed

569)

570 {

571 TPM_RC result;

572 TPM_HANDLE evictHandle = *handle; // Save the evict handle

573 OBJECT *object;

574 //

575 // If this is an index that references a persistent object created by

576 // the platform, then return TPM_RH_HANDLE if the phEnable is FALSE

577 if(*handle >= PLATFORM_PERSISTENT)

578 {

579 // belongs to platform

580 if(g_phEnable == CLEAR)

581 return TPM_RC_HANDLE;

582 }

583 // belongs to owner

584 else if(gc.shEnable == CLEAR)

585 return TPM_RC_HANDLE;

586 // Try to allocate a slot for an object

587 object = ObjectAllocateSlot(handle);

588 if(object == NULL)

589 return TPM_RC_OBJECT_MEMORY;

590 // Copy persistent object to transient object slot. A TPM_RC_HANDLE

591 // may be returned at this point. This will mark the slot as containing

592 // a transient object so that it will be flushed at the end of the

593 // command

594 result = NvGetEvictObject(evictHandle, object);

595

596 // Bail out if this failed

597 if(result != TPM_RC_SUCCESS)

598 return result;

599 // check the object to see if it is in the endorsement hierarchy

600 // if it is and this is not a TPM2_EvictControl() command, indicate

601 // that the hierarchy is disabled.

602 // If the associated hierarchy is disabled, make it look like the

603 // handle is not defined

604 if(ObjectGetHierarchy(object) == TPM_RH_ENDORSEMENT

605 && gc.ehEnable == CLEAR

606 && GetCommandCode(commandIndex) != TPM_CC_EvictControl)

607 return TPM_RC_HANDLE;

608

609 return result;

610 }

8.6.3.24 ObjectComputeName()

This does the name computation from a public area (can be marshaled or not).

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 347

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

611 TPM2B_NAME *

612 ObjectComputeName(

613 UINT32 size, // IN: the size of the area to digest

614 BYTE *publicArea, // IN: the public area to digest

615 TPM_ALG_ID nameAlg, // IN: the hash algorithm to use

616 TPM2B_NAME *name // OUT: Computed name

617)

618 {

619 // Hash the publicArea into the name buffer leaving room for the nameAlg

620 name->t.size = CryptHashBlock(nameAlg, size, publicArea,

621 sizeof(name->t.name) - 2,

622 &name->t.name[2]);

623 // set the nameAlg

624 UINT16_TO_BYTE_ARRAY(nameAlg, name->t.name);

625 name->t.size += 2;

626 return name;

627 }

8.6.3.25 PublicMarshalAndComputeName()

This function computes the Name of an object from its public area.

628 TPM2B_NAME *

629 PublicMarshalAndComputeName(

630 TPMT_PUBLIC *publicArea, // IN: public area of an object

631 TPM2B_NAME *name // OUT: name of the object

632)

633 {

634 // Will marshal a public area into a template. This is because the internal

635 // format for a TPM2B_PUBLIC is a structure and not a simple BYTE buffer.

636 TPM2B_TEMPLATE marshaled; // this is big enough to hold a

637 // marshaled TPMT_PUBLIC

638 BYTE *buffer = (BYTE *)&marshaled.t.buffer;

639 //

640 // if the nameAlg is NULL then there is no name.

641 if(publicArea->nameAlg == TPM_ALG_NULL)

642 name->t.size = 0;

643 else

644 {

645 // Marshal the public area into its canonical form

646 marshaled.t.size = TPMT_PUBLIC_Marshal(publicArea, &buffer, NULL);

647 // and compute the name

648 ObjectComputeName(marshaled.t.size, marshaled.t.buffer,

649 publicArea->nameAlg, name);

650 }

651 return name;

652 }

8.6.3.26 ComputeQualifiedName()

This function computes the qualified name of an object.

653 void

654 ComputeQualifiedName(

655 TPM_HANDLE parentHandle, // IN: parent's handle

656 TPM_ALG_ID nameAlg, // IN: name hash

657 TPM2B_NAME *name, // IN: name of the object

658 TPM2B_NAME *qualifiedName // OUT: qualified name of the object

659)

660 {

661 HASH_STATE hashState; // hash state

662 TPM2B_NAME parentName;

663 //

Trusted Platform Module Library Part 4: Supporting Routines

Page 348 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

664 if(parentHandle == TPM_RH_UNASSIGNED)

665 {

666 MemoryCopy2B(&qualifiedName->b, &name->b, sizeof(qualifiedName->t.name));

667 *qualifiedName = *name;

668 }

669 else

670 {

671 GetQualifiedName(parentHandle, &parentName);

672

673 // QN_A = hash_A (QN of parent || NAME_A)

674

675 // Start hash

676 qualifiedName->t.size = CryptHashStart(&hashState, nameAlg);

677

678 // Add parent's qualified name

679 CryptDigestUpdate2B(&hashState, &parentName.b);

680

681 // Add self name

682 CryptDigestUpdate2B(&hashState, &name->b);

683

684 // Complete hash leaving room for the name algorithm

685 CryptHashEnd(&hashState, qualifiedName->t.size,

686 &qualifiedName->t.name[2]);

687 UINT16_TO_BYTE_ARRAY(nameAlg, qualifiedName->t.name);

688 qualifiedName->t.size += 2;

689 }

690 return;

691 }

8.6.3.27 ObjectIsStorage()

This function determines if an object has the attributes associated with a parent. A parent is an

asymmetric or symmetric block cipher key that has its restricted and decrypt attributes SET, and sign

CLEAR.

Return Value Meaning

TRUE(1) object is a storage key

FALSE(0) object is not a storage key

692 BOOL

693 ObjectIsStorage(

694 TPMI_DH_OBJECT handle // IN: object handle

695)

696 {

697 OBJECT *object = HandleToObject(handle);

698 TPMT_PUBLIC *publicArea = ((object != NULL) ? &object->publicArea : NULL);

699 //

700 return (publicArea != NULL

701 && IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted)

702 && IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, decrypt)

703 && !IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign)

704 && (object->publicArea.type == ALG_RSA_VALUE

705 || object->publicArea.type == ALG_ECC_VALUE));

706 }

8.6.3.28 ObjectCapGetLoaded()

This function returns a a list of handles of loaded object, starting from handle. Handle must be in the

range of valid transient object handles, but does not have to be the handle of a loaded transient object.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 349

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

707 TPMI_YES_NO

708 ObjectCapGetLoaded(

709 TPMI_DH_OBJECT handle, // IN: start handle

710 UINT32 count, // IN: count of returned handles

711 TPML_HANDLE *handleList // OUT: list of handle

712)

713 {

714 TPMI_YES_NO more = NO;

715 UINT32 i;

716 //

717 pAssert(HandleGetType(handle) == TPM_HT_TRANSIENT);

718

719 // Initialize output handle list

720 handleList->count = 0;

721

722 // The maximum count of handles we may return is MAX_CAP_HANDLES

723 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

724

725 // Iterate object slots to get loaded object handles

726 for(i = handle - TRANSIENT_FIRST; i < MAX_LOADED_OBJECTS; i++)

727 {

728 if(s_objects[i].attributes.occupied == TRUE)

729 {

730 // A valid transient object can not be the copy of a persistent object

731 pAssert(s_objects[i].attributes.evict == CLEAR);

732

733 if(handleList->count < count)

734 {

735 // If we have not filled up the return list, add this object

736 // handle to it

737 handleList->handle[handleList->count] = i + TRANSIENT_FIRST;

738 handleList->count++;

739 }

740 else

741 {

742 // If the return list is full but we still have loaded object

743 // available, report this and stop iterating

744 more = YES;

745 break;

746 }

747 }

748 }

749

750 return more;

751 }

8.6.3.29 ObjectCapGetTransientAvail()

This function returns an estimate of the number of additional transient objects that could be loaded into

the TPM.

752 UINT32

753 ObjectCapGetTransientAvail(

754 void

755)

756 {

757 UINT32 i;

758 UINT32 num = 0;

Trusted Platform Module Library Part 4: Supporting Routines

Page 350 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

759 //

760 // Iterate object slot to get the number of unoccupied slots

761 for(i = 0; i < MAX_LOADED_OBJECTS; i++)

762 {

763 if(s_objects[i].attributes.occupied == FALSE) num++;

764 }

765

766 return num;

767 }

8.6.3.30 ObjectGetPublicAttributes()

Returns the attributes associated with an object handles.

768 TPMA_OBJECT

769 ObjectGetPublicAttributes(

770 TPM_HANDLE handle

771)

772 {

773 return HandleToObject(handle)->publicArea.objectAttributes;

774 }

775 OBJECT_ATTRIBUTES

776 ObjectGetProperties(

777 TPM_HANDLE handle

778)

779 {

780 return HandleToObject(handle)->attributes;

781 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 351

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.7 PCR.c

8.7.1 Introduction

This function contains the functions needed for PCR access and manipulation.

This implementation uses a static allocation for the PCR. The amount of memory is allocated based on

the number of PCR in the implementation and the number of implemented hash algorithms. This is not

the expected implementation. PCR SPACE DEFINITIONS.

In the definitions below, the g_hashPcrMap is a bit array that indicates which of the PCR are

implemented. The g_hashPcr array is an array of digests. In this implementation, the space is allocated

whether the PCR is implemented or not.

8.7.2 Includes, Defines, and Data Definitions

1 #define PCR_C

2 #include "Tpm.h"

The initial value of PCR attributes. The value of these fields should be consistent with PC Client

specification In this implementation, we assume the total number of implemented PCR is 24.

3 static const PCR_Attributes s_initAttributes[] =

4 {

5 // PCR 0 - 15, static RTM

6 {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F},

7 {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F},

8 {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F},

9 {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F}, {1, 0, 0x1F},

10

11 {0, 0x0F, 0x1F}, // PCR 16, Debug

12 {0, 0x10, 0x1C}, // PCR 17, Locality 4

13 {0, 0x10, 0x1C}, // PCR 18, Locality 3

14 {0, 0x10, 0x0C}, // PCR 19, Locality 2

15 {0, 0x14, 0x0E}, // PCR 20, Locality 1

16 {0, 0x14, 0x04}, // PCR 21, Dynamic OS

17 {0, 0x14, 0x04}, // PCR 22, Dynamic OS

18 {0, 0x0F, 0x1F}, // PCR 23, Application specific

19 {0, 0x0F, 0x1F} // PCR 24, testing policy

20 };

21

22 //** Functions

23

24 //*** PCRBelongsAuthGroup()

25 // This function indicates if a PCR belongs to a group that requires an authValue

26 // in order to modify the PCR. If it does, 'groupIndex' is set to value of

27 // the group index. This feature of PCR is decided by the platform specification.

Return Value Meaning

TRUE(1) PCR belongs to an authorization group

FALSE(0) PCR belongs to an authorization group

28 BOOL

29 PCRBelongsAuthGroup(

30 TPMI_DH_PCR handle, // IN: handle of PCR

31 UINT32 *groupIndex // OUT: group index if PCR belongs a

32 // group that allows authValue. If PCR

33 // does not belong to an authorization

Trusted Platform Module Library Part 4: Supporting Routines

Page 352 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

34 // group, the value in this parameter is

35 // invalid

36)

37 {

38 #if defined NUM_AUTHVALUE_PCR_GROUP && NUM_AUTHVALUE_PCR_GROUP > 0

39 // Platform specification determines to which authorization group a PCR belongs

40 // (if any). In this implementation, we assume there is only

41 // one authorization group which contains PCR[20-22]. If the platform

42 // specification requires differently, the implementation should be changed

43 // accordingly

44 if(handle >= 20 && handle <= 22)

45 {

46 *groupIndex = 0;

47 return TRUE;

48 }

49

50 #endif

51 return FALSE;

52 }

8.7.2.1 PCRBelongsPolicyGroup()

This function indicates if a PCR belongs to a group that requires a policy authorization in order to modify

the PCR. If it does, groupIndex is set to value of the group index. This feature of PCR is decided by the

platform specification.

Return Value Meaning

TRUE(1) PCR belongs to a policy group

FALSE(0) PCR does not belong to a policy group

53 BOOL

54 PCRBelongsPolicyGroup(

55 TPMI_DH_PCR handle, // IN: handle of PCR

56 UINT32 *groupIndex // OUT: group index if PCR belongs a group that

57 // allows policy. If PCR does not belong to

58 // a policy group, the value in this

59 // parameter is invalid

60)

61 {

62 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

63 // Platform specification decides if a PCR belongs to a policy group and

64 // belongs to which group. In this implementation, we assume there is only

65 // one policy group which contains PCR20-22. If the platform specification

66 // requires differently, the implementation should be changed accordingly

67 if(handle >= 20 && handle <= 22)

68 {

69 *groupIndex = 0;

70 return TRUE;

71 }

72 #endif

73 return FALSE;

74 }

8.7.2.2 PCRBelongsTCBGroup()

This function indicates if a PCR belongs to the TCB group.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 353

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

TRUE(1) PCR belongs to a TCB group

FALSE(0) PCR does not belong to a TCB group

75 static BOOL

76 PCRBelongsTCBGroup(

77 TPMI_DH_PCR handle // IN: handle of PCR

78)

79 {

80 #if ENABLE_PCR_NO_INCREMENT == YES

81 // Platform specification decides if a PCR belongs to a TCB group. In this

82 // implementation, we assume PCR[20-22] belong to TCB group. If the platform

83 // specification requires differently, the implementation should be

84 // changed accordingly

85 if(handle >= 20 && handle <= 22)

86 return TRUE;

87

88 #endif

89 return FALSE;

90 }

8.7.2.3 PCRPolicyIsAvailable()

This function indicates if a policy is available for a PCR.

Return Value Meaning

TRUE(1) the PCR may be authorized by policy

FALSE(0) the PCR does not allow policy

91 BOOL

92 PCRPolicyIsAvailable(

93 TPMI_DH_PCR handle // IN: PCR handle

94)

95 {

96 UINT32 groupIndex;

97

98 return PCRBelongsPolicyGroup(handle, &groupIndex);

99 }

8.7.2.4 PCRGetAuthValue()

This function is used to access the authValue of a PCR. If PCR does not belong to an authValue group,

an EmptyAuth() will be returned.

100 TPM2B_AUTH *

101 PCRGetAuthValue(

102 TPMI_DH_PCR handle // IN: PCR handle

103)

104 {

105 UINT32 groupIndex;

106

107 if(PCRBelongsAuthGroup(handle, &groupIndex))

108 {

109 return &gc.pcrAuthValues.auth[groupIndex];

110 }

111 else

112 {

113 return NULL;

Trusted Platform Module Library Part 4: Supporting Routines

Page 354 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

114 }

115 }

8.7.2.5 PCRGetAuthPolicy()

This function is used to access the authorization policy of a PCR. It sets policy to the authorization policy

and returns the hash algorithm for policy If the PCR does not allow a policy, TPM_ALG_NULL is returned.

116 TPMI_ALG_HASH

117 PCRGetAuthPolicy(

118 TPMI_DH_PCR handle, // IN: PCR handle

119 TPM2B_DIGEST *policy // OUT: policy of PCR

120)

121 {

122 UINT32 groupIndex;

123

124 if(PCRBelongsPolicyGroup(handle, &groupIndex))

125 {

126 *policy = gp.pcrPolicies.policy[groupIndex];

127 return gp.pcrPolicies.hashAlg[groupIndex];

128 }

129 else

130 {

131 policy->t.size = 0;

132 return TPM_ALG_NULL;

133 }

134 }

8.7.2.6 PCRSimStart()

This function is used to initialize the policies when a TPM is manufactured. This function would only be

called in a manufacturing environment or in a TPM simulator.

135 void

136 PCRSimStart(

137 void

138)

139 {

140 UINT32 i;

141 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

142 for(i = 0; i < NUM_POLICY_PCR_GROUP; i++)

143 {

144 gp.pcrPolicies.hashAlg[i] = TPM_ALG_NULL;

145 gp.pcrPolicies.policy[i].t.size = 0;

146 }

147 #endif

148 #if defined NUM_AUTHVALUE_PCR_GROUP && NUM_AUTHVALUE_PCR_GROUP > 0

149 for(i = 0; i < NUM_AUTHVALUE_PCR_GROUP; i++)

150 {

151 gc.pcrAuthValues.auth[i].t.size = 0;

152 }

153 #endif

154 // We need to give an initial configuration on allocated PCR before

155 // receiving any TPM2_PCR_Allocate command to change this configuration

156 // When the simulation environment starts, we allocate all the PCRs

157 for(gp.pcrAllocated.count = 0; gp.pcrAllocated.count < HASH_COUNT;

158 gp.pcrAllocated.count++)

159 {

160 gp.pcrAllocated.pcrSelections[gp.pcrAllocated.count].hash

161 = CryptHashGetAlgByIndex(gp.pcrAllocated.count);

162

163 gp.pcrAllocated.pcrSelections[gp.pcrAllocated.count].sizeofSelect

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 355

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

164 = PCR_SELECT_MAX;

165 for(i = 0; i < PCR_SELECT_MAX; i++)

166 gp.pcrAllocated.pcrSelections[gp.pcrAllocated.count].pcrSelect[i]

167 = 0xFF;

168 }

169

170 // Store the initial configuration to NV

171 NV_SYNC_PERSISTENT(pcrPolicies);

172 NV_SYNC_PERSISTENT(pcrAllocated);

173

174 return;

175 }

8.7.2.7 GetSavedPcrPointer()

This function returns the address of an array of state saved PCR based on the hash algorithm.

Return Value Meaning

NULL no such algorithm

NULL pointer to the 0th byte of the 0th PCR

176 static BYTE *

177 GetSavedPcrPointer(

178 TPM_ALG_ID alg, // IN: algorithm for bank

179 UINT32 pcrIndex // IN: PCR index in PCR_SAVE

180)

181 {

182 BYTE *retVal;

183 switch(alg)

184 {

185 #if ALG_SHA1

186 case ALG_SHA1_VALUE:

187 retVal = gc.pcrSave.sha1[pcrIndex];

188 break;

189 #endif

190 #if ALG_SHA256

191 case ALG_SHA256_VALUE:

192 retVal = gc.pcrSave.sha256[pcrIndex];

193 break;

194 #endif

195 #if ALG_SHA384

196 case ALG_SHA384_VALUE:

197 retVal = gc.pcrSave.sha384[pcrIndex];

198 break;

199 #endif

200

201 #if ALG_SHA512

202 case ALG_SHA512_VALUE:

203 retVal = gc.pcrSave.sha512[pcrIndex];

204 break;

205 #endif

206 #if ALG_SM3_256

207 case ALG_SM3_256_VALUE:

208 retVal = gc.pcrSave.sm3_256[pcrIndex];

209 break;

210 #endif

211 default:

212 FAIL(FATAL_ERROR_INTERNAL);

213 }

214 return retVal;

215 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 356 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.7.2.8 PcrIsAllocated()

This function indicates if a PCR number for the particular hash algorithm is allocated.

Return Value Meaning

TRUE(1) PCR is allocated

FALSE(0) PCR is not allocated

216 BOOL

217 PcrIsAllocated(

218 UINT32 pcr, // IN: The number of the PCR

219 TPMI_ALG_HASH hashAlg // IN: The PCR algorithm

220)

221 {

222 UINT32 i;

223 BOOL allocated = FALSE;

224

225 if(pcr < IMPLEMENTATION_PCR)

226 {

227 for(i = 0; i < gp.pcrAllocated.count; i++)

228 {

229 if(gp.pcrAllocated.pcrSelections[i].hash == hashAlg)

230 {

231 if(((gp.pcrAllocated.pcrSelections[i].pcrSelect[pcr / 8])

232 & (1 << (pcr % 8))) != 0)

233 allocated = TRUE;

234 else

235 allocated = FALSE;

236 break;

237 }

238 }

239 }

240 return allocated;

241 }

8.7.2.9 GetPcrPointer()

This function returns the address of an array of PCR based on the hash algorithm.

Return Value Meaning

NULL no such algorithm

NULL pointer to the 0th byte of the 0th PCR

242 static BYTE *

243 GetPcrPointer(

244 TPM_ALG_ID alg, // IN: algorithm for bank

245 UINT32 pcrNumber // IN: PCR number

246)

247 {

248 static BYTE *pcr = NULL;

249

250 if(!PcrIsAllocated(pcrNumber, alg))

251 return NULL;

252

253 switch(alg)

254 {

255 #if ALG_SHA1

256 case ALG_SHA1_VALUE:

257 pcr = s_pcrs[pcrNumber].sha1Pcr;

258 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 357

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

259 #endif

260 #if ALG_SHA256

261 case ALG_SHA256_VALUE:

262 pcr = s_pcrs[pcrNumber].sha256Pcr;

263 break;

264 #endif

265 #if ALG_SHA384

266 case ALG_SHA384_VALUE:

267 pcr = s_pcrs[pcrNumber].sha384Pcr;

268 break;

269 #endif

270 #if ALG_SHA512

271 case ALG_SHA512_VALUE:

272 pcr = s_pcrs[pcrNumber].sha512Pcr;

273 break;

274 #endif

275 #if ALG_SM3_256

276 case ALG_SM3_256_VALUE:

277 pcr = s_pcrs[pcrNumber].sm3_256Pcr;

278 break;

279 #endif

280 default:

281 FAIL(FATAL_ERROR_INTERNAL);

282 break;

283 }

284 return pcr;

285 }

8.7.2.10 IsPcrSelected()

This function indicates if an indicated PCR number is selected by the bit map in selection.

Return Value Meaning

TRUE(1) PCR is selected

FALSE(0) PCR is not selected

286 static BOOL

287 IsPcrSelected(

288 UINT32 pcr, // IN: The number of the PCR

289 TPMS_PCR_SELECTION *selection // IN: The selection structure

290)

291 {

292 BOOL selected;

293 selected = (pcr < IMPLEMENTATION_PCR

294 && ((selection->pcrSelect[pcr / 8]) & (1 << (pcr % 8))) != 0);

295 return selected;

296 }

8.7.2.11 FilterPcr()

This function modifies a PCR selection array based on the implemented PCR.

297 static void

298 FilterPcr(

299 TPMS_PCR_SELECTION *selection // IN: input PCR selection

300)

301 {

302 UINT32 i;

303 TPMS_PCR_SELECTION *allocated = NULL;

304

305 // If size of select is less than PCR_SELECT_MAX, zero the unspecified PCR

Trusted Platform Module Library Part 4: Supporting Routines

Page 358 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

306 for(i = selection->sizeofSelect; i < PCR_SELECT_MAX; i++)

307 selection->pcrSelect[i] = 0;

308

309 // Find the internal configuration for the bank

310 for(i = 0; i < gp.pcrAllocated.count; i++)

311 {

312 if(gp.pcrAllocated.pcrSelections[i].hash == selection->hash)

313 {

314 allocated = &gp.pcrAllocated.pcrSelections[i];

315 break;

316 }

317 }

318

319 for(i = 0; i < selection->sizeofSelect; i++)

320 {

321 if(allocated == NULL)

322 {

323 // If the required bank does not exist, clear input selection

324 selection->pcrSelect[i] = 0;

325 }

326 else

327 selection->pcrSelect[i] &= allocated->pcrSelect[i];

328 }

329

330 return;

331 }

8.7.2.12 PcrDrtm()

This function does the DRTM and H-CRTM processing it is called from _TPM_Hash_End().

332 void

333 PcrDrtm(

334 const TPMI_DH_PCR pcrHandle, // IN: the index of the PCR to be

335 // modified

336 const TPMI_ALG_HASH hash, // IN: the bank identifier

337 const TPM2B_DIGEST *digest // IN: the digest to modify the PCR

338)

339 {

340 BYTE *pcrData = GetPcrPointer(hash, pcrHandle);

341

342 if(pcrData != NULL)

343 {

344 // Rest the PCR to zeros

345 MemorySet(pcrData, 0, digest->t.size);

346

347 // if the TPM has not started, then set the PCR to 0...04 and then extend

348 if(!TPMIsStarted())

349 {

350 pcrData[digest->t.size - 1] = 4;

351 }

352 // Now, extend the value

353 PCRExtend(pcrHandle, hash, digest->t.size, (BYTE *)digest->t.buffer);

354 }

355 }

8.7.2.13 PCR_ClearAuth()

This function is used to reset the PCR authorization values. It is called on TPM2_Startup(CLEAR) and

TPM2_Clear().

356 void

357 PCR_ClearAuth(

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 359

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

358 void

359)

360 {

361 #if defined NUM_AUTHVALUE_PCR_GROUP && NUM_AUTHVALUE_PCR_GROUP > 0

362 int j;

363 for(j = 0; j < NUM_AUTHVALUE_PCR_GROUP; j++)

364 {

365 gc.pcrAuthValues.auth[j].t.size = 0;

366 }

367 #endif

368 }

8.7.2.14 PCRStartup()

This function initializes the PCR subsystem at TPM2_Startup().

369 BOOL

370 PCRStartup(

371 STARTUP_TYPE type, // IN: startup type

372 BYTE locality // IN: startup locality

373)

374 {

375 UINT32 pcr, j;

376 UINT32 saveIndex = 0;

377

378 g_pcrReConfig = FALSE;

379

380 // Don't test for SU_RESET because that should be the default when nothing

381 // else is selected

382 if(type != SU_RESUME && type != SU_RESTART)

383 {

384 // PCR generation counter is cleared at TPM_RESET

385 gr.pcrCounter = 0;

386 }

387

388 // Initialize/Restore PCR values

389 for(pcr = 0; pcr < IMPLEMENTATION_PCR; pcr++)

390 {

391 // On resume, need to know if this PCR had its state saved or not

392 UINT32 stateSaved;

393

394 if(type == SU_RESUME

395 && s_initAttributes[pcr].stateSave == SET)

396 {

397 stateSaved = 1;

398 }

399 else

400 {

401 stateSaved = 0;

402 PCRChanged(pcr);

403 }

404

405 // If this is the H-CRTM PCR and we are not doing a resume and we

406 // had an H-CRTM event, then we don't change this PCR

407 if(pcr == HCRTM_PCR && type != SU_RESUME && g_DrtmPreStartup == TRUE)

408 continue;

409

410 // Iterate each hash algorithm bank

411 for(j = 0; j < gp.pcrAllocated.count; j++)

412 {

413 TPMI_ALG_HASH hash = gp.pcrAllocated.pcrSelections[j].hash;

414 BYTE *pcrData = GetPcrPointer(hash, pcr);

415 UINT16 pcrSize = CryptHashGetDigestSize(hash);

416

Trusted Platform Module Library Part 4: Supporting Routines

Page 360 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

417 if(pcrData != NULL)

418 {

419 // if state was saved

420 if(stateSaved == 1)

421 {

422 // Restore saved PCR value

423 BYTE *pcrSavedData;

424 pcrSavedData = GetSavedPcrPointer(

425 gp.pcrAllocated.pcrSelections[j].hash,

426 saveIndex);

427 if(pcrSavedData == NULL)

428 return FALSE;

429 MemoryCopy(pcrData, pcrSavedData, pcrSize);

430 }

431 else

432 // PCR was not restored by state save

433 {

434 // If the reset locality of the PCR is 4, then

435 // the reset value is all one's, otherwise it is

436 // all zero.

437 if((s_initAttributes[pcr].resetLocality & 0x10) != 0)

438 MemorySet(pcrData, 0xFF, pcrSize);

439 else

440 {

441 MemorySet(pcrData, 0, pcrSize);

442 if(pcr == HCRTM_PCR)

443 pcrData[pcrSize - 1] = locality;

444 }

445 }

446 }

447 }

448 saveIndex += stateSaved;

449 }

450 // Reset authValues on TPM2_Startup(CLEAR)

451 if(type != SU_RESUME)

452 PCR_ClearAuth();

453 return TRUE;

454 }

8.7.2.15 PCRStateSave()

This function is used to save the PCR values that will be restored on TPM Resume.

455 void

456 PCRStateSave(

457 TPM_SU type // IN: startup type

458)

459 {

460 UINT32 pcr, j;

461 UINT32 saveIndex = 0;

462

463 // if state save CLEAR, nothing to be done. Return here

464 if(type == TPM_SU_CLEAR)

465 return;

466

467 // Copy PCR values to the structure that should be saved to NV

468 for(pcr = 0; pcr < IMPLEMENTATION_PCR; pcr++)

469 {

470 UINT32 stateSaved = (s_initAttributes[pcr].stateSave == SET) ? 1 : 0;

471

472 // Iterate each hash algorithm bank

473 for(j = 0; j < gp.pcrAllocated.count; j++)

474 {

475 BYTE *pcrData;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 361

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

476 UINT32 pcrSize;

477

478 pcrData = GetPcrPointer(gp.pcrAllocated.pcrSelections[j].hash, pcr);

479

480 if(pcrData != NULL)

481 {

482 pcrSize

483 = CryptHashGetDigestSize(gp.pcrAllocated.pcrSelections[j].hash);

484

485 if(stateSaved == 1)

486 {

487 // Restore saved PCR value

488 BYTE *pcrSavedData;

489 pcrSavedData

490 = GetSavedPcrPointer(gp.pcrAllocated.pcrSelections[j].hash,

491 saveIndex);

492 MemoryCopy(pcrSavedData, pcrData, pcrSize);

493 }

494 }

495 }

496 saveIndex += stateSaved;

497 }

498

499 return;

500 }

8.7.2.16 PCRIsStateSaved()

This function indicates if the selected PCR is a PCR that is state saved on TPM2_Shutdown(STATE). The

return value is based on PCR attributes.

Return Value Meaning

TRUE(1) PCR is state saved

FALSE(0) PCR is not state saved

501 BOOL

502 PCRIsStateSaved(

503 TPMI_DH_PCR handle // IN: PCR handle to be extended

504)

505 {

506 UINT32 pcr = handle - PCR_FIRST;

507

508 if(s_initAttributes[pcr].stateSave == SET)

509 return TRUE;

510 else

511 return FALSE;

512 }

8.7.2.17 PCRIsResetAllowed()

This function indicates if a PCR may be reset by the current command locality. The return value is based

on PCR attributes, and not the PCR allocation.

Return Value Meaning

TRUE(1) TPM2_PCR_Reset() is allowed

FALSE(0) TPM2_PCR_Reset() is not allowed

513 BOOL

514 PCRIsResetAllowed(

Trusted Platform Module Library Part 4: Supporting Routines

Page 362 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

515 TPMI_DH_PCR handle // IN: PCR handle to be extended

516)

517 {

518 UINT8 commandLocality;

519 UINT8 localityBits = 1;

520 UINT32 pcr = handle - PCR_FIRST;

521

522 // Check for the locality

523 commandLocality = _plat__LocalityGet();

524

525 #ifdef DRTM_PCR

526 // For a TPM that does DRTM, Reset is not allowed at locality 4

527 if(commandLocality == 4)

528 return FALSE;

529 #endif

530

531 localityBits = localityBits << commandLocality;

532 if((localityBits & s_initAttributes[pcr].resetLocality) == 0)

533 return FALSE;

534 else

535 return TRUE;

536 }

8.7.2.18 PCRChanged()

This function checks a PCR handle to see if the attributes for the PCR are set so that any change to the

PCR causes an increment of the pcrCounter. If it does, then the function increments the counter. Will also

bump the counter if the handle is zero which means that PCR 0 can not be in the TCB group. Bump on

zero is used by TPM2_Clear().

537 void

538 PCRChanged(

539 TPM_HANDLE pcrHandle // IN: the handle of the PCR that changed.

540)

541 {

542 // For the reference implementation, the only change that does not cause

543 // increment is a change to a PCR in the TCB group.

544 if((pcrHandle == 0) || !PCRBelongsTCBGroup(pcrHandle))

545 {

546 gr.pcrCounter++;

547 if(gr.pcrCounter == 0)

548 FAIL(FATAL_ERROR_COUNTER_OVERFLOW);

549 }

550 }

8.7.2.19 PCRIsExtendAllowed()

This function indicates a PCR may be extended at the current command locality. The return value is

based on PCR attributes, and not the PCR allocation.

Return Value Meaning

TRUE(1) extend is allowed

FALSE(0) extend is not allowed

551 BOOL

552 PCRIsExtendAllowed(

553 TPMI_DH_PCR handle // IN: PCR handle to be extended

554)

555 {

556 UINT8 commandLocality;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 363

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

557 UINT8 localityBits = 1;

558 UINT32 pcr = handle - PCR_FIRST;

559

560 // Check for the locality

561 commandLocality = _plat__LocalityGet();

562 localityBits = localityBits << commandLocality;

563 if((localityBits & s_initAttributes[pcr].extendLocality) == 0)

564 return FALSE;

565 else

566 return TRUE;

567 }

8.7.2.20 PCRExtend()

This function is used to extend a PCR in a specific bank.

568 void

569 PCRExtend(

570 TPMI_DH_PCR handle, // IN: PCR handle to be extended

571 TPMI_ALG_HASH hash, // IN: hash algorithm of PCR

572 UINT32 size, // IN: size of data to be extended

573 BYTE *data // IN: data to be extended

574)

575 {

576 BYTE *pcrData;

577 HASH_STATE hashState;

578 UINT16 pcrSize;

579

580 pcrData = GetPcrPointer(hash, handle - PCR_FIRST);

581

582 // Extend PCR if it is allocated

583 if(pcrData != NULL)

584 {

585 pcrSize = CryptHashGetDigestSize(hash);

586 CryptHashStart(&hashState, hash);

587 CryptDigestUpdate(&hashState, pcrSize, pcrData);

588 CryptDigestUpdate(&hashState, size, data);

589 CryptHashEnd(&hashState, pcrSize, pcrData);

590

591 // PCR has changed so update the pcrCounter if necessary

592 PCRChanged(handle);

593 }

594

595 return;

596 }

8.7.2.21 PCRComputeCurrentDigest()

This function computes the digest of the selected PCR.

As a side-effect, selection is modified so that only the implemented PCR will have their bits still set.

597 void

598 PCRComputeCurrentDigest(

599 TPMI_ALG_HASH hashAlg, // IN: hash algorithm to compute digest

600 TPML_PCR_SELECTION *selection, // IN/OUT: PCR selection (filtered on

601 // output)

602 TPM2B_DIGEST *digest // OUT: digest

603)

604 {

605 HASH_STATE hashState;

606 TPMS_PCR_SELECTION *select;

607 BYTE *pcrData; // will point to a digest

Trusted Platform Module Library Part 4: Supporting Routines

Page 364 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

608 UINT32 pcrSize;

609 UINT32 pcr;

610 UINT32 i;

611

612 // Initialize the hash

613 digest->t.size = CryptHashStart(&hashState, hashAlg);

614 pAssert(digest->t.size > 0 && digest->t.size < UINT16_MAX);

615

616 // Iterate through the list of PCR selection structures

617 for(i = 0; i < selection->count; i++)

618 {

619 // Point to the current selection

620 select = &selection->pcrSelections[i]; // Point to the current selection

621 FilterPcr(select); // Clear out the bits for unimplemented PCR

622

623 // Need the size of each digest

624 pcrSize = CryptHashGetDigestSize(selection->pcrSelections[i].hash);

625

626 // Iterate through the selection

627 for(pcr = 0; pcr < IMPLEMENTATION_PCR; pcr++)

628 {

629 if(IsPcrSelected(pcr, select)) // Is this PCR selected

630 {

631 // Get pointer to the digest data for the bank

632 pcrData = GetPcrPointer(selection->pcrSelections[i].hash, pcr);

633 pAssert(pcrData != NULL);

634 CryptDigestUpdate(&hashState, pcrSize, pcrData); // add to digest

635 }

636 }

637 }

638 // Complete hash stack

639 CryptHashEnd2B(&hashState, &digest->b);

640

641 return;

642 }

8.7.2.22 PCRRead()

This function is used to read a list of selected PCR. If the requested PCR number exceeds the maximum

number that can be output, the selection is adjusted to reflect the actual output PCR.

643 void

644 PCRRead(

645 TPML_PCR_SELECTION *selection, // IN/OUT: PCR selection (filtered on

646 // output)

647 TPML_DIGEST *digest, // OUT: digest

648 UINT32 *pcrCounter // OUT: the current value of PCR generation

649 // number

650)

651 {

652 TPMS_PCR_SELECTION *select;

653 BYTE *pcrData; // will point to a digest

654 UINT32 pcr;

655 UINT32 i;

656

657 digest->count = 0;

658

659 // Iterate through the list of PCR selection structures

660 for(i = 0; i < selection->count; i++)

661 {

662 // Point to the current selection

663 select = &selection->pcrSelections[i]; // Point to the current selection

664 FilterPcr(select); // Clear out the bits for unimplemented PCR

665

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 365

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

666 // Iterate through the selection

667 for(pcr = 0; pcr < IMPLEMENTATION_PCR; pcr++)

668 {

669 if(IsPcrSelected(pcr, select)) // Is this PCR selected

670 {

671 // Check if number of digest exceed upper bound

672 if(digest->count > 7)

673 {

674 // Clear rest of the current select bitmap

675 while(pcr < IMPLEMENTATION_PCR

676 // do not round up!

677 && (pcr / 8) < select->sizeofSelect)

678 {

679 // do not round up!

680 select->pcrSelect[pcr / 8] &= (BYTE)~(1 << (pcr % 8));

681 pcr++;

682 }

683 // Exit inner loop

684 break;

685 }

686 // Need the size of each digest

687 digest->digests[digest->count].t.size =

688 CryptHashGetDigestSize(selection->pcrSelections[i].hash);

689

690 // Get pointer to the digest data for the bank

691 pcrData = GetPcrPointer(selection->pcrSelections[i].hash, pcr);

692 pAssert(pcrData != NULL);

693 // Add to the data to digest

694 MemoryCopy(digest->digests[digest->count].t.buffer,

695 pcrData,

696 digest->digests[digest->count].t.size);

697 digest->count++;

698 }

699 }

700 // If we exit inner loop because we have exceed the output upper bound

701 if(digest->count > 7 && pcr < IMPLEMENTATION_PCR)

702 {

703 // Clear rest of the selection

704 while(i < selection->count)

705 {

706 MemorySet(selection->pcrSelections[i].pcrSelect, 0,

707 selection->pcrSelections[i].sizeofSelect);

708 i++;

709 }

710 // exit outer loop

711 break;

712 }

713 }

714

715 *pcrCounter = gr.pcrCounter;

716

717 return;

718 }

8.7.2.23 PCRAllocate()

This function is used to change the PCR allocation.

Trusted Platform Module Library Part 4: Supporting Routines

Page 366 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Error Returns Meaning

TPM_RC_NO_RESULT allocate failed

TPM_RC_PCR improper allocation

719 TPM_RC

720 PCRAllocate(

721 TPML_PCR_SELECTION *allocate, // IN: required allocation

722 UINT32 *maxPCR, // OUT: Maximum number of PCR

723 UINT32 *sizeNeeded, // OUT: required space

724 UINT32 *sizeAvailable // OUT: available space

725)

726 {

727 UINT32 i, j, k;

728 TPML_PCR_SELECTION newAllocate;

729 // Initialize the flags to indicate if HCRTM PCR and DRTM PCR are allocated.

730 BOOL pcrHcrtm = FALSE;

731 BOOL pcrDrtm = FALSE;

732

733 // Create the expected new PCR allocation based on the existing allocation

734 // and the new input:

735 // 1. if a PCR bank does not appear in the new allocation, the existing

736 // allocation of this PCR bank will be preserved.

737 // 2. if a PCR bank appears multiple times in the new allocation, only the

738 // last one will be in effect.

739 newAllocate = gp.pcrAllocated;

740 for(i = 0; i < allocate->count; i++)

741 {

742 for(j = 0; j < newAllocate.count; j++)

743 {

744 // If hash matches, the new allocation covers the old allocation

745 // for this particular bank.

746 // The assumption is the initial PCR allocation (from manufacture)

747 // has all the supported hash algorithms with an assigned bank

748 // (possibly empty). So there must be a match for any new bank

749 // allocation from the input.

750 if(newAllocate.pcrSelections[j].hash ==

751 allocate->pcrSelections[i].hash)

752 {

753 newAllocate.pcrSelections[j] = allocate->pcrSelections[i];

754 break;

755 }

756 }

757 // The j loop must exit with a match.

758 pAssert(j < newAllocate.count);

759 }

760

761 // Max PCR in a bank is MIN(implemented PCR, PCR with attributes defined)

762 *maxPCR = sizeof(s_initAttributes) / sizeof(PCR_Attributes);

763 if(*maxPCR > IMPLEMENTATION_PCR)

764 *maxPCR = IMPLEMENTATION_PCR;

765

766 // Compute required size for allocation

767 *sizeNeeded = 0;

768 for(i = 0; i < newAllocate.count; i++)

769 {

770 UINT32 digestSize

771 = CryptHashGetDigestSize(newAllocate.pcrSelections[i].hash);

772 #if defined(DRTM_PCR)

773 // Make sure that we end up with at least one DRTM PCR

774 pcrDrtm = pcrDrtm || TestBit(DRTM_PCR,

775 newAllocate.pcrSelections[i].pcrSelect,

776 newAllocate.pcrSelections[i].sizeofSelect);

777

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 367

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

778 #else // if DRTM PCR is not required, indicate that the allocation is OK

779 pcrDrtm = TRUE;

780 #endif

781

782 #if defined(HCRTM_PCR)

783 // and one HCRTM PCR (since this is usually PCR 0...)

784 pcrHcrtm = pcrHcrtm || TestBit(HCRTM_PCR,

785 newAllocate.pcrSelections[i].pcrSelect,

786 newAllocate.pcrSelections[i].sizeofSelect);

787 #else

788 pcrHcrtm = TRUE;

789 #endif

790 for(j = 0; j < newAllocate.pcrSelections[i].sizeofSelect; j++)

791 {

792 BYTE mask = 1;

793 for(k = 0; k < 8; k++)

794 {

795 if((newAllocate.pcrSelections[i].pcrSelect[j] & mask) != 0)

796 *sizeNeeded += digestSize;

797 mask = mask << 1;

798 }

799 }

800 }

801

802 if(!pcrDrtm || !pcrHcrtm)

803 return TPM_RC_PCR;

804

805 // In this particular implementation, we always have enough space to

806 // allocate PCR. Different implementation may return a sizeAvailable less

807 // than the sizeNeed.

808 *sizeAvailable = sizeof(s_pcrs);

809

810 // Save the required allocation to NV. Note that after NV is written, the

811 // PCR allocation in NV is no longer consistent with the RAM data

812 // gp.pcrAllocated. The NV version reflect the allocate after next

813 // TPM_RESET, while the RAM version reflects the current allocation

814 NV_WRITE_PERSISTENT(pcrAllocated, newAllocate);

815

816 return TPM_RC_SUCCESS;

817 }

8.7.2.24 PCRSetValue()

This function is used to set the designated PCR in all banks to an initial value. The initial value is signed

and will be sign extended into the entire PCR.

818 void

819 PCRSetValue(

820 TPM_HANDLE handle, // IN: the handle of the PCR to set

821 INT8 initialValue // IN: the value to set

822)

823 {

824 int i;

825 UINT32 pcr = handle - PCR_FIRST;

826 TPMI_ALG_HASH hash;

827 UINT16 digestSize;

828 BYTE *pcrData;

829

830 // Iterate supported PCR bank algorithms to reset

831 for(i = 0; i < HASH_COUNT; i++)

832 {

833 hash = CryptHashGetAlgByIndex(i);

834 // Prevent runaway

835 if(hash == TPM_ALG_NULL)

Trusted Platform Module Library Part 4: Supporting Routines

Page 368 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

836 break;

837

838 // Get a pointer to the data

839 pcrData = GetPcrPointer(gp.pcrAllocated.pcrSelections[i].hash, pcr);

840

841 // If the PCR is allocated

842 if(pcrData != NULL)

843 {

844 // And the size of the digest

845 digestSize = CryptHashGetDigestSize(hash);

846

847 // Set the LSO to the input value

848 pcrData[digestSize - 1] = initialValue;

849

850 // Sign extend

851 if(initialValue >= 0)

852 MemorySet(pcrData, 0, digestSize - 1);

853 else

854 MemorySet(pcrData, -1, digestSize - 1);

855 }

856 }

857 }

8.7.2.25 PCRResetDynamics

This function is used to reset a dynamic PCR to 0. This function is used in DRTM sequence.

858 void

859 PCRResetDynamics(

860 void

861)

862 {

863 UINT32 pcr, i;

864

865 // Initialize PCR values

866 for(pcr = 0; pcr < IMPLEMENTATION_PCR; pcr++)

867 {

868 // Iterate each hash algorithm bank

869 for(i = 0; i < gp.pcrAllocated.count; i++)

870 {

871 BYTE *pcrData;

872 UINT32 pcrSize;

873

874 pcrData = GetPcrPointer(gp.pcrAllocated.pcrSelections[i].hash, pcr);

875

876 if(pcrData != NULL)

877 {

878 pcrSize =

879 CryptHashGetDigestSize(gp.pcrAllocated.pcrSelections[i].hash);

880

881 // Reset PCR

882 // Any PCR can be reset by locality 4 should be reset to 0

883 if((s_initAttributes[pcr].resetLocality & 0x10) != 0)

884 MemorySet(pcrData, 0, pcrSize);

885 }

886 }

887 }

888 return;

889 }

8.7.2.26 PCRCapGetAllocation()

This function is used to get the current allocation of PCR banks.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 369

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

YES if the return count is 0

NO if the return count is not 0

890 TPMI_YES_NO

891 PCRCapGetAllocation(

892 UINT32 count, // IN: count of return

893 TPML_PCR_SELECTION *pcrSelection // OUT: PCR allocation list

894)

895 {

896 if(count == 0)

897 {

898 pcrSelection->count = 0;

899 return YES;

900 }

901 else

902 {

903 *pcrSelection = gp.pcrAllocated;

904 return NO;

905 }

906 }

8.7.2.27 PCRSetSelectBit()

This function sets a bit in a bitmap array.

907 static void

908 PCRSetSelectBit(

909 UINT32 pcr, // IN: PCR number

910 BYTE *bitmap // OUT: bit map to be set

911)

912 {

913 bitmap[pcr / 8] |= (1 << (pcr % 8));

914 return;

915 }

8.7.2.28 PCRGetProperty()

This function returns the selected PCR property.

Return Value Meaning

TRUE(1) the property type is implemented

FALSE(0) the property type is not implemented

916 static BOOL

917 PCRGetProperty(

918 TPM_PT_PCR property,

919 TPMS_TAGGED_PCR_SELECT *select

920)

921 {

922 UINT32 pcr;

923 UINT32 groupIndex;

924

925 select->tag = property;

926 // Always set the bitmap to be the size of all PCR

927 select->sizeofSelect = (IMPLEMENTATION_PCR + 7) / 8;

928

929 // Initialize bitmap

Trusted Platform Module Library Part 4: Supporting Routines

Page 370 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

930 MemorySet(select->pcrSelect, 0, select->sizeofSelect);

931

932 // Collecting properties

933 for(pcr = 0; pcr < IMPLEMENTATION_PCR; pcr++)

934 {

935 switch(property)

936 {

937 case TPM_PT_PCR_SAVE:

938 if(s_initAttributes[pcr].stateSave == SET)

939 PCRSetSelectBit(pcr, select->pcrSelect);

940 break;

941 case TPM_PT_PCR_EXTEND_L0:

942 if((s_initAttributes[pcr].extendLocality & 0x01) != 0)

943 PCRSetSelectBit(pcr, select->pcrSelect);

944 break;

945 case TPM_PT_PCR_RESET_L0:

946 if((s_initAttributes[pcr].resetLocality & 0x01) != 0)

947 PCRSetSelectBit(pcr, select->pcrSelect);

948 break;

949 case TPM_PT_PCR_EXTEND_L1:

950 if((s_initAttributes[pcr].extendLocality & 0x02) != 0)

951 PCRSetSelectBit(pcr, select->pcrSelect);

952 break;

953 case TPM_PT_PCR_RESET_L1:

954 if((s_initAttributes[pcr].resetLocality & 0x02) != 0)

955 PCRSetSelectBit(pcr, select->pcrSelect);

956 break;

957 case TPM_PT_PCR_EXTEND_L2:

958 if((s_initAttributes[pcr].extendLocality & 0x04) != 0)

959 PCRSetSelectBit(pcr, select->pcrSelect);

960 break;

961 case TPM_PT_PCR_RESET_L2:

962 if((s_initAttributes[pcr].resetLocality & 0x04) != 0)

963 PCRSetSelectBit(pcr, select->pcrSelect);

964 break;

965 case TPM_PT_PCR_EXTEND_L3:

966 if((s_initAttributes[pcr].extendLocality & 0x08) != 0)

967 PCRSetSelectBit(pcr, select->pcrSelect);

968 break;

969 case TPM_PT_PCR_RESET_L3:

970 if((s_initAttributes[pcr].resetLocality & 0x08) != 0)

971 PCRSetSelectBit(pcr, select->pcrSelect);

972 break;

973 case TPM_PT_PCR_EXTEND_L4:

974 if((s_initAttributes[pcr].extendLocality & 0x10) != 0)

975 PCRSetSelectBit(pcr, select->pcrSelect);

976 break;

977 case TPM_PT_PCR_RESET_L4:

978 if((s_initAttributes[pcr].resetLocality & 0x10) != 0)

979 PCRSetSelectBit(pcr, select->pcrSelect);

980 break;

981 case TPM_PT_PCR_DRTM_RESET:

982 // DRTM reset PCRs are the PCR reset by locality 4

983 if((s_initAttributes[pcr].resetLocality & 0x10) != 0)

984 PCRSetSelectBit(pcr, select->pcrSelect);

985 break;

986 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

987 case TPM_PT_PCR_POLICY:

988 if(PCRBelongsPolicyGroup(pcr + PCR_FIRST, &groupIndex))

989 PCRSetSelectBit(pcr, select->pcrSelect);

990 break;

991 #endif

992 #if defined NUM_AUTHVALUE_PCR_GROUP && NUM_AUTHVALUE_PCR_GROUP > 0

993 case TPM_PT_PCR_AUTH:

994 if(PCRBelongsAuthGroup(pcr + PCR_FIRST, &groupIndex))

995 PCRSetSelectBit(pcr, select->pcrSelect);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 371

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

996 break;

997 #endif

998 #if ENABLE_PCR_NO_INCREMENT == YES

999 case TPM_PT_PCR_NO_INCREMENT:

1000 if(PCRBelongsTCBGroup(pcr + PCR_FIRST))

1001 PCRSetSelectBit(pcr, select->pcrSelect);

1002 break;

1003 #endif

1004 default:

1005 // If property is not supported, stop scanning PCR attributes

1006 // and return.

1007 return FALSE;

1008 break;

1009 }

1010 }

1011 return TRUE;

1012 }

8.7.2.29 PCRCapGetProperties()

This function returns a list of PCR properties starting at property.

Return Value Meaning

YES if no more property is available

NO if there are more properties not reported

1013 TPMI_YES_NO

1014 PCRCapGetProperties(

1015 TPM_PT_PCR property, // IN: the starting PCR property

1016 UINT32 count, // IN: count of returned properties

1017 TPML_TAGGED_PCR_PROPERTY *select // OUT: PCR select

1018)

1019 {

1020 TPMI_YES_NO more = NO;

1021 UINT32 i;

1022

1023 // Initialize output property list

1024 select->count = 0;

1025

1026 // The maximum count of properties we may return is MAX_PCR_PROPERTIES

1027 if(count > MAX_PCR_PROPERTIES) count = MAX_PCR_PROPERTIES;

1028

1029 // TPM_PT_PCR_FIRST is defined as 0 in spec. It ensures that property

1030 // value would never be less than TPM_PT_PCR_FIRST

1031 cAssert(TPM_PT_PCR_FIRST == 0);

1032

1033 // Iterate PCR properties. TPM_PT_PCR_LAST is the index of the last property

1034 // implemented on the TPM.

1035 for(i = property; i <= TPM_PT_PCR_LAST; i++)

1036 {

1037 if(select->count < count)

1038 {

1039 // If we have not filled up the return list, add more properties to it

1040 if(PCRGetProperty(i, &select->pcrProperty[select->count]))

1041 // only increment if the property is implemented

1042 select->count++;

1043 }

1044 else

1045 {

1046 // If the return list is full but we still have properties

1047 // available, report this and stop iterating.

1048 more = YES;

Trusted Platform Module Library Part 4: Supporting Routines

Page 372 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1049 break;

1050 }

1051 }

1052 return more;

1053 }

8.7.2.30 PCRCapGetHandles()

This function is used to get a list of handles of PCR, started from handle. If handle exceeds the maximum

PCR handle range, an empty list will be returned and the return value will be NO.

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

1054 TPMI_YES_NO

1055 PCRCapGetHandles(

1056 TPMI_DH_PCR handle, // IN: start handle

1057 UINT32 count, // IN: count of returned handles

1058 TPML_HANDLE *handleList // OUT: list of handle

1059)

1060 {

1061 TPMI_YES_NO more = NO;

1062 UINT32 i;

1063

1064 pAssert(HandleGetType(handle) == TPM_HT_PCR);

1065

1066 // Initialize output handle list

1067 handleList->count = 0;

1068

1069 // The maximum count of handles we may return is MAX_CAP_HANDLES

1070 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

1071

1072 // Iterate PCR handle range

1073 for(i = handle & HR_HANDLE_MASK; i <= PCR_LAST; i++)

1074 {

1075 if(handleList->count < count)

1076 {

1077 // If we have not filled up the return list, add this PCR

1078 // handle to it

1079 handleList->handle[handleList->count] = i + PCR_FIRST;

1080 handleList->count++;

1081 }

1082 else

1083 {

1084 // If the return list is full but we still have PCR handle

1085 // available, report this and stop iterating

1086 more = YES;

1087 break;

1088 }

1089 }

1090 return more;

1091 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 373

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.8 PP.c

8.8.1 Introduction

This file contains the functions that support the physical presence operations of the TPM.

8.8.2 Includes

1 #include "Tpm.h"

8.8.3 Functions

8.8.3.1 PhysicalPresencePreInstall_Init()

This function is used to initialize the array of commands that always require confirmation with physical

presence. The array is an array of bits that has a correspondence with the command code.

This command should only ever be executable in a manufacturing setting or in a simulation.

When set, these cannot be cleared.

2 void

3 PhysicalPresencePreInstall_Init(

4 void

5)

6 {

7 COMMAND_INDEX commandIndex;

8 // Clear all the PP commands

9 MemorySet(&gp.ppList, 0, sizeof(gp.ppList));

10

11 // Any command that is PP_REQUIRED should be SET

12 for(commandIndex = 0; commandIndex < COMMAND_COUNT; commandIndex++)

13 {

14 if(s_commandAttributes[commandIndex] & IS_IMPLEMENTED

15 && s_commandAttributes[commandIndex] & PP_REQUIRED)

16 SET_BIT(commandIndex, gp.ppList);

17 }

18 // Write PP list to NV

19 NV_SYNC_PERSISTENT(ppList);

20 return;

21 }

8.8.3.2 PhysicalPresenceCommandSet()

This function is used to set the indicator that a command requires PP confirmation.

22 void

23 PhysicalPresenceCommandSet(

24 TPM_CC commandCode // IN: command code

25)

26 {

27 COMMAND_INDEX commandIndex = CommandCodeToCommandIndex(commandCode);

28

29 // if the command isn't implemented, the do nothing

30 if(commandIndex == UNIMPLEMENTED_COMMAND_INDEX)

31 return;

32

33 // only set the bit if this is a command for which PP is allowed

34 if(s_commandAttributes[commandIndex] & PP_COMMAND)

Trusted Platform Module Library Part 4: Supporting Routines

Page 374 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

35 SET_BIT(commandIndex, gp.ppList);

36 return;

37 }

8.8.3.3 PhysicalPresenceCommandClear()

This function is used to clear the indicator that a command requires PP confirmation.

38 void

39 PhysicalPresenceCommandClear(

40 TPM_CC commandCode // IN: command code

41)

42 {

43 COMMAND_INDEX commandIndex = CommandCodeToCommandIndex(commandCode);

44

45 // If the command isn't implemented, then don't do anything

46 if(commandIndex == UNIMPLEMENTED_COMMAND_INDEX)

47 return;

48

49 // Only clear the bit if the command does not require PP

50 if((s_commandAttributes[commandIndex] & PP_REQUIRED) == 0)

51 CLEAR_BIT(commandIndex, gp.ppList);

52

53 return;

54 }

8.8.3.4 PhysicalPresenceIsRequired()

This function indicates if PP confirmation is required for a command.

Return Value Meaning

TRUE(1) physical presence is required

FALSE(0) physical presence is not required

55 BOOL

56 PhysicalPresenceIsRequired(

57 COMMAND_INDEX commandIndex // IN: command index

58)

59 {

60 // Check the bit map. If the bit is SET, PP authorization is required

61 return (TEST_BIT(commandIndex, gp.ppList));

62 }

8.8.3.5 PhysicalPresenceCapGetCCList()

This function returns a list of commands that require PP confirmation. The list starts from the first

implemented command that has a command code that the same or greater than commandCode.

Return Value Meaning

YES if there are more command codes available

NO all the available command codes have been returned

63 TPMI_YES_NO

64 PhysicalPresenceCapGetCCList(

65 TPM_CC commandCode, // IN: start command code

66 UINT32 count, // IN: count of returned TPM_CC

67 TPML_CC *commandList // OUT: list of TPM_CC

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 375

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

68)

69 {

70 TPMI_YES_NO more = NO;

71 COMMAND_INDEX commandIndex;

72

73 // Initialize output handle list

74 commandList->count = 0;

75

76 // The maximum count of command we may return is MAX_CAP_CC

77 if(count > MAX_CAP_CC) count = MAX_CAP_CC;

78

79 // Collect PP commands

80 for(commandIndex = GetClosestCommandIndex(commandCode);

81 commandIndex != UNIMPLEMENTED_COMMAND_INDEX;

82 commandIndex = GetNextCommandIndex(commandIndex))

83 {

84 if(PhysicalPresenceIsRequired(commandIndex))

85 {

86 if(commandList->count < count)

87 {

88 // If we have not filled up the return list, add this command

89 // code to it

90 commandList->commandCodes[commandList->count]

91 = GetCommandCode(commandIndex);

92 commandList->count++;

93 }

94 else

95 {

96 // If the return list is full but we still have PP command

97 // available, report this and stop iterating

98 more = YES;

99 break;

100 }

101 }

102 }

103 return more;

104 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 376 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.9 Session.c

8.9.1 Introduction

The code in this file is used to manage the session context counter. The scheme implemented here is a

"truncated counter". This scheme allows the TPM to not need TPM_SU_CLEAR for a very long period of

time and still not have the context count for a session repeated.

The counter (contextCounter)in this implementation is a UINT64 but can be smaller. The "tracking array"

(contextArray) only has 16-bits per context. The tracking array is the data that needs to be saved and

restored across TPM_SU_STATE so that sessions are not lost when the system enters the sleep state.

Also, when the TPM is active, the tracking array is kept in RAM making it important that the number of

bytes for each entry be kept as small as possible.

The TPM prevents collisions of these truncated values by not allowing a contextID to be assigned if it

would be the same as an existing value. Since the array holds 16 bits, after a context has been saved, an

additional 2^16-1 contexts may be saved before the count would again match. The normal expectation is

that the context will be flushed before its count value is needed again but it is always possible to have

long-lived sessions.

The contextID is assigned when the context is saved (TPM2_ContextSave()). At that time, the TPM will

compare the low-order 16 bits of contextCounter to the existing values in contextArray and if one

matches, the TPM will return TPM_RC_CONTEXT_GAP (by construction, the entry that contains the

matching value is the oldest context).

The expected remediation by the TRM is to load the oldest saved session context (the one found by the

TPM), and save it. Since loading the oldest session also eliminates its contextID value from contextArray,

there TPM will always be able to load and save the oldest existing context.

In the worst case, software may have to load and save several contexts in order to save an additional

one. This should happen very infrequently.

When the TPM searches contextArray and finds that none of the contextIDs match the low-order 16-bits

of contextCount, the TPM can copy the low bits to the contextArray associated with the session, and

increment contextCount.

There is one entry in contextArray for each of the active sessions allowed by the TPM implementation.

This array contains either a context count, an index, or a value indicating the slot is available (0).

The index into the contextArray is the handle for the session with the region selector byte of the session

set to zero. If an entry in contextArray contains 0, then the corresponding handle may be assigned to a

session. If the entry contains a value that is less than or equal to the number of loaded sessions for the

TPM, then the array entry is the slot in which the context is loaded.

EXAMPLE: If the TPM allows 8 loaded sessions, then the slot numbers would be 1-8 and a contextArrary value in that
range would represent the loaded session.

NOTE: When the TPM firmware determines that the array entry is for a loaded session, it will subtract 1 to create the
zero-based slot number.

There is one significant corner case in this scheme. When the contextCount is equal to a value in the

contextArray, the oldest session needs to be recycled or flushed. In order to recycle the session, it must

be loaded. To be loaded, there must be an available slot. Rather than require that a spare slot be

available all the time, the TPM will check to see if the contextCount is equal to some value in the

contextArray when a session is created. This prevents the last session slot from being used when it is

likely that a session will need to be recycled.

If a TPM with both 1.2 and 2.0 functionality uses this scheme for both 1.2 and 2.0 sessions, and the list of

active contexts is read with TPM_GetCapabiltiy(), the TPM will create 32-bit representations of the list that

contains 16-bit values (the TPM2_GetCapability() returns a list of handles for active sessions rather than

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 377

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

a list of contextID). The full contextID has high-order bits that are either the same as the current

contextCount or one less. It is one less if the 16-bits of the contextArray has a value that is larger than the

low-order 16 bits of contextCount.

8.9.2 Includes, Defines, and Local Variables

1 #define SESSION_C

2 #include "Tpm.h"

8.9.3 File Scope Function -- ContextIdSetOldest()

This function is called when the oldest contextID is being loaded or deleted. Once a saved context

becomes the oldest, it stays the oldest until it is deleted.

Finding the oldest is a bit tricky. It is not just the numeric comparison of values but is dependent on the

value of contextCounter.

Assume we have a small contextArray with 8, 4-bit values with values 1 and 2 used to indicate the loaded

context slot number. Also assume that the array contains hex values of (0 0 1 0 3 0 9 F) and that the

contextCounter is an 8-bit counter with a value of 0x37. Since the low nibble is 7, that means that values

closest to but above 7 are older than values below it and, in this example, 9 is the oldest value.

Note if we subtract the counter value, from each slot that contains a saved contextID we get (- - - - B - 2 -

8) and the oldest entry is now easy to find because it has the lowest value.

3 static void

4 ContextIdSetOldest(

5 void

6)

7 {

8 CONTEXT_SLOT lowBits;

9 CONTEXT_SLOT entry;

10 CONTEXT_SLOT smallest = ((CONTEXT_SLOT)~0); // Set to the maximum possible

11 UINT32 i;

12

13 // Set oldestSaveContext to a value indicating none assigned

14 s_oldestSavedSession = MAX_ACTIVE_SESSIONS + 1;

15

16 lowBits = (CONTEXT_SLOT)gr.contextCounter;

17 for(i = 0; i < MAX_ACTIVE_SESSIONS; i++)

18 {

19 entry = gr.contextArray[i];

20

21 // only look at entries that are saved contexts

22 if(entry > MAX_LOADED_SESSIONS)

23 {

24 // Use a less than or equal in case the oldest

25 // is brand new (= lowBits-1) and equal to our initial

26 // value for smallest.

27 if(((CONTEXT_SLOT)(entry - lowBits)) <= smallest)

28 {

29 smallest = (entry - lowBits);

30 s_oldestSavedSession = i;

31 }

32 }

33 }

34 // When we finish, either the s_oldestSavedSession still has its initial

35 // value, or it has the index of the oldest saved context.

36 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 378 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.9.4 Startup Function -- SessionStartup()

This function initializes the session subsystem on TPM2_Startup().

37 BOOL

38 SessionStartup(

39 STARTUP_TYPE type

40)

41 {

42 UINT32 i;

43

44 // Initialize session slots. At startup, all the in-memory session slots

45 // are cleared and marked as not occupied

46 for(i = 0; i < MAX_LOADED_SESSIONS; i++)

47 s_sessions[i].occupied = FALSE; // session slot is not occupied

48

49 // The free session slots the number of maximum allowed loaded sessions

50 s_freeSessionSlots = MAX_LOADED_SESSIONS;

51

52 // Initialize context ID data. On a ST_SAVE or hibernate sequence, it will

53 // scan the saved array of session context counts, and clear any entry that

54 // references a session that was in memory during the state save since that

55 // memory was not preserved over the ST_SAVE.

56 if(type == SU_RESUME || type == SU_RESTART)

57 {

58 // On ST_SAVE we preserve the contexts that were saved but not the ones

59 // in memory

60 for(i = 0; i < MAX_ACTIVE_SESSIONS; i++)

61 {

62 // If the array value is unused or references a loaded session then

63 // that loaded session context is lost and the array entry is

64 // reclaimed.

65 if(gr.contextArray[i] <= MAX_LOADED_SESSIONS)

66 gr.contextArray[i] = 0;

67 }

68 // Find the oldest session in context ID data and set it in

69 // s_oldestSavedSession

70 ContextIdSetOldest();

71 }

72 else

73 {

74 // For STARTUP_CLEAR, clear out the contextArray

75 for(i = 0; i < MAX_ACTIVE_SESSIONS; i++)

76 gr.contextArray[i] = 0;

77

78 // reset the context counter

79 gr.contextCounter = MAX_LOADED_SESSIONS + 1;

80

81 // Initialize oldest saved session

82 s_oldestSavedSession = MAX_ACTIVE_SESSIONS + 1;

83 }

84 return TRUE;

85 }

8.9.5 Access Functions

8.9.5.1 SessionIsLoaded()

This function test a session handle references a loaded session. The handle must have previously been

checked to make sure that it is a valid handle for an authorization session.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 379

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE: A PWAP authorization does not have a session.

Return Value Meaning

TRUE(1) session is loaded

FALSE(0) session is not loaded

86 BOOL

87 SessionIsLoaded(

88 TPM_HANDLE handle // IN: session handle

89)

90 {

91 pAssert(HandleGetType(handle) == TPM_HT_POLICY_SESSION

92 || HandleGetType(handle) == TPM_HT_HMAC_SESSION);

93

94 handle = handle & HR_HANDLE_MASK;

95

96 // if out of range of possible active session, or not assigned to a loaded

97 // session return false

98 if(handle >= MAX_ACTIVE_SESSIONS

99 || gr.contextArray[handle] == 0

100 || gr.contextArray[handle] > MAX_LOADED_SESSIONS)

101 return FALSE;

102

103 return TRUE;

104 }

8.9.5.2 SessionIsSaved()

This function test a session handle references a saved session. The handle must have previously been

checked to make sure that it is a valid handle for an authorization session.

NOTE: A password authorization does not have a session.

This function requires that the handle be a valid session handle.

Return Value Meaning

TRUE(1) session is saved

FALSE(0) session is not saved

105 BOOL

106 SessionIsSaved(

107 TPM_HANDLE handle // IN: session handle

108)

109 {

110 pAssert(HandleGetType(handle) == TPM_HT_POLICY_SESSION

111 || HandleGetType(handle) == TPM_HT_HMAC_SESSION);

112

113 handle = handle & HR_HANDLE_MASK;

114 // if out of range of possible active session, or not assigned, or

115 // assigned to a loaded session, return false

116 if(handle >= MAX_ACTIVE_SESSIONS

117 || gr.contextArray[handle] == 0

118 || gr.contextArray[handle] <= MAX_LOADED_SESSIONS

119)

120 return FALSE;

121

122 return TRUE;

123 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 380 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.9.5.3 SequenceNumberForSavedContextIsValid()

This function validates that the sequence number and handle value within a saved context are valid.

124 BOOL

125 SequenceNumberForSavedContextIsValid(

126 TPMS_CONTEXT *context // IN: pointer to a context structure to be

127 // validated

128)

129 {

130 #define MAX_CONTEXT_GAP ((UINT64)((CONTEXT_SLOT) ~0) + 1)

131

132 TPM_HANDLE handle = context->savedHandle & HR_HANDLE_MASK;

133

134 if(// Handle must be with the range of active sessions

135 handle >= MAX_ACTIVE_SESSIONS

136 // the array entry must be for a saved context

137 || gr.contextArray[handle] <= MAX_LOADED_SESSIONS

138 // the array entry must agree with the sequence number

139 || gr.contextArray[handle] != (CONTEXT_SLOT)context->sequence

140 // the provided sequence number has to be less than the current counter

141 || context->sequence > gr.contextCounter

142 // but not so much that it could not be a valid sequence number

143 || gr.contextCounter - context->sequence > MAX_CONTEXT_GAP)

144 return FALSE;

145

146 return TRUE;

147 }

8.9.5.4 SessionPCRValueIsCurrent()

This function is used to check if PCR values have been updated since the last time they were checked in

a policy session.

This function requires the session is loaded.

Return Value Meaning

TRUE(1) PCR value is current

FALSE(0) PCR value is not current

148 BOOL

149 SessionPCRValueIsCurrent(

150 SESSION *session // IN: session structure

151)

152 {

153 if(session->pcrCounter != 0

154 && session->pcrCounter != gr.pcrCounter

155)

156 return FALSE;

157 else

158 return TRUE;

159 }

8.9.5.5 SessionGet()

This function returns a pointer to the session object associated with a session handle.

The function requires that the session is loaded.

160 SESSION *

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 381

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

161 SessionGet(

162 TPM_HANDLE handle // IN: session handle

163)

164 {

165 size_t slotIndex;

166 CONTEXT_SLOT sessionIndex;

167

168 pAssert(HandleGetType(handle) == TPM_HT_POLICY_SESSION

169 || HandleGetType(handle) == TPM_HT_HMAC_SESSION

170);

171

172 slotIndex = handle & HR_HANDLE_MASK;

173

174 pAssert(slotIndex < MAX_ACTIVE_SESSIONS);

175

176 // get the contents of the session array. Because session is loaded, we

177 // should always get a valid sessionIndex

178 sessionIndex = gr.contextArray[slotIndex] - 1;

179

180 pAssert(sessionIndex < MAX_LOADED_SESSIONS);

181

182 return &s_sessions[sessionIndex].session;

183 }

8.9.6 Utility Functions

8.9.6.1 ContextIdSessionCreate()

This function is called when a session is created. It will check to see if the current gap would prevent a

context from being saved. If so it will return TPM_RC_CONTEXT_GAP. Otherwise, it will try to find an

open slot in contextArray, set contextArray to the slot.

This routine requires that the caller has determined the session array index for the session.

Error Returns Meaning

TPM_RC_CONTEXT_GAP can't assign a new contextID until the oldest saved session context is
recycled

TPM_RC_SESSION_HANDLE there is no slot available in the context array for tracking of this
session context

184 static TPM_RC

185 ContextIdSessionCreate(

186 TPM_HANDLE *handle, // OUT: receives the assigned handle. This will

187 // be an index that must be adjusted by the

188 // caller according to the type of the

189 // session created

190 UINT32 sessionIndex // IN: The session context array entry that will

191 // be occupied by the created session

192)

193 {

194 pAssert(sessionIndex < MAX_LOADED_SESSIONS);

195

196 // check to see if creating the context is safe

197 // Is this going to be an assignment for the last session context

198 // array entry? If so, then there will be no room to recycle the

199 // oldest context if needed. If the gap is not at maximum, then

200 // it will be possible to save a context if it becomes necessary.

201 if(s_oldestSavedSession < MAX_ACTIVE_SESSIONS

202 && s_freeSessionSlots == 1)

203 {

204 // See if the gap is at maximum

Trusted Platform Module Library Part 4: Supporting Routines

Page 382 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

205 // The current value of the contextCounter will be assigned to the next

206 // saved context. If the value to be assigned would make the same as an

207 // existing context, then we can't use it because of the ambiguity it would

208 // create.

209 if((CONTEXT_SLOT)gr.contextCounter

210 == gr.contextArray[s_oldestSavedSession])

211 return TPM_RC_CONTEXT_GAP;

212 }

213

214 // Find an unoccupied entry in the contextArray

215 for(*handle = 0; *handle < MAX_ACTIVE_SESSIONS; (*handle)++)

216 {

217 if(gr.contextArray[*handle] == 0)

218 {

219 // indicate that the session associated with this handle

220 // references a loaded session

221 gr.contextArray[*handle] = (CONTEXT_SLOT)(sessionIndex + 1);

222 return TPM_RC_SUCCESS;

223 }

224 }

225 return TPM_RC_SESSION_HANDLES;

226 }

8.9.6.2 SessionCreate()

This function does the detailed work for starting an authorization session. This is done in a support

routine rather than in the action code because the session management may differ in implementations.

This implementation uses a fixed memory allocation to hold sessions and a fixed allocation to hold the

contextID for the saved contexts.

Error Returns Meaning

TPM_RC_CONTEXT_GAP need to recycle sessions

TPM_RC_SESSION_HANDLE active session space is full

TPM_RC_SESSION_MEMORY loaded session space is full

227 TPM_RC

228 SessionCreate(

229 TPM_SE sessionType, // IN: the session type

230 TPMI_ALG_HASH authHash, // IN: the hash algorithm

231 TPM2B_NONCE *nonceCaller, // IN: initial nonceCaller

232 TPMT_SYM_DEF *symmetric, // IN: the symmetric algorithm

233 TPMI_DH_ENTITY bind, // IN: the bind object

234 TPM2B_DATA *seed, // IN: seed data

235 TPM_HANDLE *sessionHandle, // OUT: the session handle

236 TPM2B_NONCE *nonceTpm // OUT: the session nonce

237)

238 {

239 TPM_RC result = TPM_RC_SUCCESS;

240 CONTEXT_SLOT slotIndex;

241 SESSION *session = NULL;

242

243 pAssert(sessionType == TPM_SE_HMAC

244 || sessionType == TPM_SE_POLICY

245 || sessionType == TPM_SE_TRIAL);

246

247 // If there are no open spots in the session array, then no point in searching

248 if(s_freeSessionSlots == 0)

249 return TPM_RC_SESSION_MEMORY;

250

251 // Find a space for loading a session

252 for(slotIndex = 0; slotIndex < MAX_LOADED_SESSIONS; slotIndex++)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 383

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

253 {

254 // Is this available?

255 if(s_sessions[slotIndex].occupied == FALSE)

256 {

257 session = &s_sessions[slotIndex].session;

258 break;

259 }

260 }

261 // if no spot found, then this is an internal error

262 if(slotIndex >= MAX_LOADED_SESSIONS)

263 FAIL(FATAL_ERROR_INTERNAL);

264

265 // Call context ID function to get a handle. TPM_RC_SESSION_HANDLE may be

266 // returned from ContextIdHandelAssign()

267 result = ContextIdSessionCreate(sessionHandle, slotIndex);

268 if(result != TPM_RC_SUCCESS)

269 return result;

270

271 //*** Only return from this point on is TPM_RC_SUCCESS

272

273 // Can now indicate that the session array entry is occupied.

274 s_freeSessionSlots--;

275 s_sessions[slotIndex].occupied = TRUE;

276

277 // Initialize the session data

278 MemorySet(session, 0, sizeof(SESSION));

279

280 // Initialize internal session data

281 session->authHashAlg = authHash;

282 // Initialize session type

283 if(sessionType == TPM_SE_HMAC)

284 {

285 *sessionHandle += HMAC_SESSION_FIRST;

286 }

287 else

288 {

289 *sessionHandle += POLICY_SESSION_FIRST;

290

291 // For TPM_SE_POLICY or TPM_SE_TRIAL

292 session->attributes.isPolicy = SET;

293 if(sessionType == TPM_SE_TRIAL)

294 session->attributes.isTrialPolicy = SET;

295

296 SessionSetStartTime(session);

297

298 // Initialize policyDigest. policyDigest is initialized with a string of 0

299 // of session algorithm digest size. Since the session is already clear.

300 // Just need to set the size

301 session->u2.policyDigest.t.size =

302 CryptHashGetDigestSize(session->authHashAlg);

303 }

304 // Create initial session nonce

305 session->nonceTPM.t.size = nonceCaller->t.size;

306 CryptRandomGenerate(session->nonceTPM.t.size, session->nonceTPM.t.buffer);

307 MemoryCopy2B(&nonceTpm->b, &session->nonceTPM.b,

308 sizeof(nonceTpm->t.buffer));

309

310 // Set up session parameter encryption algorithm

311 session->symmetric = *symmetric;

312

313 // If there is a bind object or a session secret, then need to compute

314 // a sessionKey.

315 if(bind != TPM_RH_NULL || seed->t.size != 0)

316 {

317 // sessionKey = KDFa(hash, (authValue || seed), "ATH", nonceTPM,

318 // nonceCaller, bits)

Trusted Platform Module Library Part 4: Supporting Routines

Page 384 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

319 // The HMAC key for generating the sessionSecret can be the concatenation

320 // of an authorization value and a seed value

321 TPM2B_TYPE(KEY, (sizeof(TPMT_HA) + sizeof(seed->t.buffer)));

322 TPM2B_KEY key;

323

324 // Get hash size, which is also the length of sessionKey

325 session->sessionKey.t.size = CryptHashGetDigestSize(session->authHashAlg);

326

327 // Get authValue of associated entity

328 EntityGetAuthValue(bind, (TPM2B_AUTH *)&key);

329 pAssert(key.t.size + seed->t.size <= sizeof(key.t.buffer));

330

331 // Concatenate authValue and seed

332 MemoryConcat2B(&key.b, &seed->b, sizeof(key.t.buffer));

333

334 // Compute the session key

335 CryptKDFa(session->authHashAlg, &key.b, SESSION_KEY, &session->nonceTPM.b,

336 &nonceCaller->b,

337 session->sessionKey.t.size * 8, session->sessionKey.t.buffer,

338 NULL, FALSE);

339 }

340

341 // Copy the name of the entity that the HMAC session is bound to

342 // Policy session is not bound to an entity

343 if(bind != TPM_RH_NULL && sessionType == TPM_SE_HMAC)

344 {

345 session->attributes.isBound = SET;

346 SessionComputeBoundEntity(bind, &session->u1.boundEntity);

347 }

348 // If there is a bind object and it is subject to DA, then use of this session

349 // is subject to DA regardless of how it is used.

350 session->attributes.isDaBound = (bind != TPM_RH_NULL)

351 && (IsDAExempted(bind) == FALSE);

352

353 // If the session is bound, then check to see if it is bound to lockoutAuth

354 session->attributes.isLockoutBound = (session->attributes.isDaBound == SET)

355 && (bind == TPM_RH_LOCKOUT);

356 return TPM_RC_SUCCESS;

357 }

8.9.6.3 SessionContextSave()

This function is called when a session context is to be saved. The contextID of the saved session is

returned. If no contextID can be assigned, then the routine returns TPM_RC_CONTEXT_GAP. If the

function completes normally, the session slot will be freed.

This function requires that handle references a loaded session. Otherwise, it should not be called at the

first place.

Error Returns Meaning

TPM_RC_CONTEXT_GAP a contextID could not be assigned

TPM_RC_TOO_MANY_CONTEXTS the counter maxed out

358 TPM_RC

359 SessionContextSave(

360 TPM_HANDLE handle, // IN: session handle

361 CONTEXT_COUNTER *contextID // OUT: assigned contextID

362)

363 {

364 UINT32 contextIndex;

365 CONTEXT_SLOT slotIndex;

366

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 385

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

367 pAssert(SessionIsLoaded(handle));

368

369 // check to see if the gap is already maxed out

370 // Need to have a saved session

371 if(s_oldestSavedSession < MAX_ACTIVE_SESSIONS

372 // if the oldest saved session has the same value as the low bits

373 // of the contextCounter, then the GAP is maxed out.

374 && gr.contextArray[s_oldestSavedSession] == (CONTEXT_SLOT)gr.contextCounter)

375 return TPM_RC_CONTEXT_GAP;

376

377 // if the caller wants the context counter, set it

378 if(contextID != NULL)

379 *contextID = gr.contextCounter;

380

381 contextIndex = handle & HR_HANDLE_MASK;

382 pAssert(contextIndex < MAX_ACTIVE_SESSIONS);

383

384 // Extract the session slot number referenced by the contextArray

385 // because we are going to overwrite this with the low order

386 // contextID value.

387 slotIndex = gr.contextArray[contextIndex] - 1;

388

389 // Set the contextID for the contextArray

390 gr.contextArray[contextIndex] = (CONTEXT_SLOT)gr.contextCounter;

391

392 // Increment the counter

393 gr.contextCounter++;

394

395 // In the unlikely event that the 64-bit context counter rolls over...

396 if(gr.contextCounter == 0)

397 {

398 // back it up

399 gr.contextCounter--;

400 // return an error

401 return TPM_RC_TOO_MANY_CONTEXTS;

402 }

403 // if the low-order bits wrapped, need to advance the value to skip over

404 // the values used to indicate that a session is loaded

405 if(((CONTEXT_SLOT)gr.contextCounter) == 0)

406 gr.contextCounter += MAX_LOADED_SESSIONS + 1;

407

408 // If no other sessions are saved, this is now the oldest.

409 if(s_oldestSavedSession >= MAX_ACTIVE_SESSIONS)

410 s_oldestSavedSession = contextIndex;

411

412 // Mark the session slot as unoccupied

413 s_sessions[slotIndex].occupied = FALSE;

414

415 // and indicate that there is an additional open slot

416 s_freeSessionSlots++;

417

418 return TPM_RC_SUCCESS;

419 }

8.9.6.4 SessionContextLoad()

This function is used to load a session from saved context. The session handle must be for a saved

context.

If the gap is at a maximum, then the only session that can be loaded is the oldest session, otherwise

TPM_RC_CONTEXT_GAP is returned.

This function requires that handle references a valid saved session.

Trusted Platform Module Library Part 4: Supporting Routines

Page 386 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Error Returns Meaning

TPM_RC_SESSION_MEMORY no free session slots

TPM_RC_CONTEXT_GAP the gap count is maximum and this is not the oldest saved context

420 TPM_RC

421 SessionContextLoad(

422 SESSION_BUF *session, // IN: session structure from saved context

423 TPM_HANDLE *handle // IN/OUT: session handle

424)

425 {

426 UINT32 contextIndex;

427 CONTEXT_SLOT slotIndex;

428

429 pAssert(HandleGetType(*handle) == TPM_HT_POLICY_SESSION

430 || HandleGetType(*handle) == TPM_HT_HMAC_SESSION);

431

432 // Don't bother looking if no openings

433 if(s_freeSessionSlots == 0)

434 return TPM_RC_SESSION_MEMORY;

435

436 // Find a free session slot to load the session

437 for(slotIndex = 0; slotIndex < MAX_LOADED_SESSIONS; slotIndex++)

438 if(s_sessions[slotIndex].occupied == FALSE) break;

439

440 // if no spot found, then this is an internal error

441 pAssert(slotIndex < MAX_LOADED_SESSIONS);

442

443 contextIndex = *handle & HR_HANDLE_MASK; // extract the index

444

445 // If there is only one slot left, and the gap is at maximum, the only session

446 // context that we can safely load is the oldest one.

447 if(s_oldestSavedSession < MAX_ACTIVE_SESSIONS

448 && s_freeSessionSlots == 1

449 && (CONTEXT_SLOT)gr.contextCounter == gr.contextArray[s_oldestSavedSession]

450 && contextIndex != s_oldestSavedSession)

451 return TPM_RC_CONTEXT_GAP;

452

453 pAssert(contextIndex < MAX_ACTIVE_SESSIONS);

454

455 // set the contextArray value to point to the session slot where

456 // the context is loaded

457 gr.contextArray[contextIndex] = slotIndex + 1;

458

459 // if this was the oldest context, find the new oldest

460 if(contextIndex == s_oldestSavedSession)

461 ContextIdSetOldest();

462

463 // Copy session data to session slot

464 MemoryCopy(&s_sessions[slotIndex].session, session, sizeof(SESSION));

465

466 // Set session slot as occupied

467 s_sessions[slotIndex].occupied = TRUE;

468

469 // Reduce the number of open spots

470 s_freeSessionSlots--;

471

472 return TPM_RC_SUCCESS;

473 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 387

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.9.6.5 SessionFlush()

This function is used to flush a session referenced by its handle. If the session associated with handle is

loaded, the session array entry is marked as available.

This function requires that handle be a valid active session.

474 void

475 SessionFlush(

476 TPM_HANDLE handle // IN: loaded or saved session handle

477)

478 {

479 CONTEXT_SLOT slotIndex;

480 UINT32 contextIndex; // Index into contextArray

481

482 pAssert((HandleGetType(handle) == TPM_HT_POLICY_SESSION

483 || HandleGetType(handle) == TPM_HT_HMAC_SESSION

484)

485 && (SessionIsLoaded(handle) || SessionIsSaved(handle))

486);

487

488 // Flush context ID of this session

489 // Convert handle to an index into the contextArray

490 contextIndex = handle & HR_HANDLE_MASK;

491

492 pAssert(contextIndex < sizeof(gr.contextArray) / sizeof(gr.contextArray[0]));

493

494 // Get the current contents of the array

495 slotIndex = gr.contextArray[contextIndex];

496

497 // Mark context array entry as available

498 gr.contextArray[contextIndex] = 0;

499

500 // Is this a saved session being flushed

501 if(slotIndex > MAX_LOADED_SESSIONS)

502 {

503 // Flushing the oldest session?

504 if(contextIndex == s_oldestSavedSession)

505 // If so, find a new value for oldest.

506 ContextIdSetOldest();

507 }

508 else

509 {

510 // Adjust slot index to point to session array index

511 slotIndex -= 1;

512

513 // Free session array index

514 s_sessions[slotIndex].occupied = FALSE;

515 s_freeSessionSlots++;

516 }

517

518 return;

519 }

8.9.6.6 SessionComputeBoundEntity()

This function computes the binding value for a session. The binding value for a reserved handle is the

handle itself. For all the other entities, the authValue at the time of binding is included to prevent

squatting. For those values, the Name and the authValue are concatenated into the bind buffer. If they

will not both fit, the will be overlapped by XORing bytes. If XOR is required, the bind value will be full.

520 void

521 SessionComputeBoundEntity(

Trusted Platform Module Library Part 4: Supporting Routines

Page 388 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

522 TPMI_DH_ENTITY entityHandle, // IN: handle of entity

523 TPM2B_NAME *bind // OUT: binding value

524)

525 {

526 TPM2B_AUTH auth;

527 BYTE *pAuth = auth.t.buffer;

528 UINT16 i;

529

530 // Get name

531 EntityGetName(entityHandle, bind);

532

533 // // The bound value of a reserved handle is the handle itself

534 // if(bind->t.size == sizeof(TPM_HANDLE)) return;

535

536 // For all the other entities, concatenate the authorization value to the name.

537 // Get a local copy of the authorization value because some overlapping

538 // may be necessary.

539 EntityGetAuthValue(entityHandle, &auth);

540

541 // Make sure that the extra space is zeroed

542 MemorySet(&bind->t.name[bind->t.size], 0, sizeof(bind->t.name) - bind->t.size);

543 // XOR the authValue at the end of the name

544 for(i = sizeof(bind->t.name) - auth.t.size; i < sizeof(bind->t.name); i++)

545 bind->t.name[i] ^= *pAuth++;

546

547 // Set the bind value to the maximum size

548 bind->t.size = sizeof(bind->t.name);

549

550 return;

551 }

8.9.6.7 SessionSetStartTime()

This function is used to initialize the session timing

552 void

553 SessionSetStartTime(

554 SESSION *session // IN: the session to update

555)

556 {

557 session->startTime = g_time;

558 session->epoch = g_timeEpoch;

559 session->timeout = 0;

560 }

8.9.6.8 SessionResetPolicyData()

This function is used to reset the policy data without changing the nonce or the start time of the session.

561 void

562 SessionResetPolicyData(

563 SESSION *session // IN: the session to reset

564)

565 {

566 SESSION_ATTRIBUTES oldAttributes;

567 pAssert(session != NULL);

568

569 // Will need later

570 oldAttributes = session->attributes;

571

572 // No command

573 session->commandCode = 0;

574

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 389

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

575 // No locality selected

576 MemorySet(&session->commandLocality, 0, sizeof(session->commandLocality));

577

578 // The cpHash size to zero

579 session->u1.cpHash.b.size = 0;

580

581 // No timeout

582 session->timeout = 0;

583

584 // Reset the pcrCounter

585 session->pcrCounter = 0;

586

587 // Reset the policy hash

588 MemorySet(&session->u2.policyDigest.t.buffer, 0,

589 session->u2.policyDigest.t.size);

590

591 // Reset the session attributes

592 MemorySet(&session->attributes, 0, sizeof(SESSION_ATTRIBUTES));

593

594 // Restore the policy attributes

595 session->attributes.isPolicy = SET;

596 session->attributes.isTrialPolicy = oldAttributes.isTrialPolicy;

597

598 // Restore the bind attributes

599 session->attributes.isDaBound = oldAttributes.isDaBound;

600 session->attributes.isLockoutBound = oldAttributes.isLockoutBound;

601 }

8.9.6.9 SessionCapGetLoaded()

This function returns a list of handles of loaded session, started from input handle

Handle must be in valid loaded session handle range, but does not have to point to a loaded session.

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

602 TPMI_YES_NO

603 SessionCapGetLoaded(

604 TPMI_SH_POLICY handle, // IN: start handle

605 UINT32 count, // IN: count of returned handles

606 TPML_HANDLE *handleList // OUT: list of handle

607)

608 {

609 TPMI_YES_NO more = NO;

610 UINT32 i;

611

612 pAssert(HandleGetType(handle) == TPM_HT_LOADED_SESSION);

613

614 // Initialize output handle list

615 handleList->count = 0;

616

617 // The maximum count of handles we may return is MAX_CAP_HANDLES

618 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

619

620 // Iterate session context ID slots to get loaded session handles

621 for(i = handle & HR_HANDLE_MASK; i < MAX_ACTIVE_SESSIONS; i++)

622 {

623 // If session is active

624 if(gr.contextArray[i] != 0)

625 {

626 // If session is loaded

Trusted Platform Module Library Part 4: Supporting Routines

Page 390 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

627 if(gr.contextArray[i] <= MAX_LOADED_SESSIONS)

628 {

629 if(handleList->count < count)

630 {

631 SESSION *session;

632

633 // If we have not filled up the return list, add this

634 // session handle to it

635 // assume that this is going to be an HMAC session

636 handle = i + HMAC_SESSION_FIRST;

637 session = SessionGet(handle);

638 if(session->attributes.isPolicy)

639 handle = i + POLICY_SESSION_FIRST;

640 handleList->handle[handleList->count] = handle;

641 handleList->count++;

642 }

643 else

644 {

645 // If the return list is full but we still have loaded object

646 // available, report this and stop iterating

647 more = YES;

648 break;

649 }

650 }

651 }

652 }

653

654 return more;

655 }

8.9.6.10 SessionCapGetSaved()

This function returns a list of handles for saved session, starting at handle.

Handle must be in a valid handle range, but does not have to point to a saved session

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

656 TPMI_YES_NO

657 SessionCapGetSaved(

658 TPMI_SH_HMAC handle, // IN: start handle

659 UINT32 count, // IN: count of returned handles

660 TPML_HANDLE *handleList // OUT: list of handle

661)

662 {

663 TPMI_YES_NO more = NO;

664 UINT32 i;

665

666 #ifdef TPM_HT_SAVED_SESSION

667 pAssert(HandleGetType(handle) == TPM_HT_SAVED_SESSION);

668 #else

669 pAssert(HandleGetType(handle) == TPM_HT_ACTIVE_SESSION);

670 #endif

671

672 // Initialize output handle list

673 handleList->count = 0;

674

675 // The maximum count of handles we may return is MAX_CAP_HANDLES

676 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

677

678 // Iterate session context ID slots to get loaded session handles

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 391

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

679 for(i = handle & HR_HANDLE_MASK; i < MAX_ACTIVE_SESSIONS; i++)

680 {

681 // If session is active

682 if(gr.contextArray[i] != 0)

683 {

684 // If session is saved

685 if(gr.contextArray[i] > MAX_LOADED_SESSIONS)

686 {

687 if(handleList->count < count)

688 {

689 // If we have not filled up the return list, add this

690 // session handle to it

691 handleList->handle[handleList->count] = i + HMAC_SESSION_FIRST;

692 handleList->count++;

693 }

694 else

695 {

696 // If the return list is full but we still have loaded object

697 // available, report this and stop iterating

698 more = YES;

699 break;

700 }

701 }

702 }

703 }

704

705 return more;

706 }

8.9.6.11 SessionCapGetLoadedNumber()

This function return the number of authorization sessions currently loaded into TPM RAM.

707 UINT32

708 SessionCapGetLoadedNumber(

709 void

710)

711 {

712 return MAX_LOADED_SESSIONS - s_freeSessionSlots;

713 }

8.9.6.12 SessionCapGetLoadedAvail()

This function returns the number of additional authorization sessions, of any type, that could be loaded

into TPM RAM.

NOTE: In other implementations, this number may just be an estimate. The only requirement for the estimate is, if it is
one or more, then at least one session must be loadable.

714 UINT32

715 SessionCapGetLoadedAvail(

716 void

717)

718 {

719 return s_freeSessionSlots;

720 }

8.9.6.13 SessionCapGetActiveNumber()

This function returns the number of active authorization sessions currently being tracked by the TPM.

Trusted Platform Module Library Part 4: Supporting Routines

Page 392 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

721 UINT32

722 SessionCapGetActiveNumber(

723 void

724)

725 {

726 UINT32 i;

727 UINT32 num = 0;

728

729 // Iterate the context array to find the number of non-zero slots

730 for(i = 0; i < MAX_ACTIVE_SESSIONS; i++)

731 {

732 if(gr.contextArray[i] != 0) num++;

733 }

734

735 return num;

736 }

8.9.6.14 SessionCapGetActiveAvail()

This function returns the number of additional authorization sessions, of any type, that could be created.

This not the number of slots for sessions, but the number of additional sessions that the TPM is capable

of tracking.

737 UINT32

738 SessionCapGetActiveAvail(

739 void

740)

741 {

742 UINT32 i;

743 UINT32 num = 0;

744

745 // Iterate the context array to find the number of zero slots

746 for(i = 0; i < MAX_ACTIVE_SESSIONS; i++)

747 {

748 if(gr.contextArray[i] == 0) num++;

749 }

750

751 return num;

752 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 393

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.10 Time.c

8.10.1 Introduction

This file contains the functions relating to the TPM's time functions including the interface to the

implementation-specific time functions.

8.10.2 Includes

1 #include "Tpm.h"

2 #include "PlatformClock.h"

8.10.3 Functions

8.10.3.1 TimePowerOn()

This function initialize time info at _TPM_Init().

This function is called at _TPM_Init() so that the TPM time can start counting as soon as the TPM comes

out of reset and doesn't have to wait until TPM2_Startup() in order to begin the new time epoch. This

could be significant for systems that could get powered up but not run any TPM commands for some

period of time.

3 void

4 TimePowerOn(

5 void

6)

7 {

8 g_time = _plat__TimerRead();

9 }

8.10.3.2 TimeNewEpoch()

This function does the processing to generate a new time epoch nonce and set NV for update. This

function is only called when NV is known to be available and the clock is running. The epoch is updated

to persistent data.

10 static void

11 TimeNewEpoch(

12 void

13)

14 {

15 #if CLOCK_STOPS

16 CryptRandomGenerate(sizeof(CLOCK_NONCE), (BYTE *)&g_timeEpoch);

17 #else

18 // if the epoch is kept in NV, update it.

19 gp.timeEpoch++;

20 NV_SYNC_PERSISTENT(timeEpoch);

21 #endif

22 // Clean out any lingering state

23 _plat__TimerWasStopped();

24 }

8.10.3.3 TimeStartup()

This function updates the resetCount and restartCount components of TPMS_CLOCK_INFO structure at

TPM2_Startup().

Trusted Platform Module Library Part 4: Supporting Routines

Page 394 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

This function will deal with the deferred creation of a new epoch. TimeUpdateToCurrent() will not start a

new epoch even if one is due when TPM_Startup() has not been run. This is because the state of NV is

not known until startup completes. When Startup is done, then it will create the epoch nonce to complete

the initializations by calling this function.

25 BOOL

26 TimeStartup(

27 STARTUP_TYPE type // IN: start up type

28)

29 {

30 NOT_REFERENCED(type);

31 // If the previous cycle is orderly shut down, the value of the safe bit

32 // the same as previously saved. Otherwise, it is not safe.

33 if(!NV_IS_ORDERLY)

34 go.clockSafe = NO;

35 return TRUE;

36 }

8.10.3.4 TimeClockUpdate()

This function updates go.clock. If newTime requires an update of NV, then NV is checked for availability.

If it is not available or is rate limiting, then go.clock is not updated and the function returns an error. If

newTime would not cause an NV write, then go.clock is updated. If an NV write occurs, then go.safe is

SET.

37 void

38 TimeClockUpdate(

39 UINT64 newTime // IN: New time value in mS.

40)

41 {

42 #define CLOCK_UPDATE_MASK ((1ULL << NV_CLOCK_UPDATE_INTERVAL)- 1)

43

44 // Check to see if the update will cause a need for an nvClock update

45 if((newTime | CLOCK_UPDATE_MASK) > (go.clock | CLOCK_UPDATE_MASK))

46 {

47 pAssert(g_NvStatus == TPM_RC_SUCCESS);

48

49 // Going to update the NV time state so SET the safe flag

50 go.clockSafe = YES;

51

52 // update the time

53 go.clock = newTime;

54

55 NvWrite(NV_ORDERLY_DATA, sizeof(go), &go);

56 }

57 else

58 // No NV update needed so just update

59 go.clock = newTime;

60

61 }

8.10.3.5 TimeUpdate()

This function is used to update the time and clock values. If the TPM has run TPM2_Startup(), this

function is called at the start of each command. If the TPM has not run TPM2_Startup(), this is called from

TPM2_Startup() to get the clock values initialized. It is not called on command entry because, in this

implementation, the go structure is not read from NV until TPM2_Startup(). The reason for this is that the

initialization code (_TPM_Init()) may run before NV is accessible.

62 void

63 TimeUpdate(

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 395

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

64 void

65)

66 {

67 UINT64 elapsed;

68 //

69 // Make sure that we consume the current _plat__TimerWasStopped() state.

70 if(_plat__TimerWasStopped())

71 {

72 TimeNewEpoch();

73 }

74 // Get the difference between this call and the last time we updated the tick

75 // timer.

76 elapsed = _plat__TimerRead() - g_time;

77 // Don't read +

78 g_time += elapsed;

79

80 // Don't need to check the result because it has to be success because have

81 // already checked that NV is available.

82 TimeClockUpdate(go.clock + elapsed);

83

84 // Call self healing logic for dictionary attack parameters

85 DASelfHeal();

86 }

8.10.3.6 TimeUpdateToCurrent()

This function updates the Time and Clock in the global TPMS_TIME_INFO structure.

In this implementation, Time and Clock are updated at the beginning of each command and the values

are unchanged for the duration of the command.

Because Clock updates may require a write to NV memory, Time and Clock are not allowed to advance if

NV is not available. When clock is not advancing, any function that uses Clock will fail and return

TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE.

This implementation does not do rate limiting. If the implementation does do rate limiting, then the Clock

update should not be inhibited even when doing rate limiting.

87 void

88 TimeUpdateToCurrent(

89 void

90)

91 {

92 // Can't update time during the dark interval or when rate limiting so don't

93 // make any modifications to the internal clock value. Also, defer any clock

94 // processing until TPM has run TPM2_Startup()

95 if(!NV_IS_AVAILABLE || !TPMIsStarted())

96 return;

97

98 TimeUpdate();

99 }

8.10.3.7 TimeSetAdjustRate()

This function is used to perform rate adjustment on Time and Clock.

100 void

101 TimeSetAdjustRate(

102 TPM_CLOCK_ADJUST adjust // IN: adjust constant

103)

104 {

105 switch(adjust)

106 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 396 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

107 case TPM_CLOCK_COARSE_SLOWER:

108 _plat__ClockAdjustRate(CLOCK_ADJUST_COARSE);

109 break;

110 case TPM_CLOCK_COARSE_FASTER:

111 _plat__ClockAdjustRate(-CLOCK_ADJUST_COARSE);

112 break;

113 case TPM_CLOCK_MEDIUM_SLOWER:

114 _plat__ClockAdjustRate(CLOCK_ADJUST_MEDIUM);

115 break;

116 case TPM_CLOCK_MEDIUM_FASTER:

117 _plat__ClockAdjustRate(-CLOCK_ADJUST_MEDIUM);

118 break;

119 case TPM_CLOCK_FINE_SLOWER:

120 _plat__ClockAdjustRate(CLOCK_ADJUST_FINE);

121 break;

122 case TPM_CLOCK_FINE_FASTER:

123 _plat__ClockAdjustRate(-CLOCK_ADJUST_FINE);

124 break;

125 case TPM_CLOCK_NO_CHANGE:

126 break;

127 default:

128 FAIL(FATAL_ERROR_INTERNAL);

129 break;

130 }

131

132 return;

133 }

8.10.3.8 TimeGetMarshaled()

This function is used to access TPMS_TIME_INFO in canonical form. The function collects the time

information and marshals it into dataBuffer and returns the marshaled size

134 UINT16

135 TimeGetMarshaled(

136 TIME_INFO *dataBuffer // OUT: result buffer

137)

138 {

139 TPMS_TIME_INFO timeInfo;

140

141 // Fill TPMS_TIME_INFO structure

142 timeInfo.time = g_time;

143 TimeFillInfo(&timeInfo.clockInfo);

144

145 // Marshal TPMS_TIME_INFO to canonical form

146 return TPMS_TIME_INFO_Marshal(&timeInfo, (BYTE **)&dataBuffer, NULL);

147 }

8.10.3.9 TimeFillInfo

This function gathers information to fill in a TPMS_CLOCK_INFO structure.

148 void

149 TimeFillInfo(

150 TPMS_CLOCK_INFO *clockInfo

151)

152 {

153 clockInfo->clock = go.clock;

154 clockInfo->resetCount = gp.resetCount;

155 clockInfo->restartCount = gr.restartCount;

156

157 // If NV is not available, clock stopped advancing and the value reported is

158 // not "safe".

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 397

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

159 if(NV_IS_AVAILABLE)

160 clockInfo->safe = go.clockSafe;

161 else

162 clockInfo->safe = NO;

163

164 return;

165 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 398 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9 Support

9.1 AlgorithmCap.c

9.1.1 Description

This file contains the algorithm property definitions for the algorithms and the code for the

TPM2_GetCapability() to return the algorithm properties.

9.1.2 Includes and Defines

1 #include "Tpm.h"

2 typedef struct

3 {

4 TPM_ALG_ID algID;

5 TPMA_ALGORITHM attributes;

6 } ALGORITHM;

7 static const ALGORITHM s_algorithms[] =

8 {

9 // The entries in this table need to be in ascending order but the table doesn't

10 // need to be full (gaps are allowed). One day, a tool might exist to fill in the

11 // table from the TPM_ALG description

12 #if ALG_RSA

13 {TPM_ALG_RSA, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 1, 0, 0, 0, 0, 0)},

14 #endif

15 #if ALG_TDES

16 {TPM_ALG_TDES, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 0, 0, 0)},

17 #endif

18 #if ALG_SHA1

19 {TPM_ALG_SHA1, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 0, 0)},

20 #endif

21

22 {TPM_ALG_HMAC, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 1, 0, 0, 0)},

23

24 #if ALG_AES

25 {TPM_ALG_AES, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 0, 0, 0)},

26 #endif

27 #if ALG_MGF1

28 {TPM_ALG_MGF1, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 1, 0)},

29 #endif

30

31 {TPM_ALG_KEYEDHASH, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 1, 0, 1, 1, 0, 0)},

32

33 #if ALG_XOR

34 {TPM_ALG_XOR, TPMA_ALGORITHM_INITIALIZER(0, 1, 1, 0, 0, 0, 0, 0, 0)},

35 #endif

36

37 #if ALG_SHA256

38 {TPM_ALG_SHA256, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 0, 0)},

39 #endif

40 #if ALG_SHA384

41 {TPM_ALG_SHA384, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 0, 0)},

42 #endif

43 #if ALG_SHA512

44 {TPM_ALG_SHA512, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 0, 0)},

45 #endif

46 #if ALG_SM3_256

47 {TPM_ALG_SM3_256, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 0, 0)},

48 #endif

49 #if ALG_SM4

50 {TPM_ALG_SM4, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 0, 0, 0)},

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 399

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

51 #endif

52 #if ALG_RSASSA

53 {TPM_ALG_RSASSA, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 1, 0, 0, 0)},

54 #endif

55 #if ALG_RSAES

56 {TPM_ALG_RSAES, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 0, 1, 0, 0)},

57 #endif

58 #if ALG_RSAPSS

59 {TPM_ALG_RSAPSS, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 1, 0, 0, 0)},

60 #endif

61 #if ALG_OAEP

62 {TPM_ALG_OAEP, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 0, 1, 0, 0)},

63 #endif

64 #if ALG_ECDSA

65 {TPM_ALG_ECDSA, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 1, 0, 1, 0)},

66 #endif

67 #if ALG_ECDH

68 {TPM_ALG_ECDH, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 0, 0, 1, 0)},

69 #endif

70 #if ALG_ECDAA

71 {TPM_ALG_ECDAA, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 1, 0, 0, 0)},

72 #endif

73 #if ALG_SM2

74 {TPM_ALG_SM2, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 1, 0, 1, 0)},

75 #endif

76 #if ALG_ECSCHNORR

77 {TPM_ALG_ECSCHNORR, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 1, 0, 0, 0)},

78 #endif

79 #if ALG_ECMQV

80 {TPM_ALG_ECMQV, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 0, 0, 0, 0, 1, 0)},

81 #endif

82 #if ALG_KDF1_SP800_56A

83 {TPM_ALG_KDF1_SP800_56A, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 1, 0)},

84 #endif

85 #if ALG_KDF2

86 {TPM_ALG_KDF2, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 1, 0)},

87 #endif

88 #if ALG_KDF1_SP800_108

89 {TPM_ALG_KDF1_SP800_108, TPMA_ALGORITHM_INITIALIZER(0, 0, 1, 0, 0, 0, 0, 1, 0)},

90 #endif

91 #if ALG_ECC

92 {TPM_ALG_ECC, TPMA_ALGORITHM_INITIALIZER(1, 0, 0, 1, 0, 0, 0, 0, 0)},

93 #endif

94

95 {TPM_ALG_SYMCIPHER, TPMA_ALGORITHM_INITIALIZER(0, 0, 0, 1, 0, 0, 0, 0, 0)},

96

97 #if ALG_CAMELLIA

98 {TPM_ALG_CAMELLIA, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 0, 0, 0)},

99 #endif

100 #if ALG_CMAC

101 {TPM_ALG_CMAC, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 1, 0, 0, 0)},

102 #endif

103 #if ALG_CTR

104 {TPM_ALG_CTR, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 1, 0, 0)},

105 #endif

106 #if ALG_OFB

107 {TPM_ALG_OFB, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 1, 0, 0)},

108 #endif

109 #if ALG_CBC

110 {TPM_ALG_CBC, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 1, 0, 0)},

111 #endif

112 #if ALG_CFB

113 {TPM_ALG_CFB, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 1, 0, 0)},

114 #endif

115 #if ALG_ECB

116 {TPM_ALG_ECB, TPMA_ALGORITHM_INITIALIZER(0, 1, 0, 0, 0, 0, 1, 0, 0)},

Trusted Platform Module Library Part 4: Supporting Routines

Page 400 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

117 #endif

118 };

9.1.3 AlgorithmCapGetImplemented()

This function is used by TPM2_GetCapability() to return a list of the implemented algorithms.

Return Value Meaning

YES more algorithms to report

NO no more algorithms to report

119 TPMI_YES_NO

120 AlgorithmCapGetImplemented(

121 TPM_ALG_ID algID, // IN: the starting algorithm ID

122 UINT32 count, // IN: count of returned algorithms

123 TPML_ALG_PROPERTY *algList // OUT: algorithm list

124)

125 {

126 TPMI_YES_NO more = NO;

127 UINT32 i;

128 UINT32 algNum;

129

130 // initialize output algorithm list

131 algList->count = 0;

132

133 // The maximum count of algorithms we may return is MAX_CAP_ALGS.

134 if(count > MAX_CAP_ALGS)

135 count = MAX_CAP_ALGS;

136

137 // Compute how many algorithms are defined in s_algorithms array.

138 algNum = sizeof(s_algorithms) / sizeof(s_algorithms[0]);

139

140 // Scan the implemented algorithm list to see if there is a match to 'algID'.

141 for(i = 0; i < algNum; i++)

142 {

143 // If algID is less than the starting algorithm ID, skip it

144 if(s_algorithms[i].algID < algID)

145 continue;

146 if(algList->count < count)

147 {

148 // If we have not filled up the return list, add more algorithms

149 // to it

150 algList->algProperties[algList->count].alg = s_algorithms[i].algID;

151 algList->algProperties[algList->count].algProperties =

152 s_algorithms[i].attributes;

153 algList->count++;

154 }

155 else

156 {

157 // If the return list is full but we still have algorithms

158 // available, report this and stop scanning.

159 more = YES;

160 break;

161 }

162 }

163

164 return more;

165 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 401

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.1.4 AlgorithmGetImplementedVector()

This function returns the bit vector of the implemented algorithms.

166 LIB_EXPORT

167 void

168 AlgorithmGetImplementedVector(

169 ALGORITHM_VECTOR *implemented // OUT: the implemented bits are SET

170)

171 {

172 int index;

173

174 // Nothing implemented until we say it is

175 MemorySet(implemented, 0, sizeof(ALGORITHM_VECTOR));

176

177 for(index = (sizeof(s_algorithms) / sizeof(s_algorithms[0])) - 1;

178 index >= 0;

179 index--)

180 SET_BIT(s_algorithms[index].algID, *implemented);

181 return;

182 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 402 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.2 Bits.c

9.2.1 Introduction

This file contains bit manipulation routines. They operate on bit arrays.

The 0th bit in the array is the right-most bit in the 0th octet in the array.

NOTE: If pAssert() is defined, the functions will assert if the indicated bit number is outside of the range of bArray. How
the assert is handled is implementation dependent.

9.2.2 Includes

1 #include "Tpm.h"

9.2.3 Functions

9.2.3.1 TestBit()

This function is used to check the setting of a bit in an array of bits.

Return Value Meaning

TRUE(1) bit is set

FALSE(0) bit is not set

2 BOOL

3 TestBit(

4 unsigned int bitNum, // IN: number of the bit in 'bArray'

5 BYTE *bArray, // IN: array containing the bits

6 unsigned int bytesInArray // IN: size in bytes of 'bArray'

7)

8 {

9 pAssert(bytesInArray > (bitNum >> 3));

10 return((bArray[bitNum >> 3] & (1 << (bitNum & 7))) != 0);

11 }

9.2.3.2 SetBit()

This function will set the indicated bit in bArray.

12 void

13 SetBit(

14 unsigned int bitNum, // IN: number of the bit in 'bArray'

15 BYTE *bArray, // IN: array containing the bits

16 unsigned int bytesInArray // IN: size in bytes of 'bArray'

17)

18 {

19 pAssert(bytesInArray > (bitNum >> 3));

20 bArray[bitNum >> 3] |= (1 << (bitNum & 7));

21 }

9.2.3.3 ClearBit()

This function will clear the indicated bit in bArray.

22 void

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 403

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23 ClearBit(

24 unsigned int bitNum, // IN: number of the bit in 'bArray'.

25 BYTE *bArray, // IN: array containing the bits

26 unsigned int bytesInArray // IN: size in bytes of 'bArray'

27)

28 {

29 pAssert(bytesInArray > (bitNum >> 3));

30 bArray[bitNum >> 3] &= ~(1 << (bitNum & 7));

31 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 404 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.3 CommandCodeAttributes.c

9.3.1 Introduction

This file contains the functions for testing various command properties.

9.3.2 Includes and Defines

1 #include "Tpm.h"

2 #include "CommandCodeAttributes_fp.h"

Set the default value for CC_VEND if not already set

3 #ifndef CC_VEND

4 #define CC_VEND (TPM_CC)(0x20000000)

5 #endif

6 typedef UINT16 ATTRIBUTE_TYPE;

The following file is produced from the command tables in part 3 of the specification. It defines the

attributes for each of the commands.

NOTE: This file is currently produced by an automated process. Files produced from Part 2 or Part 3 tables through
automated processes are not included in the specification so that there is no ambiguity about the table
containing the information being the normative definition.

7 #define _COMMAND_CODE_ATTRIBUTES_

8 #include "CommandAttributeData.h"

9.3.3 Command Attribute Functions

9.3.3.1 NextImplementedIndex()

This function is used when the lists are not compressed. In a compressed list, only the implemented

commands are present. So, a search might find a value but that value may not be implemented. This

function checks to see if the input commandIndex points to an implemented command and, if not, it

searches upwards until it finds one. When the list is compressed, this function gets defined as a no-op.

Return Value Meaning

UNIMPLEMENTED_COMMAND_INDEX command is not implemented

other index of the command

9 #if !COMPRESSED_LISTS

10 static COMMAND_INDEX

11 NextImplementedIndex(

12 COMMAND_INDEX commandIndex

13)

14 {

15 for(;commandIndex < COMMAND_COUNT; commandIndex++)

16 {

17 if(s_commandAttributes[commandIndex] & IS_IMPLEMENTED)

18 return commandIndex;

19 }

20 return UNIMPLEMENTED_COMMAND_INDEX;

21 }

22 #else

23 #define NextImplementedIndex(x) (x)

24 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 405

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3.3.2 GetClosestCommandIndex()

This function returns the command index for the command with a value that is equal to or greater than the

input value

Return Value Meaning

UNIMPLEMENTED_COMMAND_INDEX command is not implemented

other index of a command

25 COMMAND_INDEX

26 GetClosestCommandIndex(

27 TPM_CC commandCode // IN: the command code to start at

28)

29 {

30 BOOL vendor = (commandCode & CC_VEND) != 0;

31 COMMAND_INDEX searchIndex = (COMMAND_INDEX)commandCode;

32

33 // The commandCode is a UINT32 and the search index is UINT16. We are going to

34 // search for a match but need to make sure that the commandCode value is not

35 // out of range. To do this, need to clear the vendor bit of the commandCode

36 // (if set) and compare the result to the 16-bit searchIndex value. If it is

37 // out of range, indicate that the command is not implemented

38 if((commandCode & ~CC_VEND) != searchIndex)

39 return UNIMPLEMENTED_COMMAND_INDEX;

40

41 // if there is at least one vendor command, the last entry in the array will

42 // have the v bit set. If the input commandCode is larger than the last

43 // vendor-command, then it is out of range.

44 if(vendor)

45 {

46 #if VENDOR_COMMAND_ARRAY_SIZE > 0

47 COMMAND_INDEX commandIndex;

48 COMMAND_INDEX min;

49 COMMAND_INDEX max;

50 int diff;

51 #if LIBRARY_COMMAND_ARRAY_SIZE == COMMAND_COUNT

52 #error "Constants are not consistent."

53 #endif

54 // Check to see if the value is equal to or below the minimum

55 // entry.

56 // Note: Put this check first so that the typical case of only one vendor-

57 // specific command doesn't waste any more time.

58 if(GET_ATTRIBUTE(s_ccAttr[LIBRARY_COMMAND_ARRAY_SIZE], TPMA_CC,

59 commandIndex) >= searchIndex)

60 {

61 // the vendor array is always assumed to be packed so there is

62 // no need to check to see if the command is implemented

63 return LIBRARY_COMMAND_ARRAY_SIZE;

64 }

65 // See if this is out of range on the top

66 if(GET_ATTRIBUTE(s_ccAttr[COMMAND_COUNT - 1], TPMA_CC, commandIndex)

67 < searchIndex)

68 {

69 return UNIMPLEMENTED_COMMAND_INDEX;

70 }

71 commandIndex = UNIMPLEMENTED_COMMAND_INDEX; // Needs initialization to keep

72 // compiler happy

73 min = LIBRARY_COMMAND_ARRAY_SIZE; // first vendor command

74 max = COMMAND_COUNT - 1; // last vendor command

75 diff = 1; // needs initialization to keep

76 // compiler happy

77 while(min <= max)

78 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 406 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

79 commandIndex = (min + max + 1) / 2;

80 diff = GET_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, commandIndex)

81 - searchIndex;

82 if(diff == 0)

83 return commandIndex;

84 if(diff > 0)

85 max = commandIndex - 1;

86 else

87 min = commandIndex + 1;

88 }

89 // didn't find and exact match. commandIndex will be pointing at the last

90 // item tested. If 'diff' is positive, then the last item tested was

91 // larger index of the command code so it is the smallest value

92 // larger than the requested value.

93 if(diff > 0)

94 return commandIndex;

95 // if 'diff' is negative, then the value tested was smaller than

96 // the commandCode index and the next higher value is the correct one.

97 // Note: this will necessarily be in range because of the earlier check

98 // that the index was within range.

99 return commandIndex + 1;

100 #else

101 // If there are no vendor commands so anything with the vendor bit set is out

102 // of range

103 return UNIMPLEMENTED_COMMAND_INDEX;

104 #endif

105 }

106 // Get here if the V-Bit was not set in 'commandCode'

107

108 if(GET_ATTRIBUTE(s_ccAttr[LIBRARY_COMMAND_ARRAY_SIZE - 1], TPMA_CC,

109 commandIndex) < searchIndex)

110 {

111 // requested index is out of the range to the top

112 #if VENDOR_COMMAND_ARRAY_SIZE > 0

113 // If there are vendor commands, then the first vendor command

114 // is the next value greater than the commandCode.

115 // NOTE: we got here if the starting index did not have the V bit but we

116 // reached the end of the array of library commands (non-vendor). Since

117 // there is at least one vendor command, and vendor commands are always

118 // in a compressed list that starts after the library list, the next

119 // index value contains a valid vendor command.

120 return LIBRARY_COMMAND_ARRAY_SIZE;

121 #else

122 // if there are no vendor commands, then this is out of range

123 return UNIMPLEMENTED_COMMAND_INDEX;

124 #endif

125 }

126 // If the request is lower than any value in the array, then return

127 // the lowest value (needs to be an index for an implemented command

128 if(GET_ATTRIBUTE(s_ccAttr[0], TPMA_CC, commandIndex) >= searchIndex)

129 {

130 return NextImplementedIndex(0);

131 }

132 else

133 {

134 #if COMPRESSED_LISTS

135 COMMAND_INDEX commandIndex = UNIMPLEMENTED_COMMAND_INDEX;

136 COMMAND_INDEX min = 0;

137 COMMAND_INDEX max = LIBRARY_COMMAND_ARRAY_SIZE - 1;

138 int diff = 1;

139 #if LIBRARY_COMMAND_ARRAY_SIZE == 0

140 #error "Something is terribly wrong"

141 #endif

142 // The s_ccAttr array contains an extra entry at the end (a zero value).

143 // Don't count this as an array entry. This means that max should start

144 // out pointing to the last valid entry in the array which is - 2

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 407

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

145 pAssert(max == (sizeof(s_ccAttr) / sizeof(TPMA_CC)

146 - VENDOR_COMMAND_ARRAY_SIZE - 2));

147 while(min <= max)

148 {

149 commandIndex = (min + max + 1) / 2;

150 diff = GET_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC,

151 commandIndex) - searchIndex;

152 if(diff == 0)

153 return commandIndex;

154 if(diff > 0)

155 max = commandIndex - 1;

156 else

157 min = commandIndex + 1;

158 }

159 // didn't find and exact match. commandIndex will be pointing at the

160 // last item tested. If diff is positive, then the last item tested was

161 // larger index of the command code so it is the smallest value

162 // larger than the requested value.

163 if(diff > 0)

164 return commandIndex;

165 // if diff is negative, then the value tested was smaller than

166 // the commandCode index and the next higher value is the correct one.

167 // Note: this will necessarily be in range because of the earlier check

168 // that the index was within range.

169 return commandIndex + 1;

170 #else

171 // The list is not compressed so offset into the array by the command

172 // code value of the first entry in the list. Then go find the first

173 // implemented command.

174 return NextImplementedIndex(searchIndex

175 - (COMMAND_INDEX)s_ccAttr[0].commandIndex);

176 #endif

177 }

178 }

9.3.3.3 CommandCodeToComandIndex()

This function returns the index in the various attributes arrays of the command.

Return Value Meaning

UNIMPLEMENTED_COMMAND_INDEX command is not implemented

other index of the command

179 COMMAND_INDEX

180 CommandCodeToCommandIndex(

181 TPM_CC commandCode // IN: the command code to look up

182)

183 {

184 // Extract the low 16-bits of the command code to get the starting search index

185 COMMAND_INDEX searchIndex = (COMMAND_INDEX)commandCode;

186 BOOL vendor = (commandCode & CC_VEND) != 0;

187 COMMAND_INDEX commandIndex;

188 #if !COMPRESSED_LISTS

189 if(!vendor)

190 {

191 commandIndex = searchIndex - (COMMAND_INDEX)s_ccAttr[0].commandIndex;

192 // Check for out of range or unimplemented.

193 // Note, since a COMMAND_INDEX is unsigned, if searchIndex is smaller than

194 // the lowest value of command, it will become a 'negative' number making

195 // it look like a large unsigned number, this will cause it to fail

196 // the unsigned check below.

197 if(commandIndex >= LIBRARY_COMMAND_ARRAY_SIZE

Trusted Platform Module Library Part 4: Supporting Routines

Page 408 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

198 || (s_commandAttributes[commandIndex] & IS_IMPLEMENTED) == 0)

199 return UNIMPLEMENTED_COMMAND_INDEX;

200 return commandIndex;

201 }

202 #endif

203 // Need this code for any vendor code lookup or for compressed lists

204 commandIndex = GetClosestCommandIndex(commandCode);

205

206 // Look at the returned value from get closest. If it isn't the one that was

207 // requested, then the command is not implemented.

208 if(commandIndex != UNIMPLEMENTED_COMMAND_INDEX)

209 {

210 if((GET_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, commandIndex)

211 != searchIndex)

212 || (IS_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, V)) != vendor)

213 commandIndex = UNIMPLEMENTED_COMMAND_INDEX;

214 }

215 return commandIndex;

216 }

9.3.3.4 GetNextCommandIndex()

This function returns the index of the next implemented command.

Return Value Meaning

UNIMPLEMENTED_COMMAND_INDEX no more implemented commands

other the index of the next implemented command

217 COMMAND_INDEX

218 GetNextCommandIndex(

219 COMMAND_INDEX commandIndex // IN: the starting index

220)

221 {

222 while(++commandIndex < COMMAND_COUNT)

223 {

224 #if !COMPRESSED_LISTS

225 if(s_commandAttributes[commandIndex] & IS_IMPLEMENTED)

226 #endif

227 return commandIndex;

228 }

229 return UNIMPLEMENTED_COMMAND_INDEX;

230 }

9.3.3.5 GetCommandCode()

This function returns the commandCode associated with the command index

231 TPM_CC

232 GetCommandCode(

233 COMMAND_INDEX commandIndex // IN: the command index

234)

235 {

236 TPM_CC commandCode = GET_ATTRIBUTE(s_ccAttr[commandIndex],

237 TPMA_CC, commandIndex);

238 if(IS_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, V))

239 commandCode += CC_VEND;

240 return commandCode;

241 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 409

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3.3.6 CommandAuthRole()

This function returns the authorization role required of a handle.

Return Value Meaning

AUTH_NONE no authorization is required

AUTH_USER user role authorization is required

AUTH_ADMIN admin role authorization is required

AUTH_DUP duplication role authorization is required

242 AUTH_ROLE

243 CommandAuthRole(

244 COMMAND_INDEX commandIndex, // IN: command index

245 UINT32 handleIndex // IN: handle index (zero based)

246)

247 {

248 if(0 == handleIndex)

249 {

250 // Any authorization role set?

251 COMMAND_ATTRIBUTES properties = s_commandAttributes[commandIndex];

252

253 if(properties & HANDLE_1_USER)

254 return AUTH_USER;

255 if(properties & HANDLE_1_ADMIN)

256 return AUTH_ADMIN;

257 if(properties & HANDLE_1_DUP)

258 return AUTH_DUP;

259 }

260 else if(1 == handleIndex)

261 {

262 if(s_commandAttributes[commandIndex] & HANDLE_2_USER)

263 return AUTH_USER;

264 }

265 return AUTH_NONE;

266 }

9.3.3.7 EncryptSize()

This function returns the size of the decrypt size field. This function returns 0 if encryption is not allowed

Return Value Meaning

0 encryption not allowed

2 size field is two bytes

4 size field is four bytes

267 int

268 EncryptSize(

269 COMMAND_INDEX commandIndex // IN: command index

270)

271 {

272 return ((s_commandAttributes[commandIndex] & ENCRYPT_2) ? 2 :

273 (s_commandAttributes[commandIndex] & ENCRYPT_4) ? 4 : 0);

274 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 410 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.3.3.8 DecryptSize()

This function returns the size of the decrypt size field. This function returns 0 if decryption is not allowed

Return Value Meaning

0 encryption not allowed

2 size field is two bytes

4 size field is four bytes

275 int

276 DecryptSize(

277 COMMAND_INDEX commandIndex // IN: command index

278)

279 {

280 return ((s_commandAttributes[commandIndex] & DECRYPT_2) ? 2 :

281 (s_commandAttributes[commandIndex] & DECRYPT_4) ? 4 : 0);

282 }

9.3.3.9 IsSessionAllowed()

This function indicates if the command is allowed to have sessions.

This function must not be called if the command is not known to be implemented.

Return Value Meaning

TRUE(1) session is allowed with this command

FALSE(0) session is not allowed with this command

283 BOOL

284 IsSessionAllowed(

285 COMMAND_INDEX commandIndex // IN: the command to be checked

286)

287 {

288 return ((s_commandAttributes[commandIndex] & NO_SESSIONS) == 0);

289 }

9.3.3.10 IsHandleInResponse()

This function determines if a command has a handle in the response

290 BOOL

291 IsHandleInResponse(

292 COMMAND_INDEX commandIndex

293)

294 {

295 return ((s_commandAttributes[commandIndex] & R_HANDLE) != 0);

296 }

9.3.3.11 IsWriteOperation()

Checks to see if an operation will write to an NV Index and is subject to being blocked by read-lock

297 BOOL

298 IsWriteOperation(

299 COMMAND_INDEX commandIndex // IN: Command to check

300)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 411

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

301 {

302 #ifdef WRITE_LOCK

303 return ((s_commandAttributes[commandIndex] & WRITE_LOCK) != 0);

304 #else

305 if(!IS_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, V))

306 {

307 switch(GET_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, commandIndex))

308 {

309 case TPM_CC_NV_Write:

310 #if CC_NV_Increment

311 case TPM_CC_NV_Increment:

312 #endif

313 #if CC_NV_SetBits

314 case TPM_CC_NV_SetBits:

315 #endif

316 #if CC_NV_Extend

317 case TPM_CC_NV_Extend:

318 #endif

319 #if CC_AC_Send

320 case TPM_CC_AC_Send:

321 #endif

322 // NV write lock counts as a write operation for authorization purposes.

323 // We check to see if the NV is write locked before we do the

324 // authorization. If it is locked, we fail the command early.

325 case TPM_CC_NV_WriteLock:

326 return TRUE;

327 default:

328 break;

329 }

330 }

331 return FALSE;

332 #endif

333 }

9.3.3.12 IsReadOperation()

Checks to see if an operation will write to an NV Index and is subject to being blocked by write-lock.

334 BOOL

335 IsReadOperation(

336 COMMAND_INDEX commandIndex // IN: Command to check

337)

338 {

339 #ifdef READ_LOCK

340 return ((s_commandAttributes[commandIndex] & READ_LOCK) != 0);

341 #else

342

343 if(!IS_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, V))

344 {

345 switch(GET_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, commandIndex))

346 {

347 case TPM_CC_NV_Read:

348 case TPM_CC_PolicyNV:

349 case TPM_CC_NV_Certify:

350 // NV read lock counts as a read operation for authorization purposes.

351 // We check to see if the NV is read locked before we do the

352 // authorization. If it is locked, we fail the command early.

353 case TPM_CC_NV_ReadLock:

354 return TRUE;

355 default:

356 break;

357 }

358 }

359 return FALSE;

Trusted Platform Module Library Part 4: Supporting Routines

Page 412 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

360 #endif

361 }

9.3.3.13 CommandCapGetCCList()

This function returns a list of implemented commands and command attributes starting from the

command in commandCode.

Return Value Meaning

YES more command attributes are available

NO no more command attributes are available

362 TPMI_YES_NO

363 CommandCapGetCCList(

364 TPM_CC commandCode, // IN: start command code

365 UINT32 count, // IN: maximum count for number of entries in

366 // 'commandList'

367 TPML_CCA *commandList // OUT: list of TPMA_CC

368)

369 {

370 TPMI_YES_NO more = NO;

371 COMMAND_INDEX commandIndex;

372

373 // initialize output handle list count

374 commandList->count = 0;

375

376 for(commandIndex = GetClosestCommandIndex(commandCode);

377 commandIndex != UNIMPLEMENTED_COMMAND_INDEX;

378 commandIndex = GetNextCommandIndex(commandIndex))

379 {

380 #if !COMPRESSED_LISTS

381 // this check isn't needed for compressed lists.

382 if(!(s_commandAttributes[commandIndex] & IS_IMPLEMENTED))

383 continue;

384 #endif

385 if(commandList->count < count)

386 {

387 // If the list is not full, add the attributes for this command.

388 commandList->commandAttributes[commandList->count]

389 = s_ccAttr[commandIndex];

390 commandList->count++;

391 }

392 else

393 {

394 // If the list is full but there are more commands to report,

395 // indicate this and return.

396 more = YES;

397 break;

398 }

399 }

400 return more;

401 }

9.3.3.14 IsVendorCommand()

Function indicates if a command index references a vendor command.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 413

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

TRUE(1) command is a vendor command

FALSE(0) command is not a vendor command

402 BOOL

403 IsVendorCommand(

404 COMMAND_INDEX commandIndex // IN: command index to check

405)

406 {

407 return (IS_ATTRIBUTE(s_ccAttr[commandIndex], TPMA_CC, V));

408 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 414 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.4 Entity.c

9.4.1 Description

The functions in this file are used for accessing properties for handles of various types. Functions in other

files require handles of a specific type but the functions in this file allow use of any handle type.

9.4.2 Includes

1 #include "Tpm.h"

9.4.3 Functions

9.4.3.1 EntityGetLoadStatus()

This function will check that all the handles access loaded entities.

Error Returns Meaning

TPM_RC_HANDLE handle type does not match

TPM_RC_REFERENCE_Hx entity is not present

TPM_RC_HIERARCHY entity belongs to a disabled hierarchy

TPM_RC_OBJECT_MEMORY handle is an evict object but there is no space to load it to RAM

2 TPM_RC

3 EntityGetLoadStatus(

4 COMMAND *command // IN/OUT: command parsing structure

5)

6 {

7 UINT32 i;

8 TPM_RC result = TPM_RC_SUCCESS;

9 //

10 for(i = 0; i < command->handleNum; i++)

11 {

12 TPM_HANDLE handle = command->handles[i];

13 switch(HandleGetType(handle))

14 {

15 // For handles associated with hierarchies, the entity is present

16 // only if the associated enable is SET.

17 case TPM_HT_PERMANENT:

18 switch(handle)

19 {

20 case TPM_RH_OWNER:

21 if(!gc.shEnable)

22 result = TPM_RC_HIERARCHY;

23 break;

24

25 #ifdef VENDOR_PERMANENT

26 case VENDOR_PERMANENT:

27 #endif

28 case TPM_RH_ENDORSEMENT:

29 if(!gc.ehEnable)

30 result = TPM_RC_HIERARCHY;

31 break;

32 case TPM_RH_PLATFORM:

33 if(!g_phEnable)

34 result = TPM_RC_HIERARCHY;

35 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 415

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

36 // null handle, PW session handle and lockout

37 // handle are always available

38 case TPM_RH_NULL:

39 case TPM_RS_PW:

40 // Need to be careful for lockout. Lockout is always available

41 // for policy checks but not always available when authValue

42 // is being checked.

43 case TPM_RH_LOCKOUT:

44 // Rather than have #ifdefs all over the code,

45 // CASE_ACT_HANDLE is defined in ACT.h. It is 'case TPM_RH_ACT_x:'

46 // FOR_EACH_ACT(CASE_ACT_HANDLE) creates a simple

47 // case TPM_RH_ACT_x: // for each of the implemented ACT.

48 FOR_EACH_ACT(CASE_ACT_HANDLE)

49 break;

50 default:

51 // If the implementation has a manufacturer-specific value

52 // then test for it here. Since this implementation does

53 // not have any, this implementation returns the same failure

54 // that unmarshaling of a bad handle would produce.

55 if(((TPM_RH)handle >= TPM_RH_AUTH_00)

56 && ((TPM_RH)handle <= TPM_RH_AUTH_FF))

57 // if the implementation has a manufacturer-specific value

58 result = TPM_RC_VALUE;

59 else

60 // The handle is in the range of reserved handles but is

61 // not implemented in this TPM.

62 result = TPM_RC_VALUE;

63 break;

64 }

65 break;

66 case TPM_HT_TRANSIENT:

67 // For a transient object, check if the handle is associated

68 // with a loaded object.

69 if(!IsObjectPresent(handle))

70 result = TPM_RC_REFERENCE_H0;

71 break;

72 case TPM_HT_PERSISTENT:

73 // Persistent object

74 // Copy the persistent object to RAM and replace the handle with the

75 // handle of the assigned slot. A TPM_RC_OBJECT_MEMORY,

76 // TPM_RC_HIERARCHY or TPM_RC_REFERENCE_H0 error may be returned by

77 // ObjectLoadEvict()

78 result = ObjectLoadEvict(&command->handles[i], command->index);

79 break;

80 case TPM_HT_HMAC_SESSION:

81 // For an HMAC session, see if the session is loaded

82 // and if the session in the session slot is actually

83 // an HMAC session.

84 if(SessionIsLoaded(handle))

85 {

86 SESSION *session;

87 session = SessionGet(handle);

88 // Check if the session is a HMAC session

89 if(session->attributes.isPolicy == SET)

90 result = TPM_RC_HANDLE;

91 }

92 else

93 result = TPM_RC_REFERENCE_H0;

94 break;

95 case TPM_HT_POLICY_SESSION:

96 // For a policy session, see if the session is loaded

97 // and if the session in the session slot is actually

98 // a policy session.

99 if(SessionIsLoaded(handle))

100 {

101 SESSION *session;

Trusted Platform Module Library Part 4: Supporting Routines

Page 416 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

102 session = SessionGet(handle);

103 // Check if the session is a policy session

104 if(session->attributes.isPolicy == CLEAR)

105 result = TPM_RC_HANDLE;

106 }

107 else

108 result = TPM_RC_REFERENCE_H0;

109 break;

110 case TPM_HT_NV_INDEX:

111 // For an NV Index, use the TPM-specific routine

112 // to search the IN Index space.

113 result = NvIndexIsAccessible(handle);

114 break;

115 case TPM_HT_PCR:

116 // Any PCR handle that is unmarshaled successfully referenced

117 // a PCR that is defined.

118 break;

119 #if CC_AC_Send

120 case TPM_HT_AC:

121 // Use the TPM-specific routine to search for the AC

122 result = AcIsAccessible(handle);

123 break;

124 #endif

125 default:

126 // Any other handle type is a defect in the unmarshaling code.

127 FAIL(FATAL_ERROR_INTERNAL);

128 break;

129 }

130 if(result != TPM_RC_SUCCESS)

131 {

132 if(result == TPM_RC_REFERENCE_H0)

133 result = result + i;

134 else

135 result = RcSafeAddToResult(result, TPM_RC_H + g_rcIndex[i]);

136 break;

137 }

138 }

139 return result;

140 }

9.4.3.2 EntityGetAuthValue()

This function is used to access the authValue associated with a handle. This function assumes that the

handle references an entity that is accessible and the handle is not for a persistent objects. That is

EntityGetLoadStatus() should have been called. Also, the accessibility of the authValue should have been

verified by IsAuthValueAvailable().

This function copies the authorization value of the entity to auth.

Return Value Meaning

count number of bytes in the authValue with 0's stripped

141 UINT16

142 EntityGetAuthValue(

143 TPMI_DH_ENTITY handle, // IN: handle of entity

144 TPM2B_AUTH *auth // OUT: authValue of the entity

145)

146 {

147 TPM2B_AUTH *pAuth = NULL;

148

149 auth->t.size = 0;

150

151 switch(HandleGetType(handle))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 417

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

152 {

153 case TPM_HT_PERMANENT:

154 {

155 switch(handle)

156 {

157 case TPM_RH_OWNER:

158 // ownerAuth for TPM_RH_OWNER

159 pAuth = &gp.ownerAuth;

160 break;

161 case TPM_RH_ENDORSEMENT:

162 // endorsementAuth for TPM_RH_ENDORSEMENT

163 pAuth = &gp.endorsementAuth;

164 break;

165 // The ACT use platformAuth for auth

166 FOR_EACH_ACT(CASE_ACT_HANDLE)

167 case TPM_RH_PLATFORM:

168 // platformAuth for TPM_RH_PLATFORM

169 pAuth = &gc.platformAuth;

170 break;

171 case TPM_RH_LOCKOUT:

172 // lockoutAuth for TPM_RH_LOCKOUT

173 pAuth = &gp.lockoutAuth;

174 break;

175 case TPM_RH_NULL:

176 // nullAuth for TPM_RH_NULL. Return 0 directly here

177 return 0;

178 break;

179 #ifdef VENDOR_PERMANENT

180 case VENDOR_PERMANENT:

181 // vendor authorization value

182 pAauth = &g_platformUniqueDetails;

183 #endif

184 default:

185 // If any other permanent handle is present it is

186 // a code defect.

187 FAIL(FATAL_ERROR_INTERNAL);

188 break;

189 }

190 break;

191 }

192 case TPM_HT_TRANSIENT:

193 // authValue for an object

194 // A persistent object would have been copied into RAM

195 // and would have an transient object handle here.

196 {

197 OBJECT *object;

198

199 object = HandleToObject(handle);

200 // special handling if this is a sequence object

201 if(ObjectIsSequence(object))

202 {

203 pAuth = &((HASH_OBJECT *)object)->auth;

204 }

205 else

206 {

207 // Authorization is available only when the private portion of

208 // the object is loaded. The check should be made before

209 // this function is called

210 pAssert(object->attributes.publicOnly == CLEAR);

211 pAuth = &object->sensitive.authValue;

212 }

213 }

214 break;

215 case TPM_HT_NV_INDEX:

216 // authValue for an NV index

217 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 418 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

218 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

219 pAssert(nvIndex != NULL);

220 pAuth = &nvIndex->authValue;

221 }

222 break;

223 case TPM_HT_PCR:

224 // authValue for PCR

225 pAuth = PCRGetAuthValue(handle);

226 break;

227 default:

228 // If any other handle type is present here, then there is a defect

229 // in the unmarshaling code.

230 FAIL(FATAL_ERROR_INTERNAL);

231 break;

232 }

233 // Copy the authValue

234 MemoryCopy2B((TPM2B *)auth, (TPM2B *)pAuth, sizeof(auth->t.buffer));

235 MemoryRemoveTrailingZeros(auth);

236 return auth->t.size;

237 }

9.4.3.3 EntityGetAuthPolicy()

This function is used to access the authPolicy associated with a handle. This function assumes that the

handle references an entity that is accessible and the handle is not for a persistent objects. That is

EntityGetLoadStatus() should have been called. Also, the accessibility of the authPolicy should have

been verified by IsAuthPolicyAvailable().

This function copies the authorization policy of the entity to authPolicy.

The return value is the hash algorithm for the policy.

238 TPMI_ALG_HASH

239 EntityGetAuthPolicy(

240 TPMI_DH_ENTITY handle, // IN: handle of entity

241 TPM2B_DIGEST *authPolicy // OUT: authPolicy of the entity

242)

243 {

244 TPMI_ALG_HASH hashAlg = TPM_ALG_NULL;

245 authPolicy->t.size = 0;

246

247 switch(HandleGetType(handle))

248 {

249 case TPM_HT_PERMANENT:

250 switch(handle)

251 {

252 case TPM_RH_OWNER:

253 // ownerPolicy for TPM_RH_OWNER

254 *authPolicy = gp.ownerPolicy;

255 hashAlg = gp.ownerAlg;

256 break;

257 case TPM_RH_ENDORSEMENT:

258 // endorsementPolicy for TPM_RH_ENDORSEMENT

259 *authPolicy = gp.endorsementPolicy;

260 hashAlg = gp.endorsementAlg;

261 break;

262 case TPM_RH_PLATFORM:

263 // platformPolicy for TPM_RH_PLATFORM

264 *authPolicy = gc.platformPolicy;

265 hashAlg = gc.platformAlg;

266 break;

267 case TPM_RH_LOCKOUT:

268 // lockoutPolicy for TPM_RH_LOCKOUT

269 *authPolicy = gp.lockoutPolicy;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 419

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

270 hashAlg = gp.lockoutAlg;

271 break;

272 #define ACT_GET_POLICY(N) \

273 case TPM_RH_ACT_##N: \

274 *authPolicy = go.ACT_##N.authPolicy; \

275 hashAlg = go.ACT_##N.hashAlg; \

276 break;

277 // Get the policy for each implemented ACT

278 FOR_EACH_ACT(ACT_GET_POLICY)

279 default:

280 hashAlg = TPM_ALG_ERROR;

281 break;

282 }

283 break;

284 case TPM_HT_TRANSIENT:

285 // authPolicy for an object

286 {

287 OBJECT *object = HandleToObject(handle);

288 *authPolicy = object->publicArea.authPolicy;

289 hashAlg = object->publicArea.nameAlg;

290 }

291 break;

292 case TPM_HT_NV_INDEX:

293 // authPolicy for a NV index

294 {

295 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

296 pAssert(nvIndex != 0);

297 *authPolicy = nvIndex->publicArea.authPolicy;

298 hashAlg = nvIndex->publicArea.nameAlg;

299 }

300 break;

301 case TPM_HT_PCR:

302 // authPolicy for a PCR

303 hashAlg = PCRGetAuthPolicy(handle, authPolicy);

304 break;

305 default:

306 // If any other handle type is present it is a code defect.

307 FAIL(FATAL_ERROR_INTERNAL);

308 break;

309 }

310 return hashAlg;

311 }

9.4.3.4 EntityGetName()

This function returns the Name associated with a handle.

312 TPM2B_NAME *

313 EntityGetName(

314 TPMI_DH_ENTITY handle, // IN: handle of entity

315 TPM2B_NAME *name // OUT: name of entity

316)

317 {

318 switch(HandleGetType(handle))

319 {

320 case TPM_HT_TRANSIENT:

321 {

322 // Name for an object

323 OBJECT *object = HandleToObject(handle);

324 // an object with no nameAlg has no name

325 if(object->publicArea.nameAlg == TPM_ALG_NULL)

326 name->b.size = 0;

327 else

328 *name = object->name;

Trusted Platform Module Library Part 4: Supporting Routines

Page 420 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

329 break;

330 }

331 case TPM_HT_NV_INDEX:

332 // Name for a NV index

333 NvGetNameByIndexHandle(handle, name);

334 break;

335 default:

336 // For all other types, the handle is the Name

337 name->t.size = sizeof(TPM_HANDLE);

338 UINT32_TO_BYTE_ARRAY(handle, name->t.name);

339 break;

340 }

341 return name;

342 }

9.4.3.5 EntityGetHierarchy()

This function returns the hierarchy handle associated with an entity.

 A handle that is a hierarchy handle is associated with itself.

 An NV index belongs to TPM_RH_PLATFORM if TPMA_NV_PLATFORMCREATE, is SET,

otherwise it belongs to TPM_RH_OWNER

 An object handle belongs to its hierarchy.

343 TPMI_RH_HIERARCHY

344 EntityGetHierarchy(

345 TPMI_DH_ENTITY handle // IN :handle of entity

346)

347 {

348 TPMI_RH_HIERARCHY hierarchy = TPM_RH_NULL;

349

350 switch(HandleGetType(handle))

351 {

352 case TPM_HT_PERMANENT:

353 // hierarchy for a permanent handle

354 switch(handle)

355 {

356 case TPM_RH_PLATFORM:

357 case TPM_RH_ENDORSEMENT:

358 case TPM_RH_NULL:

359 hierarchy = handle;

360 break;

361 // all other permanent handles are associated with the owner

362 // hierarchy. (should only be TPM_RH_OWNER and TPM_RH_LOCKOUT)

363 default:

364 hierarchy = TPM_RH_OWNER;

365 break;

366 }

367 break;

368 case TPM_HT_NV_INDEX:

369 // hierarchy for NV index

370 {

371 NV_INDEX *nvIndex = NvGetIndexInfo(handle, NULL);

372 pAssert(nvIndex != NULL);

373

374 // If only the platform can delete the index, then it is

375 // considered to be in the platform hierarchy, otherwise it

376 // is in the owner hierarchy.

377 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV,

378 PLATFORMCREATE))

379 hierarchy = TPM_RH_PLATFORM;

380 else

381 hierarchy = TPM_RH_OWNER;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 421

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

382 }

383 break;

384 case TPM_HT_TRANSIENT:

385 // hierarchy for an object

386 {

387 OBJECT *object;

388 object = HandleToObject(handle);

389 if(object->attributes.ppsHierarchy)

390 {

391 hierarchy = TPM_RH_PLATFORM;

392 }

393 else if(object->attributes.epsHierarchy)

394 {

395 hierarchy = TPM_RH_ENDORSEMENT;

396 }

397 else if(object->attributes.spsHierarchy)

398 {

399 hierarchy = TPM_RH_OWNER;

400 }

401 }

402 break;

403 case TPM_HT_PCR:

404 hierarchy = TPM_RH_OWNER;

405 break;

406 default:

407 FAIL(FATAL_ERROR_INTERNAL);

408 break;

409 }

410 // this is unreachable but it provides a return value for the default

411 // case which makes the complier happy

412 return hierarchy;

413 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 422 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.5 Global.c

9.5.1 Description

This file will instance the TPM variables that are not stack allocated. Descriptions of global variables are

in Global.h. There macro macro definitions that allows a variable to be instanced or simply defined as an

external variable. When global.h is included from this .c file, GLOBAL_C is defined and values are

instanced (and possibly initialized), but when global.h is included by any other file, they are simply defined

as external values. DO NOT DEFINE GLOBAL_C IN ANY OTHER FILE.

NOTE: This is a change from previous implementations where Global.h just contained the extern declaration and
values were instanced in this file. This change keeps the definition and instance in one file making maintenance
easier. The instanced data will still be in the global.obj file.

The OIDs.h file works in a way that is similar to the Global.h with the definition of the values in OIDs.h

such that they are instanced in global.obj. The macros that are defined in Global.h are used in OIDs.h in

the same way as they are in Global.h.

9.5.2 Defines and Includes

1 #define GLOBAL_C

2 #include "Tpm.h"

3 #include "OIDs.h"

4 #if CC_CertifyX509

5 # include "X509.h"

6 #endif // CC_CertifyX509

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 423

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.6 Handle.c

9.6.1 Description

This file contains the functions that return the type of a handle.

9.6.2 Includes

1 #include "Tpm.h"

9.6.3 Functions

9.6.3.1 HandleGetType()

This function returns the type of a handle which is the MSO of the handle.

2 TPM_HT

3 HandleGetType(

4 TPM_HANDLE handle // IN: a handle to be checked

5)

6 {

7 // return the upper bytes of input data

8 return (TPM_HT)((handle & HR_RANGE_MASK) >> HR_SHIFT);

9 }

9.6.3.2 NextPermanentHandle()

This function returns the permanent handle that is equal to the input value or is the next higher value. If

there is no handle with the input value and there is no next higher value, it returns 0:

10 TPM_HANDLE

11 NextPermanentHandle(

12 TPM_HANDLE inHandle // IN: the handle to check

13)

14 {

15 // If inHandle is below the start of the range of permanent handles

16 // set it to the start and scan from there

17 if(inHandle < TPM_RH_FIRST)

18 inHandle = TPM_RH_FIRST;

19 // scan from input value until we find an implemented permanent handle

20 // or go out of range

21 for(; inHandle <= TPM_RH_LAST; inHandle++)

22 {

23 switch(inHandle)

24 {

25 case TPM_RH_OWNER:

26 case TPM_RH_NULL:

27 case TPM_RS_PW:

28 case TPM_RH_LOCKOUT:

29 case TPM_RH_ENDORSEMENT:

30 case TPM_RH_PLATFORM:

31 case TPM_RH_PLATFORM_NV:

32 #ifdef VENDOR_PERMANENT

33 case VENDOR_PERMANENT:

34 #endif

35 // Each of the implemented ACT

36 #define ACT_IMPLEMENTED_CASE(N) \

37 case TPM_RH_ACT_##N:

38

Trusted Platform Module Library Part 4: Supporting Routines

Page 424 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

39 FOR_EACH_ACT(ACT_IMPLEMENTED_CASE)

40

41 return inHandle;

42 break;

43 default:

44 break;

45 }

46 }

47 // Out of range on the top

48 return 0;

49 }

9.6.3.3 PermanentCapGetHandles()

This function returns a list of the permanent handles of PCR, started from handle. If handle is larger than

the largest permanent handle, an empty list will be returned with more set to NO.

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

50 TPMI_YES_NO

51 PermanentCapGetHandles(

52 TPM_HANDLE handle, // IN: start handle

53 UINT32 count, // IN: count of returned handles

54 TPML_HANDLE *handleList // OUT: list of handle

55)

56 {

57 TPMI_YES_NO more = NO;

58 UINT32 i;

59

60 pAssert(HandleGetType(handle) == TPM_HT_PERMANENT);

61

62 // Initialize output handle list

63 handleList->count = 0;

64

65 // The maximum count of handles we may return is MAX_CAP_HANDLES

66 if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;

67

68 // Iterate permanent handle range

69 for(i = NextPermanentHandle(handle);

70 i != 0; i = NextPermanentHandle(i + 1))

71 {

72 if(handleList->count < count)

73 {

74 // If we have not filled up the return list, add this permanent

75 // handle to it

76 handleList->handle[handleList->count] = i;

77 handleList->count++;

78 }

79 else

80 {

81 // If the return list is full but we still have permanent handle

82 // available, report this and stop iterating

83 more = YES;

84 break;

85 }

86 }

87 return more;

88 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 425

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.6.3.4 PermanentHandleGetPolicy()

This function returns a list of the permanent handles of PCR, started from handle. If handle is larger than

the largest permanent handle, an empty list will be returned with more set to NO.

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

89 TPMI_YES_NO

90 PermanentHandleGetPolicy(

91 TPM_HANDLE handle, // IN: start handle

92 UINT32 count, // IN: max count of returned handles

93 TPML_TAGGED_POLICY *policyList // OUT: list of handle

94)

95 {

96 TPMI_YES_NO more = NO;

97

98 pAssert(HandleGetType(handle) == TPM_HT_PERMANENT);

99

100 // Initialize output handle list

101 policyList->count = 0;

102

103 // The maximum count of policies we may return is MAX_TAGGED_POLICIES

104 if(count > MAX_TAGGED_POLICIES)

105 count = MAX_TAGGED_POLICIES;

106

107 // Iterate permanent handle range

108 for(handle = NextPermanentHandle(handle);

109 handle != 0;

110 handle = NextPermanentHandle(handle + 1))

111 {

112 TPM2B_DIGEST policyDigest;

113 TPM_ALG_ID policyAlg;

114 // Check to see if this permanent handle has a policy

115 policyAlg = EntityGetAuthPolicy(handle, &policyDigest);

116 if(policyAlg == TPM_ALG_ERROR)

117 continue;

118 if(policyList->count < count)

119 {

120 // If we have not filled up the return list, add this

121 // policy to the list;

122 policyList->policies[policyList->count].handle = handle;

123 policyList->policies[policyList->count].policyHash.hashAlg = policyAlg;

124 MemoryCopy(&policyList->policies[policyList->count].policyHash.digest,

125 policyDigest.t.buffer, policyDigest.t.size);

126 policyList->count++;

127 }

128 else

129 {

130 // If the return list is full but we still have permanent handle

131 // available, report this and stop iterating

132 more = YES;

133 break;

134 }

135 }

136 return more;

137 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 426 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.7 IoBuffers.c

9.7.1 Includes and Data Definitions

This definition allows this module to see the values that are private to this module but kept in Global.c for

ease of state migration.

1 #define IO_BUFFER_C

2 #include "Tpm.h"

3 #include "IoBuffers_fp.h"

9.7.2 Buffers and Functions

These buffers are set aside to hold command and response values. In this implementation, it is not

guaranteed that the code will stop accessing the s_actionInputBuffer before starting to put values in the

s_actionOutputBuffer so different buffers are required.

9.7.2.1 MemoryIoBufferAllocationReset()

This function is used to reset the allocation of buffers.

4 void

5 MemoryIoBufferAllocationReset(

6 void

7)

8 {

9 s_actionIoAllocation = 0;

10 }

9.7.2.2 MemoryIoBufferZero()

Function zeros the action I/O buffer at the end of a command. Calling this is not mandatory for proper

functionality.

11 void

12 MemoryIoBufferZero(

13 void

14)

15 {

16 memset(s_actionIoBuffer, 0, s_actionIoAllocation);

17 }

9.7.2.3 MemoryGetInBuffer()

This function returns the address of the buffer into which the command parameters will be unmarshaled in

preparation for calling the command actions.

18 BYTE *

19 MemoryGetInBuffer(

20 UINT32 size // Size, in bytes, required for the input

21 // unmarshaling

22)

23 {

24 pAssert(size <= sizeof(s_actionIoBuffer));

25 // In this implementation, a static buffer is set aside for the command action

26 // buffers. The buffer is shared between input and output. This is because

27 // there is no need to allocate for the worst case input and worst case output

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 427

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

28 // at the same time.

29 // Round size up

30 #define UoM (sizeof(s_actionIoBuffer[0]))

31 size = (size + (UoM - 1)) & (UINT32_MAX - (UoM - 1));

32 memset(s_actionIoBuffer, 0, size);

33 s_actionIoAllocation = size;

34 return (BYTE *)&s_actionIoBuffer[0];

35 }

9.7.2.4 MemoryGetOutBuffer()

This function returns the address of the buffer into which the command action code places its output

values.

36 BYTE *

37 MemoryGetOutBuffer(

38 UINT32 size // required size of the buffer

39)

40 {

41 BYTE *retVal = (BYTE *)(&s_actionIoBuffer[s_actionIoAllocation / UoM]);

42 pAssert((size + s_actionIoAllocation) < (sizeof(s_actionIoBuffer)));

43 // In this implementation, a static buffer is set aside for the command action

44 // output buffer.

45 memset(retVal, 0, size);

46 s_actionIoAllocation += size;

47 return retVal;

48 }

9.7.2.5 IsLabelProperlyFormatted()

This function checks that a label is a null-terminated string.

NOTE: this function is here because there was no better place for it.

Return Value Meaning

TRUE(1) string is null terminated

FALSE(0) string is not null terminated

49 BOOL

50 IsLabelProperlyFormatted(

51 TPM2B *x

52)

53 {

54 return (((x)->size == 0) || ((x)->buffer[(x)->size - 1] == 0));

55 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 428 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.8 Locality.c

9.8.1 Includes

1 #include "Tpm.h"

9.8.2 LocalityGetAttributes()

This function will convert a locality expressed as an integer into TPMA_LOCALITY form.

The function returns the locality attribute.

2 TPMA_LOCALITY

3 LocalityGetAttributes(

4 UINT8 locality // IN: locality value

5)

6 {

7 TPMA_LOCALITY locality_attributes;

8 BYTE *localityAsByte = (BYTE *)&locality_attributes;

9

10 MemorySet(&locality_attributes, 0, sizeof(TPMA_LOCALITY));

11 switch(locality)

12 {

13 case 0:

14 SET_ATTRIBUTE(locality_attributes, TPMA_LOCALITY, TPM_LOC_ZERO);

15 break;

16 case 1:

17 SET_ATTRIBUTE(locality_attributes, TPMA_LOCALITY, TPM_LOC_ONE);

18 break;

19 case 2:

20 SET_ATTRIBUTE(locality_attributes, TPMA_LOCALITY, TPM_LOC_TWO);

21 break;

22 case 3:

23 SET_ATTRIBUTE(locality_attributes, TPMA_LOCALITY, TPM_LOC_THREE);

24 break;

25 case 4:

26 SET_ATTRIBUTE(locality_attributes, TPMA_LOCALITY, TPM_LOC_FOUR);

27 break;

28 default:

29 pAssert(locality > 31);

30 *localityAsByte = locality;

31 break;

32 }

33 return locality_attributes;

34 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 429

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.9 Manufacture.c

9.9.1 Description

This file contains the function that performs the manufacturing of the TPM in a simulated environment.

These functions should not be used outside of a manufacturing or simulation environment.

9.9.2 Includes and Data Definitions

1 #define MANUFACTURE_C

2 #include "Tpm.h"

3 #include "TpmSizeChecks_fp.h"

9.9.3 Functions

9.9.3.1 TPM_Manufacture()

This function initializes the TPM values in preparation for the TPM's first use. This function will fail if

previously called. The TPM can be re-manufactured by calling TPM_Teardown() first and then calling this

function again.

Return Value Meaning

-1 failure

0 success

1 manufacturing process previously performed

4 LIB_EXPORT int

5 TPM_Manufacture(

6 int firstTime // IN: indicates if this is the first call from

7 // main()

8)

9 {

10 TPM_SU orderlyShutdown;

11

12 #if RUNTIME_SIZE_CHECKS

13 // Call the function to verify the sizes of values that result from different

14 // compile options.

15 if(!TpmSizeChecks())

16 return -1;

17 #endif

18 #if LIBRARY_COMPATIBILITY_CHECK

19 // Make sure that the attached library performs as expected.

20 if(!MathLibraryCompatibilityCheck())

21 return -1;

22 #endif

23

24 // If TPM has been manufactured, return indication.

25 if(!firstTime && g_manufactured)

26 return 1;

27

28 // Do power on initializations of the cryptographic libraries.

29 CryptInit();

30

31 s_DAPendingOnNV = FALSE;

32

33 // initialize NV

34 NvManufacture();

Trusted Platform Module Library Part 4: Supporting Routines

Page 430 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

35

36 // Clear the magic value in the DRBG state

37 go.drbgState.magic = 0;

38

39 CryptStartup(SU_RESET);

40

41 // default configuration for PCR

42 PCRSimStart();

43

44 // initialize pre-installed hierarchy data

45 // This should happen after NV is initialized because hierarchy data is

46 // stored in NV.

47 HierarchyPreInstall_Init();

48

49 // initialize dictionary attack parameters

50 DAPreInstall_Init();

51

52 // initialize PP list

53 PhysicalPresencePreInstall_Init();

54

55 // initialize command audit list

56 CommandAuditPreInstall_Init();

57

58 // first start up is required to be Startup(CLEAR)

59 orderlyShutdown = TPM_SU_CLEAR;

60 NV_WRITE_PERSISTENT(orderlyState, orderlyShutdown);

61

62 // initialize the firmware version

63 gp.firmwareV1 = FIRMWARE_V1;

64 #ifdef FIRMWARE_V2

65 gp.firmwareV2 = FIRMWARE_V2;

66 #else

67 gp.firmwareV2 = 0;

68 #endif

69 NV_SYNC_PERSISTENT(firmwareV1);

70 NV_SYNC_PERSISTENT(firmwareV2);

71

72 // initialize the total reset counter to 0

73 gp.totalResetCount = 0;

74 NV_SYNC_PERSISTENT(totalResetCount);

75

76 // initialize the clock stuff

77 go.clock = 0;

78 go.clockSafe = YES;

79

80 NvWrite(NV_ORDERLY_DATA, sizeof(ORDERLY_DATA), &go);

81

82 // Commit NV writes. Manufacture process is an artificial process existing

83 // only in simulator environment and it is not defined in the specification

84 // that what should be the expected behavior if the NV write fails at this

85 // point. Therefore, it is assumed the NV write here is always success and

86 // no return code of this function is checked.

87 NvCommit();

88

89 g_manufactured = TRUE;

90

91 return 0;

92 }

9.9.3.2 TPM_TearDown()

This function prepares the TPM for re-manufacture. It should not be implemented in anything other than a

simulated TPM.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 431

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

In this implementation, all that is needs is to stop the cryptographic units and set a flag to indicate that the

TPM can be re-manufactured. This should be all that is necessary to start the manufacturing process

again.

Return Value Meaning

0 success

1 TPM not previously manufactured

93 LIB_EXPORT int

94 TPM_TearDown(

95 void

96)

97 {

98 g_manufactured = FALSE;

99 return 0;

100 }

9.9.3.3 TpmEndSimulation()

This function is called at the end of the simulation run. It is used to provoke printing of any statistics that

might be needed.

101 LIB_EXPORT void

102 TpmEndSimulation(

103 void

104)

105 {

106 #if SIMULATION

107 HashLibSimulationEnd();

108 SymLibSimulationEnd();

109 MathLibSimulationEnd();

110 #if ALG_RSA

111 RsaSimulationEnd();

112 #endif

113 #if ALG_ECC

114 EccSimulationEnd();

115 #endif

116 #endif // SIMULATION

117 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 432 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10 Marshal.c

9.10.1 Introduction

This file contains the marshaling and unmarshaling code.

The marshaling and unmarshaling code and function prototypes are not listed, as the code is repetitive,

long, and not very useful to read. Examples of a few unmarshaling routines are provided. Most of the

others are similar.

Depending on the table header flags, a type will have an unmarshaling routine and a marshaling routine

The table header flags that control the generation of the unmarshaling and marshaling code are delimited

by angle brackets ("<>") in the table header. If no brackets are present, then both unmarshaling and

marshaling code is generated (i.e., generation of both marshaling and unmarshaling code is the default).

9.10.2 Unmarshal and Marshal a Value

In TPM 2.0 Part 2, a TPMI_DI_OBJECT is defined by this table:

Table xxx — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments

{TRANSIENT_FIRST:TRANSIENT_LAST} allowed range for transient objects

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

+TPM_RH_NULL the null handle

#TPM_RC_VALUE

This generates the following unmarshaling code:

1 TPM_RC

2 TPMI_DH_OBJECT_Unmarshal(TPMI_DH_OBJECT *target, BYTE **buffer, INT32 *size,

3 BOOL flag)

4 {
5 TPM_RC result;

6 result = TPM_HANDLE_Unmarshal((TPM_HANDLE *)target, buffer, size);

7 if(result != TPM_RC_SUCCESS)

8 return result;

9 if(*target == TPM_RH_NULL)

10 {

11 if(flag)

12 return TPM_RC_SUCCESS;

13 else

14 return TPM_RC_VALUE;

15 }

16 if(((*target < TRANSIENT_FIRST) || (*target > TRANSIENT_LAST))

17 &&((*target < PERSISTENT_FIRST) || (*target > PERSISTENT_LAST)))

18 return TPM_RC_VALUE;

19 return TPM_RC_SUCCESS;

20 }

and the following marshaling code:

NOTE The marshaling code does not do parameter checking, as the TPM is the source of the marshaling data.

1 UINT16
2 TPMI_DH_OBJECT_Marshal(TPMI_DH_OBJECT *source, BYTE **buffer, INT32 *size)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 433

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3 {

4 return UINT32_Marshal((UINT32 *)source, buffer, size);

5 }

An additional script is used to do the work that might be done by a linker or globally optimizing compiler. It

searches for functions like TPMI_DH_OBJECT_Marshal() that do nothing but call another function and

replaces the function with a #define.

6 #define TPMI_DH_OBJECT_Marshal(source, buffer, size) \
7 UINT32_Marshal((UINT32 *)source, buffer, size)

When replacing the function with a #define, the #define is placed in marshal_fp.h and the function body is

removed from marshal.c.

9.10.3 Unmarshal and Marshal a Union

In TPM 2.0 Part 2, a TPMU_PUBLIC_PARMS union is defined by:

Table xxx — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>

Parameter Type Selector Description

keyedHash TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH sign | encrypt | neither

symDetail TPMT_SYM_DEF_OBJECT TPM_ALG_SYMCIPHER a symmetric block cipher

rsaDetail TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign

eccDetail TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign

asymDetail TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTE The Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT.sign may be set.

 “+” indicates that both may be set but one shall be set. “|” indicates the optional settings.

From this table, the following unmarshaling code is generated.

1 TPM_RC
2 TPMU_PUBLIC_PARMS_Unmarshal(TPMU_PUBLIC_PARMS *target, BYTE **buffer, INT32 *size,

3 UINT32 selector)

4 {

5 switch(selector) {

6 #if ALG_KEYEDHASH

7 case TPM_ALG_KEYEDHASH:

8 return TPMS_KEYEDHASH_PARMS_Unmarshal(

9 (TPMS_KEYEDHASH_PARMS *)&(target->keyedHash), buffer, size);

10 #endif

11 #if ALG_SYMCIPHER

12 case TPM_ALG_SYMCIPHER:

13 return TPMT_SYM_DEF_OBJECT_Unmarshal(

14 (TPMT_SYM_DEF_OBJECT *)&(target->symDetail), buffer, size, FALSE);

15 #endif

16 #if ALG_RSA

17 case TPM_ALG_RSA:

18 return TPMS_RSA_PARMS_Unmarshal(

19 (TPMS_RSA_PARMS *)&(target->rsaDetail), buffer, size);

20 #endif

21 #if ALG_ECC

22 case TPM_ALG_ECC:

23 return TPMS_ECC_PARMS_Unmarshal(

24 (TPMS_ECC_PARMS *)&(target->eccDetail), buffer, size);

25 #endif

26 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 434 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

27 return TPM_RC_SELECTOR;

28 }

NOTE The #if/#endif directives are added whenever a value is dependent on an algorithm ID so that removing

the algorithm definition will remove the related code.

The marshaling code for the union is:

1 UINT16
2 TPMU_PUBLIC_PARMS_Marshal(TPMU_PUBLIC_PARMS *source, BYTE **buffer, INT32 *size,

3 UINT32 selector)

4 {

5 switch(selector) {

6 #if ALG_KEYEDHASH

7 case TPM_ALG_KEYEDHASH:

8 return TPMS_KEYEDHASH_PARMS_Marshal(

9 (TPMS_KEYEDHASH_PARMS *)&(source->keyedHash), buffer, size);

10 #endif

11 #if ALG_SYMCIPHER

12 case TPM_ALG_SYMCIPHER:

13 return TPMT_SYM_DEF_OBJECT_Marshal(

14 (TPMT_SYM_DEF_OBJECT *)&(source->symDetail), buffer, size);

15 #endif

16 #if ALG_RSA

17 case TPM_ALG_RSA:

18 return TPMS_RSA_PARMS_Marshal(

19 (TPMS_RSA_PARMS *)&(source->rsaDetail), buffer, size);

20 #endif

21 #if ALG_ECC

22 case TPM_ALG_ECC:

23 return TPMS_ECC_PARMS_Marshal(

24 (TPMS_ECC_PARMS *)&(source->eccDetail), buffer, size);

25 #endif

26 }

27 assert(1);

28 return 0;

29 }

For the marshaling and unmarshaling code, a value in the structure containing the union provides the

value used for selector. The example in the next section illustrates this.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 435

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.4 Unmarshal and Marshal a Structure

In TPM 2.0 Part 2, the TPMT_PUBLIC structure is defined by:

Table xxx — Definition of TPMT_PUBLIC Structure

Parameter Type Description

type TPMI_ALG_PUBLIC “algorithm” associated with this object

nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object

NOTE The "+" indicates that the instance of a TPMT_PUBLIC may have
a "+" to indicate that the nameAlg may be TPM_ALG_NULL.

objectAttributes TPMA_OBJECT attributes that, along with type, determine the manipulations of this
object

authPolicy TPM2B_DIGEST optional policy for using this key

The policy is computed using the nameAlg of the object.

NOTE shall be the Empty Buffer if no authorization policy is present

[type]parameters TPMU_PUBLIC_PARMS the algorithm or structure details

[type]unique TPMU_PUBLIC_ID the unique identifier of the structure

For an asymmetric key, this would be the public key.

This structure is tagged (the first value indicates the structure type), and that tag is used to determine how

the parameters and unique fields are unmarshaled and marshaled. The use of the type for specifying the

union selector is emphasized below.

The unmarshaling code for the structure in the table above is:

1 TPM_RC
2 TPMT_PUBLIC_Unmarshal(TPMT_PUBLIC *target, BYTE **buffer, INT32 *size, BOOL flag)

3 {

4 TPM_RC result;

5 result = TPMI_ALG_PUBLIC_Unmarshal((TPMI_ALG_PUBLIC *)&(target->type),

6 buffer, size);

7 if(result != TPM_RC_SUCCESS)

8 return result;

9 result = TPMI_ALG_HASH_Unmarshal((TPMI_ALG_HASH *)&(target->nameAlg),

10 buffer, size, flag);

11 if(result != TPM_RC_SUCCESS)

12 return result;

13 result = TPMA_OBJECT_Unmarshal((TPMA_OBJECT *)&(target->objectAttributes),

14 buffer, size);

15 if(result != TPM_RC_SUCCESS)

16 return result;

17 result = TPM2B_DIGEST_Unmarshal((TPM2B_DIGEST *)&(target->authPolicy),

18 buffer, size);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 result = TPMU_PUBLIC_PARMS_Unmarshal((TPMU_PUBLIC_PARMS *)&(target->parameters),

23 buffer, size,);

24 if(result != TPM_RC_SUCCESS)

25 return result;

26

27 result = TPMU_PUBLIC_ID_Unmarshal((TPMU_PUBLIC_ID *)&(target->unique),

28 buffer, size,)

29 if(result != TPM_RC_SUCCESS)

30 return result;

31

32 return TPM_RC_SUCCESS;

33 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 436 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The marshaling code for the TPMT_PUBLIC structure is:

1 UINT16
2 TPMT_PUBLIC_Marshal(TPMT_PUBLIC *source, BYTE **buffer, INT32 *size)

3 {

4 UINT16 result = 0;

5 result = (UINT16)(result + TPMI_ALG_PUBLIC_Marshal(

6 (TPMI_ALG_PUBLIC *)&(source->type), buffer, size));

7 result = (UINT16)(result + TPMI_ALG_HASH_Marshal(

8 (TPMI_ALG_HASH *)&(source->nameAlg), buffer, size))

9 ;

10 result = (UINT16)(result + TPMA_OBJECT_Marshal(

11 (TPMA_OBJECT *)&(source->objectAttributes), buffer, size));

12

13 result = (UINT16)(result + TPM2B_DIGEST_Marshal(

14 (TPM2B_DIGEST *)&(source->authPolicy), buffer, size));

15

16 result = (UINT16)(result + TPMU_PUBLIC_PARMS_Marshal(

17 (TPMU_PUBLIC_PARMS *)&(source->parameters), buffer, size,

18));

19

20 result = (UINT16)(result + TPMU_PUBLIC_ID_Marshal(

21 (TPMU_PUBLIC_ID *)&(source->unique), buffer, size,

22));

23

24 return result;

25 }

9.10.5 Unmarshal and Marshal an Array

In TPM 2.0 Part 2, the TPML_DIGEST is defined by:

Table xxx — Definition of TPML_DIGEST Structure

Parameter Type Description

count {2:} UINT32 number of digests in the list, minimum is two

digests[count]{:8} TPM2B_DIGEST a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE response code when count is not at least two or is
greater than 8

The digests parameter is an array of up to count structures (TPM2B_DIGESTS). The auto-generated

code to Unmarshal this structure is:

1 TPM_RC
2 TPML_DIGEST_Unmarshal(TPML_DIGEST *target, BYTE **buffer, INT32 *size)

3 {

4 TPM_RC result;

5 result = UINT32_Unmarshal((UINT32 *)&(target->count), buffer, size);

6 if(result != TPM_RC_SUCCESS)

7 return result;

8

9 if((target->count < 2)) // This check is triggered by the {2:} notation

10 // on ‘count’

11 return TPM_RC_SIZE;

12

13 if((target->count) > 8) // This check is triggered by the {:8} notation

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 437

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14 // on ‘digests’.

15 return TPM_RC_SIZE;

16

17 result = TPM2B_DIGEST_Array_Unmarshal((TPM2B_DIGEST *)(target->digests),

18 buffer, size,);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 return TPM_RC_SUCCESS;

23 }

The routine unmarshals a count value and passes that value to a routine that unmarshals an array of

TPM2B_DIGEST values. The unmarshaling code for the array is:

1 TPM_RC
2 TPM2B_DIGEST_Array_Unmarshal(TPM2B_DIGEST *target, BYTE **buffer, INT32 *size,

3 INT32 count)

4 {

5 TPM_RC result;

6 INT32 i;

7 for(i = 0; i < count; i++) {

8 result = TPM2B_DIGEST_Unmarshal(&target[i], buffer, size);

9 if(result != TPM_RC_SUCCESS)

10 return result;

11 }

12 return TPM_RC_SUCCESS;

13 }

14

Marshaling of the TPML_DIGEST uses a similar scheme with a structure specifying the number of

elements in an array and a subsequent call to a routine to marshal an array of that type.

1 UINT16
2 TPML_DIGEST_Marshal(TPML_DIGEST *source, BYTE **buffer, INT32 *size)

3 {

4 UINT16 result = 0;

5 result = (UINT16)(result + UINT32_Marshal((UINT32 *)&(source->count), buffer,

6 size));

7 result = (UINT16)(result + TPM2B_DIGEST_Array_Marshal(

8 (TPM2B_DIGEST *)(source->digests), buffer, size,

9 (INT32)(source->count)));

10

11 return result;

12 }

The marshaling code for the array is:

1 TPM_RC
2 TPM2B_DIGEST_Array_Unmarshal(TPM2B_DIGEST *target, BYTE **buffer, INT32 *size,

3 INT32 count)

4 {

5 TPM_RC result;

6 INT32 i;

7 for(i = 0; i < count; i++) {

8 result = TPM2B_DIGEST_Unmarshal(&target[i], buffer, size);

9 if(result != TPM_RC_SUCCESS)

10 return result;

11 }

12 return TPM_RC_SUCCESS;

13 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 438 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10.6 TPM2B Handling

A TPM2B structure is handled as a special case. The unmarshaling code is similar to what is shown in

9.10.5 but the unmarshaling/marshaling is to a union element. Each TPM2B is a union of two sized

buffers, one of which is type specific (the ‘t’ element) and the other is a generic value (the ‘b’ element).

This allows each of the TPM2B structures to have some inheritance property with all other TPM2B. The

purpose is to allow functions that have parameters that can be any TPM2B structure while allowing other

functions to be specific about the type of the TPM2B that is used. When the generic structure is allowed,

the input parameter would use the ‘b’ element and when the type-specific structure is required, the ‘t’

element is used.

When marshaling a TPM2B where the second member is a BYTE array, the size parameter indicates the

size of the array. The second member can also be a structure. In this case, the caller does not prefill the

size member. The marshaling code must marshal the structure and then back fill the calculated size.

Table xxx — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 Size of the operand

buffer [size] {:1024} BYTE The operand

1 TPM_RC

2 TPM2B_EVENT_Unmarshal(TPM2B_EVENT *target, BYTE **buffer, INT32 *size)

3 {

4 TPM_RC result;

5 result = UINT16_Unmarshal((UINT16 *)&(target->t.size), buffer, size);

6 if(result != TPM_RC_SUCCESS)

7 return result;

8 // if size equal to 0, the rest of the structure is a zero buffer

9 // so stop processing

10 if(target->t.size == 0)

11 return TPM_RC_SUCCESS;

12 if((target->t.size) > 1024) // This check is triggered by the {:1024}

13 // notation on ‘buffer’

14 return TPM_RC_SIZE;

15 result = BYTE_Array_Unmarshal((BYTE *)(target->t.buffer), buffer, size,

16 (INT32)(target->t.size));

17 if(result != TPM_RC_SUCCESS)

18 return result;

19 return TPM_RC_SUCCESS;

20 }

using these structure definitions:

1 typedef union {

2 struct {

3 UINT16 size;

4 BYTE buffer[1024];

5 } t;

6 TPM2B b;

7 } TPM2B_EVENT;

9.10.7 Table Marshal Headers

9.10.7.1 TableMarshal.h

1 #ifndef _TABLE_DRIVEN_MARSHAL_H_

2 #define _TABLE_DRIVEN_MARSHAL_H_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 439

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

These are the basic unmarshaling types. This is in the first byte of each structure descriptor that is

passed to Marshal()/Unmarshal() for processing.

3 #define UINT_MTYPE 0

4 #define VALUES_MTYPE (UINT_MTYPE + 1)

5 #define TABLE_MTYPE (VALUES_MTYPE + 1)

6 #define MIN_MAX_MTYPE (TABLE_MTYPE + 1)

7 #define ATTRIBUTES_MTYPE (MIN_MAX_MTYPE + 1)

8 #define STRUCTURE_MTYPE (ATTRIBUTES_MTYPE + 1)

9 #define TPM2B_MTYPE (STRUCTURE_MTYPE + 1)

10 #define TPM2BS_MTYPE (TPM2B_MTYPE + 1)

11 #define LIST_MTYPE (TPM2BS_MTYPE + 1) // TPML

12 #define ERROR_MTYPE (LIST_MTYPE + 1)

13 #define NULL_MTYPE (ERROR_MTYPE + 1)

14 #define COMPOSITE_MTYPE (NULL_MTYPE + 1)

Trusted Platform Module Library Part 4: Supporting Routines

Page 440 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10.7.1.1.1 The Marshal Index

A structure is used to hold the values that guide the marshaling/unmarshaling of each of the types. Each

structure has a name and an address. For a structure to define a TPMS_name, the structure is a

TPMS_name_MARSHAL_STRUCT and its index is TPMS_name_MARSHAL_INDEX. So, to get the

proper structure, use the associated marshal index. The marshal index is passed to Marshal() or

Unmarshal() and those functions look up the proper structure.

To handle structures that allow a null value, the upper bit of each marshal index indicates if the null value

is allowed. This is the NULL_FLAG. It is defined in TableMarshalIndex.h because it is needed by code

outside of the marshaling code. A structure will have a list of marshal indexes to indicate what to

unmarshal. When that index appears in a structure/union, the value will contain a flag to indicate that the

NULL_FLAG should be SET on the call to Unmarshal() to unmarshal the type. The caller simply takes the

entry and passes it to Unmarshal() to indicate that the NULL_FLAG is SET. There is also the opportunity

to SET the NULL_FLAG in the called structure if the NULL_FLAG was set in the call to the calling

structure. This is indicated by:

15 #define NULL_MASK ~(NULL_FLAG)

When looking up the value to marshal, the upper two bits of the marshal index are masked to yield the

actual index.

16 typedef unsigned int uint;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 441

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.7.1.1.2 Modifier Octet Values

These are in used in anything that is an integer value. Theses would not be in structure modifier bytes

(they would be used in values in structures but not the STRUCTURE_MTYPE header.

17 #define ONE_BYTES (0)

18 #define TWO_BYTES (1)

19 #define FOUR_BYTES (2)

20 #define EIGHT_BYTES (3)

21 #define SIZE_MASK (0x3)

22 #define IS_SIGNED (1 << 2) // when the unmarshaled type is a signed value

23 #define SIGNED_MASK (SIZE_MASK | IS_SIGNED)

This may be used for any type except a UINT_MTYPE

24 #define TAKES_NULL (1 << 7) // when the type takes a null

When referencing a structure, this flag indicates if a null is to be propagated to the referenced structure or

type.

25 #define PROPAGATE_SHIFT 7

26 #define PROPAGATE_NULL (1 << PROPAGATE_SHIFT)

Can be used in min-max or table structures.

27 #define HAS_BITS (1 << 6) // when bit mask is present

In a union, we need to know if this is a union of constant arrays.

28 #define IS_ARRAY_UNION (1 << 6)

In a TPM2BS_MTYPE

29 #define SIZE_EQUAL (1 << 6)

Right now, there are two spare bits in the modifiers field. Within the descriptor word of each entry in a

StructMarsh_mst(), there is a selector field to determine which of the sub-types the entry represents and a

field that is used to reference another structure entry. This is a 6-bit field allowing a structure to have 64

entries. This should be more than enough as the structures are not that long. As of now, only 10-bits of

the descriptor word leaving room for expansion. These are the values used in a STRUCTURE_MTYPE to

identify the sub-type of the thing being processed

30 #define SIMPLE_STYPE 0

31 #define UNION_STYPE 1

32 #define ARRAY_STYPE 2

The code used GET_ to get the element type and the compiler uses SET_ to initialize the value. The

element type is the three bits (2:0).

33 #define GET_ELEMENT_TYPE(val) (val & 7)

34 #define SET_ELEMENT_TYPE(val) (val & 7)

When an entry is an array or union, this references the structure entry that contains the dimension or

selector value. The code then uses this number to look up the structure entry for that element to find out

what it and where is it in memory. When this is not a reference, it is a simple type and it could be used as

an array value or a union selector. When a simple value, this field contains the size of the associated

value (ONE_BYTES, TWO_BYTES ...) The entry size/number is 6 bits (13:8).

Trusted Platform Module Library Part 4: Supporting Routines

Page 442 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

35 #define GET_ELEMENT_NUMBER(val) (((val) >> 8) & 0x3F)

36 #define SET_ELEMENT_NUMBER(val) (((val) & 0x3F) << 8)

37 #define GET_ELEMENT_SIZE(val) GET_ELEMENT_NUMBER(val)

38 #define SET_ELEMENT_SIZE(val) SET_ELEMENT_NUMBER(val)

This determines if the null flag is propagated to this type. If generate, the NULL_FLAG is SET in the index

value. This flag is one bit (7)

39 #define ELEMENT_PROPAGATE (1 << PROPAGATE_SHIFT)

40 #define INDEX_MASK ((UINT16)NULL_MASK)

This is used in all bit-field checks. These are used when a value that is checked is conditional (dependent

on the compilation). For example, if AES_128 is (NO), then the bit associated with AES_128 will be 0. In

some cases, the bit value is found by checking that the input is within the range of the table, and then

using the (val - min) value to index the bit. This would be used when verifying that a particular algorithm is

implemented. In other cases, there is a bit for each value in a table. For example, if checking the key

sizes, there is a list of possible key sizes allowed by the algorithm registry and a bit field to indicate if that

key size is allowed in the implementation. The smallest bit field has 32-bits 32-bits because it is

implemented as part of the values array of the structures that allow bit fields.

41 #define IS_BIT_SET32(bit, bits) \

42 ((((UINT32 *)bits)[bit >> 5] & (1 << (bit & 0x1F))) != 0)

For a COMPOSITE_MTYPE, the qualifiers byte has an element size and count.

43 #define SET_ELEMENT_COUNT(count) ((count & 0x1F) << 3)

44 #define GET_ELEMENT_COUNT(val) ((val >> 3) & 0x1F)

45 #endif // _TABLE_DRIVEN_MARSHAL_H_

9.10.7.2 TableMarshalData.h

1 #ifndef _Table_Marshal_Data_

2 #define _Table_Marshal_Data_

The datatype descriptions for each type if needed in addition to the default types.

3 typedef const struct TPM_ECC_CURVE_mst {

4 UINT8 marshalType;

5 UINT8 modifiers;

6 UINT8 errorCode;

7 UINT32 values[4];

8 } TPM_ECC_CURVE_mst;

9 typedef const struct TPM_CLOCK_ADJUST_mst {

10 UINT8 marshalType;

11 UINT8 modifiers;

12 UINT8 errorCode;

13 UINT32 values[2];

14 } TPM_CLOCK_ADJUST_mst;

15 typedef const struct TPM_EO_mst {

16 UINT8 marshalType;

17 UINT8 modifiers;

18 UINT8 errorCode;

19 UINT32 values[2];

20 } TPM_EO_mst;

21 typedef const struct TPM_SU_mst {

22 UINT8 marshalType;

23 UINT8 modifiers;

24 UINT8 errorCode;

25 UINT8 entries;

26 UINT32 values[2];

27 } TPM_SU_mst;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 443

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

28 typedef const struct TPM_SE_mst {

29 UINT8 marshalType;

30 UINT8 modifiers;

31 UINT8 errorCode;

32 UINT8 entries;

33 UINT32 values[3];

34 } TPM_SE_mst;

35 typedef const struct TPM_CAP_mst {

36 UINT8 marshalType;

37 UINT8 modifiers;

38 UINT8 errorCode;

39 UINT8 ranges;

40 UINT8 singles;

41 UINT32 values[3];

42 } TPM_CAP_mst;

43 typedef const struct TPMI_YES_NO_mst {

44 UINT8 marshalType;

45 UINT8 modifiers;

46 UINT8 errorCode;

47 UINT8 entries;

48 UINT32 values[2];

49 } TPMI_YES_NO_mst;

50 typedef const struct TPMI_DH_OBJECT_mst {

51 UINT8 marshalType;

52 UINT8 modifiers;

53 UINT8 errorCode;

54 UINT8 ranges;

55 UINT8 singles;

56 UINT32 values[5];

57 } TPMI_DH_OBJECT_mst;

58 typedef const struct TPMI_DH_PARENT_mst {

59 UINT8 marshalType;

60 UINT8 modifiers;

61 UINT8 errorCode;

62 UINT8 ranges;

63 UINT8 singles;

64 UINT32 values[8];

65 } TPMI_DH_PARENT_mst;

66 typedef const struct TPMI_DH_PERSISTENT_mst {

67 UINT8 marshalType;

68 UINT8 modifiers;

69 UINT8 errorCode;

70 UINT32 values[2];

71 } TPMI_DH_PERSISTENT_mst;

72 typedef const struct TPMI_DH_ENTITY_mst {

73 UINT8 marshalType;

74 UINT8 modifiers;

75 UINT8 errorCode;

76 UINT8 ranges;

77 UINT8 singles;

78 UINT32 values[15];

79 } TPMI_DH_ENTITY_mst;

80 typedef const struct TPMI_DH_PCR_mst {

81 UINT8 marshalType;

82 UINT8 modifiers;

83 UINT8 errorCode;

84 UINT32 values[3];

85 } TPMI_DH_PCR_mst;

86 typedef const struct TPMI_SH_AUTH_SESSION_mst {

87 UINT8 marshalType;

88 UINT8 modifiers;

89 UINT8 errorCode;

90 UINT8 ranges;

91 UINT8 singles;

92 UINT32 values[5];

93 } TPMI_SH_AUTH_SESSION_mst;

Trusted Platform Module Library Part 4: Supporting Routines

Page 444 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

94 typedef const struct TPMI_SH_HMAC_mst {

95 UINT8 marshalType;

96 UINT8 modifiers;

97 UINT8 errorCode;

98 UINT32 values[2];

99 } TPMI_SH_HMAC_mst;

100 typedef const struct TPMI_SH_POLICY_mst {

101 UINT8 marshalType;

102 UINT8 modifiers;

103 UINT8 errorCode;

104 UINT32 values[2];

105 } TPMI_SH_POLICY_mst;

106 typedef const struct TPMI_DH_CONTEXT_mst {

107 UINT8 marshalType;

108 UINT8 modifiers;

109 UINT8 errorCode;

110 UINT8 ranges;

111 UINT8 singles;

112 UINT32 values[6];

113 } TPMI_DH_CONTEXT_mst;

114 typedef const struct TPMI_DH_SAVED_mst {

115 UINT8 marshalType;

116 UINT8 modifiers;

117 UINT8 errorCode;

118 UINT8 ranges;

119 UINT8 singles;

120 UINT32 values[7];

121 } TPMI_DH_SAVED_mst;

122 typedef const struct TPMI_RH_HIERARCHY_mst {

123 UINT8 marshalType;

124 UINT8 modifiers;

125 UINT8 errorCode;

126 UINT8 entries;

127 UINT32 values[4];

128 } TPMI_RH_HIERARCHY_mst;

129 typedef const struct TPMI_RH_ENABLES_mst {

130 UINT8 marshalType;

131 UINT8 modifiers;

132 UINT8 errorCode;

133 UINT8 entries;

134 UINT32 values[5];

135 } TPMI_RH_ENABLES_mst;

136 typedef const struct TPMI_RH_HIERARCHY_AUTH_mst {

137 UINT8 marshalType;

138 UINT8 modifiers;

139 UINT8 errorCode;

140 UINT8 entries;

141 UINT32 values[4];

142 } TPMI_RH_HIERARCHY_AUTH_mst;

143 typedef const struct TPMI_RH_PLATFORM_mst {

144 UINT8 marshalType;

145 UINT8 modifiers;

146 UINT8 errorCode;

147 UINT8 entries;

148 UINT32 values[1];

149 } TPMI_RH_PLATFORM_mst;

150 typedef const struct TPMI_RH_OWNER_mst {

151 UINT8 marshalType;

152 UINT8 modifiers;

153 UINT8 errorCode;

154 UINT8 entries;

155 UINT32 values[2];

156 } TPMI_RH_OWNER_mst;

157 typedef const struct TPMI_RH_ENDORSEMENT_mst {

158 UINT8 marshalType;

159 UINT8 modifiers;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 445

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

160 UINT8 errorCode;

161 UINT8 entries;

162 UINT32 values[2];

163 } TPMI_RH_ENDORSEMENT_mst;

164 typedef const struct TPMI_RH_PROVISION_mst {

165 UINT8 marshalType;

166 UINT8 modifiers;

167 UINT8 errorCode;

168 UINT8 entries;

169 UINT32 values[2];

170 } TPMI_RH_PROVISION_mst;

171 typedef const struct TPMI_RH_CLEAR_mst {

172 UINT8 marshalType;

173 UINT8 modifiers;

174 UINT8 errorCode;

175 UINT8 entries;

176 UINT32 values[2];

177 } TPMI_RH_CLEAR_mst;

178 typedef const struct TPMI_RH_NV_AUTH_mst {

179 UINT8 marshalType;

180 UINT8 modifiers;

181 UINT8 errorCode;

182 UINT8 ranges;

183 UINT8 singles;

184 UINT32 values[4];

185 } TPMI_RH_NV_AUTH_mst;

186 typedef const struct TPMI_RH_LOCKOUT_mst {

187 UINT8 marshalType;

188 UINT8 modifiers;

189 UINT8 errorCode;

190 UINT8 entries;

191 UINT32 values[1];

192 } TPMI_RH_LOCKOUT_mst;

193 typedef const struct TPMI_RH_NV_INDEX_mst {

194 UINT8 marshalType;

195 UINT8 modifiers;

196 UINT8 errorCode;

197 UINT32 values[2];

198 } TPMI_RH_NV_INDEX_mst;

199 typedef const struct TPMI_RH_AC_mst {

200 UINT8 marshalType;

201 UINT8 modifiers;

202 UINT8 errorCode;

203 UINT32 values[2];

204 } TPMI_RH_AC_mst;

205 typedef const struct TPMI_ALG_HASH_mst {

206 UINT8 marshalType;

207 UINT8 modifiers;

208 UINT8 errorCode;

209 UINT32 values[5];

210 } TPMI_ALG_HASH_mst;

211 typedef const struct TPMI_ALG_ASYM_mst {

212 UINT8 marshalType;

213 UINT8 modifiers;

214 UINT8 errorCode;

215 UINT32 values[5];

216 } TPMI_ALG_ASYM_mst;

217 typedef const struct TPMI_ALG_SYM_mst {

218 UINT8 marshalType;

219 UINT8 modifiers;

220 UINT8 errorCode;

221 UINT32 values[5];

222 } TPMI_ALG_SYM_mst;

223 typedef const struct TPMI_ALG_SYM_OBJECT_mst {

224 UINT8 marshalType;

225 UINT8 modifiers;

Trusted Platform Module Library Part 4: Supporting Routines

Page 446 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

226 UINT8 errorCode;

227 UINT32 values[5];

228 } TPMI_ALG_SYM_OBJECT_mst;

229 typedef const struct TPMI_ALG_SYM_MODE_mst {

230 UINT8 marshalType;

231 UINT8 modifiers;

232 UINT8 errorCode;

233 UINT32 values[4];

234 } TPMI_ALG_SYM_MODE_mst;

235 typedef const struct TPMI_ALG_KDF_mst {

236 UINT8 marshalType;

237 UINT8 modifiers;

238 UINT8 errorCode;

239 UINT32 values[4];

240 } TPMI_ALG_KDF_mst;

241 typedef const struct TPMI_ALG_SIG_SCHEME_mst {

242 UINT8 marshalType;

243 UINT8 modifiers;

244 UINT8 errorCode;

245 UINT32 values[4];

246 } TPMI_ALG_SIG_SCHEME_mst;

247 typedef const struct TPMI_ECC_KEY_EXCHANGE_mst {

248 UINT8 marshalType;

249 UINT8 modifiers;

250 UINT8 errorCode;

251 UINT32 values[4];

252 } TPMI_ECC_KEY_EXCHANGE_mst;

253 typedef const struct TPMI_ST_COMMAND_TAG_mst {

254 UINT8 marshalType;

255 UINT8 modifiers;

256 UINT8 errorCode;

257 UINT8 entries;

258 UINT32 values[2];

259 } TPMI_ST_COMMAND_TAG_mst;

260 typedef const struct TPMI_ALG_MAC_SCHEME_mst {

261 UINT8 marshalType;

262 UINT8 modifiers;

263 UINT8 errorCode;

264 UINT32 values[5];

265 } TPMI_ALG_MAC_SCHEME_mst;

266 typedef const struct TPMI_ALG_CIPHER_MODE_mst {

267 UINT8 marshalType;

268 UINT8 modifiers;

269 UINT8 errorCode;

270 UINT32 values[4];

271 } TPMI_ALG_CIPHER_MODE_mst;

272 typedef const struct TPMS_EMPTY_mst

273 {

274 UINT8 marshalType;

275 UINT8 elements;

276 UINT16 values[3];

277 } TPMS_EMPTY_mst;

278 typedef const struct TPMS_ALGORITHM_DESCRIPTION_mst

279 {

280 UINT8 marshalType;

281 UINT8 elements;

282 UINT16 values[6];

283 } TPMS_ALGORITHM_DESCRIPTION_mst;

284 typedef struct TPMU_HA_mst

285 {

286 BYTE countOfselectors;

287 BYTE modifiers;

288 UINT16 offsetOfUnmarshalTypes;

289 UINT32 selectors[9];

290 UINT16 marshalingTypes[9];

291 } TPMU_HA_mst;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 447

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

292 typedef const struct TPMT_HA_mst

293 {

294 UINT8 marshalType;

295 UINT8 elements;

296 UINT16 values[6];

297 } TPMT_HA_mst;

298 typedef const struct TPMS_PCR_SELECT_mst

299 {

300 UINT8 marshalType;

301 UINT8 elements;

302 UINT16 values[6];

303 } TPMS_PCR_SELECT_mst;

304 typedef const struct TPMS_PCR_SELECTION_mst

305 {

306 UINT8 marshalType;

307 UINT8 elements;

308 UINT16 values[9];

309 } TPMS_PCR_SELECTION_mst;

310 typedef const struct TPMT_TK_CREATION_mst

311 {

312 UINT8 marshalType;

313 UINT8 elements;

314 UINT16 values[9];

315 } TPMT_TK_CREATION_mst;

316 typedef const struct TPMT_TK_VERIFIED_mst

317 {

318 UINT8 marshalType;

319 UINT8 elements;

320 UINT16 values[9];

321 } TPMT_TK_VERIFIED_mst;

322 typedef const struct TPMT_TK_AUTH_mst

323 {

324 UINT8 marshalType;

325 UINT8 elements;

326 UINT16 values[9];

327 } TPMT_TK_AUTH_mst;

328 typedef const struct TPMT_TK_HASHCHECK_mst

329 {

330 UINT8 marshalType;

331 UINT8 elements;

332 UINT16 values[9];

333 } TPMT_TK_HASHCHECK_mst;

334 typedef const struct TPMS_ALG_PROPERTY_mst

335 {

336 UINT8 marshalType;

337 UINT8 elements;

338 UINT16 values[6];

339 } TPMS_ALG_PROPERTY_mst;

340 typedef const struct TPMS_TAGGED_PROPERTY_mst

341 {

342 UINT8 marshalType;

343 UINT8 elements;

344 UINT16 values[6];

345 } TPMS_TAGGED_PROPERTY_mst;

346 typedef const struct TPMS_TAGGED_PCR_SELECT_mst

347 {

348 UINT8 marshalType;

349 UINT8 elements;

350 UINT16 values[9];

351 } TPMS_TAGGED_PCR_SELECT_mst;

352 typedef const struct TPMS_TAGGED_POLICY_mst

353 {

354 UINT8 marshalType;

355 UINT8 elements;

356 UINT16 values[6];

357 } TPMS_TAGGED_POLICY_mst;

Trusted Platform Module Library Part 4: Supporting Routines

Page 448 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

358 typedef struct TPMU_CAPABILITIES_mst

359 {

360 BYTE countOfselectors;

361 BYTE modifiers;

362 UINT16 offsetOfUnmarshalTypes;

363 UINT32 selectors[10];

364 UINT16 marshalingTypes[10];

365 } TPMU_CAPABILITIES_mst;

366 typedef const struct TPMS_CAPABILITY_DATA_mst

367 {

368 UINT8 marshalType;

369 UINT8 elements;

370 UINT16 values[6];

371 } TPMS_CAPABILITY_DATA_mst;

372 typedef const struct TPMS_CLOCK_INFO_mst

373 {

374 UINT8 marshalType;

375 UINT8 elements;

376 UINT16 values[12];

377 } TPMS_CLOCK_INFO_mst;

378 typedef const struct TPMS_TIME_INFO_mst

379 {

380 UINT8 marshalType;

381 UINT8 elements;

382 UINT16 values[6];

383 } TPMS_TIME_INFO_mst;

384 typedef const struct TPMS_TIME_ATTEST_INFO_mst

385 {

386 UINT8 marshalType;

387 UINT8 elements;

388 UINT16 values[6];

389 } TPMS_TIME_ATTEST_INFO_mst;

390 typedef const struct TPMS_CERTIFY_INFO_mst

391 {

392 UINT8 marshalType;

393 UINT8 elements;

394 UINT16 values[6];

395 } TPMS_CERTIFY_INFO_mst;

396 typedef const struct TPMS_QUOTE_INFO_mst

397 {

398 UINT8 marshalType;

399 UINT8 elements;

400 UINT16 values[6];

401 } TPMS_QUOTE_INFO_mst;

402 typedef const struct TPMS_COMMAND_AUDIT_INFO_mst

403 {

404 UINT8 marshalType;

405 UINT8 elements;

406 UINT16 values[12];

407 } TPMS_COMMAND_AUDIT_INFO_mst;

408 typedef const struct TPMS_SESSION_AUDIT_INFO_mst

409 {

410 UINT8 marshalType;

411 UINT8 elements;

412 UINT16 values[6];

413 } TPMS_SESSION_AUDIT_INFO_mst;

414 typedef const struct TPMS_CREATION_INFO_mst

415 {

416 UINT8 marshalType;

417 UINT8 elements;

418 UINT16 values[6];

419 } TPMS_CREATION_INFO_mst;

420 typedef const struct TPMS_NV_CERTIFY_INFO_mst

421 {

422 UINT8 marshalType;

423 UINT8 elements;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 449

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

424 UINT16 values[9];

425 } TPMS_NV_CERTIFY_INFO_mst;

426 typedef const struct TPMS_NV_DIGEST_CERTIFY_INFO_mst

427 {

428 UINT8 marshalType;

429 UINT8 elements;

430 UINT16 values[6];

431 } TPMS_NV_DIGEST_CERTIFY_INFO_mst;

432 typedef const struct TPMI_ST_ATTEST_mst {

433 UINT8 marshalType;

434 UINT8 modifiers;

435 UINT8 errorCode;

436 UINT8 ranges;

437 UINT8 singles;

438 UINT32 values[3];

439 } TPMI_ST_ATTEST_mst;

440 typedef struct TPMU_ATTEST_mst

441 {

442 BYTE countOfselectors;

443 BYTE modifiers;

444 UINT16 offsetOfUnmarshalTypes;

445 UINT32 selectors[8];

446 UINT16 marshalingTypes[8];

447 } TPMU_ATTEST_mst;

448 typedef const struct TPMS_ATTEST_mst

449 {

450 UINT8 marshalType;

451 UINT8 elements;

452 UINT16 values[21];

453 } TPMS_ATTEST_mst;

454 typedef const struct TPMS_AUTH_COMMAND_mst

455 {

456 UINT8 marshalType;

457 UINT8 elements;

458 UINT16 values[12];

459 } TPMS_AUTH_COMMAND_mst;

460 typedef const struct TPMS_AUTH_RESPONSE_mst

461 {

462 UINT8 marshalType;

463 UINT8 elements;

464 UINT16 values[9];

465 } TPMS_AUTH_RESPONSE_mst;

466 typedef const struct TPMI_TDES_KEY_BITS_mst {

467 UINT8 marshalType;

468 UINT8 modifiers;

469 UINT8 errorCode;

470 UINT8 entries;

471 UINT32 values[3];

472 } TPMI_TDES_KEY_BITS_mst;

473 typedef const struct TPMI_AES_KEY_BITS_mst {

474 UINT8 marshalType;

475 UINT8 modifiers;

476 UINT8 errorCode;

477 UINT8 entries;

478 UINT32 values[4];

479 } TPMI_AES_KEY_BITS_mst;

480 typedef const struct TPMI_SM4_KEY_BITS_mst {

481 UINT8 marshalType;

482 UINT8 modifiers;

483 UINT8 errorCode;

484 UINT8 entries;

485 UINT32 values[2];

486 } TPMI_SM4_KEY_BITS_mst;

487 typedef const struct TPMI_CAMELLIA_KEY_BITS_mst {

488 UINT8 marshalType;

489 UINT8 modifiers;

Trusted Platform Module Library Part 4: Supporting Routines

Page 450 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

490 UINT8 errorCode;

491 UINT8 entries;

492 UINT32 values[4];

493 } TPMI_CAMELLIA_KEY_BITS_mst;

494 typedef struct TPMU_SYM_KEY_BITS_mst

495 {

496 BYTE countOfselectors;

497 BYTE modifiers;

498 UINT16 offsetOfUnmarshalTypes;

499 UINT32 selectors[6];

500 UINT16 marshalingTypes[6];

501 } TPMU_SYM_KEY_BITS_mst;

502 typedef struct TPMU_SYM_MODE_mst

503 {

504 BYTE countOfselectors;

505 BYTE modifiers;

506 UINT16 offsetOfUnmarshalTypes;

507 UINT32 selectors[6];

508 UINT16 marshalingTypes[6];

509 } TPMU_SYM_MODE_mst;

510 typedef const struct TPMT_SYM_DEF_mst

511 {

512 UINT8 marshalType;

513 UINT8 elements;

514 UINT16 values[9];

515 } TPMT_SYM_DEF_mst;

516 typedef const struct TPMT_SYM_DEF_OBJECT_mst

517 {

518 UINT8 marshalType;

519 UINT8 elements;

520 UINT16 values[9];

521 } TPMT_SYM_DEF_OBJECT_mst;

522 typedef const struct TPMS_SYMCIPHER_PARMS_mst

523 {

524 UINT8 marshalType;

525 UINT8 elements;

526 UINT16 values[3];

527 } TPMS_SYMCIPHER_PARMS_mst;

528 typedef const struct TPMS_DERIVE_mst

529 {

530 UINT8 marshalType;

531 UINT8 elements;

532 UINT16 values[6];

533 } TPMS_DERIVE_mst;

534 typedef const struct TPMS_SENSITIVE_CREATE_mst

535 {

536 UINT8 marshalType;

537 UINT8 elements;

538 UINT16 values[6];

539 } TPMS_SENSITIVE_CREATE_mst;

540 typedef const struct TPMS_SCHEME_HASH_mst

541 {

542 UINT8 marshalType;

543 UINT8 elements;

544 UINT16 values[3];

545 } TPMS_SCHEME_HASH_mst;

546 typedef const struct TPMS_SCHEME_ECDAA_mst

547 {

548 UINT8 marshalType;

549 UINT8 elements;

550 UINT16 values[6];

551 } TPMS_SCHEME_ECDAA_mst;

552 typedef const struct TPMI_ALG_KEYEDHASH_SCHEME_mst {

553 UINT8 marshalType;

554 UINT8 modifiers;

555 UINT8 errorCode;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 451

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

556 UINT32 values[4];

557 } TPMI_ALG_KEYEDHASH_SCHEME_mst;

558 typedef const struct TPMS_SCHEME_XOR_mst

559 {

560 UINT8 marshalType;

561 UINT8 elements;

562 UINT16 values[6];

563 } TPMS_SCHEME_XOR_mst;

564 typedef struct TPMU_SCHEME_KEYEDHASH_mst

565 {

566 BYTE countOfselectors;

567 BYTE modifiers;

568 UINT16 offsetOfUnmarshalTypes;

569 UINT32 selectors[3];

570 UINT16 marshalingTypes[3];

571 } TPMU_SCHEME_KEYEDHASH_mst;

572 typedef const struct TPMT_KEYEDHASH_SCHEME_mst

573 {

574 UINT8 marshalType;

575 UINT8 elements;

576 UINT16 values[6];

577 } TPMT_KEYEDHASH_SCHEME_mst;

578 typedef struct TPMU_SIG_SCHEME_mst

579 {

580 BYTE countOfselectors;

581 BYTE modifiers;

582 UINT16 offsetOfUnmarshalTypes;

583 UINT32 selectors[8];

584 UINT16 marshalingTypes[8];

585 } TPMU_SIG_SCHEME_mst;

586 typedef const struct TPMT_SIG_SCHEME_mst

587 {

588 UINT8 marshalType;

589 UINT8 elements;

590 UINT16 values[6];

591 } TPMT_SIG_SCHEME_mst;

592 typedef struct TPMU_KDF_SCHEME_mst

593 {

594 BYTE countOfselectors;

595 BYTE modifiers;

596 UINT16 offsetOfUnmarshalTypes;

597 UINT32 selectors[5];

598 UINT16 marshalingTypes[5];

599 } TPMU_KDF_SCHEME_mst;

600 typedef const struct TPMT_KDF_SCHEME_mst

601 {

602 UINT8 marshalType;

603 UINT8 elements;

604 UINT16 values[6];

605 } TPMT_KDF_SCHEME_mst;

606 typedef const struct TPMI_ALG_ASYM_SCHEME_mst {

607 UINT8 marshalType;

608 UINT8 modifiers;

609 UINT8 errorCode;

610 UINT32 values[4];

611 } TPMI_ALG_ASYM_SCHEME_mst;

612 typedef struct TPMU_ASYM_SCHEME_mst

613 {

614 BYTE countOfselectors;

615 BYTE modifiers;

616 UINT16 offsetOfUnmarshalTypes;

617 UINT32 selectors[11];

618 UINT16 marshalingTypes[11];

619 } TPMU_ASYM_SCHEME_mst;

620 typedef const struct TPMT_ASYM_SCHEME_mst

621 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 452 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

622 UINT8 marshalType;

623 UINT8 elements;

624 UINT16 values[6];

625 } TPMT_ASYM_SCHEME_mst;

626 typedef const struct TPMI_ALG_RSA_SCHEME_mst {

627 UINT8 marshalType;

628 UINT8 modifiers;

629 UINT8 errorCode;

630 UINT32 values[4];

631 } TPMI_ALG_RSA_SCHEME_mst;

632 typedef const struct TPMT_RSA_SCHEME_mst

633 {

634 UINT8 marshalType;

635 UINT8 elements;

636 UINT16 values[6];

637 } TPMT_RSA_SCHEME_mst;

638 typedef const struct TPMI_ALG_RSA_DECRYPT_mst {

639 UINT8 marshalType;

640 UINT8 modifiers;

641 UINT8 errorCode;

642 UINT32 values[4];

643 } TPMI_ALG_RSA_DECRYPT_mst;

644 typedef const struct TPMT_RSA_DECRYPT_mst

645 {

646 UINT8 marshalType;

647 UINT8 elements;

648 UINT16 values[6];

649 } TPMT_RSA_DECRYPT_mst;

650 typedef const struct TPMI_RSA_KEY_BITS_mst {

651 UINT8 marshalType;

652 UINT8 modifiers;

653 UINT8 errorCode;

654 UINT8 entries;

655 UINT32 values[5];

656 } TPMI_RSA_KEY_BITS_mst;

657 typedef const struct TPMS_ECC_POINT_mst

658 {

659 UINT8 marshalType;

660 UINT8 elements;

661 UINT16 values[6];

662 } TPMS_ECC_POINT_mst;

663 typedef const struct TPMI_ALG_ECC_SCHEME_mst {

664 UINT8 marshalType;

665 UINT8 modifiers;

666 UINT8 errorCode;

667 UINT32 values[4];

668 } TPMI_ALG_ECC_SCHEME_mst;

669 typedef const struct TPMI_ECC_CURVE_mst {

670 UINT8 marshalType;

671 UINT8 modifiers;

672 UINT8 errorCode;

673 UINT32 values[3];

674 } TPMI_ECC_CURVE_mst;

675 typedef const struct TPMT_ECC_SCHEME_mst

676 {

677 UINT8 marshalType;

678 UINT8 elements;

679 UINT16 values[6];

680 } TPMT_ECC_SCHEME_mst;

681 typedef const struct TPMS_ALGORITHM_DETAIL_ECC_mst

682 {

683 UINT8 marshalType;

684 UINT8 elements;

685 UINT16 values[33];

686 } TPMS_ALGORITHM_DETAIL_ECC_mst;

687 typedef const struct TPMS_SIGNATURE_RSA_mst

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 453

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

688 {

689 UINT8 marshalType;

690 UINT8 elements;

691 UINT16 values[6];

692 } TPMS_SIGNATURE_RSA_mst;

693 typedef const struct TPMS_SIGNATURE_ECC_mst

694 {

695 UINT8 marshalType;

696 UINT8 elements;

697 UINT16 values[9];

698 } TPMS_SIGNATURE_ECC_mst;

699 typedef struct TPMU_SIGNATURE_mst

700 {

701 BYTE countOfselectors;

702 BYTE modifiers;

703 UINT16 offsetOfUnmarshalTypes;

704 UINT32 selectors[8];

705 UINT16 marshalingTypes[8];

706 } TPMU_SIGNATURE_mst;

707 typedef const struct TPMT_SIGNATURE_mst

708 {

709 UINT8 marshalType;

710 UINT8 elements;

711 UINT16 values[6];

712 } TPMT_SIGNATURE_mst;

713 typedef struct TPMU_ENCRYPTED_SECRET_mst

714 {

715 BYTE countOfselectors;

716 BYTE modifiers;

717 UINT16 offsetOfUnmarshalTypes;

718 UINT32 selectors[4];

719 UINT16 marshalingTypes[4];

720 } TPMU_ENCRYPTED_SECRET_mst;

721 typedef const struct TPMI_ALG_PUBLIC_mst {

722 UINT8 marshalType;

723 UINT8 modifiers;

724 UINT8 errorCode;

725 UINT32 values[4];

726 } TPMI_ALG_PUBLIC_mst;

727 typedef struct TPMU_PUBLIC_ID_mst

728 {

729 BYTE countOfselectors;

730 BYTE modifiers;

731 UINT16 offsetOfUnmarshalTypes;

732 UINT32 selectors[4];

733 UINT16 marshalingTypes[4];

734 } TPMU_PUBLIC_ID_mst;

735 typedef const struct TPMS_KEYEDHASH_PARMS_mst

736 {

737 UINT8 marshalType;

738 UINT8 elements;

739 UINT16 values[3];

740 } TPMS_KEYEDHASH_PARMS_mst;

741 typedef const struct TPMS_ASYM_PARMS_mst

742 {

743 UINT8 marshalType;

744 UINT8 elements;

745 UINT16 values[6];

746 } TPMS_ASYM_PARMS_mst;

747 typedef const struct TPMS_RSA_PARMS_mst

748 {

749 UINT8 marshalType;

750 UINT8 elements;

751 UINT16 values[12];

752 } TPMS_RSA_PARMS_mst;

753 typedef const struct TPMS_ECC_PARMS_mst

Trusted Platform Module Library Part 4: Supporting Routines

Page 454 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

754 {

755 UINT8 marshalType;

756 UINT8 elements;

757 UINT16 values[12];

758 } TPMS_ECC_PARMS_mst;

759 typedef struct TPMU_PUBLIC_PARMS_mst

760 {

761 BYTE countOfselectors;

762 BYTE modifiers;

763 UINT16 offsetOfUnmarshalTypes;

764 UINT32 selectors[4];

765 UINT16 marshalingTypes[4];

766 } TPMU_PUBLIC_PARMS_mst;

767 typedef const struct TPMT_PUBLIC_PARMS_mst

768 {

769 UINT8 marshalType;

770 UINT8 elements;

771 UINT16 values[6];

772 } TPMT_PUBLIC_PARMS_mst;

773 typedef const struct TPMT_PUBLIC_mst

774 {

775 UINT8 marshalType;

776 UINT8 elements;

777 UINT16 values[18];

778 } TPMT_PUBLIC_mst;

779 typedef struct TPMU_SENSITIVE_COMPOSITE_mst

780 {

781 BYTE countOfselectors;

782 BYTE modifiers;

783 UINT16 offsetOfUnmarshalTypes;

784 UINT32 selectors[4];

785 UINT16 marshalingTypes[4];

786 } TPMU_SENSITIVE_COMPOSITE_mst;

787 typedef const struct TPMT_SENSITIVE_mst

788 {

789 UINT8 marshalType;

790 UINT8 elements;

791 UINT16 values[12];

792 } TPMT_SENSITIVE_mst;

793 typedef const struct _PRIVATE_mst

794 {

795 UINT8 marshalType;

796 UINT8 elements;

797 UINT16 values[9];

798 } _PRIVATE_mst;

799 typedef const struct TPMS_ID_OBJECT_mst

800 {

801 UINT8 marshalType;

802 UINT8 elements;

803 UINT16 values[6];

804 } TPMS_ID_OBJECT_mst;

805 typedef const struct TPMS_NV_PIN_COUNTER_PARAMETERS_mst

806 {

807 UINT8 marshalType;

808 UINT8 elements;

809 UINT16 values[6];

810 } TPMS_NV_PIN_COUNTER_PARAMETERS_mst;

811 typedef const struct TPMS_NV_PUBLIC_mst

812 {

813 UINT8 marshalType;

814 UINT8 elements;

815 UINT16 values[15];

816 } TPMS_NV_PUBLIC_mst;

817 typedef const struct TPMS_CONTEXT_DATA_mst

818 {

819 UINT8 marshalType;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 455

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

820 UINT8 elements;

821 UINT16 values[6];

822 } TPMS_CONTEXT_DATA_mst;

823 typedef const struct TPMS_CONTEXT_mst

824 {

825 UINT8 marshalType;

826 UINT8 elements;

827 UINT16 values[12];

828 } TPMS_CONTEXT_mst;

829 typedef const struct TPMS_CREATION_DATA_mst

830 {

831 UINT8 marshalType;

832 UINT8 elements;

833 UINT16 values[21];

834 } TPMS_CREATION_DATA_mst;

835 typedef const struct TPM_AT_mst {

836 UINT8 marshalType;

837 UINT8 modifiers;

838 UINT8 errorCode;

839 UINT8 entries;

840 UINT32 values[4];

841 } TPM_AT_mst;

842 typedef const struct TPMS_AC_OUTPUT_mst

843 {

844 UINT8 marshalType;

845 UINT8 elements;

846 UINT16 values[6];

847 } TPMS_AC_OUTPUT_mst;

848 typedef const struct Type02_mst {

849 UINT8 marshalType;

850 UINT8 modifiers;

851 UINT8 errorCode;

852 UINT32 values[2];

853 } Type02_mst;

854 typedef const struct Type03_mst {

855 UINT8 marshalType;

856 UINT8 modifiers;

857 UINT8 errorCode;

858 UINT32 values[2];

859 } Type03_mst;

860 typedef const struct Type04_mst {

861 UINT8 marshalType;

862 UINT8 modifiers;

863 UINT8 errorCode;

864 UINT32 values[2];

865 } Type04_mst;

866 typedef const struct Type06_mst {

867 UINT8 marshalType;

868 UINT8 modifiers;

869 UINT8 errorCode;

870 UINT32 values[2];

871 } Type06_mst;

872 typedef const struct Type08_mst {

873 UINT8 marshalType;

874 UINT8 modifiers;

875 UINT8 errorCode;

876 UINT32 values[2];

877 } Type08_mst;

878 typedef const struct Type10_mst {

879 UINT8 marshalType;

880 UINT8 modifiers;

881 UINT8 errorCode;

882 UINT8 entries;

883 UINT32 values[1];

884 } Type10_mst;

885 typedef const struct Type11_mst {

Trusted Platform Module Library Part 4: Supporting Routines

Page 456 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

886 UINT8 marshalType;

887 UINT8 modifiers;

888 UINT8 errorCode;

889 UINT8 entries;

890 UINT32 values[1];

891 } Type11_mst;

892 typedef const struct Type12_mst {

893 UINT8 marshalType;

894 UINT8 modifiers;

895 UINT8 errorCode;

896 UINT8 entries;

897 UINT32 values[2];

898 } Type12_mst;

899 typedef const struct Type13_mst {

900 UINT8 marshalType;

901 UINT8 modifiers;

902 UINT8 errorCode;

903 UINT8 entries;

904 UINT32 values[1];

905 } Type13_mst;

906 typedef const struct Type15_mst {

907 UINT8 marshalType;

908 UINT8 modifiers;

909 UINT8 errorCode;

910 UINT32 values[2];

911 } Type15_mst;

912 typedef const struct Type17_mst {

913 UINT8 marshalType;

914 UINT8 modifiers;

915 UINT8 errorCode;

916 UINT32 values[2];

917 } Type17_mst;

918 typedef const struct Type18_mst {

919 UINT8 marshalType;

920 UINT8 modifiers;

921 UINT8 errorCode;

922 UINT32 values[2];

923 } Type18_mst;

924 typedef const struct Type19_mst {

925 UINT8 marshalType;

926 UINT8 modifiers;

927 UINT8 errorCode;

928 UINT32 values[2];

929 } Type19_mst;

930 typedef const struct Type20_mst {

931 UINT8 marshalType;

932 UINT8 modifiers;

933 UINT8 errorCode;

934 UINT32 values[2];

935 } Type20_mst;

936 typedef const struct Type22_mst {

937 UINT8 marshalType;

938 UINT8 modifiers;

939 UINT8 errorCode;

940 UINT32 values[2];

941 } Type22_mst;

942 typedef const struct Type23_mst {

943 UINT8 marshalType;

944 UINT8 modifiers;

945 UINT8 errorCode;

946 UINT32 values[2];

947 } Type23_mst;

948 typedef const struct Type24_mst {

949 UINT8 marshalType;

950 UINT8 modifiers;

951 UINT8 errorCode;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 457

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

952 UINT32 values[2];

953 } Type24_mst;

954 typedef const struct Type25_mst {

955 UINT8 marshalType;

956 UINT8 modifiers;

957 UINT8 errorCode;

958 UINT32 values[2];

959 } Type25_mst;

960 typedef const struct Type26_mst {

961 UINT8 marshalType;

962 UINT8 modifiers;

963 UINT8 errorCode;

964 UINT32 values[2];

965 } Type26_mst;

966 typedef const struct Type28_mst {

967 UINT8 marshalType;

968 UINT8 modifiers;

969 UINT8 errorCode;

970 UINT32 values[2];

971 } Type28_mst;

972 typedef const struct Type29_mst {

973 UINT8 marshalType;

974 UINT8 modifiers;

975 UINT8 errorCode;

976 UINT32 values[2];

977 } Type29_mst;

978 typedef const struct Type32_mst {

979 UINT8 marshalType;

980 UINT8 modifiers;

981 UINT8 errorCode;

982 UINT32 values[2];

983 } Type32_mst;

984 typedef const struct Type33_mst {

985 UINT8 marshalType;

986 UINT8 modifiers;

987 UINT8 errorCode;

988 UINT32 values[2];

989 } Type33_mst;

990 typedef const struct Type34_mst {

991 UINT8 marshalType;

992 UINT8 modifiers;

993 UINT8 errorCode;

994 UINT32 values[2];

995 } Type34_mst;

996 typedef const struct Type37_mst {

997 UINT8 marshalType;

998 UINT8 modifiers;

999 UINT8 errorCode;

1000 UINT32 values[2];

1001 } Type37_mst;

1002 typedef const struct Type40_mst {

1003 UINT8 marshalType;

1004 UINT8 modifiers;

1005 UINT8 errorCode;

1006 UINT32 values[2];

1007 } Type40_mst;

1008 typedef const struct Type41_mst {

1009 UINT8 marshalType;

1010 UINT8 modifiers;

1011 UINT8 errorCode;

1012 UINT32 values[2];

1013 } Type41_mst;

1014 typedef const struct Type43_mst {

1015 UINT8 marshalType;

1016 UINT8 modifiers;

1017 UINT8 errorCode;

Trusted Platform Module Library Part 4: Supporting Routines

Page 458 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1018 UINT32 values[2];

1019 } Type43_mst;

Defines for array lookup

1020 #define UINT8_ARRAY_MARSHAL_INDEX 0 // 0x00

1021 #define TPM_CC_ARRAY_MARSHAL_INDEX 1 // 0x01

1022 #define TPMA_CC_ARRAY_MARSHAL_INDEX 2 // 0x02

1023 #define TPM_ALG_ID_ARRAY_MARSHAL_INDEX 3 // 0x03

1024 #define TPM_HANDLE_ARRAY_MARSHAL_INDEX 4 // 0x04

1025 #define TPM2B_DIGEST_ARRAY_MARSHAL_INDEX 5 // 0x05

1026 #define TPMT_HA_ARRAY_MARSHAL_INDEX 6 // 0x06

1027 #define TPMS_PCR_SELECTION_ARRAY_MARSHAL_INDEX 7 // 0x07

1028 #define TPMS_ALG_PROPERTY_ARRAY_MARSHAL_INDEX 8 // 0x08

1029 #define TPMS_TAGGED_PROPERTY_ARRAY_MARSHAL_INDEX 9 // 0x09

1030 #define TPMS_TAGGED_PCR_SELECT_ARRAY_MARSHAL_INDEX 10 // 0x0A

1031 #define TPM_ECC_CURVE_ARRAY_MARSHAL_INDEX 11 // 0x0B

1032 #define TPMS_TAGGED_POLICY_ARRAY_MARSHAL_INDEX 12 // 0x0C

1033 #define TPMS_AC_OUTPUT_ARRAY_MARSHAL_INDEX 13 // 0x0D

The defines to connect a typename to an index in the MarshalLookupTable()

1034 #define UINT8_MARSHAL_INDEX 0 // 0x00

1035 #define BYTE_MARSHAL_INDEX UINT8_MARSHAL_INDEX

1036 #define TPM_HT_MARSHAL_INDEX UINT8_MARSHAL_INDEX

1037 #define TPMA_LOCALITY_MARSHAL_INDEX UINT8_MARSHAL_INDEX

1038 #define UINT16_MARSHAL_INDEX 1 // 0x01

1039 #define TPM_KEY_SIZE_MARSHAL_INDEX UINT16_MARSHAL_INDEX

1040 #define TPM_KEY_BITS_MARSHAL_INDEX UINT16_MARSHAL_INDEX

1041 #define TPM_ALG_ID_MARSHAL_INDEX UINT16_MARSHAL_INDEX

1042 #define TPM_ST_MARSHAL_INDEX UINT16_MARSHAL_INDEX

1043 #define UINT32_MARSHAL_INDEX 2 // 0x02

1044 #define TPM_ALGORITHM_ID_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1045 #define TPM_MODIFIER_INDICATOR_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1046 #define TPM_AUTHORIZATION_SIZE_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1047 #define TPM_PARAMETER_SIZE_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1048 #define TPM_SPEC_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1049 #define TPM_GENERATED_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1050 #define TPM_CC_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1051 #define TPM_RC_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1052 #define TPM_PT_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1053 #define TPM_PT_PCR_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1054 #define TPM_PS_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1055 #define TPM_HANDLE_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1056 #define TPM_RH_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1057 #define TPM_HC_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1058 #define TPMA_PERMANENT_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1059 #define TPMA_STARTUP_CLEAR_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1060 #define TPMA_MEMORY_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1061 #define TPMA_CC_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1062 #define TPMA_MODES_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1063 #define TPMA_X509_KEY_USAGE_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1064 #define TPM_NV_INDEX_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1065 #define TPM_AE_MARSHAL_INDEX UINT32_MARSHAL_INDEX

1066 #define UINT64_MARSHAL_INDEX 3 // 0x03

1067 #define INT8_MARSHAL_INDEX 4 // 0x04

1068 #define INT16_MARSHAL_INDEX 5 // 0x05

1069 #define INT32_MARSHAL_INDEX 6 // 0x06

1070 #define INT64_MARSHAL_INDEX 7 // 0x07

1071 #define UINT0_MARSHAL_INDEX 8 // 0x08

1072 #define TPM_ECC_CURVE_MARSHAL_INDEX 9 // 0x09

1073 #define TPM_CLOCK_ADJUST_MARSHAL_INDEX 10 // 0x0A

1074 #define TPM_EO_MARSHAL_INDEX 11 // 0x0B

1075 #define TPM_SU_MARSHAL_INDEX 12 // 0x0C

1076 #define TPM_SE_MARSHAL_INDEX 13 // 0x0D

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 459

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1077 #define TPM_CAP_MARSHAL_INDEX 14 // 0x0E

1078 #define TPMA_ALGORITHM_MARSHAL_INDEX 15 // 0x0F

1079 #define TPMA_OBJECT_MARSHAL_INDEX 16 // 0x10

1080 #define TPMA_SESSION_MARSHAL_INDEX 17 // 0x11

1081 #define TPMI_YES_NO_MARSHAL_INDEX 18 // 0x12

1082 #define TPMI_DH_OBJECT_MARSHAL_INDEX 19 // 0x13

1083 #define TPMI_DH_PARENT_MARSHAL_INDEX 20 // 0x14

1084 #define TPMI_DH_PERSISTENT_MARSHAL_INDEX 21 // 0x15

1085 #define TPMI_DH_ENTITY_MARSHAL_INDEX 22 // 0x16

1086 #define TPMI_DH_PCR_MARSHAL_INDEX 23 // 0x17

1087 #define TPMI_SH_AUTH_SESSION_MARSHAL_INDEX 24 // 0x18

1088 #define TPMI_SH_HMAC_MARSHAL_INDEX 25 // 0x19

1089 #define TPMI_SH_POLICY_MARSHAL_INDEX 26 // 0x1A

1090 #define TPMI_DH_CONTEXT_MARSHAL_INDEX 27 // 0x1B

1091 #define TPMI_DH_SAVED_MARSHAL_INDEX 28 // 0x1C

1092 #define TPMI_RH_HIERARCHY_MARSHAL_INDEX 29 // 0x1D

1093 #define TPMI_RH_ENABLES_MARSHAL_INDEX 30 // 0x1E

1094 #define TPMI_RH_HIERARCHY_AUTH_MARSHAL_INDEX 31 // 0x1F

1095 #define TPMI_RH_PLATFORM_MARSHAL_INDEX 32 // 0x20

1096 #define TPMI_RH_OWNER_MARSHAL_INDEX 33 // 0x21

1097 #define TPMI_RH_ENDORSEMENT_MARSHAL_INDEX 34 // 0x22

1098 #define TPMI_RH_PROVISION_MARSHAL_INDEX 35 // 0x23

1099 #define TPMI_RH_CLEAR_MARSHAL_INDEX 36 // 0x24

1100 #define TPMI_RH_NV_AUTH_MARSHAL_INDEX 37 // 0x25

1101 #define TPMI_RH_LOCKOUT_MARSHAL_INDEX 38 // 0x26

1102 #define TPMI_RH_NV_INDEX_MARSHAL_INDEX 39 // 0x27

1103 #define TPMI_RH_AC_MARSHAL_INDEX 40 // 0x28

1104 #define TPMI_ALG_HASH_MARSHAL_INDEX 41 // 0x29

1105 #define TPMI_ALG_ASYM_MARSHAL_INDEX 42 // 0x2A

1106 #define TPMI_ALG_SYM_MARSHAL_INDEX 43 // 0x2B

1107 #define TPMI_ALG_SYM_OBJECT_MARSHAL_INDEX 44 // 0x2C

1108 #define TPMI_ALG_SYM_MODE_MARSHAL_INDEX 45 // 0x2D

1109 #define TPMI_ALG_KDF_MARSHAL_INDEX 46 // 0x2E

1110 #define TPMI_ALG_SIG_SCHEME_MARSHAL_INDEX 47 // 0x2F

1111 #define TPMI_ECC_KEY_EXCHANGE_MARSHAL_INDEX 48 // 0x30

1112 #define TPMI_ST_COMMAND_TAG_MARSHAL_INDEX 49 // 0x31

1113 #define TPMI_ALG_MAC_SCHEME_MARSHAL_INDEX 50 // 0x32

1114 #define TPMI_ALG_CIPHER_MODE_MARSHAL_INDEX 51 // 0x33

1115 #define TPMS_EMPTY_MARSHAL_INDEX 52 // 0x34

1116 #define TPMS_ENC_SCHEME_RSAES_MARSHAL_INDEX TPMS_EMPTY_MARSHAL_INDEX

1117 #define TPMS_ALGORITHM_DESCRIPTION_MARSHAL_INDEX 53 // 0x35

1118 #define TPMU_HA_MARSHAL_INDEX 54 // 0x36

1119 #define TPMT_HA_MARSHAL_INDEX 55 // 0x37

1120 #define TPM2B_DIGEST_MARSHAL_INDEX 56 // 0x38

1121 #define TPM2B_NONCE_MARSHAL_INDEX TPM2B_DIGEST_MARSHAL_INDEX

1122 #define TPM2B_AUTH_MARSHAL_INDEX TPM2B_DIGEST_MARSHAL_INDEX

1123 #define TPM2B_OPERAND_MARSHAL_INDEX TPM2B_DIGEST_MARSHAL_INDEX

1124 #define TPM2B_DATA_MARSHAL_INDEX 57 // 0x39

1125 #define TPM2B_EVENT_MARSHAL_INDEX 58 // 0x3A

1126 #define TPM2B_MAX_BUFFER_MARSHAL_INDEX 59 // 0x3B

1127 #define TPM2B_MAX_NV_BUFFER_MARSHAL_INDEX 60 // 0x3C

1128 #define TPM2B_TIMEOUT_MARSHAL_INDEX 61 // 0x3D

1129 #define TPM2B_IV_MARSHAL_INDEX 62 // 0x3E

1130 #define NULL_UNION_MARSHAL_INDEX 63 // 0x3F

1131 #define TPMU_NAME_MARSHAL_INDEX NULL_UNION_MARSHAL_INDEX

1132 #define TPMU_SENSITIVE_CREATE_MARSHAL_INDEX NULL_UNION_MARSHAL_INDEX

1133 #define TPM2B_NAME_MARSHAL_INDEX 64 // 0x40

1134 #define TPMS_PCR_SELECT_MARSHAL_INDEX 65 // 0x41

1135 #define TPMS_PCR_SELECTION_MARSHAL_INDEX 66 // 0x42

1136 #define TPMT_TK_CREATION_MARSHAL_INDEX 67 // 0x43

1137 #define TPMT_TK_VERIFIED_MARSHAL_INDEX 68 // 0x44

1138 #define TPMT_TK_AUTH_MARSHAL_INDEX 69 // 0x45

1139 #define TPMT_TK_HASHCHECK_MARSHAL_INDEX 70 // 0x46

1140 #define TPMS_ALG_PROPERTY_MARSHAL_INDEX 71 // 0x47

1141 #define TPMS_TAGGED_PROPERTY_MARSHAL_INDEX 72 // 0x48

1142 #define TPMS_TAGGED_PCR_SELECT_MARSHAL_INDEX 73 // 0x49

Trusted Platform Module Library Part 4: Supporting Routines

Page 460 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1143 #define TPMS_TAGGED_POLICY_MARSHAL_INDEX 74 // 0x4A

1144 #define TPML_CC_MARSHAL_INDEX 75 // 0x4B

1145 #define TPML_CCA_MARSHAL_INDEX 76 // 0x4C

1146 #define TPML_ALG_MARSHAL_INDEX 77 // 0x4D

1147 #define TPML_HANDLE_MARSHAL_INDEX 78 // 0x4E

1148 #define TPML_DIGEST_MARSHAL_INDEX 79 // 0x4F

1149 #define TPML_DIGEST_VALUES_MARSHAL_INDEX 80 // 0x50

1150 #define TPML_PCR_SELECTION_MARSHAL_INDEX 81 // 0x51

1151 #define TPML_ALG_PROPERTY_MARSHAL_INDEX 82 // 0x52

1152 #define TPML_TAGGED_TPM_PROPERTY_MARSHAL_INDEX 83 // 0x53

1153 #define TPML_TAGGED_PCR_PROPERTY_MARSHAL_INDEX 84 // 0x54

1154 #define TPML_ECC_CURVE_MARSHAL_INDEX 85 // 0x55

1155 #define TPML_TAGGED_POLICY_MARSHAL_INDEX 86 // 0x56

1156 #define TPMU_CAPABILITIES_MARSHAL_INDEX 87 // 0x57

1157 #define TPMS_CAPABILITY_DATA_MARSHAL_INDEX 88 // 0x58

1158 #define TPMS_CLOCK_INFO_MARSHAL_INDEX 89 // 0x59

1159 #define TPMS_TIME_INFO_MARSHAL_INDEX 90 // 0x5A

1160 #define TPMS_TIME_ATTEST_INFO_MARSHAL_INDEX 91 // 0x5B

1161 #define TPMS_CERTIFY_INFO_MARSHAL_INDEX 92 // 0x5C

1162 #define TPMS_QUOTE_INFO_MARSHAL_INDEX 93 // 0x5D

1163 #define TPMS_COMMAND_AUDIT_INFO_MARSHAL_INDEX 94 // 0x5E

1164 #define TPMS_SESSION_AUDIT_INFO_MARSHAL_INDEX 95 // 0x5F

1165 #define TPMS_CREATION_INFO_MARSHAL_INDEX 96 // 0x60

1166 #define TPMS_NV_CERTIFY_INFO_MARSHAL_INDEX 97 // 0x61

1167 #define TPMS_NV_DIGEST_CERTIFY_INFO_MARSHAL_INDEX 98 // 0x62

1168 #define TPMI_ST_ATTEST_MARSHAL_INDEX 99 // 0x63

1169 #define TPMU_ATTEST_MARSHAL_INDEX 100 // 0x64

1170 #define TPMS_ATTEST_MARSHAL_INDEX 101 // 0x65

1171 #define TPM2B_ATTEST_MARSHAL_INDEX 102 // 0x66

1172 #define TPMS_AUTH_COMMAND_MARSHAL_INDEX 103 // 0x67

1173 #define TPMS_AUTH_RESPONSE_MARSHAL_INDEX 104 // 0x68

1174 #define TPMI_TDES_KEY_BITS_MARSHAL_INDEX 105 // 0x69

1175 #define TPMI_AES_KEY_BITS_MARSHAL_INDEX 106 // 0x6A

1176 #define TPMI_SM4_KEY_BITS_MARSHAL_INDEX 107 // 0x6B

1177 #define TPMI_CAMELLIA_KEY_BITS_MARSHAL_INDEX 108 // 0x6C

1178 #define TPMU_SYM_KEY_BITS_MARSHAL_INDEX 109 // 0x6D

1179 #define TPMU_SYM_MODE_MARSHAL_INDEX 110 // 0x6E

1180 #define TPMT_SYM_DEF_MARSHAL_INDEX 111 // 0x6F

1181 #define TPMT_SYM_DEF_OBJECT_MARSHAL_INDEX 112 // 0x70

1182 #define TPM2B_SYM_KEY_MARSHAL_INDEX 113 // 0x71

1183 #define TPMS_SYMCIPHER_PARMS_MARSHAL_INDEX 114 // 0x72

1184 #define TPM2B_LABEL_MARSHAL_INDEX 115 // 0x73

1185 #define TPMS_DERIVE_MARSHAL_INDEX 116 // 0x74

1186 #define TPM2B_DERIVE_MARSHAL_INDEX 117 // 0x75

1187 #define TPM2B_SENSITIVE_DATA_MARSHAL_INDEX 118 // 0x76

1188 #define TPMS_SENSITIVE_CREATE_MARSHAL_INDEX 119 // 0x77

1189 #define TPM2B_SENSITIVE_CREATE_MARSHAL_INDEX 120 // 0x78

1190 #define TPMS_SCHEME_HASH_MARSHAL_INDEX 121 // 0x79

1191 #define TPMS_SCHEME_HMAC_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1192 #define TPMS_SIG_SCHEME_RSASSA_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1193 #define TPMS_SIG_SCHEME_RSAPSS_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1194 #define TPMS_SIG_SCHEME_ECDSA_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1195 #define TPMS_SIG_SCHEME_SM2_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1196 #define TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1197 #define TPMS_ENC_SCHEME_OAEP_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1198 #define TPMS_KEY_SCHEME_ECDH_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1199 #define TPMS_KEY_SCHEME_ECMQV_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1200 #define TPMS_SCHEME_MGF1_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1201 #define TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1202 #define TPMS_SCHEME_KDF2_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1203 #define TPMS_SCHEME_KDF1_SP800_108_MARSHAL_INDEX TPMS_SCHEME_HASH_MARSHAL_INDEX

1204 #define TPMS_SCHEME_ECDAA_MARSHAL_INDEX 122 // 0x7A

1205 #define TPMS_SIG_SCHEME_ECDAA_MARSHAL_INDEX TPMS_SCHEME_ECDAA_MARSHAL_INDEX

1206 #define TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_INDEX 123 // 0x7B

1207 #define TPMS_SCHEME_XOR_MARSHAL_INDEX 124 // 0x7C

1208 #define TPMU_SCHEME_KEYEDHASH_MARSHAL_INDEX 125 // 0x7D

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 461

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1209 #define TPMT_KEYEDHASH_SCHEME_MARSHAL_INDEX 126 // 0x7E

1210 #define TPMU_SIG_SCHEME_MARSHAL_INDEX 127 // 0x7F

1211 #define TPMT_SIG_SCHEME_MARSHAL_INDEX 128 // 0x80

1212 #define TPMU_KDF_SCHEME_MARSHAL_INDEX 129 // 0x81

1213 #define TPMT_KDF_SCHEME_MARSHAL_INDEX 130 // 0x82

1214 #define TPMI_ALG_ASYM_SCHEME_MARSHAL_INDEX 131 // 0x83

1215 #define TPMU_ASYM_SCHEME_MARSHAL_INDEX 132 // 0x84

1216 #define TPMT_ASYM_SCHEME_MARSHAL_INDEX 133 // 0x85

1217 #define TPMI_ALG_RSA_SCHEME_MARSHAL_INDEX 134 // 0x86

1218 #define TPMT_RSA_SCHEME_MARSHAL_INDEX 135 // 0x87

1219 #define TPMI_ALG_RSA_DECRYPT_MARSHAL_INDEX 136 // 0x88

1220 #define TPMT_RSA_DECRYPT_MARSHAL_INDEX 137 // 0x89

1221 #define TPM2B_PUBLIC_KEY_RSA_MARSHAL_INDEX 138 // 0x8A

1222 #define TPMI_RSA_KEY_BITS_MARSHAL_INDEX 139 // 0x8B

1223 #define TPM2B_PRIVATE_KEY_RSA_MARSHAL_INDEX 140 // 0x8C

1224 #define TPM2B_ECC_PARAMETER_MARSHAL_INDEX 141 // 0x8D

1225 #define TPMS_ECC_POINT_MARSHAL_INDEX 142 // 0x8E

1226 #define TPM2B_ECC_POINT_MARSHAL_INDEX 143 // 0x8F

1227 #define TPMI_ALG_ECC_SCHEME_MARSHAL_INDEX 144 // 0x90

1228 #define TPMI_ECC_CURVE_MARSHAL_INDEX 145 // 0x91

1229 #define TPMT_ECC_SCHEME_MARSHAL_INDEX 146 // 0x92

1230 #define TPMS_ALGORITHM_DETAIL_ECC_MARSHAL_INDEX 147 // 0x93

1231 #define TPMS_SIGNATURE_RSA_MARSHAL_INDEX 148 // 0x94

1232 #define TPMS_SIGNATURE_RSASSA_MARSHAL_INDEX TPMS_SIGNATURE_RSA_MARSHAL_INDEX

1233 #define TPMS_SIGNATURE_RSAPSS_MARSHAL_INDEX TPMS_SIGNATURE_RSA_MARSHAL_INDEX

1234 #define TPMS_SIGNATURE_ECC_MARSHAL_INDEX 149 // 0x95

1235 #define TPMS_SIGNATURE_ECDAA_MARSHAL_INDEX TPMS_SIGNATURE_ECC_MARSHAL_INDEX

1236 #define TPMS_SIGNATURE_ECDSA_MARSHAL_INDEX TPMS_SIGNATURE_ECC_MARSHAL_INDEX

1237 #define TPMS_SIGNATURE_SM2_MARSHAL_INDEX TPMS_SIGNATURE_ECC_MARSHAL_INDEX

1238 #define TPMS_SIGNATURE_ECSCHNORR_MARSHAL_INDEX TPMS_SIGNATURE_ECC_MARSHAL_INDEX

1239 #define TPMU_SIGNATURE_MARSHAL_INDEX 150 // 0x96

1240 #define TPMT_SIGNATURE_MARSHAL_INDEX 151 // 0x97

1241 #define TPMU_ENCRYPTED_SECRET_MARSHAL_INDEX 152 // 0x98

1242 #define TPM2B_ENCRYPTED_SECRET_MARSHAL_INDEX 153 // 0x99

1243 #define TPMI_ALG_PUBLIC_MARSHAL_INDEX 154 // 0x9A

1244 #define TPMU_PUBLIC_ID_MARSHAL_INDEX 155 // 0x9B

1245 #define TPMS_KEYEDHASH_PARMS_MARSHAL_INDEX 156 // 0x9C

1246 #define TPMS_ASYM_PARMS_MARSHAL_INDEX 157 // 0x9D

1247 #define TPMS_RSA_PARMS_MARSHAL_INDEX 158 // 0x9E

1248 #define TPMS_ECC_PARMS_MARSHAL_INDEX 159 // 0x9F

1249 #define TPMU_PUBLIC_PARMS_MARSHAL_INDEX 160 // 0xA0

1250 #define TPMT_PUBLIC_PARMS_MARSHAL_INDEX 161 // 0xA1

1251 #define TPMT_PUBLIC_MARSHAL_INDEX 162 // 0xA2

1252 #define TPM2B_PUBLIC_MARSHAL_INDEX 163 // 0xA3

1253 #define TPM2B_TEMPLATE_MARSHAL_INDEX 164 // 0xA4

1254 #define TPM2B_PRIVATE_VENDOR_SPECIFIC_MARSHAL_INDEX 165 // 0xA5

1255 #define TPMU_SENSITIVE_COMPOSITE_MARSHAL_INDEX 166 // 0xA6

1256 #define TPMT_SENSITIVE_MARSHAL_INDEX 167 // 0xA7

1257 #define TPM2B_SENSITIVE_MARSHAL_INDEX 168 // 0xA8

1258 #define _PRIVATE_MARSHAL_INDEX 169 // 0xA9

1259 #define TPM2B_PRIVATE_MARSHAL_INDEX 170 // 0xAA

1260 #define TPMS_ID_OBJECT_MARSHAL_INDEX 171 // 0xAB

1261 #define TPM2B_ID_OBJECT_MARSHAL_INDEX 172 // 0xAC

1262 #define TPMS_NV_PIN_COUNTER_PARAMETERS_MARSHAL_INDEX 173 // 0xAD

1263 #define TPMA_NV_MARSHAL_INDEX 174 // 0xAE

1264 #define TPMS_NV_PUBLIC_MARSHAL_INDEX 175 // 0xAF

1265 #define TPM2B_NV_PUBLIC_MARSHAL_INDEX 176 // 0xB0

1266 #define TPM2B_CONTEXT_SENSITIVE_MARSHAL_INDEX 177 // 0xB1

1267 #define TPMS_CONTEXT_DATA_MARSHAL_INDEX 178 // 0xB2

1268 #define TPM2B_CONTEXT_DATA_MARSHAL_INDEX 179 // 0xB3

1269 #define TPMS_CONTEXT_MARSHAL_INDEX 180 // 0xB4

1270 #define TPMS_CREATION_DATA_MARSHAL_INDEX 181 // 0xB5

1271 #define TPM2B_CREATION_DATA_MARSHAL_INDEX 182 // 0xB6

1272 #define TPM_AT_MARSHAL_INDEX 183 // 0xB7

1273 #define TPMS_AC_OUTPUT_MARSHAL_INDEX 184 // 0xB8

1274 #define TPML_AC_CAPABILITIES_MARSHAL_INDEX 185 // 0xB9

Trusted Platform Module Library Part 4: Supporting Routines

Page 462 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1275 #define Type00_MARSHAL_INDEX 186 // 0xBA

1276 #define Type01_MARSHAL_INDEX 187 // 0xBB

1277 #define Type02_MARSHAL_INDEX 188 // 0xBC

1278 #define Type03_MARSHAL_INDEX 189 // 0xBD

1279 #define Type04_MARSHAL_INDEX 190 // 0xBE

1280 #define Type05_MARSHAL_INDEX 191 // 0xBF

1281 #define Type06_MARSHAL_INDEX 192 // 0xC0

1282 #define Type07_MARSHAL_INDEX 193 // 0xC1

1283 #define Type08_MARSHAL_INDEX 194 // 0xC2

1284 #define Type09_MARSHAL_INDEX Type08_MARSHAL_INDEX

1285 #define Type14_MARSHAL_INDEX Type08_MARSHAL_INDEX

1286 #define Type10_MARSHAL_INDEX 195 // 0xC3

1287 #define Type11_MARSHAL_INDEX 196 // 0xC4

1288 #define Type12_MARSHAL_INDEX 197 // 0xC5

1289 #define Type13_MARSHAL_INDEX 198 // 0xC6

1290 #define Type15_MARSHAL_INDEX 199 // 0xC7

1291 #define Type16_MARSHAL_INDEX Type15_MARSHAL_INDEX

1292 #define Type17_MARSHAL_INDEX 200 // 0xC8

1293 #define Type18_MARSHAL_INDEX 201 // 0xC9

1294 #define Type19_MARSHAL_INDEX 202 // 0xCA

1295 #define Type20_MARSHAL_INDEX 203 // 0xCB

1296 #define Type21_MARSHAL_INDEX Type20_MARSHAL_INDEX

1297 #define Type22_MARSHAL_INDEX 204 // 0xCC

1298 #define Type23_MARSHAL_INDEX 205 // 0xCD

1299 #define Type24_MARSHAL_INDEX 206 // 0xCE

1300 #define Type25_MARSHAL_INDEX 207 // 0xCF

1301 #define Type26_MARSHAL_INDEX 208 // 0xD0

1302 #define Type27_MARSHAL_INDEX 209 // 0xD1

1303 #define Type28_MARSHAL_INDEX 210 // 0xD2

1304 #define Type29_MARSHAL_INDEX 211 // 0xD3

1305 #define Type30_MARSHAL_INDEX 212 // 0xD4

1306 #define Type31_MARSHAL_INDEX 213 // 0xD5

1307 #define Type32_MARSHAL_INDEX 214 // 0xD6

1308 #define Type33_MARSHAL_INDEX 215 // 0xD7

1309 #define Type34_MARSHAL_INDEX 216 // 0xD8

1310 #define Type35_MARSHAL_INDEX 217 // 0xD9

1311 #define Type36_MARSHAL_INDEX 218 // 0xDA

1312 #define Type37_MARSHAL_INDEX 219 // 0xDB

1313 #define Type38_MARSHAL_INDEX 220 // 0xDC

1314 #define Type39_MARSHAL_INDEX 221 // 0xDD

1315 #define Type40_MARSHAL_INDEX 222 // 0xDE

1316 #define Type41_MARSHAL_INDEX 223 // 0xDF

1317 #define Type42_MARSHAL_INDEX 224 // 0xE0

1318 #define Type43_MARSHAL_INDEX 225 // 0xE1

1319 //#defines to change calling sequence for code using marshaling

1320 #define UINT8_Unmarshal(target, buffer, size) \

1321 Unmarshal(UINT8_MARSHAL_INDEX, (target), (buffer), (size))

1322 #define UINT8_Marshal(source, buffer, size) \

1323 Marshal(UINT8_MARSHAL_INDEX, (source), (buffer), (size))

1324 #define BYTE_Unmarshal(target, buffer, size) \

1325 Unmarshal(UINT8_MARSHAL_INDEX, (target), (buffer), (size))

1326 #define BYTE_Marshal(source, buffer, size) \

1327 Marshal(UINT8_MARSHAL_INDEX, (source), (buffer), (size))

1328 #define INT8_Unmarshal(target, buffer, size) \

1329 Unmarshal(INT8_MARSHAL_INDEX, (target), (buffer), (size))

1330 #define INT8_Marshal(source, buffer, size) \

1331 Marshal(INT8_MARSHAL_INDEX, (source), (buffer), (size))

1332 #define UINT16_Unmarshal(target, buffer, size) \

1333 Unmarshal(UINT16_MARSHAL_INDEX, (target), (buffer), (size))

1334 #define UINT16_Marshal(source, buffer, size) \

1335 Marshal(UINT16_MARSHAL_INDEX, (source), (buffer), (size))

1336 #define INT16_Unmarshal(target, buffer, size) \

1337 Unmarshal(INT16_MARSHAL_INDEX, (target), (buffer), (size))

1338 #define INT16_Marshal(source, buffer, size) \

1339 Marshal(INT16_MARSHAL_INDEX, (source), (buffer), (size))

1340 #define UINT32_Unmarshal(target, buffer, size) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 463

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1341 Unmarshal(UINT32_MARSHAL_INDEX, (target), (buffer), (size))

1342 #define UINT32_Marshal(source, buffer, size) \

1343 Marshal(UINT32_MARSHAL_INDEX, (source), (buffer), (size))

1344 #define INT32_Unmarshal(target, buffer, size) \

1345 Unmarshal(INT32_MARSHAL_INDEX, (target), (buffer), (size))

1346 #define INT32_Marshal(source, buffer, size) \

1347 Marshal(INT32_MARSHAL_INDEX, (source), (buffer), (size))

1348 #define UINT64_Unmarshal(target, buffer, size) \

1349 Unmarshal(UINT64_MARSHAL_INDEX, (target), (buffer), (size))

1350 #define UINT64_Marshal(source, buffer, size) \

1351 Marshal(UINT64_MARSHAL_INDEX, (source), (buffer), (size))

1352 #define INT64_Unmarshal(target, buffer, size) \

1353 Unmarshal(INT64_MARSHAL_INDEX, (target), (buffer), (size))

1354 #define INT64_Marshal(source, buffer, size) \

1355 Marshal(INT64_MARSHAL_INDEX, (source), (buffer), (size))

1356 #define TPM_ALGORITHM_ID_Unmarshal(target, buffer, size) \

1357 Unmarshal(TPM_ALGORITHM_ID_MARSHAL_INDEX, (target), (buffer), (size))

1358 #define TPM_ALGORITHM_ID_Marshal(source, buffer, size) \

1359 Marshal(TPM_ALGORITHM_ID_MARSHAL_INDEX, (source), (buffer), (size))

1360 #define TPM_MODIFIER_INDICATOR_Unmarshal(target, buffer, size) \

1361 Unmarshal(TPM_MODIFIER_INDICATOR_MARSHAL_INDEX, (target), (buffer), (size))

1362 #define TPM_MODIFIER_INDICATOR_Marshal(source, buffer, size) \

1363 Marshal(TPM_MODIFIER_INDICATOR_MARSHAL_INDEX, (source), (buffer), (size))

1364 #define TPM_AUTHORIZATION_SIZE_Unmarshal(target, buffer, size) \

1365 Unmarshal(TPM_AUTHORIZATION_SIZE_MARSHAL_INDEX, (target), (buffer), (size))

1366 #define TPM_AUTHORIZATION_SIZE_Marshal(source, buffer, size) \

1367 Marshal(TPM_AUTHORIZATION_SIZE_MARSHAL_INDEX, (source), (buffer), (size))

1368 #define TPM_PARAMETER_SIZE_Unmarshal(target, buffer, size) \

1369 Unmarshal(TPM_PARAMETER_SIZE_MARSHAL_INDEX, (target), (buffer), (size))

1370 #define TPM_PARAMETER_SIZE_Marshal(source, buffer, size) \

1371 Marshal(TPM_PARAMETER_SIZE_MARSHAL_INDEX, (source), (buffer), (size))

1372 #define TPM_KEY_SIZE_Unmarshal(target, buffer, size) \

1373 Unmarshal(TPM_KEY_SIZE_MARSHAL_INDEX, (target), (buffer), (size))

1374 #define TPM_KEY_SIZE_Marshal(source, buffer, size) \

1375 Marshal(TPM_KEY_SIZE_MARSHAL_INDEX, (source), (buffer), (size))

1376 #define TPM_KEY_BITS_Unmarshal(target, buffer, size) \

1377 Unmarshal(TPM_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size))

1378 #define TPM_KEY_BITS_Marshal(source, buffer, size) \

1379 Marshal(TPM_KEY_BITS_MARSHAL_INDEX, (source), (buffer), (size))

1380 #define TPM_GENERATED_Marshal(source, buffer, size) \

1381 Marshal(TPM_GENERATED_MARSHAL_INDEX, (source), (buffer), (size))

1382 #define TPM_ALG_ID_Unmarshal(target, buffer, size) \

1383 Unmarshal(TPM_ALG_ID_MARSHAL_INDEX, (target), (buffer), (size))

1384 #define TPM_ALG_ID_Marshal(source, buffer, size) \

1385 Marshal(TPM_ALG_ID_MARSHAL_INDEX, (source), (buffer), (size))

1386 #define TPM_ECC_CURVE_Unmarshal(target, buffer, size) \

1387 Unmarshal(TPM_ECC_CURVE_MARSHAL_INDEX, (target), (buffer), (size))

1388 #define TPM_ECC_CURVE_Marshal(source, buffer, size) \

1389 Marshal(TPM_ECC_CURVE_MARSHAL_INDEX, (source), (buffer), (size))

1390 #define TPM_CC_Unmarshal(target, buffer, size) \

1391 Unmarshal(TPM_CC_MARSHAL_INDEX, (target), (buffer), (size))

1392 #define TPM_CC_Marshal(source, buffer, size) \

1393 Marshal(TPM_CC_MARSHAL_INDEX, (source), (buffer), (size))

1394 #define TPM_RC_Marshal(source, buffer, size) \

1395 Marshal(TPM_RC_MARSHAL_INDEX, (source), (buffer), (size))

1396 #define TPM_CLOCK_ADJUST_Unmarshal(target, buffer, size) \

1397 Unmarshal(TPM_CLOCK_ADJUST_MARSHAL_INDEX, (target), (buffer), (size))

1398 #define TPM_EO_Unmarshal(target, buffer, size) \

1399 Unmarshal(TPM_EO_MARSHAL_INDEX, (target), (buffer), (size))

1400 #define TPM_EO_Marshal(source, buffer, size) \

1401 Marshal(TPM_EO_MARSHAL_INDEX, (source), (buffer), (size))

1402 #define TPM_ST_Unmarshal(target, buffer, size) \

1403 Unmarshal(TPM_ST_MARSHAL_INDEX, (target), (buffer), (size))

1404 #define TPM_ST_Marshal(source, buffer, size) \

1405 Marshal(TPM_ST_MARSHAL_INDEX, (source), (buffer), (size))

1406 #define TPM_SU_Unmarshal(target, buffer, size) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 464 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1407 Unmarshal(TPM_SU_MARSHAL_INDEX, (target), (buffer), (size))

1408 #define TPM_SE_Unmarshal(target, buffer, size) \

1409 Unmarshal(TPM_SE_MARSHAL_INDEX, (target), (buffer), (size))

1410 #define TPM_CAP_Unmarshal(target, buffer, size) \

1411 Unmarshal(TPM_CAP_MARSHAL_INDEX, (target), (buffer), (size))

1412 #define TPM_CAP_Marshal(source, buffer, size) \

1413 Marshal(TPM_CAP_MARSHAL_INDEX, (source), (buffer), (size))

1414 #define TPM_PT_Unmarshal(target, buffer, size) \

1415 Unmarshal(TPM_PT_MARSHAL_INDEX, (target), (buffer), (size))

1416 #define TPM_PT_Marshal(source, buffer, size) \

1417 Marshal(TPM_PT_MARSHAL_INDEX, (source), (buffer), (size))

1418 #define TPM_PT_PCR_Unmarshal(target, buffer, size) \

1419 Unmarshal(TPM_PT_PCR_MARSHAL_INDEX, (target), (buffer), (size))

1420 #define TPM_PT_PCR_Marshal(source, buffer, size) \

1421 Marshal(TPM_PT_PCR_MARSHAL_INDEX, (source), (buffer), (size))

1422 #define TPM_PS_Marshal(source, buffer, size) \

1423 Marshal(TPM_PS_MARSHAL_INDEX, (source), (buffer), (size))

1424 #define TPM_HANDLE_Unmarshal(target, buffer, size) \

1425 Unmarshal(TPM_HANDLE_MARSHAL_INDEX, (target), (buffer), (size))

1426 #define TPM_HANDLE_Marshal(source, buffer, size) \

1427 Marshal(TPM_HANDLE_MARSHAL_INDEX, (source), (buffer), (size))

1428 #define TPM_HT_Unmarshal(target, buffer, size) \

1429 Unmarshal(TPM_HT_MARSHAL_INDEX, (target), (buffer), (size))

1430 #define TPM_HT_Marshal(source, buffer, size) \

1431 Marshal(TPM_HT_MARSHAL_INDEX, (source), (buffer), (size))

1432 #define TPM_RH_Unmarshal(target, buffer, size) \

1433 Unmarshal(TPM_RH_MARSHAL_INDEX, (target), (buffer), (size))

1434 #define TPM_RH_Marshal(source, buffer, size) \

1435 Marshal(TPM_RH_MARSHAL_INDEX, (source), (buffer), (size))

1436 #define TPM_HC_Unmarshal(target, buffer, size) \

1437 Unmarshal(TPM_HC_MARSHAL_INDEX, (target), (buffer), (size))

1438 #define TPM_HC_Marshal(source, buffer, size) \

1439 Marshal(TPM_HC_MARSHAL_INDEX, (source), (buffer), (size))

1440 #define TPMA_ALGORITHM_Unmarshal(target, buffer, size) \

1441 Unmarshal(TPMA_ALGORITHM_MARSHAL_INDEX, (target), (buffer), (size))

1442 #define TPMA_ALGORITHM_Marshal(source, buffer, size) \

1443 Marshal(TPMA_ALGORITHM_MARSHAL_INDEX, (source), (buffer), (size))

1444 #define TPMA_OBJECT_Unmarshal(target, buffer, size) \

1445 Unmarshal(TPMA_OBJECT_MARSHAL_INDEX, (target), (buffer), (size))

1446 #define TPMA_OBJECT_Marshal(source, buffer, size) \

1447 Marshal(TPMA_OBJECT_MARSHAL_INDEX, (source), (buffer), (size))

1448 #define TPMA_SESSION_Unmarshal(target, buffer, size) \

1449 Unmarshal(TPMA_SESSION_MARSHAL_INDEX, (target), (buffer), (size))

1450 #define TPMA_SESSION_Marshal(source, buffer, size) \

1451 Marshal(TPMA_SESSION_MARSHAL_INDEX, (source), (buffer), (size))

1452 #define TPMA_LOCALITY_Unmarshal(target, buffer, size) \

1453 Unmarshal(TPMA_LOCALITY_MARSHAL_INDEX, (target), (buffer), (size))

1454 #define TPMA_LOCALITY_Marshal(source, buffer, size) \

1455 Marshal(TPMA_LOCALITY_MARSHAL_INDEX, (source), (buffer), (size))

1456 #define TPMA_PERMANENT_Marshal(source, buffer, size) \

1457 Marshal(TPMA_PERMANENT_MARSHAL_INDEX, (source), (buffer), (size))

1458 #define TPMA_STARTUP_CLEAR_Marshal(source, buffer, size) \

1459 Marshal(TPMA_STARTUP_CLEAR_MARSHAL_INDEX, (source), (buffer), (size))

1460 #define TPMA_MEMORY_Marshal(source, buffer, size) \

1461 Marshal(TPMA_MEMORY_MARSHAL_INDEX, (source), (buffer), (size))

1462 #define TPMA_CC_Marshal(source, buffer, size) \

1463 Marshal(TPMA_CC_MARSHAL_INDEX, (source), (buffer), (size))

1464 #define TPMA_MODES_Marshal(source, buffer, size) \

1465 Marshal(TPMA_MODES_MARSHAL_INDEX, (source), (buffer), (size))

1466 #define TPMA_X509_KEY_USAGE_Marshal(source, buffer, size) \

1467 Marshal(TPMA_X509_KEY_USAGE_MARSHAL_INDEX, (source), (buffer), (size))

1468 #define TPMI_YES_NO_Unmarshal(target, buffer, size) \

1469 Unmarshal(TPMI_YES_NO_MARSHAL_INDEX, (target), (buffer), (size))

1470 #define TPMI_YES_NO_Marshal(source, buffer, size) \

1471 Marshal(TPMI_YES_NO_MARSHAL_INDEX, (source), (buffer), (size))

1472 #define TPMI_DH_OBJECT_Unmarshal(target, buffer, size, flag) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 465

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1473 Unmarshal(TPMI_DH_OBJECT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1474 (buffer), (size))

1475 #define TPMI_DH_OBJECT_Marshal(source, buffer, size) \

1476 Marshal(TPMI_DH_OBJECT_MARSHAL_INDEX, (source), (buffer), (size))

1477 #define TPMI_DH_PARENT_Unmarshal(target, buffer, size, flag) \

1478 Unmarshal(TPMI_DH_PARENT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1479 (buffer), (size))

1480 #define TPMI_DH_PARENT_Marshal(source, buffer, size) \

1481 Marshal(TPMI_DH_PARENT_MARSHAL_INDEX, (source), (buffer), (size))

1482 #define TPMI_DH_PERSISTENT_Unmarshal(target, buffer, size) \

1483 Unmarshal(TPMI_DH_PERSISTENT_MARSHAL_INDEX, (target), (buffer), (size))

1484 #define TPMI_DH_PERSISTENT_Marshal(source, buffer, size) \

1485 Marshal(TPMI_DH_PERSISTENT_MARSHAL_INDEX, (source), (buffer), (size))

1486 #define TPMI_DH_ENTITY_Unmarshal(target, buffer, size, flag) \

1487 Unmarshal(TPMI_DH_ENTITY_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1488 (buffer), (size))

1489 #define TPMI_DH_PCR_Unmarshal(target, buffer, size, flag) \

1490 Unmarshal(TPMI_DH_PCR_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1491 (buffer), (size))

1492 #define TPMI_SH_AUTH_SESSION_Unmarshal(target, buffer, size, flag) \

1493 Unmarshal(TPMI_SH_AUTH_SESSION_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target),\

1494 (buffer), (size))

1495 #define TPMI_SH_AUTH_SESSION_Marshal(source, buffer, size) \

1496 Marshal(TPMI_SH_AUTH_SESSION_MARSHAL_INDEX, (source), (buffer), (size))

1497 #define TPMI_SH_HMAC_Unmarshal(target, buffer, size) \

1498 Unmarshal(TPMI_SH_HMAC_MARSHAL_INDEX, (target), (buffer), (size))

1499 #define TPMI_SH_HMAC_Marshal(source, buffer, size) \

1500 Marshal(TPMI_SH_HMAC_MARSHAL_INDEX, (source), (buffer), (size))

1501 #define TPMI_SH_POLICY_Unmarshal(target, buffer, size) \

1502 Unmarshal(TPMI_SH_POLICY_MARSHAL_INDEX, (target), (buffer), (size))

1503 #define TPMI_SH_POLICY_Marshal(source, buffer, size) \

1504 Marshal(TPMI_SH_POLICY_MARSHAL_INDEX, (source), (buffer), (size))

1505 #define TPMI_DH_CONTEXT_Unmarshal(target, buffer, size) \

1506 Unmarshal(TPMI_DH_CONTEXT_MARSHAL_INDEX, (target), (buffer), (size))

1507 #define TPMI_DH_CONTEXT_Marshal(source, buffer, size) \

1508 Marshal(TPMI_DH_CONTEXT_MARSHAL_INDEX, (source), (buffer), (size))

1509 #define TPMI_DH_SAVED_Unmarshal(target, buffer, size) \

1510 Unmarshal(TPMI_DH_SAVED_MARSHAL_INDEX, (target), (buffer), (size))

1511 #define TPMI_DH_SAVED_Marshal(source, buffer, size) \

1512 Marshal(TPMI_DH_SAVED_MARSHAL_INDEX, (source), (buffer), (size))

1513 #define TPMI_RH_HIERARCHY_Unmarshal(target, buffer, size, flag) \

1514 Unmarshal(TPMI_RH_HIERARCHY_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1515 (buffer), (size))

1516 #define TPMI_RH_HIERARCHY_Marshal(source, buffer, size) \

1517 Marshal(TPMI_RH_HIERARCHY_MARSHAL_INDEX, (source), (buffer), (size))

1518 #define TPMI_RH_ENABLES_Unmarshal(target, buffer, size, flag) \

1519 Unmarshal(TPMI_RH_ENABLES_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1520 (buffer), (size))

1521 #define TPMI_RH_ENABLES_Marshal(source, buffer, size) \

1522 Marshal(TPMI_RH_ENABLES_MARSHAL_INDEX, (source), (buffer), (size))

1523 #define TPMI_RH_HIERARCHY_AUTH_Unmarshal(target, buffer, size) \

1524 Unmarshal(TPMI_RH_HIERARCHY_AUTH_MARSHAL_INDEX, (target), (buffer), (size))

1525 #define TPMI_RH_PLATFORM_Unmarshal(target, buffer, size) \

1526 Unmarshal(TPMI_RH_PLATFORM_MARSHAL_INDEX, (target), (buffer), (size))

1527 #define TPMI_RH_OWNER_Unmarshal(target, buffer, size, flag) \

1528 Unmarshal(TPMI_RH_OWNER_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1529 (buffer), (size))

1530 #define TPMI_RH_ENDORSEMENT_Unmarshal(target, buffer, size, flag) \

1531 Unmarshal(TPMI_RH_ENDORSEMENT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1532 (buffer), (size))

1533 #define TPMI_RH_PROVISION_Unmarshal(target, buffer, size) \

1534 Unmarshal(TPMI_RH_PROVISION_MARSHAL_INDEX, (target), (buffer), (size))

1535 #define TPMI_RH_CLEAR_Unmarshal(target, buffer, size) \

1536 Unmarshal(TPMI_RH_CLEAR_MARSHAL_INDEX, (target), (buffer), (size))

1537 #define TPMI_RH_NV_AUTH_Unmarshal(target, buffer, size) \

1538 Unmarshal(TPMI_RH_NV_AUTH_MARSHAL_INDEX, (target), (buffer), (size))

Trusted Platform Module Library Part 4: Supporting Routines

Page 466 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1539 #define TPMI_RH_LOCKOUT_Unmarshal(target, buffer, size) \

1540 Unmarshal(TPMI_RH_LOCKOUT_MARSHAL_INDEX, (target), (buffer), (size))

1541 #define TPMI_RH_NV_INDEX_Unmarshal(target, buffer, size) \

1542 Unmarshal(TPMI_RH_NV_INDEX_MARSHAL_INDEX, (target), (buffer), (size))

1543 #define TPMI_RH_NV_INDEX_Marshal(source, buffer, size) \

1544 Marshal(TPMI_RH_NV_INDEX_MARSHAL_INDEX, (source), (buffer), (size))

1545 #define TPMI_RH_AC_Unmarshal(target, buffer, size) \

1546 Unmarshal(TPMI_RH_AC_MARSHAL_INDEX, (target), (buffer), (size))

1547 #define TPMI_ALG_HASH_Unmarshal(target, buffer, size, flag) \

1548 Unmarshal(TPMI_ALG_HASH_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1549 (buffer), (size))

1550 #define TPMI_ALG_HASH_Marshal(source, buffer, size) \

1551 Marshal(TPMI_ALG_HASH_MARSHAL_INDEX, (source), (buffer), (size))

1552 #define TPMI_ALG_ASYM_Unmarshal(target, buffer, size, flag) \

1553 Unmarshal(TPMI_ALG_ASYM_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1554 (buffer), (size))

1555 #define TPMI_ALG_ASYM_Marshal(source, buffer, size) \

1556 Marshal(TPMI_ALG_ASYM_MARSHAL_INDEX, (source), (buffer), (size))

1557 #define TPMI_ALG_SYM_Unmarshal(target, buffer, size, flag) \

1558 Unmarshal(TPMI_ALG_SYM_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1559 (buffer), (size))

1560 #define TPMI_ALG_SYM_Marshal(source, buffer, size) \

1561 Marshal(TPMI_ALG_SYM_MARSHAL_INDEX, (source), (buffer), (size))

1562 #define TPMI_ALG_SYM_OBJECT_Unmarshal(target, buffer, size, flag) \

1563 Unmarshal(TPMI_ALG_SYM_OBJECT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1564 (buffer), (size))

1565 #define TPMI_ALG_SYM_OBJECT_Marshal(source, buffer, size) \

1566 Marshal(TPMI_ALG_SYM_OBJECT_MARSHAL_INDEX, (source), (buffer), (size))

1567 #define TPMI_ALG_SYM_MODE_Unmarshal(target, buffer, size, flag) \

1568 Unmarshal(TPMI_ALG_SYM_MODE_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1569 (buffer), (size))

1570 #define TPMI_ALG_SYM_MODE_Marshal(source, buffer, size) \

1571 Marshal(TPMI_ALG_SYM_MODE_MARSHAL_INDEX, (source), (buffer), (size))

1572 #define TPMI_ALG_KDF_Unmarshal(target, buffer, size, flag) \

1573 Unmarshal(TPMI_ALG_KDF_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1574 (buffer), (size))

1575 #define TPMI_ALG_KDF_Marshal(source, buffer, size) \

1576 Marshal(TPMI_ALG_KDF_MARSHAL_INDEX, (source), (buffer), (size))

1577 #define TPMI_ALG_SIG_SCHEME_Unmarshal(target, buffer, size, flag) \

1578 Unmarshal(TPMI_ALG_SIG_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1579 (buffer), (size))

1580 #define TPMI_ALG_SIG_SCHEME_Marshal(source, buffer, size) \

1581 Marshal(TPMI_ALG_SIG_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1582 #define TPMI_ECC_KEY_EXCHANGE_Unmarshal(target, buffer, size, flag) \

1583 Unmarshal(TPMI_ECC_KEY_EXCHANGE_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), \

1584 (target), (buffer), (size))

1585 #define TPMI_ECC_KEY_EXCHANGE_Marshal(source, buffer, size) \

1586 Marshal(TPMI_ECC_KEY_EXCHANGE_MARSHAL_INDEX, (source), (buffer), (size))

1587 #define TPMI_ST_COMMAND_TAG_Unmarshal(target, buffer, size) \

1588 Unmarshal(TPMI_ST_COMMAND_TAG_MARSHAL_INDEX, (target), (buffer), (size))

1589 #define TPMI_ST_COMMAND_TAG_Marshal(source, buffer, size) \

1590 Marshal(TPMI_ST_COMMAND_TAG_MARSHAL_INDEX, (source), (buffer), (size))

1591 #define TPMI_ALG_MAC_SCHEME_Unmarshal(target, buffer, size, flag) \

1592 Unmarshal(TPMI_ALG_MAC_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1593 (buffer), (size))

1594 #define TPMI_ALG_MAC_SCHEME_Marshal(source, buffer, size) \

1595 Marshal(TPMI_ALG_MAC_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1596 #define TPMI_ALG_CIPHER_MODE_Unmarshal(target, buffer, size, flag) \

1597 Unmarshal(TPMI_ALG_CIPHER_MODE_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target),\

1598 (buffer), (size))

1599 #define TPMI_ALG_CIPHER_MODE_Marshal(source, buffer, size) \

1600 Marshal(TPMI_ALG_CIPHER_MODE_MARSHAL_INDEX, (source), (buffer), (size))

1601 #define TPMS_EMPTY_Unmarshal(target, buffer, size) \

1602 Unmarshal(TPMS_EMPTY_MARSHAL_INDEX, (target), (buffer), (size))

1603 #define TPMS_EMPTY_Marshal(source, buffer, size) \

1604 Marshal(TPMS_EMPTY_MARSHAL_INDEX, (source), (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 467

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1605 #define TPMS_ALGORITHM_DESCRIPTION_Marshal(source, buffer, size) \

1606 Marshal(TPMS_ALGORITHM_DESCRIPTION_MARSHAL_INDEX, (source), (buffer), (size))

1607 #define TPMU_HA_Unmarshal(target, buffer, size, selector) \

1608 UnmarshalUnion(TPMU_HA_MARSHAL_INDEX, (target), (buffer), (size), (selector))

1609 #define TPMU_HA_Marshal(source, buffer, size, selector) \

1610 MarshalUnion(TPMU_HA_MARSHAL_INDEX, (target), (buffer), (size), (selector))

1611 #define TPMT_HA_Unmarshal(target, buffer, size, flag) \

1612 Unmarshal(TPMT_HA_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), (buffer), \

1613 (size))

1614 #define TPMT_HA_Marshal(source, buffer, size) \

1615 Marshal(TPMT_HA_MARSHAL_INDEX, (source), (buffer), (size))

1616 #define TPM2B_DIGEST_Unmarshal(target, buffer, size) \

1617 Unmarshal(TPM2B_DIGEST_MARSHAL_INDEX, (target), (buffer), (size))

1618 #define TPM2B_DIGEST_Marshal(source, buffer, size) \

1619 Marshal(TPM2B_DIGEST_MARSHAL_INDEX, (source), (buffer), (size))

1620 #define TPM2B_DATA_Unmarshal(target, buffer, size) \

1621 Unmarshal(TPM2B_DATA_MARSHAL_INDEX, (target), (buffer), (size))

1622 #define TPM2B_DATA_Marshal(source, buffer, size) \

1623 Marshal(TPM2B_DATA_MARSHAL_INDEX, (source), (buffer), (size))

1624 #define TPM2B_NONCE_Unmarshal(target, buffer, size) \

1625 Unmarshal(TPM2B_NONCE_MARSHAL_INDEX, (target), (buffer), (size))

1626 #define TPM2B_NONCE_Marshal(source, buffer, size) \

1627 Marshal(TPM2B_NONCE_MARSHAL_INDEX, (source), (buffer), (size))

1628 #define TPM2B_AUTH_Unmarshal(target, buffer, size) \

1629 Unmarshal(TPM2B_AUTH_MARSHAL_INDEX, (target), (buffer), (size))

1630 #define TPM2B_AUTH_Marshal(source, buffer, size) \

1631 Marshal(TPM2B_AUTH_MARSHAL_INDEX, (source), (buffer), (size))

1632 #define TPM2B_OPERAND_Unmarshal(target, buffer, size) \

1633 Unmarshal(TPM2B_OPERAND_MARSHAL_INDEX, (target), (buffer), (size))

1634 #define TPM2B_OPERAND_Marshal(source, buffer, size) \

1635 Marshal(TPM2B_OPERAND_MARSHAL_INDEX, (source), (buffer), (size))

1636 #define TPM2B_EVENT_Unmarshal(target, buffer, size) \

1637 Unmarshal(TPM2B_EVENT_MARSHAL_INDEX, (target), (buffer), (size))

1638 #define TPM2B_EVENT_Marshal(source, buffer, size) \

1639 Marshal(TPM2B_EVENT_MARSHAL_INDEX, (source), (buffer), (size))

1640 #define TPM2B_MAX_BUFFER_Unmarshal(target, buffer, size) \

1641 Unmarshal(TPM2B_MAX_BUFFER_MARSHAL_INDEX, (target), (buffer), (size))

1642 #define TPM2B_MAX_BUFFER_Marshal(source, buffer, size) \

1643 Marshal(TPM2B_MAX_BUFFER_MARSHAL_INDEX, (source), (buffer), (size))

1644 #define TPM2B_MAX_NV_BUFFER_Unmarshal(target, buffer, size) \

1645 Unmarshal(TPM2B_MAX_NV_BUFFER_MARSHAL_INDEX, (target), (buffer), (size))

1646 #define TPM2B_MAX_NV_BUFFER_Marshal(source, buffer, size) \

1647 Marshal(TPM2B_MAX_NV_BUFFER_MARSHAL_INDEX, (source), (buffer), (size))

1648 #define TPM2B_TIMEOUT_Unmarshal(target, buffer, size) \

1649 Unmarshal(TPM2B_TIMEOUT_MARSHAL_INDEX, (target), (buffer), (size))

1650 #define TPM2B_TIMEOUT_Marshal(source, buffer, size) \

1651 Marshal(TPM2B_TIMEOUT_MARSHAL_INDEX, (source), (buffer), (size))

1652 #define TPM2B_IV_Unmarshal(target, buffer, size) \

1653 Unmarshal(TPM2B_IV_MARSHAL_INDEX, (target), (buffer), (size))

1654 #define TPM2B_IV_Marshal(source, buffer, size) \

1655 Marshal(TPM2B_IV_MARSHAL_INDEX, (source), (buffer), (size))

1656 #define TPM2B_NAME_Unmarshal(target, buffer, size) \

1657 Unmarshal(TPM2B_NAME_MARSHAL_INDEX, (target), (buffer), (size))

1658 #define TPM2B_NAME_Marshal(source, buffer, size) \

1659 Marshal(TPM2B_NAME_MARSHAL_INDEX, (source), (buffer), (size))

1660 #define TPMS_PCR_SELECT_Unmarshal(target, buffer, size) \

1661 Unmarshal(TPMS_PCR_SELECT_MARSHAL_INDEX, (target), (buffer), (size))

1662 #define TPMS_PCR_SELECT_Marshal(source, buffer, size) \

1663 Marshal(TPMS_PCR_SELECT_MARSHAL_INDEX, (source), (buffer), (size))

1664 #define TPMS_PCR_SELECTION_Unmarshal(target, buffer, size) \

1665 Unmarshal(TPMS_PCR_SELECTION_MARSHAL_INDEX, (target), (buffer), (size))

1666 #define TPMS_PCR_SELECTION_Marshal(source, buffer, size) \

1667 Marshal(TPMS_PCR_SELECTION_MARSHAL_INDEX, (source), (buffer), (size))

1668 #define TPMT_TK_CREATION_Unmarshal(target, buffer, size) \

1669 Unmarshal(TPMT_TK_CREATION_MARSHAL_INDEX, (target), (buffer), (size))

1670 #define TPMT_TK_CREATION_Marshal(source, buffer, size) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 468 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1671 Marshal(TPMT_TK_CREATION_MARSHAL_INDEX, (source), (buffer), (size))

1672 #define TPMT_TK_VERIFIED_Unmarshal(target, buffer, size) \

1673 Unmarshal(TPMT_TK_VERIFIED_MARSHAL_INDEX, (target), (buffer), (size))

1674 #define TPMT_TK_VERIFIED_Marshal(source, buffer, size) \

1675 Marshal(TPMT_TK_VERIFIED_MARSHAL_INDEX, (source), (buffer), (size))

1676 #define TPMT_TK_AUTH_Unmarshal(target, buffer, size) \

1677 Unmarshal(TPMT_TK_AUTH_MARSHAL_INDEX, (target), (buffer), (size))

1678 #define TPMT_TK_AUTH_Marshal(source, buffer, size) \

1679 Marshal(TPMT_TK_AUTH_MARSHAL_INDEX, (source), (buffer), (size))

1680 #define TPMT_TK_HASHCHECK_Unmarshal(target, buffer, size) \

1681 Unmarshal(TPMT_TK_HASHCHECK_MARSHAL_INDEX, (target), (buffer), (size))

1682 #define TPMT_TK_HASHCHECK_Marshal(source, buffer, size) \

1683 Marshal(TPMT_TK_HASHCHECK_MARSHAL_INDEX, (source), (buffer), (size))

1684 #define TPMS_ALG_PROPERTY_Marshal(source, buffer, size) \

1685 Marshal(TPMS_ALG_PROPERTY_MARSHAL_INDEX, (source), (buffer), (size))

1686 #define TPMS_TAGGED_PROPERTY_Marshal(source, buffer, size) \

1687 Marshal(TPMS_TAGGED_PROPERTY_MARSHAL_INDEX, (source), (buffer), (size))

1688 #define TPMS_TAGGED_PCR_SELECT_Marshal(source, buffer, size) \

1689 Marshal(TPMS_TAGGED_PCR_SELECT_MARSHAL_INDEX, (source), (buffer), (size))

1690 #define TPMS_TAGGED_POLICY_Marshal(source, buffer, size) \

1691 Marshal(TPMS_TAGGED_POLICY_MARSHAL_INDEX, (source), (buffer), (size))

1692 #define TPML_CC_Unmarshal(target, buffer, size) \

1693 Unmarshal(TPML_CC_MARSHAL_INDEX, (target), (buffer), (size))

1694 #define TPML_CC_Marshal(source, buffer, size) \

1695 Marshal(TPML_CC_MARSHAL_INDEX, (source), (buffer), (size))

1696 #define TPML_CCA_Marshal(source, buffer, size) \

1697 Marshal(TPML_CCA_MARSHAL_INDEX, (source), (buffer), (size))

1698 #define TPML_ALG_Unmarshal(target, buffer, size) \

1699 Unmarshal(TPML_ALG_MARSHAL_INDEX, (target), (buffer), (size))

1700 #define TPML_ALG_Marshal(source, buffer, size) \

1701 Marshal(TPML_ALG_MARSHAL_INDEX, (source), (buffer), (size))

1702 #define TPML_HANDLE_Marshal(source, buffer, size) \

1703 Marshal(TPML_HANDLE_MARSHAL_INDEX, (source), (buffer), (size))

1704 #define TPML_DIGEST_Unmarshal(target, buffer, size) \

1705 Unmarshal(TPML_DIGEST_MARSHAL_INDEX, (target), (buffer), (size))

1706 #define TPML_DIGEST_Marshal(source, buffer, size) \

1707 Marshal(TPML_DIGEST_MARSHAL_INDEX, (source), (buffer), (size))

1708 #define TPML_DIGEST_VALUES_Unmarshal(target, buffer, size) \

1709 Unmarshal(TPML_DIGEST_VALUES_MARSHAL_INDEX, (target), (buffer), (size))

1710 #define TPML_DIGEST_VALUES_Marshal(source, buffer, size) \

1711 Marshal(TPML_DIGEST_VALUES_MARSHAL_INDEX, (source), (buffer), (size))

1712 #define TPML_PCR_SELECTION_Unmarshal(target, buffer, size) \

1713 Unmarshal(TPML_PCR_SELECTION_MARSHAL_INDEX, (target), (buffer), (size))

1714 #define TPML_PCR_SELECTION_Marshal(source, buffer, size) \

1715 Marshal(TPML_PCR_SELECTION_MARSHAL_INDEX, (source), (buffer), (size))

1716 #define TPML_ALG_PROPERTY_Marshal(source, buffer, size) \

1717 Marshal(TPML_ALG_PROPERTY_MARSHAL_INDEX, (source), (buffer), (size))

1718 #define TPML_TAGGED_TPM_PROPERTY_Marshal(source, buffer, size) \

1719 Marshal(TPML_TAGGED_TPM_PROPERTY_MARSHAL_INDEX, (source), (buffer), (size))

1720 #define TPML_TAGGED_PCR_PROPERTY_Marshal(source, buffer, size) \

1721 Marshal(TPML_TAGGED_PCR_PROPERTY_MARSHAL_INDEX, (source), (buffer), (size))

1722 #define TPML_ECC_CURVE_Marshal(source, buffer, size) \

1723 Marshal(TPML_ECC_CURVE_MARSHAL_INDEX, (source), (buffer), (size))

1724 #define TPML_TAGGED_POLICY_Marshal(source, buffer, size) \

1725 Marshal(TPML_TAGGED_POLICY_MARSHAL_INDEX, (source), (buffer), (size))

1726 #define TPMU_CAPABILITIES_Marshal(source, buffer, size, selector) \

1727 MarshalUnion(TPMU_CAPABILITIES_MARSHAL_INDEX, (target), (buffer), (size), \

1728 (selector))

1729 #define TPMS_CAPABILITY_DATA_Marshal(source, buffer, size) \

1730 Marshal(TPMS_CAPABILITY_DATA_MARSHAL_INDEX, (source), (buffer), (size))

1731 #define TPMS_CLOCK_INFO_Unmarshal(target, buffer, size) \

1732 Unmarshal(TPMS_CLOCK_INFO_MARSHAL_INDEX, (target), (buffer), (size))

1733 #define TPMS_CLOCK_INFO_Marshal(source, buffer, size) \

1734 Marshal(TPMS_CLOCK_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1735 #define TPMS_TIME_INFO_Unmarshal(target, buffer, size) \

1736 Unmarshal(TPMS_TIME_INFO_MARSHAL_INDEX, (target), (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 469

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1737 #define TPMS_TIME_INFO_Marshal(source, buffer, size) \

1738 Marshal(TPMS_TIME_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1739 #define TPMS_TIME_ATTEST_INFO_Marshal(source, buffer, size) \

1740 Marshal(TPMS_TIME_ATTEST_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1741 #define TPMS_CERTIFY_INFO_Marshal(source, buffer, size) \

1742 Marshal(TPMS_CERTIFY_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1743 #define TPMS_QUOTE_INFO_Marshal(source, buffer, size) \

1744 Marshal(TPMS_QUOTE_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1745 #define TPMS_COMMAND_AUDIT_INFO_Marshal(source, buffer, size) \

1746 Marshal(TPMS_COMMAND_AUDIT_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1747 #define TPMS_SESSION_AUDIT_INFO_Marshal(source, buffer, size) \

1748 Marshal(TPMS_SESSION_AUDIT_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1749 #define TPMS_CREATION_INFO_Marshal(source, buffer, size) \

1750 Marshal(TPMS_CREATION_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1751 #define TPMS_NV_CERTIFY_INFO_Marshal(source, buffer, size) \

1752 Marshal(TPMS_NV_CERTIFY_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1753 #define TPMS_NV_DIGEST_CERTIFY_INFO_Marshal(source, buffer, size) \

1754 Marshal(TPMS_NV_DIGEST_CERTIFY_INFO_MARSHAL_INDEX, (source), (buffer), (size))

1755 #define TPMI_ST_ATTEST_Marshal(source, buffer, size) \

1756 Marshal(TPMI_ST_ATTEST_MARSHAL_INDEX, (source), (buffer), (size))

1757 #define TPMU_ATTEST_Marshal(source, buffer, size, selector) \

1758 MarshalUnion(TPMU_ATTEST_MARSHAL_INDEX, (target), (buffer), (size), (selector))

1759 #define TPMS_ATTEST_Marshal(source, buffer, size) \

1760 Marshal(TPMS_ATTEST_MARSHAL_INDEX, (source), (buffer), (size))

1761 #define TPM2B_ATTEST_Marshal(source, buffer, size) \

1762 Marshal(TPM2B_ATTEST_MARSHAL_INDEX, (source), (buffer), (size))

1763 #define TPMS_AUTH_COMMAND_Unmarshal(target, buffer, size) \

1764 Unmarshal(TPMS_AUTH_COMMAND_MARSHAL_INDEX, (target), (buffer), (size))

1765 #define TPMS_AUTH_RESPONSE_Marshal(source, buffer, size) \

1766 Marshal(TPMS_AUTH_RESPONSE_MARSHAL_INDEX, (source), (buffer), (size))

1767 #define TPMI_TDES_KEY_BITS_Unmarshal(target, buffer, size) \

1768 Unmarshal(TPMI_TDES_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size))

1769 #define TPMI_TDES_KEY_BITS_Marshal(source, buffer, size) \

1770 Marshal(TPMI_TDES_KEY_BITS_MARSHAL_INDEX, (source), (buffer), (size))

1771 #define TPMI_AES_KEY_BITS_Unmarshal(target, buffer, size) \

1772 Unmarshal(TPMI_AES_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size))

1773 #define TPMI_AES_KEY_BITS_Marshal(source, buffer, size) \

1774 Marshal(TPMI_AES_KEY_BITS_MARSHAL_INDEX, (source), (buffer), (size))

1775 #define TPMI_SM4_KEY_BITS_Unmarshal(target, buffer, size) \

1776 Unmarshal(TPMI_SM4_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size))

1777 #define TPMI_SM4_KEY_BITS_Marshal(source, buffer, size) \

1778 Marshal(TPMI_SM4_KEY_BITS_MARSHAL_INDEX, (source), (buffer), (size))

1779 #define TPMI_CAMELLIA_KEY_BITS_Unmarshal(target, buffer, size) \

1780 Unmarshal(TPMI_CAMELLIA_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size))

1781 #define TPMI_CAMELLIA_KEY_BITS_Marshal(source, buffer, size) \

1782 Marshal(TPMI_CAMELLIA_KEY_BITS_MARSHAL_INDEX, (source), (buffer), (size))

1783 #define TPMU_SYM_KEY_BITS_Unmarshal(target, buffer, size, selector) \

1784 UnmarshalUnion(TPMU_SYM_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size), \

1785 (selector))

1786 #define TPMU_SYM_KEY_BITS_Marshal(source, buffer, size, selector) \

1787 MarshalUnion(TPMU_SYM_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size), \

1788 (selector))

1789 #define TPMU_SYM_MODE_Unmarshal(target, buffer, size, selector) \

1790 UnmarshalUnion(TPMU_SYM_MODE_MARSHAL_INDEX, (target), (buffer), (size), \

1791 (selector))

1792 #define TPMU_SYM_MODE_Marshal(source, buffer, size, selector) \

1793 MarshalUnion(TPMU_SYM_MODE_MARSHAL_INDEX, (target), (buffer), (size), \

1794 (selector))

1795 #define TPMT_SYM_DEF_Unmarshal(target, buffer, size, flag) \

1796 Unmarshal(TPMT_SYM_DEF_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1797 (buffer), (size))

1798 #define TPMT_SYM_DEF_Marshal(source, buffer, size) \

1799 Marshal(TPMT_SYM_DEF_MARSHAL_INDEX, (source), (buffer), (size))

1800 #define TPMT_SYM_DEF_OBJECT_Unmarshal(target, buffer, size, flag) \

1801 Unmarshal(TPMT_SYM_DEF_OBJECT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1802 (buffer), (size))

Trusted Platform Module Library Part 4: Supporting Routines

Page 470 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1803 #define TPMT_SYM_DEF_OBJECT_Marshal(source, buffer, size) \

1804 Marshal(TPMT_SYM_DEF_OBJECT_MARSHAL_INDEX, (source), (buffer), (size))

1805 #define TPM2B_SYM_KEY_Unmarshal(target, buffer, size) \

1806 Unmarshal(TPM2B_SYM_KEY_MARSHAL_INDEX, (target), (buffer), (size))

1807 #define TPM2B_SYM_KEY_Marshal(source, buffer, size) \

1808 Marshal(TPM2B_SYM_KEY_MARSHAL_INDEX, (source), (buffer), (size))

1809 #define TPMS_SYMCIPHER_PARMS_Unmarshal(target, buffer, size) \

1810 Unmarshal(TPMS_SYMCIPHER_PARMS_MARSHAL_INDEX, (target), (buffer), (size))

1811 #define TPMS_SYMCIPHER_PARMS_Marshal(source, buffer, size) \

1812 Marshal(TPMS_SYMCIPHER_PARMS_MARSHAL_INDEX, (source), (buffer), (size))

1813 #define TPM2B_LABEL_Unmarshal(target, buffer, size) \

1814 Unmarshal(TPM2B_LABEL_MARSHAL_INDEX, (target), (buffer), (size))

1815 #define TPM2B_LABEL_Marshal(source, buffer, size) \

1816 Marshal(TPM2B_LABEL_MARSHAL_INDEX, (source), (buffer), (size))

1817 #define TPMS_DERIVE_Unmarshal(target, buffer, size) \

1818 Unmarshal(TPMS_DERIVE_MARSHAL_INDEX, (target), (buffer), (size))

1819 #define TPMS_DERIVE_Marshal(source, buffer, size) \

1820 Marshal(TPMS_DERIVE_MARSHAL_INDEX, (source), (buffer), (size))

1821 #define TPM2B_DERIVE_Unmarshal(target, buffer, size) \

1822 Unmarshal(TPM2B_DERIVE_MARSHAL_INDEX, (target), (buffer), (size))

1823 #define TPM2B_DERIVE_Marshal(source, buffer, size) \

1824 Marshal(TPM2B_DERIVE_MARSHAL_INDEX, (source), (buffer), (size))

1825 #define TPM2B_SENSITIVE_DATA_Unmarshal(target, buffer, size) \

1826 Unmarshal(TPM2B_SENSITIVE_DATA_MARSHAL_INDEX, (target), (buffer), (size))

1827 #define TPM2B_SENSITIVE_DATA_Marshal(source, buffer, size) \

1828 Marshal(TPM2B_SENSITIVE_DATA_MARSHAL_INDEX, (source), (buffer), (size))

1829 #define TPMS_SENSITIVE_CREATE_Unmarshal(target, buffer, size) \

1830 Unmarshal(TPMS_SENSITIVE_CREATE_MARSHAL_INDEX, (target), (buffer), (size))

1831 #define TPM2B_SENSITIVE_CREATE_Unmarshal(target, buffer, size) \

1832 Unmarshal(TPM2B_SENSITIVE_CREATE_MARSHAL_INDEX, (target), (buffer), (size))

1833 #define TPMS_SCHEME_HASH_Unmarshal(target, buffer, size) \

1834 Unmarshal(TPMS_SCHEME_HASH_MARSHAL_INDEX, (target), (buffer), (size))

1835 #define TPMS_SCHEME_HASH_Marshal(source, buffer, size) \

1836 Marshal(TPMS_SCHEME_HASH_MARSHAL_INDEX, (source), (buffer), (size))

1837 #define TPMS_SCHEME_ECDAA_Unmarshal(target, buffer, size) \

1838 Unmarshal(TPMS_SCHEME_ECDAA_MARSHAL_INDEX, (target), (buffer), (size))

1839 #define TPMS_SCHEME_ECDAA_Marshal(source, buffer, size) \

1840 Marshal(TPMS_SCHEME_ECDAA_MARSHAL_INDEX, (source), (buffer), (size))

1841 #define TPMI_ALG_KEYEDHASH_SCHEME_Unmarshal(target, buffer, size, flag) \

1842 Unmarshal(TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), \

1843 (target), (buffer), (size))

1844 #define TPMI_ALG_KEYEDHASH_SCHEME_Marshal(source, buffer, size) \

1845 Marshal(TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1846 #define TPMS_SCHEME_HMAC_Unmarshal(target, buffer, size) \

1847 Unmarshal(TPMS_SCHEME_HMAC_MARSHAL_INDEX, (target), (buffer), (size))

1848 #define TPMS_SCHEME_HMAC_Marshal(source, buffer, size) \

1849 Marshal(TPMS_SCHEME_HMAC_MARSHAL_INDEX, (source), (buffer), (size))

1850 #define TPMS_SCHEME_XOR_Unmarshal(target, buffer, size) \

1851 Unmarshal(TPMS_SCHEME_XOR_MARSHAL_INDEX, (target), (buffer), (size))

1852 #define TPMS_SCHEME_XOR_Marshal(source, buffer, size) \

1853 Marshal(TPMS_SCHEME_XOR_MARSHAL_INDEX, (source), (buffer), (size))

1854 #define TPMU_SCHEME_KEYEDHASH_Unmarshal(target, buffer, size, selector) \

1855 UnmarshalUnion(TPMU_SCHEME_KEYEDHASH_MARSHAL_INDEX, (target), (buffer), (size), \

1856 (selector))

1857 #define TPMU_SCHEME_KEYEDHASH_Marshal(source, buffer, size, selector) \

1858 MarshalUnion(TPMU_SCHEME_KEYEDHASH_MARSHAL_INDEX, (target), (buffer), (size), \

1859 (selector))

1860 #define TPMT_KEYEDHASH_SCHEME_Unmarshal(target, buffer, size, flag) \

1861 Unmarshal(TPMT_KEYEDHASH_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), \

1862 (target), (buffer), (size))

1863 #define TPMT_KEYEDHASH_SCHEME_Marshal(source, buffer, size) \

1864 Marshal(TPMT_KEYEDHASH_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1865 #define TPMS_SIG_SCHEME_RSASSA_Unmarshal(target, buffer, size) \

1866 Unmarshal(TPMS_SIG_SCHEME_RSASSA_MARSHAL_INDEX, (target), (buffer), (size))

1867 #define TPMS_SIG_SCHEME_RSASSA_Marshal(source, buffer, size) \

1868 Marshal(TPMS_SIG_SCHEME_RSASSA_MARSHAL_INDEX, (source), (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 471

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1869 #define TPMS_SIG_SCHEME_RSAPSS_Unmarshal(target, buffer, size) \

1870 Unmarshal(TPMS_SIG_SCHEME_RSAPSS_MARSHAL_INDEX, (target), (buffer), (size))

1871 #define TPMS_SIG_SCHEME_RSAPSS_Marshal(source, buffer, size) \

1872 Marshal(TPMS_SIG_SCHEME_RSAPSS_MARSHAL_INDEX, (source), (buffer), (size))

1873 #define TPMS_SIG_SCHEME_ECDSA_Unmarshal(target, buffer, size) \

1874 Unmarshal(TPMS_SIG_SCHEME_ECDSA_MARSHAL_INDEX, (target), (buffer), (size))

1875 #define TPMS_SIG_SCHEME_ECDSA_Marshal(source, buffer, size) \

1876 Marshal(TPMS_SIG_SCHEME_ECDSA_MARSHAL_INDEX, (source), (buffer), (size))

1877 #define TPMS_SIG_SCHEME_SM2_Unmarshal(target, buffer, size) \

1878 Unmarshal(TPMS_SIG_SCHEME_SM2_MARSHAL_INDEX, (target), (buffer), (size))

1879 #define TPMS_SIG_SCHEME_SM2_Marshal(source, buffer, size) \

1880 Marshal(TPMS_SIG_SCHEME_SM2_MARSHAL_INDEX, (source), (buffer), (size))

1881 #define TPMS_SIG_SCHEME_ECSCHNORR_Unmarshal(target, buffer, size) \

1882 Unmarshal(TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_INDEX, (target), (buffer), (size))

1883 #define TPMS_SIG_SCHEME_ECSCHNORR_Marshal(source, buffer, size) \

1884 Marshal(TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_INDEX, (source), (buffer), (size))

1885 #define TPMS_SIG_SCHEME_ECDAA_Unmarshal(target, buffer, size) \

1886 Unmarshal(TPMS_SIG_SCHEME_ECDAA_MARSHAL_INDEX, (target), (buffer), (size))

1887 #define TPMS_SIG_SCHEME_ECDAA_Marshal(source, buffer, size) \

1888 Marshal(TPMS_SIG_SCHEME_ECDAA_MARSHAL_INDEX, (source), (buffer), (size))

1889 #define TPMU_SIG_SCHEME_Unmarshal(target, buffer, size, selector) \

1890 UnmarshalUnion(TPMU_SIG_SCHEME_MARSHAL_INDEX, (target), (buffer), (size), \

1891 (selector))

1892 #define TPMU_SIG_SCHEME_Marshal(source, buffer, size, selector) \

1893 MarshalUnion(TPMU_SIG_SCHEME_MARSHAL_INDEX, (target), (buffer), (size), \

1894 (selector))

1895 #define TPMT_SIG_SCHEME_Unmarshal(target, buffer, size, flag) \

1896 Unmarshal(TPMT_SIG_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1897 (buffer), (size))

1898 #define TPMT_SIG_SCHEME_Marshal(source, buffer, size) \

1899 Marshal(TPMT_SIG_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1900 #define TPMS_ENC_SCHEME_OAEP_Unmarshal(target, buffer, size) \

1901 Unmarshal(TPMS_ENC_SCHEME_OAEP_MARSHAL_INDEX, (target), (buffer), (size))

1902 #define TPMS_ENC_SCHEME_OAEP_Marshal(source, buffer, size) \

1903 Marshal(TPMS_ENC_SCHEME_OAEP_MARSHAL_INDEX, (source), (buffer), (size))

1904 #define TPMS_ENC_SCHEME_RSAES_Unmarshal(target, buffer, size) \

1905 Unmarshal(TPMS_ENC_SCHEME_RSAES_MARSHAL_INDEX, (target), (buffer), (size))

1906 #define TPMS_ENC_SCHEME_RSAES_Marshal(source, buffer, size) \

1907 Marshal(TPMS_ENC_SCHEME_RSAES_MARSHAL_INDEX, (source), (buffer), (size))

1908 #define TPMS_KEY_SCHEME_ECDH_Unmarshal(target, buffer, size) \

1909 Unmarshal(TPMS_KEY_SCHEME_ECDH_MARSHAL_INDEX, (target), (buffer), (size))

1910 #define TPMS_KEY_SCHEME_ECDH_Marshal(source, buffer, size) \

1911 Marshal(TPMS_KEY_SCHEME_ECDH_MARSHAL_INDEX, (source), (buffer), (size))

1912 #define TPMS_KEY_SCHEME_ECMQV_Unmarshal(target, buffer, size) \

1913 Unmarshal(TPMS_KEY_SCHEME_ECMQV_MARSHAL_INDEX, (target), (buffer), (size))

1914 #define TPMS_KEY_SCHEME_ECMQV_Marshal(source, buffer, size) \

1915 Marshal(TPMS_KEY_SCHEME_ECMQV_MARSHAL_INDEX, (source), (buffer), (size))

1916 #define TPMS_SCHEME_MGF1_Unmarshal(target, buffer, size) \

1917 Unmarshal(TPMS_SCHEME_MGF1_MARSHAL_INDEX, (target), (buffer), (size))

1918 #define TPMS_SCHEME_MGF1_Marshal(source, buffer, size) \

1919 Marshal(TPMS_SCHEME_MGF1_MARSHAL_INDEX, (source), (buffer), (size))

1920 #define TPMS_SCHEME_KDF1_SP800_56A_Unmarshal(target, buffer, size) \

1921 Unmarshal(TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_INDEX, (target), (buffer), (size))

1922 #define TPMS_SCHEME_KDF1_SP800_56A_Marshal(source, buffer, size) \

1923 Marshal(TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_INDEX, (source), (buffer), (size))

1924 #define TPMS_SCHEME_KDF2_Unmarshal(target, buffer, size) \

1925 Unmarshal(TPMS_SCHEME_KDF2_MARSHAL_INDEX, (target), (buffer), (size))

1926 #define TPMS_SCHEME_KDF2_Marshal(source, buffer, size) \

1927 Marshal(TPMS_SCHEME_KDF2_MARSHAL_INDEX, (source), (buffer), (size))

1928 #define TPMS_SCHEME_KDF1_SP800_108_Unmarshal(target, buffer, size) \

1929 Unmarshal(TPMS_SCHEME_KDF1_SP800_108_MARSHAL_INDEX, (target), (buffer), (size))

1930 #define TPMS_SCHEME_KDF1_SP800_108_Marshal(source, buffer, size) \

1931 Marshal(TPMS_SCHEME_KDF1_SP800_108_MARSHAL_INDEX, (source), (buffer), (size))

1932 #define TPMU_KDF_SCHEME_Unmarshal(target, buffer, size, selector) \

1933 UnmarshalUnion(TPMU_KDF_SCHEME_MARSHAL_INDEX, (target), (buffer), (size), \

1934 (selector))

Trusted Platform Module Library Part 4: Supporting Routines

Page 472 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1935 #define TPMU_KDF_SCHEME_Marshal(source, buffer, size, selector) \

1936 MarshalUnion(TPMU_KDF_SCHEME_MARSHAL_INDEX, (target), (buffer), (size), \

1937 (selector))

1938 #define TPMT_KDF_SCHEME_Unmarshal(target, buffer, size, flag) \

1939 Unmarshal(TPMT_KDF_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1940 (buffer), (size))

1941 #define TPMT_KDF_SCHEME_Marshal(source, buffer, size) \

1942 Marshal(TPMT_KDF_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1943 #define TPMI_ALG_ASYM_SCHEME_Unmarshal(target, buffer, size, flag) \

1944 Unmarshal(TPMI_ALG_ASYM_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target),\

1945 (buffer), (size))

1946 #define TPMI_ALG_ASYM_SCHEME_Marshal(source, buffer, size) \

1947 Marshal(TPMI_ALG_ASYM_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1948 #define TPMU_ASYM_SCHEME_Unmarshal(target, buffer, size, selector) \

1949 UnmarshalUnion(TPMU_ASYM_SCHEME_MARSHAL_INDEX, (target), (buffer), (size), \

1950 (selector))

1951 #define TPMU_ASYM_SCHEME_Marshal(source, buffer, size, selector) \

1952 MarshalUnion(TPMU_ASYM_SCHEME_MARSHAL_INDEX, (target), (buffer), (size), \

1953 (selector))

1954 #define TPMI_ALG_RSA_SCHEME_Unmarshal(target, buffer, size, flag) \

1955 Unmarshal(TPMI_ALG_RSA_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1956 (buffer), (size))

1957 #define TPMI_ALG_RSA_SCHEME_Marshal(source, buffer, size) \

1958 Marshal(TPMI_ALG_RSA_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1959 #define TPMT_RSA_SCHEME_Unmarshal(target, buffer, size, flag) \

1960 Unmarshal(TPMT_RSA_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1961 (buffer), (size))

1962 #define TPMT_RSA_SCHEME_Marshal(source, buffer, size) \

1963 Marshal(TPMT_RSA_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

1964 #define TPMI_ALG_RSA_DECRYPT_Unmarshal(target, buffer, size, flag) \

1965 Unmarshal(TPMI_ALG_RSA_DECRYPT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target),\

1966 (buffer), (size))

1967 #define TPMI_ALG_RSA_DECRYPT_Marshal(source, buffer, size) \

1968 Marshal(TPMI_ALG_RSA_DECRYPT_MARSHAL_INDEX, (source), (buffer), (size))

1969 #define TPMT_RSA_DECRYPT_Unmarshal(target, buffer, size, flag) \

1970 Unmarshal(TPMT_RSA_DECRYPT_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

1971 (buffer), (size))

1972 #define TPMT_RSA_DECRYPT_Marshal(source, buffer, size) \

1973 Marshal(TPMT_RSA_DECRYPT_MARSHAL_INDEX, (source), (buffer), (size))

1974 #define TPM2B_PUBLIC_KEY_RSA_Unmarshal(target, buffer, size) \

1975 Unmarshal(TPM2B_PUBLIC_KEY_RSA_MARSHAL_INDEX, (target), (buffer), (size))

1976 #define TPM2B_PUBLIC_KEY_RSA_Marshal(source, buffer, size) \

1977 Marshal(TPM2B_PUBLIC_KEY_RSA_MARSHAL_INDEX, (source), (buffer), (size))

1978 #define TPMI_RSA_KEY_BITS_Unmarshal(target, buffer, size) \

1979 Unmarshal(TPMI_RSA_KEY_BITS_MARSHAL_INDEX, (target), (buffer), (size))

1980 #define TPMI_RSA_KEY_BITS_Marshal(source, buffer, size) \

1981 Marshal(TPMI_RSA_KEY_BITS_MARSHAL_INDEX, (source), (buffer), (size))

1982 #define TPM2B_PRIVATE_KEY_RSA_Unmarshal(target, buffer, size) \

1983 Unmarshal(TPM2B_PRIVATE_KEY_RSA_MARSHAL_INDEX, (target), (buffer), (size))

1984 #define TPM2B_PRIVATE_KEY_RSA_Marshal(source, buffer, size) \

1985 Marshal(TPM2B_PRIVATE_KEY_RSA_MARSHAL_INDEX, (source), (buffer), (size))

1986 #define TPM2B_ECC_PARAMETER_Unmarshal(target, buffer, size) \

1987 Unmarshal(TPM2B_ECC_PARAMETER_MARSHAL_INDEX, (target), (buffer), (size))

1988 #define TPM2B_ECC_PARAMETER_Marshal(source, buffer, size) \

1989 Marshal(TPM2B_ECC_PARAMETER_MARSHAL_INDEX, (source), (buffer), (size))

1990 #define TPMS_ECC_POINT_Unmarshal(target, buffer, size) \

1991 Unmarshal(TPMS_ECC_POINT_MARSHAL_INDEX, (target), (buffer), (size))

1992 #define TPMS_ECC_POINT_Marshal(source, buffer, size) \

1993 Marshal(TPMS_ECC_POINT_MARSHAL_INDEX, (source), (buffer), (size))

1994 #define TPM2B_ECC_POINT_Unmarshal(target, buffer, size) \

1995 Unmarshal(TPM2B_ECC_POINT_MARSHAL_INDEX, (target), (buffer), (size))

1996 #define TPM2B_ECC_POINT_Marshal(source, buffer, size) \

1997 Marshal(TPM2B_ECC_POINT_MARSHAL_INDEX, (source), (buffer), (size))

1998 #define TPMI_ALG_ECC_SCHEME_Unmarshal(target, buffer, size, flag) \

1999 Unmarshal(TPMI_ALG_ECC_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

2000 (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 473

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2001 #define TPMI_ALG_ECC_SCHEME_Marshal(source, buffer, size) \

2002 Marshal(TPMI_ALG_ECC_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

2003 #define TPMI_ECC_CURVE_Unmarshal(target, buffer, size) \

2004 Unmarshal(TPMI_ECC_CURVE_MARSHAL_INDEX, (target), (buffer), (size))

2005 #define TPMI_ECC_CURVE_Marshal(source, buffer, size) \

2006 Marshal(TPMI_ECC_CURVE_MARSHAL_INDEX, (source), (buffer), (size))

2007 #define TPMT_ECC_SCHEME_Unmarshal(target, buffer, size, flag) \

2008 Unmarshal(TPMT_ECC_SCHEME_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

2009 (buffer), (size))

2010 #define TPMT_ECC_SCHEME_Marshal(source, buffer, size) \

2011 Marshal(TPMT_ECC_SCHEME_MARSHAL_INDEX, (source), (buffer), (size))

2012 #define TPMS_ALGORITHM_DETAIL_ECC_Marshal(source, buffer, size) \

2013 Marshal(TPMS_ALGORITHM_DETAIL_ECC_MARSHAL_INDEX, (source), (buffer), (size))

2014 #define TPMS_SIGNATURE_RSA_Unmarshal(target, buffer, size) \

2015 Unmarshal(TPMS_SIGNATURE_RSA_MARSHAL_INDEX, (target), (buffer), (size))

2016 #define TPMS_SIGNATURE_RSA_Marshal(source, buffer, size) \

2017 Marshal(TPMS_SIGNATURE_RSA_MARSHAL_INDEX, (source), (buffer), (size))

2018 #define TPMS_SIGNATURE_RSASSA_Unmarshal(target, buffer, size) \

2019 Unmarshal(TPMS_SIGNATURE_RSASSA_MARSHAL_INDEX, (target), (buffer), (size))

2020 #define TPMS_SIGNATURE_RSASSA_Marshal(source, buffer, size) \

2021 Marshal(TPMS_SIGNATURE_RSASSA_MARSHAL_INDEX, (source), (buffer), (size))

2022 #define TPMS_SIGNATURE_RSAPSS_Unmarshal(target, buffer, size) \

2023 Unmarshal(TPMS_SIGNATURE_RSAPSS_MARSHAL_INDEX, (target), (buffer), (size))

2024 #define TPMS_SIGNATURE_RSAPSS_Marshal(source, buffer, size) \

2025 Marshal(TPMS_SIGNATURE_RSAPSS_MARSHAL_INDEX, (source), (buffer), (size))

2026 #define TPMS_SIGNATURE_ECC_Unmarshal(target, buffer, size) \

2027 Unmarshal(TPMS_SIGNATURE_ECC_MARSHAL_INDEX, (target), (buffer), (size))

2028 #define TPMS_SIGNATURE_ECC_Marshal(source, buffer, size) \

2029 Marshal(TPMS_SIGNATURE_ECC_MARSHAL_INDEX, (source), (buffer), (size))

2030 #define TPMS_SIGNATURE_ECDAA_Unmarshal(target, buffer, size) \

2031 Unmarshal(TPMS_SIGNATURE_ECDAA_MARSHAL_INDEX, (target), (buffer), (size))

2032 #define TPMS_SIGNATURE_ECDAA_Marshal(source, buffer, size) \

2033 Marshal(TPMS_SIGNATURE_ECDAA_MARSHAL_INDEX, (source), (buffer), (size))

2034 #define TPMS_SIGNATURE_ECDSA_Unmarshal(target, buffer, size) \

2035 Unmarshal(TPMS_SIGNATURE_ECDSA_MARSHAL_INDEX, (target), (buffer), (size))

2036 #define TPMS_SIGNATURE_ECDSA_Marshal(source, buffer, size) \

2037 Marshal(TPMS_SIGNATURE_ECDSA_MARSHAL_INDEX, (source), (buffer), (size))

2038 #define TPMS_SIGNATURE_SM2_Unmarshal(target, buffer, size) \

2039 Unmarshal(TPMS_SIGNATURE_SM2_MARSHAL_INDEX, (target), (buffer), (size))

2040 #define TPMS_SIGNATURE_SM2_Marshal(source, buffer, size) \

2041 Marshal(TPMS_SIGNATURE_SM2_MARSHAL_INDEX, (source), (buffer), (size))

2042 #define TPMS_SIGNATURE_ECSCHNORR_Unmarshal(target, buffer, size) \

2043 Unmarshal(TPMS_SIGNATURE_ECSCHNORR_MARSHAL_INDEX, (target), (buffer), (size))

2044 #define TPMS_SIGNATURE_ECSCHNORR_Marshal(source, buffer, size) \

2045 Marshal(TPMS_SIGNATURE_ECSCHNORR_MARSHAL_INDEX, (source), (buffer), (size))

2046 #define TPMU_SIGNATURE_Unmarshal(target, buffer, size, selector) \

2047 UnmarshalUnion(TPMU_SIGNATURE_MARSHAL_INDEX, (target), (buffer), (size), \

2048 (selector))

2049 #define TPMU_SIGNATURE_Marshal(source, buffer, size, selector) \

2050 MarshalUnion(TPMU_SIGNATURE_MARSHAL_INDEX, (target), (buffer), (size), \

2051 (selector))

2052 #define TPMT_SIGNATURE_Unmarshal(target, buffer, size, flag) \

2053 Unmarshal(TPMT_SIGNATURE_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

2054 (buffer), (size))

2055 #define TPMT_SIGNATURE_Marshal(source, buffer, size) \

2056 Marshal(TPMT_SIGNATURE_MARSHAL_INDEX, (source), (buffer), (size))

2057 #define TPMU_ENCRYPTED_SECRET_Unmarshal(target, buffer, size, selector) \

2058 UnmarshalUnion(TPMU_ENCRYPTED_SECRET_MARSHAL_INDEX, (target), (buffer), (size), \

2059 (selector))

2060 #define TPMU_ENCRYPTED_SECRET_Marshal(source, buffer, size, selector) \

2061 MarshalUnion(TPMU_ENCRYPTED_SECRET_MARSHAL_INDEX, (target), (buffer), (size), \

2062 (selector))

2063 #define TPM2B_ENCRYPTED_SECRET_Unmarshal(target, buffer, size) \

2064 Unmarshal(TPM2B_ENCRYPTED_SECRET_MARSHAL_INDEX, (target), (buffer), (size))

2065 #define TPM2B_ENCRYPTED_SECRET_Marshal(source, buffer, size) \

2066 Marshal(TPM2B_ENCRYPTED_SECRET_MARSHAL_INDEX, (source), (buffer), (size))

Trusted Platform Module Library Part 4: Supporting Routines

Page 474 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

2067 #define TPMI_ALG_PUBLIC_Unmarshal(target, buffer, size) \

2068 Unmarshal(TPMI_ALG_PUBLIC_MARSHAL_INDEX, (target), (buffer), (size))

2069 #define TPMI_ALG_PUBLIC_Marshal(source, buffer, size) \

2070 Marshal(TPMI_ALG_PUBLIC_MARSHAL_INDEX, (source), (buffer), (size))

2071 #define TPMU_PUBLIC_ID_Unmarshal(target, buffer, size, selector) \

2072 UnmarshalUnion(TPMU_PUBLIC_ID_MARSHAL_INDEX, (target), (buffer), (size), \

2073 (selector))

2074 #define TPMU_PUBLIC_ID_Marshal(source, buffer, size, selector) \

2075 MarshalUnion(TPMU_PUBLIC_ID_MARSHAL_INDEX, (target), (buffer), (size), \

2076 (selector))

2077 #define TPMS_KEYEDHASH_PARMS_Unmarshal(target, buffer, size) \

2078 Unmarshal(TPMS_KEYEDHASH_PARMS_MARSHAL_INDEX, (target), (buffer), (size))

2079 #define TPMS_KEYEDHASH_PARMS_Marshal(source, buffer, size) \

2080 Marshal(TPMS_KEYEDHASH_PARMS_MARSHAL_INDEX, (source), (buffer), (size))

2081 #define TPMS_RSA_PARMS_Unmarshal(target, buffer, size) \

2082 Unmarshal(TPMS_RSA_PARMS_MARSHAL_INDEX, (target), (buffer), (size))

2083 #define TPMS_RSA_PARMS_Marshal(source, buffer, size) \

2084 Marshal(TPMS_RSA_PARMS_MARSHAL_INDEX, (source), (buffer), (size))

2085 #define TPMS_ECC_PARMS_Unmarshal(target, buffer, size) \

2086 Unmarshal(TPMS_ECC_PARMS_MARSHAL_INDEX, (target), (buffer), (size))

2087 #define TPMS_ECC_PARMS_Marshal(source, buffer, size) \

2088 Marshal(TPMS_ECC_PARMS_MARSHAL_INDEX, (source), (buffer), (size))

2089 #define TPMU_PUBLIC_PARMS_Unmarshal(target, buffer, size, selector) \

2090 UnmarshalUnion(TPMU_PUBLIC_PARMS_MARSHAL_INDEX, (target), (buffer), (size), \

2091 (selector))

2092 #define TPMU_PUBLIC_PARMS_Marshal(source, buffer, size, selector) \

2093 MarshalUnion(TPMU_PUBLIC_PARMS_MARSHAL_INDEX, (target), (buffer), (size), \

2094 (selector))

2095 #define TPMT_PUBLIC_PARMS_Unmarshal(target, buffer, size) \

2096 Unmarshal(TPMT_PUBLIC_PARMS_MARSHAL_INDEX, (target), (buffer), (size))

2097 #define TPMT_PUBLIC_PARMS_Marshal(source, buffer, size) \

2098 Marshal(TPMT_PUBLIC_PARMS_MARSHAL_INDEX, (source), (buffer), (size))

2099 #define TPMT_PUBLIC_Unmarshal(target, buffer, size, flag) \

2100 Unmarshal(TPMT_PUBLIC_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

2101 (buffer), (size))

2102 #define TPMT_PUBLIC_Marshal(source, buffer, size) \

2103 Marshal(TPMT_PUBLIC_MARSHAL_INDEX, (source), (buffer), (size))

2104 #define TPM2B_PUBLIC_Unmarshal(target, buffer, size, flag) \

2105 Unmarshal(TPM2B_PUBLIC_MARSHAL_INDEX | (flag ? NULL_FLAG : 0), (target), \

2106 (buffer), (size))

2107 #define TPM2B_PUBLIC_Marshal(source, buffer, size) \

2108 Marshal(TPM2B_PUBLIC_MARSHAL_INDEX, (source), (buffer), (size))

2109 #define TPM2B_TEMPLATE_Unmarshal(target, buffer, size) \

2110 Unmarshal(TPM2B_TEMPLATE_MARSHAL_INDEX, (target), (buffer), (size))

2111 #define TPM2B_TEMPLATE_Marshal(source, buffer, size) \

2112 Marshal(TPM2B_TEMPLATE_MARSHAL_INDEX, (source), (buffer), (size))

2113 #define TPM2B_PRIVATE_VENDOR_SPECIFIC_Unmarshal(target, buffer, size) \

2114 Unmarshal(TPM2B_PRIVATE_VENDOR_SPECIFIC_MARSHAL_INDEX, (target), (buffer), \

2115 (size))

2116 #define TPM2B_PRIVATE_VENDOR_SPECIFIC_Marshal(source, buffer, size) \

2117 Marshal(TPM2B_PRIVATE_VENDOR_SPECIFIC_MARSHAL_INDEX, (source), (buffer), (size))

2118 #define TPMU_SENSITIVE_COMPOSITE_Unmarshal(target, buffer, size, selector) \

2119 UnmarshalUnion(TPMU_SENSITIVE_COMPOSITE_MARSHAL_INDEX, (target), (buffer), \

2120 (size), (selector))

2121 #define TPMU_SENSITIVE_COMPOSITE_Marshal(source, buffer, size, selector) \

2122 MarshalUnion(TPMU_SENSITIVE_COMPOSITE_MARSHAL_INDEX, (target), (buffer), (size),\

2123 (selector))

2124 #define TPMT_SENSITIVE_Unmarshal(target, buffer, size) \

2125 Unmarshal(TPMT_SENSITIVE_MARSHAL_INDEX, (target), (buffer), (size))

2126 #define TPMT_SENSITIVE_Marshal(source, buffer, size) \

2127 Marshal(TPMT_SENSITIVE_MARSHAL_INDEX, (source), (buffer), (size))

2128 #define TPM2B_SENSITIVE_Unmarshal(target, buffer, size) \

2129 Unmarshal(TPM2B_SENSITIVE_MARSHAL_INDEX, (target), (buffer), (size))

2130 #define TPM2B_SENSITIVE_Marshal(source, buffer, size) \

2131 Marshal(TPM2B_SENSITIVE_MARSHAL_INDEX, (source), (buffer), (size))

2132 #define TPM2B_PRIVATE_Unmarshal(target, buffer, size) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 475

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2133 Unmarshal(TPM2B_PRIVATE_MARSHAL_INDEX, (target), (buffer), (size))

2134 #define TPM2B_PRIVATE_Marshal(source, buffer, size) \

2135 Marshal(TPM2B_PRIVATE_MARSHAL_INDEX, (source), (buffer), (size))

2136 #define TPM2B_ID_OBJECT_Unmarshal(target, buffer, size) \

2137 Unmarshal(TPM2B_ID_OBJECT_MARSHAL_INDEX, (target), (buffer), (size))

2138 #define TPM2B_ID_OBJECT_Marshal(source, buffer, size) \

2139 Marshal(TPM2B_ID_OBJECT_MARSHAL_INDEX, (source), (buffer), (size))

2140 #define TPM_NV_INDEX_Marshal(source, buffer, size) \

2141 Marshal(TPM_NV_INDEX_MARSHAL_INDEX, (source), (buffer), (size))

2142 #define TPMS_NV_PIN_COUNTER_PARAMETERS_Unmarshal(target, buffer, size) \

2143 Unmarshal(TPMS_NV_PIN_COUNTER_PARAMETERS_MARSHAL_INDEX, (target), (buffer), \

2144 (size))

2145 #define TPMS_NV_PIN_COUNTER_PARAMETERS_Marshal(source, buffer, size) \

2146 Marshal(TPMS_NV_PIN_COUNTER_PARAMETERS_MARSHAL_INDEX, (source), (buffer), \

2147 (size))

2148 #define TPMA_NV_Unmarshal(target, buffer, size) \

2149 Unmarshal(TPMA_NV_MARSHAL_INDEX, (target), (buffer), (size))

2150 #define TPMA_NV_Marshal(source, buffer, size) \

2151 Marshal(TPMA_NV_MARSHAL_INDEX, (source), (buffer), (size))

2152 #define TPMS_NV_PUBLIC_Unmarshal(target, buffer, size) \

2153 Unmarshal(TPMS_NV_PUBLIC_MARSHAL_INDEX, (target), (buffer), (size))

2154 #define TPMS_NV_PUBLIC_Marshal(source, buffer, size) \

2155 Marshal(TPMS_NV_PUBLIC_MARSHAL_INDEX, (source), (buffer), (size))

2156 #define TPM2B_NV_PUBLIC_Unmarshal(target, buffer, size) \

2157 Unmarshal(TPM2B_NV_PUBLIC_MARSHAL_INDEX, (target), (buffer), (size))

2158 #define TPM2B_NV_PUBLIC_Marshal(source, buffer, size) \

2159 Marshal(TPM2B_NV_PUBLIC_MARSHAL_INDEX, (source), (buffer), (size))

2160 #define TPM2B_CONTEXT_SENSITIVE_Unmarshal(target, buffer, size) \

2161 Unmarshal(TPM2B_CONTEXT_SENSITIVE_MARSHAL_INDEX, (target), (buffer), (size))

2162 #define TPM2B_CONTEXT_SENSITIVE_Marshal(source, buffer, size) \

2163 Marshal(TPM2B_CONTEXT_SENSITIVE_MARSHAL_INDEX, (source), (buffer), (size))

2164 #define TPMS_CONTEXT_DATA_Unmarshal(target, buffer, size) \

2165 Unmarshal(TPMS_CONTEXT_DATA_MARSHAL_INDEX, (target), (buffer), (size))

2166 #define TPMS_CONTEXT_DATA_Marshal(source, buffer, size) \

2167 Marshal(TPMS_CONTEXT_DATA_MARSHAL_INDEX, (source), (buffer), (size))

2168 #define TPM2B_CONTEXT_DATA_Unmarshal(target, buffer, size) \

2169 Unmarshal(TPM2B_CONTEXT_DATA_MARSHAL_INDEX, (target), (buffer), (size))

2170 #define TPM2B_CONTEXT_DATA_Marshal(source, buffer, size) \

2171 Marshal(TPM2B_CONTEXT_DATA_MARSHAL_INDEX, (source), (buffer), (size))

2172 #define TPMS_CONTEXT_Unmarshal(target, buffer, size) \

2173 Unmarshal(TPMS_CONTEXT_MARSHAL_INDEX, (target), (buffer), (size))

2174 #define TPMS_CONTEXT_Marshal(source, buffer, size) \

2175 Marshal(TPMS_CONTEXT_MARSHAL_INDEX, (source), (buffer), (size))

2176 #define TPMS_CREATION_DATA_Marshal(source, buffer, size) \

2177 Marshal(TPMS_CREATION_DATA_MARSHAL_INDEX, (source), (buffer), (size))

2178 #define TPM2B_CREATION_DATA_Marshal(source, buffer, size) \

2179 Marshal(TPM2B_CREATION_DATA_MARSHAL_INDEX, (source), (buffer), (size))

2180 #define TPM_AT_Unmarshal(target, buffer, size) \

2181 Unmarshal(TPM_AT_MARSHAL_INDEX, (target), (buffer), (size))

2182 #define TPM_AT_Marshal(source, buffer, size) \

2183 Marshal(TPM_AT_MARSHAL_INDEX, (source), (buffer), (size))

2184 #define TPM_AE_Marshal(source, buffer, size) \

2185 Marshal(TPM_AE_MARSHAL_INDEX, (source), (buffer), (size))

2186 #define TPMS_AC_OUTPUT_Marshal(source, buffer, size) \

2187 Marshal(TPMS_AC_OUTPUT_MARSHAL_INDEX, (source), (buffer), (size))

2188 #define TPML_AC_CAPABILITIES_Marshal(source, buffer, size) \

2189 Marshal(TPML_AC_CAPABILITIES_MARSHAL_INDEX, (source), (buffer), (size))

2190 #endif // _Table_Marshal_Data_

9.10.7.3 TableMarshalDefines.h

1 #ifndef _TABLE_MARSHAL_DEFINES_H_

2 #define _TABLE_MARSHAL_DEFINES_H_

3 #define NULL_SHIFT 15

4 #define NULL_FLAG (1 << NULL_SHIFT)

Trusted Platform Module Library Part 4: Supporting Routines

Page 476 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The range macro processes a min, max value and produces a values that is used in the computation to

see if something is within a range. The max value is (max-min). This lets the check for something (val)

within a range become: if((val - min) <= max) // passes if in range if((val - min) > max) // passes if not in

range This works because all values are converted to UINT32 values before the compare. For (val - min),

all values greater than or equal to val will become positive values with a value equal to min being zero.

This means that in an unsigned compare against 'max,' any value that is outside the range will appear to

be a number greater than max. The benefit of this operation is that this will work even if the input value is

a signed number as long as the input is sign extended.

5 #define RANGE(_min_, _max_, _base_) \

6 (UINT32)_min_, (UINT32)((_base_)(_max_ - _min_))

This macro is like the offsetof macro but, instead of computing the offset of a structure element, it

computes the stride between elements that are in a structure array. This is used instead of sizeof()

because the sizeof() operator on a structure can return an implementation dependent value.

7 #define STRIDE(s) ((UINT16)(size_t)&(((s *)0)[1]))

8 #define MARSHAL_REF(TYPE) ((UINT16)(offsetof(MARSHAL_DATA, TYPE)))

This macro creates the entry in the array lookup table

9 #define ARRAY_MARSHAL_ENTRY(TYPE) \

10 {(marshalIndex_t)TYPE##_MARSHAL_REF, (UINT16)STRIDE(TYPE)}

Defines for array lookup

11 #define UINT8_ARRAY_MARSHAL_INDEX 0 // 0x00

12 #define TPM_CC_ARRAY_MARSHAL_INDEX 1 // 0x01

13 #define TPMA_CC_ARRAY_MARSHAL_INDEX 2 // 0x02

14 #define TPM_ALG_ID_ARRAY_MARSHAL_INDEX 3 // 0x03

15 #define TPM_HANDLE_ARRAY_MARSHAL_INDEX 4 // 0x04

16 #define TPM2B_DIGEST_ARRAY_MARSHAL_INDEX 5 // 0x05

17 #define TPMT_HA_ARRAY_MARSHAL_INDEX 6 // 0x06

18 #define TPMS_PCR_SELECTION_ARRAY_MARSHAL_INDEX 7 // 0x07

19 #define TPMS_ALG_PROPERTY_ARRAY_MARSHAL_INDEX 8 // 0x08

20 #define TPMS_TAGGED_PROPERTY_ARRAY_MARSHAL_INDEX 9 // 0x09

21 #define TPMS_TAGGED_PCR_SELECT_ARRAY_MARSHAL_INDEX 10 // 0x0A

22 #define TPM_ECC_CURVE_ARRAY_MARSHAL_INDEX 11 // 0x0B

23 #define TPMS_TAGGED_POLICY_ARRAY_MARSHAL_INDEX 12 // 0x0C

24 #define TPMS_ACT_DATA_ARRAY_MARSHAL_INDEX 13 // 0x0D

25 #define TPMS_AC_OUTPUT_ARRAY_MARSHAL_INDEX 14 // 0x0E

Defines for referencing a type by offset

26 #define UINT8_MARSHAL_REF \

27 ((UINT16)(offsetof(MarshalData_st, UINT8_DATA)))

28 #define BYTE_MARSHAL_REF UINT8_MARSHAL_REF

29 #define TPM_HT_MARSHAL_REF UINT8_MARSHAL_REF

30 #define TPMA_LOCALITY_MARSHAL_REF UINT8_MARSHAL_REF

31 #define UINT16_MARSHAL_REF \

32 ((UINT16)(offsetof(MarshalData_st, UINT16_DATA)))

33 #define TPM_KEY_SIZE_MARSHAL_REF UINT16_MARSHAL_REF

34 #define TPM_KEY_BITS_MARSHAL_REF UINT16_MARSHAL_REF

35 #define TPM_ALG_ID_MARSHAL_REF UINT16_MARSHAL_REF

36 #define TPM_ST_MARSHAL_REF UINT16_MARSHAL_REF

37 #define UINT32_MARSHAL_REF \

38 ((UINT16)(offsetof(MarshalData_st, UINT32_DATA)))

39 #define TPM_ALGORITHM_ID_MARSHAL_REF UINT32_MARSHAL_REF

40 #define TPM_MODIFIER_INDICATOR_MARSHAL_REF UINT32_MARSHAL_REF

41 #define TPM_AUTHORIZATION_SIZE_MARSHAL_REF UINT32_MARSHAL_REF

42 #define TPM_PARAMETER_SIZE_MARSHAL_REF UINT32_MARSHAL_REF

43 #define TPM_SPEC_MARSHAL_REF UINT32_MARSHAL_REF

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 477

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

44 #define TPM_GENERATED_MARSHAL_REF UINT32_MARSHAL_REF

45 #define TPM_CC_MARSHAL_REF UINT32_MARSHAL_REF

46 #define TPM_RC_MARSHAL_REF UINT32_MARSHAL_REF

47 #define TPM_PT_MARSHAL_REF UINT32_MARSHAL_REF

48 #define TPM_PT_PCR_MARSHAL_REF UINT32_MARSHAL_REF

49 #define TPM_PS_MARSHAL_REF UINT32_MARSHAL_REF

50 #define TPM_HANDLE_MARSHAL_REF UINT32_MARSHAL_REF

51 #define TPM_RH_MARSHAL_REF UINT32_MARSHAL_REF

52 #define TPM_HC_MARSHAL_REF UINT32_MARSHAL_REF

53 #define TPMA_PERMANENT_MARSHAL_REF UINT32_MARSHAL_REF

54 #define TPMA_STARTUP_CLEAR_MARSHAL_REF UINT32_MARSHAL_REF

55 #define TPMA_MEMORY_MARSHAL_REF UINT32_MARSHAL_REF

56 #define TPMA_CC_MARSHAL_REF UINT32_MARSHAL_REF

57 #define TPMA_MODES_MARSHAL_REF UINT32_MARSHAL_REF

58 #define TPMA_X509_KEY_USAGE_MARSHAL_REF UINT32_MARSHAL_REF

59 #define TPM_NV_INDEX_MARSHAL_REF UINT32_MARSHAL_REF

60 #define TPM_AE_MARSHAL_REF UINT32_MARSHAL_REF

61 #define UINT64_MARSHAL_REF \

62 ((UINT16)(offsetof(MarshalData_st, UINT64_DATA)))

63 #define INT8_MARSHAL_REF \

64 ((UINT16)(offsetof(MarshalData_st, INT8_DATA)))

65 #define INT16_MARSHAL_REF \

66 ((UINT16)(offsetof(MarshalData_st, INT16_DATA)))

67 #define INT32_MARSHAL_REF \

68 ((UINT16)(offsetof(MarshalData_st, INT32_DATA)))

69 #define INT64_MARSHAL_REF \

70 ((UINT16)(offsetof(MarshalData_st, INT64_DATA)))

71 #define UINT0_MARSHAL_REF \

72 ((UINT16)(offsetof(MarshalData_st, UINT0_DATA)))

73 #define TPM_ECC_CURVE_MARSHAL_REF \

74 ((UINT16)(offsetof(MarshalData_st, TPM_ECC_CURVE_DATA)))

75 #define TPM_CLOCK_ADJUST_MARSHAL_REF \

76 ((UINT16)(offsetof(MarshalData_st, TPM_CLOCK_ADJUST_DATA)))

77 #define TPM_EO_MARSHAL_REF \

78 ((UINT16)(offsetof(MarshalData_st, TPM_EO_DATA)))

79 #define TPM_SU_MARSHAL_REF \

80 ((UINT16)(offsetof(MarshalData_st, TPM_SU_DATA)))

81 #define TPM_SE_MARSHAL_REF \

82 ((UINT16)(offsetof(MarshalData_st, TPM_SE_DATA)))

83 #define TPM_CAP_MARSHAL_REF \

84 ((UINT16)(offsetof(MarshalData_st, TPM_CAP_DATA)))

85 #define TPMA_ALGORITHM_MARSHAL_REF \

86 ((UINT16)(offsetof(MarshalData_st, TPMA_ALGORITHM_DATA)))

87 #define TPMA_OBJECT_MARSHAL_REF \

88 ((UINT16)(offsetof(MarshalData_st, TPMA_OBJECT_DATA)))

89 #define TPMA_SESSION_MARSHAL_REF \

90 ((UINT16)(offsetof(MarshalData_st, TPMA_SESSION_DATA)))

91 #define TPMA_ACT_MARSHAL_REF \

92 ((UINT16)(offsetof(MarshalData_st, TPMA_ACT_DATA)))

93 #define TPMI_YES_NO_MARSHAL_REF \

94 ((UINT16)(offsetof(MarshalData_st, TPMI_YES_NO_DATA)))

95 #define TPMI_DH_OBJECT_MARSHAL_REF \

96 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_OBJECT_DATA)))

97 #define TPMI_DH_PARENT_MARSHAL_REF \

98 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_PARENT_DATA)))

99 #define TPMI_DH_PERSISTENT_MARSHAL_REF \

100 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_PERSISTENT_DATA)))

101 #define TPMI_DH_ENTITY_MARSHAL_REF \

102 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_ENTITY_DATA)))

103 #define TPMI_DH_PCR_MARSHAL_REF \

104 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_PCR_DATA)))

105 #define TPMI_SH_AUTH_SESSION_MARSHAL_REF \

106 ((UINT16)(offsetof(MarshalData_st, TPMI_SH_AUTH_SESSION_DATA)))

107 #define TPMI_SH_HMAC_MARSHAL_REF \

108 ((UINT16)(offsetof(MarshalData_st, TPMI_SH_HMAC_DATA)))

109 #define TPMI_SH_POLICY_MARSHAL_REF \

Trusted Platform Module Library Part 4: Supporting Routines

Page 478 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

110 ((UINT16)(offsetof(MarshalData_st, TPMI_SH_POLICY_DATA)))

111 #define TPMI_DH_CONTEXT_MARSHAL_REF \

112 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_CONTEXT_DATA)))

113 #define TPMI_DH_SAVED_MARSHAL_REF \

114 ((UINT16)(offsetof(MarshalData_st, TPMI_DH_SAVED_DATA)))

115 #define TPMI_RH_HIERARCHY_MARSHAL_REF \

116 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_HIERARCHY_DATA)))

117 #define TPMI_RH_ENABLES_MARSHAL_REF \

118 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_ENABLES_DATA)))

119 #define TPMI_RH_HIERARCHY_AUTH_MARSHAL_REF \

120 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_HIERARCHY_AUTH_DATA)))

121 #define TPMI_RH_HIERARCHY_POLICY_MARSHAL_REF \

122 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_HIERARCHY_POLICY_DATA)))

123 #define TPMI_RH_PLATFORM_MARSHAL_REF \

124 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_PLATFORM_DATA)))

125 #define TPMI_RH_OWNER_MARSHAL_REF \

126 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_OWNER_DATA)))

127 #define TPMI_RH_ENDORSEMENT_MARSHAL_REF \

128 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_ENDORSEMENT_DATA)))

129 #define TPMI_RH_PROVISION_MARSHAL_REF \

130 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_PROVISION_DATA)))

131 #define TPMI_RH_CLEAR_MARSHAL_REF \

132 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_CLEAR_DATA)))

133 #define TPMI_RH_NV_AUTH_MARSHAL_REF \

134 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_NV_AUTH_DATA)))

135 #define TPMI_RH_LOCKOUT_MARSHAL_REF \

136 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_LOCKOUT_DATA)))

137 #define TPMI_RH_NV_INDEX_MARSHAL_REF \

138 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_NV_INDEX_DATA)))

139 #define TPMI_RH_AC_MARSHAL_REF \

140 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_AC_DATA)))

141 #define TPMI_RH_ACT_MARSHAL_REF \

142 ((UINT16)(offsetof(MarshalData_st, TPMI_RH_ACT_DATA)))

143 #define TPMI_ALG_HASH_MARSHAL_REF \

144 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_HASH_DATA)))

145 #define TPMI_ALG_ASYM_MARSHAL_REF \

146 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_ASYM_DATA)))

147 #define TPMI_ALG_SYM_MARSHAL_REF \

148 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_SYM_DATA)))

149 #define TPMI_ALG_SYM_OBJECT_MARSHAL_REF \

150 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_SYM_OBJECT_DATA)))

151 #define TPMI_ALG_SYM_MODE_MARSHAL_REF \

152 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_SYM_MODE_DATA)))

153 #define TPMI_ALG_KDF_MARSHAL_REF \

154 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_KDF_DATA)))

155 #define TPMI_ALG_SIG_SCHEME_MARSHAL_REF \

156 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_SIG_SCHEME_DATA)))

157 #define TPMI_ECC_KEY_EXCHANGE_MARSHAL_REF \

158 ((UINT16)(offsetof(MarshalData_st, TPMI_ECC_KEY_EXCHANGE_DATA)))

159 #define TPMI_ST_COMMAND_TAG_MARSHAL_REF \

160 ((UINT16)(offsetof(MarshalData_st, TPMI_ST_COMMAND_TAG_DATA)))

161 #define TPMI_ALG_MAC_SCHEME_MARSHAL_REF \

162 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_MAC_SCHEME_DATA)))

163 #define TPMI_ALG_CIPHER_MODE_MARSHAL_REF \

164 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_CIPHER_MODE_DATA)))

165 #define TPMS_EMPTY_MARSHAL_REF \

166 ((UINT16)(offsetof(MarshalData_st, TPMS_EMPTY_DATA)))

167 #define TPMS_ENC_SCHEME_RSAES_MARSHAL_REF TPMS_EMPTY_MARSHAL_REF

168 #define TPMS_ALGORITHM_DESCRIPTION_MARSHAL_REF \

169 ((UINT16)(offsetof(MarshalData_st, TPMS_ALGORITHM_DESCRIPTION_DATA)))

170 #define TPMU_HA_MARSHAL_REF \

171 ((UINT16)(offsetof(MarshalData_st, TPMU_HA_DATA)))

172 #define TPMT_HA_MARSHAL_REF \

173 ((UINT16)(offsetof(MarshalData_st, TPMT_HA_DATA)))

174 #define TPM2B_DIGEST_MARSHAL_REF \

175 ((UINT16)(offsetof(MarshalData_st, TPM2B_DIGEST_DATA)))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 479

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

176 #define TPM2B_NONCE_MARSHAL_REF TPM2B_DIGEST_MARSHAL_REF

177 #define TPM2B_AUTH_MARSHAL_REF TPM2B_DIGEST_MARSHAL_REF

178 #define TPM2B_OPERAND_MARSHAL_REF TPM2B_DIGEST_MARSHAL_REF

179 #define TPM2B_DATA_MARSHAL_REF \

180 ((UINT16)(offsetof(MarshalData_st, TPM2B_DATA_DATA)))

181 #define TPM2B_EVENT_MARSHAL_REF \

182 ((UINT16)(offsetof(MarshalData_st, TPM2B_EVENT_DATA)))

183 #define TPM2B_MAX_BUFFER_MARSHAL_REF \

184 ((UINT16)(offsetof(MarshalData_st, TPM2B_MAX_BUFFER_DATA)))

185 #define TPM2B_MAX_NV_BUFFER_MARSHAL_REF \

186 ((UINT16)(offsetof(MarshalData_st, TPM2B_MAX_NV_BUFFER_DATA)))

187 #define TPM2B_TIMEOUT_MARSHAL_REF \

188 ((UINT16)(offsetof(MarshalData_st, TPM2B_TIMEOUT_DATA)))

189 #define TPM2B_IV_MARSHAL_REF \

190 ((UINT16)(offsetof(MarshalData_st, TPM2B_IV_DATA)))

191 #define NULL_UNION_MARSHAL_REF \

192 ((UINT16)(offsetof(MarshalData_st, NULL_UNION_DATA)))

193 #define TPMU_NAME_MARSHAL_REF NULL_UNION_MARSHAL_REF

194 #define TPMU_SENSITIVE_CREATE_MARSHAL_REF NULL_UNION_MARSHAL_REF

195 #define TPM2B_NAME_MARSHAL_REF \

196 ((UINT16)(offsetof(MarshalData_st, TPM2B_NAME_DATA)))

197 #define TPMS_PCR_SELECT_MARSHAL_REF \

198 ((UINT16)(offsetof(MarshalData_st, TPMS_PCR_SELECT_DATA)))

199 #define TPMS_PCR_SELECTION_MARSHAL_REF \

200 ((UINT16)(offsetof(MarshalData_st, TPMS_PCR_SELECTION_DATA)))

201 #define TPMT_TK_CREATION_MARSHAL_REF \

202 ((UINT16)(offsetof(MarshalData_st, TPMT_TK_CREATION_DATA)))

203 #define TPMT_TK_VERIFIED_MARSHAL_REF \

204 ((UINT16)(offsetof(MarshalData_st, TPMT_TK_VERIFIED_DATA)))

205 #define TPMT_TK_AUTH_MARSHAL_REF \

206 ((UINT16)(offsetof(MarshalData_st, TPMT_TK_AUTH_DATA)))

207 #define TPMT_TK_HASHCHECK_MARSHAL_REF \

208 ((UINT16)(offsetof(MarshalData_st, TPMT_TK_HASHCHECK_DATA)))

209 #define TPMS_ALG_PROPERTY_MARSHAL_REF \

210 ((UINT16)(offsetof(MarshalData_st, TPMS_ALG_PROPERTY_DATA)))

211 #define TPMS_TAGGED_PROPERTY_MARSHAL_REF \

212 ((UINT16)(offsetof(MarshalData_st, TPMS_TAGGED_PROPERTY_DATA)))

213 #define TPMS_TAGGED_PCR_SELECT_MARSHAL_REF \

214 ((UINT16)(offsetof(MarshalData_st, TPMS_TAGGED_PCR_SELECT_DATA)))

215 #define TPMS_TAGGED_POLICY_MARSHAL_REF \

216 ((UINT16)(offsetof(MarshalData_st, TPMS_TAGGED_POLICY_DATA)))

217 #define TPMS_ACT_DATA_MARSHAL_REF \

218 ((UINT16)(offsetof(MarshalData_st, TPMS_ACT_DATA_DATA)))

219 #define TPML_CC_MARSHAL_REF \

220 ((UINT16)(offsetof(MarshalData_st, TPML_CC_DATA)))

221 #define TPML_CCA_MARSHAL_REF \

222 ((UINT16)(offsetof(MarshalData_st, TPML_CCA_DATA)))

223 #define TPML_ALG_MARSHAL_REF \

224 ((UINT16)(offsetof(MarshalData_st, TPML_ALG_DATA)))

225 #define TPML_HANDLE_MARSHAL_REF \

226 ((UINT16)(offsetof(MarshalData_st, TPML_HANDLE_DATA)))

227 #define TPML_DIGEST_MARSHAL_REF \

228 ((UINT16)(offsetof(MarshalData_st, TPML_DIGEST_DATA)))

229 #define TPML_DIGEST_VALUES_MARSHAL_REF \

230 ((UINT16)(offsetof(MarshalData_st, TPML_DIGEST_VALUES_DATA)))

231 #define TPML_PCR_SELECTION_MARSHAL_REF \

232 ((UINT16)(offsetof(MarshalData_st, TPML_PCR_SELECTION_DATA)))

233 #define TPML_ALG_PROPERTY_MARSHAL_REF \

234 ((UINT16)(offsetof(MarshalData_st, TPML_ALG_PROPERTY_DATA)))

235 #define TPML_TAGGED_TPM_PROPERTY_MARSHAL_REF \

236 ((UINT16)(offsetof(MarshalData_st, TPML_TAGGED_TPM_PROPERTY_DATA)))

237 #define TPML_TAGGED_PCR_PROPERTY_MARSHAL_REF \

238 ((UINT16)(offsetof(MarshalData_st, TPML_TAGGED_PCR_PROPERTY_DATA)))

239 #define TPML_ECC_CURVE_MARSHAL_REF \

240 ((UINT16)(offsetof(MarshalData_st, TPML_ECC_CURVE_DATA)))

241 #define TPML_TAGGED_POLICY_MARSHAL_REF \

Trusted Platform Module Library Part 4: Supporting Routines

Page 480 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

242 ((UINT16)(offsetof(MarshalData_st, TPML_TAGGED_POLICY_DATA)))

243 #define TPML_ACT_DATA_MARSHAL_REF \

244 ((UINT16)(offsetof(MarshalData_st, TPML_ACT_DATA_DATA)))

245 #define TPMU_CAPABILITIES_MARSHAL_REF \

246 ((UINT16)(offsetof(MarshalData_st, TPMU_CAPABILITIES_DATA)))

247 #define TPMS_CAPABILITY_DATA_MARSHAL_REF \

248 ((UINT16)(offsetof(MarshalData_st, TPMS_CAPABILITY_DATA_DATA)))

249 #define TPMS_CLOCK_INFO_MARSHAL_REF \

250 ((UINT16)(offsetof(MarshalData_st, TPMS_CLOCK_INFO_DATA)))

251 #define TPMS_TIME_INFO_MARSHAL_REF \

252 ((UINT16)(offsetof(MarshalData_st, TPMS_TIME_INFO_DATA)))

253 #define TPMS_TIME_ATTEST_INFO_MARSHAL_REF \

254 ((UINT16)(offsetof(MarshalData_st, TPMS_TIME_ATTEST_INFO_DATA)))

255 #define TPMS_CERTIFY_INFO_MARSHAL_REF \

256 ((UINT16)(offsetof(MarshalData_st, TPMS_CERTIFY_INFO_DATA)))

257 #define TPMS_QUOTE_INFO_MARSHAL_REF \

258 ((UINT16)(offsetof(MarshalData_st, TPMS_QUOTE_INFO_DATA)))

259 #define TPMS_COMMAND_AUDIT_INFO_MARSHAL_REF \

260 ((UINT16)(offsetof(MarshalData_st, TPMS_COMMAND_AUDIT_INFO_DATA)))

261 #define TPMS_SESSION_AUDIT_INFO_MARSHAL_REF \

262 ((UINT16)(offsetof(MarshalData_st, TPMS_SESSION_AUDIT_INFO_DATA)))

263 #define TPMS_CREATION_INFO_MARSHAL_REF \

264 ((UINT16)(offsetof(MarshalData_st, TPMS_CREATION_INFO_DATA)))

265 #define TPMS_NV_CERTIFY_INFO_MARSHAL_REF \

266 ((UINT16)(offsetof(MarshalData_st, TPMS_NV_CERTIFY_INFO_DATA)))

267 #define TPMS_NV_DIGEST_CERTIFY_INFO_MARSHAL_REF \

268 ((UINT16)(offsetof(MarshalData_st, TPMS_NV_DIGEST_CERTIFY_INFO_DATA)))

269 #define TPMI_ST_ATTEST_MARSHAL_REF \

270 ((UINT16)(offsetof(MarshalData_st, TPMI_ST_ATTEST_DATA)))

271 #define TPMU_ATTEST_MARSHAL_REF \

272 ((UINT16)(offsetof(MarshalData_st, TPMU_ATTEST_DATA)))

273 #define TPMS_ATTEST_MARSHAL_REF \

274 ((UINT16)(offsetof(MarshalData_st, TPMS_ATTEST_DATA)))

275 #define TPM2B_ATTEST_MARSHAL_REF \

276 ((UINT16)(offsetof(MarshalData_st, TPM2B_ATTEST_DATA)))

277 #define TPMS_AUTH_COMMAND_MARSHAL_REF \

278 ((UINT16)(offsetof(MarshalData_st, TPMS_AUTH_COMMAND_DATA)))

279 #define TPMS_AUTH_RESPONSE_MARSHAL_REF \

280 ((UINT16)(offsetof(MarshalData_st, TPMS_AUTH_RESPONSE_DATA)))

281 #define TPMI_TDES_KEY_BITS_MARSHAL_REF \

282 ((UINT16)(offsetof(MarshalData_st, TPMI_TDES_KEY_BITS_DATA)))

283 #define TPMI_AES_KEY_BITS_MARSHAL_REF \

284 ((UINT16)(offsetof(MarshalData_st, TPMI_AES_KEY_BITS_DATA)))

285 #define TPMI_SM4_KEY_BITS_MARSHAL_REF \

286 ((UINT16)(offsetof(MarshalData_st, TPMI_SM4_KEY_BITS_DATA)))

287 #define TPMI_CAMELLIA_KEY_BITS_MARSHAL_REF \

288 ((UINT16)(offsetof(MarshalData_st, TPMI_CAMELLIA_KEY_BITS_DATA)))

289 #define TPMU_SYM_KEY_BITS_MARSHAL_REF \

290 ((UINT16)(offsetof(MarshalData_st, TPMU_SYM_KEY_BITS_DATA)))

291 #define TPMU_SYM_MODE_MARSHAL_REF \

292 ((UINT16)(offsetof(MarshalData_st, TPMU_SYM_MODE_DATA)))

293 #define TPMT_SYM_DEF_MARSHAL_REF \

294 ((UINT16)(offsetof(MarshalData_st, TPMT_SYM_DEF_DATA)))

295 #define TPMT_SYM_DEF_OBJECT_MARSHAL_REF \

296 ((UINT16)(offsetof(MarshalData_st, TPMT_SYM_DEF_OBJECT_DATA)))

297 #define TPM2B_SYM_KEY_MARSHAL_REF \

298 ((UINT16)(offsetof(MarshalData_st, TPM2B_SYM_KEY_DATA)))

299 #define TPMS_SYMCIPHER_PARMS_MARSHAL_REF \

300 ((UINT16)(offsetof(MarshalData_st, TPMS_SYMCIPHER_PARMS_DATA)))

301 #define TPM2B_LABEL_MARSHAL_REF \

302 ((UINT16)(offsetof(MarshalData_st, TPM2B_LABEL_DATA)))

303 #define TPMS_DERIVE_MARSHAL_REF \

304 ((UINT16)(offsetof(MarshalData_st, TPMS_DERIVE_DATA)))

305 #define TPM2B_DERIVE_MARSHAL_REF \

306 ((UINT16)(offsetof(MarshalData_st, TPM2B_DERIVE_DATA)))

307 #define TPM2B_SENSITIVE_DATA_MARSHAL_REF \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 481

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

308 ((UINT16)(offsetof(MarshalData_st, TPM2B_SENSITIVE_DATA_DATA)))

309 #define TPMS_SENSITIVE_CREATE_MARSHAL_REF \

310 ((UINT16)(offsetof(MarshalData_st, TPMS_SENSITIVE_CREATE_DATA)))

311 #define TPM2B_SENSITIVE_CREATE_MARSHAL_REF \

312 ((UINT16)(offsetof(MarshalData_st, TPM2B_SENSITIVE_CREATE_DATA)))

313 #define TPMS_SCHEME_HASH_MARSHAL_REF \

314 ((UINT16)(offsetof(MarshalData_st, TPMS_SCHEME_HASH_DATA)))

315 #define TPMS_SCHEME_HMAC_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

316 #define TPMS_SIG_SCHEME_RSASSA_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

317 #define TPMS_SIG_SCHEME_RSAPSS_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

318 #define TPMS_SIG_SCHEME_ECDSA_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

319 #define TPMS_SIG_SCHEME_SM2_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

320 #define TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

321 #define TPMS_ENC_SCHEME_OAEP_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

322 #define TPMS_KEY_SCHEME_ECDH_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

323 #define TPMS_KEY_SCHEME_ECMQV_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

324 #define TPMS_SCHEME_MGF1_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

325 #define TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

326 #define TPMS_SCHEME_KDF2_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

327 #define TPMS_SCHEME_KDF1_SP800_108_MARSHAL_REF TPMS_SCHEME_HASH_MARSHAL_REF

328 #define TPMS_SCHEME_ECDAA_MARSHAL_REF \

329 ((UINT16)(offsetof(MarshalData_st, TPMS_SCHEME_ECDAA_DATA)))

330 #define TPMS_SIG_SCHEME_ECDAA_MARSHAL_REF TPMS_SCHEME_ECDAA_MARSHAL_REF

331 #define TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_REF \

332 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_KEYEDHASH_SCHEME_DATA)))

333 #define TPMS_SCHEME_XOR_MARSHAL_REF \

334 ((UINT16)(offsetof(MarshalData_st, TPMS_SCHEME_XOR_DATA)))

335 #define TPMU_SCHEME_KEYEDHASH_MARSHAL_REF \

336 ((UINT16)(offsetof(MarshalData_st, TPMU_SCHEME_KEYEDHASH_DATA)))

337 #define TPMT_KEYEDHASH_SCHEME_MARSHAL_REF \

338 ((UINT16)(offsetof(MarshalData_st, TPMT_KEYEDHASH_SCHEME_DATA)))

339 #define TPMU_SIG_SCHEME_MARSHAL_REF \

340 ((UINT16)(offsetof(MarshalData_st, TPMU_SIG_SCHEME_DATA)))

341 #define TPMT_SIG_SCHEME_MARSHAL_REF \

342 ((UINT16)(offsetof(MarshalData_st, TPMT_SIG_SCHEME_DATA)))

343 #define TPMU_KDF_SCHEME_MARSHAL_REF \

344 ((UINT16)(offsetof(MarshalData_st, TPMU_KDF_SCHEME_DATA)))

345 #define TPMT_KDF_SCHEME_MARSHAL_REF \

346 ((UINT16)(offsetof(MarshalData_st, TPMT_KDF_SCHEME_DATA)))

347 #define TPMI_ALG_ASYM_SCHEME_MARSHAL_REF \

348 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_ASYM_SCHEME_DATA)))

349 #define TPMU_ASYM_SCHEME_MARSHAL_REF \

350 ((UINT16)(offsetof(MarshalData_st, TPMU_ASYM_SCHEME_DATA)))

351 #define TPMI_ALG_RSA_SCHEME_MARSHAL_REF \

352 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_RSA_SCHEME_DATA)))

353 #define TPMT_RSA_SCHEME_MARSHAL_REF \

354 ((UINT16)(offsetof(MarshalData_st, TPMT_RSA_SCHEME_DATA)))

355 #define TPMI_ALG_RSA_DECRYPT_MARSHAL_REF \

356 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_RSA_DECRYPT_DATA)))

357 #define TPMT_RSA_DECRYPT_MARSHAL_REF \

358 ((UINT16)(offsetof(MarshalData_st, TPMT_RSA_DECRYPT_DATA)))

359 #define TPM2B_PUBLIC_KEY_RSA_MARSHAL_REF \

360 ((UINT16)(offsetof(MarshalData_st, TPM2B_PUBLIC_KEY_RSA_DATA)))

361 #define TPMI_RSA_KEY_BITS_MARSHAL_REF \

362 ((UINT16)(offsetof(MarshalData_st, TPMI_RSA_KEY_BITS_DATA)))

363 #define TPM2B_PRIVATE_KEY_RSA_MARSHAL_REF \

364 ((UINT16)(offsetof(MarshalData_st, TPM2B_PRIVATE_KEY_RSA_DATA)))

365 #define TPM2B_ECC_PARAMETER_MARSHAL_REF \

366 ((UINT16)(offsetof(MarshalData_st, TPM2B_ECC_PARAMETER_DATA)))

367 #define TPMS_ECC_POINT_MARSHAL_REF \

368 ((UINT16)(offsetof(MarshalData_st, TPMS_ECC_POINT_DATA)))

369 #define TPM2B_ECC_POINT_MARSHAL_REF \

370 ((UINT16)(offsetof(MarshalData_st, TPM2B_ECC_POINT_DATA)))

371 #define TPMI_ALG_ECC_SCHEME_MARSHAL_REF \

372 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_ECC_SCHEME_DATA)))

373 #define TPMI_ECC_CURVE_MARSHAL_REF \

Trusted Platform Module Library Part 4: Supporting Routines

Page 482 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

374 ((UINT16)(offsetof(MarshalData_st, TPMI_ECC_CURVE_DATA)))

375 #define TPMT_ECC_SCHEME_MARSHAL_REF \

376 ((UINT16)(offsetof(MarshalData_st, TPMT_ECC_SCHEME_DATA)))

377 #define TPMS_ALGORITHM_DETAIL_ECC_MARSHAL_REF \

378 ((UINT16)(offsetof(MarshalData_st, TPMS_ALGORITHM_DETAIL_ECC_DATA)))

379 #define TPMS_SIGNATURE_RSA_MARSHAL_REF \

380 ((UINT16)(offsetof(MarshalData_st, TPMS_SIGNATURE_RSA_DATA)))

381 #define TPMS_SIGNATURE_RSASSA_MARSHAL_REF TPMS_SIGNATURE_RSA_MARSHAL_REF

382 #define TPMS_SIGNATURE_RSAPSS_MARSHAL_REF TPMS_SIGNATURE_RSA_MARSHAL_REF

383 #define TPMS_SIGNATURE_ECC_MARSHAL_REF \

384 ((UINT16)(offsetof(MarshalData_st, TPMS_SIGNATURE_ECC_DATA)))

385 #define TPMS_SIGNATURE_ECDAA_MARSHAL_REF TPMS_SIGNATURE_ECC_MARSHAL_REF

386 #define TPMS_SIGNATURE_ECDSA_MARSHAL_REF TPMS_SIGNATURE_ECC_MARSHAL_REF

387 #define TPMS_SIGNATURE_SM2_MARSHAL_REF TPMS_SIGNATURE_ECC_MARSHAL_REF

388 #define TPMS_SIGNATURE_ECSCHNORR_MARSHAL_REF TPMS_SIGNATURE_ECC_MARSHAL_REF

389 #define TPMU_SIGNATURE_MARSHAL_REF \

390 ((UINT16)(offsetof(MarshalData_st, TPMU_SIGNATURE_DATA)))

391 #define TPMT_SIGNATURE_MARSHAL_REF \

392 ((UINT16)(offsetof(MarshalData_st, TPMT_SIGNATURE_DATA)))

393 #define TPMU_ENCRYPTED_SECRET_MARSHAL_REF \

394 ((UINT16)(offsetof(MarshalData_st, TPMU_ENCRYPTED_SECRET_DATA)))

395 #define TPM2B_ENCRYPTED_SECRET_MARSHAL_REF \

396 ((UINT16)(offsetof(MarshalData_st, TPM2B_ENCRYPTED_SECRET_DATA)))

397 #define TPMI_ALG_PUBLIC_MARSHAL_REF \

398 ((UINT16)(offsetof(MarshalData_st, TPMI_ALG_PUBLIC_DATA)))

399 #define TPMU_PUBLIC_ID_MARSHAL_REF \

400 ((UINT16)(offsetof(MarshalData_st, TPMU_PUBLIC_ID_DATA)))

401 #define TPMS_KEYEDHASH_PARMS_MARSHAL_REF \

402 ((UINT16)(offsetof(MarshalData_st, TPMS_KEYEDHASH_PARMS_DATA)))

403 #define TPMS_RSA_PARMS_MARSHAL_REF \

404 ((UINT16)(offsetof(MarshalData_st, TPMS_RSA_PARMS_DATA)))

405 #define TPMS_ECC_PARMS_MARSHAL_REF \

406 ((UINT16)(offsetof(MarshalData_st, TPMS_ECC_PARMS_DATA)))

407 #define TPMU_PUBLIC_PARMS_MARSHAL_REF \

408 ((UINT16)(offsetof(MarshalData_st, TPMU_PUBLIC_PARMS_DATA)))

409 #define TPMT_PUBLIC_PARMS_MARSHAL_REF \

410 ((UINT16)(offsetof(MarshalData_st, TPMT_PUBLIC_PARMS_DATA)))

411 #define TPMT_PUBLIC_MARSHAL_REF \

412 ((UINT16)(offsetof(MarshalData_st, TPMT_PUBLIC_DATA)))

413 #define TPM2B_PUBLIC_MARSHAL_REF \

414 ((UINT16)(offsetof(MarshalData_st, TPM2B_PUBLIC_DATA)))

415 #define TPM2B_TEMPLATE_MARSHAL_REF \

416 ((UINT16)(offsetof(MarshalData_st, TPM2B_TEMPLATE_DATA)))

417 #define TPM2B_PRIVATE_VENDOR_SPECIFIC_MARSHAL_REF \

418 ((UINT16)(offsetof(MarshalData_st, TPM2B_PRIVATE_VENDOR_SPECIFIC_DATA)))

419 #define TPMU_SENSITIVE_COMPOSITE_MARSHAL_REF \

420 ((UINT16)(offsetof(MarshalData_st, TPMU_SENSITIVE_COMPOSITE_DATA)))

421 #define TPMT_SENSITIVE_MARSHAL_REF \

422 ((UINT16)(offsetof(MarshalData_st, TPMT_SENSITIVE_DATA)))

423 #define TPM2B_SENSITIVE_MARSHAL_REF \

424 ((UINT16)(offsetof(MarshalData_st, TPM2B_SENSITIVE_DATA)))

425 #define TPM2B_PRIVATE_MARSHAL_REF \

426 ((UINT16)(offsetof(MarshalData_st, TPM2B_PRIVATE_DATA)))

427 #define TPM2B_ID_OBJECT_MARSHAL_REF \

428 ((UINT16)(offsetof(MarshalData_st, TPM2B_ID_OBJECT_DATA)))

429 #define TPMS_NV_PIN_COUNTER_PARAMETERS_MARSHAL_REF \

430 ((UINT16)(offsetof(MarshalData_st, TPMS_NV_PIN_COUNTER_PARAMETERS_DATA)))

431 #define TPMA_NV_MARSHAL_REF \

432 ((UINT16)(offsetof(MarshalData_st, TPMA_NV_DATA)))

433 #define TPMS_NV_PUBLIC_MARSHAL_REF \

434 ((UINT16)(offsetof(MarshalData_st, TPMS_NV_PUBLIC_DATA)))

435 #define TPM2B_NV_PUBLIC_MARSHAL_REF \

436 ((UINT16)(offsetof(MarshalData_st, TPM2B_NV_PUBLIC_DATA)))

437 #define TPM2B_CONTEXT_SENSITIVE_MARSHAL_REF \

438 ((UINT16)(offsetof(MarshalData_st, TPM2B_CONTEXT_SENSITIVE_DATA)))

439 #define TPMS_CONTEXT_DATA_MARSHAL_REF \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 483

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

440 ((UINT16)(offsetof(MarshalData_st, TPMS_CONTEXT_DATA_DATA)))

441 #define TPM2B_CONTEXT_DATA_MARSHAL_REF \

442 ((UINT16)(offsetof(MarshalData_st, TPM2B_CONTEXT_DATA_DATA)))

443 #define TPMS_CONTEXT_MARSHAL_REF \

444 ((UINT16)(offsetof(MarshalData_st, TPMS_CONTEXT_DATA)))

445 #define TPMS_CREATION_DATA_MARSHAL_REF \

446 ((UINT16)(offsetof(MarshalData_st, TPMS_CREATION_DATA_DATA)))

447 #define TPM2B_CREATION_DATA_MARSHAL_REF \

448 ((UINT16)(offsetof(MarshalData_st, TPM2B_CREATION_DATA_DATA)))

449 #define TPM_AT_MARSHAL_REF \

450 ((UINT16)(offsetof(MarshalData_st, TPM_AT_DATA)))

451 #define TPMS_AC_OUTPUT_MARSHAL_REF \

452 ((UINT16)(offsetof(MarshalData_st, TPMS_AC_OUTPUT_DATA)))

453 #define TPML_AC_CAPABILITIES_MARSHAL_REF \

454 ((UINT16)(offsetof(MarshalData_st, TPML_AC_CAPABILITIES_DATA)))

455 #define Type00_MARSHAL_REF \

456 ((UINT16)(offsetof(MarshalData_st, Type00_DATA)))

457 #define Type01_MARSHAL_REF \

458 ((UINT16)(offsetof(MarshalData_st, Type01_DATA)))

459 #define Type02_MARSHAL_REF \

460 ((UINT16)(offsetof(MarshalData_st, Type02_DATA)))

461 #define Type03_MARSHAL_REF \

462 ((UINT16)(offsetof(MarshalData_st, Type03_DATA)))

463 #define Type04_MARSHAL_REF \

464 ((UINT16)(offsetof(MarshalData_st, Type04_DATA)))

465 #define Type05_MARSHAL_REF \

466 ((UINT16)(offsetof(MarshalData_st, Type05_DATA)))

467 #define Type06_MARSHAL_REF \

468 ((UINT16)(offsetof(MarshalData_st, Type06_DATA)))

469 #define Type07_MARSHAL_REF \

470 ((UINT16)(offsetof(MarshalData_st, Type07_DATA)))

471 #define Type08_MARSHAL_REF \

472 ((UINT16)(offsetof(MarshalData_st, Type08_DATA)))

473 #define Type09_MARSHAL_REF Type08_MARSHAL_REF

474 #define Type14_MARSHAL_REF Type08_MARSHAL_REF

475 #define Type10_MARSHAL_REF \

476 ((UINT16)(offsetof(MarshalData_st, Type10_DATA)))

477 #define Type11_MARSHAL_REF \

478 ((UINT16)(offsetof(MarshalData_st, Type11_DATA)))

479 #define Type12_MARSHAL_REF \

480 ((UINT16)(offsetof(MarshalData_st, Type12_DATA)))

481 #define Type13_MARSHAL_REF \

482 ((UINT16)(offsetof(MarshalData_st, Type13_DATA)))

483 #define Type15_MARSHAL_REF \

484 ((UINT16)(offsetof(MarshalData_st, Type15_DATA)))

485 #define Type16_MARSHAL_REF Type15_MARSHAL_REF

486 #define Type17_MARSHAL_REF \

487 ((UINT16)(offsetof(MarshalData_st, Type17_DATA)))

488 #define Type18_MARSHAL_REF \

489 ((UINT16)(offsetof(MarshalData_st, Type18_DATA)))

490 #define Type19_MARSHAL_REF \

491 ((UINT16)(offsetof(MarshalData_st, Type19_DATA)))

492 #define Type20_MARSHAL_REF \

493 ((UINT16)(offsetof(MarshalData_st, Type20_DATA)))

494 #define Type21_MARSHAL_REF Type20_MARSHAL_REF

495 #define Type22_MARSHAL_REF \

496 ((UINT16)(offsetof(MarshalData_st, Type22_DATA)))

497 #define Type23_MARSHAL_REF \

498 ((UINT16)(offsetof(MarshalData_st, Type23_DATA)))

499 #define Type24_MARSHAL_REF \

500 ((UINT16)(offsetof(MarshalData_st, Type24_DATA)))

501 #define Type25_MARSHAL_REF \

502 ((UINT16)(offsetof(MarshalData_st, Type25_DATA)))

503 #define Type26_MARSHAL_REF \

504 ((UINT16)(offsetof(MarshalData_st, Type26_DATA)))

505 #define Type27_MARSHAL_REF \

Trusted Platform Module Library Part 4: Supporting Routines

Page 484 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

506 ((UINT16)(offsetof(MarshalData_st, Type27_DATA)))

507 #define Type28_MARSHAL_REF \

508 ((UINT16)(offsetof(MarshalData_st, Type28_DATA)))

509 #define Type29_MARSHAL_REF \

510 ((UINT16)(offsetof(MarshalData_st, Type29_DATA)))

511 #define Type30_MARSHAL_REF \

512 ((UINT16)(offsetof(MarshalData_st, Type30_DATA)))

513 #define Type31_MARSHAL_REF \

514 ((UINT16)(offsetof(MarshalData_st, Type31_DATA)))

515 #define Type32_MARSHAL_REF \

516 ((UINT16)(offsetof(MarshalData_st, Type32_DATA)))

517 #define Type33_MARSHAL_REF \

518 ((UINT16)(offsetof(MarshalData_st, Type33_DATA)))

519 #define Type34_MARSHAL_REF \

520 ((UINT16)(offsetof(MarshalData_st, Type34_DATA)))

521 #define Type35_MARSHAL_REF \

522 ((UINT16)(offsetof(MarshalData_st, Type35_DATA)))

523 #define Type36_MARSHAL_REF \

524 ((UINT16)(offsetof(MarshalData_st, Type36_DATA)))

525 #define Type37_MARSHAL_REF \

526 ((UINT16)(offsetof(MarshalData_st, Type37_DATA)))

527 #define Type38_MARSHAL_REF \

528 ((UINT16)(offsetof(MarshalData_st, Type38_DATA)))

529 #define Type39_MARSHAL_REF \

530 ((UINT16)(offsetof(MarshalData_st, Type39_DATA)))

531 #define Type40_MARSHAL_REF \

532 ((UINT16)(offsetof(MarshalData_st, Type40_DATA)))

533 #define Type41_MARSHAL_REF \

534 ((UINT16)(offsetof(MarshalData_st, Type41_DATA)))

535 #define Type42_MARSHAL_REF \

536 ((UINT16)(offsetof(MarshalData_st, Type42_DATA)))

537 #define Type43_MARSHAL_REF \

538 ((UINT16)(offsetof(MarshalData_st, Type43_DATA)))

539 #define Type44_MARSHAL_REF \

540 ((UINT16)(offsetof(MarshalData_st, Type44_DATA)))

541 //#defines to change calling sequence for code using marshaling

542 #define UINT8_Unmarshal(target, buffer, size) \

543 Unmarshal(UINT8_MARSHAL_REF, (target), (buffer), (size))

544 #define UINT8_Marshal(source, buffer, size) \

545 Marshal(UINT8_MARSHAL_REF, (source), (buffer), (size))

546 #define BYTE_Unmarshal(target, buffer, size) \

547 Unmarshal(UINT8_MARSHAL_REF, (target), (buffer), (size))

548 #define BYTE_Marshal(source, buffer, size) \

549 Marshal(UINT8_MARSHAL_REF, (source), (buffer), (size))

550 #define INT8_Unmarshal(target, buffer, size) \

551 Unmarshal(INT8_MARSHAL_REF, (target), (buffer), (size))

552 #define INT8_Marshal(source, buffer, size) \

553 Marshal(INT8_MARSHAL_REF, (source), (buffer), (size))

554 #define UINT16_Unmarshal(target, buffer, size) \

555 Unmarshal(UINT16_MARSHAL_REF, (target), (buffer), (size))

556 #define UINT16_Marshal(source, buffer, size) \

557 Marshal(UINT16_MARSHAL_REF, (source), (buffer), (size))

558 #define INT16_Unmarshal(target, buffer, size) \

559 Unmarshal(INT16_MARSHAL_REF, (target), (buffer), (size))

560 #define INT16_Marshal(source, buffer, size) \

561 Marshal(INT16_MARSHAL_REF, (source), (buffer), (size))

562 #define UINT32_Unmarshal(target, buffer, size) \

563 Unmarshal(UINT32_MARSHAL_REF, (target), (buffer), (size))

564 #define UINT32_Marshal(source, buffer, size) \

565 Marshal(UINT32_MARSHAL_REF, (source), (buffer), (size))

566 #define INT32_Unmarshal(target, buffer, size) \

567 Unmarshal(INT32_MARSHAL_REF, (target), (buffer), (size))

568 #define INT32_Marshal(source, buffer, size) \

569 Marshal(INT32_MARSHAL_REF, (source), (buffer), (size))

570 #define UINT64_Unmarshal(target, buffer, size) \

571 Unmarshal(UINT64_MARSHAL_REF, (target), (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 485

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

572 #define UINT64_Marshal(source, buffer, size) \

573 Marshal(UINT64_MARSHAL_REF, (source), (buffer), (size))

574 #define INT64_Unmarshal(target, buffer, size) \

575 Unmarshal(INT64_MARSHAL_REF, (target), (buffer), (size))

576 #define INT64_Marshal(source, buffer, size) \

577 Marshal(INT64_MARSHAL_REF, (source), (buffer), (size))

578 #define TPM_ALGORITHM_ID_Unmarshal(target, buffer, size) \

579 Unmarshal(TPM_ALGORITHM_ID_MARSHAL_REF, (target), (buffer), (size))

580 #define TPM_ALGORITHM_ID_Marshal(source, buffer, size) \

581 Marshal(TPM_ALGORITHM_ID_MARSHAL_REF, (source), (buffer), (size))

582 #define TPM_MODIFIER_INDICATOR_Unmarshal(target, buffer, size) \

583 Unmarshal(TPM_MODIFIER_INDICATOR_MARSHAL_REF, (target), (buffer), (size))

584 #define TPM_MODIFIER_INDICATOR_Marshal(source, buffer, size) \

585 Marshal(TPM_MODIFIER_INDICATOR_MARSHAL_REF, (source), (buffer), (size))

586 #define TPM_AUTHORIZATION_SIZE_Unmarshal(target, buffer, size) \

587 Unmarshal(TPM_AUTHORIZATION_SIZE_MARSHAL_REF, (target), (buffer), (size))

588 #define TPM_AUTHORIZATION_SIZE_Marshal(source, buffer, size) \

589 Marshal(TPM_AUTHORIZATION_SIZE_MARSHAL_REF, (source), (buffer), (size))

590 #define TPM_PARAMETER_SIZE_Unmarshal(target, buffer, size) \

591 Unmarshal(TPM_PARAMETER_SIZE_MARSHAL_REF, (target), (buffer), (size))

592 #define TPM_PARAMETER_SIZE_Marshal(source, buffer, size) \

593 Marshal(TPM_PARAMETER_SIZE_MARSHAL_REF, (source), (buffer), (size))

594 #define TPM_KEY_SIZE_Unmarshal(target, buffer, size) \

595 Unmarshal(TPM_KEY_SIZE_MARSHAL_REF, (target), (buffer), (size))

596 #define TPM_KEY_SIZE_Marshal(source, buffer, size) \

597 Marshal(TPM_KEY_SIZE_MARSHAL_REF, (source), (buffer), (size))

598 #define TPM_KEY_BITS_Unmarshal(target, buffer, size) \

599 Unmarshal(TPM_KEY_BITS_MARSHAL_REF, (target), (buffer), (size))

600 #define TPM_KEY_BITS_Marshal(source, buffer, size) \

601 Marshal(TPM_KEY_BITS_MARSHAL_REF, (source), (buffer), (size))

602 #define TPM_GENERATED_Marshal(source, buffer, size) \

603 Marshal(TPM_GENERATED_MARSHAL_REF, (source), (buffer), (size))

604 #define TPM_ALG_ID_Unmarshal(target, buffer, size) \

605 Unmarshal(TPM_ALG_ID_MARSHAL_REF, (target), (buffer), (size))

606 #define TPM_ALG_ID_Marshal(source, buffer, size) \

607 Marshal(TPM_ALG_ID_MARSHAL_REF, (source), (buffer), (size))

608 #define TPM_ECC_CURVE_Unmarshal(target, buffer, size) \

609 Unmarshal(TPM_ECC_CURVE_MARSHAL_REF, (target), (buffer), (size))

610 #define TPM_ECC_CURVE_Marshal(source, buffer, size) \

611 Marshal(TPM_ECC_CURVE_MARSHAL_REF, (source), (buffer), (size))

612 #define TPM_CC_Unmarshal(target, buffer, size) \

613 Unmarshal(TPM_CC_MARSHAL_REF, (target), (buffer), (size))

614 #define TPM_CC_Marshal(source, buffer, size) \

615 Marshal(TPM_CC_MARSHAL_REF, (source), (buffer), (size))

616 #define TPM_RC_Marshal(source, buffer, size) \

617 Marshal(TPM_RC_MARSHAL_REF, (source), (buffer), (size))

618 #define TPM_CLOCK_ADJUST_Unmarshal(target, buffer, size) \

619 Unmarshal(TPM_CLOCK_ADJUST_MARSHAL_REF, (target), (buffer), (size))

620 #define TPM_EO_Unmarshal(target, buffer, size) \

621 Unmarshal(TPM_EO_MARSHAL_REF, (target), (buffer), (size))

622 #define TPM_EO_Marshal(source, buffer, size) \

623 Marshal(TPM_EO_MARSHAL_REF, (source), (buffer), (size))

624 #define TPM_ST_Unmarshal(target, buffer, size) \

625 Unmarshal(TPM_ST_MARSHAL_REF, (target), (buffer), (size))

626 #define TPM_ST_Marshal(source, buffer, size) \

627 Marshal(TPM_ST_MARSHAL_REF, (source), (buffer), (size))

628 #define TPM_SU_Unmarshal(target, buffer, size) \

629 Unmarshal(TPM_SU_MARSHAL_REF, (target), (buffer), (size))

630 #define TPM_SE_Unmarshal(target, buffer, size) \

631 Unmarshal(TPM_SE_MARSHAL_REF, (target), (buffer), (size))

632 #define TPM_CAP_Unmarshal(target, buffer, size) \

633 Unmarshal(TPM_CAP_MARSHAL_REF, (target), (buffer), (size))

634 #define TPM_CAP_Marshal(source, buffer, size) \

635 Marshal(TPM_CAP_MARSHAL_REF, (source), (buffer), (size))

636 #define TPM_PT_Unmarshal(target, buffer, size) \

637 Unmarshal(TPM_PT_MARSHAL_REF, (target), (buffer), (size))

Trusted Platform Module Library Part 4: Supporting Routines

Page 486 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

638 #define TPM_PT_Marshal(source, buffer, size) \

639 Marshal(TPM_PT_MARSHAL_REF, (source), (buffer), (size))

640 #define TPM_PT_PCR_Unmarshal(target, buffer, size) \

641 Unmarshal(TPM_PT_PCR_MARSHAL_REF, (target), (buffer), (size))

642 #define TPM_PT_PCR_Marshal(source, buffer, size) \

643 Marshal(TPM_PT_PCR_MARSHAL_REF, (source), (buffer), (size))

644 #define TPM_PS_Marshal(source, buffer, size) \

645 Marshal(TPM_PS_MARSHAL_REF, (source), (buffer), (size))

646 #define TPM_HANDLE_Unmarshal(target, buffer, size) \

647 Unmarshal(TPM_HANDLE_MARSHAL_REF, (target), (buffer), (size))

648 #define TPM_HANDLE_Marshal(source, buffer, size) \

649 Marshal(TPM_HANDLE_MARSHAL_REF, (source), (buffer), (size))

650 #define TPM_HT_Unmarshal(target, buffer, size) \

651 Unmarshal(TPM_HT_MARSHAL_REF, (target), (buffer), (size))

652 #define TPM_HT_Marshal(source, buffer, size) \

653 Marshal(TPM_HT_MARSHAL_REF, (source), (buffer), (size))

654 #define TPM_RH_Unmarshal(target, buffer, size) \

655 Unmarshal(TPM_RH_MARSHAL_REF, (target), (buffer), (size))

656 #define TPM_RH_Marshal(source, buffer, size) \

657 Marshal(TPM_RH_MARSHAL_REF, (source), (buffer), (size))

658 #define TPM_HC_Unmarshal(target, buffer, size) \

659 Unmarshal(TPM_HC_MARSHAL_REF, (target), (buffer), (size))

660 #define TPM_HC_Marshal(source, buffer, size) \

661 Marshal(TPM_HC_MARSHAL_REF, (source), (buffer), (size))

662 #define TPMA_ALGORITHM_Unmarshal(target, buffer, size) \

663 Unmarshal(TPMA_ALGORITHM_MARSHAL_REF, (target), (buffer), (size))

664 #define TPMA_ALGORITHM_Marshal(source, buffer, size) \

665 Marshal(TPMA_ALGORITHM_MARSHAL_REF, (source), (buffer), (size))

666 #define TPMA_OBJECT_Unmarshal(target, buffer, size) \

667 Unmarshal(TPMA_OBJECT_MARSHAL_REF, (target), (buffer), (size))

668 #define TPMA_OBJECT_Marshal(source, buffer, size) \

669 Marshal(TPMA_OBJECT_MARSHAL_REF, (source), (buffer), (size))

670 #define TPMA_SESSION_Unmarshal(target, buffer, size) \

671 Unmarshal(TPMA_SESSION_MARSHAL_REF, (target), (buffer), (size))

672 #define TPMA_SESSION_Marshal(source, buffer, size) \

673 Marshal(TPMA_SESSION_MARSHAL_REF, (source), (buffer), (size))

674 #define TPMA_LOCALITY_Unmarshal(target, buffer, size) \

675 Unmarshal(TPMA_LOCALITY_MARSHAL_REF, (target), (buffer), (size))

676 #define TPMA_LOCALITY_Marshal(source, buffer, size) \

677 Marshal(TPMA_LOCALITY_MARSHAL_REF, (source), (buffer), (size))

678 #define TPMA_PERMANENT_Marshal(source, buffer, size) \

679 Marshal(TPMA_PERMANENT_MARSHAL_REF, (source), (buffer), (size))

680 #define TPMA_STARTUP_CLEAR_Marshal(source, buffer, size) \

681 Marshal(TPMA_STARTUP_CLEAR_MARSHAL_REF, (source), (buffer), (size))

682 #define TPMA_MEMORY_Marshal(source, buffer, size) \

683 Marshal(TPMA_MEMORY_MARSHAL_REF, (source), (buffer), (size))

684 #define TPMA_CC_Marshal(source, buffer, size) \

685 Marshal(TPMA_CC_MARSHAL_REF, (source), (buffer), (size))

686 #define TPMA_MODES_Marshal(source, buffer, size) \

687 Marshal(TPMA_MODES_MARSHAL_REF, (source), (buffer), (size))

688 #define TPMA_X509_KEY_USAGE_Marshal(source, buffer, size) \

689 Marshal(TPMA_X509_KEY_USAGE_MARSHAL_REF, (source), (buffer), (size))

690 #define TPMA_ACT_Unmarshal(target, buffer, size) \

691 Unmarshal(TPMA_ACT_MARSHAL_REF, (target), (buffer), (size))

692 #define TPMA_ACT_Marshal(source, buffer, size) \

693 Marshal(TPMA_ACT_MARSHAL_REF, (source), (buffer), (size))

694 #define TPMI_YES_NO_Unmarshal(target, buffer, size) \

695 Unmarshal(TPMI_YES_NO_MARSHAL_REF, (target), (buffer), (size))

696 #define TPMI_YES_NO_Marshal(source, buffer, size) \

697 Marshal(TPMI_YES_NO_MARSHAL_REF, (source), (buffer), (size))

698 #define TPMI_DH_OBJECT_Unmarshal(target, buffer, size, flag) \

699 Unmarshal(TPMI_DH_OBJECT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer),\

700 (size))

701 #define TPMI_DH_OBJECT_Marshal(source, buffer, size) \

702 Marshal(TPMI_DH_OBJECT_MARSHAL_REF, (source), (buffer), (size))

703 #define TPMI_DH_PARENT_Unmarshal(target, buffer, size, flag) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 487

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

704 Unmarshal(TPMI_DH_PARENT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer),\

705 (size))

706 #define TPMI_DH_PARENT_Marshal(source, buffer, size) \

707 Marshal(TPMI_DH_PARENT_MARSHAL_REF, (source), (buffer), (size))

708 #define TPMI_DH_PERSISTENT_Unmarshal(target, buffer, size) \

709 Unmarshal(TPMI_DH_PERSISTENT_MARSHAL_REF, (target), (buffer), (size))

710 #define TPMI_DH_PERSISTENT_Marshal(source, buffer, size) \

711 Marshal(TPMI_DH_PERSISTENT_MARSHAL_REF, (source), (buffer), (size))

712 #define TPMI_DH_ENTITY_Unmarshal(target, buffer, size, flag) \

713 Unmarshal(TPMI_DH_ENTITY_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer),\

714 (size))

715 #define TPMI_DH_PCR_Unmarshal(target, buffer, size, flag) \

716 Unmarshal(TPMI_DH_PCR_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

717 (size))

718 #define TPMI_SH_AUTH_SESSION_Unmarshal(target, buffer, size, flag) \

719 Unmarshal(TPMI_SH_AUTH_SESSION_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

720 (buffer), (size))

721 #define TPMI_SH_AUTH_SESSION_Marshal(source, buffer, size) \

722 Marshal(TPMI_SH_AUTH_SESSION_MARSHAL_REF, (source), (buffer), (size))

723 #define TPMI_SH_HMAC_Unmarshal(target, buffer, size) \

724 Unmarshal(TPMI_SH_HMAC_MARSHAL_REF, (target), (buffer), (size))

725 #define TPMI_SH_HMAC_Marshal(source, buffer, size) \

726 Marshal(TPMI_SH_HMAC_MARSHAL_REF, (source), (buffer), (size))

727 #define TPMI_SH_POLICY_Unmarshal(target, buffer, size) \

728 Unmarshal(TPMI_SH_POLICY_MARSHAL_REF, (target), (buffer), (size))

729 #define TPMI_SH_POLICY_Marshal(source, buffer, size) \

730 Marshal(TPMI_SH_POLICY_MARSHAL_REF, (source), (buffer), (size))

731 #define TPMI_DH_CONTEXT_Unmarshal(target, buffer, size) \

732 Unmarshal(TPMI_DH_CONTEXT_MARSHAL_REF, (target), (buffer), (size))

733 #define TPMI_DH_CONTEXT_Marshal(source, buffer, size) \

734 Marshal(TPMI_DH_CONTEXT_MARSHAL_REF, (source), (buffer), (size))

735 #define TPMI_DH_SAVED_Unmarshal(target, buffer, size) \

736 Unmarshal(TPMI_DH_SAVED_MARSHAL_REF, (target), (buffer), (size))

737 #define TPMI_DH_SAVED_Marshal(source, buffer, size) \

738 Marshal(TPMI_DH_SAVED_MARSHAL_REF, (source), (buffer), (size))

739 #define TPMI_RH_HIERARCHY_Unmarshal(target, buffer, size, flag) \

740 Unmarshal(TPMI_RH_HIERARCHY_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

741 (buffer), (size))

742 #define TPMI_RH_HIERARCHY_Marshal(source, buffer, size) \

743 Marshal(TPMI_RH_HIERARCHY_MARSHAL_REF, (source), (buffer), (size))

744 #define TPMI_RH_ENABLES_Unmarshal(target, buffer, size, flag) \

745 Unmarshal(TPMI_RH_ENABLES_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

746 (buffer), (size))

747 #define TPMI_RH_ENABLES_Marshal(source, buffer, size) \

748 Marshal(TPMI_RH_ENABLES_MARSHAL_REF, (source), (buffer), (size))

749 #define TPMI_RH_HIERARCHY_AUTH_Unmarshal(target, buffer, size) \

750 Unmarshal(TPMI_RH_HIERARCHY_AUTH_MARSHAL_REF, (target), (buffer), (size))

751 #define TPMI_RH_HIERARCHY_POLICY_Unmarshal(target, buffer, size) \

752 Unmarshal(TPMI_RH_HIERARCHY_POLICY_MARSHAL_REF, (target), (buffer), (size))

753 #define TPMI_RH_PLATFORM_Unmarshal(target, buffer, size) \

754 Unmarshal(TPMI_RH_PLATFORM_MARSHAL_REF, (target), (buffer), (size))

755 #define TPMI_RH_OWNER_Unmarshal(target, buffer, size, flag) \

756 Unmarshal(TPMI_RH_OWNER_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

757 (size))

758 #define TPMI_RH_ENDORSEMENT_Unmarshal(target, buffer, size, flag) \

759 Unmarshal(TPMI_RH_ENDORSEMENT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

760 (buffer), (size))

761 #define TPMI_RH_PROVISION_Unmarshal(target, buffer, size) \

762 Unmarshal(TPMI_RH_PROVISION_MARSHAL_REF, (target), (buffer), (size))

763 #define TPMI_RH_CLEAR_Unmarshal(target, buffer, size) \

764 Unmarshal(TPMI_RH_CLEAR_MARSHAL_REF, (target), (buffer), (size))

765 #define TPMI_RH_NV_AUTH_Unmarshal(target, buffer, size) \

766 Unmarshal(TPMI_RH_NV_AUTH_MARSHAL_REF, (target), (buffer), (size))

767 #define TPMI_RH_LOCKOUT_Unmarshal(target, buffer, size) \

768 Unmarshal(TPMI_RH_LOCKOUT_MARSHAL_REF, (target), (buffer), (size))

769 #define TPMI_RH_NV_INDEX_Unmarshal(target, buffer, size) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 488 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

770 Unmarshal(TPMI_RH_NV_INDEX_MARSHAL_REF, (target), (buffer), (size))

771 #define TPMI_RH_NV_INDEX_Marshal(source, buffer, size) \

772 Marshal(TPMI_RH_NV_INDEX_MARSHAL_REF, (source), (buffer), (size))

773 #define TPMI_RH_AC_Unmarshal(target, buffer, size) \

774 Unmarshal(TPMI_RH_AC_MARSHAL_REF, (target), (buffer), (size))

775 #define TPMI_RH_ACT_Unmarshal(target, buffer, size) \

776 Unmarshal(TPMI_RH_ACT_MARSHAL_REF, (target), (buffer), (size))

777 #define TPMI_RH_ACT_Marshal(source, buffer, size) \

778 Marshal(TPMI_RH_ACT_MARSHAL_REF, (source), (buffer), (size))

779 #define TPMI_ALG_HASH_Unmarshal(target, buffer, size, flag) \

780 Unmarshal(TPMI_ALG_HASH_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

781 (size))

782 #define TPMI_ALG_HASH_Marshal(source, buffer, size) \

783 Marshal(TPMI_ALG_HASH_MARSHAL_REF, (source), (buffer), (size))

784 #define TPMI_ALG_ASYM_Unmarshal(target, buffer, size, flag) \

785 Unmarshal(TPMI_ALG_ASYM_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

786 (size))

787 #define TPMI_ALG_ASYM_Marshal(source, buffer, size) \

788 Marshal(TPMI_ALG_ASYM_MARSHAL_REF, (source), (buffer), (size))

789 #define TPMI_ALG_SYM_Unmarshal(target, buffer, size, flag) \

790 Unmarshal(TPMI_ALG_SYM_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

791 (size))

792 #define TPMI_ALG_SYM_Marshal(source, buffer, size) \

793 Marshal(TPMI_ALG_SYM_MARSHAL_REF, (source), (buffer), (size))

794 #define TPMI_ALG_SYM_OBJECT_Unmarshal(target, buffer, size, flag) \

795 Unmarshal(TPMI_ALG_SYM_OBJECT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

796 (buffer), (size))

797 #define TPMI_ALG_SYM_OBJECT_Marshal(source, buffer, size) \

798 Marshal(TPMI_ALG_SYM_OBJECT_MARSHAL_REF, (source), (buffer), (size))

799 #define TPMI_ALG_SYM_MODE_Unmarshal(target, buffer, size, flag) \

800 Unmarshal(TPMI_ALG_SYM_MODE_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

801 (buffer), (size))

802 #define TPMI_ALG_SYM_MODE_Marshal(source, buffer, size) \

803 Marshal(TPMI_ALG_SYM_MODE_MARSHAL_REF, (source), (buffer), (size))

804 #define TPMI_ALG_KDF_Unmarshal(target, buffer, size, flag) \

805 Unmarshal(TPMI_ALG_KDF_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

806 (size))

807 #define TPMI_ALG_KDF_Marshal(source, buffer, size) \

808 Marshal(TPMI_ALG_KDF_MARSHAL_REF, (source), (buffer), (size))

809 #define TPMI_ALG_SIG_SCHEME_Unmarshal(target, buffer, size, flag) \

810 Unmarshal(TPMI_ALG_SIG_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

811 (buffer), (size))

812 #define TPMI_ALG_SIG_SCHEME_Marshal(source, buffer, size) \

813 Marshal(TPMI_ALG_SIG_SCHEME_MARSHAL_REF, (source), (buffer), (size))

814 #define TPMI_ECC_KEY_EXCHANGE_Unmarshal(target, buffer, size, flag) \

815 Unmarshal(TPMI_ECC_KEY_EXCHANGE_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

816 (buffer), (size))

817 #define TPMI_ECC_KEY_EXCHANGE_Marshal(source, buffer, size) \

818 Marshal(TPMI_ECC_KEY_EXCHANGE_MARSHAL_REF, (source), (buffer), (size))

819 #define TPMI_ST_COMMAND_TAG_Unmarshal(target, buffer, size) \

820 Unmarshal(TPMI_ST_COMMAND_TAG_MARSHAL_REF, (target), (buffer), (size))

821 #define TPMI_ST_COMMAND_TAG_Marshal(source, buffer, size) \

822 Marshal(TPMI_ST_COMMAND_TAG_MARSHAL_REF, (source), (buffer), (size))

823 #define TPMI_ALG_MAC_SCHEME_Unmarshal(target, buffer, size, flag) \

824 Unmarshal(TPMI_ALG_MAC_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

825 (buffer), (size))

826 #define TPMI_ALG_MAC_SCHEME_Marshal(source, buffer, size) \

827 Marshal(TPMI_ALG_MAC_SCHEME_MARSHAL_REF, (source), (buffer), (size))

828 #define TPMI_ALG_CIPHER_MODE_Unmarshal(target, buffer, size, flag) \

829 Unmarshal(TPMI_ALG_CIPHER_MODE_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

830 (buffer), (size))

831 #define TPMI_ALG_CIPHER_MODE_Marshal(source, buffer, size) \

832 Marshal(TPMI_ALG_CIPHER_MODE_MARSHAL_REF, (source), (buffer), (size))

833 #define TPMS_EMPTY_Unmarshal(target, buffer, size) \

834 Unmarshal(TPMS_EMPTY_MARSHAL_REF, (target), (buffer), (size))

835 #define TPMS_EMPTY_Marshal(source, buffer, size) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 489

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

836 Marshal(TPMS_EMPTY_MARSHAL_REF, (source), (buffer), (size))

837 #define TPMS_ALGORITHM_DESCRIPTION_Marshal(source, buffer, size) \

838 Marshal(TPMS_ALGORITHM_DESCRIPTION_MARSHAL_REF, (source), (buffer), (size))

839 #define TPMU_HA_Unmarshal(target, buffer, size, selector) \

840 UnmarshalUnion(TPMU_HA_MARSHAL_REF, (target), (buffer), (size), (selector))

841 #define TPMU_HA_Marshal(source, buffer, size, selector) \

842 MarshalUnion(TPMU_HA_MARSHAL_REF, (target), (buffer), (size), (selector))

843 #define TPMT_HA_Unmarshal(target, buffer, size, flag) \

844 Unmarshal(TPMT_HA_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

845 (size))

846 #define TPMT_HA_Marshal(source, buffer, size) \

847 Marshal(TPMT_HA_MARSHAL_REF, (source), (buffer), (size))

848 #define TPM2B_DIGEST_Unmarshal(target, buffer, size) \

849 Unmarshal(TPM2B_DIGEST_MARSHAL_REF, (target), (buffer), (size))

850 #define TPM2B_DIGEST_Marshal(source, buffer, size) \

851 Marshal(TPM2B_DIGEST_MARSHAL_REF, (source), (buffer), (size))

852 #define TPM2B_DATA_Unmarshal(target, buffer, size) \

853 Unmarshal(TPM2B_DATA_MARSHAL_REF, (target), (buffer), (size))

854 #define TPM2B_DATA_Marshal(source, buffer, size) \

855 Marshal(TPM2B_DATA_MARSHAL_REF, (source), (buffer), (size))

856 #define TPM2B_NONCE_Unmarshal(target, buffer, size) \

857 Unmarshal(TPM2B_NONCE_MARSHAL_REF, (target), (buffer), (size))

858 #define TPM2B_NONCE_Marshal(source, buffer, size) \

859 Marshal(TPM2B_NONCE_MARSHAL_REF, (source), (buffer), (size))

860 #define TPM2B_AUTH_Unmarshal(target, buffer, size) \

861 Unmarshal(TPM2B_AUTH_MARSHAL_REF, (target), (buffer), (size))

862 #define TPM2B_AUTH_Marshal(source, buffer, size) \

863 Marshal(TPM2B_AUTH_MARSHAL_REF, (source), (buffer), (size))

864 #define TPM2B_OPERAND_Unmarshal(target, buffer, size) \

865 Unmarshal(TPM2B_OPERAND_MARSHAL_REF, (target), (buffer), (size))

866 #define TPM2B_OPERAND_Marshal(source, buffer, size) \

867 Marshal(TPM2B_OPERAND_MARSHAL_REF, (source), (buffer), (size))

868 #define TPM2B_EVENT_Unmarshal(target, buffer, size) \

869 Unmarshal(TPM2B_EVENT_MARSHAL_REF, (target), (buffer), (size))

870 #define TPM2B_EVENT_Marshal(source, buffer, size) \

871 Marshal(TPM2B_EVENT_MARSHAL_REF, (source), (buffer), (size))

872 #define TPM2B_MAX_BUFFER_Unmarshal(target, buffer, size) \

873 Unmarshal(TPM2B_MAX_BUFFER_MARSHAL_REF, (target), (buffer), (size))

874 #define TPM2B_MAX_BUFFER_Marshal(source, buffer, size) \

875 Marshal(TPM2B_MAX_BUFFER_MARSHAL_REF, (source), (buffer), (size))

876 #define TPM2B_MAX_NV_BUFFER_Unmarshal(target, buffer, size) \

877 Unmarshal(TPM2B_MAX_NV_BUFFER_MARSHAL_REF, (target), (buffer), (size))

878 #define TPM2B_MAX_NV_BUFFER_Marshal(source, buffer, size) \

879 Marshal(TPM2B_MAX_NV_BUFFER_MARSHAL_REF, (source), (buffer), (size))

880 #define TPM2B_TIMEOUT_Unmarshal(target, buffer, size) \

881 Unmarshal(TPM2B_TIMEOUT_MARSHAL_REF, (target), (buffer), (size))

882 #define TPM2B_TIMEOUT_Marshal(source, buffer, size) \

883 Marshal(TPM2B_TIMEOUT_MARSHAL_REF, (source), (buffer), (size))

884 #define TPM2B_IV_Unmarshal(target, buffer, size) \

885 Unmarshal(TPM2B_IV_MARSHAL_REF, (target), (buffer), (size))

886 #define TPM2B_IV_Marshal(source, buffer, size) \

887 Marshal(TPM2B_IV_MARSHAL_REF, (source), (buffer), (size))

888 #define TPM2B_NAME_Unmarshal(target, buffer, size) \

889 Unmarshal(TPM2B_NAME_MARSHAL_REF, (target), (buffer), (size))

890 #define TPM2B_NAME_Marshal(source, buffer, size) \

891 Marshal(TPM2B_NAME_MARSHAL_REF, (source), (buffer), (size))

892 #define TPMS_PCR_SELECT_Unmarshal(target, buffer, size) \

893 Unmarshal(TPMS_PCR_SELECT_MARSHAL_REF, (target), (buffer), (size))

894 #define TPMS_PCR_SELECT_Marshal(source, buffer, size) \

895 Marshal(TPMS_PCR_SELECT_MARSHAL_REF, (source), (buffer), (size))

896 #define TPMS_PCR_SELECTION_Unmarshal(target, buffer, size) \

897 Unmarshal(TPMS_PCR_SELECTION_MARSHAL_REF, (target), (buffer), (size))

898 #define TPMS_PCR_SELECTION_Marshal(source, buffer, size) \

899 Marshal(TPMS_PCR_SELECTION_MARSHAL_REF, (source), (buffer), (size))

900 #define TPMT_TK_CREATION_Unmarshal(target, buffer, size) \

901 Unmarshal(TPMT_TK_CREATION_MARSHAL_REF, (target), (buffer), (size))

Trusted Platform Module Library Part 4: Supporting Routines

Page 490 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

902 #define TPMT_TK_CREATION_Marshal(source, buffer, size) \

903 Marshal(TPMT_TK_CREATION_MARSHAL_REF, (source), (buffer), (size))

904 #define TPMT_TK_VERIFIED_Unmarshal(target, buffer, size) \

905 Unmarshal(TPMT_TK_VERIFIED_MARSHAL_REF, (target), (buffer), (size))

906 #define TPMT_TK_VERIFIED_Marshal(source, buffer, size) \

907 Marshal(TPMT_TK_VERIFIED_MARSHAL_REF, (source), (buffer), (size))

908 #define TPMT_TK_AUTH_Unmarshal(target, buffer, size) \

909 Unmarshal(TPMT_TK_AUTH_MARSHAL_REF, (target), (buffer), (size))

910 #define TPMT_TK_AUTH_Marshal(source, buffer, size) \

911 Marshal(TPMT_TK_AUTH_MARSHAL_REF, (source), (buffer), (size))

912 #define TPMT_TK_HASHCHECK_Unmarshal(target, buffer, size) \

913 Unmarshal(TPMT_TK_HASHCHECK_MARSHAL_REF, (target), (buffer), (size))

914 #define TPMT_TK_HASHCHECK_Marshal(source, buffer, size) \

915 Marshal(TPMT_TK_HASHCHECK_MARSHAL_REF, (source), (buffer), (size))

916 #define TPMS_ALG_PROPERTY_Marshal(source, buffer, size) \

917 Marshal(TPMS_ALG_PROPERTY_MARSHAL_REF, (source), (buffer), (size))

918 #define TPMS_TAGGED_PROPERTY_Marshal(source, buffer, size) \

919 Marshal(TPMS_TAGGED_PROPERTY_MARSHAL_REF, (source), (buffer), (size))

920 #define TPMS_TAGGED_PCR_SELECT_Marshal(source, buffer, size) \

921 Marshal(TPMS_TAGGED_PCR_SELECT_MARSHAL_REF, (source), (buffer), (size))

922 #define TPMS_TAGGED_POLICY_Marshal(source, buffer, size) \

923 Marshal(TPMS_TAGGED_POLICY_MARSHAL_REF, (source), (buffer), (size))

924 #define TPMS_ACT_DATA_Marshal(source, buffer, size) \

925 Marshal(TPMS_ACT_DATA_MARSHAL_REF, (source), (buffer), (size))

926 #define TPML_CC_Unmarshal(target, buffer, size) \

927 Unmarshal(TPML_CC_MARSHAL_REF, (target), (buffer), (size))

928 #define TPML_CC_Marshal(source, buffer, size) \

929 Marshal(TPML_CC_MARSHAL_REF, (source), (buffer), (size))

930 #define TPML_CCA_Marshal(source, buffer, size) \

931 Marshal(TPML_CCA_MARSHAL_REF, (source), (buffer), (size))

932 #define TPML_ALG_Unmarshal(target, buffer, size) \

933 Unmarshal(TPML_ALG_MARSHAL_REF, (target), (buffer), (size))

934 #define TPML_ALG_Marshal(source, buffer, size) \

935 Marshal(TPML_ALG_MARSHAL_REF, (source), (buffer), (size))

936 #define TPML_HANDLE_Marshal(source, buffer, size) \

937 Marshal(TPML_HANDLE_MARSHAL_REF, (source), (buffer), (size))

938 #define TPML_DIGEST_Unmarshal(target, buffer, size) \

939 Unmarshal(TPML_DIGEST_MARSHAL_REF, (target), (buffer), (size))

940 #define TPML_DIGEST_Marshal(source, buffer, size) \

941 Marshal(TPML_DIGEST_MARSHAL_REF, (source), (buffer), (size))

942 #define TPML_DIGEST_VALUES_Unmarshal(target, buffer, size) \

943 Unmarshal(TPML_DIGEST_VALUES_MARSHAL_REF, (target), (buffer), (size))

944 #define TPML_DIGEST_VALUES_Marshal(source, buffer, size) \

945 Marshal(TPML_DIGEST_VALUES_MARSHAL_REF, (source), (buffer), (size))

946 #define TPML_PCR_SELECTION_Unmarshal(target, buffer, size) \

947 Unmarshal(TPML_PCR_SELECTION_MARSHAL_REF, (target), (buffer), (size))

948 #define TPML_PCR_SELECTION_Marshal(source, buffer, size) \

949 Marshal(TPML_PCR_SELECTION_MARSHAL_REF, (source), (buffer), (size))

950 #define TPML_ALG_PROPERTY_Marshal(source, buffer, size) \

951 Marshal(TPML_ALG_PROPERTY_MARSHAL_REF, (source), (buffer), (size))

952 #define TPML_TAGGED_TPM_PROPERTY_Marshal(source, buffer, size) \

953 Marshal(TPML_TAGGED_TPM_PROPERTY_MARSHAL_REF, (source), (buffer), (size))

954 #define TPML_TAGGED_PCR_PROPERTY_Marshal(source, buffer, size) \

955 Marshal(TPML_TAGGED_PCR_PROPERTY_MARSHAL_REF, (source), (buffer), (size))

956 #define TPML_ECC_CURVE_Marshal(source, buffer, size) \

957 Marshal(TPML_ECC_CURVE_MARSHAL_REF, (source), (buffer), (size))

958 #define TPML_TAGGED_POLICY_Marshal(source, buffer, size) \

959 Marshal(TPML_TAGGED_POLICY_MARSHAL_REF, (source), (buffer), (size))

960 #define TPML_ACT_DATA_Marshal(source, buffer, size) \

961 Marshal(TPML_ACT_DATA_MARSHAL_REF, (source), (buffer), (size))

962 #define TPMU_CAPABILITIES_Marshal(source, buffer, size, selector) \

963 MarshalUnion(TPMU_CAPABILITIES_MARSHAL_REF, (target), (buffer), (size), \

964 (selector))

965 #define TPMS_CAPABILITY_DATA_Marshal(source, buffer, size) \

966 Marshal(TPMS_CAPABILITY_DATA_MARSHAL_REF, (source), (buffer), (size))

967 #define TPMS_CLOCK_INFO_Unmarshal(target, buffer, size) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 491

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

968 Unmarshal(TPMS_CLOCK_INFO_MARSHAL_REF, (target), (buffer), (size))

969 #define TPMS_CLOCK_INFO_Marshal(source, buffer, size) \

970 Marshal(TPMS_CLOCK_INFO_MARSHAL_REF, (source), (buffer), (size))

971 #define TPMS_TIME_INFO_Unmarshal(target, buffer, size) \

972 Unmarshal(TPMS_TIME_INFO_MARSHAL_REF, (target), (buffer), (size))

973 #define TPMS_TIME_INFO_Marshal(source, buffer, size) \

974 Marshal(TPMS_TIME_INFO_MARSHAL_REF, (source), (buffer), (size))

975 #define TPMS_TIME_ATTEST_INFO_Marshal(source, buffer, size) \

976 Marshal(TPMS_TIME_ATTEST_INFO_MARSHAL_REF, (source), (buffer), (size))

977 #define TPMS_CERTIFY_INFO_Marshal(source, buffer, size) \

978 Marshal(TPMS_CERTIFY_INFO_MARSHAL_REF, (source), (buffer), (size))

979 #define TPMS_QUOTE_INFO_Marshal(source, buffer, size) \

980 Marshal(TPMS_QUOTE_INFO_MARSHAL_REF, (source), (buffer), (size))

981 #define TPMS_COMMAND_AUDIT_INFO_Marshal(source, buffer, size) \

982 Marshal(TPMS_COMMAND_AUDIT_INFO_MARSHAL_REF, (source), (buffer), (size))

983 #define TPMS_SESSION_AUDIT_INFO_Marshal(source, buffer, size) \

984 Marshal(TPMS_SESSION_AUDIT_INFO_MARSHAL_REF, (source), (buffer), (size))

985 #define TPMS_CREATION_INFO_Marshal(source, buffer, size) \

986 Marshal(TPMS_CREATION_INFO_MARSHAL_REF, (source), (buffer), (size))

987 #define TPMS_NV_CERTIFY_INFO_Marshal(source, buffer, size) \

988 Marshal(TPMS_NV_CERTIFY_INFO_MARSHAL_REF, (source), (buffer), (size))

989 #define TPMS_NV_DIGEST_CERTIFY_INFO_Marshal(source, buffer, size) \

990 Marshal(TPMS_NV_DIGEST_CERTIFY_INFO_MARSHAL_REF, (source), (buffer), (size))

991 #define TPMI_ST_ATTEST_Marshal(source, buffer, size) \

992 Marshal(TPMI_ST_ATTEST_MARSHAL_REF, (source), (buffer), (size))

993 #define TPMU_ATTEST_Marshal(source, buffer, size, selector) \

994 MarshalUnion(TPMU_ATTEST_MARSHAL_REF, (target), (buffer), (size), (selector))

995 #define TPMS_ATTEST_Marshal(source, buffer, size) \

996 Marshal(TPMS_ATTEST_MARSHAL_REF, (source), (buffer), (size))

997 #define TPM2B_ATTEST_Marshal(source, buffer, size) \

998 Marshal(TPM2B_ATTEST_MARSHAL_REF, (source), (buffer), (size))

999 #define TPMS_AUTH_COMMAND_Unmarshal(target, buffer, size) \

1000 Unmarshal(TPMS_AUTH_COMMAND_MARSHAL_REF, (target), (buffer), (size))

1001 #define TPMS_AUTH_RESPONSE_Marshal(source, buffer, size) \

1002 Marshal(TPMS_AUTH_RESPONSE_MARSHAL_REF, (source), (buffer), (size))

1003 #define TPMI_TDES_KEY_BITS_Unmarshal(target, buffer, size) \

1004 Unmarshal(TPMI_TDES_KEY_BITS_MARSHAL_REF, (target), (buffer), (size))

1005 #define TPMI_TDES_KEY_BITS_Marshal(source, buffer, size) \

1006 Marshal(TPMI_TDES_KEY_BITS_MARSHAL_REF, (source), (buffer), (size))

1007 #define TPMI_AES_KEY_BITS_Unmarshal(target, buffer, size) \

1008 Unmarshal(TPMI_AES_KEY_BITS_MARSHAL_REF, (target), (buffer), (size))

1009 #define TPMI_AES_KEY_BITS_Marshal(source, buffer, size) \

1010 Marshal(TPMI_AES_KEY_BITS_MARSHAL_REF, (source), (buffer), (size))

1011 #define TPMI_SM4_KEY_BITS_Unmarshal(target, buffer, size) \

1012 Unmarshal(TPMI_SM4_KEY_BITS_MARSHAL_REF, (target), (buffer), (size))

1013 #define TPMI_SM4_KEY_BITS_Marshal(source, buffer, size) \

1014 Marshal(TPMI_SM4_KEY_BITS_MARSHAL_REF, (source), (buffer), (size))

1015 #define TPMI_CAMELLIA_KEY_BITS_Unmarshal(target, buffer, size) \

1016 Unmarshal(TPMI_CAMELLIA_KEY_BITS_MARSHAL_REF, (target), (buffer), (size))

1017 #define TPMI_CAMELLIA_KEY_BITS_Marshal(source, buffer, size) \

1018 Marshal(TPMI_CAMELLIA_KEY_BITS_MARSHAL_REF, (source), (buffer), (size))

1019 #define TPMU_SYM_KEY_BITS_Unmarshal(target, buffer, size, selector) \

1020 UnmarshalUnion(TPMU_SYM_KEY_BITS_MARSHAL_REF, (target), (buffer), (size), \

1021 (selector))

1022 #define TPMU_SYM_KEY_BITS_Marshal(source, buffer, size, selector) \

1023 MarshalUnion(TPMU_SYM_KEY_BITS_MARSHAL_REF, (target), (buffer), (size), \

1024 (selector))

1025 #define TPMU_SYM_MODE_Unmarshal(target, buffer, size, selector) \

1026 UnmarshalUnion(TPMU_SYM_MODE_MARSHAL_REF, (target), (buffer), (size), \

1027 (selector))

1028 #define TPMU_SYM_MODE_Marshal(source, buffer, size, selector) \

1029 MarshalUnion(TPMU_SYM_MODE_MARSHAL_REF, (target), (buffer), (size), (selector))

1030 #define TPMT_SYM_DEF_Unmarshal(target, buffer, size, flag) \

1031 Unmarshal(TPMT_SYM_DEF_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

1032 (size))

1033 #define TPMT_SYM_DEF_Marshal(source, buffer, size) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 492 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1034 Marshal(TPMT_SYM_DEF_MARSHAL_REF, (source), (buffer), (size))

1035 #define TPMT_SYM_DEF_OBJECT_Unmarshal(target, buffer, size, flag) \

1036 Unmarshal(TPMT_SYM_DEF_OBJECT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1037 (buffer), (size))

1038 #define TPMT_SYM_DEF_OBJECT_Marshal(source, buffer, size) \

1039 Marshal(TPMT_SYM_DEF_OBJECT_MARSHAL_REF, (source), (buffer), (size))

1040 #define TPM2B_SYM_KEY_Unmarshal(target, buffer, size) \

1041 Unmarshal(TPM2B_SYM_KEY_MARSHAL_REF, (target), (buffer), (size))

1042 #define TPM2B_SYM_KEY_Marshal(source, buffer, size) \

1043 Marshal(TPM2B_SYM_KEY_MARSHAL_REF, (source), (buffer), (size))

1044 #define TPMS_SYMCIPHER_PARMS_Unmarshal(target, buffer, size) \

1045 Unmarshal(TPMS_SYMCIPHER_PARMS_MARSHAL_REF, (target), (buffer), (size))

1046 #define TPMS_SYMCIPHER_PARMS_Marshal(source, buffer, size) \

1047 Marshal(TPMS_SYMCIPHER_PARMS_MARSHAL_REF, (source), (buffer), (size))

1048 #define TPM2B_LABEL_Unmarshal(target, buffer, size) \

1049 Unmarshal(TPM2B_LABEL_MARSHAL_REF, (target), (buffer), (size))

1050 #define TPM2B_LABEL_Marshal(source, buffer, size) \

1051 Marshal(TPM2B_LABEL_MARSHAL_REF, (source), (buffer), (size))

1052 #define TPMS_DERIVE_Unmarshal(target, buffer, size) \

1053 Unmarshal(TPMS_DERIVE_MARSHAL_REF, (target), (buffer), (size))

1054 #define TPMS_DERIVE_Marshal(source, buffer, size) \

1055 Marshal(TPMS_DERIVE_MARSHAL_REF, (source), (buffer), (size))

1056 #define TPM2B_DERIVE_Unmarshal(target, buffer, size) \

1057 Unmarshal(TPM2B_DERIVE_MARSHAL_REF, (target), (buffer), (size))

1058 #define TPM2B_DERIVE_Marshal(source, buffer, size) \

1059 Marshal(TPM2B_DERIVE_MARSHAL_REF, (source), (buffer), (size))

1060 #define TPM2B_SENSITIVE_DATA_Unmarshal(target, buffer, size) \

1061 Unmarshal(TPM2B_SENSITIVE_DATA_MARSHAL_REF, (target), (buffer), (size))

1062 #define TPM2B_SENSITIVE_DATA_Marshal(source, buffer, size) \

1063 Marshal(TPM2B_SENSITIVE_DATA_MARSHAL_REF, (source), (buffer), (size))

1064 #define TPMS_SENSITIVE_CREATE_Unmarshal(target, buffer, size) \

1065 Unmarshal(TPMS_SENSITIVE_CREATE_MARSHAL_REF, (target), (buffer), (size))

1066 #define TPM2B_SENSITIVE_CREATE_Unmarshal(target, buffer, size) \

1067 Unmarshal(TPM2B_SENSITIVE_CREATE_MARSHAL_REF, (target), (buffer), (size))

1068 #define TPMS_SCHEME_HASH_Unmarshal(target, buffer, size) \

1069 Unmarshal(TPMS_SCHEME_HASH_MARSHAL_REF, (target), (buffer), (size))

1070 #define TPMS_SCHEME_HASH_Marshal(source, buffer, size) \

1071 Marshal(TPMS_SCHEME_HASH_MARSHAL_REF, (source), (buffer), (size))

1072 #define TPMS_SCHEME_ECDAA_Unmarshal(target, buffer, size) \

1073 Unmarshal(TPMS_SCHEME_ECDAA_MARSHAL_REF, (target), (buffer), (size))

1074 #define TPMS_SCHEME_ECDAA_Marshal(source, buffer, size) \

1075 Marshal(TPMS_SCHEME_ECDAA_MARSHAL_REF, (source), (buffer), (size))

1076 #define TPMI_ALG_KEYEDHASH_SCHEME_Unmarshal(target, buffer, size, flag) \

1077 Unmarshal(TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), \

1078 (target), (buffer), (size))

1079 #define TPMI_ALG_KEYEDHASH_SCHEME_Marshal(source, buffer, size) \

1080 Marshal(TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1081 #define TPMS_SCHEME_HMAC_Unmarshal(target, buffer, size) \

1082 Unmarshal(TPMS_SCHEME_HMAC_MARSHAL_REF, (target), (buffer), (size))

1083 #define TPMS_SCHEME_HMAC_Marshal(source, buffer, size) \

1084 Marshal(TPMS_SCHEME_HMAC_MARSHAL_REF, (source), (buffer), (size))

1085 #define TPMS_SCHEME_XOR_Unmarshal(target, buffer, size) \

1086 Unmarshal(TPMS_SCHEME_XOR_MARSHAL_REF, (target), (buffer), (size))

1087 #define TPMS_SCHEME_XOR_Marshal(source, buffer, size) \

1088 Marshal(TPMS_SCHEME_XOR_MARSHAL_REF, (source), (buffer), (size))

1089 #define TPMU_SCHEME_KEYEDHASH_Unmarshal(target, buffer, size, selector) \

1090 UnmarshalUnion(TPMU_SCHEME_KEYEDHASH_MARSHAL_REF, (target), (buffer), (size), \

1091 (selector))

1092 #define TPMU_SCHEME_KEYEDHASH_Marshal(source, buffer, size, selector) \

1093 MarshalUnion(TPMU_SCHEME_KEYEDHASH_MARSHAL_REF, (target), (buffer), (size), \

1094 (selector))

1095 #define TPMT_KEYEDHASH_SCHEME_Unmarshal(target, buffer, size, flag) \

1096 Unmarshal(TPMT_KEYEDHASH_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1097 (buffer), (size))

1098 #define TPMT_KEYEDHASH_SCHEME_Marshal(source, buffer, size) \

1099 Marshal(TPMT_KEYEDHASH_SCHEME_MARSHAL_REF, (source), (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 493

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1100 #define TPMS_SIG_SCHEME_RSASSA_Unmarshal(target, buffer, size) \

1101 Unmarshal(TPMS_SIG_SCHEME_RSASSA_MARSHAL_REF, (target), (buffer), (size))

1102 #define TPMS_SIG_SCHEME_RSASSA_Marshal(source, buffer, size) \

1103 Marshal(TPMS_SIG_SCHEME_RSASSA_MARSHAL_REF, (source), (buffer), (size))

1104 #define TPMS_SIG_SCHEME_RSAPSS_Unmarshal(target, buffer, size) \

1105 Unmarshal(TPMS_SIG_SCHEME_RSAPSS_MARSHAL_REF, (target), (buffer), (size))

1106 #define TPMS_SIG_SCHEME_RSAPSS_Marshal(source, buffer, size) \

1107 Marshal(TPMS_SIG_SCHEME_RSAPSS_MARSHAL_REF, (source), (buffer), (size))

1108 #define TPMS_SIG_SCHEME_ECDSA_Unmarshal(target, buffer, size) \

1109 Unmarshal(TPMS_SIG_SCHEME_ECDSA_MARSHAL_REF, (target), (buffer), (size))

1110 #define TPMS_SIG_SCHEME_ECDSA_Marshal(source, buffer, size) \

1111 Marshal(TPMS_SIG_SCHEME_ECDSA_MARSHAL_REF, (source), (buffer), (size))

1112 #define TPMS_SIG_SCHEME_SM2_Unmarshal(target, buffer, size) \

1113 Unmarshal(TPMS_SIG_SCHEME_SM2_MARSHAL_REF, (target), (buffer), (size))

1114 #define TPMS_SIG_SCHEME_SM2_Marshal(source, buffer, size) \

1115 Marshal(TPMS_SIG_SCHEME_SM2_MARSHAL_REF, (source), (buffer), (size))

1116 #define TPMS_SIG_SCHEME_ECSCHNORR_Unmarshal(target, buffer, size) \

1117 Unmarshal(TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_REF, (target), (buffer), (size))

1118 #define TPMS_SIG_SCHEME_ECSCHNORR_Marshal(source, buffer, size) \

1119 Marshal(TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_REF, (source), (buffer), (size))

1120 #define TPMS_SIG_SCHEME_ECDAA_Unmarshal(target, buffer, size) \

1121 Unmarshal(TPMS_SIG_SCHEME_ECDAA_MARSHAL_REF, (target), (buffer), (size))

1122 #define TPMS_SIG_SCHEME_ECDAA_Marshal(source, buffer, size) \

1123 Marshal(TPMS_SIG_SCHEME_ECDAA_MARSHAL_REF, (source), (buffer), (size))

1124 #define TPMU_SIG_SCHEME_Unmarshal(target, buffer, size, selector) \

1125 UnmarshalUnion(TPMU_SIG_SCHEME_MARSHAL_REF, (target), (buffer), (size), \

1126 (selector))

1127 #define TPMU_SIG_SCHEME_Marshal(source, buffer, size, selector) \

1128 MarshalUnion(TPMU_SIG_SCHEME_MARSHAL_REF, (target), (buffer), (size), \

1129 (selector))

1130 #define TPMT_SIG_SCHEME_Unmarshal(target, buffer, size, flag) \

1131 Unmarshal(TPMT_SIG_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1132 (buffer), (size))

1133 #define TPMT_SIG_SCHEME_Marshal(source, buffer, size) \

1134 Marshal(TPMT_SIG_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1135 #define TPMS_ENC_SCHEME_OAEP_Unmarshal(target, buffer, size) \

1136 Unmarshal(TPMS_ENC_SCHEME_OAEP_MARSHAL_REF, (target), (buffer), (size))

1137 #define TPMS_ENC_SCHEME_OAEP_Marshal(source, buffer, size) \

1138 Marshal(TPMS_ENC_SCHEME_OAEP_MARSHAL_REF, (source), (buffer), (size))

1139 #define TPMS_ENC_SCHEME_RSAES_Unmarshal(target, buffer, size) \

1140 Unmarshal(TPMS_ENC_SCHEME_RSAES_MARSHAL_REF, (target), (buffer), (size))

1141 #define TPMS_ENC_SCHEME_RSAES_Marshal(source, buffer, size) \

1142 Marshal(TPMS_ENC_SCHEME_RSAES_MARSHAL_REF, (source), (buffer), (size))

1143 #define TPMS_KEY_SCHEME_ECDH_Unmarshal(target, buffer, size) \

1144 Unmarshal(TPMS_KEY_SCHEME_ECDH_MARSHAL_REF, (target), (buffer), (size))

1145 #define TPMS_KEY_SCHEME_ECDH_Marshal(source, buffer, size) \

1146 Marshal(TPMS_KEY_SCHEME_ECDH_MARSHAL_REF, (source), (buffer), (size))

1147 #define TPMS_KEY_SCHEME_ECMQV_Unmarshal(target, buffer, size) \

1148 Unmarshal(TPMS_KEY_SCHEME_ECMQV_MARSHAL_REF, (target), (buffer), (size))

1149 #define TPMS_KEY_SCHEME_ECMQV_Marshal(source, buffer, size) \

1150 Marshal(TPMS_KEY_SCHEME_ECMQV_MARSHAL_REF, (source), (buffer), (size))

1151 #define TPMS_SCHEME_MGF1_Unmarshal(target, buffer, size) \

1152 Unmarshal(TPMS_SCHEME_MGF1_MARSHAL_REF, (target), (buffer), (size))

1153 #define TPMS_SCHEME_MGF1_Marshal(source, buffer, size) \

1154 Marshal(TPMS_SCHEME_MGF1_MARSHAL_REF, (source), (buffer), (size))

1155 #define TPMS_SCHEME_KDF1_SP800_56A_Unmarshal(target, buffer, size) \

1156 Unmarshal(TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_REF, (target), (buffer), (size))

1157 #define TPMS_SCHEME_KDF1_SP800_56A_Marshal(source, buffer, size) \

1158 Marshal(TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_REF, (source), (buffer), (size))

1159 #define TPMS_SCHEME_KDF2_Unmarshal(target, buffer, size) \

1160 Unmarshal(TPMS_SCHEME_KDF2_MARSHAL_REF, (target), (buffer), (size))

1161 #define TPMS_SCHEME_KDF2_Marshal(source, buffer, size) \

1162 Marshal(TPMS_SCHEME_KDF2_MARSHAL_REF, (source), (buffer), (size))

1163 #define TPMS_SCHEME_KDF1_SP800_108_Unmarshal(target, buffer, size) \

1164 Unmarshal(TPMS_SCHEME_KDF1_SP800_108_MARSHAL_REF, (target), (buffer), (size))

1165 #define TPMS_SCHEME_KDF1_SP800_108_Marshal(source, buffer, size) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 494 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1166 Marshal(TPMS_SCHEME_KDF1_SP800_108_MARSHAL_REF, (source), (buffer), (size))

1167 #define TPMU_KDF_SCHEME_Unmarshal(target, buffer, size, selector) \

1168 UnmarshalUnion(TPMU_KDF_SCHEME_MARSHAL_REF, (target), (buffer), (size), \

1169 (selector))

1170 #define TPMU_KDF_SCHEME_Marshal(source, buffer, size, selector) \

1171 MarshalUnion(TPMU_KDF_SCHEME_MARSHAL_REF, (target), (buffer), (size), \

1172 (selector))

1173 #define TPMT_KDF_SCHEME_Unmarshal(target, buffer, size, flag) \

1174 Unmarshal(TPMT_KDF_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1175 (buffer), (size))

1176 #define TPMT_KDF_SCHEME_Marshal(source, buffer, size) \

1177 Marshal(TPMT_KDF_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1178 #define TPMI_ALG_ASYM_SCHEME_Unmarshal(target, buffer, size, flag) \

1179 Unmarshal(TPMI_ALG_ASYM_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1180 (buffer), (size))

1181 #define TPMI_ALG_ASYM_SCHEME_Marshal(source, buffer, size) \

1182 Marshal(TPMI_ALG_ASYM_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1183 #define TPMU_ASYM_SCHEME_Unmarshal(target, buffer, size, selector) \

1184 UnmarshalUnion(TPMU_ASYM_SCHEME_MARSHAL_REF, (target), (buffer), (size), \

1185 (selector))

1186 #define TPMU_ASYM_SCHEME_Marshal(source, buffer, size, selector) \

1187 MarshalUnion(TPMU_ASYM_SCHEME_MARSHAL_REF, (target), (buffer), (size), \

1188 (selector))

1189 #define TPMI_ALG_RSA_SCHEME_Unmarshal(target, buffer, size, flag) \

1190 Unmarshal(TPMI_ALG_RSA_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1191 (buffer), (size))

1192 #define TPMI_ALG_RSA_SCHEME_Marshal(source, buffer, size) \

1193 Marshal(TPMI_ALG_RSA_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1194 #define TPMT_RSA_SCHEME_Unmarshal(target, buffer, size, flag) \

1195 Unmarshal(TPMT_RSA_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1196 (buffer), (size))

1197 #define TPMT_RSA_SCHEME_Marshal(source, buffer, size) \

1198 Marshal(TPMT_RSA_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1199 #define TPMI_ALG_RSA_DECRYPT_Unmarshal(target, buffer, size, flag) \

1200 Unmarshal(TPMI_ALG_RSA_DECRYPT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1201 (buffer), (size))

1202 #define TPMI_ALG_RSA_DECRYPT_Marshal(source, buffer, size) \

1203 Marshal(TPMI_ALG_RSA_DECRYPT_MARSHAL_REF, (source), (buffer), (size))

1204 #define TPMT_RSA_DECRYPT_Unmarshal(target, buffer, size, flag) \

1205 Unmarshal(TPMT_RSA_DECRYPT_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1206 (buffer), (size))

1207 #define TPMT_RSA_DECRYPT_Marshal(source, buffer, size) \

1208 Marshal(TPMT_RSA_DECRYPT_MARSHAL_REF, (source), (buffer), (size))

1209 #define TPM2B_PUBLIC_KEY_RSA_Unmarshal(target, buffer, size) \

1210 Unmarshal(TPM2B_PUBLIC_KEY_RSA_MARSHAL_REF, (target), (buffer), (size))

1211 #define TPM2B_PUBLIC_KEY_RSA_Marshal(source, buffer, size) \

1212 Marshal(TPM2B_PUBLIC_KEY_RSA_MARSHAL_REF, (source), (buffer), (size))

1213 #define TPMI_RSA_KEY_BITS_Unmarshal(target, buffer, size) \

1214 Unmarshal(TPMI_RSA_KEY_BITS_MARSHAL_REF, (target), (buffer), (size))

1215 #define TPMI_RSA_KEY_BITS_Marshal(source, buffer, size) \

1216 Marshal(TPMI_RSA_KEY_BITS_MARSHAL_REF, (source), (buffer), (size))

1217 #define TPM2B_PRIVATE_KEY_RSA_Unmarshal(target, buffer, size) \

1218 Unmarshal(TPM2B_PRIVATE_KEY_RSA_MARSHAL_REF, (target), (buffer), (size))

1219 #define TPM2B_PRIVATE_KEY_RSA_Marshal(source, buffer, size) \

1220 Marshal(TPM2B_PRIVATE_KEY_RSA_MARSHAL_REF, (source), (buffer), (size))

1221 #define TPM2B_ECC_PARAMETER_Unmarshal(target, buffer, size) \

1222 Unmarshal(TPM2B_ECC_PARAMETER_MARSHAL_REF, (target), (buffer), (size))

1223 #define TPM2B_ECC_PARAMETER_Marshal(source, buffer, size) \

1224 Marshal(TPM2B_ECC_PARAMETER_MARSHAL_REF, (source), (buffer), (size))

1225 #define TPMS_ECC_POINT_Unmarshal(target, buffer, size) \

1226 Unmarshal(TPMS_ECC_POINT_MARSHAL_REF, (target), (buffer), (size))

1227 #define TPMS_ECC_POINT_Marshal(source, buffer, size) \

1228 Marshal(TPMS_ECC_POINT_MARSHAL_REF, (source), (buffer), (size))

1229 #define TPM2B_ECC_POINT_Unmarshal(target, buffer, size) \

1230 Unmarshal(TPM2B_ECC_POINT_MARSHAL_REF, (target), (buffer), (size))

1231 #define TPM2B_ECC_POINT_Marshal(source, buffer, size) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 495

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1232 Marshal(TPM2B_ECC_POINT_MARSHAL_REF, (source), (buffer), (size))

1233 #define TPMI_ALG_ECC_SCHEME_Unmarshal(target, buffer, size, flag) \

1234 Unmarshal(TPMI_ALG_ECC_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1235 (buffer), (size))

1236 #define TPMI_ALG_ECC_SCHEME_Marshal(source, buffer, size) \

1237 Marshal(TPMI_ALG_ECC_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1238 #define TPMI_ECC_CURVE_Unmarshal(target, buffer, size) \

1239 Unmarshal(TPMI_ECC_CURVE_MARSHAL_REF, (target), (buffer), (size))

1240 #define TPMI_ECC_CURVE_Marshal(source, buffer, size) \

1241 Marshal(TPMI_ECC_CURVE_MARSHAL_REF, (source), (buffer), (size))

1242 #define TPMT_ECC_SCHEME_Unmarshal(target, buffer, size, flag) \

1243 Unmarshal(TPMT_ECC_SCHEME_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), \

1244 (buffer), (size))

1245 #define TPMT_ECC_SCHEME_Marshal(source, buffer, size) \

1246 Marshal(TPMT_ECC_SCHEME_MARSHAL_REF, (source), (buffer), (size))

1247 #define TPMS_ALGORITHM_DETAIL_ECC_Marshal(source, buffer, size) \

1248 Marshal(TPMS_ALGORITHM_DETAIL_ECC_MARSHAL_REF, (source), (buffer), (size))

1249 #define TPMS_SIGNATURE_RSA_Unmarshal(target, buffer, size) \

1250 Unmarshal(TPMS_SIGNATURE_RSA_MARSHAL_REF, (target), (buffer), (size))

1251 #define TPMS_SIGNATURE_RSA_Marshal(source, buffer, size) \

1252 Marshal(TPMS_SIGNATURE_RSA_MARSHAL_REF, (source), (buffer), (size))

1253 #define TPMS_SIGNATURE_RSASSA_Unmarshal(target, buffer, size) \

1254 Unmarshal(TPMS_SIGNATURE_RSASSA_MARSHAL_REF, (target), (buffer), (size))

1255 #define TPMS_SIGNATURE_RSASSA_Marshal(source, buffer, size) \

1256 Marshal(TPMS_SIGNATURE_RSASSA_MARSHAL_REF, (source), (buffer), (size))

1257 #define TPMS_SIGNATURE_RSAPSS_Unmarshal(target, buffer, size) \

1258 Unmarshal(TPMS_SIGNATURE_RSAPSS_MARSHAL_REF, (target), (buffer), (size))

1259 #define TPMS_SIGNATURE_RSAPSS_Marshal(source, buffer, size) \

1260 Marshal(TPMS_SIGNATURE_RSAPSS_MARSHAL_REF, (source), (buffer), (size))

1261 #define TPMS_SIGNATURE_ECC_Unmarshal(target, buffer, size) \

1262 Unmarshal(TPMS_SIGNATURE_ECC_MARSHAL_REF, (target), (buffer), (size))

1263 #define TPMS_SIGNATURE_ECC_Marshal(source, buffer, size) \

1264 Marshal(TPMS_SIGNATURE_ECC_MARSHAL_REF, (source), (buffer), (size))

1265 #define TPMS_SIGNATURE_ECDAA_Unmarshal(target, buffer, size) \

1266 Unmarshal(TPMS_SIGNATURE_ECDAA_MARSHAL_REF, (target), (buffer), (size))

1267 #define TPMS_SIGNATURE_ECDAA_Marshal(source, buffer, size) \

1268 Marshal(TPMS_SIGNATURE_ECDAA_MARSHAL_REF, (source), (buffer), (size))

1269 #define TPMS_SIGNATURE_ECDSA_Unmarshal(target, buffer, size) \

1270 Unmarshal(TPMS_SIGNATURE_ECDSA_MARSHAL_REF, (target), (buffer), (size))

1271 #define TPMS_SIGNATURE_ECDSA_Marshal(source, buffer, size) \

1272 Marshal(TPMS_SIGNATURE_ECDSA_MARSHAL_REF, (source), (buffer), (size))

1273 #define TPMS_SIGNATURE_SM2_Unmarshal(target, buffer, size) \

1274 Unmarshal(TPMS_SIGNATURE_SM2_MARSHAL_REF, (target), (buffer), (size))

1275 #define TPMS_SIGNATURE_SM2_Marshal(source, buffer, size) \

1276 Marshal(TPMS_SIGNATURE_SM2_MARSHAL_REF, (source), (buffer), (size))

1277 #define TPMS_SIGNATURE_ECSCHNORR_Unmarshal(target, buffer, size) \

1278 Unmarshal(TPMS_SIGNATURE_ECSCHNORR_MARSHAL_REF, (target), (buffer), (size))

1279 #define TPMS_SIGNATURE_ECSCHNORR_Marshal(source, buffer, size) \

1280 Marshal(TPMS_SIGNATURE_ECSCHNORR_MARSHAL_REF, (source), (buffer), (size))

1281 #define TPMU_SIGNATURE_Unmarshal(target, buffer, size, selector) \

1282 UnmarshalUnion(TPMU_SIGNATURE_MARSHAL_REF, (target), (buffer), (size), \

1283 (selector))

1284 #define TPMU_SIGNATURE_Marshal(source, buffer, size, selector) \

1285 MarshalUnion(TPMU_SIGNATURE_MARSHAL_REF, (target), (buffer), (size), (selector))

1286 #define TPMT_SIGNATURE_Unmarshal(target, buffer, size, flag) \

1287 Unmarshal(TPMT_SIGNATURE_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer),\

1288 (size))

1289 #define TPMT_SIGNATURE_Marshal(source, buffer, size) \

1290 Marshal(TPMT_SIGNATURE_MARSHAL_REF, (source), (buffer), (size))

1291 #define TPMU_ENCRYPTED_SECRET_Unmarshal(target, buffer, size, selector) \

1292 UnmarshalUnion(TPMU_ENCRYPTED_SECRET_MARSHAL_REF, (target), (buffer), (size), \

1293 (selector))

1294 #define TPMU_ENCRYPTED_SECRET_Marshal(source, buffer, size, selector) \

1295 MarshalUnion(TPMU_ENCRYPTED_SECRET_MARSHAL_REF, (target), (buffer), (size), \

1296 (selector))

1297 #define TPM2B_ENCRYPTED_SECRET_Unmarshal(target, buffer, size) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 496 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1298 Unmarshal(TPM2B_ENCRYPTED_SECRET_MARSHAL_REF, (target), (buffer), (size))

1299 #define TPM2B_ENCRYPTED_SECRET_Marshal(source, buffer, size) \

1300 Marshal(TPM2B_ENCRYPTED_SECRET_MARSHAL_REF, (source), (buffer), (size))

1301 #define TPMI_ALG_PUBLIC_Unmarshal(target, buffer, size) \

1302 Unmarshal(TPMI_ALG_PUBLIC_MARSHAL_REF, (target), (buffer), (size))

1303 #define TPMI_ALG_PUBLIC_Marshal(source, buffer, size) \

1304 Marshal(TPMI_ALG_PUBLIC_MARSHAL_REF, (source), (buffer), (size))

1305 #define TPMU_PUBLIC_ID_Unmarshal(target, buffer, size, selector) \

1306 UnmarshalUnion(TPMU_PUBLIC_ID_MARSHAL_REF, (target), (buffer), (size), \

1307 (selector))

1308 #define TPMU_PUBLIC_ID_Marshal(source, buffer, size, selector) \

1309 MarshalUnion(TPMU_PUBLIC_ID_MARSHAL_REF, (target), (buffer), (size), (selector))

1310 #define TPMS_KEYEDHASH_PARMS_Unmarshal(target, buffer, size) \

1311 Unmarshal(TPMS_KEYEDHASH_PARMS_MARSHAL_REF, (target), (buffer), (size))

1312 #define TPMS_KEYEDHASH_PARMS_Marshal(source, buffer, size) \

1313 Marshal(TPMS_KEYEDHASH_PARMS_MARSHAL_REF, (source), (buffer), (size))

1314 #define TPMS_RSA_PARMS_Unmarshal(target, buffer, size) \

1315 Unmarshal(TPMS_RSA_PARMS_MARSHAL_REF, (target), (buffer), (size))

1316 #define TPMS_RSA_PARMS_Marshal(source, buffer, size) \

1317 Marshal(TPMS_RSA_PARMS_MARSHAL_REF, (source), (buffer), (size))

1318 #define TPMS_ECC_PARMS_Unmarshal(target, buffer, size) \

1319 Unmarshal(TPMS_ECC_PARMS_MARSHAL_REF, (target), (buffer), (size))

1320 #define TPMS_ECC_PARMS_Marshal(source, buffer, size) \

1321 Marshal(TPMS_ECC_PARMS_MARSHAL_REF, (source), (buffer), (size))

1322 #define TPMU_PUBLIC_PARMS_Unmarshal(target, buffer, size, selector) \

1323 UnmarshalUnion(TPMU_PUBLIC_PARMS_MARSHAL_REF, (target), (buffer), (size), \

1324 (selector))

1325 #define TPMU_PUBLIC_PARMS_Marshal(source, buffer, size, selector) \

1326 MarshalUnion(TPMU_PUBLIC_PARMS_MARSHAL_REF, (target), (buffer), (size), \

1327 (selector))

1328 #define TPMT_PUBLIC_PARMS_Unmarshal(target, buffer, size) \

1329 Unmarshal(TPMT_PUBLIC_PARMS_MARSHAL_REF, (target), (buffer), (size))

1330 #define TPMT_PUBLIC_PARMS_Marshal(source, buffer, size) \

1331 Marshal(TPMT_PUBLIC_PARMS_MARSHAL_REF, (source), (buffer), (size))

1332 #define TPMT_PUBLIC_Unmarshal(target, buffer, size, flag) \

1333 Unmarshal(TPMT_PUBLIC_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

1334 (size))

1335 #define TPMT_PUBLIC_Marshal(source, buffer, size) \

1336 Marshal(TPMT_PUBLIC_MARSHAL_REF, (source), (buffer), (size))

1337 #define TPM2B_PUBLIC_Unmarshal(target, buffer, size, flag) \

1338 Unmarshal(TPM2B_PUBLIC_MARSHAL_REF|(flag ? NULL_FLAG : 0), (target), (buffer), \

1339 (size))

1340 #define TPM2B_PUBLIC_Marshal(source, buffer, size) \

1341 Marshal(TPM2B_PUBLIC_MARSHAL_REF, (source), (buffer), (size))

1342 #define TPM2B_TEMPLATE_Unmarshal(target, buffer, size) \

1343 Unmarshal(TPM2B_TEMPLATE_MARSHAL_REF, (target), (buffer), (size))

1344 #define TPM2B_TEMPLATE_Marshal(source, buffer, size) \

1345 Marshal(TPM2B_TEMPLATE_MARSHAL_REF, (source), (buffer), (size))

1346 #define TPM2B_PRIVATE_VENDOR_SPECIFIC_Unmarshal(target, buffer, size) \

1347 Unmarshal(TPM2B_PRIVATE_VENDOR_SPECIFIC_MARSHAL_REF, (target), (buffer), (size))

1348 #define TPM2B_PRIVATE_VENDOR_SPECIFIC_Marshal(source, buffer, size) \

1349 Marshal(TPM2B_PRIVATE_VENDOR_SPECIFIC_MARSHAL_REF, (source), (buffer), (size))

1350 #define TPMU_SENSITIVE_COMPOSITE_Unmarshal(target, buffer, size, selector) \

1351 UnmarshalUnion(TPMU_SENSITIVE_COMPOSITE_MARSHAL_REF, (target), (buffer), (size),\

1352 (selector))

1353 #define TPMU_SENSITIVE_COMPOSITE_Marshal(source, buffer, size, selector) \

1354 MarshalUnion(TPMU_SENSITIVE_COMPOSITE_MARSHAL_REF, (target), (buffer), (size), \

1355 (selector))

1356 #define TPMT_SENSITIVE_Unmarshal(target, buffer, size) \

1357 Unmarshal(TPMT_SENSITIVE_MARSHAL_REF, (target), (buffer), (size))

1358 #define TPMT_SENSITIVE_Marshal(source, buffer, size) \

1359 Marshal(TPMT_SENSITIVE_MARSHAL_REF, (source), (buffer), (size))

1360 #define TPM2B_SENSITIVE_Unmarshal(target, buffer, size) \

1361 Unmarshal(TPM2B_SENSITIVE_MARSHAL_REF, (target), (buffer), (size))

1362 #define TPM2B_SENSITIVE_Marshal(source, buffer, size) \

1363 Marshal(TPM2B_SENSITIVE_MARSHAL_REF, (source), (buffer), (size))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 497

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1364 #define TPM2B_PRIVATE_Unmarshal(target, buffer, size) \

1365 Unmarshal(TPM2B_PRIVATE_MARSHAL_REF, (target), (buffer), (size))

1366 #define TPM2B_PRIVATE_Marshal(source, buffer, size) \

1367 Marshal(TPM2B_PRIVATE_MARSHAL_REF, (source), (buffer), (size))

1368 #define TPM2B_ID_OBJECT_Unmarshal(target, buffer, size) \

1369 Unmarshal(TPM2B_ID_OBJECT_MARSHAL_REF, (target), (buffer), (size))

1370 #define TPM2B_ID_OBJECT_Marshal(source, buffer, size) \

1371 Marshal(TPM2B_ID_OBJECT_MARSHAL_REF, (source), (buffer), (size))

1372 #define TPM_NV_INDEX_Marshal(source, buffer, size) \

1373 Marshal(TPM_NV_INDEX_MARSHAL_REF, (source), (buffer), (size))

1374 #define TPMS_NV_PIN_COUNTER_PARAMETERS_Unmarshal(target, buffer, size) \

1375 Unmarshal(TPMS_NV_PIN_COUNTER_PARAMETERS_MARSHAL_REF, (target), (buffer), \

1376 (size))

1377 #define TPMS_NV_PIN_COUNTER_PARAMETERS_Marshal(source, buffer, size) \

1378 Marshal(TPMS_NV_PIN_COUNTER_PARAMETERS_MARSHAL_REF, (source), (buffer), (size))

1379 #define TPMA_NV_Unmarshal(target, buffer, size) \

1380 Unmarshal(TPMA_NV_MARSHAL_REF, (target), (buffer), (size))

1381 #define TPMA_NV_Marshal(source, buffer, size) \

1382 Marshal(TPMA_NV_MARSHAL_REF, (source), (buffer), (size))

1383 #define TPMS_NV_PUBLIC_Unmarshal(target, buffer, size) \

1384 Unmarshal(TPMS_NV_PUBLIC_MARSHAL_REF, (target), (buffer), (size))

1385 #define TPMS_NV_PUBLIC_Marshal(source, buffer, size) \

1386 Marshal(TPMS_NV_PUBLIC_MARSHAL_REF, (source), (buffer), (size))

1387 #define TPM2B_NV_PUBLIC_Unmarshal(target, buffer, size) \

1388 Unmarshal(TPM2B_NV_PUBLIC_MARSHAL_REF, (target), (buffer), (size))

1389 #define TPM2B_NV_PUBLIC_Marshal(source, buffer, size) \

1390 Marshal(TPM2B_NV_PUBLIC_MARSHAL_REF, (source), (buffer), (size))

1391 #define TPM2B_CONTEXT_SENSITIVE_Unmarshal(target, buffer, size) \

1392 Unmarshal(TPM2B_CONTEXT_SENSITIVE_MARSHAL_REF, (target), (buffer), (size))

1393 #define TPM2B_CONTEXT_SENSITIVE_Marshal(source, buffer, size) \

1394 Marshal(TPM2B_CONTEXT_SENSITIVE_MARSHAL_REF, (source), (buffer), (size))

1395 #define TPMS_CONTEXT_DATA_Unmarshal(target, buffer, size) \

1396 Unmarshal(TPMS_CONTEXT_DATA_MARSHAL_REF, (target), (buffer), (size))

1397 #define TPMS_CONTEXT_DATA_Marshal(source, buffer, size) \

1398 Marshal(TPMS_CONTEXT_DATA_MARSHAL_REF, (source), (buffer), (size))

1399 #define TPM2B_CONTEXT_DATA_Unmarshal(target, buffer, size) \

1400 Unmarshal(TPM2B_CONTEXT_DATA_MARSHAL_REF, (target), (buffer), (size))

1401 #define TPM2B_CONTEXT_DATA_Marshal(source, buffer, size) \

1402 Marshal(TPM2B_CONTEXT_DATA_MARSHAL_REF, (source), (buffer), (size))

1403 #define TPMS_CONTEXT_Unmarshal(target, buffer, size) \

1404 Unmarshal(TPMS_CONTEXT_MARSHAL_REF, (target), (buffer), (size))

1405 #define TPMS_CONTEXT_Marshal(source, buffer, size) \

1406 Marshal(TPMS_CONTEXT_MARSHAL_REF, (source), (buffer), (size))

1407 #define TPMS_CREATION_DATA_Marshal(source, buffer, size) \

1408 Marshal(TPMS_CREATION_DATA_MARSHAL_REF, (source), (buffer), (size))

1409 #define TPM2B_CREATION_DATA_Marshal(source, buffer, size) \

1410 Marshal(TPM2B_CREATION_DATA_MARSHAL_REF, (source), (buffer), (size))

1411 #define TPM_AT_Unmarshal(target, buffer, size) \

1412 Unmarshal(TPM_AT_MARSHAL_REF, (target), (buffer), (size))

1413 #define TPM_AT_Marshal(source, buffer, size) \

1414 Marshal(TPM_AT_MARSHAL_REF, (source), (buffer), (size))

1415 #define TPM_AE_Marshal(source, buffer, size) \

1416 Marshal(TPM_AE_MARSHAL_REF, (source), (buffer), (size))

1417 #define TPMS_AC_OUTPUT_Marshal(source, buffer, size) \

1418 Marshal(TPMS_AC_OUTPUT_MARSHAL_REF, (source), (buffer), (size))

1419 #define TPML_AC_CAPABILITIES_Marshal(source, buffer, size) \

1420 Marshal(TPML_AC_CAPABILITIES_MARSHAL_REF, (source), (buffer), (size))

1421 #endif // _TABLE_MARSHAL_DEFINES_H_

9.10.7.4 TableMarshalTypes.h

1 #ifndef _TABLE_MARSHAL_TYPES_H_

2 #define _TABLE_MARSHAL_TYPES_H_

3 typedef UINT16 marshalIndex_t;

Trusted Platform Module Library Part 4: Supporting Routines

Page 498 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10.7.4.1.1 Structure Entries

A structure contains a list of elements to unmarshal. Each of the entries is a UINT16. The structure

descriptor is: The values array contains indicators for the things to marshal. The elements parameter

indicates how many different entities are unmarshaled. This number nominally corresponds to the number

of rows in the Part 2 table that describes the structure (the number of rows minus the title row and any

error code rows). A schematic of a simple structure entry is shown here but the values are not actually in

a structure. As shown, the third value is the offset in the structure where the value is placed when

unmarshaled, or fetched from when marshaling. This is sufficient when the element type indicated by

index is always a simple type and never a union or array.This is just shown for illustrative purposes.

4 typedef struct simpleStructureEntry_t {

5 UINT16 qualifiers; // indicates the type of entry (array, union

6 // etc.)

7 marshalIndex_t index; // the index into the appropriate array of

8 // the descriptor of this type

9 UINT16 offset; // where this comes from or is placed

10 } simpleStructureEntry_t;

11 typedef const struct UintMarshal_mst

12 {

13 UINT8 marshalType; // UINT_MTYPE

14 UINT8 modifiers; // size and signed indicator.

15 } UintMarshal_mst;

16 typedef struct UnionMarshal_mst

17 {

18 UINT8 countOfselectors;

19 UINT8 modifiers; // NULL_SELECTOR

20 UINT16 offsetOfUnmarshalTypes;

21 UINT32 selectors[1];

22 // UINT16 marshalingTypes[1]; // This is not part of the prototypical

23 // entry. It is here to show where the

24 // marshaling types will be in a union

25 } UnionMarshal_mst;

26 typedef struct NullUnionMarshal_mst

27 {

28 UINT8 count;

29 } NullUnionMarshal_mst;

30 typedef struct MarshalHeader_mst

31 {

32 UINT8 marshalType; // VALUES_MTYPE

33 UINT8 modifiers;

34 UINT8 errorCode;

35 } MarshalHeader_mst;

36 typedef const struct ArrayMarshal_mst // used in a structure

37 {

38 marshalIndex_t type;

39 UINT16 stride;

40 } ArrayMarshal_mst;

41 typedef const struct StructMarshal_mst

42 {

43 UINT8 marshalType; // STRUCTURE_MTYPE

44 UINT8 elements;

45 UINT16 values[1]; // three times elements

46 } StructMarshal_mst;

47 typedef const struct ValuesMarshal_mst

48 {

49 UINT8 marshalType; // VALUES_MTYPE

50 UINT8 modifiers;

51 UINT8 errorCode;

52 UINT8 ranges;

53 UINT8 singles;

54 UINT32 values[1];

55 } ValuesMarshal_mst;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 499

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

56 typedef const struct TableMarshal_mst

57 {

58 UINT8 marshalType; // TABLE_MTYPE

59 UINT8 modifiers;

60 UINT8 errorCode;

61 UINT8 singles;

62 UINT32 values[1];

63 } TableMarshal_mst;

64 typedef const struct MinMaxMarshal_mst

65 {

66 UINT8 marshalType; // MIN_MAX_MTYPE

67 UINT8 modifiers;

68 UINT8 errorCode;

69 UINT32 values[2];

70 } MinMaxMarshal_mst;

71 typedef const struct Tpm2bMarshal_mst

72 {

73 UINT8 unmarshalType; // TPM2B_MTYPE

74 UINT16 sizeIndex; // reference to type for this size value

75 } Tpm2bMarshal_mst;

76 typedef const struct Tpm2bsMarshal_mst

77 {

78 UINT8 unmarshalType; // TPM2BS_MTYPE

79 UINT8 modifiers; // size= and offset (2 - 7)

80 UINT16 sizeIndex; // index of the size value;

81 UINT16 dataIndex; // the structure

82 } Tpm2bsMarshal_mst;

83 typedef const struct ListMarshal_mst

84 {

85 UINT8 unmarshalType; // LIST_MTYPE (for TPML)

86 UINT8 modifiers; // size offset 2-7

87 UINT16 sizeIndex; // reference to the minmax structure that

88 // unmarshals the size parameter

89 UINT16 arrayRef; // reference to an array definition (type

90 // and stride)

91 } ListMarshal_mst;

92 typedef const struct AttributesMarshal_mst

93 {

94 UINT8 unmarashalType; // ATTRIBUTE_MTYPE

95 UINT8 modifiers; // size (ONE_BYTES, TWO_BYTES, or FOUR_BYTES

96 UINT32 attributeMask; // the values that must be zero.

97 } AttributesMarshal_mst;

98 typedef const struct CompositeMarshal_mst

99 {

100 UINT8 unmashalType; // COMPOSITE_MTYPE

101 UINT8 modifiers; // number of entries and size

102 marshalIndex_t types[1]; // array of unmarshaling types

103 } CompositeMarshal_mst;

104 typedef const struct TPM_ECC_CURVE_mst {

105 UINT8 marshalType;

106 UINT8 modifiers;

107 UINT8 errorCode;

108 UINT32 values[4];

109 } TPM_ECC_CURVE_mst;

110 typedef const struct TPM_CLOCK_ADJUST_mst {

111 UINT8 marshalType;

112 UINT8 modifiers;

113 UINT8 errorCode;

114 UINT32 values[2];

115 } TPM_CLOCK_ADJUST_mst;

116 typedef const struct TPM_EO_mst {

117 UINT8 marshalType;

118 UINT8 modifiers;

119 UINT8 errorCode;

120 UINT32 values[2];

121 } TPM_EO_mst;

Trusted Platform Module Library Part 4: Supporting Routines

Page 500 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

122 typedef const struct TPM_SU_mst {

123 UINT8 marshalType;

124 UINT8 modifiers;

125 UINT8 errorCode;

126 UINT8 entries;

127 UINT32 values[2];

128 } TPM_SU_mst;

129 typedef const struct TPM_SE_mst {

130 UINT8 marshalType;

131 UINT8 modifiers;

132 UINT8 errorCode;

133 UINT8 entries;

134 UINT32 values[3];

135 } TPM_SE_mst;

136 typedef const struct TPM_CAP_mst {

137 UINT8 marshalType;

138 UINT8 modifiers;

139 UINT8 errorCode;

140 UINT8 ranges;

141 UINT8 singles;

142 UINT32 values[3];

143 } TPM_CAP_mst;

144 typedef const struct TPMI_YES_NO_mst {

145 UINT8 marshalType;

146 UINT8 modifiers;

147 UINT8 errorCode;

148 UINT8 entries;

149 UINT32 values[2];

150 } TPMI_YES_NO_mst;

151 typedef const struct TPMI_DH_OBJECT_mst {

152 UINT8 marshalType;

153 UINT8 modifiers;

154 UINT8 errorCode;

155 UINT8 ranges;

156 UINT8 singles;

157 UINT32 values[5];

158 } TPMI_DH_OBJECT_mst;

159 typedef const struct TPMI_DH_PARENT_mst {

160 UINT8 marshalType;

161 UINT8 modifiers;

162 UINT8 errorCode;

163 UINT8 ranges;

164 UINT8 singles;

165 UINT32 values[8];

166 } TPMI_DH_PARENT_mst;

167 typedef const struct TPMI_DH_PERSISTENT_mst {

168 UINT8 marshalType;

169 UINT8 modifiers;

170 UINT8 errorCode;

171 UINT32 values[2];

172 } TPMI_DH_PERSISTENT_mst;

173 typedef const struct TPMI_DH_ENTITY_mst {

174 UINT8 marshalType;

175 UINT8 modifiers;

176 UINT8 errorCode;

177 UINT8 ranges;

178 UINT8 singles;

179 UINT32 values[15];

180 } TPMI_DH_ENTITY_mst;

181 typedef const struct TPMI_DH_PCR_mst {

182 UINT8 marshalType;

183 UINT8 modifiers;

184 UINT8 errorCode;

185 UINT32 values[3];

186 } TPMI_DH_PCR_mst;

187 typedef const struct TPMI_SH_AUTH_SESSION_mst {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 501

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

188 UINT8 marshalType;

189 UINT8 modifiers;

190 UINT8 errorCode;

191 UINT8 ranges;

192 UINT8 singles;

193 UINT32 values[5];

194 } TPMI_SH_AUTH_SESSION_mst;

195 typedef const struct TPMI_SH_HMAC_mst {

196 UINT8 marshalType;

197 UINT8 modifiers;

198 UINT8 errorCode;

199 UINT32 values[2];

200 } TPMI_SH_HMAC_mst;

201 typedef const struct TPMI_SH_POLICY_mst {

202 UINT8 marshalType;

203 UINT8 modifiers;

204 UINT8 errorCode;

205 UINT32 values[2];

206 } TPMI_SH_POLICY_mst;

207 typedef const struct TPMI_DH_CONTEXT_mst {

208 UINT8 marshalType;

209 UINT8 modifiers;

210 UINT8 errorCode;

211 UINT8 ranges;

212 UINT8 singles;

213 UINT32 values[6];

214 } TPMI_DH_CONTEXT_mst;

215 typedef const struct TPMI_DH_SAVED_mst {

216 UINT8 marshalType;

217 UINT8 modifiers;

218 UINT8 errorCode;

219 UINT8 ranges;

220 UINT8 singles;

221 UINT32 values[7];

222 } TPMI_DH_SAVED_mst;

223 typedef const struct TPMI_RH_HIERARCHY_mst {

224 UINT8 marshalType;

225 UINT8 modifiers;

226 UINT8 errorCode;

227 UINT8 entries;

228 UINT32 values[4];

229 } TPMI_RH_HIERARCHY_mst;

230 typedef const struct TPMI_RH_ENABLES_mst {

231 UINT8 marshalType;

232 UINT8 modifiers;

233 UINT8 errorCode;

234 UINT8 entries;

235 UINT32 values[5];

236 } TPMI_RH_ENABLES_mst;

237 typedef const struct TPMI_RH_HIERARCHY_AUTH_mst {

238 UINT8 marshalType;

239 UINT8 modifiers;

240 UINT8 errorCode;

241 UINT8 entries;

242 UINT32 values[4];

243 } TPMI_RH_HIERARCHY_AUTH_mst;

244 typedef const struct TPMI_RH_HIERARCHY_POLICY_mst {

245 UINT8 marshalType;

246 UINT8 modifiers;

247 UINT8 errorCode;

248 UINT8 ranges;

249 UINT8 singles;

250 UINT32 values[6];

251 } TPMI_RH_HIERARCHY_POLICY_mst;

252 typedef const struct TPMI_RH_PLATFORM_mst {

253 UINT8 marshalType;

Trusted Platform Module Library Part 4: Supporting Routines

Page 502 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

254 UINT8 modifiers;

255 UINT8 errorCode;

256 UINT8 entries;

257 UINT32 values[1];

258 } TPMI_RH_PLATFORM_mst;

259 typedef const struct TPMI_RH_OWNER_mst {

260 UINT8 marshalType;

261 UINT8 modifiers;

262 UINT8 errorCode;

263 UINT8 entries;

264 UINT32 values[2];

265 } TPMI_RH_OWNER_mst;

266 typedef const struct TPMI_RH_ENDORSEMENT_mst {

267 UINT8 marshalType;

268 UINT8 modifiers;

269 UINT8 errorCode;

270 UINT8 entries;

271 UINT32 values[2];

272 } TPMI_RH_ENDORSEMENT_mst;

273 typedef const struct TPMI_RH_PROVISION_mst {

274 UINT8 marshalType;

275 UINT8 modifiers;

276 UINT8 errorCode;

277 UINT8 entries;

278 UINT32 values[2];

279 } TPMI_RH_PROVISION_mst;

280 typedef const struct TPMI_RH_CLEAR_mst {

281 UINT8 marshalType;

282 UINT8 modifiers;

283 UINT8 errorCode;

284 UINT8 entries;

285 UINT32 values[2];

286 } TPMI_RH_CLEAR_mst;

287 typedef const struct TPMI_RH_NV_AUTH_mst {

288 UINT8 marshalType;

289 UINT8 modifiers;

290 UINT8 errorCode;

291 UINT8 ranges;

292 UINT8 singles;

293 UINT32 values[4];

294 } TPMI_RH_NV_AUTH_mst;

295 typedef const struct TPMI_RH_LOCKOUT_mst {

296 UINT8 marshalType;

297 UINT8 modifiers;

298 UINT8 errorCode;

299 UINT8 entries;

300 UINT32 values[1];

301 } TPMI_RH_LOCKOUT_mst;

302 typedef const struct TPMI_RH_NV_INDEX_mst {

303 UINT8 marshalType;

304 UINT8 modifiers;

305 UINT8 errorCode;

306 UINT32 values[2];

307 } TPMI_RH_NV_INDEX_mst;

308 typedef const struct TPMI_RH_AC_mst {

309 UINT8 marshalType;

310 UINT8 modifiers;

311 UINT8 errorCode;

312 UINT32 values[2];

313 } TPMI_RH_AC_mst;

314 typedef const struct TPMI_RH_ACT_mst {

315 UINT8 marshalType;

316 UINT8 modifiers;

317 UINT8 errorCode;

318 UINT32 values[2];

319 } TPMI_RH_ACT_mst;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 503

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

320 typedef const struct TPMI_ALG_HASH_mst {

321 UINT8 marshalType;

322 UINT8 modifiers;

323 UINT8 errorCode;

324 UINT32 values[5];

325 } TPMI_ALG_HASH_mst;

326 typedef const struct TPMI_ALG_ASYM_mst {

327 UINT8 marshalType;

328 UINT8 modifiers;

329 UINT8 errorCode;

330 UINT32 values[5];

331 } TPMI_ALG_ASYM_mst;

332 typedef const struct TPMI_ALG_SYM_mst {

333 UINT8 marshalType;

334 UINT8 modifiers;

335 UINT8 errorCode;

336 UINT32 values[5];

337 } TPMI_ALG_SYM_mst;

338 typedef const struct TPMI_ALG_SYM_OBJECT_mst {

339 UINT8 marshalType;

340 UINT8 modifiers;

341 UINT8 errorCode;

342 UINT32 values[5];

343 } TPMI_ALG_SYM_OBJECT_mst;

344 typedef const struct TPMI_ALG_SYM_MODE_mst {

345 UINT8 marshalType;

346 UINT8 modifiers;

347 UINT8 errorCode;

348 UINT32 values[4];

349 } TPMI_ALG_SYM_MODE_mst;

350 typedef const struct TPMI_ALG_KDF_mst {

351 UINT8 marshalType;

352 UINT8 modifiers;

353 UINT8 errorCode;

354 UINT32 values[4];

355 } TPMI_ALG_KDF_mst;

356 typedef const struct TPMI_ALG_SIG_SCHEME_mst {

357 UINT8 marshalType;

358 UINT8 modifiers;

359 UINT8 errorCode;

360 UINT32 values[4];

361 } TPMI_ALG_SIG_SCHEME_mst;

362 typedef const struct TPMI_ECC_KEY_EXCHANGE_mst {

363 UINT8 marshalType;

364 UINT8 modifiers;

365 UINT8 errorCode;

366 UINT32 values[4];

367 } TPMI_ECC_KEY_EXCHANGE_mst;

368 typedef const struct TPMI_ST_COMMAND_TAG_mst {

369 UINT8 marshalType;

370 UINT8 modifiers;

371 UINT8 errorCode;

372 UINT8 entries;

373 UINT32 values[2];

374 } TPMI_ST_COMMAND_TAG_mst;

375 typedef const struct TPMI_ALG_MAC_SCHEME_mst {

376 UINT8 marshalType;

377 UINT8 modifiers;

378 UINT8 errorCode;

379 UINT32 values[5];

380 } TPMI_ALG_MAC_SCHEME_mst;

381 typedef const struct TPMI_ALG_CIPHER_MODE_mst {

382 UINT8 marshalType;

383 UINT8 modifiers;

384 UINT8 errorCode;

385 UINT32 values[4];

Trusted Platform Module Library Part 4: Supporting Routines

Page 504 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

386 } TPMI_ALG_CIPHER_MODE_mst;

387 typedef const struct TPMS_EMPTY_mst

388 {

389 UINT8 marshalType;

390 UINT8 elements;

391 UINT16 values[3];

392 } TPMS_EMPTY_mst;

393 typedef const struct TPMS_ALGORITHM_DESCRIPTION_mst

394 {

395 UINT8 marshalType;

396 UINT8 elements;

397 UINT16 values[6];

398 } TPMS_ALGORITHM_DESCRIPTION_mst;

399 typedef struct TPMU_HA_mst

400 {

401 BYTE countOfselectors;

402 BYTE modifiers;

403 UINT16 offsetOfUnmarshalTypes;

404 UINT32 selectors[9];

405 UINT16 marshalingTypes[9];

406 } TPMU_HA_mst;

407 typedef const struct TPMT_HA_mst

408 {

409 UINT8 marshalType;

410 UINT8 elements;

411 UINT16 values[6];

412 } TPMT_HA_mst;

413 typedef const struct TPMS_PCR_SELECT_mst

414 {

415 UINT8 marshalType;

416 UINT8 elements;

417 UINT16 values[6];

418 } TPMS_PCR_SELECT_mst;

419 typedef const struct TPMS_PCR_SELECTION_mst

420 {

421 UINT8 marshalType;

422 UINT8 elements;

423 UINT16 values[9];

424 } TPMS_PCR_SELECTION_mst;

425 typedef const struct TPMT_TK_CREATION_mst

426 {

427 UINT8 marshalType;

428 UINT8 elements;

429 UINT16 values[9];

430 } TPMT_TK_CREATION_mst;

431 typedef const struct TPMT_TK_VERIFIED_mst

432 {

433 UINT8 marshalType;

434 UINT8 elements;

435 UINT16 values[9];

436 } TPMT_TK_VERIFIED_mst;

437 typedef const struct TPMT_TK_AUTH_mst

438 {

439 UINT8 marshalType;

440 UINT8 elements;

441 UINT16 values[9];

442 } TPMT_TK_AUTH_mst;

443 typedef const struct TPMT_TK_HASHCHECK_mst

444 {

445 UINT8 marshalType;

446 UINT8 elements;

447 UINT16 values[9];

448 } TPMT_TK_HASHCHECK_mst;

449 typedef const struct TPMS_ALG_PROPERTY_mst

450 {

451 UINT8 marshalType;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 505

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

452 UINT8 elements;

453 UINT16 values[6];

454 } TPMS_ALG_PROPERTY_mst;

455 typedef const struct TPMS_TAGGED_PROPERTY_mst

456 {

457 UINT8 marshalType;

458 UINT8 elements;

459 UINT16 values[6];

460 } TPMS_TAGGED_PROPERTY_mst;

461 typedef const struct TPMS_TAGGED_PCR_SELECT_mst

462 {

463 UINT8 marshalType;

464 UINT8 elements;

465 UINT16 values[9];

466 } TPMS_TAGGED_PCR_SELECT_mst;

467 typedef const struct TPMS_TAGGED_POLICY_mst

468 {

469 UINT8 marshalType;

470 UINT8 elements;

471 UINT16 values[6];

472 } TPMS_TAGGED_POLICY_mst;

473 typedef const struct TPMS_ACT_DATA_mst

474 {

475 UINT8 marshalType;

476 UINT8 elements;

477 UINT16 values[9];

478 } TPMS_ACT_DATA_mst;

479 typedef struct TPMU_CAPABILITIES_mst

480 {

481 BYTE countOfselectors;

482 BYTE modifiers;

483 UINT16 offsetOfUnmarshalTypes;

484 UINT32 selectors[11];

485 UINT16 marshalingTypes[11];

486 } TPMU_CAPABILITIES_mst;

487 typedef const struct TPMS_CAPABILITY_DATA_mst

488 {

489 UINT8 marshalType;

490 UINT8 elements;

491 UINT16 values[6];

492 } TPMS_CAPABILITY_DATA_mst;

493 typedef const struct TPMS_CLOCK_INFO_mst

494 {

495 UINT8 marshalType;

496 UINT8 elements;

497 UINT16 values[12];

498 } TPMS_CLOCK_INFO_mst;

499 typedef const struct TPMS_TIME_INFO_mst

500 {

501 UINT8 marshalType;

502 UINT8 elements;

503 UINT16 values[6];

504 } TPMS_TIME_INFO_mst;

505 typedef const struct TPMS_TIME_ATTEST_INFO_mst

506 {

507 UINT8 marshalType;

508 UINT8 elements;

509 UINT16 values[6];

510 } TPMS_TIME_ATTEST_INFO_mst;

511 typedef const struct TPMS_CERTIFY_INFO_mst

512 {

513 UINT8 marshalType;

514 UINT8 elements;

515 UINT16 values[6];

516 } TPMS_CERTIFY_INFO_mst;

517 typedef const struct TPMS_QUOTE_INFO_mst

Trusted Platform Module Library Part 4: Supporting Routines

Page 506 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

518 {

519 UINT8 marshalType;

520 UINT8 elements;

521 UINT16 values[6];

522 } TPMS_QUOTE_INFO_mst;

523 typedef const struct TPMS_COMMAND_AUDIT_INFO_mst

524 {

525 UINT8 marshalType;

526 UINT8 elements;

527 UINT16 values[12];

528 } TPMS_COMMAND_AUDIT_INFO_mst;

529 typedef const struct TPMS_SESSION_AUDIT_INFO_mst

530 {

531 UINT8 marshalType;

532 UINT8 elements;

533 UINT16 values[6];

534 } TPMS_SESSION_AUDIT_INFO_mst;

535 typedef const struct TPMS_CREATION_INFO_mst

536 {

537 UINT8 marshalType;

538 UINT8 elements;

539 UINT16 values[6];

540 } TPMS_CREATION_INFO_mst;

541 typedef const struct TPMS_NV_CERTIFY_INFO_mst

542 {

543 UINT8 marshalType;

544 UINT8 elements;

545 UINT16 values[9];

546 } TPMS_NV_CERTIFY_INFO_mst;

547 typedef const struct TPMS_NV_DIGEST_CERTIFY_INFO_mst

548 {

549 UINT8 marshalType;

550 UINT8 elements;

551 UINT16 values[6];

552 } TPMS_NV_DIGEST_CERTIFY_INFO_mst;

553 typedef const struct TPMI_ST_ATTEST_mst {

554 UINT8 marshalType;

555 UINT8 modifiers;

556 UINT8 errorCode;

557 UINT8 ranges;

558 UINT8 singles;

559 UINT32 values[3];

560 } TPMI_ST_ATTEST_mst;

561 typedef struct TPMU_ATTEST_mst

562 {

563 BYTE countOfselectors;

564 BYTE modifiers;

565 UINT16 offsetOfUnmarshalTypes;

566 UINT32 selectors[8];

567 UINT16 marshalingTypes[8];

568 } TPMU_ATTEST_mst;

569 typedef const struct TPMS_ATTEST_mst

570 {

571 UINT8 marshalType;

572 UINT8 elements;

573 UINT16 values[21];

574 } TPMS_ATTEST_mst;

575 typedef const struct TPMS_AUTH_COMMAND_mst

576 {

577 UINT8 marshalType;

578 UINT8 elements;

579 UINT16 values[12];

580 } TPMS_AUTH_COMMAND_mst;

581 typedef const struct TPMS_AUTH_RESPONSE_mst

582 {

583 UINT8 marshalType;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 507

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

584 UINT8 elements;

585 UINT16 values[9];

586 } TPMS_AUTH_RESPONSE_mst;

587 typedef const struct TPMI_TDES_KEY_BITS_mst {

588 UINT8 marshalType;

589 UINT8 modifiers;

590 UINT8 errorCode;

591 UINT8 entries;

592 UINT32 values[1];

593 } TPMI_TDES_KEY_BITS_mst;

594 typedef const struct TPMI_AES_KEY_BITS_mst {

595 UINT8 marshalType;

596 UINT8 modifiers;

597 UINT8 errorCode;

598 UINT8 entries;

599 UINT32 values[3];

600 } TPMI_AES_KEY_BITS_mst;

601 typedef const struct TPMI_SM4_KEY_BITS_mst {

602 UINT8 marshalType;

603 UINT8 modifiers;

604 UINT8 errorCode;

605 UINT8 entries;

606 UINT32 values[1];

607 } TPMI_SM4_KEY_BITS_mst;

608 typedef const struct TPMI_CAMELLIA_KEY_BITS_mst {

609 UINT8 marshalType;

610 UINT8 modifiers;

611 UINT8 errorCode;

612 UINT8 entries;

613 UINT32 values[3];

614 } TPMI_CAMELLIA_KEY_BITS_mst;

615 typedef struct TPMU_SYM_KEY_BITS_mst

616 {

617 BYTE countOfselectors;

618 BYTE modifiers;

619 UINT16 offsetOfUnmarshalTypes;

620 UINT32 selectors[6];

621 UINT16 marshalingTypes[6];

622 } TPMU_SYM_KEY_BITS_mst;

623 typedef struct TPMU_SYM_MODE_mst

624 {

625 BYTE countOfselectors;

626 BYTE modifiers;

627 UINT16 offsetOfUnmarshalTypes;

628 UINT32 selectors[6];

629 UINT16 marshalingTypes[6];

630 } TPMU_SYM_MODE_mst;

631 typedef const struct TPMT_SYM_DEF_mst

632 {

633 UINT8 marshalType;

634 UINT8 elements;

635 UINT16 values[9];

636 } TPMT_SYM_DEF_mst;

637 typedef const struct TPMT_SYM_DEF_OBJECT_mst

638 {

639 UINT8 marshalType;

640 UINT8 elements;

641 UINT16 values[9];

642 } TPMT_SYM_DEF_OBJECT_mst;

643 typedef const struct TPMS_SYMCIPHER_PARMS_mst

644 {

645 UINT8 marshalType;

646 UINT8 elements;

647 UINT16 values[3];

648 } TPMS_SYMCIPHER_PARMS_mst;

649 typedef const struct TPMS_DERIVE_mst

Trusted Platform Module Library Part 4: Supporting Routines

Page 508 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

650 {

651 UINT8 marshalType;

652 UINT8 elements;

653 UINT16 values[6];

654 } TPMS_DERIVE_mst;

655 typedef const struct TPMS_SENSITIVE_CREATE_mst

656 {

657 UINT8 marshalType;

658 UINT8 elements;

659 UINT16 values[6];

660 } TPMS_SENSITIVE_CREATE_mst;

661 typedef const struct TPMS_SCHEME_HASH_mst

662 {

663 UINT8 marshalType;

664 UINT8 elements;

665 UINT16 values[3];

666 } TPMS_SCHEME_HASH_mst;

667 typedef const struct TPMS_SCHEME_ECDAA_mst

668 {

669 UINT8 marshalType;

670 UINT8 elements;

671 UINT16 values[6];

672 } TPMS_SCHEME_ECDAA_mst;

673 typedef const struct TPMI_ALG_KEYEDHASH_SCHEME_mst {

674 UINT8 marshalType;

675 UINT8 modifiers;

676 UINT8 errorCode;

677 UINT32 values[4];

678 } TPMI_ALG_KEYEDHASH_SCHEME_mst;

679 typedef const struct TPMS_SCHEME_XOR_mst

680 {

681 UINT8 marshalType;

682 UINT8 elements;

683 UINT16 values[6];

684 } TPMS_SCHEME_XOR_mst;

685 typedef struct TPMU_SCHEME_KEYEDHASH_mst

686 {

687 BYTE countOfselectors;

688 BYTE modifiers;

689 UINT16 offsetOfUnmarshalTypes;

690 UINT32 selectors[3];

691 UINT16 marshalingTypes[3];

692 } TPMU_SCHEME_KEYEDHASH_mst;

693 typedef const struct TPMT_KEYEDHASH_SCHEME_mst

694 {

695 UINT8 marshalType;

696 UINT8 elements;

697 UINT16 values[6];

698 } TPMT_KEYEDHASH_SCHEME_mst;

699 typedef struct TPMU_SIG_SCHEME_mst

700 {

701 BYTE countOfselectors;

702 BYTE modifiers;

703 UINT16 offsetOfUnmarshalTypes;

704 UINT32 selectors[8];

705 UINT16 marshalingTypes[8];

706 } TPMU_SIG_SCHEME_mst;

707 typedef const struct TPMT_SIG_SCHEME_mst

708 {

709 UINT8 marshalType;

710 UINT8 elements;

711 UINT16 values[6];

712 } TPMT_SIG_SCHEME_mst;

713 typedef struct TPMU_KDF_SCHEME_mst

714 {

715 BYTE countOfselectors;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 509

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

716 BYTE modifiers;

717 UINT16 offsetOfUnmarshalTypes;

718 UINT32 selectors[5];

719 UINT16 marshalingTypes[5];

720 } TPMU_KDF_SCHEME_mst;

721 typedef const struct TPMT_KDF_SCHEME_mst

722 {

723 UINT8 marshalType;

724 UINT8 elements;

725 UINT16 values[6];

726 } TPMT_KDF_SCHEME_mst;

727 typedef const struct TPMI_ALG_ASYM_SCHEME_mst {

728 UINT8 marshalType;

729 UINT8 modifiers;

730 UINT8 errorCode;

731 UINT32 values[4];

732 } TPMI_ALG_ASYM_SCHEME_mst;

733 typedef struct TPMU_ASYM_SCHEME_mst

734 {

735 BYTE countOfselectors;

736 BYTE modifiers;

737 UINT16 offsetOfUnmarshalTypes;

738 UINT32 selectors[11];

739 UINT16 marshalingTypes[11];

740 } TPMU_ASYM_SCHEME_mst;

741 typedef const struct TPMI_ALG_RSA_SCHEME_mst {

742 UINT8 marshalType;

743 UINT8 modifiers;

744 UINT8 errorCode;

745 UINT32 values[4];

746 } TPMI_ALG_RSA_SCHEME_mst;

747 typedef const struct TPMT_RSA_SCHEME_mst

748 {

749 UINT8 marshalType;

750 UINT8 elements;

751 UINT16 values[6];

752 } TPMT_RSA_SCHEME_mst;

753 typedef const struct TPMI_ALG_RSA_DECRYPT_mst {

754 UINT8 marshalType;

755 UINT8 modifiers;

756 UINT8 errorCode;

757 UINT32 values[4];

758 } TPMI_ALG_RSA_DECRYPT_mst;

759 typedef const struct TPMT_RSA_DECRYPT_mst

760 {

761 UINT8 marshalType;

762 UINT8 elements;

763 UINT16 values[6];

764 } TPMT_RSA_DECRYPT_mst;

765 typedef const struct TPMI_RSA_KEY_BITS_mst {

766 UINT8 marshalType;

767 UINT8 modifiers;

768 UINT8 errorCode;

769 UINT8 entries;

770 UINT32 values[3];

771 } TPMI_RSA_KEY_BITS_mst;

772 typedef const struct TPMS_ECC_POINT_mst

773 {

774 UINT8 marshalType;

775 UINT8 elements;

776 UINT16 values[6];

777 } TPMS_ECC_POINT_mst;

778 typedef const struct TPMI_ALG_ECC_SCHEME_mst {

779 UINT8 marshalType;

780 UINT8 modifiers;

781 UINT8 errorCode;

Trusted Platform Module Library Part 4: Supporting Routines

Page 510 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

782 UINT32 values[4];

783 } TPMI_ALG_ECC_SCHEME_mst;

784 typedef const struct TPMI_ECC_CURVE_mst {

785 UINT8 marshalType;

786 UINT8 modifiers;

787 UINT8 errorCode;

788 UINT32 values[3];

789 } TPMI_ECC_CURVE_mst;

790 typedef const struct TPMT_ECC_SCHEME_mst

791 {

792 UINT8 marshalType;

793 UINT8 elements;

794 UINT16 values[6];

795 } TPMT_ECC_SCHEME_mst;

796 typedef const struct TPMS_ALGORITHM_DETAIL_ECC_mst

797 {

798 UINT8 marshalType;

799 UINT8 elements;

800 UINT16 values[33];

801 } TPMS_ALGORITHM_DETAIL_ECC_mst;

802 typedef const struct TPMS_SIGNATURE_RSA_mst

803 {

804 UINT8 marshalType;

805 UINT8 elements;

806 UINT16 values[6];

807 } TPMS_SIGNATURE_RSA_mst;

808 typedef const struct TPMS_SIGNATURE_ECC_mst

809 {

810 UINT8 marshalType;

811 UINT8 elements;

812 UINT16 values[9];

813 } TPMS_SIGNATURE_ECC_mst;

814 typedef struct TPMU_SIGNATURE_mst

815 {

816 BYTE countOfselectors;

817 BYTE modifiers;

818 UINT16 offsetOfUnmarshalTypes;

819 UINT32 selectors[8];

820 UINT16 marshalingTypes[8];

821 } TPMU_SIGNATURE_mst;

822 typedef const struct TPMT_SIGNATURE_mst

823 {

824 UINT8 marshalType;

825 UINT8 elements;

826 UINT16 values[6];

827 } TPMT_SIGNATURE_mst;

828 typedef struct TPMU_ENCRYPTED_SECRET_mst

829 {

830 BYTE countOfselectors;

831 BYTE modifiers;

832 UINT16 offsetOfUnmarshalTypes;

833 UINT32 selectors[4];

834 UINT16 marshalingTypes[4];

835 } TPMU_ENCRYPTED_SECRET_mst;

836 typedef const struct TPMI_ALG_PUBLIC_mst {

837 UINT8 marshalType;

838 UINT8 modifiers;

839 UINT8 errorCode;

840 UINT32 values[4];

841 } TPMI_ALG_PUBLIC_mst;

842 typedef struct TPMU_PUBLIC_ID_mst

843 {

844 BYTE countOfselectors;

845 BYTE modifiers;

846 UINT16 offsetOfUnmarshalTypes;

847 UINT32 selectors[4];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 511

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

848 UINT16 marshalingTypes[4];

849 } TPMU_PUBLIC_ID_mst;

850 typedef const struct TPMS_KEYEDHASH_PARMS_mst

851 {

852 UINT8 marshalType;

853 UINT8 elements;

854 UINT16 values[3];

855 } TPMS_KEYEDHASH_PARMS_mst;

856 typedef const struct TPMS_RSA_PARMS_mst

857 {

858 UINT8 marshalType;

859 UINT8 elements;

860 UINT16 values[12];

861 } TPMS_RSA_PARMS_mst;

862 typedef const struct TPMS_ECC_PARMS_mst

863 {

864 UINT8 marshalType;

865 UINT8 elements;

866 UINT16 values[12];

867 } TPMS_ECC_PARMS_mst;

868 typedef struct TPMU_PUBLIC_PARMS_mst

869 {

870 BYTE countOfselectors;

871 BYTE modifiers;

872 UINT16 offsetOfUnmarshalTypes;

873 UINT32 selectors[4];

874 UINT16 marshalingTypes[4];

875 } TPMU_PUBLIC_PARMS_mst;

876 typedef const struct TPMT_PUBLIC_PARMS_mst

877 {

878 UINT8 marshalType;

879 UINT8 elements;

880 UINT16 values[6];

881 } TPMT_PUBLIC_PARMS_mst;

882 typedef const struct TPMT_PUBLIC_mst

883 {

884 UINT8 marshalType;

885 UINT8 elements;

886 UINT16 values[18];

887 } TPMT_PUBLIC_mst;

888 typedef struct TPMU_SENSITIVE_COMPOSITE_mst

889 {

890 BYTE countOfselectors;

891 BYTE modifiers;

892 UINT16 offsetOfUnmarshalTypes;

893 UINT32 selectors[4];

894 UINT16 marshalingTypes[4];

895 } TPMU_SENSITIVE_COMPOSITE_mst;

896 typedef const struct TPMT_SENSITIVE_mst

897 {

898 UINT8 marshalType;

899 UINT8 elements;

900 UINT16 values[12];

901 } TPMT_SENSITIVE_mst;

902 typedef const struct TPMS_NV_PIN_COUNTER_PARAMETERS_mst

903 {

904 UINT8 marshalType;

905 UINT8 elements;

906 UINT16 values[6];

907 } TPMS_NV_PIN_COUNTER_PARAMETERS_mst;

908 typedef const struct TPMS_NV_PUBLIC_mst

909 {

910 UINT8 marshalType;

911 UINT8 elements;

912 UINT16 values[15];

913 } TPMS_NV_PUBLIC_mst;

Trusted Platform Module Library Part 4: Supporting Routines

Page 512 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

914 typedef const struct TPMS_CONTEXT_DATA_mst

915 {

916 UINT8 marshalType;

917 UINT8 elements;

918 UINT16 values[6];

919 } TPMS_CONTEXT_DATA_mst;

920 typedef const struct TPMS_CONTEXT_mst

921 {

922 UINT8 marshalType;

923 UINT8 elements;

924 UINT16 values[12];

925 } TPMS_CONTEXT_mst;

926 typedef const struct TPMS_CREATION_DATA_mst

927 {

928 UINT8 marshalType;

929 UINT8 elements;

930 UINT16 values[21];

931 } TPMS_CREATION_DATA_mst;

932 typedef const struct TPM_AT_mst {

933 UINT8 marshalType;

934 UINT8 modifiers;

935 UINT8 errorCode;

936 UINT8 entries;

937 UINT32 values[4];

938 } TPM_AT_mst;

939 typedef const struct TPMS_AC_OUTPUT_mst

940 {

941 UINT8 marshalType;

942 UINT8 elements;

943 UINT16 values[6];

944 } TPMS_AC_OUTPUT_mst;

945 typedef const struct Type02_mst {

946 UINT8 marshalType;

947 UINT8 modifiers;

948 UINT8 errorCode;

949 UINT32 values[2];

950 } Type02_mst;

951 typedef const struct Type03_mst {

952 UINT8 marshalType;

953 UINT8 modifiers;

954 UINT8 errorCode;

955 UINT32 values[2];

956 } Type03_mst;

957 typedef const struct Type04_mst {

958 UINT8 marshalType;

959 UINT8 modifiers;

960 UINT8 errorCode;

961 UINT32 values[2];

962 } Type04_mst;

963 typedef const struct Type06_mst {

964 UINT8 marshalType;

965 UINT8 modifiers;

966 UINT8 errorCode;

967 UINT32 values[2];

968 } Type06_mst;

969 typedef const struct Type08_mst {

970 UINT8 marshalType;

971 UINT8 modifiers;

972 UINT8 errorCode;

973 UINT32 values[2];

974 } Type08_mst;

975 typedef const struct Type10_mst {

976 UINT8 marshalType;

977 UINT8 modifiers;

978 UINT8 errorCode;

979 UINT8 entries;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 513

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

980 UINT32 values[1];

981 } Type10_mst;

982 typedef const struct Type11_mst {

983 UINT8 marshalType;

984 UINT8 modifiers;

985 UINT8 errorCode;

986 UINT8 entries;

987 UINT32 values[1];

988 } Type11_mst;

989 typedef const struct Type12_mst {

990 UINT8 marshalType;

991 UINT8 modifiers;

992 UINT8 errorCode;

993 UINT8 entries;

994 UINT32 values[2];

995 } Type12_mst;

996 typedef const struct Type13_mst {

997 UINT8 marshalType;

998 UINT8 modifiers;

999 UINT8 errorCode;

1000 UINT8 entries;

1001 UINT32 values[1];

1002 } Type13_mst;

1003 typedef const struct Type15_mst {

1004 UINT8 marshalType;

1005 UINT8 modifiers;

1006 UINT8 errorCode;

1007 UINT32 values[2];

1008 } Type15_mst;

1009 typedef const struct Type17_mst {

1010 UINT8 marshalType;

1011 UINT8 modifiers;

1012 UINT8 errorCode;

1013 UINT32 values[2];

1014 } Type17_mst;

1015 typedef const struct Type18_mst {

1016 UINT8 marshalType;

1017 UINT8 modifiers;

1018 UINT8 errorCode;

1019 UINT32 values[2];

1020 } Type18_mst;

1021 typedef const struct Type19_mst {

1022 UINT8 marshalType;

1023 UINT8 modifiers;

1024 UINT8 errorCode;

1025 UINT32 values[2];

1026 } Type19_mst;

1027 typedef const struct Type20_mst {

1028 UINT8 marshalType;

1029 UINT8 modifiers;

1030 UINT8 errorCode;

1031 UINT32 values[2];

1032 } Type20_mst;

1033 typedef const struct Type22_mst {

1034 UINT8 marshalType;

1035 UINT8 modifiers;

1036 UINT8 errorCode;

1037 UINT32 values[2];

1038 } Type22_mst;

1039 typedef const struct Type23_mst {

1040 UINT8 marshalType;

1041 UINT8 modifiers;

1042 UINT8 errorCode;

1043 UINT32 values[2];

1044 } Type23_mst;

1045 typedef const struct Type24_mst {

Trusted Platform Module Library Part 4: Supporting Routines

Page 514 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1046 UINT8 marshalType;

1047 UINT8 modifiers;

1048 UINT8 errorCode;

1049 UINT32 values[2];

1050 } Type24_mst;

1051 typedef const struct Type25_mst {

1052 UINT8 marshalType;

1053 UINT8 modifiers;

1054 UINT8 errorCode;

1055 UINT32 values[2];

1056 } Type25_mst;

1057 typedef const struct Type26_mst {

1058 UINT8 marshalType;

1059 UINT8 modifiers;

1060 UINT8 errorCode;

1061 UINT32 values[2];

1062 } Type26_mst;

1063 typedef const struct Type27_mst {

1064 UINT8 marshalType;

1065 UINT8 modifiers;

1066 UINT8 errorCode;

1067 UINT32 values[2];

1068 } Type27_mst;

1069 typedef const struct Type29_mst {

1070 UINT8 marshalType;

1071 UINT8 modifiers;

1072 UINT8 errorCode;

1073 UINT32 values[2];

1074 } Type29_mst;

1075 typedef const struct Type30_mst {

1076 UINT8 marshalType;

1077 UINT8 modifiers;

1078 UINT8 errorCode;

1079 UINT32 values[2];

1080 } Type30_mst;

1081 typedef const struct Type33_mst {

1082 UINT8 marshalType;

1083 UINT8 modifiers;

1084 UINT8 errorCode;

1085 UINT32 values[2];

1086 } Type33_mst;

1087 typedef const struct Type34_mst {

1088 UINT8 marshalType;

1089 UINT8 modifiers;

1090 UINT8 errorCode;

1091 UINT32 values[2];

1092 } Type34_mst;

1093 typedef const struct Type35_mst {

1094 UINT8 marshalType;

1095 UINT8 modifiers;

1096 UINT8 errorCode;

1097 UINT32 values[2];

1098 } Type35_mst;

1099 typedef const struct Type38_mst {

1100 UINT8 marshalType;

1101 UINT8 modifiers;

1102 UINT8 errorCode;

1103 UINT32 values[2];

1104 } Type38_mst;

1105 typedef const struct Type41_mst {

1106 UINT8 marshalType;

1107 UINT8 modifiers;

1108 UINT8 errorCode;

1109 UINT32 values[2];

1110 } Type41_mst;

1111 typedef const struct Type42_mst {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 515

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1112 UINT8 marshalType;

1113 UINT8 modifiers;

1114 UINT8 errorCode;

1115 UINT32 values[2];

1116 } Type42_mst;

1117 typedef const struct Type44_mst {

1118 UINT8 marshalType;

1119 UINT8 modifiers;

1120 UINT8 errorCode;

1121 UINT32 values[2];

1122 } Type44_mst;

This structure combines all the individual marshaling structures to build something that can be referenced

by offset rather than full address

1123 typedef const struct MarshalData_st {

1124 UintMarshal_mst UINT8_DATA;

1125 UintMarshal_mst UINT16_DATA;

1126 UintMarshal_mst UINT32_DATA;

1127 UintMarshal_mst UINT64_DATA;

1128 UintMarshal_mst INT8_DATA;

1129 UintMarshal_mst INT16_DATA;

1130 UintMarshal_mst INT32_DATA;

1131 UintMarshal_mst INT64_DATA;

1132 UintMarshal_mst UINT0_DATA;

1133 TPM_ECC_CURVE_mst TPM_ECC_CURVE_DATA;

1134 TPM_CLOCK_ADJUST_mst TPM_CLOCK_ADJUST_DATA;

1135 TPM_EO_mst TPM_EO_DATA;

1136 TPM_SU_mst TPM_SU_DATA;

1137 TPM_SE_mst TPM_SE_DATA;

1138 TPM_CAP_mst TPM_CAP_DATA;

1139 AttributesMarshal_mst TPMA_ALGORITHM_DATA;

1140 AttributesMarshal_mst TPMA_OBJECT_DATA;

1141 AttributesMarshal_mst TPMA_SESSION_DATA;

1142 AttributesMarshal_mst TPMA_ACT_DATA;

1143 TPMI_YES_NO_mst TPMI_YES_NO_DATA;

1144 TPMI_DH_OBJECT_mst TPMI_DH_OBJECT_DATA;

1145 TPMI_DH_PARENT_mst TPMI_DH_PARENT_DATA;

1146 TPMI_DH_PERSISTENT_mst TPMI_DH_PERSISTENT_DATA;

1147 TPMI_DH_ENTITY_mst TPMI_DH_ENTITY_DATA;

1148 TPMI_DH_PCR_mst TPMI_DH_PCR_DATA;

1149 TPMI_SH_AUTH_SESSION_mst TPMI_SH_AUTH_SESSION_DATA;

1150 TPMI_SH_HMAC_mst TPMI_SH_HMAC_DATA;

1151 TPMI_SH_POLICY_mst TPMI_SH_POLICY_DATA;

1152 TPMI_DH_CONTEXT_mst TPMI_DH_CONTEXT_DATA;

1153 TPMI_DH_SAVED_mst TPMI_DH_SAVED_DATA;

1154 TPMI_RH_HIERARCHY_mst TPMI_RH_HIERARCHY_DATA;

1155 TPMI_RH_ENABLES_mst TPMI_RH_ENABLES_DATA;

1156 TPMI_RH_HIERARCHY_AUTH_mst TPMI_RH_HIERARCHY_AUTH_DATA;

1157 TPMI_RH_HIERARCHY_POLICY_mst TPMI_RH_HIERARCHY_POLICY_DATA;

1158 TPMI_RH_PLATFORM_mst TPMI_RH_PLATFORM_DATA;

1159 TPMI_RH_OWNER_mst TPMI_RH_OWNER_DATA;

1160 TPMI_RH_ENDORSEMENT_mst TPMI_RH_ENDORSEMENT_DATA;

1161 TPMI_RH_PROVISION_mst TPMI_RH_PROVISION_DATA;

1162 TPMI_RH_CLEAR_mst TPMI_RH_CLEAR_DATA;

1163 TPMI_RH_NV_AUTH_mst TPMI_RH_NV_AUTH_DATA;

1164 TPMI_RH_LOCKOUT_mst TPMI_RH_LOCKOUT_DATA;

1165 TPMI_RH_NV_INDEX_mst TPMI_RH_NV_INDEX_DATA;

1166 TPMI_RH_AC_mst TPMI_RH_AC_DATA;

1167 TPMI_RH_ACT_mst TPMI_RH_ACT_DATA;

1168 TPMI_ALG_HASH_mst TPMI_ALG_HASH_DATA;

1169 TPMI_ALG_ASYM_mst TPMI_ALG_ASYM_DATA;

1170 TPMI_ALG_SYM_mst TPMI_ALG_SYM_DATA;

1171 TPMI_ALG_SYM_OBJECT_mst TPMI_ALG_SYM_OBJECT_DATA;

1172 TPMI_ALG_SYM_MODE_mst TPMI_ALG_SYM_MODE_DATA;

Trusted Platform Module Library Part 4: Supporting Routines

Page 516 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1173 TPMI_ALG_KDF_mst TPMI_ALG_KDF_DATA;

1174 TPMI_ALG_SIG_SCHEME_mst TPMI_ALG_SIG_SCHEME_DATA;

1175 TPMI_ECC_KEY_EXCHANGE_mst TPMI_ECC_KEY_EXCHANGE_DATA;

1176 TPMI_ST_COMMAND_TAG_mst TPMI_ST_COMMAND_TAG_DATA;

1177 TPMI_ALG_MAC_SCHEME_mst TPMI_ALG_MAC_SCHEME_DATA;

1178 TPMI_ALG_CIPHER_MODE_mst TPMI_ALG_CIPHER_MODE_DATA;

1179 TPMS_EMPTY_mst TPMS_EMPTY_DATA;

1180 TPMS_ALGORITHM_DESCRIPTION_mst TPMS_ALGORITHM_DESCRIPTION_DATA;

1181 TPMU_HA_mst TPMU_HA_DATA;

1182 TPMT_HA_mst TPMT_HA_DATA;

1183 Tpm2bMarshal_mst TPM2B_DIGEST_DATA;

1184 Tpm2bMarshal_mst TPM2B_DATA_DATA;

1185 Tpm2bMarshal_mst TPM2B_EVENT_DATA;

1186 Tpm2bMarshal_mst TPM2B_MAX_BUFFER_DATA;

1187 Tpm2bMarshal_mst TPM2B_MAX_NV_BUFFER_DATA;

1188 Tpm2bMarshal_mst TPM2B_TIMEOUT_DATA;

1189 Tpm2bMarshal_mst TPM2B_IV_DATA;

1190 NullUnionMarshal_mst NULL_UNION_DATA;

1191 Tpm2bMarshal_mst TPM2B_NAME_DATA;

1192 TPMS_PCR_SELECT_mst TPMS_PCR_SELECT_DATA;

1193 TPMS_PCR_SELECTION_mst TPMS_PCR_SELECTION_DATA;

1194 TPMT_TK_CREATION_mst TPMT_TK_CREATION_DATA;

1195 TPMT_TK_VERIFIED_mst TPMT_TK_VERIFIED_DATA;

1196 TPMT_TK_AUTH_mst TPMT_TK_AUTH_DATA;

1197 TPMT_TK_HASHCHECK_mst TPMT_TK_HASHCHECK_DATA;

1198 TPMS_ALG_PROPERTY_mst TPMS_ALG_PROPERTY_DATA;

1199 TPMS_TAGGED_PROPERTY_mst TPMS_TAGGED_PROPERTY_DATA;

1200 TPMS_TAGGED_PCR_SELECT_mst TPMS_TAGGED_PCR_SELECT_DATA;

1201 TPMS_TAGGED_POLICY_mst TPMS_TAGGED_POLICY_DATA;

1202 TPMS_ACT_DATA_mst TPMS_ACT_DATA_DATA;

1203 ListMarshal_mst TPML_CC_DATA;

1204 ListMarshal_mst TPML_CCA_DATA;

1205 ListMarshal_mst TPML_ALG_DATA;

1206 ListMarshal_mst TPML_HANDLE_DATA;

1207 ListMarshal_mst TPML_DIGEST_DATA;

1208 ListMarshal_mst TPML_DIGEST_VALUES_DATA;

1209 ListMarshal_mst TPML_PCR_SELECTION_DATA;

1210 ListMarshal_mst TPML_ALG_PROPERTY_DATA;

1211 ListMarshal_mst TPML_TAGGED_TPM_PROPERTY_DATA;

1212 ListMarshal_mst TPML_TAGGED_PCR_PROPERTY_DATA;

1213 ListMarshal_mst TPML_ECC_CURVE_DATA;

1214 ListMarshal_mst TPML_TAGGED_POLICY_DATA;

1215 ListMarshal_mst TPML_ACT_DATA_DATA;

1216 TPMU_CAPABILITIES_mst TPMU_CAPABILITIES_DATA;

1217 TPMS_CAPABILITY_DATA_mst TPMS_CAPABILITY_DATA_DATA;

1218 TPMS_CLOCK_INFO_mst TPMS_CLOCK_INFO_DATA;

1219 TPMS_TIME_INFO_mst TPMS_TIME_INFO_DATA;

1220 TPMS_TIME_ATTEST_INFO_mst TPMS_TIME_ATTEST_INFO_DATA;

1221 TPMS_CERTIFY_INFO_mst TPMS_CERTIFY_INFO_DATA;

1222 TPMS_QUOTE_INFO_mst TPMS_QUOTE_INFO_DATA;

1223 TPMS_COMMAND_AUDIT_INFO_mst TPMS_COMMAND_AUDIT_INFO_DATA;

1224 TPMS_SESSION_AUDIT_INFO_mst TPMS_SESSION_AUDIT_INFO_DATA;

1225 TPMS_CREATION_INFO_mst TPMS_CREATION_INFO_DATA;

1226 TPMS_NV_CERTIFY_INFO_mst TPMS_NV_CERTIFY_INFO_DATA;

1227 TPMS_NV_DIGEST_CERTIFY_INFO_mst TPMS_NV_DIGEST_CERTIFY_INFO_DATA;

1228 TPMI_ST_ATTEST_mst TPMI_ST_ATTEST_DATA;

1229 TPMU_ATTEST_mst TPMU_ATTEST_DATA;

1230 TPMS_ATTEST_mst TPMS_ATTEST_DATA;

1231 Tpm2bMarshal_mst TPM2B_ATTEST_DATA;

1232 TPMS_AUTH_COMMAND_mst TPMS_AUTH_COMMAND_DATA;

1233 TPMS_AUTH_RESPONSE_mst TPMS_AUTH_RESPONSE_DATA;

1234 TPMI_TDES_KEY_BITS_mst TPMI_TDES_KEY_BITS_DATA;

1235 TPMI_AES_KEY_BITS_mst TPMI_AES_KEY_BITS_DATA;

1236 TPMI_SM4_KEY_BITS_mst TPMI_SM4_KEY_BITS_DATA;

1237 TPMI_CAMELLIA_KEY_BITS_mst TPMI_CAMELLIA_KEY_BITS_DATA;

1238 TPMU_SYM_KEY_BITS_mst TPMU_SYM_KEY_BITS_DATA;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 517

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1239 TPMU_SYM_MODE_mst TPMU_SYM_MODE_DATA;

1240 TPMT_SYM_DEF_mst TPMT_SYM_DEF_DATA;

1241 TPMT_SYM_DEF_OBJECT_mst TPMT_SYM_DEF_OBJECT_DATA;

1242 Tpm2bMarshal_mst TPM2B_SYM_KEY_DATA;

1243 TPMS_SYMCIPHER_PARMS_mst TPMS_SYMCIPHER_PARMS_DATA;

1244 Tpm2bMarshal_mst TPM2B_LABEL_DATA;

1245 TPMS_DERIVE_mst TPMS_DERIVE_DATA;

1246 Tpm2bMarshal_mst TPM2B_DERIVE_DATA;

1247 Tpm2bMarshal_mst TPM2B_SENSITIVE_DATA_DATA;

1248 TPMS_SENSITIVE_CREATE_mst TPMS_SENSITIVE_CREATE_DATA;

1249 Tpm2bsMarshal_mst TPM2B_SENSITIVE_CREATE_DATA;

1250 TPMS_SCHEME_HASH_mst TPMS_SCHEME_HASH_DATA;

1251 TPMS_SCHEME_ECDAA_mst TPMS_SCHEME_ECDAA_DATA;

1252 TPMI_ALG_KEYEDHASH_SCHEME_mst TPMI_ALG_KEYEDHASH_SCHEME_DATA;

1253 TPMS_SCHEME_XOR_mst TPMS_SCHEME_XOR_DATA;

1254 TPMU_SCHEME_KEYEDHASH_mst TPMU_SCHEME_KEYEDHASH_DATA;

1255 TPMT_KEYEDHASH_SCHEME_mst TPMT_KEYEDHASH_SCHEME_DATA;

1256 TPMU_SIG_SCHEME_mst TPMU_SIG_SCHEME_DATA;

1257 TPMT_SIG_SCHEME_mst TPMT_SIG_SCHEME_DATA;

1258 TPMU_KDF_SCHEME_mst TPMU_KDF_SCHEME_DATA;

1259 TPMT_KDF_SCHEME_mst TPMT_KDF_SCHEME_DATA;

1260 TPMI_ALG_ASYM_SCHEME_mst TPMI_ALG_ASYM_SCHEME_DATA;

1261 TPMU_ASYM_SCHEME_mst TPMU_ASYM_SCHEME_DATA;

1262 TPMI_ALG_RSA_SCHEME_mst TPMI_ALG_RSA_SCHEME_DATA;

1263 TPMT_RSA_SCHEME_mst TPMT_RSA_SCHEME_DATA;

1264 TPMI_ALG_RSA_DECRYPT_mst TPMI_ALG_RSA_DECRYPT_DATA;

1265 TPMT_RSA_DECRYPT_mst TPMT_RSA_DECRYPT_DATA;

1266 Tpm2bMarshal_mst TPM2B_PUBLIC_KEY_RSA_DATA;

1267 TPMI_RSA_KEY_BITS_mst TPMI_RSA_KEY_BITS_DATA;

1268 Tpm2bMarshal_mst TPM2B_PRIVATE_KEY_RSA_DATA;

1269 Tpm2bMarshal_mst TPM2B_ECC_PARAMETER_DATA;

1270 TPMS_ECC_POINT_mst TPMS_ECC_POINT_DATA;

1271 Tpm2bsMarshal_mst TPM2B_ECC_POINT_DATA;

1272 TPMI_ALG_ECC_SCHEME_mst TPMI_ALG_ECC_SCHEME_DATA;

1273 TPMI_ECC_CURVE_mst TPMI_ECC_CURVE_DATA;

1274 TPMT_ECC_SCHEME_mst TPMT_ECC_SCHEME_DATA;

1275 TPMS_ALGORITHM_DETAIL_ECC_mst TPMS_ALGORITHM_DETAIL_ECC_DATA;

1276 TPMS_SIGNATURE_RSA_mst TPMS_SIGNATURE_RSA_DATA;

1277 TPMS_SIGNATURE_ECC_mst TPMS_SIGNATURE_ECC_DATA;

1278 TPMU_SIGNATURE_mst TPMU_SIGNATURE_DATA;

1279 TPMT_SIGNATURE_mst TPMT_SIGNATURE_DATA;

1280 TPMU_ENCRYPTED_SECRET_mst TPMU_ENCRYPTED_SECRET_DATA;

1281 Tpm2bMarshal_mst TPM2B_ENCRYPTED_SECRET_DATA;

1282 TPMI_ALG_PUBLIC_mst TPMI_ALG_PUBLIC_DATA;

1283 TPMU_PUBLIC_ID_mst TPMU_PUBLIC_ID_DATA;

1284 TPMS_KEYEDHASH_PARMS_mst TPMS_KEYEDHASH_PARMS_DATA;

1285 TPMS_RSA_PARMS_mst TPMS_RSA_PARMS_DATA;

1286 TPMS_ECC_PARMS_mst TPMS_ECC_PARMS_DATA;

1287 TPMU_PUBLIC_PARMS_mst TPMU_PUBLIC_PARMS_DATA;

1288 TPMT_PUBLIC_PARMS_mst TPMT_PUBLIC_PARMS_DATA;

1289 TPMT_PUBLIC_mst TPMT_PUBLIC_DATA;

1290 Tpm2bsMarshal_mst TPM2B_PUBLIC_DATA;

1291 Tpm2bMarshal_mst TPM2B_TEMPLATE_DATA;

1292 Tpm2bMarshal_mst TPM2B_PRIVATE_VENDOR_SPECIFIC_DATA;

1293 TPMU_SENSITIVE_COMPOSITE_mst TPMU_SENSITIVE_COMPOSITE_DATA;

1294 TPMT_SENSITIVE_mst TPMT_SENSITIVE_DATA;

1295 Tpm2bsMarshal_mst TPM2B_SENSITIVE_DATA;

1296 Tpm2bMarshal_mst TPM2B_PRIVATE_DATA;

1297 Tpm2bMarshal_mst TPM2B_ID_OBJECT_DATA;

1298 TPMS_NV_PIN_COUNTER_PARAMETERS_mst TPMS_NV_PIN_COUNTER_PARAMETERS_DATA;

1299 AttributesMarshal_mst TPMA_NV_DATA;

1300 TPMS_NV_PUBLIC_mst TPMS_NV_PUBLIC_DATA;

1301 Tpm2bsMarshal_mst TPM2B_NV_PUBLIC_DATA;

1302 Tpm2bMarshal_mst TPM2B_CONTEXT_SENSITIVE_DATA;

1303 TPMS_CONTEXT_DATA_mst TPMS_CONTEXT_DATA_DATA;

1304 Tpm2bMarshal_mst TPM2B_CONTEXT_DATA_DATA;

Trusted Platform Module Library Part 4: Supporting Routines

Page 518 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1305 TPMS_CONTEXT_mst TPMS_CONTEXT_DATA;

1306 TPMS_CREATION_DATA_mst TPMS_CREATION_DATA_DATA;

1307 Tpm2bsMarshal_mst TPM2B_CREATION_DATA_DATA;

1308 TPM_AT_mst TPM_AT_DATA;

1309 TPMS_AC_OUTPUT_mst TPMS_AC_OUTPUT_DATA;

1310 ListMarshal_mst TPML_AC_CAPABILITIES_DATA;

1311 MinMaxMarshal_mst Type00_DATA;

1312 MinMaxMarshal_mst Type01_DATA;

1313 Type02_mst Type02_DATA;

1314 Type03_mst Type03_DATA;

1315 Type04_mst Type04_DATA;

1316 MinMaxMarshal_mst Type05_DATA;

1317 Type06_mst Type06_DATA;

1318 MinMaxMarshal_mst Type07_DATA;

1319 Type08_mst Type08_DATA;

1320 Type10_mst Type10_DATA;

1321 Type11_mst Type11_DATA;

1322 Type12_mst Type12_DATA;

1323 Type13_mst Type13_DATA;

1324 Type15_mst Type15_DATA;

1325 Type17_mst Type17_DATA;

1326 Type18_mst Type18_DATA;

1327 Type19_mst Type19_DATA;

1328 Type20_mst Type20_DATA;

1329 Type22_mst Type22_DATA;

1330 Type23_mst Type23_DATA;

1331 Type24_mst Type24_DATA;

1332 Type25_mst Type25_DATA;

1333 Type26_mst Type26_DATA;

1334 Type27_mst Type27_DATA;

1335 MinMaxMarshal_mst Type28_DATA;

1336 Type29_mst Type29_DATA;

1337 Type30_mst Type30_DATA;

1338 MinMaxMarshal_mst Type31_DATA;

1339 MinMaxMarshal_mst Type32_DATA;

1340 Type33_mst Type33_DATA;

1341 Type34_mst Type34_DATA;

1342 Type35_mst Type35_DATA;

1343 MinMaxMarshal_mst Type36_DATA;

1344 MinMaxMarshal_mst Type37_DATA;

1345 Type38_mst Type38_DATA;

1346 MinMaxMarshal_mst Type39_DATA;

1347 MinMaxMarshal_mst Type40_DATA;

1348 Type41_mst Type41_DATA;

1349 Type42_mst Type42_DATA;

1350 MinMaxMarshal_mst Type43_DATA;

1351 Type44_mst Type44_DATA;

1352 } MarshalData_st;

1353 #endif // _TABLE_MARSHAL_TYPES_H_

9.10.8 Table Marshal Source

9.10.8.1 TableDrivenMarshal.c

1 #include <assert.h>

2 #include "Tpm.h"

3 #include "Marshal.h"

4 #include "TableMarshal.h"

5 #if TABLE_DRIVEN_MARSHAL

6 extern ArrayMarshal_mst ArrayLookupTable[];

7

8 extern UINT16 MarshalLookupTable[];

9

10 typedef struct { int a; } External_Structure_t;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 519

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

11

12 extern struct Exernal_Structure_t MarshalData;

13

14 #define IS_SUCCESS(UNMARSHAL_FUNCTION) \

15 (TPM_RC_SUCCESS == (result = (UNMARSHAL_FUNCTION)))

16 marshalIndex_t IntegerDispatch[] = {

17 UINT8_MARSHAL_REF, UINT16_MARSHAL_REF, UINT32_MARSHAL_REF, UINT64_MARSHAL_REF,

18 INT8_MARSHAL_REF, INT16_MARSHAL_REF, INT32_MARSHAL_REF, INT64_MARSHAL_REF

19 };

20

21 #if 1

22 #define GetDescriptor(reference) \

23 ((MarshalHeader_mst *)(((BYTE *)(&MarshalData)) + (reference & NULL_MASK)))

24 #else

25 static const MarshalHeader_mst *GetDescriptor(marshalIndex_t index)

26 {

27 const MarshalHeader_mst *mst = MarshalLookupTable[index & NULL_MASK];

28 return mst;

29 }

30 #endif

31 #define GetUnionDescriptor(_index_) \

32 ((UnionMarshal_mst *)GetDescriptor(_index_))

33 #define GetArrayDescriptor(_index_) \

34 ((ArrayMarshal_mst *))ArrayLookupTable[_index_ & NULL_MASK])

35

36 //*** GetUnmarshaledInteger()

37 // Gets the unmarshaled value and normalizes it to a UIN32 for other

38 // processing (comparisons and such).

39 static UINT32 GetUnmarshaledInteger(

40 marshalIndex_t type,

41 const void *target

42)

43 {

44 int size = (type & SIZE_MASK);

45 //

46 if(size == FOUR_BYTES)

47 return *((UINT32 *)target);

48 if(type & IS_SIGNED)

49 {

50 if(size == TWO_BYTES)

51 return (UINT32)*((int16_t *)target);

52 return (UINT32)*((int8_t *)target);

53 }

54 if(size == TWO_BYTES)

55 return (UINT32)*((UINT16 *)target);

56 return (UINT32)*((UINT8 *)target);

57 }

58 static UINT32 GetSelector(

59 void *structure,

60 const UINT16 *values,

61 UINT16 descriptor

62)

63 {

64 uint sel = GET_ELEMENT_NUMBER(descriptor);

65 // Get the offset of the value in the unmarshaled structure

66 const UINT16 *entry = &values[(sel * 3)];

67 //

68 return GetUnmarshaledInteger(GET_ELEMENT_SIZE(entry[0]),

69 ((UINT8 *)structure) + entry[2]);

70 }

71 static TPM_RC UnmarshalBytes(

72 UINT8 *target, // IN/OUT: place to put the bytes

73 UINT8 **buffer, // IN/OUT: source of the input data

74 INT32 *size, // IN/OUT: remaining bytes in the input buffer

75 int count // IN: number of bytes to get

Trusted Platform Module Library Part 4: Supporting Routines

Page 520 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

76)

77 {

78 if((*size -= count) >= 0)

79 {

80 memcpy(target, *buffer, count);

81 *buffer += count;

82 return TPM_RC_SUCCESS;

83 }

84 return TPM_RC_INSUFFICIENT;

85 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 521

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.8.1.1.1 MarshalBytes()

Marshal an array of bytes.

86 static UINT16 MarshalBytes(

87 UINT8 *source,

88 UINT8 **buffer,

89 INT32 *size,

90 int32_t count

91)

92 {

93 if(buffer != NULL)

94 {

95 if(size != NULL && (size -= count) < 0)

96 return 0;

97 memcpy(*buffer, source, count);

98 *buffer += count;

99 }

100 return (UINT16)count;

101 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 522 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10.8.1.1.2 ArrayUnmarshal()

Unmarshal an array. The index is of the form: type_ARRAY_MARSHAL_INDEX.

102 static TPM_RC ArrayUnmarshal(

103 UINT16 index, // IN: the type of the array

104 UINT8 *target, // IN: target for the data

105 UINT8 **buffer, // IN/OUT: place to get the data

106 INT32 *size, // IN/OUT: remaining unmarshal data

107 UINT32 count // IN: number of values of 'index' to

108 // unmarshal

109)

110 {

111 marshalIndex_t which = ArrayLookupTable[index & NULL_MASK].type;

112 UINT16 stride = ArrayLookupTable[index & NULL_MASK].stride;

113 TPM_RC result;

114 //

115 if(stride == 1) // A byte array

116 result = UnmarshalBytes(target, buffer, size, count);

117 else

118 {

119 which |= index & NULL_FLAG;

120 for(result = TPM_RC_SUCCESS; count > 0; target += stride, count--)

121 if(!IS_SUCCESS(Unmarshal(which, target, buffer, size)))

122 break;

123 }

124 return result;

125 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 523

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.8.1.1.3 ArrayMarshal()

126 static UINT16 ArrayMarshal(

127 UINT16 index, // IN: the type of the array

128 UINT8 *source, // IN: source of the data

129 UINT8 **buffer, // IN/OUT: place to put the data

130 INT32 *size, // IN/OUT: amount of space for the data

131 UINT32 count // IN: number of values of 'index' to marshal

132)

133 {

134 marshalIndex_t which = ArrayLookupTable[index & NULL_MASK].type;

135 UINT16 stride = ArrayLookupTable[index & NULL_MASK].stride;

136 UINT16 retVal;

137 //

138 if(stride == 1) // A byte array

139 return MarshalBytes(source, buffer, size, count);

140 which |= index & NULL_FLAG;

141 for(retVal = 0

142 ; count > 0

143 ; source += stride, count--)

144 retVal += Marshal(which, source, buffer, size);

145

146 return retVal;

147 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 524 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10.8.1.1.4 UnmarshalUnion()

148 TPM_RC

149 UnmarshalUnion(

150 UINT16 typeIndex, // IN: the thing to unmarshal

151 void *target, // IN: were the data goes to

152 UINT8 **buffer, // IN/OUT: the data source buffer

153 INT32 *size, // IN/OUT: the remaining size

154 UINT32 selector

155)

156 {

157 int i;

158 UnionMarshal_mst *ut = GetUnionDescriptor(typeIndex);

159 marshalIndex_t selected;

160 //

161 for(i = 0; i < ut->countOfselectors; i++)

162 {

163 if(selector == ut->selectors[i])

164 {

165 UINT8 *offset = ((UINT8 *)ut) + ut->offsetOfUnmarshalTypes;

166 // Get the selected thing to unmarshal

167 selected = ((marshalIndex_t *)offset)[i];

168 if(ut->modifiers & IS_ARRAY_UNION)

169 return UnmarshalBytes(target, buffer, size, selected);

170 else

171 {

172 // Propagate NULL_FLAG if the null flag was

173 // propagated to the structure containing the union

174 selected |= (typeIndex & NULL_FLAG);

175 return Unmarshal(selected, target, buffer, size);

176 }

177 }

178 }

179 // Didn't find the value.

180 return TPM_RC_SELECTOR;

181 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 525

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.8.1.1.5 MarshalUnion()

182 UINT16

183 MarshalUnion(

184 UINT16 typeIndex, // IN: the thing to marshal

185 void *source, // IN: were the data comes from

186 UINT8 **buffer, // IN/OUT: the data source buffer

187 INT32 *size, // IN/OUT: the remaining size

188 UINT32 selector // IN: the union selector

189)

190 {

191 int i;

192 UnionMarshal_mst *ut = GetUnionDescriptor(typeIndex);

193 marshalIndex_t selected;

194 //

195 for(i = 0; i < ut->countOfselectors; i++)

196 {

197 if(selector == ut->selectors[i])

198 {

199 UINT8 *offset = ((UINT8 *)ut) + ut->offsetOfUnmarshalTypes;

200 // Get the selected thing to unmarshal

201 selected = ((marshalIndex_t *)offset)[i];

202 if(ut->modifiers & IS_ARRAY_UNION)

203 return MarshalBytes(source, buffer, size, selected);

204 else

205 return Marshal(selected, source, buffer, size);

206 }

207 }

208 if(size != NULL)

209 *size = -1;

210 return 0;

211 }

212 TPM_RC

213 UnmarshalInteger(

214 int iSize, // IN: Number of bytes in the integer

215 void *target, // OUT: receives the integer

216 UINT8 **buffer, // IN/OUT: source of the data

217 INT32 *size, // IN/OUT: amount of data available

218 UINT32 *value // OUT: optional copy of 'target'

219)

220 {

221 // This is just to save typing

222 #define _MB_ (*buffer)

223 // The size is a power of two so convert to regular integer

224 int bytes = (1 << (iSize & SIZE_MASK));

225 //

226 // Check to see if there is enough data to fulfill the request

227 if((*size -= bytes) >= 0)

228 {

229 // The most comon size

230 if(bytes == 4)

231 {

232 *((UINT32 *)target) = (UINT32)((((((_MB_[0] << 8) | _MB_[1]) << 8)

233 | _MB_[2]) << 8) | _MB_[3]);

234 // If a copy is needed, copy it.

235 if(value != NULL)

236 *value = *((UINT32 *)target);

237 }

238 else if(bytes == 2)

239 {

240 *((UINT16 *)target) = (UINT16)((_MB_[0] << 8) | _MB_[1]);

241 // If a copy is needed, copy with the appropriate sign extension

242 if(value != NULL)

243 {

244 if(iSize & IS_SIGNED)

Trusted Platform Module Library Part 4: Supporting Routines

Page 526 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

245 *value = (UINT32)(*((INT16 *)target));

246 else

247 *value = (UINT32)(*((UINT16 *)target));

248 }

249 }

250 else if(bytes == 1)

251 {

252 *((UINT8*)target) = (UINT8)_MB_[0];

253 // If a copy is needed, copy with the appropriate sign extension

254 if(value != NULL)

255 {

256 if(iSize & IS_SIGNED)

257 *value = (UINT32)(*((INT8 *)target));

258 else

259 *value = (UINT32)(*((UINT8 *)target));

260 }

261 }

262 else

263 {

264 // There is no input type that is a 64-bit value other than a UINT64. So

265 // there is no reason to do anything other than unmarshal it.

266 *((UINT64 *)target) = BYTE_ARRAY_TO_UINT64(*buffer);

267 }

268 *buffer += bytes;

269 return TPM_RC_SUCCESS;

270 #undef _MB_

271 }

272 return TPM_RC_INSUFFICIENT;

273 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 527

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.8.1.1.6 Unmarshal()

This is the function that performs unmarshaling of different numbered types. Each TPM type has a

number. The number is used to lookup the address of the data structure that describes how to unmarshal

that data type.

274 TPM_RC

275 Unmarshal(

276 UINT16 typeIndex, // IN: the thing to marshal

277 void *target, // IN: were the data goes from

278 UINT8 **buffer, // IN/OUT: the data source buffer

279 INT32 *size // IN/OUT: the remaining size

280)

281 {

282 const MarshalHeader_mst *sel;

283 TPM_RC result;

284 //

285 #define _target ((UINT8 *)target)

286 sel = GetDescriptor(typeIndex);

287 switch(sel->marshalType)

288 {

289 case UINT_MTYPE:

290 {

291 // A simple signed or unsigned integer value.

292 return UnmarshalInteger(sel->modifiers, target,

293 buffer, size, NULL);

294 }

295 case VALUES_MTYPE:

296 {

297 // This is the general-purpose structure that can handle things like

298 // TPMI_DH_PARENT that has multiple ranges, multiple singles and a

299 // 'null' value. When things cover a large range with holes in the range

300 // they can be turned into multiple ranges. There is no option for a bit

301 // field.

302 // The structure is:

303 // typedef const struct ValuesMarshal_mst

304 // {

305 // UINT8 marshalType; // VALUES_MTYPE

306 // UINT8 modifiers;

307 // UINT8 errorCode;

308 // UINT8 ranges;

309 // UINT8 singles;

310 // UINT32 values[1];

311 // } ValuesMarshal_mst;

312 // Unmarshal the base type

313 UINT32 val;

314 if(IS_SUCCESS(UnmarshalInteger(sel->modifiers, target,

315 buffer, size, &val)))

316 {

317 ValuesMarshal_mst *vmt = ((ValuesMarshal_mst *)sel);

318 const UINT32 *check = vmt->values;

319 //

320 // if the TAKES_NULL flag is set, then the first entry in the values

321 // list is the NULL value. Iy is not included in the 'ranges' or

322 // 'singles' count.

323 if((vmt->modifiers & TAKES_NULL) && (val == *check++))

324 {

325 if((typeIndex & NULL_FLAG) == 0)

326 result = (TPM_RC)(sel->errorCode);

327 }

328 // No NULL value or input is not the NULL value

329 else

330 {

331 int i;

Trusted Platform Module Library Part 4: Supporting Routines

Page 528 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

332 //

333 // Check all the min-max ranges.

334 for(i = vmt->ranges - 1; i >= 0; check = &check[2], i--)

335 if((UINT32)(val - check[0]) <= check[1])

336 break;

337 // if the input is in a selected range, then i >= 0

338 if(i < 0)

339 {

340 // Not in any range, so check sigles

341 for(i = vmt->singles - 1; i >= 0; i--)

342 if(val == check[i])

343 break;

344 }

345 // If input not in range and not in any single so return error

346 if(i < 0)

347 result = (TPM_RC)(sel->errorCode);

348 }

349 }

350 break;

351 }

352 case TABLE_MTYPE:

353 {

354 // This is a table with or without bit checking. The input is checked

355 // against each value in the table. If the value is in the table, and

356 // a bits table is present, then the bit field is checked to see if the

357 // indiated value is implemented. For example, if there is a table of

358 // allowed RSA key sises and the 2nd entry matches, then the 2nd bit in

359 // thed bit field is check to see if that allowwed size is implemented in

360 // this TPM.

361 // typedef const struct TableMarshal_mst

362 // {

363 // UINT8 marshalType; // TABLE_MTYPE

364 // UINT8 modifiers;

365 // UINT8 errorCode;

366 // UINT8 singles;

367 // UINT32 values[1];

368 // } TableMarshal_mst;

369

370 UINT32 val;

371 //

372 // Unmarshal the base type

373 if(IS_SUCCESS(UnmarshalInteger(sel->modifiers, target,

374 buffer, size, &val)))

375 {

376 TableMarshal_mst *tmt = ((TableMarshal_mst *)sel);

377 const UINT32 *check = tmt->values;

378 //

379 // If this type has a null value, then it is the first value in the

380 // list of values. It does not count in the count of values

381 if((tmt->modifiers & TAKES_NULL) && (val == *check++))

382 {

383 if((typeIndex & NULL_FLAG) == 0)

384 result = (TPM_RC)(sel->errorCode);

385 }

386 else

387 {

388 int i;

389 //

390 // Process the singles

391 for(i = tmt->singles - 1; i >= 0; i--)

392 {

393 // does the input value match the value in the table

394 if(val == check[i])

395 {

396 // If there is an associated bit table, make sure that the

corresponding

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 529

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

397 // bit is SET

398 if((HAS_BITS & tmt->modifiers)

399 && (!IS_BIT_SET32(i, &(check[tmt->singles]))))

400 // if not SET, then this is a failure.

401 i = -1;

402 break;

403 }

404 }

405 // error if not found or bit not SET

406 if(i < 0)

407 result = (TPM_RC)(sel->errorCode);

408 }

409 }

410 break;

411 }

412 case MIN_MAX_MTYPE:

413 {

414 // A MIN_MAX is a range. It can have a bit field and a NULL value that is

415 // outside of the range. If the input value is in the min-max range then

416 // it is valid unless there is an associated bit field. Otherwise, it

417 // it is only valid if the corresponding value in the bit field is SET.

418 // The min value is 'values[0]' or 'values[1]' if there is a NULL value.

419 // The max value is the value after min. The max value is in the table as

420 // max minus min. This allows 'val' to be subtracted from min and then

421 // checked against max with one unsigned comparison. If present, the bit

422 // field will be the first 'values' after max.

423 // typedef const struct MinMaxMarshal_mst

424 // {

425 // UINT8 marshalType; // MIN_MAX_MTYPE

426 // UINT8 modifiers;

427 // UINT8 errorCode;

428 // UINT32 values[2];

429 // } MinMaxMarshal_mst;

430 UINT32 val;

431 //

432 // A min-max has a range. It can have a bit-field that is indexed to the

433 // min value (something that matches min has a bit at 0. This is useful

434 // for algorithms. The min-max define a range of algorithms to be checked

435 // and the bit field can check to see if the algorithm in that range is

436 // allowed.

437 if(IS_SUCCESS(UnmarshalInteger(sel->modifiers, target,

438 buffer, size, &val)))

439 {

440 MinMaxMarshal_mst *mmt = (MinMaxMarshal_mst *)sel;

441 const UINT32 *check = mmt->values;

442 //

443 // If this type takes a NULL, see if it matches. This

444 if((mmt->modifiers & TAKES_NULL) && (val == *check++))

445 {

446 if((typeIndex & NULL_FLAG) == 0)

447 result = (TPM_RC)(mmt->errorCode);

448 }

449 else

450 {

451 val -= *check;

452 if((val > check[1])

453 || ((mmt->modifiers & HAS_BITS) &&

454 !IS_BIT_SET32(val, &check[2])))

455 result = (TPM_RC)(mmt->errorCode);

456 }

457 }

458 break;

459 }

460 case ATTRIBUTES_MTYPE:

461 {

462 // This is used for TPMA values.

Trusted Platform Module Library Part 4: Supporting Routines

Page 530 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

463 UINT32 mask;

464 AttributesMarshal_mst *amt = (AttributesMarshal_mst *)sel;

465 //

466 if(IS_SUCCESS(UnmarshalInteger(sel->modifiers, target,

467 buffer, size, &mask)))

468 {

469 if((mask & amt->attributeMask) != 0)

470 result = TPM_RC_RESERVED_BITS;

471 }

472 break;

473 }

474 case STRUCTURE_MTYPE:

475 {

476 // A structure (not a union). A structure has elements (one defined per

477 // row). Three UINT16 values are used for each row. The first indicates

478 // the type of the entry. They choices are: simple, union, or array. A

479 // simple type can be a simple integer or another structure. It can also

480 // be a specific "interface type." For example, when a structure entry is

481 // a value that is used define the dimension of an array, the entry of

482 // the structure will reference a "synthetic" interface type, most often

483 // a min-max value. If the type of the entry is union or array, then the

484 // first value indicates which of the previous elements provides the union

485 // selector or the array dimension. That previous entry is referenced in

486 // the unmarshaled structure in memory (Not the marshaled buffer). The

487 // previous entry indicates the location in the structure of the value.

488 // The second entry of each structure entry indicated the index of the

489 // type associated with the entry. This is an index into the array of

490 // arrays or the union table (merged with the normal table in this

491 // implementation). The final entry is the offset in the unmarshaled

492 // structure where the value is located. This is the offsetof(STRUcTURE,

493 // element). This value is added to the input 'target' or 'source' value

494 // to determine where the value goes.

495 StructMarshal_mst *mst = (StructMarshal_mst *)sel;

496 int i;

497 const UINT16 *value;

498 //

499 for(result = TPM_RC_SUCCESS, value = mst->values, i = mst->elements

500 ; (TPM_RC_SUCCESS == result) && (i > 0)

501 ; value = &value[3], i--)

502 {

503 UINT16 descriptor = value[0];

504 marshalIndex_t index = value[1];

505 UINT8 *offset = _target + value[2];

506 //

507 index |= ((ELEMENT_PROPAGATE & descriptor)

508 << (NULL_SHIFT - PROPAGATE_SHIFT));

509 switch(GET_ELEMENT_TYPE(descriptor))

510 {

511 case SIMPLE_STYPE:

512 {

513 result = Unmarshal(index, offset, buffer, size);

514 break;

515 }

516 case UNION_STYPE:

517 {

518 UINT32 choice;

519 //

520 // Get the selector or array dimension value

521 choice = GetSelector(target, mst->values, descriptor);

522 result = UnmarshalUnion(index, offset, buffer, size, choice);

523 break;

524 }

525 case ARRAY_STYPE:

526 {

527 UINT32 dimension;

528 //

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 531

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

529 dimension = GetSelector(target, mst->values, descriptor);

530 result = ArrayUnmarshal(index, offset, buffer,

531 size, dimension);

532 break;

533 }

534 default:

535 result = TPM_RC_FAILURE;

536 break;

537 }

538 }

539 break;

540 }

541 case TPM2B_MTYPE:

542 {

543 // A primitive TPM2B. A size and byte buffer. The single value (other than

544 // the tag) references the synthetic 'interface' value for the size

545 // parameter.

546 Tpm2bMarshal_mst *m2bt = (Tpm2bMarshal_mst *)sel;

547 //

548 if(IS_SUCCESS(Unmarshal(m2bt->sizeIndex, target, buffer, size)))

549 result = UnmarshalBytes(((TPM2B *)target)->buffer,

550 buffer, size, *((UINT16 *)target));

551 break;

552 }

553 case TPM2BS_MTYPE:

554 {

555 // This is used when a TPM2B contains a structure.

556 Tpm2bsMarshal_mst *m2bst = (Tpm2bsMarshal_mst *)sel;

557 INT32 count;

558 //

559 if(IS_SUCCESS(Unmarshal(m2bst->sizeIndex, target, buffer, size)))

560 {

561 count = (int32_t)*((UINT16 *)_target);

562 if(count == 0)

563 {

564 if(m2bst->modifiers & SIZE_EQUAL)

565 result = TPM_RC_SIZE;

566 }

567 else if((*size -= count) >= 0)

568 {

569 marshalIndex_t index = m2bst->dataIndex;

570 //

571 index |= (m2bst->modifiers & PROPAGATE_NULL)

572 << (NULL_SHIFT - PROPAGATE_SHIFT);

573 if(IS_SUCCESS(Unmarshal(index,

574 _target + (m2bst->modifiers & SIGNED_MASK),

575 buffer, &count)))

576 {

577 if(count != 0)

578 result = TPM_RC_SIZE;

579 }

580 }

581 else

582 result = TPM_RC_INSUFFICIENT;

583 }

584 break;

585 }

586 case LIST_MTYPE:

587 {

588 // Used for a list. A list is a qualified 32-bit 'count' value followed

589 // by a type indicator.

590 ListMarshal_mst *mlt = (ListMarshal_mst *)sel;

591 marshalIndex_t index = mlt->arrayRef;

592 //

593 if(IS_SUCCESS(Unmarshal(mlt->sizeIndex, target, buffer, size)))

594 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 532 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

595 index |= (mlt->modifiers & PROPAGATE_NULL)

596 << (NULL_SHIFT - PROPAGATE_SHIFT);

597 result = ArrayUnmarshal(index,

598 _target +(mlt->modifiers & SIGNED_MASK),

599 buffer, size,

600 *((UINT32 *)target));

601 }

602 break;

603 }

604 case NULL_MTYPE:

605 {

606 result = TPM_RC_SUCCESS;

607 break;

608 }

609 case COMPOSITE_MTYPE:

610 {

611 CompositeMarshal_mst *mct = (CompositeMarshal_mst *)sel;

612 int i;

613 UINT8 *buf = *buffer;

614 INT32 sz = *size;

615 //

616 result = TPM_RC_VALUE;

617 for(i = GET_ELEMENT_COUNT(mct->modifiers) - 1; i <= 0; i--)

618 {

619 marshalIndex_t index = mct->types[i];

620 //

621 // This type might take a null so set it in each called value, just

622 // in case it is needed in that value. Only one value in each

623 // composite should have the takes null SET.

624 index |= typeIndex & NULL_MASK;

625 result = Unmarshal(index, target, buffer, size);

626 if(result == TPM_RC_SUCCESS)

627 break;

628 // Each of the composite values does its own unmarshaling. This

629 // has some execution overhead if it is unmarshaled multiple times

630 // but it saves code size in not having to reproduce the various

631 // unmarshaling types that can be in a composite. So, what this means

632 // is that the buffer pointer and size have to be reset for each

633 // unmarshaled value.

634 *buffer = buf;

635 *size = sz;

636 }

637 break;

638 }

639 default:

640 {

641 result = TPM_RC_FAILURE;

642 break;

643 }

644 }

645 return result;

646 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 533

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.8.1.1.7 Marshal()

This is the function that drives marshaling of output. Because there is no validation of the output, there is

a lot less code.

647 UINT16 Marshal(

648 UINT16 typeIndex, // IN: the thing to marshal

649 void *source, // IN: were the data comes from

650 UINT8 **buffer, // IN/OUT: the data source buffer

651 INT32 *size // IN/OUT: the remaining size

652)

653 {

654 #define _source ((UINT8 *)source)

655

656 const MarshalHeader_mst *sel;

657 UINT16 retVal;

658 //

659 sel = GetDescriptor(typeIndex);

660 switch(sel->marshalType)

661 {

662 case VALUES_MTYPE:

663 case UINT_MTYPE:

664 case TABLE_MTYPE:

665 case MIN_MAX_MTYPE:

666 case ATTRIBUTES_MTYPE:

667 case COMPOSITE_MTYPE:

668 {

669 #if BIG_ENDIAN_TPM

670 #define MM16 0

671 #define MM32 0

672 #define MM64 0

673 #else

674 // These flip the constant index values so that they count in reverse order when doing

675 // little-endian stuff

676 #define MM16 1

677 #define MM32 3

678 #define MM64 7

679 #endif

680 // Just change the name and cast the type of the input parameters for typing purposes

681 #define mb (*buffer)

682 #define _source ((UINT8 *)source)

683 retVal = (1 << (sel->modifiers & SIZE_MASK));

684 if(buffer != NULL)

685 {

686 if((size == NULL) || ((*size -= retVal) >= 0))

687 {

688 if(retVal == 4)

689 {

690 mb[0 ^ MM32] = _source[0];

691 mb[1 ^ MM32] = _source[1];

692 mb[2 ^ MM32] = _source[2];

693 mb[3 ^ MM32] = _source[3];

694 }

695 else if(retVal == 2)

696 {

697 mb[0 ^ MM16] = _source[0];

698 mb[1 ^ MM16] = _source[1];

699 }

700 else if(retVal == 1)

701 mb[0] = _source[0];

702 else

703 {

704 mb[0 ^ MM64] = _source[0];

705 mb[1 ^ MM64] = _source[1];

Trusted Platform Module Library Part 4: Supporting Routines

Page 534 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

706 mb[2 ^ MM64] = _source[2];

707 mb[3 ^ MM64] = _source[3];

708 mb[4 ^ MM64] = _source[4];

709 mb[5 ^ MM64] = _source[5];

710 mb[6 ^ MM64] = _source[6];

711 mb[7 ^ MM64] = _source[7];

712 }

713 *buffer += retVal;

714 }

715 }

716 break;

717 }

718 case STRUCTURE_MTYPE:

719 {

720 //#define _mst ((StructMarshal_mst *)sel)

721 StructMarshal_mst *mst = ((StructMarshal_mst *)sel);

722 int i;

723 const UINT16 *value = mst->values;

724

725 //

726 for(retVal = 0, i = mst->elements; i > 0; value = &value[3], i--)

727 {

728 UINT16 des = value[0];

729 marshalIndex_t index = value[1];

730 UINT8 *offset = _source + value[2];

731 //

732 switch(GET_ELEMENT_TYPE(des))

733 {

734 case UNION_STYPE:

735 {

736 UINT32 choice;

737 //

738 choice = GetSelector(source, mst->values, des);

739 retVal += MarshalUnion(index, offset, buffer, size, choice);

740 break;

741 }

742 case ARRAY_STYPE:

743 {

744 UINT32 count;

745 //

746 count = GetSelector(source, mst->values, des);

747 retVal += ArrayMarshal(index, offset, buffer, size, count);

748 break;

749 }

750 case SIMPLE_STYPE:

751 default:

752 {

753 // This is either another structure or a simple type

754 retVal += Marshal(index, offset, buffer, size);

755 break;

756 }

757 }

758 }

759 break;

760 }

761 case TPM2B_MTYPE:

762 {

763 // Get the number of bytes being marshaled

764 INT32 val = (int32_t)*((UINT16 *)source);

765 //

766 retVal = Marshal(UINT16_MARSHAL_REF, source, buffer, size);

767

768 // This is a standard 2B with a byte buffer

769 retVal += MarshalBytes(((TPM2B *)_source)->buffer, buffer, size, val);

770 break;

771 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 535

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

772 case TPM2BS_MTYPE: // A structure in a TPM2B

773 {

774 Tpm2bsMarshal_mst *m2bst = (Tpm2bsMarshal_mst *)sel;

775 UINT8 *offset;

776 UINT16 amount;

777 UINT8 *marshaledSize;

778 //

779 // Save the address of where the size should go

780 marshaledSize = *buffer;

781

782 // marshal the size (checks the space and advanced the pointer)

783 retVal = Marshal(UINT16_MARSHAL_REF, source, buffer, size);

784

785 // This gets the offsetof the structure to marshal. It was placed in the

786 // modifiers byte because the offset from the start of the TPM2B to the

787 // start of the structure is going to be less than 8 and the modifiers

788 // byte isn't needed for anything else.

789 offset = _source + (m2bst->modifiers & SIGNED_MASK);

790

791 // Marshal the structure and get its size

792 amount = Marshal(m2bst->dataIndex, offset, buffer, size);

793

794 // put the size in the space used when the size was marshaled.

795 if(buffer != NULL)

796 UINT16_TO_BYTE_ARRAY(amount, marshaledSize);

797 retVal += amount;

798 break;

799 }

800 case LIST_MTYPE:

801 {

802 ListMarshal_mst * mlt = ((ListMarshal_mst *)sel);

803 UINT8 *offset = _source + (mlt->modifiers & SIGNED_MASK);

804 retVal = Marshal(UINT32_MARSHAL_REF, source, buffer, size);

805 retVal += ArrayMarshal((marshalIndex_t)(mlt->arrayRef), offset,

806 buffer, size, *((UINT32 *)source));

807 break;

808 }

809 case NULL_MTYPE:

810 retVal = 0;

811 break;

812 case ERROR_MTYPE:

813 default:

814 {

815 if(size != NULL)

816 *size = -1;

817 retVal = 0;

818 break;

819 }

820 }

821 return retVal;

822

823 }

824 #endif // TABLE_DRIVEN_MARSHAL

9.10.8.2 TableMarshalData.c

This file contains the data initializer used for the table-driven marshaling code.

1 #include "Tpm.h"

2 #if TABLE_DRIVEN_MARSHAL

3 #include "TableMarshal.h"

4 #include "Marshal.h"

The array marshaling table

Trusted Platform Module Library Part 4: Supporting Routines

Page 536 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5 ArrayMarshal_mst ArrayLookupTable[] = {

6 ARRAY_MARSHAL_ENTRY(UINT8),

7 ARRAY_MARSHAL_ENTRY(TPM_CC),

8 ARRAY_MARSHAL_ENTRY(TPMA_CC),

9 ARRAY_MARSHAL_ENTRY(TPM_ALG_ID),

10 ARRAY_MARSHAL_ENTRY(TPM_HANDLE),

11 ARRAY_MARSHAL_ENTRY(TPM2B_DIGEST),

12 ARRAY_MARSHAL_ENTRY(TPMT_HA),

13 ARRAY_MARSHAL_ENTRY(TPMS_PCR_SELECTION),

14 ARRAY_MARSHAL_ENTRY(TPMS_ALG_PROPERTY),

15 ARRAY_MARSHAL_ENTRY(TPMS_TAGGED_PROPERTY),

16 ARRAY_MARSHAL_ENTRY(TPMS_TAGGED_PCR_SELECT),

17 ARRAY_MARSHAL_ENTRY(TPM_ECC_CURVE),

18 ARRAY_MARSHAL_ENTRY(TPMS_TAGGED_POLICY),

19 ARRAY_MARSHAL_ENTRY(TPMS_ACT_DATA),

20 ARRAY_MARSHAL_ENTRY(TPMS_AC_OUTPUT)};

The main marshaling structure

21 MarshalData_st MarshalData = {

22 // UINT8_DATA

23 {UINT_MTYPE, 0},

24 // UINT16_DATA

25 {UINT_MTYPE, 1},

26 // UINT32_DATA

27 {UINT_MTYPE, 2},

28 // UINT64_DATA

29 {UINT_MTYPE, 3},

30 // INT8_DATA

31 {UINT_MTYPE, 0 + IS_SIGNED},

32 // INT16_DATA

33 {UINT_MTYPE, 1 + IS_SIGNED},

34 // INT32_DATA

35 {UINT_MTYPE, 2 + IS_SIGNED},

36 // INT64_DATA

37 {UINT_MTYPE, 3 + IS_SIGNED},

38 // UINT0_DATA

39 {NULL_MTYPE, 0},

40 // TPM_ECC_CURVE_DATA

41 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_CURVE,

42 {TPM_ECC_NONE,

43 RANGE(1, 32, UINT16),

44 ((ECC_NIST_P192 << 0) | (ECC_NIST_P224 << 1) | (ECC_NIST_P256 << 2) |

45 (ECC_NIST_P384 << 3) | (ECC_NIST_P521 << 4) | (ECC_BN_P256 << 15) |

46 (ECC_BN_P638 << 16) | (ECC_SM2_P256 << 31))}},

47 // TPM_CLOCK_ADJUST_DATA

48 {MIN_MAX_MTYPE, ONE_BYTES|IS_SIGNED, (UINT8)TPM_RC_VALUE,

49 {RANGE(TPM_CLOCK_COARSE_SLOWER, TPM_CLOCK_COARSE_FASTER, INT8)}},

50 // TPM_EO_DATA

51 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE,

52 {RANGE(TPM_EO_EQ, TPM_EO_BITCLEAR, UINT16)}},

53 // TPM_SU_DATA

54 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 2,

55 {TPM_SU_CLEAR, TPM_SU_STATE}},

56 // TPM_SE_DATA

57 {TABLE_MTYPE, ONE_BYTES, (UINT8)TPM_RC_VALUE, 3,

58 {TPM_SE_HMAC, TPM_SE_POLICY, TPM_SE_TRIAL}},

59 // TPM_CAP_DATA

60 {VALUES_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 1, 1,

61 {RANGE(TPM_CAP_ALGS, TPM_CAP_ACT, UINT32),

62 TPM_CAP_VENDOR_PROPERTY}},

63 // TPMA_ALGORITHM_DATA

64 {ATTRIBUTES_MTYPE, FOUR_BYTES, 0xFFFFF8F0},

65 // TPMA_OBJECT_DATA

66 {ATTRIBUTES_MTYPE, FOUR_BYTES, 0xFFF0F309},

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 537

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

67 // TPMA_SESSION_DATA

68 {ATTRIBUTES_MTYPE, ONE_BYTES, 0x00000018},

69 // TPMA_ACT_DATA

70 {ATTRIBUTES_MTYPE, FOUR_BYTES, 0xFFFFFFFC},

71 // TPMI_YES_NO_DATA

72 {TABLE_MTYPE, ONE_BYTES, (UINT8)TPM_RC_VALUE, 2,

73 {NO, YES}},

74 // TPMI_DH_OBJECT_DATA

75 {VALUES_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 2, 0,

76 {TPM_RH_NULL,

77 RANGE(TRANSIENT_FIRST, TRANSIENT_LAST, UINT32),

78 RANGE(PERSISTENT_FIRST, PERSISTENT_LAST, UINT32)}},

79 // TPMI_DH_PARENT_DATA

80 {VALUES_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 2, 3,

81 {TPM_RH_NULL,

82 RANGE(TRANSIENT_FIRST, TRANSIENT_LAST, UINT32),

83 RANGE(PERSISTENT_FIRST, PERSISTENT_LAST, UINT32),

84 TPM_RH_OWNER, TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM}},

85 // TPMI_DH_PERSISTENT_DATA

86 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE,

87 {RANGE(PERSISTENT_FIRST, PERSISTENT_LAST, UINT32)}},

88 // TPMI_DH_ENTITY_DATA

89 {VALUES_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 5, 4,

90 {TPM_RH_NULL,

91 RANGE(TRANSIENT_FIRST, TRANSIENT_LAST, UINT32),

92 RANGE(PERSISTENT_FIRST, PERSISTENT_LAST, UINT32),

93 RANGE(NV_INDEX_FIRST, NV_INDEX_LAST, UINT32),

94 RANGE(PCR_FIRST, PCR_LAST, UINT32),

95 RANGE(TPM_RH_AUTH_00, TPM_RH_AUTH_FF, UINT32),

96 TPM_RH_OWNER, TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM}},

97 // TPMI_DH_PCR_DATA

98 {MIN_MAX_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE,

99 {TPM_RH_NULL,

100 RANGE(PCR_FIRST, PCR_LAST, UINT32)}},

101 // TPMI_SH_AUTH_SESSION_DATA

102 {VALUES_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 2, 0,

103 {TPM_RS_PW,

104 RANGE(HMAC_SESSION_FIRST, HMAC_SESSION_LAST, UINT32),

105 RANGE(POLICY_SESSION_FIRST, POLICY_SESSION_LAST, UINT32)}},

106 // TPMI_SH_HMAC_DATA

107 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE,

108 {RANGE(HMAC_SESSION_FIRST, HMAC_SESSION_LAST, UINT32)}},

109 // TPMI_SH_POLICY_DATA

110 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE,

111 {RANGE(POLICY_SESSION_FIRST, POLICY_SESSION_LAST, UINT32)}},

112 // TPMI_DH_CONTEXT_DATA

113 {VALUES_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 3, 0,

114 {RANGE(HMAC_SESSION_FIRST, HMAC_SESSION_LAST, UINT32),

115 RANGE(POLICY_SESSION_FIRST, POLICY_SESSION_LAST, UINT32),

116 RANGE(TRANSIENT_FIRST, TRANSIENT_LAST, UINT32)}},

117 // TPMI_DH_SAVED_DATA

118 {VALUES_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 2, 3,

119 {RANGE(HMAC_SESSION_FIRST, HMAC_SESSION_LAST, UINT32),

120 RANGE(POLICY_SESSION_FIRST, POLICY_SESSION_LAST, UINT32),

121 0x80000000, 0x80000001, 0x80000002}},

122 // TPMI_RH_HIERARCHY_DATA

123 {TABLE_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 3,

124 {TPM_RH_NULL,

125 TPM_RH_OWNER, TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM}},

126 // TPMI_RH_ENABLES_DATA

127 {TABLE_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 4,

128 {TPM_RH_NULL,

129 TPM_RH_OWNER, TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM, TPM_RH_PLATFORM_NV}},

130 // TPMI_RH_HIERARCHY_AUTH_DATA

131 {TABLE_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 4,

132 {TPM_RH_OWNER, TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM}},

Trusted Platform Module Library Part 4: Supporting Routines

Page 538 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

133 // TPMI_RH_HIERARCHY_POLICY_DATA

134 {VALUES_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 1, 4,

135 {RANGE(TPM_RH_ACT_0, TPM_RH_ACT_F, UINT32),

136 TPM_RH_OWNER, TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM}},

137 // TPMI_RH_PLATFORM_DATA

138 {TABLE_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 1,

139 {TPM_RH_PLATFORM}},

140 // TPMI_RH_OWNER_DATA

141 {TABLE_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 1,

142 {TPM_RH_NULL,

143 TPM_RH_OWNER}},

144 // TPMI_RH_ENDORSEMENT_DATA

145 {TABLE_MTYPE, FOUR_BYTES|TAKES_NULL, (UINT8)TPM_RC_VALUE, 1,

146 {TPM_RH_NULL,

147 TPM_RH_ENDORSEMENT}},

148 // TPMI_RH_PROVISION_DATA

149 {TABLE_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 2,

150 {TPM_RH_OWNER, TPM_RH_PLATFORM}},

151 // TPMI_RH_CLEAR_DATA

152 {TABLE_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 2,

153 {TPM_RH_LOCKOUT, TPM_RH_PLATFORM}},

154 // TPMI_RH_NV_AUTH_DATA

155 {VALUES_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 1, 2,

156 {RANGE(NV_INDEX_FIRST, NV_INDEX_LAST, UINT32),

157 TPM_RH_OWNER, TPM_RH_PLATFORM}},

158 // TPMI_RH_LOCKOUT_DATA

159 {TABLE_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 1,

160 {TPM_RH_LOCKOUT}},

161 // TPMI_RH_NV_INDEX_DATA

162 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE,

163 {RANGE(NV_INDEX_FIRST, NV_INDEX_LAST, UINT32)}},

164 // TPMI_RH_AC_DATA

165 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE,

166 {RANGE(AC_FIRST, AC_LAST, UINT32)}},

167 // TPMI_RH_ACT_DATA

168 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE,

169 {RANGE(TPM_RH_ACT_0, TPM_RH_ACT_F, UINT32)}},

170 // TPMI_ALG_HASH_DATA

171 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_HASH,

172 {TPM_ALG_NULL,

173 RANGE(4, 41, UINT16),

174 ((ALG_SHA1 << 0) | (ALG_SHA256 << 7) | (ALG_SHA384 << 8) |

175 (ALG_SHA512 << 9) | (ALG_SM3_256 << 14)),

176 ((ALG_SHA3_256 << 3)|(ALG_SHA3_384 << 4)|(ALG_SHA3_512 << 5))}},

177 // TPMI_ALG_ASYM_DATA

178 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_ASYMMETRIC,

179 {TPM_ALG_NULL,

180 RANGE(1, 35, UINT16),

181 ((ALG_RSA << 0)),

182 ((ALG_ECC << 2))}},

183 // TPMI_ALG_SYM_DATA

184 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_SYMMETRIC,

185 {TPM_ALG_NULL,

186 RANGE(3, 38, UINT16),

187 ((ALG_TDES << 0)|(ALG_AES << 3)|(ALG_XOR << 7)|(ALG_SM4 << 16)),

188 ((ALG_CAMELLIA << 3))}},

189 // TPMI_ALG_SYM_OBJECT_DATA

190 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_SYMMETRIC,

191 {TPM_ALG_NULL,

192 RANGE(3, 38, UINT16),

193 ((ALG_TDES << 0)|(ALG_AES << 3)|(ALG_SM4 << 16)),

194 ((ALG_CAMELLIA << 3))}},

195 // TPMI_ALG_SYM_MODE_DATA

196 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_MODE,

197 {TPM_ALG_NULL,

198 RANGE(63, 68, UINT16),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 539

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

199 ((ALG_CMAC << 0) | (ALG_CTR << 1) | (ALG_OFB << 2) | (ALG_CBC << 3) |

200 (ALG_CFB << 4) | (ALG_ECB << 5))}},

201 // TPMI_ALG_KDF_DATA

202 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_KDF,

203 {TPM_ALG_NULL,

204 RANGE(7, 34, UINT16),

205 ((ALG_MGF1 << 0) | (ALG_KDF1_SP800_56A << 25) |

206 (ALG_KDF2 << 26) | (ALG_KDF1_SP800_108 << 27))}},

207 // TPMI_ALG_SIG_SCHEME_DATA

208 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_SCHEME,

209 {TPM_ALG_NULL,

210 RANGE(5, 28, UINT16),

211 ((ALG_HMAC << 0) | (ALG_RSASSA << 15) | (ALG_RSAPSS << 17) |

212 (ALG_ECDSA << 19) | (ALG_ECDAA << 21) | (ALG_SM2 << 22) |

213 (ALG_ECSCHNORR << 23))}},

214 // TPMI_ECC_KEY_EXCHANGE_DATA

215 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_SCHEME,

216 {TPM_ALG_NULL,

217 RANGE(25, 29, UINT16),

218 ((ALG_ECDH << 0)|(ALG_SM2 << 2)|(ALG_ECMQV << 4))}},

219 // TPMI_ST_COMMAND_TAG_DATA

220 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_BAD_TAG, 2,

221 {TPM_ST_NO_SESSIONS, TPM_ST_SESSIONS}},

222 // TPMI_ALG_MAC_SCHEME_DATA

223 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_SYMMETRIC,

224 {TPM_ALG_NULL,

225 RANGE(4, 63, UINT16),

226 ((ALG_SHA1 << 0) | (ALG_SHA256 << 7) | (ALG_SHA384 << 8) |

227 (ALG_SHA512 << 9) | (ALG_SM3_256 << 14)),

228 ((ALG_SHA3_256 << 3)|(ALG_SHA3_384 << 4)|(ALG_SHA3_512 << 5)|(ALG_CMAC << 27))}},

229 // TPMI_ALG_CIPHER_MODE_DATA

230 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_MODE,

231 {TPM_ALG_NULL,

232 RANGE(64, 68, UINT16),

233 ((ALG_CTR << 0)|(ALG_OFB << 1)|(ALG_CBC << 2)|(ALG_CFB << 3)|(ALG_ECB << 4))}},

234 // TPMS_EMPTY_DATA

235 {STRUCTURE_MTYPE, 1,

236 {SET_ELEMENT_TYPE(SIMPLE_STYPE), UINT0_MARSHAL_REF, 0}},

237 // TPMS_ALGORITHM_DESCRIPTION_DATA

238 {STRUCTURE_MTYPE, 2, {

239 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

240 TPM_ALG_ID_MARSHAL_REF,

241 (UINT16)(offsetof(TPMS_ALGORITHM_DESCRIPTION, alg)),

242 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

243 TPMA_ALGORITHM_MARSHAL_REF,

244 (UINT16)(offsetof(TPMS_ALGORITHM_DESCRIPTION, attributes))}},

245 // TPMU_HA_DATA

246 {9, IS_ARRAY_UNION, (UINT16)(offsetof(TPMU_HA_mst, marshalingTypes)),

247 {(UINT32)TPM_ALG_SHA1, (UINT32)TPM_ALG_SHA256, (UINT32)TPM_ALG_SHA384,

248 (UINT32)TPM_ALG_SHA512, (UINT32)TPM_ALG_SM3_256, (UINT32)TPM_ALG_SHA3_256,

249 (UINT32)TPM_ALG_SHA3_384, (UINT32)TPM_ALG_SHA3_512, (UINT32)TPM_ALG_NULL},

250 {(UINT16)(SHA1_DIGEST_SIZE), (UINT16)(SHA256_DIGEST_SIZE),

251 (UINT16)(SHA384_DIGEST_SIZE), (UINT16)(SHA512_DIGEST_SIZE),

252 (UINT16)(SM3_256_DIGEST_SIZE), (UINT16)(SHA3_256_DIGEST_SIZE),

253 (UINT16)(SHA3_384_DIGEST_SIZE), (UINT16)(SHA3_512_DIGEST_SIZE),

254 (UINT16)(0)}

255 },

256 // TPMT_HA_DATA

257 {STRUCTURE_MTYPE, 2, {

258 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

259 TPMI_ALG_HASH_MARSHAL_REF,

260 (UINT16)(offsetof(TPMT_HA, hashAlg)),

261 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

262 TPMU_HA_MARSHAL_REF,

263 (UINT16)(offsetof(TPMT_HA, digest))}},

264 // TPM2B_DIGEST_DATA

Trusted Platform Module Library Part 4: Supporting Routines

Page 540 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

265 {TPM2B_MTYPE, Type00_MARSHAL_REF},

266 // TPM2B_DATA_DATA

267 {TPM2B_MTYPE, Type01_MARSHAL_REF},

268 // TPM2B_EVENT_DATA

269 {TPM2B_MTYPE, Type02_MARSHAL_REF},

270 // TPM2B_MAX_BUFFER_DATA

271 {TPM2B_MTYPE, Type03_MARSHAL_REF},

272 // TPM2B_MAX_NV_BUFFER_DATA

273 {TPM2B_MTYPE, Type04_MARSHAL_REF},

274 // TPM2B_TIMEOUT_DATA

275 {TPM2B_MTYPE, Type05_MARSHAL_REF},

276 // TPM2B_IV_DATA

277 {TPM2B_MTYPE, Type06_MARSHAL_REF},

278 // NULL_UNION_DATA

279 {0},

280 // TPM2B_NAME_DATA

281 {TPM2B_MTYPE, Type07_MARSHAL_REF},

282 // TPMS_PCR_SELECT_DATA

283 {STRUCTURE_MTYPE, 2, {

284 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

285 Type08_MARSHAL_REF,

286 (UINT16)(offsetof(TPMS_PCR_SELECT, sizeofSelect)),

287 SET_ELEMENT_TYPE(ARRAY_STYPE)|SET_ELEMENT_NUMBER(0),

288 UINT8_ARRAY_MARSHAL_INDEX,

289 (UINT16)(offsetof(TPMS_PCR_SELECT, pcrSelect))}},

290 // TPMS_PCR_SELECTION_DATA

291 {STRUCTURE_MTYPE, 3, {

292 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

293 TPMI_ALG_HASH_MARSHAL_REF,

294 (UINT16)(offsetof(TPMS_PCR_SELECTION, hash)),

295 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

296 Type08_MARSHAL_REF,

297 (UINT16)(offsetof(TPMS_PCR_SELECTION, sizeofSelect)),

298 SET_ELEMENT_TYPE(ARRAY_STYPE)|SET_ELEMENT_NUMBER(1),

299 UINT8_ARRAY_MARSHAL_INDEX,

300 (UINT16)(offsetof(TPMS_PCR_SELECTION, pcrSelect))}},

301 // TPMT_TK_CREATION_DATA

302 {STRUCTURE_MTYPE, 3, {

303 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

304 Type10_MARSHAL_REF,

305 (UINT16)(offsetof(TPMT_TK_CREATION, tag)),

306 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

307 TPMI_RH_HIERARCHY_MARSHAL_REF|NULL_FLAG,

308 (UINT16)(offsetof(TPMT_TK_CREATION, hierarchy)),

309 SET_ELEMENT_TYPE(SIMPLE_STYPE),

310 TPM2B_DIGEST_MARSHAL_REF,

311 (UINT16)(offsetof(TPMT_TK_CREATION, digest))}},

312 // TPMT_TK_VERIFIED_DATA

313 {STRUCTURE_MTYPE, 3, {

314 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

315 Type11_MARSHAL_REF,

316 (UINT16)(offsetof(TPMT_TK_VERIFIED, tag)),

317 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

318 TPMI_RH_HIERARCHY_MARSHAL_REF|NULL_FLAG,

319 (UINT16)(offsetof(TPMT_TK_VERIFIED, hierarchy)),

320 SET_ELEMENT_TYPE(SIMPLE_STYPE),

321 TPM2B_DIGEST_MARSHAL_REF,

322 (UINT16)(offsetof(TPMT_TK_VERIFIED, digest))}},

323 // TPMT_TK_AUTH_DATA

324 {STRUCTURE_MTYPE, 3, {

325 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

326 Type12_MARSHAL_REF,

327 (UINT16)(offsetof(TPMT_TK_AUTH, tag)),

328 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

329 TPMI_RH_HIERARCHY_MARSHAL_REF|NULL_FLAG,

330 (UINT16)(offsetof(TPMT_TK_AUTH, hierarchy)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 541

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

331 SET_ELEMENT_TYPE(SIMPLE_STYPE),

332 TPM2B_DIGEST_MARSHAL_REF,

333 (UINT16)(offsetof(TPMT_TK_AUTH, digest))}},

334 // TPMT_TK_HASHCHECK_DATA

335 {STRUCTURE_MTYPE, 3, {

336 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

337 Type13_MARSHAL_REF,

338 (UINT16)(offsetof(TPMT_TK_HASHCHECK, tag)),

339 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

340 TPMI_RH_HIERARCHY_MARSHAL_REF|NULL_FLAG,

341 (UINT16)(offsetof(TPMT_TK_HASHCHECK, hierarchy)),

342 SET_ELEMENT_TYPE(SIMPLE_STYPE),

343 TPM2B_DIGEST_MARSHAL_REF,

344 (UINT16)(offsetof(TPMT_TK_HASHCHECK, digest))}},

345 // TPMS_ALG_PROPERTY_DATA

346 {STRUCTURE_MTYPE, 2, {

347 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

348 TPM_ALG_ID_MARSHAL_REF,

349 (UINT16)(offsetof(TPMS_ALG_PROPERTY, alg)),

350 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

351 TPMA_ALGORITHM_MARSHAL_REF,

352 (UINT16)(offsetof(TPMS_ALG_PROPERTY, algProperties))}},

353 // TPMS_TAGGED_PROPERTY_DATA

354 {STRUCTURE_MTYPE, 2, {

355 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

356 TPM_PT_MARSHAL_REF,

357 (UINT16)(offsetof(TPMS_TAGGED_PROPERTY, property)),

358 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

359 UINT32_MARSHAL_REF,

360 (UINT16)(offsetof(TPMS_TAGGED_PROPERTY, value))}},

361 // TPMS_TAGGED_PCR_SELECT_DATA

362 {STRUCTURE_MTYPE, 3, {

363 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

364 TPM_PT_PCR_MARSHAL_REF,

365 (UINT16)(offsetof(TPMS_TAGGED_PCR_SELECT, tag)),

366 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

367 Type08_MARSHAL_REF,

368 (UINT16)(offsetof(TPMS_TAGGED_PCR_SELECT, sizeofSelect)),

369 SET_ELEMENT_TYPE(ARRAY_STYPE)|SET_ELEMENT_NUMBER(1),

370 UINT8_ARRAY_MARSHAL_INDEX,

371 (UINT16)(offsetof(TPMS_TAGGED_PCR_SELECT, pcrSelect))}},

372 // TPMS_TAGGED_POLICY_DATA

373 {STRUCTURE_MTYPE, 2, {

374 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

375 TPM_HANDLE_MARSHAL_REF,

376 (UINT16)(offsetof(TPMS_TAGGED_POLICY, handle)),

377 SET_ELEMENT_TYPE(SIMPLE_STYPE),

378 TPMT_HA_MARSHAL_REF,

379 (UINT16)(offsetof(TPMS_TAGGED_POLICY, policyHash))}},

380 // TPMS_ACT_DATA_DATA

381 {STRUCTURE_MTYPE, 3, {

382 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

383 TPM_HANDLE_MARSHAL_REF,

384 (UINT16)(offsetof(TPMS_ACT_DATA, handle)),

385 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

386 UINT32_MARSHAL_REF,

387 (UINT16)(offsetof(TPMS_ACT_DATA, timeout)),

388 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

389 TPMA_ACT_MARSHAL_REF,

390 (UINT16)(offsetof(TPMS_ACT_DATA, attributes))}},

391 // TPML_CC_DATA

392 {LIST_MTYPE,

393 (UINT8)(offsetof(TPML_CC, commandCodes)),

394 Type15_MARSHAL_REF,

395 TPM_CC_ARRAY_MARSHAL_INDEX},

396 // TPML_CCA_DATA

Trusted Platform Module Library Part 4: Supporting Routines

Page 542 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

397 {LIST_MTYPE,

398 (UINT8)(offsetof(TPML_CCA, commandAttributes)),

399 Type15_MARSHAL_REF,

400 TPMA_CC_ARRAY_MARSHAL_INDEX},

401 // TPML_ALG_DATA

402 {LIST_MTYPE,

403 (UINT8)(offsetof(TPML_ALG, algorithms)),

404 Type17_MARSHAL_REF,

405 TPM_ALG_ID_ARRAY_MARSHAL_INDEX},

406 // TPML_HANDLE_DATA

407 {LIST_MTYPE,

408 (UINT8)(offsetof(TPML_HANDLE, handle)),

409 Type18_MARSHAL_REF,

410 TPM_HANDLE_ARRAY_MARSHAL_INDEX},

411 // TPML_DIGEST_DATA

412 {LIST_MTYPE,

413 (UINT8)(offsetof(TPML_DIGEST, digests)),

414 Type19_MARSHAL_REF,

415 TPM2B_DIGEST_ARRAY_MARSHAL_INDEX},

416 // TPML_DIGEST_VALUES_DATA

417 {LIST_MTYPE,

418 (UINT8)(offsetof(TPML_DIGEST_VALUES, digests)),

419 Type20_MARSHAL_REF,

420 TPMT_HA_ARRAY_MARSHAL_INDEX},

421 // TPML_PCR_SELECTION_DATA

422 {LIST_MTYPE,

423 (UINT8)(offsetof(TPML_PCR_SELECTION, pcrSelections)),

424 Type20_MARSHAL_REF,

425 TPMS_PCR_SELECTION_ARRAY_MARSHAL_INDEX},

426 // TPML_ALG_PROPERTY_DATA

427 {LIST_MTYPE,

428 (UINT8)(offsetof(TPML_ALG_PROPERTY, algProperties)),

429 Type22_MARSHAL_REF,

430 TPMS_ALG_PROPERTY_ARRAY_MARSHAL_INDEX},

431 // TPML_TAGGED_TPM_PROPERTY_DATA

432 {LIST_MTYPE,

433 (UINT8)(offsetof(TPML_TAGGED_TPM_PROPERTY, tpmProperty)),

434 Type23_MARSHAL_REF,

435 TPMS_TAGGED_PROPERTY_ARRAY_MARSHAL_INDEX},

436 // TPML_TAGGED_PCR_PROPERTY_DATA

437 {LIST_MTYPE,

438 (UINT8)(offsetof(TPML_TAGGED_PCR_PROPERTY, pcrProperty)),

439 Type24_MARSHAL_REF,

440 TPMS_TAGGED_PCR_SELECT_ARRAY_MARSHAL_INDEX},

441 // TPML_ECC_CURVE_DATA

442 {LIST_MTYPE,

443 (UINT8)(offsetof(TPML_ECC_CURVE, eccCurves)),

444 Type25_MARSHAL_REF,

445 TPM_ECC_CURVE_ARRAY_MARSHAL_INDEX},

446 // TPML_TAGGED_POLICY_DATA

447 {LIST_MTYPE,

448 (UINT8)(offsetof(TPML_TAGGED_POLICY, policies)),

449 Type26_MARSHAL_REF,

450 TPMS_TAGGED_POLICY_ARRAY_MARSHAL_INDEX},

451 // TPML_ACT_DATA_DATA

452 {LIST_MTYPE,

453 (UINT8)(offsetof(TPML_ACT_DATA, actData)),

454 Type27_MARSHAL_REF,

455 TPMS_ACT_DATA_ARRAY_MARSHAL_INDEX},

456 // TPMU_CAPABILITIES_DATA

457 {11, 0, (UINT16)(offsetof(TPMU_CAPABILITIES_mst, marshalingTypes)),

458 {(UINT32)TPM_CAP_ALGS, (UINT32)TPM_CAP_HANDLES,

459 (UINT32)TPM_CAP_COMMANDS, (UINT32)TPM_CAP_PP_COMMANDS,

460 (UINT32)TPM_CAP_AUDIT_COMMANDS, (UINT32)TPM_CAP_PCRS,

461 (UINT32)TPM_CAP_TPM_PROPERTIES, (UINT32)TPM_CAP_PCR_PROPERTIES,

462 (UINT32)TPM_CAP_ECC_CURVES, (UINT32)TPM_CAP_AUTH_POLICIES,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 543

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

463 (UINT32)TPM_CAP_ACT},

464 {(UINT16)(TPML_ALG_PROPERTY_MARSHAL_REF),

465 (UINT16)(TPML_HANDLE_MARSHAL_REF),

466 (UINT16)(TPML_CCA_MARSHAL_REF),

467 (UINT16)(TPML_CC_MARSHAL_REF),

468 (UINT16)(TPML_CC_MARSHAL_REF),

469 (UINT16)(TPML_PCR_SELECTION_MARSHAL_REF),

470 (UINT16)(TPML_TAGGED_TPM_PROPERTY_MARSHAL_REF),

471 (UINT16)(TPML_TAGGED_PCR_PROPERTY_MARSHAL_REF),

472 (UINT16)(TPML_ECC_CURVE_MARSHAL_REF),

473 (UINT16)(TPML_TAGGED_POLICY_MARSHAL_REF),

474 (UINT16)(TPML_ACT_DATA_MARSHAL_REF)}

475 },

476 // TPMS_CAPABILITY_DATA_DATA

477 {STRUCTURE_MTYPE, 2, {

478 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

479 TPM_CAP_MARSHAL_REF,

480 (UINT16)(offsetof(TPMS_CAPABILITY_DATA, capability)),

481 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

482 TPMU_CAPABILITIES_MARSHAL_REF,

483 (UINT16)(offsetof(TPMS_CAPABILITY_DATA, data))}},

484 // TPMS_CLOCK_INFO_DATA

485 {STRUCTURE_MTYPE, 4, {

486 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(EIGHT_BYTES),

487 UINT64_MARSHAL_REF,

488 (UINT16)(offsetof(TPMS_CLOCK_INFO, clock)),

489 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

490 UINT32_MARSHAL_REF,

491 (UINT16)(offsetof(TPMS_CLOCK_INFO, resetCount)),

492 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

493 UINT32_MARSHAL_REF,

494 (UINT16)(offsetof(TPMS_CLOCK_INFO, restartCount)),

495 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

496 TPMI_YES_NO_MARSHAL_REF,

497 (UINT16)(offsetof(TPMS_CLOCK_INFO, safe))}},

498 // TPMS_TIME_INFO_DATA

499 {STRUCTURE_MTYPE, 2, {

500 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(EIGHT_BYTES),

501 UINT64_MARSHAL_REF,

502 (UINT16)(offsetof(TPMS_TIME_INFO, time)),

503 SET_ELEMENT_TYPE(SIMPLE_STYPE),

504 TPMS_CLOCK_INFO_MARSHAL_REF,

505 (UINT16)(offsetof(TPMS_TIME_INFO, clockInfo))}},

506 // TPMS_TIME_ATTEST_INFO_DATA

507 {STRUCTURE_MTYPE, 2, {

508 SET_ELEMENT_TYPE(SIMPLE_STYPE),

509 TPMS_TIME_INFO_MARSHAL_REF,

510 (UINT16)(offsetof(TPMS_TIME_ATTEST_INFO, time)),

511 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(EIGHT_BYTES),

512 UINT64_MARSHAL_REF,

513 (UINT16)(offsetof(TPMS_TIME_ATTEST_INFO, firmwareVersion))}},

514 // TPMS_CERTIFY_INFO_DATA

515 {STRUCTURE_MTYPE, 2, {

516 SET_ELEMENT_TYPE(SIMPLE_STYPE),

517 TPM2B_NAME_MARSHAL_REF,

518 (UINT16)(offsetof(TPMS_CERTIFY_INFO, name)),

519 SET_ELEMENT_TYPE(SIMPLE_STYPE),

520 TPM2B_NAME_MARSHAL_REF,

521 (UINT16)(offsetof(TPMS_CERTIFY_INFO, qualifiedName))}},

522 // TPMS_QUOTE_INFO_DATA

523 {STRUCTURE_MTYPE, 2, {

524 SET_ELEMENT_TYPE(SIMPLE_STYPE),

525 TPML_PCR_SELECTION_MARSHAL_REF,

526 (UINT16)(offsetof(TPMS_QUOTE_INFO, pcrSelect)),

527 SET_ELEMENT_TYPE(SIMPLE_STYPE),

528 TPM2B_DIGEST_MARSHAL_REF,

Trusted Platform Module Library Part 4: Supporting Routines

Page 544 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

529 (UINT16)(offsetof(TPMS_QUOTE_INFO, pcrDigest))}},

530 // TPMS_COMMAND_AUDIT_INFO_DATA

531 {STRUCTURE_MTYPE, 4, {

532 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(EIGHT_BYTES),

533 UINT64_MARSHAL_REF,

534 (UINT16)(offsetof(TPMS_COMMAND_AUDIT_INFO, auditCounter)),

535 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

536 TPM_ALG_ID_MARSHAL_REF,

537 (UINT16)(offsetof(TPMS_COMMAND_AUDIT_INFO, digestAlg)),

538 SET_ELEMENT_TYPE(SIMPLE_STYPE),

539 TPM2B_DIGEST_MARSHAL_REF,

540 (UINT16)(offsetof(TPMS_COMMAND_AUDIT_INFO, auditDigest)),

541 SET_ELEMENT_TYPE(SIMPLE_STYPE),

542 TPM2B_DIGEST_MARSHAL_REF,

543 (UINT16)(offsetof(TPMS_COMMAND_AUDIT_INFO, commandDigest))}},

544 // TPMS_SESSION_AUDIT_INFO_DATA

545 {STRUCTURE_MTYPE, 2, {

546 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

547 TPMI_YES_NO_MARSHAL_REF,

548 (UINT16)(offsetof(TPMS_SESSION_AUDIT_INFO, exclusiveSession)),

549 SET_ELEMENT_TYPE(SIMPLE_STYPE),

550 TPM2B_DIGEST_MARSHAL_REF,

551 (UINT16)(offsetof(TPMS_SESSION_AUDIT_INFO, sessionDigest))}},

552 // TPMS_CREATION_INFO_DATA

553 {STRUCTURE_MTYPE, 2, {

554 SET_ELEMENT_TYPE(SIMPLE_STYPE),

555 TPM2B_NAME_MARSHAL_REF,

556 (UINT16)(offsetof(TPMS_CREATION_INFO, objectName)),

557 SET_ELEMENT_TYPE(SIMPLE_STYPE),

558 TPM2B_DIGEST_MARSHAL_REF,

559 (UINT16)(offsetof(TPMS_CREATION_INFO, creationHash))}},

560 // TPMS_NV_CERTIFY_INFO_DATA

561 {STRUCTURE_MTYPE, 3, {

562 SET_ELEMENT_TYPE(SIMPLE_STYPE),

563 TPM2B_NAME_MARSHAL_REF,

564 (UINT16)(offsetof(TPMS_NV_CERTIFY_INFO, indexName)),

565 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

566 UINT16_MARSHAL_REF,

567 (UINT16)(offsetof(TPMS_NV_CERTIFY_INFO, offset)),

568 SET_ELEMENT_TYPE(SIMPLE_STYPE),

569 TPM2B_MAX_NV_BUFFER_MARSHAL_REF,

570 (UINT16)(offsetof(TPMS_NV_CERTIFY_INFO, nvContents))}},

571 // TPMS_NV_DIGEST_CERTIFY_INFO_DATA

572 {STRUCTURE_MTYPE, 2, {

573 SET_ELEMENT_TYPE(SIMPLE_STYPE),

574 TPM2B_NAME_MARSHAL_REF,

575 (UINT16)(offsetof(TPMS_NV_DIGEST_CERTIFY_INFO, indexName)),

576 SET_ELEMENT_TYPE(SIMPLE_STYPE),

577 TPM2B_DIGEST_MARSHAL_REF,

578 (UINT16)(offsetof(TPMS_NV_DIGEST_CERTIFY_INFO, nvDigest))}},

579 // TPMI_ST_ATTEST_DATA

580 {VALUES_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 1, 1,

581 {RANGE(TPM_ST_ATTEST_NV, TPM_ST_ATTEST_CREATION, UINT16),

582 TPM_ST_ATTEST_NV_DIGEST}},

583 // TPMU_ATTEST_DATA

584 {8, 0, (UINT16)(offsetof(TPMU_ATTEST_mst, marshalingTypes)),

585 {(UINT32)TPM_ST_ATTEST_CERTIFY, (UINT32)TPM_ST_ATTEST_CREATION,

586 (UINT32)TPM_ST_ATTEST_QUOTE, (UINT32)TPM_ST_ATTEST_COMMAND_AUDIT,

587 (UINT32)TPM_ST_ATTEST_SESSION_AUDIT, (UINT32)TPM_ST_ATTEST_TIME,

588 (UINT32)TPM_ST_ATTEST_NV, (UINT32)TPM_ST_ATTEST_NV_DIGEST},

589 {(UINT16)(TPMS_CERTIFY_INFO_MARSHAL_REF),

590 (UINT16)(TPMS_CREATION_INFO_MARSHAL_REF),

591 (UINT16)(TPMS_QUOTE_INFO_MARSHAL_REF),

592 (UINT16)(TPMS_COMMAND_AUDIT_INFO_MARSHAL_REF),

593 (UINT16)(TPMS_SESSION_AUDIT_INFO_MARSHAL_REF),

594 (UINT16)(TPMS_TIME_ATTEST_INFO_MARSHAL_REF),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 545

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

595 (UINT16)(TPMS_NV_CERTIFY_INFO_MARSHAL_REF),

596 (UINT16)(TPMS_NV_DIGEST_CERTIFY_INFO_MARSHAL_REF)}

597 },

598 // TPMS_ATTEST_DATA

599 {STRUCTURE_MTYPE, 7, {

600 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

601 TPM_GENERATED_MARSHAL_REF,

602 (UINT16)(offsetof(TPMS_ATTEST, magic)),

603 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

604 TPMI_ST_ATTEST_MARSHAL_REF,

605 (UINT16)(offsetof(TPMS_ATTEST, type)),

606 SET_ELEMENT_TYPE(SIMPLE_STYPE),

607 TPM2B_NAME_MARSHAL_REF,

608 (UINT16)(offsetof(TPMS_ATTEST, qualifiedSigner)),

609 SET_ELEMENT_TYPE(SIMPLE_STYPE),

610 TPM2B_DATA_MARSHAL_REF,

611 (UINT16)(offsetof(TPMS_ATTEST, extraData)),

612 SET_ELEMENT_TYPE(SIMPLE_STYPE),

613 TPMS_CLOCK_INFO_MARSHAL_REF,

614 (UINT16)(offsetof(TPMS_ATTEST, clockInfo)),

615 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(EIGHT_BYTES),

616 UINT64_MARSHAL_REF,

617 (UINT16)(offsetof(TPMS_ATTEST, firmwareVersion)),

618 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(1),

619 TPMU_ATTEST_MARSHAL_REF,

620 (UINT16)(offsetof(TPMS_ATTEST, attested))}},

621 // TPM2B_ATTEST_DATA

622 {TPM2B_MTYPE, Type28_MARSHAL_REF},

623 // TPMS_AUTH_COMMAND_DATA

624 {STRUCTURE_MTYPE, 4, {

625 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

626 TPMI_SH_AUTH_SESSION_MARSHAL_REF|NULL_FLAG,

627 (UINT16)(offsetof(TPMS_AUTH_COMMAND, sessionHandle)),

628 SET_ELEMENT_TYPE(SIMPLE_STYPE),

629 TPM2B_NONCE_MARSHAL_REF,

630 (UINT16)(offsetof(TPMS_AUTH_COMMAND, nonce)),

631 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

632 TPMA_SESSION_MARSHAL_REF,

633 (UINT16)(offsetof(TPMS_AUTH_COMMAND, sessionAttributes)),

634 SET_ELEMENT_TYPE(SIMPLE_STYPE),

635 TPM2B_AUTH_MARSHAL_REF,

636 (UINT16)(offsetof(TPMS_AUTH_COMMAND, hmac))}},

637 // TPMS_AUTH_RESPONSE_DATA

638 {STRUCTURE_MTYPE, 3, {

639 SET_ELEMENT_TYPE(SIMPLE_STYPE),

640 TPM2B_NONCE_MARSHAL_REF,

641 (UINT16)(offsetof(TPMS_AUTH_RESPONSE, nonce)),

642 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

643 TPMA_SESSION_MARSHAL_REF,

644 (UINT16)(offsetof(TPMS_AUTH_RESPONSE, sessionAttributes)),

645 SET_ELEMENT_TYPE(SIMPLE_STYPE),

646 TPM2B_AUTH_MARSHAL_REF,

647 (UINT16)(offsetof(TPMS_AUTH_RESPONSE, hmac))}},

648 // TPMI_TDES_KEY_BITS_DATA

649 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 1,

650 {128*TDES_128}},

651 // TPMI_AES_KEY_BITS_DATA

652 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 3,

653 {192*AES_192, 128*AES_128, 256*AES_256}},

654 // TPMI_SM4_KEY_BITS_DATA

655 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 1,

656 {128*SM4_128}},

657 // TPMI_CAMELLIA_KEY_BITS_DATA

658 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 3,

659 {192*CAMELLIA_192, 128*CAMELLIA_128, 256*CAMELLIA_256}},

660 // TPMU_SYM_KEY_BITS_DATA

Trusted Platform Module Library Part 4: Supporting Routines

Page 546 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

661 {6, 0, (UINT16)(offsetof(TPMU_SYM_KEY_BITS_mst, marshalingTypes)),

662 {(UINT32)TPM_ALG_TDES, (UINT32)TPM_ALG_AES, (UINT32)TPM_ALG_SM4,

663 (UINT32)TPM_ALG_CAMELLIA, (UINT32)TPM_ALG_XOR, (UINT32)TPM_ALG_NULL},

664 {(UINT16)(TPMI_TDES_KEY_BITS_MARSHAL_REF),

665 (UINT16)(TPMI_AES_KEY_BITS_MARSHAL_REF),

666 (UINT16)(TPMI_SM4_KEY_BITS_MARSHAL_REF),

667 (UINT16)(TPMI_CAMELLIA_KEY_BITS_MARSHAL_REF),

668 (UINT16)(TPMI_ALG_HASH_MARSHAL_REF),

669 (UINT16)(UINT0_MARSHAL_REF)}

670 },

671 // TPMU_SYM_MODE_DATA

672 {6, 0, (UINT16)(offsetof(TPMU_SYM_MODE_mst, marshalingTypes)),

673 {(UINT32)TPM_ALG_TDES, (UINT32)TPM_ALG_AES, (UINT32)TPM_ALG_SM4,

674 (UINT32)TPM_ALG_CAMELLIA, (UINT32)TPM_ALG_XOR, (UINT32)TPM_ALG_NULL},

675 {(UINT16)(TPMI_ALG_SYM_MODE_MARSHAL_REF|NULL_FLAG),

676 (UINT16)(TPMI_ALG_SYM_MODE_MARSHAL_REF|NULL_FLAG),

677 (UINT16)(TPMI_ALG_SYM_MODE_MARSHAL_REF|NULL_FLAG),

678 (UINT16)(TPMI_ALG_SYM_MODE_MARSHAL_REF|NULL_FLAG),

679 (UINT16)(UINT0_MARSHAL_REF),

680 (UINT16)(UINT0_MARSHAL_REF)}

681 },

682 // TPMT_SYM_DEF_DATA

683 {STRUCTURE_MTYPE, 3, {

684 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

685 TPMI_ALG_SYM_MARSHAL_REF,

686 (UINT16)(offsetof(TPMT_SYM_DEF, algorithm)),

687 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

688 TPMU_SYM_KEY_BITS_MARSHAL_REF,

689 (UINT16)(offsetof(TPMT_SYM_DEF, keyBits)),

690 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

691 TPMU_SYM_MODE_MARSHAL_REF,

692 (UINT16)(offsetof(TPMT_SYM_DEF, mode))}},

693 // TPMT_SYM_DEF_OBJECT_DATA

694 {STRUCTURE_MTYPE, 3, {

695 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

696 TPMI_ALG_SYM_OBJECT_MARSHAL_REF,

697 (UINT16)(offsetof(TPMT_SYM_DEF_OBJECT, algorithm)),

698 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

699 TPMU_SYM_KEY_BITS_MARSHAL_REF,

700 (UINT16)(offsetof(TPMT_SYM_DEF_OBJECT, keyBits)),

701 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

702 TPMU_SYM_MODE_MARSHAL_REF,

703 (UINT16)(offsetof(TPMT_SYM_DEF_OBJECT, mode))}},

704 // TPM2B_SYM_KEY_DATA

705 {TPM2B_MTYPE, Type29_MARSHAL_REF},

706 // TPMS_SYMCIPHER_PARMS_DATA

707 {STRUCTURE_MTYPE, 1, {

708 SET_ELEMENT_TYPE(SIMPLE_STYPE),

709 TPMT_SYM_DEF_OBJECT_MARSHAL_REF,

710 (UINT16)(offsetof(TPMS_SYMCIPHER_PARMS, sym))}},

711 // TPM2B_LABEL_DATA

712 {TPM2B_MTYPE, Type30_MARSHAL_REF},

713 // TPMS_DERIVE_DATA

714 {STRUCTURE_MTYPE, 2, {

715 SET_ELEMENT_TYPE(SIMPLE_STYPE),

716 TPM2B_LABEL_MARSHAL_REF,

717 (UINT16)(offsetof(TPMS_DERIVE, label)),

718 SET_ELEMENT_TYPE(SIMPLE_STYPE),

719 TPM2B_LABEL_MARSHAL_REF,

720 (UINT16)(offsetof(TPMS_DERIVE, context))}},

721 // TPM2B_DERIVE_DATA

722 {TPM2B_MTYPE, Type31_MARSHAL_REF},

723 // TPM2B_SENSITIVE_DATA_DATA

724 {TPM2B_MTYPE, Type32_MARSHAL_REF},

725 // TPMS_SENSITIVE_CREATE_DATA

726 {STRUCTURE_MTYPE, 2, {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 547

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

727 SET_ELEMENT_TYPE(SIMPLE_STYPE),

728 TPM2B_AUTH_MARSHAL_REF,

729 (UINT16)(offsetof(TPMS_SENSITIVE_CREATE, userAuth)),

730 SET_ELEMENT_TYPE(SIMPLE_STYPE),

731 TPM2B_SENSITIVE_DATA_MARSHAL_REF,

732 (UINT16)(offsetof(TPMS_SENSITIVE_CREATE, data))}},

733 // TPM2B_SENSITIVE_CREATE_DATA

734 {TPM2BS_MTYPE,

735 (UINT8)(offsetof(TPM2B_SENSITIVE_CREATE, sensitive))|SIZE_EQUAL,

736 UINT16_MARSHAL_REF,

737 TPMS_SENSITIVE_CREATE_MARSHAL_REF},

738 // TPMS_SCHEME_HASH_DATA

739 {STRUCTURE_MTYPE, 1, {

740 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

741 TPMI_ALG_HASH_MARSHAL_REF,

742 (UINT16)(offsetof(TPMS_SCHEME_HASH, hashAlg))}},

743 // TPMS_SCHEME_ECDAA_DATA

744 {STRUCTURE_MTYPE, 2, {

745 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

746 TPMI_ALG_HASH_MARSHAL_REF,

747 (UINT16)(offsetof(TPMS_SCHEME_ECDAA, hashAlg)),

748 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

749 UINT16_MARSHAL_REF,

750 (UINT16)(offsetof(TPMS_SCHEME_ECDAA, count))}},

751 // TPMI_ALG_KEYEDHASH_SCHEME_DATA

752 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_VALUE,

753 {TPM_ALG_NULL,

754 RANGE(5, 10, UINT16),

755 ((ALG_HMAC << 0)|(ALG_XOR << 5))}},

756 // TPMS_SCHEME_XOR_DATA

757 {STRUCTURE_MTYPE, 2, {

758 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

759 TPMI_ALG_HASH_MARSHAL_REF,

760 (UINT16)(offsetof(TPMS_SCHEME_XOR, hashAlg)),

761 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

762 TPMI_ALG_KDF_MARSHAL_REF|NULL_FLAG,

763 (UINT16)(offsetof(TPMS_SCHEME_XOR, kdf))}},

764 // TPMU_SCHEME_KEYEDHASH_DATA

765 {3, 0, (UINT16)(offsetof(TPMU_SCHEME_KEYEDHASH_mst, marshalingTypes)),

766 {(UINT32)TPM_ALG_HMAC, (UINT32)TPM_ALG_XOR, (UINT32)TPM_ALG_NULL},

767 {(UINT16)(TPMS_SCHEME_HMAC_MARSHAL_REF),

768 (UINT16)(TPMS_SCHEME_XOR_MARSHAL_REF),

769 (UINT16)(UINT0_MARSHAL_REF)}

770 },

771 // TPMT_KEYEDHASH_SCHEME_DATA

772 {STRUCTURE_MTYPE, 2, {

773 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

774 TPMI_ALG_KEYEDHASH_SCHEME_MARSHAL_REF,

775 (UINT16)(offsetof(TPMT_KEYEDHASH_SCHEME, scheme)),

776 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

777 TPMU_SCHEME_KEYEDHASH_MARSHAL_REF,

778 (UINT16)(offsetof(TPMT_KEYEDHASH_SCHEME, details))}},

779 // TPMU_SIG_SCHEME_DATA

780 {8, 0, (UINT16)(offsetof(TPMU_SIG_SCHEME_mst, marshalingTypes)),

781 {(UINT32)TPM_ALG_ECDAA, (UINT32)TPM_ALG_RSASSA,

782 (UINT32)TPM_ALG_RSAPSS, (UINT32)TPM_ALG_ECDSA,

783 (UINT32)TPM_ALG_SM2, (UINT32)TPM_ALG_ECSCHNORR,

784 (UINT32)TPM_ALG_HMAC, (UINT32)TPM_ALG_NULL},

785 {(UINT16)(TPMS_SIG_SCHEME_ECDAA_MARSHAL_REF),

786 (UINT16)(TPMS_SIG_SCHEME_RSASSA_MARSHAL_REF),

787 (UINT16)(TPMS_SIG_SCHEME_RSAPSS_MARSHAL_REF),

788 (UINT16)(TPMS_SIG_SCHEME_ECDSA_MARSHAL_REF),

789 (UINT16)(TPMS_SIG_SCHEME_SM2_MARSHAL_REF),

790 (UINT16)(TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_REF),

791 (UINT16)(TPMS_SCHEME_HMAC_MARSHAL_REF),

792 (UINT16)(UINT0_MARSHAL_REF)}

Trusted Platform Module Library Part 4: Supporting Routines

Page 548 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

793 },

794 // TPMT_SIG_SCHEME_DATA

795 {STRUCTURE_MTYPE, 2, {

796 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

797 TPMI_ALG_SIG_SCHEME_MARSHAL_REF,

798 (UINT16)(offsetof(TPMT_SIG_SCHEME, scheme)),

799 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

800 TPMU_SIG_SCHEME_MARSHAL_REF,

801 (UINT16)(offsetof(TPMT_SIG_SCHEME, details))}},

802 // TPMU_KDF_SCHEME_DATA

803 {5, 0, (UINT16)(offsetof(TPMU_KDF_SCHEME_mst, marshalingTypes)),

804 {(UINT32)TPM_ALG_MGF1, (UINT32)TPM_ALG_KDF1_SP800_56A,

805 (UINT32)TPM_ALG_KDF2, (UINT32)TPM_ALG_KDF1_SP800_108,

806 (UINT32)TPM_ALG_NULL},

807 {(UINT16)(TPMS_SCHEME_MGF1_MARSHAL_REF),

808 (UINT16)(TPMS_SCHEME_KDF1_SP800_56A_MARSHAL_REF),

809 (UINT16)(TPMS_SCHEME_KDF2_MARSHAL_REF),

810 (UINT16)(TPMS_SCHEME_KDF1_SP800_108_MARSHAL_REF),

811 (UINT16)(UINT0_MARSHAL_REF)}

812 },

813 // TPMT_KDF_SCHEME_DATA

814 {STRUCTURE_MTYPE, 2, {

815 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

816 TPMI_ALG_KDF_MARSHAL_REF,

817 (UINT16)(offsetof(TPMT_KDF_SCHEME, scheme)),

818 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

819 TPMU_KDF_SCHEME_MARSHAL_REF,

820 (UINT16)(offsetof(TPMT_KDF_SCHEME, details))}},

821 // TPMI_ALG_ASYM_SCHEME_DATA

822 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_VALUE,

823 {TPM_ALG_NULL,

824 RANGE(20, 29, UINT16),

825 ((ALG_RSASSA << 0) | (ALG_RSAES << 1) | (ALG_RSAPSS << 2) |

826 (ALG_OAEP << 3) | (ALG_ECDSA << 4) | (ALG_ECDH << 5) |

827 (ALG_ECDAA << 6) | (ALG_SM2 << 7) | (ALG_ECSCHNORR << 8) |

828 (ALG_ECMQV << 9))}},

829 // TPMU_ASYM_SCHEME_DATA

830 {11, 0, (UINT16)(offsetof(TPMU_ASYM_SCHEME_mst, marshalingTypes)),

831 {(UINT32)TPM_ALG_ECDH, (UINT32)TPM_ALG_ECMQV,

832 (UINT32)TPM_ALG_ECDAA, (UINT32)TPM_ALG_RSASSA,

833 (UINT32)TPM_ALG_RSAPSS, (UINT32)TPM_ALG_ECDSA,

834 (UINT32)TPM_ALG_SM2, (UINT32)TPM_ALG_ECSCHNORR,

835 (UINT32)TPM_ALG_RSAES, (UINT32)TPM_ALG_OAEP,

836 (UINT32)TPM_ALG_NULL},

837 {(UINT16)(TPMS_KEY_SCHEME_ECDH_MARSHAL_REF),

838 (UINT16)(TPMS_KEY_SCHEME_ECMQV_MARSHAL_REF),

839 (UINT16)(TPMS_SIG_SCHEME_ECDAA_MARSHAL_REF),

840 (UINT16)(TPMS_SIG_SCHEME_RSASSA_MARSHAL_REF),

841 (UINT16)(TPMS_SIG_SCHEME_RSAPSS_MARSHAL_REF),

842 (UINT16)(TPMS_SIG_SCHEME_ECDSA_MARSHAL_REF),

843 (UINT16)(TPMS_SIG_SCHEME_SM2_MARSHAL_REF),

844 (UINT16)(TPMS_SIG_SCHEME_ECSCHNORR_MARSHAL_REF),

845 (UINT16)(TPMS_ENC_SCHEME_RSAES_MARSHAL_REF),

846 (UINT16)(TPMS_ENC_SCHEME_OAEP_MARSHAL_REF),

847 (UINT16)(UINT0_MARSHAL_REF)}

848 },

849 // TPMI_ALG_RSA_SCHEME_DATA

850 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_VALUE,

851 {TPM_ALG_NULL,

852 RANGE(20, 23, UINT16),

853 ((ALG_RSASSA << 0)|(ALG_RSAES << 1)|(ALG_RSAPSS << 2)|(ALG_OAEP << 3))}},

854 // TPMT_RSA_SCHEME_DATA

855 {STRUCTURE_MTYPE, 2, {

856 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

857 TPMI_ALG_RSA_SCHEME_MARSHAL_REF,

858 (UINT16)(offsetof(TPMT_RSA_SCHEME, scheme)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 549

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

859 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

860 TPMU_ASYM_SCHEME_MARSHAL_REF,

861 (UINT16)(offsetof(TPMT_RSA_SCHEME, details))}},

862 // TPMI_ALG_RSA_DECRYPT_DATA

863 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_VALUE,

864 {TPM_ALG_NULL,

865 RANGE(21, 23, UINT16),

866 ((ALG_RSAES << 0)|(ALG_OAEP << 2))}},

867 // TPMT_RSA_DECRYPT_DATA

868 {STRUCTURE_MTYPE, 2, {

869 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

870 TPMI_ALG_RSA_DECRYPT_MARSHAL_REF,

871 (UINT16)(offsetof(TPMT_RSA_DECRYPT, scheme)),

872 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

873 TPMU_ASYM_SCHEME_MARSHAL_REF,

874 (UINT16)(offsetof(TPMT_RSA_DECRYPT, details))}},

875 // TPM2B_PUBLIC_KEY_RSA_DATA

876 {TPM2B_MTYPE, Type33_MARSHAL_REF},

877 // TPMI_RSA_KEY_BITS_DATA

878 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_VALUE, 3,

879 {3072*RSA_3072, 1024*RSA_1024, 2048*RSA_2048}},

880 // TPM2B_PRIVATE_KEY_RSA_DATA

881 {TPM2B_MTYPE, Type34_MARSHAL_REF},

882 // TPM2B_ECC_PARAMETER_DATA

883 {TPM2B_MTYPE, Type35_MARSHAL_REF},

884 // TPMS_ECC_POINT_DATA

885 {STRUCTURE_MTYPE, 2, {

886 SET_ELEMENT_TYPE(SIMPLE_STYPE),

887 TPM2B_ECC_PARAMETER_MARSHAL_REF,

888 (UINT16)(offsetof(TPMS_ECC_POINT, x)),

889 SET_ELEMENT_TYPE(SIMPLE_STYPE),

890 TPM2B_ECC_PARAMETER_MARSHAL_REF,

891 (UINT16)(offsetof(TPMS_ECC_POINT, y))}},

892 // TPM2B_ECC_POINT_DATA

893 {TPM2BS_MTYPE,

894 (UINT8)(offsetof(TPM2B_ECC_POINT, point))|SIZE_EQUAL,

895 UINT16_MARSHAL_REF,

896 TPMS_ECC_POINT_MARSHAL_REF},

897 // TPMI_ALG_ECC_SCHEME_DATA

898 {MIN_MAX_MTYPE, TWO_BYTES|TAKES_NULL|HAS_BITS, (UINT8)TPM_RC_SCHEME,

899 {TPM_ALG_NULL,

900 RANGE(24, 29, UINT16),

901 ((ALG_ECDSA << 0) | (ALG_ECDH << 1) | (ALG_ECDAA << 2) |

902 (ALG_SM2 << 3) | (ALG_ECSCHNORR << 4) | (ALG_ECMQV << 5))}},

903 // TPMI_ECC_CURVE_DATA

904 {MIN_MAX_MTYPE, TWO_BYTES|HAS_BITS, (UINT8)TPM_RC_CURVE,

905 {RANGE(1, 32, UINT16),

906 ((ECC_NIST_P192 << 0) | (ECC_NIST_P224 << 1) | (ECC_NIST_P256 << 2) |

907 (ECC_NIST_P384 << 3) | (ECC_NIST_P521 << 4) | (ECC_BN_P256 << 15) |

908 (ECC_BN_P638 << 16) | (ECC_SM2_P256 << 31))}},

909 // TPMT_ECC_SCHEME_DATA

910 {STRUCTURE_MTYPE, 2, {

911 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

912 TPMI_ALG_ECC_SCHEME_MARSHAL_REF,

913 (UINT16)(offsetof(TPMT_ECC_SCHEME, scheme)),

914 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

915 TPMU_ASYM_SCHEME_MARSHAL_REF,

916 (UINT16)(offsetof(TPMT_ECC_SCHEME, details))}},

917 // TPMS_ALGORITHM_DETAIL_ECC_DATA

918 {STRUCTURE_MTYPE, 11, {

919 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

920 TPM_ECC_CURVE_MARSHAL_REF,

921 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, curveID)),

922 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

923 UINT16_MARSHAL_REF,

924 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, keySize)),

Trusted Platform Module Library Part 4: Supporting Routines

Page 550 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

925 SET_ELEMENT_TYPE(SIMPLE_STYPE),

926 TPMT_KDF_SCHEME_MARSHAL_REF|NULL_FLAG,

927 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, kdf)),

928 SET_ELEMENT_TYPE(SIMPLE_STYPE),

929 TPMT_ECC_SCHEME_MARSHAL_REF|NULL_FLAG,

930 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, sign)),

931 SET_ELEMENT_TYPE(SIMPLE_STYPE),

932 TPM2B_ECC_PARAMETER_MARSHAL_REF,

933 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, p)),

934 SET_ELEMENT_TYPE(SIMPLE_STYPE),

935 TPM2B_ECC_PARAMETER_MARSHAL_REF,

936 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, a)),

937 SET_ELEMENT_TYPE(SIMPLE_STYPE),

938 TPM2B_ECC_PARAMETER_MARSHAL_REF,

939 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, b)),

940 SET_ELEMENT_TYPE(SIMPLE_STYPE),

941 TPM2B_ECC_PARAMETER_MARSHAL_REF,

942 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, gX)),

943 SET_ELEMENT_TYPE(SIMPLE_STYPE),

944 TPM2B_ECC_PARAMETER_MARSHAL_REF,

945 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, gY)),

946 SET_ELEMENT_TYPE(SIMPLE_STYPE),

947 TPM2B_ECC_PARAMETER_MARSHAL_REF,

948 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, n)),

949 SET_ELEMENT_TYPE(SIMPLE_STYPE),

950 TPM2B_ECC_PARAMETER_MARSHAL_REF,

951 (UINT16)(offsetof(TPMS_ALGORITHM_DETAIL_ECC, h))}},

952 // TPMS_SIGNATURE_RSA_DATA

953 {STRUCTURE_MTYPE, 2, {

954 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

955 TPMI_ALG_HASH_MARSHAL_REF,

956 (UINT16)(offsetof(TPMS_SIGNATURE_RSA, hash)),

957 SET_ELEMENT_TYPE(SIMPLE_STYPE),

958 TPM2B_PUBLIC_KEY_RSA_MARSHAL_REF,

959 (UINT16)(offsetof(TPMS_SIGNATURE_RSA, sig))}},

960 // TPMS_SIGNATURE_ECC_DATA

961 {STRUCTURE_MTYPE, 3, {

962 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

963 TPMI_ALG_HASH_MARSHAL_REF,

964 (UINT16)(offsetof(TPMS_SIGNATURE_ECC, hash)),

965 SET_ELEMENT_TYPE(SIMPLE_STYPE),

966 TPM2B_ECC_PARAMETER_MARSHAL_REF,

967 (UINT16)(offsetof(TPMS_SIGNATURE_ECC, signatureR)),

968 SET_ELEMENT_TYPE(SIMPLE_STYPE),

969 TPM2B_ECC_PARAMETER_MARSHAL_REF,

970 (UINT16)(offsetof(TPMS_SIGNATURE_ECC, signatureS))}},

971 // TPMU_SIGNATURE_DATA

972 {8, 0, (UINT16)(offsetof(TPMU_SIGNATURE_mst, marshalingTypes)),

973 {(UINT32)TPM_ALG_ECDAA, (UINT32)TPM_ALG_RSASSA,

974 (UINT32)TPM_ALG_RSAPSS, (UINT32)TPM_ALG_ECDSA,

975 (UINT32)TPM_ALG_SM2, (UINT32)TPM_ALG_ECSCHNORR,

976 (UINT32)TPM_ALG_HMAC, (UINT32)TPM_ALG_NULL},

977 {(UINT16)(TPMS_SIGNATURE_ECDAA_MARSHAL_REF),

978 (UINT16)(TPMS_SIGNATURE_RSASSA_MARSHAL_REF),

979 (UINT16)(TPMS_SIGNATURE_RSAPSS_MARSHAL_REF),

980 (UINT16)(TPMS_SIGNATURE_ECDSA_MARSHAL_REF),

981 (UINT16)(TPMS_SIGNATURE_SM2_MARSHAL_REF),

982 (UINT16)(TPMS_SIGNATURE_ECSCHNORR_MARSHAL_REF),

983 (UINT16)(TPMT_HA_MARSHAL_REF),

984 (UINT16)(UINT0_MARSHAL_REF)}

985 },

986 // TPMT_SIGNATURE_DATA

987 {STRUCTURE_MTYPE, 2, {

988 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

989 TPMI_ALG_SIG_SCHEME_MARSHAL_REF,

990 (UINT16)(offsetof(TPMT_SIGNATURE, sigAlg)),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 551

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

991 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

992 TPMU_SIGNATURE_MARSHAL_REF,

993 (UINT16)(offsetof(TPMT_SIGNATURE, signature))}},

994 // TPMU_ENCRYPTED_SECRET_DATA

995 {4, IS_ARRAY_UNION, (UINT16)(offsetof(TPMU_ENCRYPTED_SECRET_mst, marshalingTypes)),

996 {(UINT32)TPM_ALG_ECC, (UINT32)TPM_ALG_RSA,

997 (UINT32)TPM_ALG_SYMCIPHER, (UINT32)TPM_ALG_KEYEDHASH},

998 {(UINT16)(sizeof(TPMS_ECC_POINT)), (UINT16)(MAX_RSA_KEY_BYTES),

999 (UINT16)(sizeof(TPM2B_DIGEST)), (UINT16)(sizeof(TPM2B_DIGEST))}

1000 },

1001 // TPM2B_ENCRYPTED_SECRET_DATA

1002 {TPM2B_MTYPE, Type36_MARSHAL_REF},

1003 // TPMI_ALG_PUBLIC_DATA

1004 {MIN_MAX_MTYPE, TWO_BYTES|HAS_BITS, (UINT8)TPM_RC_TYPE,

1005 {RANGE(1, 37, UINT16),

1006 ((ALG_RSA << 0)|(ALG_KEYEDHASH << 7)),

1007 ((ALG_ECC << 2)|(ALG_SYMCIPHER << 4))}},

1008 // TPMU_PUBLIC_ID_DATA

1009 {4, 0, (UINT16)(offsetof(TPMU_PUBLIC_ID_mst, marshalingTypes)),

1010 {(UINT32)TPM_ALG_KEYEDHASH, (UINT32)TPM_ALG_SYMCIPHER,

1011 (UINT32)TPM_ALG_RSA, (UINT32)TPM_ALG_ECC},

1012 {(UINT16)(TPM2B_DIGEST_MARSHAL_REF),

1013 (UINT16)(TPM2B_DIGEST_MARSHAL_REF),

1014 (UINT16)(TPM2B_PUBLIC_KEY_RSA_MARSHAL_REF),

1015 (UINT16)(TPMS_ECC_POINT_MARSHAL_REF)}

1016 },

1017 // TPMS_KEYEDHASH_PARMS_DATA

1018 {STRUCTURE_MTYPE, 1, {

1019 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1020 TPMT_KEYEDHASH_SCHEME_MARSHAL_REF|NULL_FLAG,

1021 (UINT16)(offsetof(TPMS_KEYEDHASH_PARMS, scheme))}},

1022 // TPMS_RSA_PARMS_DATA

1023 {STRUCTURE_MTYPE, 4, {

1024 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1025 TPMT_SYM_DEF_OBJECT_MARSHAL_REF|NULL_FLAG,

1026 (UINT16)(offsetof(TPMS_RSA_PARMS, symmetric)),

1027 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1028 TPMT_RSA_SCHEME_MARSHAL_REF|NULL_FLAG,

1029 (UINT16)(offsetof(TPMS_RSA_PARMS, scheme)),

1030 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1031 TPMI_RSA_KEY_BITS_MARSHAL_REF,

1032 (UINT16)(offsetof(TPMS_RSA_PARMS, keyBits)),

1033 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1034 UINT32_MARSHAL_REF,

1035 (UINT16)(offsetof(TPMS_RSA_PARMS, exponent))}},

1036 // TPMS_ECC_PARMS_DATA

1037 {STRUCTURE_MTYPE, 4, {

1038 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1039 TPMT_SYM_DEF_OBJECT_MARSHAL_REF|NULL_FLAG,

1040 (UINT16)(offsetof(TPMS_ECC_PARMS, symmetric)),

1041 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1042 TPMT_ECC_SCHEME_MARSHAL_REF|NULL_FLAG,

1043 (UINT16)(offsetof(TPMS_ECC_PARMS, scheme)),

1044 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1045 TPMI_ECC_CURVE_MARSHAL_REF,

1046 (UINT16)(offsetof(TPMS_ECC_PARMS, curveID)),

1047 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1048 TPMT_KDF_SCHEME_MARSHAL_REF|NULL_FLAG,

1049 (UINT16)(offsetof(TPMS_ECC_PARMS, kdf))}},

1050 // TPMU_PUBLIC_PARMS_DATA

1051 {4, 0, (UINT16)(offsetof(TPMU_PUBLIC_PARMS_mst, marshalingTypes)),

1052 {(UINT32)TPM_ALG_KEYEDHASH, (UINT32)TPM_ALG_SYMCIPHER,

1053 (UINT32)TPM_ALG_RSA, (UINT32)TPM_ALG_ECC},

1054 {(UINT16)(TPMS_KEYEDHASH_PARMS_MARSHAL_REF),

1055 (UINT16)(TPMS_SYMCIPHER_PARMS_MARSHAL_REF),

1056 (UINT16)(TPMS_RSA_PARMS_MARSHAL_REF),

Trusted Platform Module Library Part 4: Supporting Routines

Page 552 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1057 (UINT16)(TPMS_ECC_PARMS_MARSHAL_REF)}

1058 },

1059 // TPMT_PUBLIC_PARMS_DATA

1060 {STRUCTURE_MTYPE, 2, {

1061 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1062 TPMI_ALG_PUBLIC_MARSHAL_REF,

1063 (UINT16)(offsetof(TPMT_PUBLIC_PARMS, type)),

1064 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

1065 TPMU_PUBLIC_PARMS_MARSHAL_REF,

1066 (UINT16)(offsetof(TPMT_PUBLIC_PARMS, parameters))}},

1067 // TPMT_PUBLIC_DATA

1068 {STRUCTURE_MTYPE, 6, {

1069 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1070 TPMI_ALG_PUBLIC_MARSHAL_REF,

1071 (UINT16)(offsetof(TPMT_PUBLIC, type)),

1072 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES)|ELEMENT_PROPAGATE,

1073 TPMI_ALG_HASH_MARSHAL_REF,

1074 (UINT16)(offsetof(TPMT_PUBLIC, nameAlg)),

1075 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1076 TPMA_OBJECT_MARSHAL_REF,

1077 (UINT16)(offsetof(TPMT_PUBLIC, objectAttributes)),

1078 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1079 TPM2B_DIGEST_MARSHAL_REF,

1080 (UINT16)(offsetof(TPMT_PUBLIC, authPolicy)),

1081 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

1082 TPMU_PUBLIC_PARMS_MARSHAL_REF,

1083 (UINT16)(offsetof(TPMT_PUBLIC, parameters)),

1084 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

1085 TPMU_PUBLIC_ID_MARSHAL_REF,

1086 (UINT16)(offsetof(TPMT_PUBLIC, unique))}},

1087 // TPM2B_PUBLIC_DATA

1088 {TPM2BS_MTYPE,

1089 (UINT8)(offsetof(TPM2B_PUBLIC, publicArea))|SIZE_EQUAL|ELEMENT_PROPAGATE,

1090 UINT16_MARSHAL_REF,

1091 TPMT_PUBLIC_MARSHAL_REF},

1092 // TPM2B_TEMPLATE_DATA

1093 {TPM2B_MTYPE, Type37_MARSHAL_REF},

1094 // TPM2B_PRIVATE_VENDOR_SPECIFIC_DATA

1095 {TPM2B_MTYPE, Type38_MARSHAL_REF},

1096 // TPMU_SENSITIVE_COMPOSITE_DATA

1097 {4, 0, (UINT16)(offsetof(TPMU_SENSITIVE_COMPOSITE_mst, marshalingTypes)),

1098 {(UINT32)TPM_ALG_RSA, (UINT32)TPM_ALG_ECC,

1099 (UINT32)TPM_ALG_KEYEDHASH, (UINT32)TPM_ALG_SYMCIPHER},

1100 {(UINT16)(TPM2B_PRIVATE_KEY_RSA_MARSHAL_REF),

1101 (UINT16)(TPM2B_ECC_PARAMETER_MARSHAL_REF),

1102 (UINT16)(TPM2B_SENSITIVE_DATA_MARSHAL_REF),

1103 (UINT16)(TPM2B_SYM_KEY_MARSHAL_REF)}

1104 },

1105 // TPMT_SENSITIVE_DATA

1106 {STRUCTURE_MTYPE, 4, {

1107 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1108 TPMI_ALG_PUBLIC_MARSHAL_REF,

1109 (UINT16)(offsetof(TPMT_SENSITIVE, sensitiveType)),

1110 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1111 TPM2B_AUTH_MARSHAL_REF,

1112 (UINT16)(offsetof(TPMT_SENSITIVE, authValue)),

1113 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1114 TPM2B_DIGEST_MARSHAL_REF,

1115 (UINT16)(offsetof(TPMT_SENSITIVE, seedValue)),

1116 SET_ELEMENT_TYPE(UNION_STYPE)|SET_ELEMENT_NUMBER(0),

1117 TPMU_SENSITIVE_COMPOSITE_MARSHAL_REF,

1118 (UINT16)(offsetof(TPMT_SENSITIVE, sensitive))}},

1119 // TPM2B_SENSITIVE_DATA

1120 {TPM2BS_MTYPE,

1121 (UINT8)(offsetof(TPM2B_SENSITIVE, sensitiveArea)),

1122 UINT16_MARSHAL_REF,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 553

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1123 TPMT_SENSITIVE_MARSHAL_REF},

1124 // TPM2B_PRIVATE_DATA

1125 {TPM2B_MTYPE, Type39_MARSHAL_REF},

1126 // TPM2B_ID_OBJECT_DATA

1127 {TPM2B_MTYPE, Type40_MARSHAL_REF},

1128 // TPMS_NV_PIN_COUNTER_PARAMETERS_DATA

1129 {STRUCTURE_MTYPE, 2, {

1130 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1131 UINT32_MARSHAL_REF,

1132 (UINT16)(offsetof(TPMS_NV_PIN_COUNTER_PARAMETERS, pinCount)),

1133 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1134 UINT32_MARSHAL_REF,

1135 (UINT16)(offsetof(TPMS_NV_PIN_COUNTER_PARAMETERS, pinLimit))}},

1136 // TPMA_NV_DATA

1137 {ATTRIBUTES_MTYPE, FOUR_BYTES, 0x01F00300},

1138 // TPMS_NV_PUBLIC_DATA

1139 {STRUCTURE_MTYPE, 5, {

1140 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1141 TPMI_RH_NV_INDEX_MARSHAL_REF,

1142 (UINT16)(offsetof(TPMS_NV_PUBLIC, nvIndex)),

1143 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1144 TPMI_ALG_HASH_MARSHAL_REF,

1145 (UINT16)(offsetof(TPMS_NV_PUBLIC, nameAlg)),

1146 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1147 TPMA_NV_MARSHAL_REF,

1148 (UINT16)(offsetof(TPMS_NV_PUBLIC, attributes)),

1149 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1150 TPM2B_DIGEST_MARSHAL_REF,

1151 (UINT16)(offsetof(TPMS_NV_PUBLIC, authPolicy)),

1152 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1153 Type41_MARSHAL_REF,

1154 (UINT16)(offsetof(TPMS_NV_PUBLIC, dataSize))}},

1155 // TPM2B_NV_PUBLIC_DATA

1156 {TPM2BS_MTYPE,

1157 (UINT8)(offsetof(TPM2B_NV_PUBLIC, nvPublic))|SIZE_EQUAL,

1158 UINT16_MARSHAL_REF,

1159 TPMS_NV_PUBLIC_MARSHAL_REF},

1160 // TPM2B_CONTEXT_SENSITIVE_DATA

1161 {TPM2B_MTYPE, Type42_MARSHAL_REF},

1162 // TPMS_CONTEXT_DATA_DATA

1163 {STRUCTURE_MTYPE, 2, {

1164 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1165 TPM2B_DIGEST_MARSHAL_REF,

1166 (UINT16)(offsetof(TPMS_CONTEXT_DATA, integrity)),

1167 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1168 TPM2B_CONTEXT_SENSITIVE_MARSHAL_REF,

1169 (UINT16)(offsetof(TPMS_CONTEXT_DATA, encrypted))}},

1170 // TPM2B_CONTEXT_DATA_DATA

1171 {TPM2B_MTYPE, Type43_MARSHAL_REF},

1172 // TPMS_CONTEXT_DATA

1173 {STRUCTURE_MTYPE, 4, {

1174 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(EIGHT_BYTES),

1175 UINT64_MARSHAL_REF,

1176 (UINT16)(offsetof(TPMS_CONTEXT, sequence)),

1177 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1178 TPMI_DH_SAVED_MARSHAL_REF,

1179 (UINT16)(offsetof(TPMS_CONTEXT, savedHandle)),

1180 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1181 TPMI_RH_HIERARCHY_MARSHAL_REF|NULL_FLAG,

1182 (UINT16)(offsetof(TPMS_CONTEXT, hierarchy)),

1183 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1184 TPM2B_CONTEXT_DATA_MARSHAL_REF,

1185 (UINT16)(offsetof(TPMS_CONTEXT, contextBlob))}},

1186 // TPMS_CREATION_DATA_DATA

1187 {STRUCTURE_MTYPE, 7, {

1188 SET_ELEMENT_TYPE(SIMPLE_STYPE),

Trusted Platform Module Library Part 4: Supporting Routines

Page 554 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1189 TPML_PCR_SELECTION_MARSHAL_REF,

1190 (UINT16)(offsetof(TPMS_CREATION_DATA, pcrSelect)),

1191 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1192 TPM2B_DIGEST_MARSHAL_REF,

1193 (UINT16)(offsetof(TPMS_CREATION_DATA, pcrDigest)),

1194 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(ONE_BYTES),

1195 TPMA_LOCALITY_MARSHAL_REF,

1196 (UINT16)(offsetof(TPMS_CREATION_DATA, locality)),

1197 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(TWO_BYTES),

1198 TPM_ALG_ID_MARSHAL_REF,

1199 (UINT16)(offsetof(TPMS_CREATION_DATA, parentNameAlg)),

1200 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1201 TPM2B_NAME_MARSHAL_REF,

1202 (UINT16)(offsetof(TPMS_CREATION_DATA, parentName)),

1203 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1204 TPM2B_NAME_MARSHAL_REF,

1205 (UINT16)(offsetof(TPMS_CREATION_DATA, parentQualifiedName)),

1206 SET_ELEMENT_TYPE(SIMPLE_STYPE),

1207 TPM2B_DATA_MARSHAL_REF,

1208 (UINT16)(offsetof(TPMS_CREATION_DATA, outsideInfo))}},

1209 // TPM2B_CREATION_DATA_DATA

1210 {TPM2BS_MTYPE,

1211 (UINT8)(offsetof(TPM2B_CREATION_DATA, creationData))|SIZE_EQUAL,

1212 UINT16_MARSHAL_REF,

1213 TPMS_CREATION_DATA_MARSHAL_REF},

1214 // TPM_AT_DATA

1215 {TABLE_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_VALUE, 4,

1216 {TPM_AT_ANY, TPM_AT_ERROR, TPM_AT_PV1, TPM_AT_VEND}},

1217 // TPMS_AC_OUTPUT_DATA

1218 {STRUCTURE_MTYPE, 2, {

1219 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1220 TPM_AT_MARSHAL_REF,

1221 (UINT16)(offsetof(TPMS_AC_OUTPUT, tag)),

1222 SET_ELEMENT_TYPE(SIMPLE_STYPE)|SET_ELEMENT_SIZE(FOUR_BYTES),

1223 UINT32_MARSHAL_REF,

1224 (UINT16)(offsetof(TPMS_AC_OUTPUT, data))}},

1225 // TPML_AC_CAPABILITIES_DATA

1226 {LIST_MTYPE,

1227 (UINT8)(offsetof(TPML_AC_CAPABILITIES, acCapabilities)),

1228 Type44_MARSHAL_REF,

1229 TPMS_AC_OUTPUT_ARRAY_MARSHAL_INDEX},

1230 // Type00_DATA

1231 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1232 {RANGE(0, sizeof(TPMU_HA), UINT16)}},

1233 // Type01_DATA

1234 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1235 {RANGE(0, sizeof(TPMT_HA), UINT16)}},

1236 // Type02_DATA

1237 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1238 {RANGE(0, 1024, UINT16)}},

1239 // Type03_DATA

1240 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1241 {RANGE(0, MAX_DIGEST_BUFFER, UINT16)}},

1242 // Type04_DATA

1243 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1244 {RANGE(0, MAX_NV_BUFFER_SIZE, UINT16)}},

1245 // Type05_DATA

1246 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1247 {RANGE(0, sizeof(UINT64), UINT16)}},

1248 // Type06_DATA

1249 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1250 {RANGE(0, MAX_SYM_BLOCK_SIZE, UINT16)}},

1251 // Type07_DATA

1252 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1253 {RANGE(0, sizeof(TPMU_NAME), UINT16)}},

1254 // Type08_DATA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 555

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1255 {MIN_MAX_MTYPE, ONE_BYTES, (UINT8)TPM_RC_VALUE,

1256 {RANGE(PCR_SELECT_MIN, PCR_SELECT_MAX, UINT8)}},

1257 // Type10_DATA

1258 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_TAG, 1,

1259 {TPM_ST_CREATION}},

1260 // Type11_DATA

1261 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_TAG, 1,

1262 {TPM_ST_VERIFIED}},

1263 // Type12_DATA

1264 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_TAG, 2,

1265 {TPM_ST_AUTH_SECRET, TPM_ST_AUTH_SIGNED}},

1266 // Type13_DATA

1267 {TABLE_MTYPE, TWO_BYTES, (UINT8)TPM_RC_TAG, 1,

1268 {TPM_ST_HASHCHECK}},

1269 // Type15_DATA

1270 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1271 {RANGE(0, MAX_CAP_CC, UINT32)}},

1272 // Type17_DATA

1273 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1274 {RANGE(0, MAX_ALG_LIST_SIZE, UINT32)}},

1275 // Type18_DATA

1276 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1277 {RANGE(0, MAX_CAP_HANDLES, UINT32)}},

1278 // Type19_DATA

1279 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1280 {RANGE(2, 8, UINT32)}},

1281 // Type20_DATA

1282 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1283 {RANGE(0, HASH_COUNT, UINT32)}},

1284 // Type22_DATA

1285 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1286 {RANGE(0, MAX_CAP_ALGS, UINT32)}},

1287 // Type23_DATA

1288 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1289 {RANGE(0, MAX_TPM_PROPERTIES, UINT32)}},

1290 // Type24_DATA

1291 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1292 {RANGE(0, MAX_PCR_PROPERTIES, UINT32)}},

1293 // Type25_DATA

1294 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1295 {RANGE(0, MAX_ECC_CURVES, UINT32)}},

1296 // Type26_DATA

1297 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1298 {RANGE(0, MAX_TAGGED_POLICIES, UINT32)}},

1299 // Type27_DATA

1300 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1301 {RANGE(0, MAX_ACT_DATA, UINT32)}},

1302 // Type28_DATA

1303 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1304 {RANGE(0, sizeof(TPMS_ATTEST), UINT16)}},

1305 // Type29_DATA

1306 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1307 {RANGE(0, MAX_SYM_KEY_BYTES, UINT16)}},

1308 // Type30_DATA

1309 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1310 {RANGE(0, LABEL_MAX_BUFFER, UINT16)}},

1311 // Type31_DATA

1312 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1313 {RANGE(0, sizeof(TPMS_DERIVE), UINT16)}},

1314 // Type32_DATA

1315 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1316 {RANGE(0, sizeof(TPMU_SENSITIVE_CREATE), UINT16)}},

1317 // Type33_DATA

1318 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1319 {RANGE(0, MAX_RSA_KEY_BYTES, UINT16)}},

1320 // Type34_DATA

Trusted Platform Module Library Part 4: Supporting Routines

Page 556 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1321 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1322 {RANGE(0, RSA_PRIVATE_SIZE, UINT16)}},

1323 // Type35_DATA

1324 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1325 {RANGE(0, MAX_ECC_KEY_BYTES, UINT16)}},

1326 // Type36_DATA

1327 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1328 {RANGE(0, sizeof(TPMU_ENCRYPTED_SECRET), UINT16)}},

1329 // Type37_DATA

1330 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1331 {RANGE(0, sizeof(TPMT_PUBLIC), UINT16)}},

1332 // Type38_DATA

1333 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1334 {RANGE(0, PRIVATE_VENDOR_SPECIFIC_BYTES, UINT16)}},

1335 // Type39_DATA

1336 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1337 {RANGE(0, sizeof(_PRIVATE), UINT16)}},

1338 // Type40_DATA

1339 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1340 {RANGE(0, sizeof(TPMS_ID_OBJECT), UINT16)}},

1341 // Type41_DATA

1342 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1343 {RANGE(0, MAX_NV_INDEX_SIZE, UINT16)}},

1344 // Type42_DATA

1345 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1346 {RANGE(0, MAX_CONTEXT_SIZE, UINT16)}},

1347 // Type43_DATA

1348 {MIN_MAX_MTYPE, TWO_BYTES, (UINT8)TPM_RC_SIZE,

1349 {RANGE(0, sizeof(TPMS_CONTEXT_DATA), UINT16)}},

1350 // Type44_DATA

1351 {MIN_MAX_MTYPE, FOUR_BYTES, (UINT8)TPM_RC_SIZE,

1352 {RANGE(0, MAX_AC_CAPABILITIES, UINT32)}}

1353 };

1354 #endif // TABLE_DRIVEN_MARSHAL

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 557

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.11 MathOnByteBuffers.c

9.11.1 Introduction

This file contains implementation of the math functions that are performed with canonical integers in byte

buffers. The canonical integer is big-endian bytes.

1 #include "Tpm.h"

9.11.2 Functions

9.11.2.1 UnsignedCmpB

This function compare two unsigned values. The values are byte-aligned, big-endian numbers (e.g, a

hash).

Return Value Meaning

1 if (a > b)

0 if (a = b)

-1 if (a < b)

2 LIB_EXPORT int

3 UnsignedCompareB(

4 UINT32 aSize, // IN: size of a

5 const BYTE *a, // IN: a

6 UINT32 bSize, // IN: size of b

7 const BYTE *b // IN: b

8)

9 {

10 UINT32 i;

11 if(aSize > bSize)

12 return 1;

13 else if(aSize < bSize)

14 return -1;

15 else

16 {

17 for(i = 0; i < aSize; i++)

18 {

19 if(a[i] != b[i])

20 return (a[i] > b[i]) ? 1 : -1;

21 }

22 }

23 return 0;

24 }

9.11.2.2 SignedCompareB()

Compare two signed integers:

Trusted Platform Module Library Part 4: Supporting Routines

Page 558 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Return Value Meaning

1 if a > b

0 if a = b

-1 if a < b

25 int

26 SignedCompareB(

27 const UINT32 aSize, // IN: size of a

28 const BYTE *a, // IN: a buffer

29 const UINT32 bSize, // IN: size of b

30 const BYTE *b // IN: b buffer

31)

32 {

33 int signA, signB; // sign of a and b

34

35 // For positive or 0, sign_a is 1

36 // for negative, sign_a is 0

37 signA = ((a[0] & 0x80) == 0) ? 1 : 0;

38

39 // For positive or 0, sign_b is 1

40 // for negative, sign_b is 0

41 signB = ((b[0] & 0x80) == 0) ? 1 : 0;

42

43 if(signA != signB)

44 {

45 return signA - signB;

46 }

47 if(signA == 1)

48 // do unsigned compare function

49 return UnsignedCompareB(aSize, a, bSize, b);

50 else

51 // do unsigned compare the other way

52 return 0 - UnsignedCompareB(aSize, a, bSize, b);

53 }

9.11.2.3 ModExpB

This function is used to do modular exponentiation in support of RSA. The most typical uses are: c = m^e

mod n (RSA encrypt) and m = c^d mod n (RSA decrypt). When doing decryption, the e parameter of the

function will contain the private exponent d instead of the public exponent e.

If the results will not fit in the provided buffer, an error is returned (CRYPT_ERROR_UNDERFLOW). If

the results is smaller than the buffer, the results is de-normalized.

This version is intended for use with RSA and requires that m be less than n.

Error Returns Meaning

TPM_RC_SIZE number to exponentiate is larger than the modulus

TPM_RC_NO_RESULT result will not fit into the provided buffer

54 TPM_RC

55 ModExpB(

56 UINT32 cSize, // IN: the size of the output buffer. It will

57 // need to be the same size as the modulus

58 BYTE *c, // OUT: the buffer to receive the results

59 // (c->size must be set to the maximum size

60 // for the returned value)

61 const UINT32 mSize,

62 const BYTE *m, // IN: number to exponentiate

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 559

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

63 const UINT32 eSize,

64 const BYTE *e, // IN: power

65 const UINT32 nSize,

66 const BYTE *n // IN: modulus

67)

68 {

69 BN_MAX(bnC);

70 BN_MAX(bnM);

71 BN_MAX(bnE);

72 BN_MAX(bnN);

73 NUMBYTES tSize = (NUMBYTES)nSize;

74 TPM_RC retVal = TPM_RC_SUCCESS;

75

76 // Convert input parameters

77 BnFromBytes(bnM, m, (NUMBYTES)mSize);

78 BnFromBytes(bnE, e, (NUMBYTES)eSize);

79 BnFromBytes(bnN, n, (NUMBYTES)nSize);

80

81 // Make sure that the output is big enough to hold the result

82 // and that 'm' is less than 'n' (the modulus)

83 if(cSize < nSize)

84 ERROR_RETURN(TPM_RC_NO_RESULT);

85 if(BnUnsignedCmp(bnM, bnN) >= 0)

86 ERROR_RETURN(TPM_RC_SIZE);

87 BnModExp(bnC, bnM, bnE, bnN);

88 BnToBytes(bnC, c, &tSize);

89 Exit:

90 return retVal;

91 }

9.11.2.4 DivideB()

Divide an integer (n) by an integer (d) producing a quotient (q) and a remainder (r). If q or r is not needed,

then the pointer to them may be set to NULL.

Error Returns Meaning

TPM_RC_NO_RESULT q or r is too small to receive the result

92 LIB_EXPORT TPM_RC

93 DivideB(

94 const TPM2B *n, // IN: numerator

95 const TPM2B *d, // IN: denominator

96 TPM2B *q, // OUT: quotient

97 TPM2B *r // OUT: remainder

98)

99 {

100 BN_MAX_INITIALIZED(bnN, n);

101 BN_MAX_INITIALIZED(bnD, d);

102 BN_MAX(bnQ);

103 BN_MAX(bnR);

104 //

105 // Do divide with converted values

106 BnDiv(bnQ, bnR, bnN, bnD);

107

108 // Convert the BIGNUM result back to 2B format using the size of the original

109 // number

110 if(q != NULL)

111 if(!BnTo2B(bnQ, q, q->size))

112 return TPM_RC_NO_RESULT;

113 if(r != NULL)

114 if(!BnTo2B(bnR, r, r->size))

115 return TPM_RC_NO_RESULT;

116 return TPM_RC_SUCCESS;

Trusted Platform Module Library Part 4: Supporting Routines

Page 560 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

117 }

9.11.2.5 AdjustNumberB()

Remove/add leading zeros from a number in a TPM2B. Will try to make the number by adding or

removing leading zeros. If the number is larger than the requested size, it will make the number as small

as possible. Setting requestedSize to zero is equivalent to requesting that the number be normalized.

118 UINT16

119 AdjustNumberB(

120 TPM2B *num,

121 UINT16 requestedSize

122)

123 {

124 BYTE *from;

125 UINT16 i;

126 // See if number is already the requested size

127 if(num->size == requestedSize)

128 return requestedSize;

129 from = num->buffer;

130 if (num->size > requestedSize)

131 {

132 // This is a request to shift the number to the left (remove leading zeros)

133 // Find the first non-zero byte. Don't look past the point where removing

134 // more zeros would make the number smaller than requested, and don't throw

135 // away any significant digits.

136 for(i = num->size; *from == 0 && i > requestedSize; from++, i--);

137 if(i < num->size)

138 {

139 num->size = i;

140 MemoryCopy(num->buffer, from, i);

141 }

142 }

143 // This is a request to shift the number to the right (add leading zeros)

144 else

145 {

146 MemoryCopy(&num->buffer[requestedSize - num->size], num->buffer, num->size);

147 MemorySet(num->buffer, 0, requestedSize- num->size);

148 num->size = requestedSize;

149 }

150 return num->size;

151 }

9.11.2.6 ShiftLeft()

This function shifts a byte buffer (a TPM2B) one byte to the left. That is, the most significant bit of the

most significant byte is lost.

152 TPM2B *

153 ShiftLeft(

154 TPM2B *value // IN/OUT: value to shift and shifted value out

155)

156 {

157 UINT16 count = value->size;

158 BYTE *buffer = value->buffer;

159 if(count > 0)

160 {

161 for(count -= 1; count > 0; buffer++, count--)

162 {

163 buffer[0] = (buffer[0] << 1) + ((buffer[1] & 0x80) ? 1 : 0);

164 }

165 *buffer <<= 1;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 561

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

166 }

167 return value;

168 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 562 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.12 Memory.c

9.12.1 Description

This file contains a set of miscellaneous memory manipulation routines. Many of the functions have the

same semantics as functions defined in string.h. Those functions are not used directly in the TPM

because they are not safe

This version uses string.h after adding guards. This is because the math libraries invariably use those

functions so it is not practical to prevent those library functions from being pulled into the build.

9.12.2 Includes and Data Definitions

1 #include "Tpm.h"

2 #include "Memory_fp.h"

9.12.3 Functions

9.12.3.1 MemoryCopy()

This is an alias for memmove. This is used in place of memcpy because some of the moves may overlap

and rather than try to make sure that memmove is used when necessary, it is always used.

3 void

4 MemoryCopy(

5 void *dest,

6 const void *src,

7 int sSize

8)

9 {

10 if(dest != src)

11 memmove(dest, src, sSize);

12 }

9.12.3.2 MemoryEqual()

This function indicates if two buffers have the same values in the indicated number of bytes.

Return Value Meaning

TRUE(1) all octets are the same

FALSE(0) all octets are not the same

13 BOOL

14 MemoryEqual(

15 const void *buffer1, // IN: compare buffer1

16 const void *buffer2, // IN: compare buffer2

17 unsigned int size // IN: size of bytes being compared

18)

19 {

20 BYTE equal = 0;

21 const BYTE *b1 = (BYTE *)buffer1;

22 const BYTE *b2 = (BYTE *)buffer2;

23 //

24 // Compare all bytes so that there is no leakage of information

25 // due to timing differences.

26 for(; size > 0; size--)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 563

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27 equal |= (*b1++ ^ *b2++);

28 return (equal == 0);

29 }

9.12.3.3 MemoryCopy2B()

This function copies a TPM2B. This can be used when the TPM2B types are the same or different.

This function returns the number of octets in the data buffer of the TPM2B.

30 LIB_EXPORT INT16

31 MemoryCopy2B(

32 TPM2B *dest, // OUT: receiving TPM2B

33 const TPM2B *source, // IN: source TPM2B

34 unsigned int dSize // IN: size of the receiving buffer

35)

36 {

37 pAssert(dest != NULL);

38 if(source == NULL)

39 dest->size = 0;

40 else

41 {

42 pAssert(source->size <= dSize);

43 MemoryCopy(dest->buffer, source->buffer, source->size);

44 dest->size = source->size;

45 }

46 return dest->size;

47 }

9.12.3.4 MemoryConcat2B()

This function will concatenate the buffer contents of a TPM2B to an the buffer contents of another TPM2B

and adjust the size accordingly (a := (a | b)).

48 void

49 MemoryConcat2B(

50 TPM2B *aInOut, // IN/OUT: destination 2B

51 TPM2B *bIn, // IN: second 2B

52 unsigned int aMaxSize // IN: The size of aInOut.buffer (max values for

53 // aInOut.size)

54)

55 {

56 pAssert(bIn->size <= aMaxSize - aInOut->size);

57 MemoryCopy(&aInOut->buffer[aInOut->size], &bIn->buffer, bIn->size);

58 aInOut->size = aInOut->size + bIn->size;

59 return;

60 }

9.12.3.5 MemoryEqual2B()

This function will compare two TPM2B structures. To be equal, they need to be the same size and the

buffer contexts need to be the same in all octets.

Return Value Meaning

TRUE(1) size and buffer contents are the same

FALSE(0) size or buffer contents are not the same

61 BOOL

62 MemoryEqual2B(

Trusted Platform Module Library Part 4: Supporting Routines

Page 564 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

63 const TPM2B *aIn, // IN: compare value

64 const TPM2B *bIn // IN: compare value

65)

66 {

67 if(aIn->size != bIn->size)

68 return FALSE;

69 return MemoryEqual(aIn->buffer, bIn->buffer, aIn->size);

70 }

9.12.3.6 MemorySet()

This function will set all the octets in the specified memory range to the specified octet value.

NOTE: A previous version had an additional parameter (dSize) that was intended to make sure that the destination
would not be overrun. The problem is that, in use, all that was happening was that the value of size was used
for dSize so there was no benefit in the extra parameter.

71 void

72 MemorySet(

73 void *dest,

74 int value,

75 size_t size

76)

77 {

78 memset(dest, value, size);

79 }

9.12.3.7 MemoryPad2B()

Function to pad a TPM2B with zeros and adjust the size.

80 void

81 MemoryPad2B(

82 TPM2B *b,

83 UINT16 newSize

84)

85 {

86 MemorySet(&b->buffer[b->size], 0, newSize - b->size);

87 b->size = newSize;

88 }

9.12.3.8 Uint16ToByteArray()

Function to write an integer to a byte array

89 void

90 Uint16ToByteArray(

91 UINT16 i,

92 BYTE *a

93)

94 {

95 a[1] = (BYTE)(i); i >>= 8;

96 a[0] = (BYTE)(i);

97 }

9.12.3.9 Uint32ToByteArray()

Function to write an integer to a byte array

98 void

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 565

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

99 Uint32ToByteArray(

100 UINT32 i,

101 BYTE *a

102)

103 {

104 a[3] = (BYTE)(i); i >>= 8;

105 a[2] = (BYTE)(i); i >>= 8;

106 a[1] = (BYTE)(i); i >>= 8;

107 a[0] = (BYTE)(i);

108 }

9.12.3.10 Uint64ToByteArray()

Function to write an integer to a byte array

109 void

110 Uint64ToByteArray(

111 UINT64 i,

112 BYTE *a

113)

114 {

115 a[7] = (BYTE)(i); i >>= 8;

116 a[6] = (BYTE)(i); i >>= 8;

117 a[5] = (BYTE)(i); i >>= 8;

118 a[4] = (BYTE)(i); i >>= 8;

119 a[3] = (BYTE)(i); i >>= 8;

120 a[2] = (BYTE)(i); i >>= 8;

121 a[1] = (BYTE)(i); i >>= 8;

122 a[0] = (BYTE)(i);

123 }

9.12.3.11 ByteArrayToUint8()

Function to write a UINT8 to a byte array. This is included for completeness and to allow certain macro

expansions

124 UINT8

125 ByteArrayToUint8(

126 BYTE *a

127)

128 {

129 return *a;

130 }

9.12.3.12 ByteArrayToUint16()

Function to write an integer to a byte array

131 UINT16

132 ByteArrayToUint16(

133 BYTE *a

134)

135 {

136 return ((UINT16)a[0] << 8) + a[1];

137 }

9.12.3.13 ByteArrayToUint32()

Function to write an integer to a byte array

Trusted Platform Module Library Part 4: Supporting Routines

Page 566 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

138 UINT32

139 ByteArrayToUint32(

140 BYTE *a

141)

142 {

143 return (UINT32)((((((UINT32)a[0] << 8) + a[1]) << 8) + (UINT32)a[2]) << 8) + a[3];

144 }

9.12.3.14 ByteArrayToUint64()

Function to write an integer to a byte array

145 UINT64

146 ByteArrayToUint64(

147 BYTE *a

148)

149 {

150 return (((UINT64)BYTE_ARRAY_TO_UINT32(a)) << 32) + BYTE_ARRAY_TO_UINT32(&a[4]);

151 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 567

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.13 Power.c

9.13.1 Description

This file contains functions that receive the simulated power state transitions of the TPM.

9.13.2 Includes and Data Definitions

1 #define POWER_C

2 #include "Tpm.h"

9.13.3 Functions

9.13.3.1 TPMInit()

This function is used to process a power on event.

3 void

4 TPMInit(

5 void

6)

7 {

8 // Set state as not initialized. This means that Startup is required

9 g_initialized = FALSE;

10 return;

11 }

9.13.3.2 TPMRegisterStartup()

This function registers the fact that the TPM has been initialized (a TPM2_Startup() has completed

successfully).

12 BOOL

13 TPMRegisterStartup(

14 void

15)

16 {

17 g_initialized = TRUE;

18 return TRUE;

19 }

9.13.3.3 TPMIsStarted()

Indicates if the TPM has been initialized (a TPM2_Startup() has completed successfully after a

_TPM_Init()).

Return Value Meaning

TRUE(1) TPM has been initialized

FALSE(0) TPM has not been initialized

20 BOOL

21 TPMIsStarted(

22 void

23)

24 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 568 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

25 return g_initialized;

26 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 569

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.14 PropertyCap.c

9.14.1 Description

This file contains the functions that are used for accessing the TPM_CAP_TPM_PROPERTY values.

9.14.2 Includes

1 #include "Tpm.h"

9.14.3 Functions

9.14.3.1 TPMPropertyIsDefined()

This function accepts a property selection and, if so, sets value to the value of the property.

All the fixed values are vendor dependent or determined by a platform-specific specification. The values

in the table below are examples and should be changed by the vendor.

Return Value Meaning

TRUE(1) referenced property exists and value set

FALSE(0) referenced property does not exist

2 static BOOL

3 TPMPropertyIsDefined(

4 TPM_PT property, // IN: property

5 UINT32 *value // OUT: property value

6)

7 {

8 switch(property)

9 {

10 case TPM_PT_FAMILY_INDICATOR:

11 // from the title page of the specification

12 // For this specification, the value is "2.0".

13 *value = TPM_SPEC_FAMILY;

14 break;

15 case TPM_PT_LEVEL:

16 // from the title page of the specification

17 *value = TPM_SPEC_LEVEL;

18 break;

19 case TPM_PT_REVISION:

20 // from the title page of the specification

21 *value = TPM_SPEC_VERSION;

22 break;

23 case TPM_PT_DAY_OF_YEAR:

24 // computed from the date value on the title page of the specification

25 *value = TPM_SPEC_DAY_OF_YEAR;

26 break;

27 case TPM_PT_YEAR:

28 // from the title page of the specification

29 *value = TPM_SPEC_YEAR;

30 break;

31 case TPM_PT_MANUFACTURER:

32 // vendor ID unique to each TPM manufacturer

33 *value = BYTE_ARRAY_TO_UINT32(MANUFACTURER);

34 break;

35 case TPM_PT_VENDOR_STRING_1:

36 // first four characters of the vendor ID string

37 *value = BYTE_ARRAY_TO_UINT32(VENDOR_STRING_1);

Trusted Platform Module Library Part 4: Supporting Routines

Page 570 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

38 break;

39 case TPM_PT_VENDOR_STRING_2:

40 // second four characters of the vendor ID string

41 #ifdef VENDOR_STRING_2

42 *value = BYTE_ARRAY_TO_UINT32(VENDOR_STRING_2);

43 #else

44 *value = 0;

45 #endif

46 break;

47 case TPM_PT_VENDOR_STRING_3:

48 // third four characters of the vendor ID string

49 #ifdef VENDOR_STRING_3

50 *value = BYTE_ARRAY_TO_UINT32(VENDOR_STRING_3);

51 #else

52 *value = 0;

53 #endif

54 break;

55 case TPM_PT_VENDOR_STRING_4:

56 // fourth four characters of the vendor ID string

57 #ifdef VENDOR_STRING_4

58 *value = BYTE_ARRAY_TO_UINT32(VENDOR_STRING_4);

59 #else

60 *value = 0;

61 #endif

62 break;

63 case TPM_PT_VENDOR_TPM_TYPE:

64 // vendor-defined value indicating the TPM model

65 *value = 1;

66 break;

67 case TPM_PT_FIRMWARE_VERSION_1:

68 // more significant 32-bits of a vendor-specific value

69 *value = gp.firmwareV1;

70 break;

71 case TPM_PT_FIRMWARE_VERSION_2:

72 // less significant 32-bits of a vendor-specific value

73 *value = gp.firmwareV2;

74 break;

75 case TPM_PT_INPUT_BUFFER:

76 // maximum size of TPM2B_MAX_BUFFER

77 *value = MAX_DIGEST_BUFFER;

78 break;

79 case TPM_PT_HR_TRANSIENT_MIN:

80 // minimum number of transient objects that can be held in TPM

81 // RAM

82 *value = MAX_LOADED_OBJECTS;

83 break;

84 case TPM_PT_HR_PERSISTENT_MIN:

85 // minimum number of persistent objects that can be held in

86 // TPM NV memory

87 // In this implementation, there is no minimum number of

88 // persistent objects.

89 *value = MIN_EVICT_OBJECTS;

90 break;

91 case TPM_PT_HR_LOADED_MIN:

92 // minimum number of authorization sessions that can be held in

93 // TPM RAM

94 *value = MAX_LOADED_SESSIONS;

95 break;

96 case TPM_PT_ACTIVE_SESSIONS_MAX:

97 // number of authorization sessions that may be active at a time

98 *value = MAX_ACTIVE_SESSIONS;

99 break;

100 case TPM_PT_PCR_COUNT:

101 // number of PCR implemented

102 *value = IMPLEMENTATION_PCR;

103 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 571

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

104 case TPM_PT_PCR_SELECT_MIN:

105 // minimum number of bytes in a TPMS_PCR_SELECT.sizeOfSelect

106 *value = PCR_SELECT_MIN;

107 break;

108 case TPM_PT_CONTEXT_GAP_MAX:

109 // maximum allowed difference (unsigned) between the contextID

110 // values of two saved session contexts

111 *value = ((UINT32)1 << (sizeof(CONTEXT_SLOT) * 8)) - 1;

112 break;

113 case TPM_PT_NV_COUNTERS_MAX:

114 // maximum number of NV indexes that are allowed to have the

115 // TPMA_NV_COUNTER attribute SET

116 // In this implementation, there is no limitation on the number

117 // of counters, except for the size of the NV Index memory.

118 *value = 0;

119 break;

120 case TPM_PT_NV_INDEX_MAX:

121 // maximum size of an NV index data area

122 *value = MAX_NV_INDEX_SIZE;

123 break;

124 case TPM_PT_MEMORY:

125 // a TPMA_MEMORY indicating the memory management method for the TPM

126 {

127 union

128 {

129 TPMA_MEMORY att;

130 UINT32 u32;

131 } attributes = { TPMA_ZERO_INITIALIZER() };

132 SET_ATTRIBUTE(attributes.att, TPMA_MEMORY, sharedNV);

133 SET_ATTRIBUTE(attributes.att, TPMA_MEMORY, objectCopiedToRam);

134

135 // Note: For a LSb0 machine, the bits in a bit field are in the correct

136 // order even if the machine is MSB0. For a MSb0 machine, a TPMA will

137 // be an integer manipulated by masking (USE_BIT_FIELD_STRUCTURES will

138 // be NO) so the bits are manipulate correctly.

139 *value = attributes.u32;

140 break;

141 }

142 case TPM_PT_CLOCK_UPDATE:

143 // interval, in seconds, between updates to the copy of

144 // TPMS_TIME_INFO .clock in NV

145 *value = (1 << NV_CLOCK_UPDATE_INTERVAL);

146 break;

147 case TPM_PT_CONTEXT_HASH:

148 // algorithm used for the integrity hash on saved contexts and

149 // for digesting the fuData of TPM2_FirmwareRead()

150 *value = CONTEXT_INTEGRITY_HASH_ALG;

151 break;

152 case TPM_PT_CONTEXT_SYM:

153 // algorithm used for encryption of saved contexts

154 *value = CONTEXT_ENCRYPT_ALG;

155 break;

156 case TPM_PT_CONTEXT_SYM_SIZE:

157 // size of the key used for encryption of saved contexts

158 *value = CONTEXT_ENCRYPT_KEY_BITS;

159 break;

160 case TPM_PT_ORDERLY_COUNT:

161 // maximum difference between the volatile and non-volatile

162 // versions of TPMA_NV_COUNTER that have TPMA_NV_ORDERLY SET

163 *value = MAX_ORDERLY_COUNT;

164 break;

165 case TPM_PT_MAX_COMMAND_SIZE:

166 // maximum value for 'commandSize'

167 *value = MAX_COMMAND_SIZE;

168 break;

169 case TPM_PT_MAX_RESPONSE_SIZE:

Trusted Platform Module Library Part 4: Supporting Routines

Page 572 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

170 // maximum value for 'responseSize'

171 *value = MAX_RESPONSE_SIZE;

172 break;

173 case TPM_PT_MAX_DIGEST:

174 // maximum size of a digest that can be produced by the TPM

175 *value = sizeof(TPMU_HA);

176 break;

177 case TPM_PT_MAX_OBJECT_CONTEXT:

178 // Header has 'sequence', 'handle' and 'hierarchy'

179 #define SIZE_OF_CONTEXT_HEADER \

180 sizeof(UINT64) + sizeof(TPMI_DH_CONTEXT) + sizeof(TPMI_RH_HIERARCHY)

181 #define SIZE_OF_CONTEXT_INTEGRITY (sizeof(UINT16) + CONTEXT_INTEGRITY_HASH_SIZE)

182 #define SIZE_OF_FINGERPRINT sizeof(UINT64)

183 #define SIZE_OF_CONTEXT_BLOB_OVERHEAD \

184 (sizeof(UINT16) + SIZE_OF_CONTEXT_INTEGRITY + SIZE_OF_FINGERPRINT)

185 #define SIZE_OF_CONTEXT_OVERHEAD \

186 (SIZE_OF_CONTEXT_HEADER + SIZE_OF_CONTEXT_BLOB_OVERHEAD)

187 #if 0

188 // maximum size of a TPMS_CONTEXT that will be returned by

189 // TPM2_ContextSave for object context

190 *value = 0;

191 // adding sequence, saved handle and hierarchy

192 *value += sizeof(UINT64) + sizeof(TPMI_DH_CONTEXT) +

193 sizeof(TPMI_RH_HIERARCHY);

194 // add size field in TPM2B_CONTEXT

195 *value += sizeof(UINT16);

196 // add integrity hash size

197 *value += sizeof(UINT16) +

198 CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

199 // Add fingerprint size, which is the same as sequence size

200 *value += sizeof(UINT64);

201 // Add OBJECT structure size

202 *value += sizeof(OBJECT);

203 #else

204 // the maximum size of a TPMS_CONTEXT that will be returned by

205 // TPM2_ContextSave for object context

206 *value = SIZE_OF_CONTEXT_OVERHEAD + sizeof(OBJECT);

207 #endif

208 break;

209 case TPM_PT_MAX_SESSION_CONTEXT:

210 #if 0

211

212 // the maximum size of a TPMS_CONTEXT that will be returned by

213 // TPM2_ContextSave for object context

214 *value = 0;

215 // adding sequence, saved handle and hierarchy

216 *value += sizeof(UINT64) + sizeof(TPMI_DH_CONTEXT) +

217 sizeof(TPMI_RH_HIERARCHY);

218 // Add size field in TPM2B_CONTEXT

219 *value += sizeof(UINT16);

220 // Add integrity hash size

221 *value += sizeof(UINT16) +

222 CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

223 // Add fingerprint size, which is the same as sequence size

224 *value += sizeof(UINT64);

225 // Add SESSION structure size

226 *value += sizeof(SESSION);

227 #else

228 // the maximum size of a TPMS_CONTEXT that will be returned by

229 // TPM2_ContextSave for object context

230 *value = SIZE_OF_CONTEXT_OVERHEAD + sizeof(SESSION);

231 #endif

232 break;

233 case TPM_PT_PS_FAMILY_INDICATOR:

234 // platform specific values for the TPM_PT_PS parameters from

235 // the relevant platform-specific specification

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 573

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

236 // In this reference implementation, all of these values are 0.

237 *value = PLATFORM_FAMILY;

238 break;

239 case TPM_PT_PS_LEVEL:

240 // level of the platform-specific specification

241 *value = PLATFORM_LEVEL;

242 break;

243 case TPM_PT_PS_REVISION:

244 // specification Revision times 100 for the platform-specific

245 // specification

246 *value = PLATFORM_VERSION;

247 break;

248 case TPM_PT_PS_DAY_OF_YEAR:

249 // platform-specific specification day of year using TCG calendar

250 *value = PLATFORM_DAY_OF_YEAR;

251 break;

252 case TPM_PT_PS_YEAR:

253 // platform-specific specification year using the CE

254 *value = PLATFORM_YEAR;

255 break;

256 case TPM_PT_SPLIT_MAX:

257 // number of split signing operations supported by the TPM

258 *value = 0;

259 #if ALG_ECC

260 *value = sizeof(gr.commitArray) * 8;

261 #endif

262 break;

263 case TPM_PT_TOTAL_COMMANDS:

264 // total number of commands implemented in the TPM

265 // Since the reference implementation does not have any

266 // vendor-defined commands, this will be the same as the

267 // number of library commands.

268 {

269 #if COMPRESSED_LISTS

270 (*value) = COMMAND_COUNT;

271 #else

272 COMMAND_INDEX commandIndex;

273 *value = 0;

274

275 // scan all implemented commands

276 for(commandIndex = GetClosestCommandIndex(0);

277 commandIndex != UNIMPLEMENTED_COMMAND_INDEX;

278 commandIndex = GetNextCommandIndex(commandIndex))

279 {

280 (*value)++; // count of all implemented

281 }

282 #endif

283 break;

284 }

285 case TPM_PT_LIBRARY_COMMANDS:

286 // number of commands from the TPM library that are implemented

287 {

288 #if COMPRESSED_LISTS

289 *value = LIBRARY_COMMAND_ARRAY_SIZE;

290 #else

291 COMMAND_INDEX commandIndex;

292 *value = 0;

293

294 // scan all implemented commands

295 for(commandIndex = GetClosestCommandIndex(0);

296 commandIndex < LIBRARY_COMMAND_ARRAY_SIZE;

297 commandIndex = GetNextCommandIndex(commandIndex))

298 {

299 (*value)++;

300 }

301 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 574 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

302 break;

303 }

304 case TPM_PT_VENDOR_COMMANDS:

305 // number of vendor commands that are implemented

306 *value = VENDOR_COMMAND_ARRAY_SIZE;

307 break;

308 case TPM_PT_NV_BUFFER_MAX:

309 // Maximum data size in an NV write command

310 *value = MAX_NV_BUFFER_SIZE;

311 break;

312 case TPM_PT_MODES:

313 #if FIPS_COMPLIANT

314 *value = 1;

315 #else

316 *value = 0;

317 #endif

318 break;

319 case TPM_PT_MAX_CAP_BUFFER:

320 *value = MAX_CAP_BUFFER;

321 break;

322

323 // Start of variable commands

324 case TPM_PT_PERMANENT:

325 // TPMA_PERMANENT

326 {

327 union {

328 TPMA_PERMANENT attr;

329 UINT32 u32;

330 } flags = { TPMA_ZERO_INITIALIZER() };

331 if(gp.ownerAuth.t.size != 0)

332 SET_ATTRIBUTE(flags.attr, TPMA_PERMANENT, ownerAuthSet);

333 if(gp.endorsementAuth.t.size != 0)

334 SET_ATTRIBUTE(flags.attr, TPMA_PERMANENT, endorsementAuthSet);

335 if(gp.lockoutAuth.t.size != 0)

336 SET_ATTRIBUTE(flags.attr, TPMA_PERMANENT, lockoutAuthSet);

337 if(gp.disableClear)

338 SET_ATTRIBUTE(flags.attr, TPMA_PERMANENT, disableClear);

339 if(gp.failedTries >= gp.maxTries)

340 SET_ATTRIBUTE(flags.attr, TPMA_PERMANENT, inLockout);

341 // In this implementation, EPS is always generated by TPM

342 SET_ATTRIBUTE(flags.attr, TPMA_PERMANENT, tpmGeneratedEPS);

343

344 // Note: For a LSb0 machine, the bits in a bit field are in the correct

345 // order even if the machine is MSB0. For a MSb0 machine, a TPMA will

346 // be an integer manipulated by masking (USE_BIT_FIELD_STRUCTURES will

347 // be NO) so the bits are manipulate correctly.

348 *value = flags.u32;

349 break;

350 }

351 case TPM_PT_STARTUP_CLEAR:

352 // TPMA_STARTUP_CLEAR

353 {

354 union {

355 TPMA_STARTUP_CLEAR attr;

356 UINT32 u32;

357 } flags = { TPMA_ZERO_INITIALIZER() };

358 //

359 if(g_phEnable)

360 SET_ATTRIBUTE(flags.attr, TPMA_STARTUP_CLEAR, phEnable);

361 if(gc.shEnable)

362 SET_ATTRIBUTE(flags.attr, TPMA_STARTUP_CLEAR, shEnable);

363 if(gc.ehEnable)

364 SET_ATTRIBUTE(flags.attr, TPMA_STARTUP_CLEAR, ehEnable);

365 if(gc.phEnableNV)

366 SET_ATTRIBUTE(flags.attr, TPMA_STARTUP_CLEAR, phEnableNV);

367 if(g_prevOrderlyState != SU_NONE_VALUE)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 575

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

368 SET_ATTRIBUTE(flags.attr, TPMA_STARTUP_CLEAR, orderly);

369

370 // Note: For a LSb0 machine, the bits in a bit field are in the correct

371 // order even if the machine is MSB0. For a MSb0 machine, a TPMA will

372 // be an integer manipulated by masking (USE_BIT_FIELD_STRUCTURES will

373 // be NO) so the bits are manipulate correctly.

374 *value = flags.u32;

375 break;

376 }

377 case TPM_PT_HR_NV_INDEX:

378 // number of NV indexes currently defined

379 *value = NvCapGetIndexNumber();

380 break;

381 case TPM_PT_HR_LOADED:

382 // number of authorization sessions currently loaded into TPM

383 // RAM

384 *value = SessionCapGetLoadedNumber();

385 break;

386 case TPM_PT_HR_LOADED_AVAIL:

387 // number of additional authorization sessions, of any type,

388 // that could be loaded into TPM RAM

389 *value = SessionCapGetLoadedAvail();

390 break;

391 case TPM_PT_HR_ACTIVE:

392 // number of active authorization sessions currently being

393 // tracked by the TPM

394 *value = SessionCapGetActiveNumber();

395 break;

396 case TPM_PT_HR_ACTIVE_AVAIL:

397 // number of additional authorization sessions, of any type,

398 // that could be created

399 *value = SessionCapGetActiveAvail();

400 break;

401 case TPM_PT_HR_TRANSIENT_AVAIL:

402 // estimate of the number of additional transient objects that

403 // could be loaded into TPM RAM

404 *value = ObjectCapGetTransientAvail();

405 break;

406 case TPM_PT_HR_PERSISTENT:

407 // number of persistent objects currently loaded into TPM

408 // NV memory

409 *value = NvCapGetPersistentNumber();

410 break;

411 case TPM_PT_HR_PERSISTENT_AVAIL:

412 // number of additional persistent objects that could be loaded

413 // into NV memory

414 *value = NvCapGetPersistentAvail();

415 break;

416 case TPM_PT_NV_COUNTERS:

417 // number of defined NV indexes that have NV TPMA_NV_COUNTER

418 // attribute SET

419 *value = NvCapGetCounterNumber();

420 break;

421 case TPM_PT_NV_COUNTERS_AVAIL:

422 // number of additional NV indexes that can be defined with their

423 // TPMA_NV_COUNTER attribute SET

424 *value = NvCapGetCounterAvail();

425 break;

426 case TPM_PT_ALGORITHM_SET:

427 // region code for the TPM

428 *value = gp.algorithmSet;

429 break;

430 case TPM_PT_LOADED_CURVES:

431 #if ALG_ECC

432 // number of loaded ECC curves

433 *value = ECC_CURVE_COUNT;

Trusted Platform Module Library Part 4: Supporting Routines

Page 576 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

434 #else // ALG_ECC

435 *value = 0;

436 #endif // ALG_ECC

437 break;

438 case TPM_PT_LOCKOUT_COUNTER:

439 // current value of the lockout counter

440 *value = gp.failedTries;

441 break;

442 case TPM_PT_MAX_AUTH_FAIL:

443 // number of authorization failures before DA lockout is invoked

444 *value = gp.maxTries;

445 break;

446 case TPM_PT_LOCKOUT_INTERVAL:

447 // number of seconds before the value reported by

448 // TPM_PT_LOCKOUT_COUNTER is decremented

449 *value = gp.recoveryTime;

450 break;

451 case TPM_PT_LOCKOUT_RECOVERY:

452 // number of seconds after a lockoutAuth failure before use of

453 // lockoutAuth may be attempted again

454 *value = gp.lockoutRecovery;

455 break;

456 case TPM_PT_NV_WRITE_RECOVERY:

457 // number of milliseconds before the TPM will accept another command

458 // that will modify NV.

459 // This should make a call to the platform code that is doing rate

460 // limiting of NV. Rate limiting is not implemented in the reference

461 // code so no call is made.

462 *value = 0;

463 break;

464 case TPM_PT_AUDIT_COUNTER_0:

465 // high-order 32 bits of the command audit counter

466 *value = (UINT32)(gp.auditCounter >> 32);

467 break;

468 case TPM_PT_AUDIT_COUNTER_1:

469 // low-order 32 bits of the command audit counter

470 *value = (UINT32)(gp.auditCounter);

471 break;

472 default:

473 // property is not defined

474 return FALSE;

475 break;

476 }

477 return TRUE;

478 }

9.14.3.2 TPMCapGetProperties()

This function is used to get the TPM_PT values. The search of properties will start at property and

continue until propertyList has as many values as will fit, or the last property has been reported, or the list

has as many values as requested in count.

Return Value Meaning

YES more properties are available

NO no more properties to be reported

479 TPMI_YES_NO

480 TPMCapGetProperties(

481 TPM_PT property, // IN: the starting TPM property

482 UINT32 count, // IN: maximum number of returned

483 // properties

484 TPML_TAGGED_TPM_PROPERTY *propertyList // OUT: property list

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 577

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

485)

486 {

487 TPMI_YES_NO more = NO;

488 UINT32 i;

489 UINT32 nextGroup;

490

491 // initialize output property list

492 propertyList->count = 0;

493

494 // maximum count of properties we may return is MAX_PCR_PROPERTIES

495 if(count > MAX_TPM_PROPERTIES) count = MAX_TPM_PROPERTIES;

496

497 // if property is less than PT_FIXED, start from PT_FIXED

498 if(property < PT_FIXED)

499 property = PT_FIXED;

500 // There is only the fixed and variable groups with the variable group coming

501 // last

502 if(property >= (PT_VAR + PT_GROUP))

503 return more;

504

505 // Don't read past the end of the selected group

506 nextGroup = ((property / PT_GROUP) * PT_GROUP) + PT_GROUP;

507

508 // Scan through the TPM properties of the requested group.

509 for(i = property; i < nextGroup; i++)

510 {

511 UINT32 value;

512 // if we have hit the end of the group, quit

513 if(i != property && ((i % PT_GROUP) == 0))

514 break;

515 if(TPMPropertyIsDefined((TPM_PT)i, &value))

516 {

517 if(propertyList->count < count)

518 {

519 // If the list is not full, add this property

520 propertyList->tpmProperty[propertyList->count].property =

521 (TPM_PT)i;

522 propertyList->tpmProperty[propertyList->count].value = value;

523 propertyList->count++;

524 }

525 else

526 {

527 // If the return list is full but there are more properties

528 // available, set the indication and exit the loop.

529 more = YES;

530 break;

531 }

532 }

533 }

534 return more;

535 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 578 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.15 Response.c

9.15.1 Description

This file contains the common code for building a response header, including setting the size of the

structure. command may be NULL if result is not TPM_RC_SUCCESS.

9.15.2 Includes and Defines

1 #include "Tpm.h"

9.15.3 BuildResponseHeader()

Adds the response header to the response. It will update command->parameterSize to indicate the total

size of the response.

2 void

3 BuildResponseHeader(

4 COMMAND *command, // IN: main control structure

5 BYTE *buffer, // OUT: the output buffer

6 TPM_RC result // IN: the response code

7)

8 {

9 TPM_ST tag;

10 UINT32 size;

11

12 if(result != TPM_RC_SUCCESS)

13 {

14 tag = TPM_ST_NO_SESSIONS;

15 size = 10;

16 }

17 else

18 {

19 tag = command->tag;

20 // Compute the overall size of the response

21 size = STD_RESPONSE_HEADER + command->handleNum * sizeof(TPM_HANDLE);

22 size += command->parameterSize;

23 size += (command->tag == TPM_ST_SESSIONS) ?

24 command->authSize + sizeof(UINT32) : 0;

25 }

26 TPM_ST_Marshal(&tag, &buffer, NULL);

27 UINT32_Marshal(&size, &buffer, NULL);

28 TPM_RC_Marshal(&result, &buffer, NULL);

29 if(result == TPM_RC_SUCCESS)

30 {

31 if(command->handleNum > 0)

32 TPM_HANDLE_Marshal(&command->handles[0], &buffer, NULL);

33 if(tag == TPM_ST_SESSIONS)

34 UINT32_Marshal((UINT32 *)&command->parameterSize, &buffer, NULL);

35 }

36 command->parameterSize = size;

37 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 579

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.16 ResponseCodeProcessing.c

9.16.1 Description

This file contains the miscellaneous functions for processing response codes.

NOTE: Currently, there is only one.

9.16.2 Includes and Defines

1 #include "Tpm.h"

9.16.3 RcSafeAddToResult()

Adds a modifier to a response code as long as the response code allows a modifier and no modifier has

already been added.

2 TPM_RC

3 RcSafeAddToResult(

4 TPM_RC responseCode,

5 TPM_RC modifier

6)

7 {

8 if((responseCode & RC_FMT1) && !(responseCode & 0xf40))

9 return responseCode + modifier;

10 else

11 return responseCode;

12 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 580 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.17 TpmFail.c

9.17.1 Includes, Defines, and Types

1 #define TPM_FAIL_C

2 #include "Tpm.h"

3 #include <assert.h>

On MS C compiler, can save the alignment state and set the alignment to 1 for the duration of the

TpmTypes.h include. This will avoid a lot of alignment warnings from the compiler for the unaligned

structures. The alignment of the structures is not important as this function does not use any of the

structures in TpmTypes.h and only include it for the #defines of the capabilities, properties, and command

code values.

4 #include "TpmTypes.h"

9.17.2 Typedefs

These defines are used primarily for sizing of the local response buffer.

5 typedef struct

6 {

7 TPM_ST tag;

8 UINT32 size;

9 TPM_RC code;

10 } HEADER;

11 typedef struct

12 {

13 BYTE tag[sizeof(TPM_ST)];

14 BYTE size[sizeof(UINT32)];

15 BYTE code[sizeof(TPM_RC)];

16 } PACKED_HEADER;

17 typedef struct

18 {

19 BYTE size[sizeof(UINT16)];

20 struct

21 {

22 BYTE function[sizeof(UINT32)];

23 BYTE line[sizeof(UINT32)];

24 BYTE code[sizeof(UINT32)];

25 } values;

26 BYTE returnCode[sizeof(TPM_RC)];

27 } GET_TEST_RESULT_PARAMETERS;

28 typedef struct

29 {

30 BYTE moreData[sizeof(TPMI_YES_NO)];

31 BYTE capability[sizeof(TPM_CAP)]; // Always TPM_CAP_TPM_PROPERTIES

32 BYTE tpmProperty[sizeof(TPML_TAGGED_TPM_PROPERTY)];

33 } GET_CAPABILITY_PARAMETERS;

34 typedef struct

35 {

36 BYTE header[sizeof(PACKED_HEADER)];

37 BYTE getTestResult[sizeof(GET_TEST_RESULT_PARAMETERS)];

38 } TEST_RESPONSE;

39 typedef struct

40 {

41 BYTE header[sizeof(PACKED_HEADER)];

42 BYTE getCap[sizeof(GET_CAPABILITY_PARAMETERS)];

43 } CAPABILITY_RESPONSE;

44 typedef union

45 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 581

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

46 BYTE test[sizeof(TEST_RESPONSE)];

47 BYTE cap[sizeof(CAPABILITY_RESPONSE)];

48 } RESPONSES;

Buffer to hold the responses. This may be a little larger than required due to padding that a compiler

might add.

NOTE: This is not in Global.c because of the specialized data definitions above. Since the data contained in this
structure is not relevant outside of the execution of a single command (when the TPM is in failure mode. There
is no compelling reason to move all the typedefs to Global.h and this structure to Global.c.

49 #ifndef __IGNORE_STATE__ // Don't define this value

50 static BYTE response[sizeof(RESPONSES)];

51 #endif

9.17.3 Local Functions

9.17.3.1 MarshalUint16()

Function to marshal a 16 bit value to the output buffer.

52 static INT32

53 MarshalUint16(

54 UINT16 integer,

55 BYTE **buffer

56)

57 {

58 UINT16_TO_BYTE_ARRAY(integer, *buffer);

59 *buffer += 2;

60 return 2;

61 }

9.17.3.2 MarshalUint32()

Function to marshal a 32 bit value to the output buffer.

62 static INT32

63 MarshalUint32(

64 UINT32 integer,

65 BYTE **buffer

66)

67 {

68 UINT32_TO_BYTE_ARRAY(integer, *buffer);

69 *buffer += 4;

70 return 4;

71 }

9.17.3.3 Unmarshal32()

72 static BOOL Unmarshal32(

73 UINT32 *target,

74 BYTE **buffer,

75 INT32 *size

76)

77 {

78 if((*size -= 4) < 0)

79 return FALSE;

80 *target = BYTE_ARRAY_TO_UINT32(*buffer);

81 *buffer += 4;

82 return TRUE;

Trusted Platform Module Library Part 4: Supporting Routines

Page 582 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

83 }

9.17.3.4 Unmarshal16()

84 static BOOL Unmarshal16(

85 UINT16 *target,

86 BYTE **buffer,

87 INT32 *size

88)

89 {

90 if((*size -= 2) < 0)

91 return FALSE;

92 *target = BYTE_ARRAY_TO_UINT16(*buffer);

93 *buffer += 2;

94 return TRUE;

95 }

9.17.4 Public Functions

9.17.4.1 SetForceFailureMode()

This function is called by the simulator to enable failure mode testing.

96 #if SIMULATION

97 LIB_EXPORT void

98 SetForceFailureMode(

99 void

100)

101 {

102 g_forceFailureMode = TRUE;

103 return;

104 }

105 #endif

9.17.4.2 TpmLogFailure()

This function saves the failure values when the code will continue to operate. It if similar to TpmFail() but

returns to the caller. The assumption is that the caller will propagate a failure back up the stack.

106 void

107 TpmLogFailure(

108 #if FAIL_TRACE

109 const char *function,

110 int line,

111 #endif

112 int code

113)

114 {

115 // Save the values that indicate where the error occurred.

116 // On a 64-bit machine, this may truncate the address of the string

117 // of the function name where the error occurred.

118 #if FAIL_TRACE

119 s_failFunction = (UINT32)(ptrdiff_t)function;

120 s_failLine = line;

121 #else

122 s_failFunction = 0;

123 s_failLine = 0;

124 #endif

125 s_failCode = code;

126

127 // We are in failure mode

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 583

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

128 g_inFailureMode = TRUE;

129

130 return;

131 }

9.17.4.3 TpmFail()

This function is called by TPM.lib when a failure occurs. It will set up the failure values to be returned on

TPM2_GetTestResult().

132 NORETURN void

133 TpmFail(

134 #if FAIL_TRACE

135 const char *function,

136 int line,

137 #endif

138 int code

139)

140 {

141 // Save the values that indicate where the error occurred.

142 // On a 64-bit machine, this may truncate the address of the string

143 // of the function name where the error occurred.

144 #if FAIL_TRACE

145 s_failFunction = (UINT32)(ptrdiff_t)function;

146 s_failLine = line;

147 #else

148 s_failFunction = (UINT32)(ptrdiff_t)NULL;

149 s_failLine = 0;

150 #endif

151 s_failCode = code;

152

153 // We are in failure mode

154 g_inFailureMode = TRUE;

155

156 // if asserts are enabled, then do an assert unless the failure mode code

157 // is being tested.

158 #if SIMULATION

159 # ifndef NDEBUG

160 assert(g_forceFailureMode);

161 # endif

162 // Clear this flag

163 g_forceFailureMode = FALSE;

164 #endif

165 // Jump to the failure mode code.

166 // Note: only get here if asserts are off or if we are testing failure mode

167 _plat__Fail();

168 }

9.17.4.4 TpmFailureMode

This function is called by the interface code when the platform is in failure mode.

169 void

170 TpmFailureMode(

171 unsigned int inRequestSize, // IN: command buffer size

172 unsigned char *inRequest, // IN: command buffer

173 unsigned int *outResponseSize, // OUT: response buffer size

174 unsigned char **outResponse // OUT: response buffer

175)

176 {

177 UINT32 marshalSize;

178 UINT32 capability;

179 HEADER header; // unmarshaled command header

Trusted Platform Module Library Part 4: Supporting Routines

Page 584 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

180 UINT32 pt; // unmarshaled property type

181 UINT32 count; // unmarshaled property count

182 UINT8 *buffer = inRequest;

183 INT32 size = inRequestSize;

184

185 // If there is no command buffer, then just return TPM_RC_FAILURE

186 if(inRequestSize == 0 || inRequest == NULL)

187 goto FailureModeReturn;

188 // If the header is not correct for TPM2_GetCapability() or

189 // TPM2_GetTestResult() then just return the in failure mode response;

190 if(! (Unmarshal16(&header.tag, &buffer, &size)

191 && Unmarshal32(&header.size, &buffer, &size)

192 && Unmarshal32(&header.code, &buffer, &size)))

193 goto FailureModeReturn;

194 if(header.tag != TPM_ST_NO_SESSIONS

195 || header.size < 10)

196 goto FailureModeReturn;

197 switch(header.code)

198 {

199 case TPM_CC_GetTestResult:

200 // make sure that the command size is correct

201 if(header.size != 10)

202 goto FailureModeReturn;

203 buffer = &response[10];

204 marshalSize = MarshalUint16(3 * sizeof(UINT32), &buffer);

205 marshalSize += MarshalUint32(s_failFunction, &buffer);

206 marshalSize += MarshalUint32(s_failLine, &buffer);

207 marshalSize += MarshalUint32(s_failCode, &buffer);

208 if(s_failCode == FATAL_ERROR_NV_UNRECOVERABLE)

209 marshalSize += MarshalUint32(TPM_RC_NV_UNINITIALIZED, &buffer);

210 else

211 marshalSize += MarshalUint32(TPM_RC_FAILURE, &buffer);

212 break;

213 case TPM_CC_GetCapability:

214 // make sure that the size of the command is exactly the size

215 // returned for the capability, property, and count

216 if(header.size != (10 + (3 * sizeof(UINT32)))

217 // also verify that this is requesting TPM properties

218 || !Unmarshal32(&capability, &buffer, &size)

219 || capability != TPM_CAP_TPM_PROPERTIES

220 || !Unmarshal32(&pt, &buffer, &size)

221 || !Unmarshal32(&count, &buffer, &size))

222 goto FailureModeReturn;

223 // If in failure mode because of an unrecoverable read error, and the

224 // property is 0 and the count is 0, then this is an indication to

225 // re-manufacture the TPM. Do the re-manufacture but stay in failure

226 // mode until the TPM is reset.

227 // Note: this behavior is not required by the specification and it is

228 // OK to leave the TPM permanently bricked due to an unrecoverable NV

229 // error.

230 if(count == 0 && pt == 0 && s_failCode == FATAL_ERROR_NV_UNRECOVERABLE)

231 {

232 g_manufactured = FALSE;

233 TPM_Manufacture(0);

234 }

235 if(count > 0)

236 count = 1;

237 else if(pt > TPM_PT_FIRMWARE_VERSION_2)

238 count = 0;

239 if(pt < TPM_PT_MANUFACTURER)

240 pt = TPM_PT_MANUFACTURER;

241 // set up for return

242 buffer = &response[10];

243 // if the request was for a PT less than the last one

244 // then we indicate more, otherwise, not.

245 if(pt < TPM_PT_FIRMWARE_VERSION_2)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 585

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

246 *buffer++ = YES;

247 else

248 *buffer++ = NO;

249 marshalSize = 1;

250

251 // indicate the capability type

252 marshalSize += MarshalUint32(capability, &buffer);

253 // indicate the number of values that are being returned (0 or 1)

254 marshalSize += MarshalUint32(count, &buffer);

255 // indicate the property

256 marshalSize += MarshalUint32(pt, &buffer);

257

258 if(count > 0)

259 switch(pt)

260 {

261 case TPM_PT_MANUFACTURER:

262 // the vendor ID unique to each TPM manufacturer

263 #ifdef MANUFACTURER

264 pt = *(UINT32*)MANUFACTURER;

265 #else

266 pt = 0;

267 #endif

268 break;

269 case TPM_PT_VENDOR_STRING_1:

270 // the first four characters of the vendor ID string

271 #ifdef VENDOR_STRING_1

272 pt = *(UINT32*)VENDOR_STRING_1;

273 #else

274 pt = 0;

275 #endif

276 break;

277 case TPM_PT_VENDOR_STRING_2:

278 // the second four characters of the vendor ID string

279 #ifdef VENDOR_STRING_2

280 pt = *(UINT32*)VENDOR_STRING_2;

281 #else

282 pt = 0;

283 #endif

284 break;

285 case TPM_PT_VENDOR_STRING_3:

286 // the third four characters of the vendor ID string

287 #ifdef VENDOR_STRING_3

288 pt = *(UINT32*)VENDOR_STRING_3;

289 #else

290 pt = 0;

291 #endif

292 break;

293 case TPM_PT_VENDOR_STRING_4:

294 // the fourth four characters of the vendor ID string

295 #ifdef VENDOR_STRING_4

296 pt = *(UINT32*)VENDOR_STRING_4;

297 #else

298 pt = 0;

299 #endif

300 break;

301 case TPM_PT_VENDOR_TPM_TYPE:

302 // vendor-defined value indicating the TPM model

303 // We just make up a number here

304 pt = 1;

305 break;

306 case TPM_PT_FIRMWARE_VERSION_1:

307 // the more significant 32-bits of a vendor-specific value

308 // indicating the version of the firmware

309 #ifdef FIRMWARE_V1

310 pt = FIRMWARE_V1;

311 #else

Trusted Platform Module Library Part 4: Supporting Routines

Page 586 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

312 pt = 0;

313 #endif

314 break;

315 default: // TPM_PT_FIRMWARE_VERSION_2:

316 // the less significant 32-bits of a vendor-specific value

317 // indicating the version of the firmware

318 #ifdef FIRMWARE_V2

319 pt = FIRMWARE_V2;

320 #else

321 pt = 0;

322 #endif

323 break;

324 }

325 marshalSize += MarshalUint32(pt, &buffer);

326 break;

327 default: // default for switch (cc)

328 goto FailureModeReturn;

329 }

330 // Now do the header

331 buffer = response;

332 marshalSize = marshalSize + 10; // Add the header size to the

333 // stuff already marshaled

334 MarshalUint16(TPM_ST_NO_SESSIONS, &buffer); // structure tag

335 MarshalUint32(marshalSize, &buffer); // responseSize

336 MarshalUint32(TPM_RC_SUCCESS, &buffer); // response code

337

338 *outResponseSize = marshalSize;

339 *outResponse = (unsigned char *)&response;

340 return;

341 FailureModeReturn:

342 buffer = response;

343 marshalSize = MarshalUint16(TPM_ST_NO_SESSIONS, &buffer);

344 marshalSize += MarshalUint32(10, &buffer);

345 marshalSize += MarshalUint32(TPM_RC_FAILURE, &buffer);

346 *outResponseSize = marshalSize;

347 *outResponse = (unsigned char *)response;

348 return;

349 }

9.17.4.5 UnmarshalFail()

This is a stub that is used to catch an attempt to unmarshal an entry that is not defined. Don't ever expect

this to be called but...

350 void

351 UnmarshalFail(

352 void *type,

353 BYTE **buffer,

354 INT32 *size

355)

356 {

357 NOT_REFERENCED(type);

358 NOT_REFERENCED(buffer);

359 NOT_REFERENCED(size);

360 FAIL(FATAL_ERROR_INTERNAL);

361 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 587

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10 Cryptographic Functions

10.1 Headers

10.1.1 BnValues.h

10.1.1.1 Introduction

This file contains the definitions needed for defining the internal BIGNUM structure. A BIGNUM is a

pointer to a structure. The structure has three fields. The last field is and array (d) of crypt_uword_t. Each

word is in machine format (big- or little-endian) with the words in ascending significance (i.e. words in

little-endian order). This is the order that seems to be used in every big number library in the worlds, so...

The first field in the structure (allocated) is the number of words in d. This is the upper limit on the size of

the number that can be held in the structure. This differs from libraries like OpenSSL as this is not

intended to deal with numbers of arbitrary size; just numbers that are needed to deal with the algorithms

that are defined in the TPM implementation.

The second field in the structure (size) is the number of significant words in n. When this number is zero,

the number is zero. The word at used-1 should never be zero. All words between d[size] and d[allocated-

1] should be zero.

10.1.1.2 Defines

1 #ifndef _BN_NUMBERS_H

2 #define _BN_NUMBERS_H

3 #if RADIX_BITS == 64

4 # define RADIX_LOG2 6

5 #elif RADIX_BITS == 32

6 #define RADIX_LOG2 5

7 #else

8 # error "Unsupported radix"

9 #endif

10 #define RADIX_MOD(x) ((x) & ((1 << RADIX_LOG2) - 1))

11 #define RADIX_DIV(x) ((x) >> RADIX_LOG2)

12 #define RADIX_MASK ((((crypt_uword_t)1) << RADIX_LOG2) - 1)

13 #define BITS_TO_CRYPT_WORDS(bits) RADIX_DIV((bits) + (RADIX_BITS - 1))

14 #define BYTES_TO_CRYPT_WORDS(bytes) BITS_TO_CRYPT_WORDS(bytes * 8)

15 #define SIZE_IN_CRYPT_WORDS(thing) BYTES_TO_CRYPT_WORDS(sizeof(thing))

16 #if RADIX_BITS == 64

17 #define SWAP_CRYPT_WORD(x) REVERSE_ENDIAN_64(x)

18 typedef uint64_t crypt_uword_t;

19 typedef int64_t crypt_word_t;

20 # define TO_CRYPT_WORD_64 BIG_ENDIAN_BYTES_TO_UINT64

21 # define TO_CRYPT_WORD_32(a, b, c, d) TO_CRYPT_WORD_64(0, 0, 0, 0, a, b, c, d)

22 #elif RADIX_BITS == 32

23 # define SWAP_CRYPT_WORD(x) REVERSE_ENDIAN_32((x))

24 typedef uint32_t crypt_uword_t;

25 typedef int32_t crypt_word_t;

26 # define TO_CRYPT_WORD_64(a, b, c, d, e, f, g, h) \

27 BIG_ENDIAN_BYTES_TO_UINT32(e, f, g, h), \

28 BIG_ENDIAN_BYTES_TO_UINT32(a, b, c, d)

29 #endif

30 #define MAX_CRYPT_UWORD (~((crypt_uword_t)0))

31 #define MAX_CRYPT_WORD ((crypt_word_t)(MAX_CRYPT_UWORD >> 1))

32 #define MIN_CRYPT_WORD (~MAX_CRYPT_WORD)

33 #define LARGEST_NUMBER (MAX((ALG_RSA * MAX_RSA_KEY_BYTES), \

34 MAX((ALG_ECC * MAX_ECC_KEY_BYTES), MAX_DIGEST_SIZE)))

35 #define LARGEST_NUMBER_BITS (LARGEST_NUMBER * 8)

36 #define MAX_ECC_PARAMETER_BYTES (MAX_ECC_KEY_BYTES * ALG_ECC)

Trusted Platform Module Library Part 4: Supporting Routines

Page 588 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

These are the basic big number formats. This is convertible to the library- specific format without to much

difficulty. For the math performed using these numbers, the value is always positive.

37 #define BN_STRUCT_DEF(count) struct { \

38 crypt_uword_t allocated; \

39 crypt_uword_t size; \

40 crypt_uword_t d[count]; \

41 }

42 typedef BN_STRUCT_DEF(1) bignum_t;

43 #ifndef bigNum

44 typedef bignum_t *bigNum;

45 typedef const bignum_t *bigConst;

46 #endif

47 extern const bignum_t BnConstZero;

48

49 // The Functions to access the properties of a big number.

50 // Get number of allocated words

51 #define BnGetAllocated(x) (unsigned)((x)->allocated)

Get number of words used

52 #define BnGetSize(x) ((x)->size)

Get a pointer to the data array

53 #define BnGetArray(x) ((crypt_uword_t *)&((x)->d[0]))

Get the nth word of a BIGNUM (zero-based)

54 #define BnGetWord(x, i) (crypt_uword_t)((x)->d[i])

Some things that are done often. Test to see if a bignum_t is equal to zero

55 #define BnEqualZero(bn) (BnGetSize(bn) == 0)

Test to see if a bignum_t is equal to a word type

56 #define BnEqualWord(bn, word) \

57 ((BnGetSize(bn) == 1) && (BnGetWord(bn, 0) == (crypt_uword_t)word))

Determine if a BIGNUM is even. A zero is even. Although the indication that a number is zero is that it's

size is zero, all words of the number are 0 so this test works on zero.

58 #define BnIsEven(n) ((BnGetWord(n, 0) & 1) == 0)

The macros below are used to define BIGNUM values of the required size. The values are allocated on

the stack so they can be treated like simple local values. This will call the initialization function for a

defined bignum_t. This sets the allocated and used fields and clears the words of n.

59 #define BN_INIT(name) \

60 (bigNum)BnInit((bigNum)&(name), \

61 BYTES_TO_CRYPT_WORDS(sizeof(name.d)))

In some cases, a function will need the address of the structure associated with a variable. The structure

for a BIGNUM variable of name is name_. Generally, when the structure is created, it is initialized and a

parameter is created with a pointer to the structure. The pointer has the name and the structure it points

to is name_

62 #define BN_ADDRESS(name) (bigNum)&name##_

63 #define BN_STRUCT_ALLOCATION(bits) (BITS_TO_CRYPT_WORDS(bits) + 1)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 589

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Create a structure of the correct size.

64 #define BN_STRUCT(bits) \

65 BN_STRUCT_DEF(BN_STRUCT_ALLOCATION(bits))

Define a BIGNUM type with a specific allocation

66 #define BN_TYPE(name, bits) \

67 typedef BN_STRUCT(bits) bn_##name##_t

This creates a local BIGNUM variable of a specific size and initializes it from a TPM2B input parameter.

68 #define BN_INITIALIZED(name, bits, initializer) \

69 BN_STRUCT(bits) name##_; \

70 bigNum name = BnFrom2B(BN_INIT(name##_), \

71 (const TPM2B *)initializer)

Create a local variable that can hold a number with bits

72 #define BN_VAR(name, bits) \

73 BN_STRUCT(bits) _##name; \

74 bigNum name = BN_INIT(_##name)

Create a type that can hold the largest number defined by the implementation.

75 #define BN_MAX(name) BN_VAR(name, LARGEST_NUMBER_BITS)

76 #define BN_MAX_INITIALIZED(name, initializer) \

77 BN_INITIALIZED(name, LARGEST_NUMBER_BITS, initializer)

A word size value is useful

78 #define BN_WORD(name) BN_VAR(name, RADIX_BITS)

This is used to created a word-size BIGNUM and initialize it with an input parameter to a function.

79 #define BN_WORD_INITIALIZED(name, initial) \

80 BN_STRUCT(RADIX_BITS) name##_; \

81 bigNum name = BnInitializeWord((bigNum)&name##_, \

82 BN_STRUCT_ALLOCATION(RADIX_BITS), initial)

ECC-Specific Values This is the format for a point. It is always in affine format. The Z value is carried as

part of the point, primarily to simplify the interface to the support library. Rather than have the interface

layer have to create space for the point each time it is used... The x, y, and z values are pointers to

bigNum values and not in-line versions of the numbers. This is a relic of the days when there was no

standard TPM format for the numbers

83 typedef struct _bn_point_t

84 {

85 bigNum x;

86 bigNum y;

87 bigNum z;

88 } bn_point_t;

89 typedef bn_point_t *bigPoint;

90 typedef const bn_point_t *pointConst;

91 typedef struct constant_point_t

92 {

93 bigConst x;

94 bigConst y;

95 bigConst z;

96 } constant_point_t;

97 #define ECC_BITS (MAX_ECC_KEY_BYTES * 8)

Trusted Platform Module Library Part 4: Supporting Routines

Page 590 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

98 BN_TYPE(ecc, ECC_BITS);

99 #define ECC_NUM(name) BN_VAR(name, ECC_BITS)

100 #define ECC_INITIALIZED(name, initializer) \

101 BN_INITIALIZED(name, ECC_BITS, initializer)

102 #define POINT_INSTANCE(name, bits) \

103 BN_STRUCT (bits) name##_x = \

104 {BITS_TO_CRYPT_WORDS (bits), 0,{0}}; \

105 BN_STRUCT (bits) name##_y = \

106 {BITS_TO_CRYPT_WORDS (bits), 0,{0}}; \

107 BN_STRUCT (bits) name##_z = \

108 {BITS_TO_CRYPT_WORDS (bits), 0,{0}}; \

109 bn_point_t name##_

110 #define POINT_INITIALIZER(name) \

111 BnInitializePoint(&name##_, (bigNum)&name##_x, \

112 (bigNum)&name##_y, (bigNum)&name##_z)

113 #define POINT_INITIALIZED(name, initValue) \

114 POINT_INSTANCE(name, MAX_ECC_KEY_BITS); \

115 bigPoint name = BnPointFrom2B(\

116 POINT_INITIALIZER(name), \

117 initValue)

118 #define POINT_VAR(name, bits) \

119 POINT_INSTANCE (name, bits); \

120 bigPoint name = POINT_INITIALIZER(name)

121 #define POINT(name) POINT_VAR(name, MAX_ECC_KEY_BITS)

Structure for the curve parameters. This is an analog to the TPMS_ALGORITHM_DETAIL_ECC

122 typedef struct

123 {

124 bigConst prime; // a prime number

125 bigConst order; // the order of the curve

126 bigConst h; // cofactor

127 bigConst a; // linear coefficient

128 bigConst b; // constant term

129 constant_point_t base; // base point

130 } ECC_CURVE_DATA;

Access macros for the ECC_CURVE structure. The parameter C is a pointer to an ECC_CURVE_DATA

structure. In some libraries, the curve structure contains a pointer to an ECC_CURVE_DATA structure as

well as some other bits. For those cases, the AccessCurveData() macro is used in the code to first get the

pointer to the ECC_CURVE_DATA for access. In some cases, the macro does noting.

131 #define CurveGetPrime(C) ((C)->prime)

132 #define CurveGetOrder(C) ((C)->order)

133 #define CurveGetCofactor(C) ((C)->h)

134 #define CurveGet_a(C) ((C)->a)

135 #define CurveGet_b(C) ((C)->b)

136 #define CurveGetG(C) ((pointConst)&((C)->base))

137 #define CurveGetGx(C) ((C)->base.x)

138 #define CurveGetGy(C) ((C)->base.y)

Convert bytes in initializers according to the endianess of the system. This is used for CryptEccData.c.

139 #define BIG_ENDIAN_BYTES_TO_UINT32(a, b, c, d) \

140 (((UINT32)(a) << 24) \

141 + ((UINT32)(b) << 16) \

142 + ((UINT32)(c) << 8) \

143 + ((UINT32)(d)) \

144)

145 #define BIG_ENDIAN_BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \

146 (((UINT64)(a) << 56) \

147 + ((UINT64)(b) << 48) \

148 + ((UINT64)(c) << 40) \

149 + ((UINT64)(d) << 32) \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 591

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

150 + ((UINT64)(e) << 24) \

151 + ((UINT64)(f) << 16) \

152 + ((UINT64)(g) << 8) \

153 + ((UINT64)(h)) \

154)

155 #ifndef RADIX_BYTES

156 # if RADIX_BITS == 32

157 # define RADIX_BYTES 4

158 # elif RADIX_BITS == 64

159 # define RADIX_BYTES 8

160 # else

161 # error "RADIX_BITS must either be 32 or 64"

162 # endif

163 #endif

Add implementation dependent definitions for other ECC Values and for linkages.

164 #include LIB_INCLUDE(MATH_LIB, Math)

165 #endif // _BN_NUMBERS_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 592 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.2 CryptEcc.h

10.1.2.1 Introduction

This file contains structure definitions used for ECC. The structures in this file are only used internally.

The ECC-related structures that cross the TPM interface are defined in TpmTypes.h

1 #ifndef _CRYPT_ECC_H

2 #define _CRYPT_ECC_H

10.1.2.2 Structures

This is used to define the macro that may or may not be in the data set for the curve (CryptEccData.c). If

there is a mismatch, the compiler will warn that there is to much/not enough initialization data in the

curve. The macro is used because not all versions of the CryptEccData.c need the curve name.

3 #ifdef NAMED_CURVES

4 #define CURVE_NAME(a) , a

5 #define CURVE_NAME_DEF const char *name;

6 #else

7 # define CURVE_NAME(a)

8 # define CURVE_NAME_DEF

9 #endif

10 typedef struct ECC_CURVE

11 {

12 const TPM_ECC_CURVE curveId;

13 const UINT16 keySizeBits;

14 const TPMT_KDF_SCHEME kdf;

15 const TPMT_ECC_SCHEME sign;

16 const ECC_CURVE_DATA *curveData; // the address of the curve data

17 const BYTE *OID;

18 CURVE_NAME_DEF

19 } ECC_CURVE;

20 extern const ECC_CURVE eccCurves[ECC_CURVE_COUNT];

21

22 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 593

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.3 CryptHash.h

10.1.3.1 Introduction

This header contains the hash structure definitions used in the TPM code to define the amount of space

to be reserved for the hash state. This allows the TPM code to not have to import all of the symbols used

by the hash computations. This lets the build environment of the TPM code not to have include the

header files associated with the CryptoEngine() code.

1 #ifndef _CRYPT_HASH_H

2 #define _CRYPT_HASH_H

10.1.3.2 Hash-related Structures

3 union SMAC_STATES;

These definitions add the high-level methods for processing state that may be an SMAC

4 typedef void(* SMAC_DATA_METHOD)(

5 union SMAC_STATES *state,

6 UINT32 size,

7 const BYTE *buffer

8);

9 typedef UINT16(* SMAC_END_METHOD)(

10 union SMAC_STATES *state,

11 UINT32 size,

12 BYTE *buffer

13);

14 typedef struct sequenceMethods {

15 SMAC_DATA_METHOD data;

16 SMAC_END_METHOD end;

17 } SMAC_METHODS;

18 #define SMAC_IMPLEMENTED (CC_MAC || CC_MAC_Start)

These definitions are here because the SMAC state is in the union of hash states.

19 typedef struct tpmCmacState {

20 TPM_ALG_ID symAlg;

21 UINT16 keySizeBits;

22 INT16 bcount; // current count of bytes accumulated in IV

23 TPM2B_IV iv; // IV buffer

24 TPM2B_SYM_KEY symKey;

25 } tpmCmacState_t;

26 typedef union SMAC_STATES {

27 #if ALG_CMAC

28 tpmCmacState_t cmac;

29 #endif

30 UINT64 pad;

31 } SMAC_STATES;

32 typedef struct SMAC_STATE {

33 SMAC_METHODS smacMethods;

34 SMAC_STATES state;

35 } SMAC_STATE;

36 typedef union

37 {

38 #if ALG_SHA1

39 tpmHashStateSHA1_t Sha1;

40 #endif

41 #if ALG_SHA256

42 tpmHashStateSHA256_t Sha256;

43 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 594 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

44 #if ALG_SHA384

45 tpmHashStateSHA384_t Sha384;

46 #endif

47 #if ALG_SHA512

48 tpmHashStateSHA512_t Sha512;

49 #endif

50 #if ALG_SM3_256

51 tpmHashStateSM3_256_t Sm3_256;

52 #endif

53

54 // Additions for symmetric block cipher MAC

55 #if SMAC_IMPLEMENTED

56 SMAC_STATE smac;

57 #endif

58 // to force structure alignment to be no worse than HASH_ALIGNMENT

59 #if HASH_ALIGNMENT == 4

60 uint32_t align;

61 #else

62 uint64_t align;

63 #endif

64 } ANY_HASH_STATE;

65 typedef ANY_HASH_STATE *PANY_HASH_STATE;

66 typedef const ANY_HASH_STATE *PCANY_HASH_STATE;

67 #define ALIGNED_SIZE(x, b) ((((x) + (b) - 1) / (b)) * (b))

MAX_HASH_STATE_SIZE will change with each implementation. It is assumed that a hash state will not

be larger than twice the block size plus some overhead (in this case, 16 bytes). The overall size needs to

be as large as any of the hash contexts. The structure needs to start on an alignment boundary and be an

even multiple of the alignment

68 #define MAX_HASH_STATE_SIZE ((2 * MAX_HASH_BLOCK_SIZE) + 16)

69 #define MAX_HASH_STATE_SIZE_ALIGNED \

70 ALIGNED_SIZE(MAX_HASH_STATE_SIZE, HASH_ALIGNMENT)

This is an aligned byte array that will hold any of the hash contexts.

71 typedef ANY_HASH_STATE ALIGNED_HASH_STATE;

The header associated with the hash library is expected to define the methods which include the calling

sequence. When not compiling CryptHash.c, the methods are not defined so we need placeholder

functions for the structures

72 #ifndef HASH_START_METHOD_DEF

73 # define HASH_START_METHOD_DEF void (HASH_START_METHOD)(void)

74 #endif

75 #ifndef HASH_DATA_METHOD_DEF

76 # define HASH_DATA_METHOD_DEF void (HASH_DATA_METHOD)(void)

77 #endif

78 #ifndef HASH_END_METHOD_DEF

79 # define HASH_END_METHOD_DEF void (HASH_END_METHOD)(void)

80 #endif

81 #ifndef HASH_STATE_COPY_METHOD_DEF

82 # define HASH_STATE_COPY_METHOD_DEF void (HASH_STATE_COPY_METHOD)(void)

83 #endif

84 #ifndef HASH_STATE_EXPORT_METHOD_DEF

85 # define HASH_STATE_EXPORT_METHOD_DEF void (HASH_STATE_EXPORT_METHOD)(void)

86 #endif

87 #ifndef HASH_STATE_IMPORT_METHOD_DEF

88 # define HASH_STATE_IMPORT_METHOD_DEF void (HASH_STATE_IMPORT_METHOD)(void)

89 #endif

Define the prototypical function call for each of the methods. This defines the order in which the

parameters are passed to the underlying function.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 595

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

90 typedef HASH_START_METHOD_DEF;

91 typedef HASH_DATA_METHOD_DEF;

92 typedef HASH_END_METHOD_DEF;

93 typedef HASH_STATE_COPY_METHOD_DEF;

94 typedef HASH_STATE_EXPORT_METHOD_DEF;

95 typedef HASH_STATE_IMPORT_METHOD_DEF;

96 typedef struct _HASH_METHODS

97 {

98 HASH_START_METHOD *start;

99 HASH_DATA_METHOD *data;

100 HASH_END_METHOD *end;

101 HASH_STATE_COPY_METHOD *copy; // Copy a hash block

102 HASH_STATE_EXPORT_METHOD *copyOut; // Copy a hash block from a hash

103 // context

104 HASH_STATE_IMPORT_METHOD *copyIn; // Copy a hash block to a proper hash

105 // context

106 } HASH_METHODS, *PHASH_METHODS;

107 #if ALG_SHA1

108 TPM2B_TYPE(SHA1_DIGEST, SHA1_DIGEST_SIZE);

109 #endif

110 #if ALG_SHA256

111 TPM2B_TYPE(SHA256_DIGEST, SHA256_DIGEST_SIZE);

112 #endif

113 #if ALG_SHA384

114 TPM2B_TYPE(SHA384_DIGEST, SHA384_DIGEST_SIZE);

115 #endif

116 #if ALG_SHA512

117 TPM2B_TYPE(SHA512_DIGEST, SHA512_DIGEST_SIZE);

118 #endif

119 #if ALG_SM3_256

120 TPM2B_TYPE(SM3_256_DIGEST, SM3_256_DIGEST_SIZE);

121 #endif

When the TPM implements RSA, the hash-dependent OID pointers are part of the HASH_DEF. These

macros conditionally add the OID reference to the HASH_DEF and the HASH_DEF_TEMPLATE.

122 #if ALG_RSA

123 #define PKCS1_HASH_REF const BYTE *PKCS1;

124 #define PKCS1_OID(NAME) , OID_PKCS1_##NAME

125 #else

126 #define PKCS1_HASH_REF

127 #define PKCS1_OID(NAME)

128 #endif

When the TPM implements ECC, the hash-dependent OID pointers are part of the HASH_DEF. These

macros conditionally add the OID reference to the HASH_DEF and the HASH_DEF_TEMPLATE.

129 #if ALG_ECDSA

130 #define ECDSA_HASH_REF const BYTE *ECDSA;

131 #define ECDSA_OID(NAME) , OID_ECDSA_##NAME

132 #else

133 #define ECDSA_HASH_REF

134 #define ECDSA_OID(NAME)

135 #endif

136 typedef const struct HASH_DEF

137 {

138 HASH_METHODS method;

139 uint16_t blockSize;

140 uint16_t digestSize;

141 uint16_t contextSize;

142 uint16_t hashAlg;

143 const BYTE *OID;

144 PKCS1_HASH_REF // PKCS1 OID

145 ECDSA_HASH_REF // ECDSA OID

Trusted Platform Module Library Part 4: Supporting Routines

Page 596 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

146 } HASH_DEF, *PHASH_DEF;

Macro to fill in the HASH_DEF for an algorithm. For SHA1, the instance would be:

HASH_DEF_TEMPLATE(Sha1, SHA1) This handles the difference in capitalization for the various pieces.

147 #define HASH_DEF_TEMPLATE(HASH, Hash) \

148 HASH_DEF Hash##_Def= { \

149 {(HASH_START_METHOD *)&tpmHashStart_##HASH, \

150 (HASH_DATA_METHOD *)&tpmHashData_##HASH, \

151 (HASH_END_METHOD *)&tpmHashEnd_##HASH, \

152 (HASH_STATE_COPY_METHOD *)&tpmHashStateCopy_##HASH, \

153 (HASH_STATE_EXPORT_METHOD *)&tpmHashStateExport_##HASH, \

154 (HASH_STATE_IMPORT_METHOD *)&tpmHashStateImport_##HASH, \

155 }, \

156 HASH##_BLOCK_SIZE, /*block size */ \

157 HASH##_DIGEST_SIZE, /*data size */ \

158 sizeof(tpmHashState##HASH##_t), \

159 TPM_ALG_##HASH, OID_##HASH \

160 PKCS1_OID(HASH) ECDSA_OID(HASH)};

These definitions are for the types that can be in a hash state structure. These types are used in the

cryptographic utilities. This is a define rather than an enum so that the size of this field can be explicit.

161 typedef BYTE HASH_STATE_TYPE;

162 #define HASH_STATE_EMPTY ((HASH_STATE_TYPE) 0)

163 #define HASH_STATE_HASH ((HASH_STATE_TYPE) 1)

164 #define HASH_STATE_HMAC ((HASH_STATE_TYPE) 2)

165 #if CC_MAC || CC_MAC_Start

166 #define HASH_STATE_SMAC ((HASH_STATE_TYPE) 3)

167 #endif

This is the structure that is used for passing a context into the hashing functions. It should be the same

size as the function context used within the hashing functions. This is checked when the hash function is

initialized. This version uses a new layout for the contexts and a different definition. The state buffer is an

array of HASH_UNIT values so that a decent compiler will put the structure on a HASH_UNIT boundary.

If the structure is not properly aligned, the code that manipulates the structure will copy to a properly

aligned structure before it is used and copy the result back. This just makes things slower.

NOTE: This version of the state had the pointer to the update method in the state. This is to allow the SMAC functions
to use the same structure without having to replicate the entire HASH_DEF structure.

168 typedef struct _HASH_STATE

169 {

170 HASH_STATE_TYPE type; // type of the context

171 TPM_ALG_ID hashAlg;

172 PHASH_DEF def;

173 ANY_HASH_STATE state;

174 } HASH_STATE, *PHASH_STATE;

175 typedef const HASH_STATE *PCHASH_STATE;

10.1.3.3 HMAC State Structures

An HMAC_STATE structure contains an opaque HMAC stack state. A caller would use this structure

when performing incremental HMAC operations. This structure contains a hash state and an HMAC key

and allows slightly better stack optimization than adding an HMAC key to each hash state.

176 typedef struct hmacState

177 {

178 HASH_STATE hashState; // the hash state

179 TPM2B_HASH_BLOCK hmacKey; // the HMAC key

180 } HMAC_STATE, *PHMAC_STATE;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 597

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

This is for the external hash state. This implementation assumes that the size of the exported hash state

is no larger than the internal hash state.

181 typedef struct

182 {

183 BYTE buffer[sizeof(HASH_STATE)];

184 } EXPORT_HASH_STATE, *PEXPORT_HASH_STATE;

185 typedef const EXPORT_HASH_STATE *PCEXPORT_HASH_STATE;

186 #endif // _CRYPT_HASH_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 598 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.4 CryptRand.h

10.1.4.1 Introduction

This file contains constant definition shared by CryptUtil() and the parts of the Crypto Engine.

1 #ifndef _CRYPT_RAND_H

2 #define _CRYPT_RAND_H

10.1.4.2 DRBG Structures and Defines

Values and structures for the random number generator. These values are defined in this header file so

that the size of the RNG state can be known to TPM.lib. This allows the allocation of some space in NV

memory for the state to be stored on an orderly shutdown. The DRBG based on a symmetric block cipher

is defined by three values,

 the key size

 the block size (the IV size)

 the symmetric algorithm

3 #define DRBG_KEY_SIZE_BITS AES_MAX_KEY_SIZE_BITS

4 #define DRBG_IV_SIZE_BITS (AES_MAX_BLOCK_SIZE * 8)

5 #define DRBG_ALGORITHM TPM_ALG_AES

6 typedef tpmKeyScheduleAES DRBG_KEY_SCHEDULE;

7 #define DRBG_ENCRYPT_SETUP(key, keySizeInBits, schedule) \

8 TpmCryptSetEncryptKeyAES(key, keySizeInBits, schedule)

9 #define DRBG_ENCRYPT(keySchedule, in, out) \

10 TpmCryptEncryptAES(SWIZZLE(keySchedule, in, out))

11 #if ((DRBG_KEY_SIZE_BITS % RADIX_BITS) != 0) \

12 || ((DRBG_IV_SIZE_BITS % RADIX_BITS) != 0)

13 #error "Key size and IV for DRBG must be even multiples of the radix"

14 #endif

15 #if (DRBG_KEY_SIZE_BITS % DRBG_IV_SIZE_BITS) != 0

16 #error "Key size for DRBG must be even multiple of the cypher block size"

17 #endif

Derived values

18 #define DRBG_MAX_REQUESTS_PER_RESEED (1 << 48)

19 #define DRBG_MAX_REQEST_SIZE (1 << 32)

20 #define pDRBG_KEY(seed) ((DRBG_KEY *)&(((BYTE *)(seed))[0]))

21 #define pDRBG_IV(seed) ((DRBG_IV *)&(((BYTE *)(seed))[DRBG_KEY_SIZE_BYTES]))

22 #define DRBG_KEY_SIZE_WORDS (BITS_TO_CRYPT_WORDS(DRBG_KEY_SIZE_BITS))

23 #define DRBG_KEY_SIZE_BYTES (DRBG_KEY_SIZE_WORDS * RADIX_BYTES)

24 #define DRBG_IV_SIZE_WORDS (BITS_TO_CRYPT_WORDS(DRBG_IV_SIZE_BITS))

25 #define DRBG_IV_SIZE_BYTES (DRBG_IV_SIZE_WORDS * RADIX_BYTES)

26 #define DRBG_SEED_SIZE_WORDS (DRBG_KEY_SIZE_WORDS + DRBG_IV_SIZE_WORDS)

27 #define DRBG_SEED_SIZE_BYTES (DRBG_KEY_SIZE_BYTES + DRBG_IV_SIZE_BYTES)

28 typedef union

29 {

30 BYTE bytes[DRBG_KEY_SIZE_BYTES];

31 crypt_uword_t words[DRBG_KEY_SIZE_WORDS];

32 } DRBG_KEY;

33 typedef union

34 {

35 BYTE bytes[DRBG_IV_SIZE_BYTES];

36 crypt_uword_t words[DRBG_IV_SIZE_WORDS];

37 } DRBG_IV;

38 typedef union

39 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 599

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

40 BYTE bytes[DRBG_SEED_SIZE_BYTES];

41 crypt_uword_t words[DRBG_SEED_SIZE_WORDS];

42 } DRBG_SEED;

43 #define CTR_DRBG_MAX_REQUESTS_PER_RESEED ((UINT64)1 << 20)

44 #define CTR_DRBG_MAX_BYTES_PER_REQUEST (1 << 16)

45 # define CTR_DRBG_MIN_ENTROPY_INPUT_LENGTH DRBG_SEED_SIZE_BYTES

46 # define CTR_DRBG_MAX_ENTROPY_INPUT_LENGTH DRBG_SEED_SIZE_BYTES

47 # define CTR_DRBG_MAX_ADDITIONAL_INPUT_LENGTH DRBG_SEED_SIZE_BYTES

48 #define TESTING (1 << 0)

49 #define ENTROPY (1 << 1)

50 #define TESTED (1 << 2)

51 #define IsTestStateSet(BIT) ((g_cryptoSelfTestState.rng & BIT) != 0)

52 #define SetTestStateBit(BIT) (g_cryptoSelfTestState.rng |= BIT)

53 #define ClearTestStateBit(BIT) (g_cryptoSelfTestState.rng &= ~BIT)

54 #define IsSelfTest() IsTestStateSet(TESTING)

55 #define SetSelfTest() SetTestStateBit(TESTING)

56 #define ClearSelfTest() ClearTestStateBit(TESTING)

57 #define IsEntropyBad() IsTestStateSet(ENTROPY)

58 #define SetEntropyBad() SetTestStateBit(ENTROPY)

59 #define ClearEntropyBad() ClearTestStateBit(ENTROPY)

60 #define IsDrbgTested() IsTestStateSet(TESTED)

61 #define SetDrbgTested() SetTestStateBit(TESTED)

62 #define ClearDrbgTested() ClearTestStateBit(TESTED)

63 typedef struct

64 {

65 UINT64 reseedCounter;

66 UINT32 magic;

67 DRBG_SEED seed; // contains the key and IV for the counter mode DRBG

68 UINT32 lastValue[4]; // used when the TPM does continuous self-test

69 // for FIPS compliance of DRBG

70 } DRBG_STATE, *pDRBG_STATE;

71 #define DRBG_MAGIC ((UINT32) 0x47425244) // "DRBG" backwards so that it displays

72 typedef struct

73 {

74 UINT64 counter;

75 UINT32 magic;

76 UINT32 limit;

77 TPM2B *seed;

78 const TPM2B *label;

79 TPM2B *context;

80 TPM_ALG_ID hash;

81 TPM_ALG_ID kdf;

82 UINT16 digestSize;

83 TPM2B_DIGEST residual;

84 } KDF_STATE, *pKDR_STATE;

85 #define KDF_MAGIC ((UINT32) 0x4048444a) // "KDF " backwards

Make sure that any other structures added to this union start with a 64-bit counter and a 32-bit magic

number

86 typedef union

87 {

88 DRBG_STATE drbg;

89 KDF_STATE kdf;

90 } RAND_STATE;

This is the state used when the library uses a random number generator. A special function is installed for

the library to call. That function picks up the state from this location and uses it for the generation of the

random number.

91 extern RAND_STATE *s_random;

92

93 // When instrumenting RSA key sieve

94 #if RSA_INSTRUMENT

Trusted Platform Module Library Part 4: Supporting Routines

Page 600 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

95 #define PRIME_INDEX(x) ((x) == 512 ? 0 : (x) == 1024 ? 1 : 2)

96 # define INSTRUMENT_SET(a, b) ((a) = (b))

97 # define INSTRUMENT_ADD(a, b) (a) = (a) + (b)

98 # define INSTRUMENT_INC(a) (a) = (a) + 1

99 extern UINT32 PrimeIndex;

100 extern UINT32 failedAtIteration[10];

101 extern UINT32 PrimeCounts[3];

102 extern UINT32 MillerRabinTrials[3];

103 extern UINT32 totalFieldsSieved[3];

104 extern UINT32 bitsInFieldAfterSieve[3];

105 extern UINT32 emptyFieldsSieved[3];

106 extern UINT32 noPrimeFields[3];

107 extern UINT32 primesChecked[3];

108 extern UINT16 lastSievePrime;

109 #else

110 # define INSTRUMENT_SET(a, b)

111 # define INSTRUMENT_ADD(a, b)

112 # define INSTRUMENT_INC(a)

113 #endif

114 #endif // _CRYPT_RAND_H

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 601

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.5 CryptRsa.h

This file contains the RSA-related structures and defines.

1 #ifndef _CRYPT_RSA_H

2 #define _CRYPT_RSA_H

These values are used in the bigNum representation of various RSA values.

3 BN_TYPE(rsa, MAX_RSA_KEY_BITS);

4 #define BN_RSA(name) BN_VAR(name, MAX_RSA_KEY_BITS)

5 #define BN_RSA_INITIALIZED(name, initializer) \

6 BN_INITIALIZED(name, MAX_RSA_KEY_BITS, initializer)

7 #define BN_PRIME(name) BN_VAR(name, (MAX_RSA_KEY_BITS / 2))

8 BN_TYPE(prime, (MAX_RSA_KEY_BITS / 2));

9 #define BN_PRIME_INITIALIZED(name, initializer) \

10 BN_INITIALIZED(name, MAX_RSA_KEY_BITS / 2, initializer)

11 #if !CRT_FORMAT_RSA

12 # error This verson only works with CRT formatted data

13 #endif // !CRT_FORMAT_RSA

14 typedef struct privateExponent

15 {

16 bigNum P;

17 bigNum Q;

18 bigNum dP;

19 bigNum dQ;

20 bigNum qInv;

21 bn_prime_t entries[5];

22 } privateExponent;

23 #define NEW_PRIVATE_EXPONENT(X) \

24 privateExponent _##X; \

25 privateExponent *X = RsaInitializeExponent(&(_##X))

26 #endif // _CRYPT_RSA_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 602 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.6 CryptTest.h

This file contains constant definitions used for self-test.

1 #ifndef _CRYPT_TEST_H

2 #define _CRYPT_TEST_H

This is the definition of a bit array with one bit per algorithm.

NOTE: Since bit numbering starts at zero, when ALG_LAST_VALUE is a multiple of 8, ALGORITHM_VECTOR will
need to have byte for the single bit in the last byte. So, for example, when ALG_LAST_VECTOR is 8,
ALGORITHM_VECTOR will need 2 bytes.

3 #define ALGORITHM_VECTOR_BYTES ((ALG_LAST_VALUE + 8) / 8)

4 typedef BYTE ALGORITHM_VECTOR[ALGORITHM_VECTOR_BYTES];

5 #ifdef TEST_SELF_TEST

6 LIB_EXPORT extern ALGORITHM_VECTOR LibToTest;

7 #endif

8

9 // This structure is used to contain self-test tracking information for the

10 // cryptographic modules. Each of the major modules is given a 32-bit value in

11 // which it may maintain its own self test information. The convention for this

12 // state is that when all of the bits in this structure are 0, all functions need

13 // to be tested.

14 typedef struct

15 {

16 UINT32 rng;

17 UINT32 hash;

18 UINT32 sym;

19 #if ALG_RSA

20 UINT32 rsa;

21 #endif

22 #if ALG_ECC

23 UINT32 ecc;

24 #endif

25 } CRYPTO_SELF_TEST_STATE;

26

27 #endif // _CRYPT_TEST_H

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 603

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.7 HashTestData.h

Hash Test Vectors

1 TPM2B_TYPE(HASH_TEST_KEY, 128); // Twice the largest digest size

2 TPM2B_HASH_TEST_KEY c_hashTestKey = {{128, {

3 0xa0,0xed,0x5c,0x9a,0xd2,0x4a,0x21,0x40,0x1a,0xd0,0x81,0x47,0x39,0x63,0xf9,0x50,

4 0xdc,0x59,0x47,0x11,0x40,0x13,0x99,0x92,0xc0,0x72,0xa4,0x0f,0xe2,0x33,0xe4,0x63,

5 0x9b,0xb6,0x76,0xc3,0x1e,0x6f,0x13,0xee,0xcc,0x99,0x71,0xa5,0xc0,0xcf,0x9a,0x40,

6 0xcf,0xdb,0x66,0x70,0x05,0x63,0x54,0x12,0x25,0xf4,0xe0,0x1b,0x23,0x35,0xe3,0x70,

7 0x7d,0x19,0x5f,0x00,0xe4,0xf1,0x61,0x73,0x05,0xd8,0x58,0x7f,0x60,0x61,0x84,0x36,

8 0xec,0xbe,0x96,0x1b,0x69,0x00,0xf0,0x9a,0x6e,0xe3,0x26,0x73,0x0d,0x17,0x5b,0x33,

9 0x41,0x44,0x9d,0x90,0xab,0xd9,0x6b,0x7d,0x48,0x99,0x25,0x93,0x29,0x14,0x2b,0xce,

10 0x93,0x8d,0x8c,0xaf,0x31,0x0e,0x9c,0x57,0xd8,0x5b,0x57,0x20,0x1b,0x9f,0x2d,0xa5

11 }}};

12

13 TPM2B_TYPE(HASH_TEST_DATA, 256); // Twice the largest block size

14 TPM2B_HASH_TEST_DATA c_hashTestData = {{256, {

15 0x88,0xac,0xc3,0xe5,0x5f,0x66,0x9d,0x18,0x80,0xc9,0x7a,0x9c,0xa4,0x08,0x90,0x98,

16 0x0f,0x3a,0x53,0x92,0x4c,0x67,0x4e,0xb7,0x37,0xec,0x67,0x87,0xb6,0xbe,0x10,0xca,

17 0x11,0x5b,0x4a,0x0b,0x45,0xc3,0x32,0x68,0x48,0x69,0xce,0x25,0x1b,0xc8,0xaf,0x44,

18 0x79,0x22,0x83,0xc8,0xfb,0xe2,0x63,0x94,0xa2,0x3c,0x59,0x3e,0x3e,0xc6,0x64,0x2c,

19 0x1f,0x8c,0x11,0x93,0x24,0xa3,0x17,0xc5,0x2f,0x37,0xcf,0x95,0x97,0x8e,0x63,0x39,

20 0x68,0xd5,0xca,0xba,0x18,0x37,0x69,0x6e,0x4f,0x19,0xfd,0x8a,0xc0,0x8d,0x87,0x3a,

21 0xbc,0x31,0x42,0x04,0x05,0xef,0xb5,0x02,0xef,0x1e,0x92,0x4b,0xb7,0x73,0x2c,0x8c,

22 0xeb,0x23,0x13,0x81,0x34,0xb9,0xb5,0xc1,0x17,0x37,0x39,0xf8,0x3e,0xe4,0x4c,0x06,

23 0xa8,0x81,0x52,0x2f,0xef,0xc9,0x9c,0x69,0x89,0xbc,0x85,0x9c,0x30,0x16,0x02,0xca,

24 0xe3,0x61,0xd4,0x0f,0xed,0x34,0x1b,0xca,0xc1,0x1b,0xd1,0xfa,0xc1,0xa2,0xe0,0xdf,

25 0x52,0x2f,0x0b,0x4b,0x9f,0x0e,0x45,0x54,0xb9,0x17,0xb6,0xaf,0xd6,0xd5,0xca,0x90,

26 0x29,0x57,0x7b,0x70,0x50,0x94,0x5c,0x8e,0xf6,0x4e,0x21,0x8b,0xc6,0x8b,0xa6,0xbc,

27 0xb9,0x64,0xd4,0x4d,0xf3,0x68,0xd8,0xac,0xde,0xd8,0xd8,0xb5,0x6d,0xcd,0x93,0xeb,

28 0x28,0xa4,0xe2,0x5c,0x44,0xef,0xf0,0xe1,0x6f,0x38,0x1a,0x3c,0xe6,0xef,0xa2,0x9d,

29 0xb9,0xa8,0x05,0x2a,0x95,0xec,0x5f,0xdb,0xb0,0x25,0x67,0x9c,0x86,0x7a,0x8e,0xea,

30 0x51,0xcc,0xc3,0xd3,0xff,0x6e,0xf0,0xed,0xa3,0xae,0xf9,0x5d,0x33,0x70,0xf2,0x11

31 }}};

32

33 #if ALG_SHA1 == YES

34 TPM2B_TYPE(SHA1, 20);

35 TPM2B_SHA1 c_SHA1_digest = {{20, {

36 0xee,0x2c,0xef,0x93,0x76,0xbd,0xf8,0x91,0xbc,0xe6,0xe5,0x57,0x53,0x77,0x01,0xb5,

37 0x70,0x95,0xe5,0x40

38 }}};

39 #endif

40

41 #if ALG_SHA256 == YES

42 TPM2B_TYPE(SHA256, 32);

43 TPM2B_SHA256 c_SHA256_digest = {{32, {

44 0x64,0xe8,0xe0,0xc3,0xa9,0xa4,0x51,0x49,0x10,0x55,0x8d,0x31,0x71,0xe5,0x2f,0x69,

45 0x3a,0xdc,0xc7,0x11,0x32,0x44,0x61,0xbd,0x34,0x39,0x57,0xb0,0xa8,0x75,0x86,0x1b

46 }}};

47 #endif

48

49 #if ALG_SHA384 == YES

50 TPM2B_TYPE(SHA384, 48);

51 TPM2B_SHA384 c_SHA384_digest = {{48, {

52 0x37,0x75,0x29,0xb5,0x20,0x15,0x6e,0xa3,0x7e,0xa3,0x0d,0xcd,0x80,0xa8,0xa3,0x3d,

53 0xeb,0xe8,0xad,0x4e,0x1c,0x77,0x94,0x5a,0xaf,0x6c,0xd0,0xc1,0xfa,0x43,0x3f,0xc7,

54 0xb8,0xf1,0x01,0xc0,0x60,0xbf,0xf2,0x87,0xe8,0x71,0x9e,0x51,0x97,0xa0,0x09,0x8d

55 }}};

56 #endif

57

58 #if ALG_SHA512 == YES

Trusted Platform Module Library Part 4: Supporting Routines

Page 604 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

59 TPM2B_TYPE(SHA512, 64);

60 TPM2B_SHA512 c_SHA512_digest = {{64, {

61 0xe2,0x7b,0x10,0x3d,0x5e,0x48,0x58,0x44,0x67,0xac,0xa3,0x81,0x8c,0x1d,0xc5,0x71,

62 0x66,0x92,0x8a,0x89,0xaa,0xd4,0x35,0x51,0x60,0x37,0x31,0xd7,0xba,0xe7,0x93,0x0b,

63 0x16,0x4d,0xb3,0xc8,0x34,0x98,0x3c,0xd3,0x53,0xde,0x5e,0xe8,0x0c,0xbc,0xaf,0xc9,

64 0x24,0x2c,0xcc,0xed,0xdb,0xde,0xba,0x1f,0x14,0x14,0x5a,0x95,0x80,0xde,0x66,0xbd

65 }}};

66 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 605

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.8 KdfTestData.h

Hash Test Vectors

1 #define TEST_KDF_KEY_SIZE 20

2 TPM2B_TYPE(KDF_TEST_KEY, TEST_KDF_KEY_SIZE);

3 TPM2B_KDF_TEST_KEY c_kdfTestKeyIn = {{TEST_KDF_KEY_SIZE, {

4 0x27, 0x1F, 0xA0, 0x8B, 0xBD, 0xC5, 0x06, 0x0E, 0xC3, 0xDF,

5 0xA9, 0x28, 0xFF, 0x9B, 0x73, 0x12, 0x3A, 0x12, 0xDA, 0x0C }}};

6

7 TPM2B_TYPE(KDF_TEST_LABEL, 17);

8 TPM2B_KDF_TEST_LABEL c_kdfTestLabel = {{17, {

9 0x4B, 0x44, 0x46, 0x53, 0x45, 0x4C, 0x46, 0x54,

10 0x45, 0x53, 0x54, 0x4C, 0x41, 0x42, 0x45, 0x4C, 0x00 }}};

11

12 TPM2B_TYPE(KDF_TEST_CONTEXT, 8);

13 TPM2B_KDF_TEST_CONTEXT c_kdfTestContextU = {{8, {

14 0xCE, 0x24, 0x4F, 0x39, 0x5D, 0xCA, 0x73, 0x91 }}};

15

16 TPM2B_KDF_TEST_CONTEXT c_kdfTestContextV = {{8, {

17 0xDA, 0x50, 0x40, 0x31, 0xDD, 0xF1, 0x2E, 0x83 }}};

18

19 #if ALG_SHA512 == ALG_YES

20 TPM2B_KDF_TEST_KEY c_kdfTestKeyOut = {{20, {

21 0x8b, 0xe2, 0xc1, 0xb8, 0x5b, 0x78, 0x56, 0x9b, 0x9f, 0xa7,

22 0x59, 0xf5, 0x85, 0x7c, 0x56, 0xd6, 0x84, 0x81, 0x0f, 0xd3 }}};

23 #define KDF_TEST_ALG TPM_ALG_SHA512

24

25 #elif ALG_SHA384 == ALG_YES

26 TPM2B_KDF_TEST_KEY c_kdfTestKeyOut = {{20, {

27 0x1d, 0xce, 0x70, 0xc9, 0x11, 0x3e, 0xb2, 0xdb, 0xa4, 0x7b,

28 0xd9, 0xcf, 0xc7, 0x2b, 0xf4, 0x6f, 0x45, 0xb0, 0x93, 0x12 }}};

29 #define KDF_TEST_ALG TPM_ALG_SHA384

30

31 #elif ALG_SHA256 == ALG_YES

32 TPM2B_KDF_TEST_KEY c_kdfTestKeyOut = {{20, {

33 0xbb, 0x02, 0x59, 0xe1, 0xc8, 0xba, 0x60, 0x7e, 0x6a, 0x2c,

34 0xd7, 0x04, 0xb6, 0x9a, 0x90, 0x2e, 0x9a, 0xde, 0x84, 0xc4 }}};

35 #define KDF_TEST_ALG TPM_ALG_SHA256

36

37 #elif ALG_SHA1 == ALG_YES

38 TPM2B_KDF_TEST_KEY c_kdfTestKeyOut = {{20, {

39 0x55, 0xb5, 0xa7, 0x18, 0x4a, 0xa0, 0x74, 0x23, 0xc4, 0x7d,

40 0xae, 0x76, 0x6c, 0x26, 0xa2, 0x37, 0x7d, 0x7c, 0xf8, 0x51 }}};

41 #define KDF_TEST_ALG TPM_ALG_SHA1

42 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 606 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.9 RsaTestData.h

RSA Test Vectors

1 #define RSA_TEST_KEY_SIZE 256

2 typedef struct

3 {

4 UINT16 size;

5 BYTE buffer[RSA_TEST_KEY_SIZE];

6 } TPM2B_RSA_TEST_KEY;

7 typedef TPM2B_RSA_TEST_KEY TPM2B_RSA_TEST_VALUE;

8 typedef struct

9 {

10 UINT16 size;

11 BYTE buffer[RSA_TEST_KEY_SIZE / 2];

12 } TPM2B_RSA_TEST_PRIME;

13 const TPM2B_RSA_TEST_KEY c_rsaPublicModulus = {256, {

14 0x91,0x12,0xf5,0x07,0x9d,0x5f,0x6b,0x1c,0x90,0xf6,0xcc,0x87,0xde,0x3a,0x7a,0x15,

15 0xdc,0x54,0x07,0x6c,0x26,0x8f,0x25,0xef,0x7e,0x66,0xc0,0xe3,0x82,0x12,0x2f,0xab,

16 0x52,0x82,0x1e,0x85,0xbc,0x53,0xba,0x2b,0x01,0xad,0x01,0xc7,0x8d,0x46,0x4f,0x7d,

17 0xdd,0x7e,0xdc,0xb0,0xad,0xf6,0x0c,0xa1,0x62,0x92,0x97,0x8a,0x3e,0x6f,0x7e,0x3e,

18 0xf6,0x9a,0xcc,0xf9,0xa9,0x86,0x77,0xb6,0x85,0x43,0x42,0x04,0x13,0x65,0xe2,0xad,

19 0x36,0xc9,0xbf,0xc1,0x97,0x84,0x6f,0xee,0x7c,0xda,0x58,0xd2,0xae,0x07,0x00,0xaf,

20 0xc5,0x5f,0x4d,0x3a,0x98,0xb0,0xed,0x27,0x7c,0xc2,0xce,0x26,0x5d,0x87,0xe1,0xe3,

21 0xa9,0x69,0x88,0x4f,0x8c,0x08,0x31,0x18,0xae,0x93,0x16,0xe3,0x74,0xde,0xd3,0xf6,

22 0x16,0xaf,0xa3,0xac,0x37,0x91,0x8d,0x10,0xc6,0x6b,0x64,0x14,0x3a,0xd9,0xfc,0xe4,

23 0xa0,0xf2,0xd1,0x01,0x37,0x4f,0x4a,0xeb,0xe5,0xec,0x98,0xc5,0xd9,0x4b,0x30,0xd2,

24 0x80,0x2a,0x5a,0x18,0x5a,0x7d,0xd4,0x3d,0xb7,0x62,0x98,0xce,0x6d,0xa2,0x02,0x6e,

25 0x45,0xaa,0x95,0x73,0xe0,0xaa,0x75,0x57,0xb1,0x3d,0x1b,0x05,0x75,0x23,0x6b,0x20,

26 0x69,0x9e,0x14,0xb0,0x7f,0xac,0xae,0xd2,0xc7,0x48,0x3b,0xe4,0x56,0x11,0x34,0x1e,

27 0x05,0x1a,0x30,0x20,0xef,0x68,0x93,0x6b,0x9d,0x7e,0xdd,0xba,0x96,0x50,0xcc,0x1c,

28 0x81,0xb4,0x59,0xb9,0x74,0x36,0xd9,0x97,0xdc,0x8f,0x17,0x82,0x72,0xb3,0x59,0xf6,

29

0x23,0xfa,0x84,0xf7,0x6d,0xf2,0x05,0xff,0xf1,0xb9,0xcc,0xe9,0xa2,0x82,0x01,0xfb}};

30

31 const TPM2B_RSA_TEST_PRIME c_rsaPrivatePrime = {RSA_TEST_KEY_SIZE / 2, {

32 0xb7,0xa0,0x90,0xc7,0x92,0x09,0xde,0x71,0x03,0x37,0x4a,0xb5,0x2f,0xda,0x61,0xb8,

33 0x09,0x1b,0xba,0x99,0x70,0x45,0xc1,0x0b,0x15,0x12,0x71,0x8a,0xb3,0x2a,0x4d,0x5a,

34 0x41,0x9b,0x73,0x89,0x80,0x0a,0x8f,0x18,0x4c,0x8b,0xa2,0x5b,0xda,0xbd,0x43,0xbe,

35 0xdc,0x76,0x4d,0x71,0x0f,0xb9,0xfc,0x7a,0x09,0xfe,0x4f,0xac,0x63,0xd9,0x2e,0x50,

36 0x3a,0xa1,0x37,0xc6,0xf2,0xa1,0x89,0x12,0xe7,0x72,0x64,0x2b,0xba,0xc1,0x1f,0xca,

37 0x9d,0xb7,0xaa,0x3a,0xa9,0xd3,0xa6,0x6f,0x73,0x02,0xbb,0x85,0x5d,0x9a,0xb9,0x5c,

38 0x08,0x83,0x22,0x20,0x49,0x91,0x5f,0x4b,0x86,0xbc,0x3f,0x76,0x43,0x08,0x97,0xbf,

39

0x82,0x55,0x36,0x2d,0x8b,0x6e,0x9e,0xfb,0xc1,0x67,0x6a,0x43,0xa2,0x46,0x81,0x71}};

40

41 const BYTE c_RsaTestValue[RSA_TEST_KEY_SIZE] = {

42 0x2a,0x24,0x3a,0xbb,0x50,0x1d,0xd4,0x2a,0xf9,0x18,0x32,0x34,0xa2,0x0f,0xea,0x5c,

43 0x91,0x77,0xe9,0xe1,0x09,0x83,0xdc,0x5f,0x71,0x64,0x5b,0xeb,0x57,0x79,0xa0,0x41,

44 0xc9,0xe4,0x5a,0x0b,0xf4,0x9f,0xdb,0x84,0x04,0xa6,0x48,0x24,0xf6,0x3f,0x66,0x1f,

45 0xa8,0x04,0x5c,0xf0,0x7a,0x6b,0x4a,0x9c,0x7e,0x21,0xb6,0xda,0x6b,0x65,0x9c,0x3a,

46 0x68,0x50,0x13,0x1e,0xa4,0xb7,0xca,0xec,0xd3,0xcc,0xb2,0x9b,0x8c,0x87,0xa4,0x6a,

47 0xba,0xc2,0x06,0x3f,0x40,0x48,0x7b,0xa8,0xb8,0x2c,0x03,0x14,0x33,0xf3,0x1d,0xe9,

48 0xbd,0x6f,0x54,0x66,0xb4,0x69,0x5e,0xbc,0x80,0x7c,0xe9,0x6a,0x43,0x7f,0xb8,0x6a,

49 0xa0,0x5f,0x5d,0x7a,0x20,0xfd,0x7a,0x39,0xe1,0xea,0x0e,0x94,0x91,0x28,0x63,0x7a,

50 0xac,0xc9,0xa5,0x3a,0x6d,0x31,0x7b,0x7c,0x54,0x56,0x99,0x56,0xbb,0xb7,0xa1,0x2d,

51 0xd2,0x5c,0x91,0x5f,0x1c,0xd3,0x06,0x7f,0x34,0x53,0x2f,0x4c,0xd1,0x8b,0xd2,0x9e,

52 0xdc,0xc3,0x94,0x0a,0xe1,0x0f,0xa5,0x15,0x46,0x2a,0x8e,0x10,0xc2,0xfe,0xb7,0x5e,

53 0x2d,0x0d,0xd1,0x25,0xfc,0xe4,0xf7,0x02,0x19,0xfe,0xb6,0xe4,0x95,0x9c,0x17,0x4a,

54 0x9b,0xdb,0xab,0xc7,0x79,0xe3,0x5e,0x40,0xd0,0x56,0x6d,0x25,0x0a,0x72,0x65,0x80,

55 0x92,0x9a,0xa8,0x07,0x70,0x32,0x14,0xfb,0xfe,0x08,0xeb,0x13,0xb4,0x07,0x68,0xb4,

56 0x58,0x39,0xbe,0x8e,0x78,0x3a,0x59,0x3f,0x9c,0x4c,0xe9,0xa8,0x64,0x68,0xf7,0xb9,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 607

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

57

0x6e,0x20,0xf5,0xcb,0xca,0x47,0xf2,0x17,0xaa,0x8b,0xbc,0x13,0x14,0x84,0xf6,0xab};

58

59 const TPM2B_RSA_TEST_VALUE c_RsaepKvt = {RSA_TEST_KEY_SIZE, {

60 0x73,0xbd,0x65,0x49,0xda,0x7b,0xb8,0x50,0x9e,0x87,0xf0,0x0a,0x8a,0x9a,0x07,0xb6,

61 0x00,0x82,0x10,0x14,0x60,0xd8,0x01,0xfc,0xc5,0x18,0xea,0x49,0x5f,0x13,0xcf,0x65,

62 0x66,0x30,0x6c,0x60,0x3f,0x24,0x3c,0xfb,0xe2,0x31,0x16,0x99,0x7e,0x31,0x98,0xab,

63 0x93,0xb8,0x07,0x53,0xcc,0xdb,0x7f,0x44,0xd9,0xee,0x5d,0xe8,0x5f,0x97,0x5f,0xe8,

64 0x1f,0x88,0x52,0x24,0x7b,0xac,0x62,0x95,0xb7,0x7d,0xf5,0xf8,0x9f,0x5a,0xa8,0x24,

65 0x9a,0x76,0x71,0x2a,0x35,0x2a,0xa1,0x08,0xbb,0x95,0xe3,0x64,0xdc,0xdb,0xc2,0x33,

66 0xa9,0x5f,0xbe,0x4c,0xc4,0xcc,0x28,0xc9,0x25,0xff,0xee,0x17,0x15,0x9a,0x50,0x90,

67 0x0e,0x15,0xb4,0xea,0x6a,0x09,0xe6,0xff,0xa4,0xee,0xc7,0x7e,0xce,0xa9,0x73,0xe4,

68 0xa0,0x56,0xbd,0x53,0x2a,0xe4,0xc0,0x2b,0xa8,0x9b,0x09,0x30,0x72,0x62,0x0f,0xf9,

69 0xf6,0xa1,0x52,0xd2,0x8a,0x37,0xee,0xa5,0xc8,0x47,0xe1,0x99,0x21,0x47,0xeb,0xdd,

70 0x37,0xaa,0xe4,0xbd,0x55,0x46,0x5a,0x5a,0x5d,0xfb,0x7b,0xfc,0xff,0xbf,0x26,0x71,

71 0xf6,0x1e,0xad,0xbc,0xbf,0x33,0xca,0xe1,0x92,0x8f,0x2a,0x89,0x6c,0x45,0x24,0xd1,

72 0xa6,0x52,0x56,0x24,0x5e,0x90,0x47,0xe5,0xcb,0x12,0xb0,0x32,0xf9,0xa6,0xbb,0xea,

73 0x37,0xa9,0xbd,0xef,0x23,0xef,0x63,0x07,0x6c,0xc4,0x4e,0x64,0x3c,0xc6,0x11,0x84,

74 0x7d,0x65,0xd6,0x5d,0x7a,0x17,0x58,0xa5,0xf7,0x74,0x3b,0x42,0xe3,0xd2,0xda,0x5f,

75

0x6f,0xe0,0x1e,0x4b,0xcf,0x46,0xe2,0xdf,0x3e,0x41,0x8e,0x0e,0xb0,0x3f,0x8b,0x65}};

76

77 #define OAEP_TEST_LABEL "OAEP Test Value"

78

79 #if ALG_SHA1_VALUE == DEFAULT_TEST_HASH

80

81 const TPM2B_RSA_TEST_VALUE c_OaepKvt = {RSA_TEST_KEY_SIZE, {

82 0x32,0x68,0x84,0x0b,0x9c,0xc9,0x25,0x26,0xd9,0xc0,0xd0,0xb1,0xde,0x60,0x55,0xae,

83 0x33,0xe5,0xcf,0x6c,0x85,0xbe,0x0d,0x71,0x11,0xe1,0x45,0x60,0xbb,0x42,0x3d,0xf3,

84 0xb1,0x18,0x84,0x7b,0xc6,0x5d,0xce,0x1d,0x5f,0x9a,0x97,0xcf,0xb1,0x97,0x9a,0x85,

85 0x7c,0xa7,0xa1,0x63,0x23,0xb6,0x74,0x0f,0x1a,0xee,0x29,0x51,0xeb,0x50,0x8f,0x3c,

86 0x8e,0x4e,0x31,0x38,0xdc,0x11,0xfc,0x9a,0x4e,0xaf,0x93,0xc9,0x7f,0x6e,0x35,0xf3,

87 0xc9,0xe4,0x89,0x14,0x53,0xe2,0xc2,0x1a,0xf7,0x6b,0x9b,0xf0,0x7a,0xa4,0x69,0x52,

88 0xe0,0x24,0x8f,0xea,0x31,0xa7,0x5c,0x43,0xb0,0x65,0xc9,0xfe,0xba,0xfe,0x80,0x9e,

89 0xa5,0xc0,0xf5,0x8d,0xce,0x41,0xf9,0x83,0x0d,0x8e,0x0f,0xef,0x3d,0x1f,0x6a,0xcc,

90 0x8a,0x3d,0x3b,0xdf,0x22,0x38,0xd7,0x34,0x58,0x7b,0x55,0xc9,0xf6,0xbc,0x7c,0x4c,

91 0x3f,0xd7,0xde,0x4e,0x30,0xa9,0x69,0xf3,0x5f,0x56,0x8f,0xc2,0xe7,0x75,0x79,0xb8,

92 0xa5,0xc8,0x0d,0xc0,0xcd,0xb6,0xc9,0x63,0xad,0x7c,0xe4,0x8f,0x39,0x60,0x4d,0x7d,

93 0xdb,0x34,0x49,0x2a,0x47,0xde,0xc0,0x42,0x4a,0x19,0x94,0x2e,0x50,0x21,0x03,0x47,

94 0xff,0x73,0xb3,0xb7,0x89,0xcc,0x7b,0x2c,0xeb,0x03,0xa7,0x9a,0x06,0xfd,0xed,0x19,

95 0xbb,0x82,0xa0,0x13,0xe9,0xfa,0xac,0x06,0x5f,0xc5,0xa9,0x2b,0xda,0x88,0x23,0xa2,

96 0x5d,0xc2,0x7f,0xda,0xc8,0x5a,0x94,0x31,0xc1,0x21,0xd7,0x1e,0x6b,0xd7,0x89,0xb1,

97

0x93,0x80,0xab,0xd1,0x37,0xf2,0x6f,0x50,0xcd,0x2a,0xea,0xb1,0xc4,0xcd,0xcb,0xb5}};

98

99 const TPM2B_RSA_TEST_VALUE c_RsaesKvt = {RSA_TEST_KEY_SIZE, {

100 0x29,0xa4,0x2f,0xbb,0x8a,0x14,0x05,0x1e,0x3c,0x72,0x76,0x77,0x38,0xe7,0x73,0xe3,

101 0x6e,0x24,0x4b,0x38,0xd2,0x1a,0xcf,0x23,0x58,0x78,0x36,0x82,0x23,0x6e,0x6b,0xef,

102 0x2c,0x3d,0xf2,0xe8,0xd6,0xc6,0x87,0x8e,0x78,0x9b,0x27,0x39,0xc0,0xd6,0xef,0x4d,

103 0x0b,0xfc,0x51,0x27,0x18,0xf3,0x51,0x5e,0x4d,0x96,0x3a,0xe2,0x15,0xe2,0x7e,0x42,

104 0xf4,0x16,0xd5,0xc6,0x52,0x5d,0x17,0x44,0x76,0x09,0x7a,0xcf,0xe3,0x30,0xe3,0x84,

105 0xf6,0x6f,0x3a,0x33,0xfb,0x32,0x0d,0x1d,0xe7,0x7c,0x80,0x82,0x4f,0xed,0xda,0x87,

106 0x11,0x9c,0xc3,0x7e,0x85,0xbd,0x18,0x58,0x08,0x2b,0x23,0x37,0xe7,0x9d,0xd0,0xd1,

107 0x79,0xe2,0x05,0xbd,0xf5,0x4f,0x0e,0x0f,0xdb,0x4a,0x74,0xeb,0x09,0x01,0xb3,0xca,

108 0xbd,0xa6,0x7b,0x09,0xb1,0x13,0x77,0x30,0x4d,0x87,0x41,0x06,0x57,0x2e,0x5f,0x36,

109 0x6e,0xfc,0x35,0x69,0xfe,0x0a,0x24,0x6c,0x98,0x8c,0xda,0x97,0xf4,0xfb,0xc7,0x83,

110 0x2d,0x3e,0x7d,0xc0,0x5c,0x34,0xfd,0x11,0x2a,0x12,0xa7,0xae,0x4a,0xde,0xc8,0x4e,

111 0xcf,0xf4,0x85,0x63,0x77,0xc6,0x33,0x34,0xe0,0x27,0xe4,0x9e,0x91,0x0b,0x4b,0x85,

112 0xf0,0xb0,0x79,0xaa,0x7c,0xc6,0xff,0x3b,0xbc,0x04,0x73,0xb8,0x95,0xd7,0x31,0x54,

113 0x3b,0x56,0xec,0x52,0x15,0xd7,0x3e,0x62,0xf5,0x82,0x99,0x3e,0x2a,0xc0,0x4b,0x2e,

114 0x06,0x57,0x6d,0x3f,0x3e,0x77,0x1f,0x2b,0x2d,0xc5,0xb9,0x3b,0x68,0x56,0x73,0x70,

115

0x32,0x6b,0x6b,0x65,0x25,0x76,0x45,0x6c,0x45,0xf1,0x6c,0x59,0xfc,0x94,0xa7,0x15}};

Trusted Platform Module Library Part 4: Supporting Routines

Page 608 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

116

117 const TPM2B_RSA_TEST_VALUE c_RsapssKvt = {RSA_TEST_KEY_SIZE, {

118 0x01,0xfe,0xd5,0x83,0x0b,0x15,0xba,0x90,0x2c,0xdf,0xf7,0x26,0xb7,0x8f,0xb1,0xd7,

119 0x0b,0xfd,0x83,0xf9,0x95,0xd5,0xd7,0xb5,0xc5,0xc5,0x4a,0xde,0xd5,0xe6,0x20,0x78,

120 0xca,0x73,0x77,0x3d,0x61,0x36,0x48,0xae,0x3e,0x8f,0xee,0x43,0x29,0x96,0xdf,0x3f,

121 0x1c,0x97,0x5a,0xbe,0xe5,0xa2,0x7e,0x5b,0xd0,0xc0,0x29,0x39,0x83,0x81,0x77,0x24,

122 0x43,0xdb,0x3c,0x64,0x4d,0xf0,0x23,0xe4,0xae,0x0f,0x78,0x31,0x8c,0xda,0x0c,0xec,

123 0xf1,0xdf,0x09,0xf2,0x14,0x6a,0x4d,0xaf,0x36,0x81,0x6e,0xbd,0xbe,0x36,0x79,0x88,

124 0x98,0xb6,0x6f,0x5a,0xad,0xcf,0x7c,0xee,0xe0,0xdd,0x00,0xbe,0x59,0x97,0x88,0x00,

125 0x34,0xc0,0x8b,0x48,0x42,0x05,0x04,0x5a,0xb7,0x85,0x38,0xa0,0x35,0xd7,0x3b,0x51,

126 0xb8,0x7b,0x81,0x83,0xee,0xff,0x76,0x6f,0x50,0x39,0x4d,0xab,0x89,0x63,0x07,0x6d,

127 0xf5,0xe5,0x01,0x10,0x56,0xfe,0x93,0x06,0x8f,0xd3,0xc9,0x41,0xab,0xc9,0xdf,0x6e,

128 0x59,0xa8,0xc3,0x1d,0xbf,0x96,0x4a,0x59,0x80,0x3c,0x90,0x3a,0x59,0x56,0x4c,0x6d,

129 0x44,0x6d,0xeb,0xdc,0x73,0xcd,0xc1,0xec,0xb8,0x41,0xbf,0x89,0x8c,0x03,0x69,0x4c,

130 0xaf,0x3f,0xc1,0xc5,0xc7,0xe7,0x7d,0xa7,0x83,0x39,0x70,0xa2,0x6b,0x83,0xbc,0xbe,

131 0xf5,0xbf,0x1c,0xee,0x6e,0xa3,0x22,0x1e,0x25,0x2f,0x16,0x68,0x69,0x5a,0x1d,0xfa,

132 0x2c,0x3a,0x0f,0x67,0xe1,0x77,0x12,0xe8,0x3d,0xba,0xaa,0xef,0x96,0x9c,0x1f,0x64,

133

0x32,0xf4,0xa7,0xb3,0x3f,0x7d,0x61,0xbb,0x9a,0x27,0xad,0xfb,0x2f,0x33,0xc4,0x70}};

134

135 const TPM2B_RSA_TEST_VALUE c_RsassaKvt = {RSA_TEST_KEY_SIZE, {

136 0x67,0x4e,0xdd,0xc2,0xd2,0x6d,0xe0,0x03,0xc4,0xc2,0x41,0xd3,0xd4,0x61,0x30,0xd0,

137 0xe1,0x68,0x31,0x4a,0xda,0xd9,0xc2,0x5d,0xaa,0xa2,0x7b,0xfb,0x44,0x02,0xf5,0xd6,

138 0xd8,0x2e,0xcd,0x13,0x36,0xc9,0x4b,0xdb,0x1a,0x4b,0x66,0x1b,0x4f,0x9c,0xb7,0x17,

139 0xac,0x53,0x37,0x4f,0x21,0xbd,0x0c,0x66,0xac,0x06,0x65,0x52,0x9f,0x04,0xf6,0xa5,

140 0x22,0x5b,0xf7,0xe6,0x0d,0x3c,0x9f,0x41,0x19,0x09,0x88,0x7c,0x41,0x4c,0x2f,0x9c,

141 0x8b,0x3c,0xdd,0x7c,0x28,0x78,0x24,0xd2,0x09,0xa6,0x5b,0xf7,0x3c,0x88,0x7e,0x73,

142 0x5a,0x2d,0x36,0x02,0x4f,0x65,0xb0,0xcb,0xc8,0xdc,0xac,0xa2,0xda,0x8b,0x84,0x91,

143 0x71,0xe4,0x30,0x8b,0xb6,0x12,0xf2,0xf0,0xd0,0xa0,0x38,0xcf,0x75,0xb7,0x20,0xcb,

144 0x35,0x51,0x52,0x6b,0xc4,0xf4,0x21,0x95,0xc2,0xf7,0x9a,0x13,0xc1,0x1a,0x7b,0x8f,

145 0x77,0xda,0x19,0x48,0xbb,0x6d,0x14,0x5d,0xba,0x65,0xb4,0x9e,0x43,0x42,0x58,0x98,

146 0x0b,0x91,0x46,0xd8,0x4c,0xf3,0x4c,0xaf,0x2e,0x02,0xa6,0xb2,0x49,0x12,0x62,0x43,

147 0x4e,0xa8,0xac,0xbf,0xfd,0xfa,0x37,0x24,0xea,0x69,0x1c,0xf5,0xae,0xfa,0x08,0x82,

148 0x30,0xc3,0xc0,0xf8,0x9a,0x89,0x33,0xe1,0x40,0x6d,0x18,0x5c,0x7b,0x90,0x48,0xbf,

149 0x37,0xdb,0xea,0xfb,0x0e,0xd4,0x2e,0x11,0xfa,0xa9,0x86,0xff,0x00,0x0b,0x7b,0xca,

150 0x09,0x64,0x6a,0x8f,0x0c,0x0e,0x09,0x14,0x36,0x4a,0x74,0x31,0x18,0x5b,0x18,0xeb,

151

0xea,0x83,0xc3,0x66,0x68,0xa6,0x7d,0x43,0x06,0x0f,0x99,0x60,0xce,0x65,0x08,0xf6}};

152

153 #endif // SHA1

154

155 #if ALG_SHA256_VALUE == DEFAULT_TEST_HASH

156

157 const TPM2B_RSA_TEST_VALUE c_OaepKvt = {RSA_TEST_KEY_SIZE, {

158 0x33,0x20,0x6e,0x21,0xc3,0xf6,0xcd,0xf8,0xd7,0x5d,0x9f,0xe9,0x05,0x14,0x8c,0x7c,

159 0xbb,0x69,0x24,0x9e,0x52,0x8f,0xaf,0x84,0x73,0x21,0x2c,0x85,0xa5,0x30,0x4d,0xb6,

160 0xb8,0xfa,0x15,0x9b,0xc7,0x8f,0xc9,0x7a,0x72,0x4b,0x85,0xa4,0x1c,0xc5,0xd8,0xe4,

161 0x92,0xb3,0xec,0xd9,0xa8,0xca,0x5e,0x74,0x73,0x89,0x7f,0xb4,0xac,0x7e,0x68,0x12,

162 0xb2,0x53,0x27,0x4b,0xbf,0xd0,0x71,0x69,0x46,0x9f,0xef,0xf4,0x70,0x60,0xf8,0xd7,

163 0xae,0xc7,0x5a,0x27,0x38,0x25,0x2d,0x25,0xab,0x96,0x56,0x66,0x3a,0x23,0x40,0xa8,

164 0xdb,0xbc,0x86,0xe8,0xf3,0xd2,0x58,0x0b,0x44,0xfc,0x94,0x1e,0xb7,0x5d,0xb4,0x57,

165 0xb5,0xf3,0x56,0xee,0x9b,0xcf,0x97,0x91,0x29,0x36,0xe3,0x06,0x13,0xa2,0xea,0xd6,

166 0xd6,0x0b,0x86,0x0b,0x1a,0x27,0xe6,0x22,0xc4,0x7b,0xff,0xde,0x0f,0xbf,0x79,0xc8,

167 0x1b,0xed,0xf1,0x27,0x62,0xb5,0x8b,0xf9,0xd9,0x76,0x90,0xf6,0xcc,0x83,0x0f,0xce,

168 0xce,0x2e,0x63,0x7a,0x9b,0xf4,0x48,0x5b,0xd7,0x81,0x2c,0x3a,0xdb,0x59,0x0d,0x4d,

169 0x9e,0x46,0xe9,0x9e,0x92,0x22,0x27,0x1c,0xb0,0x67,0x8a,0xe6,0x8a,0x16,0x8a,0xdf,

170 0x95,0x76,0x24,0x82,0xad,0xf1,0xbc,0x97,0xbf,0xd3,0x5e,0x6e,0x14,0x0c,0x5b,0x25,

171 0xfe,0x58,0xfa,0x64,0xe5,0x14,0x46,0xb7,0x58,0xc6,0x3f,0x7f,0x42,0xd2,0x8e,0x45,

172 0x13,0x41,0x85,0x12,0x2e,0x96,0x19,0xd0,0x5e,0x7d,0x34,0x06,0x32,0x2b,0xc8,0xd9,

173

0x0d,0x6c,0x06,0x36,0xa0,0xff,0x47,0x57,0x2c,0x25,0xbc,0x8a,0xa5,0xe2,0xc7,0xe3}};

174

175 const TPM2B_RSA_TEST_VALUE c_RsaesKvt = {RSA_TEST_KEY_SIZE, {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 609

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

176 0x39,0xfc,0x10,0x5d,0xf4,0x45,0x3d,0x94,0x53,0x06,0x89,0x24,0xe7,0xe8,0xfd,0x03,

177 0xac,0xfd,0xbd,0xb2,0x28,0xd3,0x4a,0x52,0xc5,0xd4,0xdb,0x17,0xd4,0x24,0x05,0xc4,

178 0xeb,0x6a,0xce,0x1d,0xbb,0x37,0xcb,0x09,0xd8,0x6c,0x83,0x19,0x93,0xd4,0xe2,0x88,

179 0x88,0x9b,0xaf,0x92,0x16,0xc4,0x15,0xbd,0x49,0x13,0x22,0xb7,0x84,0xcf,0x23,0xf2,

180 0x6f,0x0c,0x3e,0x8f,0xde,0x04,0x09,0x31,0x2d,0x99,0xdf,0xe6,0x74,0x70,0x30,0xde,

181 0x8c,0xad,0x32,0x86,0xe2,0x7c,0x12,0x90,0x21,0xf3,0x86,0xb7,0xe2,0x64,0xca,0x98,

182 0xcc,0x64,0x4b,0xef,0x57,0x4f,0x5a,0x16,0x6e,0xd7,0x2f,0x5b,0xf6,0x07,0xad,0x33,

183 0xb4,0x8f,0x3b,0x3a,0x8b,0xd9,0x06,0x2b,0xed,0x3c,0x3c,0x76,0xf6,0x21,0x31,0xe3,

184 0xfb,0x2c,0x45,0x61,0x42,0xba,0xe0,0xc3,0x72,0x63,0xd0,0x6b,0x8f,0x36,0x26,0xfb,

185 0x9e,0x89,0x0e,0x44,0x9a,0xc1,0x84,0x5e,0x84,0x8d,0xb6,0xea,0xf1,0x0d,0x66,0xc7,

186 0xdb,0x44,0xbd,0x19,0x7c,0x05,0xbe,0xc4,0xab,0x88,0x32,0xbe,0xc7,0x63,0x31,0xe6,

187 0x38,0xd4,0xe5,0xb8,0x4b,0xf5,0x0e,0x55,0x9a,0x3a,0xe6,0x0a,0xec,0xee,0xe2,0xa8,

188 0x88,0x04,0xf2,0xb8,0xaa,0x5a,0xd8,0x97,0x5d,0xa0,0xa8,0x42,0xfb,0xd9,0xde,0x80,

189 0xae,0x4c,0xb3,0xa1,0x90,0x47,0x57,0x03,0x10,0x78,0xa6,0x8f,0x11,0xba,0x4b,0xce,

190 0x2d,0x56,0xa4,0xe1,0xbd,0xf8,0xa0,0xa4,0xd5,0x48,0x3c,0x63,0x20,0x00,0x38,0xa0,

191

0xd1,0xe6,0x12,0xe9,0x1d,0xd8,0x49,0xe3,0xd5,0x24,0xb5,0xc5,0x3a,0x1f,0xb0,0xd4}};

192

193 const TPM2B_RSA_TEST_VALUE c_RsapssKvt = {RSA_TEST_KEY_SIZE, {

194 0x74,0x89,0x29,0x3e,0x1b,0xac,0xc6,0x85,0xca,0xf0,0x63,0x43,0x30,0x7d,0x1c,0x9b,

195 0x2f,0xbd,0x4d,0x69,0x39,0x5e,0x85,0xe2,0xef,0x86,0x0a,0xc6,0x6b,0xa6,0x08,0x19,

196 0x6c,0x56,0x38,0x24,0x55,0x92,0x84,0x9b,0x1b,0x8b,0x04,0xcf,0x24,0x14,0x24,0x13,

197 0x0e,0x8b,0x82,0x6f,0x96,0xc8,0x9a,0x68,0xfc,0x4c,0x02,0xf0,0xdc,0xcd,0x36,0x25,

198 0x31,0xd5,0x82,0xcf,0xc9,0x69,0x72,0xf6,0x1d,0xab,0x68,0x20,0x2e,0x2d,0x19,0x49,

199 0xf0,0x2e,0xad,0xd2,0xda,0xaf,0xff,0xb6,0x92,0x83,0x5b,0x8a,0x06,0x2d,0x0c,0x32,

200 0x11,0x32,0x3b,0x77,0x17,0xf6,0x50,0xfb,0xf8,0x57,0xc9,0xc7,0x9b,0x9e,0xc6,0xd1,

201 0xa9,0x55,0xf0,0x22,0x35,0xda,0xca,0x3c,0x8e,0xc6,0x9a,0xd8,0x25,0xc8,0x5e,0x93,

202 0x0d,0xaa,0xa7,0x06,0xaf,0x11,0x29,0x99,0xe7,0x7c,0xee,0x49,0x82,0x30,0xba,0x2c,

203 0xe2,0x40,0x8f,0x0a,0xa6,0x7b,0x24,0x75,0xc5,0xcd,0x03,0x12,0xf4,0xb2,0x4b,0x3a,

204 0xd1,0x91,0x3c,0x20,0x0e,0x58,0x2b,0x31,0xf8,0x8b,0xee,0xbc,0x1f,0x95,0x35,0x58,

205 0x6a,0x73,0xee,0x99,0xb0,0x01,0x42,0x4f,0x66,0xc0,0x66,0xbb,0x35,0x86,0xeb,0xd9,

206 0x7b,0x55,0x77,0x2d,0x54,0x78,0x19,0x49,0xe8,0xcc,0xfd,0xb1,0xcb,0x49,0xc9,0xea,

207 0x20,0xab,0xed,0xb5,0xed,0xfe,0xb2,0xb5,0xa8,0xcf,0x05,0x06,0xd5,0x7d,0x2b,0xbb,

208 0x0b,0x65,0x6b,0x2b,0x6d,0x55,0x95,0x85,0x44,0x8b,0x12,0x05,0xf3,0x4b,0xd4,0x8e,

209

0x3d,0x68,0x2d,0x29,0x9c,0x05,0x79,0xd6,0xfc,0x72,0x90,0x6a,0xab,0x46,0x38,0x81}};

210

211 const TPM2B_RSA_TEST_VALUE c_RsassaKvt = {RSA_TEST_KEY_SIZE, {

212 0x8a,0xb1,0x0a,0xb5,0xe4,0x02,0xf7,0xdd,0x45,0x2a,0xcc,0x2b,0x6b,0x8c,0x0e,0x9a,

213 0x92,0x4f,0x9b,0xc5,0xe4,0x8b,0x82,0xb9,0xb0,0xd9,0x87,0x8c,0xcb,0xf0,0xb0,0x59,

214 0xa5,0x92,0x21,0xa0,0xa7,0x61,0x5c,0xed,0xa8,0x6e,0x22,0x29,0x46,0xc7,0x86,0x37,

215 0x4b,0x1b,0x1e,0x94,0x93,0xc8,0x4c,0x17,0x7a,0xae,0x59,0x91,0xf8,0x83,0x84,0xc4,

216 0x8c,0x38,0xc2,0x35,0x0e,0x7e,0x50,0x67,0x76,0xe7,0xd3,0xec,0x6f,0x0d,0xa0,0x5c,

217 0x2f,0x0a,0x80,0x28,0xd3,0xc5,0x7d,0x2d,0x1a,0x0b,0x96,0xd6,0xe5,0x98,0x05,0x8c,

218 0x4d,0xa0,0x1f,0x8c,0xb6,0xfb,0xb1,0xcf,0xe9,0xcb,0x38,0x27,0x60,0x64,0x17,0xca,

219 0xf4,0x8b,0x61,0xb7,0x1d,0xb6,0x20,0x9d,0x40,0x2a,0x1c,0xfd,0x55,0x40,0x4b,0x95,

220 0x39,0x52,0x18,0x3b,0xab,0x44,0xe8,0x83,0x4b,0x7c,0x47,0xfb,0xed,0x06,0x9c,0xcd,

221 0x4f,0xba,0x81,0xd6,0xb7,0x31,0xcf,0x5c,0x23,0xf8,0x25,0xab,0x95,0x77,0x0a,0x8f,

222 0x46,0xef,0xfb,0x59,0xb8,0x04,0xd7,0x1e,0xf5,0xaf,0x6a,0x1a,0x26,0x9b,0xae,0xf4,

223 0xf5,0x7f,0x84,0x6f,0x3c,0xed,0xf8,0x24,0x0b,0x43,0xd1,0xba,0x74,0x89,0x4e,0x39,

224 0xfe,0xab,0xa5,0x16,0xa5,0x28,0xee,0x96,0x84,0x3e,0x16,0x6d,0x5f,0x4e,0x0b,0x7d,

225 0x94,0x16,0x1b,0x8c,0xf9,0xaa,0x9b,0xc0,0x49,0x02,0x4c,0x3e,0x62,0xff,0xfe,0xa2,

226 0x20,0x33,0x5e,0xa6,0xdd,0xda,0x15,0x2d,0xb7,0xcd,0xda,0xff,0xb1,0x0b,0x45,0x7b,

227

0xd3,0xa0,0x42,0x29,0xab,0xa9,0x73,0xe9,0xa4,0xd9,0x8d,0xac,0xa1,0x88,0x2c,0x2d}};

228

229 #endif // SHA256

230

231 #if ALG_SHA384_VALUE == DEFAULT_TEST_HASH

232

233 const TPM2B_RSA_TEST_VALUE c_OaepKvt = {RSA_TEST_KEY_SIZE, {

234 0x0f,0x3c,0x42,0x4d,0x8c,0x91,0x96,0x05,0x3c,0xfd,0x59,0x3b,0x7f,0x29,0xbc,0x03,

235 0x67,0xc1,0xff,0x74,0xe7,0x09,0xf4,0x13,0x45,0xbe,0x13,0x1d,0xc9,0x86,0x94,0xfe,

Trusted Platform Module Library Part 4: Supporting Routines

Page 610 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

236 0xed,0xa6,0xe8,0x3a,0xcb,0x89,0x4d,0xec,0x86,0x63,0x4c,0xdb,0xf1,0x95,0xee,0xc1,

237 0x46,0xc5,0x3b,0xd8,0xf8,0xa2,0x41,0x6a,0x60,0x8b,0x9e,0x5e,0x7f,0x20,0x16,0xe3,

238 0x69,0xb6,0x2d,0x92,0xfc,0x60,0xa2,0x74,0x88,0xd5,0xc7,0xa6,0xd1,0xff,0xe3,0x45,

239 0x02,0x51,0x39,0xd9,0xf3,0x56,0x0b,0x91,0x80,0xe0,0x6c,0xa8,0xc3,0x78,0xef,0x34,

240 0x22,0x8c,0xf5,0xfb,0x47,0x98,0x5d,0x57,0x8e,0x3a,0xb9,0xff,0x92,0x04,0xc7,0xc2,

241 0x6e,0xfa,0x14,0xc1,0xb9,0x68,0x15,0x5c,0x12,0xe8,0xa8,0xbe,0xea,0xe8,0x8d,0x9b,

242 0x48,0x28,0x35,0xdb,0x4b,0x52,0xc1,0x2d,0x85,0x47,0x83,0xd0,0xe9,0xae,0x90,0x6e,

243 0x65,0xd4,0x34,0x7f,0x81,0xce,0x69,0xf0,0x96,0x62,0xf7,0xec,0x41,0xd5,0xc2,0xe3,

244 0x4b,0xba,0x9c,0x8a,0x02,0xce,0xf0,0x5d,0x14,0xf7,0x09,0x42,0x8e,0x4a,0x27,0xfe,

245 0x3e,0x66,0x42,0x99,0x03,0xe1,0x69,0xbd,0xdb,0x7f,0x9b,0x70,0xeb,0x4e,0x9c,0xac,

246 0x45,0x67,0x91,0x9f,0x75,0x10,0xc6,0xfc,0x14,0xe1,0x28,0xc1,0x0e,0xe0,0x7e,0xc0,

247 0x5c,0x1d,0xee,0xe8,0xff,0x45,0x79,0x51,0x86,0x08,0xe6,0x39,0xac,0xb5,0xfd,0xb8,

248 0xf1,0xdd,0x2e,0xf4,0xb2,0x1a,0x69,0x0d,0xd9,0x98,0x8e,0xdb,0x85,0x61,0x70,0x20,

249

0x82,0x91,0x26,0x87,0x80,0xc4,0x6a,0xd8,0x3b,0x91,0x4d,0xd3,0x33,0x84,0xad,0xb7}};

250

251 const TPM2B_RSA_TEST_VALUE c_RsaesKvt = {RSA_TEST_KEY_SIZE, {

252 0x44,0xd5,0x9f,0xbc,0x48,0x03,0x3d,0x9f,0x22,0x91,0x2a,0xab,0x3c,0x31,0x71,0xab,

253 0x86,0x3f,0x0f,0x6f,0x59,0x5b,0x93,0x27,0xbc,0xbc,0xcd,0x29,0x38,0x43,0x2a,0x3b,

254 0x3b,0xd2,0xb3,0x45,0x40,0xba,0x15,0xb4,0x45,0xe3,0x56,0xab,0xff,0xb3,0x20,0x26,

255 0x39,0xcc,0x48,0xc5,0x5d,0x41,0x0d,0x2f,0x57,0x7f,0x9d,0x16,0x2e,0x26,0x57,0xc7,

256 0x6b,0xf3,0x36,0x54,0xbd,0xb6,0x1d,0x46,0x4e,0x13,0x50,0xd7,0x61,0x9d,0x8d,0x7b,

257 0xeb,0x21,0x9f,0x79,0xf3,0xfd,0xe0,0x1b,0xa8,0xed,0x6d,0x29,0x33,0x0d,0x65,0x94,

258 0x24,0x1e,0x62,0x88,0x6b,0x2b,0x4e,0x39,0xf5,0x80,0x39,0xca,0x76,0x95,0xbc,0x7c,

259 0x27,0x1d,0xdd,0x3a,0x11,0xf1,0x3e,0x54,0x03,0xb7,0x43,0x91,0x99,0x33,0xfe,0x9d,

260 0x14,0x2c,0x87,0x9a,0x95,0x18,0x1f,0x02,0x04,0x6a,0xe2,0xb7,0x81,0x14,0x13,0x45,

261 0x16,0xfb,0xe4,0xb7,0x8f,0xab,0x2b,0xd7,0x60,0x34,0x8a,0x55,0xbc,0x01,0x8c,0x49,

262 0x02,0x29,0xf1,0x9c,0x94,0x98,0x44,0xd0,0x94,0xcb,0xd4,0x85,0x4c,0x3b,0x77,0x72,

263 0x99,0xd5,0x4b,0xc6,0x3b,0xe4,0xd2,0xc8,0xe9,0x6a,0x23,0x18,0x3b,0x3b,0x5e,0x32,

264 0xec,0x70,0x84,0x5d,0xbb,0x6a,0x8f,0x0c,0x5f,0x55,0xa5,0x30,0x34,0x48,0xbb,0xc2,

265 0xdf,0x12,0xb9,0x81,0xad,0x36,0x3f,0xf0,0x24,0x16,0x48,0x04,0x4a,0x7f,0xfd,0x9f,

266 0x4c,0xea,0xfe,0x1d,0x83,0xd0,0x81,0xad,0x25,0x6c,0x5f,0x45,0x36,0x91,0xf0,0xd5,

267

0x8b,0x53,0x0a,0xdf,0xec,0x9f,0x04,0x58,0xc4,0x35,0xa0,0x78,0x1f,0x68,0xe0,0x22}};

268

269 const TPM2B_RSA_TEST_VALUE c_RsapssKvt = {RSA_TEST_KEY_SIZE, {

270 0x3f,0x3a,0x82,0x6d,0x42,0xe3,0x8b,0x4f,0x45,0x9c,0xda,0x6c,0xbe,0xbe,0xcd,0x00,

271 0x98,0xfb,0xbe,0x59,0x30,0xc6,0x3c,0xaa,0xb3,0x06,0x27,0xb5,0xda,0xfa,0xb2,0xc3,

272 0x43,0xb7,0xbd,0xe9,0xd3,0x23,0xed,0x80,0xce,0x74,0xb3,0xb8,0x77,0x8d,0xe6,0x8d,

273 0x3c,0xe5,0xf5,0xd7,0x80,0xcf,0x38,0x55,0x76,0xd7,0x87,0xa8,0xd6,0x3a,0xcf,0xfd,

274 0xd8,0x91,0x65,0xab,0x43,0x66,0x50,0xb7,0x9a,0x13,0x6b,0x45,0x80,0x76,0x86,0x22,

275 0x27,0x72,0xf7,0xbb,0x65,0x22,0x5c,0x55,0x60,0xd8,0x84,0x9f,0xf2,0x61,0x52,0xac,

276 0xf2,0x4f,0x5b,0x7b,0x21,0xe1,0xf5,0x4b,0x8f,0x01,0xf2,0x4b,0xcf,0xd3,0xfb,0x74,

277 0x5e,0x6e,0x96,0xb4,0xa8,0x0f,0x01,0x9b,0x26,0x54,0x0a,0x70,0x55,0x26,0xb7,0x0b,

278 0xe8,0x01,0x68,0x66,0x0d,0x6f,0xb5,0xfc,0x66,0xbd,0x9e,0x44,0xed,0x6a,0x1e,0x3c,

279 0x3b,0x61,0x5d,0xe8,0xdb,0x99,0x5b,0x67,0xbf,0x94,0xfb,0xe6,0x8c,0x4b,0x07,0xcb,

280 0x43,0x3a,0x0d,0xb1,0x1b,0x10,0x66,0x81,0xe2,0x0d,0xe7,0xd1,0xca,0x85,0xa7,0x50,

281 0x82,0x2d,0xbf,0xed,0xcf,0x43,0x6d,0xdb,0x2c,0x7b,0x73,0x20,0xfe,0x73,0x3f,0x19,

282 0xc6,0xdb,0x69,0xb8,0xc3,0xd3,0xf4,0xe5,0x64,0xf8,0x36,0x8e,0xd5,0xd8,0x09,0x2a,

283 0x5f,0x26,0x70,0xa1,0xd9,0x5b,0x14,0xf8,0x22,0xe9,0x9d,0x22,0x51,0xf4,0x52,0xc1,

284 0x6f,0x53,0xf5,0xca,0x0d,0xda,0x39,0x8c,0x29,0x42,0xe8,0x58,0x89,0xbb,0xd1,0x2e,

285

0xc5,0xdb,0x86,0x8d,0xaf,0xec,0x58,0x36,0x8d,0x8d,0x57,0x23,0xd5,0xdd,0xb9,0x24}};

286

287 const TPM2B_RSA_TEST_VALUE c_RsassaKvt = {RSA_TEST_KEY_SIZE, {

288 0x39,0x10,0x58,0x7d,0x6d,0xa8,0xd5,0x90,0x07,0xd6,0x2b,0x13,0xe9,0xd8,0x93,0x7e,

289 0xf3,0x5d,0x71,0xe0,0xf0,0x33,0x3a,0x4a,0x22,0xf3,0xe6,0x95,0xd3,0x8e,0x8c,0x41,

290 0xe7,0xb3,0x13,0xde,0x4a,0x45,0xd3,0xd1,0xfb,0xb1,0x3f,0x9b,0x39,0xa5,0x50,0x58,

291 0xef,0xb6,0x3a,0x43,0xdd,0x54,0xab,0xda,0x9d,0x32,0x49,0xe4,0x57,0x96,0xe5,0x1b,

292 0x1d,0x8f,0x33,0x8e,0x07,0x67,0x56,0x14,0xc1,0x18,0x78,0xa2,0x52,0xe6,0x2e,0x07,

293 0x81,0xbe,0xd8,0xca,0x76,0x63,0x68,0xc5,0x47,0xa2,0x92,0x5e,0x4c,0xfd,0x14,0xc7,

294 0x46,0x14,0xbe,0xc7,0x85,0xef,0xe6,0xb8,0x46,0xcb,0x3a,0x67,0x66,0x89,0xc6,0xee,

295 0x9d,0x64,0xf5,0x0d,0x09,0x80,0x9a,0x6f,0x0e,0xeb,0xe4,0xb9,0xe9,0xab,0x90,0x4f,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 611

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

296 0xe7,0x5a,0xc8,0xca,0xf6,0x16,0x0a,0x82,0xbd,0xb7,0x76,0x59,0x08,0x2d,0xd9,0x40,

297 0x5d,0xaa,0xa5,0xef,0xfb,0xe3,0x81,0x2c,0x2c,0x5c,0xa8,0x16,0xbd,0x63,0x20,0xc2,

298 0x4d,0x3b,0x51,0xaa,0x62,0x1f,0x06,0xe5,0xbb,0x78,0x44,0x04,0x0c,0x5c,0xe1,0x1b,

299 0x6b,0x9d,0x21,0x10,0xaf,0x48,0x48,0x98,0x97,0x77,0xc2,0x73,0xb4,0x98,0x64,0xcc,

300 0x94,0x2c,0x29,0x28,0x45,0x36,0xd1,0xc5,0xd0,0x2f,0x97,0x27,0x92,0x65,0x22,0xbb,

301 0x63,0x79,0xea,0xf5,0xff,0x77,0x0f,0x4b,0x56,0x8a,0x9f,0xad,0x1a,0x97,0x67,0x39,

302 0x69,0xb8,0x4c,0x6c,0xc2,0x56,0xc5,0x7a,0xa8,0x14,0x5a,0x24,0x7a,0xa4,0x6e,0x55,

303

0xb2,0x86,0x1d,0xf4,0x62,0x5a,0x2d,0x87,0x6d,0xde,0x99,0x78,0x2d,0xef,0xd7,0xdc}};

304

305 #endif // SHA384

306

307 #if ALG_SHA512_VALUE == DEFAULT_TEST_HASH

308

309 const TPM2B_RSA_TEST_VALUE c_OaepKvt = {RSA_TEST_KEY_SIZE, {

310 0x48,0x45,0xa7,0x70,0xb2,0x41,0xb7,0x48,0x5e,0x79,0x8c,0xdf,0x1c,0xc6,0x7e,0xbb,

311 0x11,0x80,0x82,0x52,0xbf,0x40,0x3d,0x90,0x03,0x6e,0x20,0x3a,0xb9,0x65,0xc8,0x51,

312 0x4c,0xbd,0x9c,0xa9,0x43,0x89,0xd0,0x57,0x0c,0xa3,0x69,0x22,0x7e,0x82,0x2a,0x1c,

313 0x1d,0x5a,0x80,0x84,0x81,0xbb,0x5e,0x5e,0xd0,0xc1,0x66,0x9a,0xac,0x00,0xba,0x14,

314 0xa2,0xe9,0xd0,0x3a,0x89,0x5a,0x63,0xe2,0xec,0x92,0x05,0xf4,0x47,0x66,0x12,0x7f,

315 0xdb,0xa7,0x3c,0x5b,0x67,0xe1,0x55,0xca,0x0a,0x27,0xbf,0x39,0x89,0x11,0x05,0xba,

316 0x9b,0x5a,0x9b,0x65,0x44,0xad,0x78,0xcf,0x8f,0x94,0xf6,0x9a,0xb4,0x52,0x39,0x0e,

317 0x00,0xba,0xbc,0xe0,0xbd,0x6f,0x81,0x2d,0x76,0x42,0x66,0x70,0x07,0x77,0xbf,0x09,

318 0x88,0x2a,0x0c,0xb1,0x56,0x3e,0xee,0xfd,0xdc,0xb6,0x3c,0x0d,0xc5,0xa4,0x0d,0x10,

319 0x32,0x80,0x3e,0x1e,0xfe,0x36,0x8f,0xb5,0x42,0xc1,0x21,0x7b,0xdf,0xdf,0x4a,0xd2,

320 0x68,0x0c,0x01,0x9f,0x4a,0xfd,0xd4,0xec,0xf7,0x49,0x06,0xab,0xed,0xc6,0xd5,0x1b,

321 0x63,0x76,0x38,0xc8,0x6c,0xc7,0x4f,0xcb,0x29,0x8a,0x0e,0x6f,0x33,0xaf,0x69,0x31,

322 0x8e,0xa7,0xdd,0x9a,0x36,0xde,0x9b,0xf1,0x0b,0xfb,0x20,0xa0,0x6d,0x33,0x31,0xc9,

323 0x9e,0xb4,0x2e,0xc5,0x40,0x0e,0x60,0x71,0x36,0x75,0x05,0xf9,0x37,0xe0,0xca,0x8e,

324 0x8f,0x56,0xe0,0xea,0x9b,0xeb,0x17,0xf3,0xca,0x40,0xc3,0x48,0x01,0xba,0xdc,0xc6,

325

0x4b,0x2b,0x5b,0x7b,0x5c,0x81,0xa6,0xbb,0xc7,0x43,0xc0,0xbe,0xc0,0x30,0x7b,0x55}};

326

327 const TPM2B_RSA_TEST_VALUE c_RsaesKvt = {RSA_TEST_KEY_SIZE, {

328 0x74,0x83,0xfa,0x52,0x65,0x50,0x68,0xd0,0x82,0x05,0x72,0x70,0x78,0x1c,0xac,0x10,

329 0x23,0xc5,0x07,0xf8,0x93,0xd2,0xeb,0x65,0x87,0xbb,0x47,0xc2,0xfb,0x30,0x9e,0x61,

330 0x4c,0xac,0x04,0x57,0x5a,0x7c,0xeb,0x29,0x08,0x84,0x86,0x89,0x1e,0x8f,0x07,0x32,

331 0xa3,0x8b,0x70,0xe7,0xa2,0x9f,0x9c,0x42,0x71,0x3d,0x23,0x59,0x82,0x5e,0x8a,0xde,

332 0xd6,0xfb,0xd8,0xc5,0x8b,0xc0,0xdb,0x10,0x38,0x87,0xd3,0xbf,0x04,0xb0,0x66,0xb9,

333 0x85,0x81,0x54,0x4c,0x69,0xdc,0xba,0x78,0xf3,0x4a,0xdb,0x25,0xa2,0xf2,0x34,0x55,

334 0xdd,0xaa,0xa5,0xc4,0xed,0x55,0x06,0x0e,0x2a,0x30,0x77,0xab,0x82,0x79,0xf0,0xcd,

335 0x9d,0x6f,0x09,0xa0,0xc8,0x82,0xc9,0xe0,0x61,0xda,0x40,0xcd,0x17,0x59,0xc0,0xef,

336 0x95,0x6d,0xa3,0x6d,0x1c,0x2b,0xee,0x24,0xef,0xd8,0x4a,0x55,0x6c,0xd6,0x26,0x42,

337 0x32,0x17,0xfd,0x6a,0xb3,0x4f,0xde,0x07,0x2f,0x10,0xd4,0xac,0x14,0xea,0x89,0x68,

338 0xcc,0xd3,0x07,0xb7,0xcf,0xba,0x39,0x20,0x63,0x20,0x7b,0x44,0x8b,0x48,0x60,0x5d,

339 0x3a,0x2a,0x0a,0xe9,0x68,0xab,0x15,0x46,0x27,0x64,0xb5,0x82,0x06,0x29,0xe7,0x25,

340 0xca,0x46,0x48,0x6e,0x2a,0x34,0x57,0x4b,0x81,0x75,0xae,0xb6,0xfd,0x6f,0x51,0x5f,

341 0x04,0x59,0xc7,0x15,0x1f,0xe0,0x68,0xf7,0x36,0x2d,0xdf,0xc8,0x9d,0x05,0x27,0x2d,

342 0x3f,0x2b,0x59,0x5d,0xcb,0xf3,0xc4,0x92,0x6e,0x00,0xa8,0x8d,0xd0,0x69,0xe5,0x59,

343

0xda,0xba,0x4f,0x38,0xf5,0xa0,0x8b,0xf1,0x73,0xe9,0x0d,0xee,0x64,0xe5,0xa2,0xd8}};

344

345 const TPM2B_RSA_TEST_VALUE c_RsapssKvt = {RSA_TEST_KEY_SIZE, {

346 0x1b,0xca,0x8b,0x18,0x15,0x3b,0x95,0x5b,0x0a,0x89,0x10,0x03,0x7f,0x7c,0xa0,0xc9,

347 0x66,0x57,0x86,0x6a,0xc9,0xeb,0x82,0x71,0xf3,0x8d,0x6f,0xa9,0xa4,0x2d,0xd0,0x22,

348 0xdf,0xe9,0xc6,0x71,0x5b,0xf4,0x27,0x38,0x5b,0x2c,0x8a,0x54,0xcc,0x85,0x11,0x69,

349 0x6d,0x6f,0x42,0xe7,0x22,0xcb,0xd6,0xad,0x1a,0xc5,0xab,0x6a,0xa5,0xfc,0xa5,0x70,

350 0x72,0x4a,0x62,0x25,0xd0,0xa2,0x16,0x61,0xab,0xac,0x31,0xa0,0x46,0x24,0x4f,0xdd,

351 0x9a,0x36,0x55,0xb6,0x00,0x9e,0x23,0x50,0x0d,0x53,0x01,0xb3,0x46,0x56,0xb2,0x1d,

352 0x33,0x5b,0xca,0x41,0x7f,0x65,0x7e,0x00,0x5c,0x12,0xff,0x0a,0x70,0x5d,0x8c,0x69,

353 0x4a,0x02,0xee,0x72,0x30,0xa7,0x5c,0xa4,0xbb,0xbe,0x03,0x0c,0xe4,0x5f,0x33,0xb6,

354 0x78,0x91,0x9d,0xd8,0xec,0x34,0x03,0x2e,0x63,0x32,0xc7,0x2a,0x36,0x50,0xd5,0x8b,

355 0x0e,0x7f,0x54,0x4e,0xf4,0x29,0x11,0x1b,0xcd,0x0f,0x37,0xa5,0xbc,0x61,0x83,0x50,

Trusted Platform Module Library Part 4: Supporting Routines

Page 612 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

356 0xfa,0x18,0x75,0xd9,0xfe,0xa7,0xe8,0x9b,0xc1,0x4f,0x96,0x37,0x81,0x71,0xdf,0x71,

357 0x8b,0x89,0x81,0xf4,0x95,0xb5,0x29,0x66,0x41,0x0c,0x73,0xd7,0x0b,0x21,0xb4,0xfb,

358 0xf9,0x63,0x2f,0xe9,0x7b,0x38,0xaa,0x20,0xc3,0x96,0xcc,0xb7,0xb2,0x24,0xa1,0xe0,

359 0x59,0x9c,0x10,0x9e,0x5a,0xf7,0xe3,0x02,0xe6,0x23,0xe2,0x44,0x21,0x3f,0x6e,0x5e,

360 0x79,0xb2,0x93,0x7d,0xce,0xed,0xe2,0xe1,0xab,0x98,0x07,0xa7,0xbd,0xbc,0xd8,0xf7,

361

0x06,0xeb,0xc5,0xa6,0x37,0x18,0x11,0x88,0xf7,0x63,0x39,0xb9,0x57,0x29,0xdc,0x03}};

362

363 const TPM2B_RSA_TEST_VALUE c_RsassaKvt = {RSA_TEST_KEY_SIZE, {

364 0x05,0x55,0x00,0x62,0x01,0xc6,0x04,0x31,0x55,0x73,0x3f,0x2a,0xf9,0xd4,0x0f,0xc1,

365 0x2b,0xeb,0xd8,0xc8,0xdb,0xb2,0xab,0x6c,0x26,0xde,0x2d,0x89,0xc2,0x2d,0x36,0x62,

366 0xc8,0x22,0x5d,0x58,0x03,0xb1,0x46,0x14,0xa5,0xd4,0xbc,0x25,0x6b,0x7f,0x8f,0x14,

367 0x7e,0x03,0x2f,0x3d,0xb8,0x39,0xa5,0x79,0x13,0x7e,0x22,0x2a,0xb9,0x3e,0x8f,0xaa,

368 0x01,0x7c,0x03,0x12,0x21,0x6c,0x2a,0xb4,0x39,0x98,0x6d,0xff,0x08,0x6c,0x59,0x2d,

369 0xdc,0xc6,0xf1,0x77,0x62,0x10,0xa6,0xcc,0xe2,0x71,0x8e,0x97,0x00,0x87,0x5b,0x0e,

370 0x20,0x00,0x3f,0x18,0x63,0x83,0xf0,0xe4,0x0a,0x64,0x8c,0xe9,0x8c,0x91,0xe7,0x89,

371 0x04,0x64,0x2c,0x8b,0x41,0xc8,0xac,0xf6,0x5a,0x75,0xe6,0xa5,0x76,0x43,0xcb,0xa5,

372 0x33,0x8b,0x07,0xc9,0x73,0x0f,0x45,0xa4,0xc3,0xac,0xc1,0xc3,0xe6,0xe7,0x21,0x66,

373 0x1c,0xba,0xbf,0xea,0x3e,0x39,0xfa,0xb2,0xe2,0x8f,0xfe,0x9c,0xb4,0x85,0x89,0x33,

374 0x2a,0x0c,0xc8,0x5d,0x58,0xe1,0x89,0x12,0xe9,0x4d,0x42,0xb3,0x1f,0x99,0x0c,0x3e,

375 0xd8,0xb2,0xeb,0xf5,0x88,0xfb,0xe1,0x4b,0x8e,0xdc,0xd3,0xa8,0xda,0xbe,0x04,0x45,

376 0xbf,0x56,0xc6,0x54,0x70,0x00,0xb8,0x66,0x46,0x3a,0xa3,0x1e,0xb6,0xeb,0x1a,0xa0,

377 0x0b,0xd3,0x9a,0x9a,0x52,0xda,0x60,0x69,0xb7,0xef,0x93,0x47,0x38,0xab,0x1a,0xa0,

378 0x22,0x6e,0x76,0x06,0xb6,0x74,0xaf,0x74,0x8f,0x51,0xc0,0x89,0x5a,0x4b,0xbe,0x6a,

379

0x91,0x18,0x25,0x7d,0xa6,0x77,0xe6,0xfd,0xc2,0x62,0x36,0x07,0xc6,0xef,0x79,0xc9}};

380

381 #endif // SHA512

10.1.10 SelfTest.h

10.1.10.1 Introduction

This file contains the structure definitions for the self-test. It also contains macros for use when the self-

test is implemented.

1 #ifndef _SELF_TEST_H_

2 #define _SELF_TEST_H_

10.1.10.2 Defines

Was typing this a lot

3 #define SELF_TEST_FAILURE FAIL(FATAL_ERROR_SELF_TEST)

Use the definition of key sizes to set algorithm values for key size.

4 #define AES_ENTRIES (AES_128 + AES_192 + AES_256)

5 #define SM4_ENTRIES (SM4_128)

6 #define CAMELLIA_ENTRIES (CAMELLIA_128 + CAMELLIA_192 + CAMELLIA_256)

7 #define TDES_ENTRIES (TDES_128 + TDES_192)

8 #define NUM_SYMS (AES_ENTRIES + SM4_ENTRIES + CAMELLIA_ENTRIES + TDES_ENTRIES)

9 typedef UINT32 SYM_INDEX;

These two defines deal with the fact that the TPM_ALG_ID table does not delimit the symmetric mode

values with a TPM_SYM_MODE_FIRST and TPM_SYM_MODE_LAST

10 #define TPM_SYM_MODE_FIRST ALG_CTR_VALUE

11 #define TPM_SYM_MODE_LAST ALG_ECB_VALUE

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 613

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

12 #define NUM_SYM_MODES (TPM_SYM_MODE_LAST - TPM_SYM_MODE_FIRST + 1)

Define a type to hold a bit vector for the modes.

13 #if NUM_SYM_MODES <= 0

14 #error "No symmetric modes implemented"

15 #elif NUM_SYM_MODES <= 8

16 typedef BYTE SYM_MODES;

17 #elif NUM_SYM_MODES <= 16

18 typedef UINT16 SYM_MODES;

19 #elif NUM_SYM_MODES <= 32

20 typedef UINT32 SYM_MODES;

21 #else

22 #error "Too many symmetric modes"

23 #endif

24 typedef struct SYMMETRIC_TEST_VECTOR {

25 const TPM_ALG_ID alg; // the algorithm

26 const UINT16 keyBits; // bits in the key

27 const BYTE *key; // The test key

28 const UINT32 ivSize; // block size of the algorithm

29 const UINT32 dataInOutSize; // size to encrypt/decrypt

30 const BYTE *dataIn; // data to encrypt

31 const BYTE *dataOut[NUM_SYM_MODES];// data to decrypt

32 } SYMMETRIC_TEST_VECTOR;

33 #if ALG_SHA512

34 # define DEFAULT_TEST_HASH ALG_SHA512_VALUE

35 # define DEFAULT_TEST_DIGEST_SIZE SHA512_DIGEST_SIZE

36 # define DEFAULT_TEST_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE

37 #elif ALG_SHA384

38 # define DEFAULT_TEST_HASH ALG_SHA384_VALUE

39 # define DEFAULT_TEST_DIGEST_SIZE SHA384_DIGEST_SIZE

40 # define DEFAULT_TEST_HASH_BLOCK_SIZE SHA384_BLOCK_SIZE

41 #elif ALG_SHA256

42 # define DEFAULT_TEST_HASH ALG_SHA256_VALUE

43 # define DEFAULT_TEST_DIGEST_SIZE SHA256_DIGEST_SIZE

44 # define DEFAULT_TEST_HASH_BLOCK_SIZE SHA256_BLOCK_SIZE

45 #elif ALG_SHA1

46 # define DEFAULT_TEST_HASH ALG_SHA1_VALUE

47 # define DEFAULT_TEST_DIGEST_SIZE SHA1_DIGEST_SIZE

48 # define DEFAULT_TEST_HASH_BLOCK_SIZE SHA1_BLOCK_SIZE

49 #endif

50 #endif // _SELF_TEST_H_

10.1.11 SupportLibraryFunctionPrototypes_fp.h

10.1.11.1 Introduction

This file contains the function prototypes for the functions that need to be present in the selected math

library. For each function listed, there should be a small stub function. That stub provides the interface

between the TPM code and the support library. In most cases, the stub function will only need to do a

format conversion between the TPM big number and the support library big number. The TPM big

number format was chosen to make this relatively simple and fast.

Arithmetic operations return a BOOL to indicate if the operation completed successfully or not.

1 #ifndef SUPPORT_LIBRARY_FUNCTION_PROTOTYPES_H

2 #define SUPPORT_LIBRARY_FUNCTION_PROTOTYPES_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 614 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.11.2 SupportLibInit()

This function is called by CryptInit() so that necessary initializations can be performed on the

cryptographic library.

3 LIB_EXPORT

4 int SupportLibInit(void);

10.1.11.3 MathLibraryCompatibililtyCheck()

This function is only used during development to make sure that the library that is being referenced is

using the same size of data structures as the TPM.

5 BOOL

6 MathLibraryCompatibilityCheck(

7 void

8);

10.1.11.4 BnModMult()

Does op1 * op2 and divide by modulus returning the remainder of the divide.

9 LIB_EXPORT BOOL

10 BnModMult(bigNum result, bigConst op1, bigConst op2, bigConst modulus);

10.1.11.5 BnMult()

Multiplies two numbers and returns the result

11 LIB_EXPORT BOOL

12 BnMult(bigNum result, bigConst multiplicand, bigConst multiplier);

10.1.11.6 BnDiv()

This function divides two bigNum values. The function returns FALSE if there is an error in the operation.

13 LIB_EXPORT BOOL

14 BnDiv(bigNum quotient, bigNum remainder,

15 bigConst dividend, bigConst divisor);

10.1.11.7 BnMod()

16 #define BnMod(a, b) BnDiv(NULL, (a), (a), (b))

10.1.11.8 BnGcd()

Get the greatest common divisor of two numbers. This function is only needed when the TPM implements

RSA.

17 LIB_EXPORT BOOL

18 BnGcd(bigNum gcd, bigConst number1, bigConst number2);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 615

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.11.9 BnModExp()

Do modular exponentiation using bigNum values. This function is only needed when the TPM implements

RSA.

19 LIB_EXPORT BOOL

20 BnModExp(bigNum result, bigConst number,

21 bigConst exponent, bigConst modulus);

10.1.11.10 BnModInverse()

Modular multiplicative inverse. This function is only needed when the TPM implements RSA.

22 LIB_EXPORT BOOL BnModInverse(bigNum result, bigConst number,

23 bigConst modulus);

10.1.11.11 BnEccModMult()

This function does a point multiply of the form R = [d]S. A return of FALSE indicates that the result was

the point at infinity. This function is only needed if the TPM supports ECC.

24 LIB_EXPORT BOOL

25 BnEccModMult(bigPoint R, pointConst S, bigConst d, bigCurve E);

10.1.11.12 BnEccModMult2()

This function does a point multiply of the form R = [d]S + [u]Q. A return of FALSE indicates that the result

was the point at infinity. This function is only needed if the TPM supports ECC.

26 LIB_EXPORT BOOL

27 BnEccModMult2(bigPoint R, pointConst S, bigConst d,

28 pointConst Q, bigConst u, bigCurve E);

10.1.11.13 BnEccAdd()

This function does a point add R = S + Q. A return of FALSE indicates that the result was the point at

infinity. This function is only needed if the TPM supports ECC.

29 LIB_EXPORT BOOL

30 BnEccAdd(bigPoint R, pointConst S, pointConst Q, bigCurve E);

10.1.11.14 BnCurveInitialize()

This function is used to initialize the pointers of a bnCurve_t structure. The structure is a set of pointers to

bigNum values. The curve-dependent values are set by a different function. This function is only needed if

the TPM supports ECC.

31 LIB_EXPORT bigCurve

32 BnCurveInitialize(bigCurve E, TPM_ECC_CURVE curveId);

10.1.11.14.1 BnCurveFree()

This function will free the allocated components of the curve and end the frame in which the curve data

exists

Trusted Platform Module Library Part 4: Supporting Routines

Page 616 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

33 LIB_EXPORT void

34 BnCurveFree(bigCurve E);

35 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 617

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.12 SymmetricTestData.h

This is a vector for testing either encrypt or decrypt. The premise for decrypt is that the IV for decryption is

the same as the IV for encryption. However, the ivOut value may be different for encryption and

decryption. We will encrypt at least two blocks. This means that the chaining value will be used for each

of the schemes (if any) and that implicitly checks that the chaining value is handled properly.

1 #if AES_128

2 const BYTE key_AES128 [] = {

3 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,

4 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};

5

6 const BYTE dataIn_AES128 [] = {

7 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

8 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

9 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,

10 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51};

11

12 const BYTE dataOut_AES128_ECB [] = {

13 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,

14 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,

15 0xf5, 0xd3, 0xd5, 0x85, 0x03, 0xb9, 0x69, 0x9d,

16 0xe7, 0x85, 0x89, 0x5a, 0x96, 0xfd, 0xba, 0xaf};

17

18 const BYTE dataOut_AES128_CBC [] = {

19 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46,

20 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,

21 0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee,

22 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2};

23

24 const BYTE dataOut_AES128_CFB [] = {

25 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,

26 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,

27 0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,

28 0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b};

29

30 const BYTE dataOut_AES128_OFB [] = {

31 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,

32 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,

33 0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,

34 0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25};

35

36 const BYTE dataOut_AES128_CTR [] = {

37 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,

38 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,

39 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,

40 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff};

41 #endif

42

43 #if AES_192

44

45 const BYTE key_AES192 [] = {

46 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,

47 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,

48 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b};

49

50 const BYTE dataIn_AES192 [] = {

51 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

52 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

53 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,

54 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51};

55

Trusted Platform Module Library Part 4: Supporting Routines

Page 618 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

56 const BYTE dataOut_AES192_ECB [] = {

57 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f,

58 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc,

59 0x97, 0x41, 0x04, 0x84, 0x6d, 0x0a, 0xd3, 0xad,

60 0x77, 0x34, 0xec, 0xb3, 0xec, 0xee, 0x4e, 0xef};

61

62 const BYTE dataOut_AES192_CBC [] = {

63 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d,

64 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,

65 0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4,

66 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a};

67

68 const BYTE dataOut_AES192_CFB [] = {

69 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,

70 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,

71 0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,

72 0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a};

73

74 const BYTE dataOut_AES192_OFB [] = {

75 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,

76 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,

77 0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,

78 0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01};

79

80 const BYTE dataOut_AES192_CTR [] = {

81 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2,

82 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b,

83 0x09, 0x03, 0x39, 0xec, 0x0a, 0xa6, 0xfa, 0xef,

84 0xd5, 0xcc, 0xc2, 0xc6, 0xf4, 0xce, 0x8e, 0x94};

85 #endif

86

87 #if AES_256

88

89 const BYTE key_AES256 [] = {

90 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,

91 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,

92 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,

93 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4};

94

95 const BYTE dataIn_AES256 [] = {

96 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

97 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

98 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,

99 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51};

100

101 const BYTE dataOut_AES256_ECB [] = {

102 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c,

103 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8,

104 0x59, 0x1c, 0xcb, 0x10, 0xd4, 0x10, 0xed, 0x26,

105 0xdc, 0x5b, 0xa7, 0x4a, 0x31, 0x36, 0x28, 0x70};

106

107 const BYTE dataOut_AES256_CBC [] = {

108 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba,

109 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,

110 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d,

111 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d};

112

113 const BYTE dataOut_AES256_CFB [] = {

114 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,

115 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

116 0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,

117 0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b};

118

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 619

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

119 const BYTE dataOut_AES256_OFB [] = {

120 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,

121 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

122 0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,

123 0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d};

124

125 const BYTE dataOut_AES256_CTR [] = {

126 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,

127 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,

128 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,

129 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5};

130 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 620 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.13 SymmetricTest.h

10.1.13.1 Introduction

This file contains the structures and data definitions for the symmetric tests. This file references the

header file that contains the actual test vectors. This organization was chosen so that the program that is

used to generate the test vector values does not have to also re-generate this data.

1 #ifndef SELF_TEST_DATA

2 #error "This file may only be included in AlgorithmTests.c"

3 #endif

4 #ifndef _SYMMETRIC_TEST_H

5 #define _SYMMETRIC_TEST_H

6 #include "SymmetricTestData.h"

10.1.13.2 Symmetric Test Structures

7 const SYMMETRIC_TEST_VECTOR c_symTestValues[NUM_SYMS + 1] = {

8 #if ALG_AES && AES_128

9 {ALG_AES_VALUE, 128, key_AES128, 16, sizeof(dataIn_AES128), dataIn_AES128,

10 {dataOut_AES128_CTR, dataOut_AES128_OFB, dataOut_AES128_CBC,

11 dataOut_AES128_CFB, dataOut_AES128_ECB}},

12 #endif

13 #if ALG_AES && AES_192

14 {ALG_AES_VALUE, 192, key_AES192, 16, sizeof(dataIn_AES192), dataIn_AES192,

15 {dataOut_AES192_CTR, dataOut_AES192_OFB, dataOut_AES192_CBC,

16 dataOut_AES192_CFB, dataOut_AES192_ECB}},

17 #endif

18 #if ALG_AES && AES_256

19 {ALG_AES_VALUE, 256, key_AES256, 16, sizeof(dataIn_AES256), dataIn_AES256,

20 {dataOut_AES256_CTR, dataOut_AES256_OFB, dataOut_AES256_CBC,

21 dataOut_AES256_CFB, dataOut_AES256_ECB}},

22 #endif

23 // There are no SM4 test values yet so...

24 #if ALG_SM4 && SM4_128 && 0

25 {ALG_SM4_VALUE, 128, key_SM4128, 16, sizeof(dataIn_SM4128), dataIn_SM4128,

26 {dataOut_SM4128_CTR, dataOut_SM4128_OFB, dataOut_SM4128_CBC,

27 dataOut_SM4128_CFB, dataOut_AES128_ECB}},

28 #endif

29 {0}

30 };

31 #endif // _SYMMETRIC_TEST_H

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 621

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.14 EccTestData.h

This file contains the parameter data for ECC testing.

1 #ifdef SELF_TEST_DATA

2 TPM2B_TYPE(EC_TEST, 32);

3 const TPM_ECC_CURVE c_testCurve = 00003;

4

5 // The "static" key

6

7 const TPM2B_EC_TEST c_ecTestKey_ds = {{32, {

8 0xdf,0x8d,0xa4,0xa3,0x88,0xf6,0x76,0x96,0x89,0xfc,0x2f,0x2d,0xa1,0xb4,0x39,0x7a,

9

0x78,0xc4,0x7f,0x71,0x8c,0xa6,0x91,0x85,0xc0,0xbf,0xf3,0x54,0x20,0x91,0x2f,0x73}}}

;

10

11 const TPM2B_EC_TEST c_ecTestKey_QsX = {{32, {

12 0x17,0xad,0x2f,0xcb,0x18,0xd4,0xdb,0x3f,0x2c,0x53,0x13,0x82,0x42,0x97,0xff,0x8d,

13

0x99,0x50,0x16,0x02,0x35,0xa7,0x06,0xae,0x1f,0xda,0xe2,0x9c,0x12,0x77,0xc0,0xf9}}}

;

14

15 const TPM2B_EC_TEST c_ecTestKey_QsY = {{32, {

16 0xa6,0xca,0xf2,0x18,0x45,0x96,0x6e,0x58,0xe6,0x72,0x34,0x12,0x89,0xcd,0xaa,0xad,

17

0xcb,0x68,0xb2,0x51,0xdc,0x5e,0xd1,0x6d,0x38,0x20,0x35,0x57,0xb2,0xfd,0xc7,0x52}}}

;

18

19 // The "ephemeral" key

20

21 const TPM2B_EC_TEST c_ecTestKey_de = {{32, {

22 0xb6,0xb5,0x33,0x5c,0xd1,0xee,0x52,0x07,0x99,0xea,0x2e,0x8f,0x8b,0x19,0x18,0x07,

23

0xc1,0xf8,0xdf,0xdd,0xb8,0x77,0x00,0xc7,0xd6,0x53,0x21,0xed,0x02,0x53,0xee,0xac}}}

;

24

25 const TPM2B_EC_TEST c_ecTestKey_QeX = {{32, {

26 0xa5,0x1e,0x80,0xd1,0x76,0x3e,0x8b,0x96,0xce,0xcc,0x21,0x82,0xc9,0xa2,0xa2,0xed,

27

0x47,0x21,0x89,0x53,0x44,0xe9,0xc7,0x92,0xe7,0x31,0x48,0x38,0xe6,0xea,0x93,0x47}}}

;

28

29 const TPM2B_EC_TEST c_ecTestKey_QeY = {{32, {

30 0x30,0xe6,0x4f,0x97,0x03,0xa1,0xcb,0x3b,0x32,0x2a,0x70,0x39,0x94,0xeb,0x4e,0xea,

31

0x55,0x88,0x81,0x3f,0xb5,0x00,0xb8,0x54,0x25,0xab,0xd4,0xda,0xfd,0x53,0x7a,0x18}}}

;

32

33 // ECDH test results

34 const TPM2B_EC_TEST c_ecTestEcdh_X = {{32, {

35 0x64,0x02,0x68,0x92,0x78,0xdb,0x33,0x52,0xed,0x3b,0xfa,0x3b,0x74,0xa3,0x3d,0x2c,

36

0x2f,0x9c,0x59,0x03,0x07,0xf8,0x22,0x90,0xed,0xe3,0x45,0xf8,0x2a,0x0a,0xd8,0x1d}}}

;

37

38 const TPM2B_EC_TEST c_ecTestEcdh_Y = {{32, {

39 0x58,0x94,0x05,0x82,0xbe,0x5f,0x33,0x02,0x25,0x90,0x3a,0x33,0x90,0x89,0xe3,0xe5,

40

0x10,0x4a,0xbc,0x78,0xa5,0xc5,0x07,0x64,0xaf,0x91,0xbc,0xe6,0xff,0x85,0x11,0x40}}}

;

41

42 TPM2B_TYPE(TEST_VALUE, 64);

Trusted Platform Module Library Part 4: Supporting Routines

Page 622 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

43 const TPM2B_TEST_VALUE c_ecTestValue = {{64, {

44 0x78,0xd5,0xd4,0x56,0x43,0x61,0xdb,0x97,0xa4,0x32,0xc4,0x0b,0x06,0xa9,0xa8,0xa0,

45 0xf4,0x45,0x7f,0x13,0xd8,0x13,0x81,0x0b,0xe5,0x76,0xbe,0xaa,0xb6,0x3f,0x8d,0x4d,

46 0x23,0x65,0xcc,0xa7,0xc9,0x19,0x10,0xce,0x69,0xcb,0x0c,0xc7,0x11,0x8d,0xc3,0xff,

47

0x62,0x69,0xa2,0xbe,0x46,0x90,0xe7,0x7d,0x81,0x77,0x94,0x65,0x1c,0x3e,0xc1,0x3e}}}

;

48

49 #if ALG_SHA1_VALUE == DEFAULT_TEST_HASH

50

51 const TPM2B_EC_TEST c_TestEcDsa_r = {{32, {

52 0x57,0xf3,0x36,0xb7,0xec,0xc2,0xdd,0x76,0x0e,0xe2,0x81,0x21,0x49,0xc5,0x66,0x11,

53

0x4b,0x8a,0x4f,0x17,0x62,0x82,0xcc,0x06,0xf6,0x64,0x78,0xef,0x6b,0x7c,0xf2,0x6c}}}

;

54 const TPM2B_EC_TEST c_TestEcDsa_s = {{32, {

55 0x1b,0xed,0x23,0x72,0x8f,0x17,0x5f,0x47,0x2e,0xa7,0x97,0x2c,0x51,0x57,0x20,0x70,

56

0x6f,0x89,0x74,0x8a,0xa8,0xf4,0x26,0xf4,0x96,0xa1,0xb8,0x3e,0xe5,0x35,0xc5,0x94}}}

;

57

58 const TPM2B_EC_TEST c_TestEcSchnorr_r = {{32,{

59 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x1b,0x08,0x9f,0xde,

60

0xef,0x62,0xe3,0xf1,0x14,0xcb,0x54,0x28,0x13,0x76,0xfc,0x6d,0x69,0x22,0xb5,0x3e}}}

;

61 const TPM2B_EC_TEST c_TestEcSchnorr_s = {{32,{

62 0xd9,0xd3,0x20,0xfb,0x4d,0x16,0xf2,0xe6,0xe2,0x45,0x07,0x45,0x1c,0x92,0x92,0x92,

63

0xa9,0x6b,0x48,0xf8,0xd1,0x98,0x29,0x4d,0xd3,0x8f,0x56,0xf2,0xbb,0x2e,0x22,0x3b}}}

;

64

65 #endif // SHA1

66

67 #if ALG_SHA256_VALUE == DEFAULT_TEST_HASH

68

69 const TPM2B_EC_TEST c_TestEcDsa_r = {{32, {

70 0x04,0x7d,0x54,0xeb,0x04,0x6f,0x56,0xec,0xa2,0x6c,0x38,0x8c,0xeb,0x43,0x0b,0x71,

71

0xf8,0xf2,0xf4,0xa5,0xe0,0x1d,0x3c,0xa2,0x39,0x31,0xe4,0xe7,0x36,0x3b,0xb5,0x5f}}}

;

72 const TPM2B_EC_TEST c_TestEcDsa_s = {{32, {

73 0x8f,0xd0,0x12,0xd9,0x24,0x75,0xf6,0xc4,0x3b,0xb5,0x46,0x75,0x3a,0x41,0x8d,0x80,

74

0x23,0x99,0x38,0xd7,0xe2,0x40,0xca,0x9a,0x19,0x2a,0xfc,0x54,0x75,0xd3,0x4a,0x6e}}}

;

75

76 const TPM2B_EC_TEST c_TestEcSchnorr_r = {{32, {

77 0xf7,0xb9,0x15,0x4c,0x34,0xf6,0x41,0x19,0xa3,0xd2,0xf1,0xbd,0xf4,0x13,0x6a,0x4f,

78

0x63,0xb8,0x4d,0xb5,0xc8,0xcd,0xde,0x85,0x95,0xa5,0x39,0x0a,0x14,0x49,0x3d,0x2f}}}

;

79 const TPM2B_EC_TEST c_TestEcSchnorr_s = {{32,{

80 0xfe,0xbe,0x17,0xaa,0x31,0x22,0x9f,0xd0,0xd2,0xf5,0x25,0x04,0x92,0xb0,0xaa,0x4e,

81

0xcc,0x1c,0xb6,0x79,0xd6,0x42,0xb3,0x4e,0x3f,0xbb,0xfe,0x5f,0xd0,0xd0,0x8b,0xc3}}}

;

82

83 #endif // SHA256

84

85 #if ALG_SHA384_VALUE == DEFAULT_TEST_HASH

86

87 const TPM2B_EC_TEST c_TestEcDsa_r = {{32, {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 623

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

88 0xf5,0x74,0x6d,0xd6,0xc6,0x56,0x86,0xbb,0xba,0x1c,0xba,0x75,0x65,0xee,0x64,0x31,

89

0xce,0x04,0xe3,0x9f,0x24,0x3f,0xbd,0xfe,0x04,0xcd,0xab,0x7e,0xfe,0xad,0xcb,0x82}}}

;

90 const TPM2B_EC_TEST c_TestEcDsa_s = {{32, {

91 0xc2,0x4f,0x32,0xa1,0x06,0xc0,0x85,0x4f,0xc6,0xd8,0x31,0x66,0x91,0x9f,0x79,0xcd,

92

0x5b,0xe5,0x7b,0x94,0xa1,0x91,0x38,0xac,0xd4,0x20,0xa2,0x10,0xf0,0xd5,0x9d,0xbf}}}

;

93

94 const TPM2B_EC_TEST c_TestEcSchnorr_r = {{32, {

95 0x1e,0xb8,0xe1,0xbf,0xa1,0x9e,0x39,0x1e,0x58,0xa2,0xe6,0x59,0xd0,0x1a,0x6a,0x03,

96

0x6a,0x1f,0x1c,0x4f,0x36,0x19,0xc1,0xec,0x30,0xa4,0x85,0x1b,0xe9,0x74,0x35,0x66}}}

;

97 const TPM2B_EC_TEST c_TestEcSchnorr_s = {{32,{

98 0xb9,0xe6,0xe3,0x7e,0xcb,0xb9,0xea,0xf1,0xcc,0xf4,0x48,0x44,0x4a,0xda,0xc8,0xd7,

99

0x87,0xb4,0xba,0x40,0xfe,0x5b,0x68,0x11,0x14,0xcf,0xa0,0x0e,0x85,0x46,0x99,0x01}}}

;

100

101 #endif // SHA384

102

103 #if ALG_SHA512_VALUE == DEFAULT_TEST_HASH

104

105 const TPM2B_EC_TEST c_TestEcDsa_r = {{32, {

106 0xc9,0x71,0xa6,0xb4,0xaf,0x46,0x26,0x8c,0x27,0x00,0x06,0x3b,0x00,0x0f,0xa3,0x17,

107

0x72,0x48,0x40,0x49,0x4d,0x51,0x4f,0xa4,0xcb,0x7e,0x86,0xe9,0xe7,0xb4,0x79,0xb2}}}

;

108 const TPM2B_EC_TEST c_TestEcDsa_s = {{32,{

109 0x87,0xbc,0xc0,0xed,0x74,0x60,0x9e,0xfa,0x4e,0xe8,0x16,0xf3,0xf9,0x6b,0x26,0x07,

110

0x3c,0x74,0x31,0x7e,0xf0,0x62,0x46,0xdc,0xd6,0x45,0x22,0x47,0x3e,0x0c,0xa0,0x02}}}

;

111

112 const TPM2B_EC_TEST c_TestEcSchnorr_r = {{32,{

113 0xcc,0x07,0xad,0x65,0x91,0xdd,0xa0,0x10,0x23,0xae,0x53,0xec,0xdf,0xf1,0x50,0x90,

114

0x16,0x96,0xf4,0x45,0x09,0x73,0x9c,0x84,0xb5,0x5c,0x5f,0x08,0x51,0xcb,0x60,0x01}}}

;

115 const TPM2B_EC_TEST c_TestEcSchnorr_s = {{32,{

116 0x55,0x20,0x21,0x54,0xe2,0x49,0x07,0x47,0x71,0xf4,0x99,0x15,0x54,0xf3,0xab,0x14,

117

0xdb,0x8e,0xda,0x79,0xb6,0x02,0x0e,0xe3,0x5e,0x6f,0x2c,0xb6,0x05,0xbd,0x14,0x10}}}

;

118

119 #endif // SHA512

120

121 #endif // SELF_TEST_DATA

Trusted Platform Module Library Part 4: Supporting Routines

Page 624 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.15 CryptSym.h

10.1.15.1 Introduction

This file contains the implementation of the symmetric block cipher modes allowed for a TPM. These

functions only use the single block encryption functions of the selected symmetric cryptographic library.

10.1.15.2 Includes, Defines, and Typedefs

1 #ifndef CRYPT_SYM_H

2 #define CRYPT_SYM_H

3 typedef union tpmCryptKeySchedule_t {

4 #if ALG_AES

5 tpmKeyScheduleAES AES;

6 #endif

7 #if ALG_SM4

8 tpmKeyScheduleSM4 SM4;

9 #endif

10 #if ALG_CAMELLIA

11 tpmKeyScheduleCAMELLIA CAMELLIA;

12 #endif

13

14 #if ALG_TDES

15 tpmKeyScheduleTDES TDES[3];

16 #endif

17 #if SYMMETRIC_ALIGNMENT == 8

18 uint64_t alignment;

19 #else

20 uint32_t alignment;

21 #endif

22 } tpmCryptKeySchedule_t;

Each block cipher within a library is expected to conform to the same calling conventions with three

parameters (keySchedule, in, and out) in the same order. That means that all algorithms would use the

same order of the same parameters. The code is written assuming the (keySchedule, in, and out) order.

However, if the library uses a different order, the order can be changed with a SWIZZLE macro that puts

the parameters in the correct order. Note that all algorithms have to use the same order and number of

parameters because the code to build the calling list is common for each call to encrypt or decrypt with

the algorithm chosen by setting a function pointer to select the algorithm that is used.

23 # define ENCRYPT(keySchedule, in, out) \

24 encrypt(SWIZZLE(keySchedule, in, out))

25 # define DECRYPT(keySchedule, in, out) \

26 decrypt(SWIZZLE(keySchedule, in, out))

Note that the macros rely on encrypt as local values in the functions that use these macros. Those

parameters are set by the macro that set the key schedule to be used for the call.

27 #define ENCRYPT_CASE(ALG) \

28 case TPM_ALG_##ALG: \

29 TpmCryptSetEncryptKey##ALG(key, keySizeInBits, &keySchedule.ALG); \

30 encrypt = (TpmCryptSetSymKeyCall_t)TpmCryptEncrypt##ALG; \

31 break;

32 #define DECRYPT_CASE(ALG) \

33 case TPM_ALG_##ALG: \

34 TpmCryptSetDecryptKey##ALG(key, keySizeInBits, &keySchedule.ALG); \

35 decrypt = (TpmCryptSetSymKeyCall_t)TpmCryptDecrypt##ALG; \

36 break;

37 #if ALG_AES

38 #define ENCRYPT_CASE_AES ENCRYPT_CASE(AES)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 625

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

39 #define DECRYPT_CASE_AES DECRYPT_CASE(AES)

40 #else

41 #define ENCRYPT_CASE_AES

42 #define DECRYPT_CASE_AES

43 #endif

44 #if ALG_SM4

45 #define ENCRYPT_CASE_SM4 ENCRYPT_CASE(SM4)

46 #define DECRYPT_CASE_SM4 DECRYPT_CASE(SM4)

47 #else

48 #define ENCRYPT_CASE_SM4

49 #define DECRYPT_CASE_SM4

50 #endif

51 #if ALG_CAMELLIA

52 #define ENCRYPT_CASE_CAMELLIA ENCRYPT_CASE(CAMELLIA)

53 #define DECRYPT_CASE_CAMELLIA DECRYPT_CASE(CAMELLIA)

54 #else

55 #define ENCRYPT_CASE_CAMELLIA

56 #define DECRYPT_CASE_CAMELLIA

57 #endif

58 #if ALG_TDES

59 #define ENCRYPT_CASE_TDES ENCRYPT_CASE(TDES)

60 #define DECRYPT_CASE_TDES DECRYPT_CASE(TDES)

61 #else

62 #define ENCRYPT_CASE_TDES

63 #define DECRYPT_CASE_TDES

64 #endif

For each algorithm the case will either be defined or null.

65 #define SELECT(direction) \

66 switch(algorithm) \

67 { \

68 direction##_CASE_AES \

69 direction##_CASE_SM4 \

70 direction##_CASE_CAMELLIA \

71 direction##_CASE_TDES \

72 default: \

73 FAIL(FATAL_ERROR_INTERNAL); \

74 }

75 #endif // CRYPT_SYM_H

Trusted Platform Module Library Part 4: Supporting Routines

Page 626 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.16 OIDs.h

1 #ifndef _OIDS_H_

2 #define _OIDS_H_

All the OIDs in this file are defined as DER-encoded values with a leading tag 0x06

(ASN1_OBJECT_IDENTIFIER), followed by a single length byte. This allows the OID size to be

determined by looking at octet[1] of the OID (total size is OID[1] + 2). These macros allow OIDs to be

defined (or not) depending on whether the associated hash algorithm is implemented.

NOTE: When one of these macros is used, the NAME needs '_" on each side. The exception is when the macro is
used for the hash OID when only a single _ is used.

3 #ifndef ALG_SHA1

4 # define ALG_SHA1 NO

5 #endif

6 #if ALG_SHA1

7 #define SHA1_OID(NAME) MAKE_OID(NAME##SHA1)

8 #else

9 #define SHA1_OID(NAME)

10 #endif

11 #ifndef ALG_SHA256

12 # define ALG_SHA256 NO

13 #endif

14 #if ALG_SHA256

15 #define SHA256_OID(NAME) MAKE_OID(NAME##SHA256)

16 #else

17 #define SHA256_OID(NAME)

18 #endif

19 #ifndef ALG_SHA384

20 # define ALG_SHA384 NO

21 #endif

22 #if ALG_SHA384

23 #define SHA384_OID(NAME) MAKE_OID(NAME##SHA384)

24 #else

25 #define SHA#84_OID(NAME)

26 #endif

27 #ifndef ALG_SHA512

28 # define ALG_SHA512 NO

29 #endif

30 #if ALG_SHA512

31 #define SHA512_OID(NAME) MAKE_OID(NAME##SHA512)

32 #else

33 #define SHA512_OID(NAME)

34 #endif

35 #ifndef ALG_SM3_256

36 # define ALG_SM3_256 NO

37 #endif

38 #if ALG_SM3_256

39 #define SM3_256_OID(NAME) MAKE_OID(NAME##SM3_256)

40 #else

41 #define SM3_256_OID(NAME)

42 #endif

43 #ifndef ALG_SHA3_256

44 # define ALG_SHA3_256 NO

45 #endif

46 #if ALG_SHA3_256

47 #define SHA3_256_OID(NAME) MAKE_OID(NAME##SHA3_256)

48 #else

49 #define SHA3_256_OID(NAME)

50 #endif

51 #ifndef ALG_SHA3_384

52 # define ALG_SHA3_384 NO

53 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 627

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

54 #if ALG_SHA3_384

55 #define SHA3_384_OID(NAME) MAKE_OID(NAME##SHA3_384)

56 #else

57 #define SHA3_384_OID(NAME)

58 #endif

59 #ifndef ALG_SHA3_512

60 # define ALG_SHA3_512 NO

61 #endif

62 #if ALG_SHA3_512

63 #define SSHA3_512_OID(NAME) MAKE_OID(NAME##SHA3_512)

64 #else

65 #define SHA3_512_OID(NAME)

66 #endif

These are encoded to take one additional byte of algorithm selector

67 #define NIST_HASH 0x06, 0x09, 0x60, 0x86, 0x48, 1, 101, 3, 4, 2

68 #define NIST_SIG 0x06, 0x09, 0x60, 0x86, 0x48, 1, 101, 3, 4, 3

These hash OIDs used in a lot of places.

69 #define OID_SHA1_VALUE 0x06, 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A

70 SHA1_OID(_); // Expands to

71 // MAKE_OID(_SHA1)

72 // which expands to:

73 // extern BYTE OID_SHA1[]

74 // or

75 // const BYTE OID_SHA1[] = {OID_SHA1_VALUE}

76 // which is:

77 // const BYTE OID_SHA1[] = {0x06, 0x05, 0x2B, 0x0E,

78 // 0x03, 0x02, 0x1A}

79 #define OID_SHA256_VALUE NIST_HASH, 1

80 SHA256_OID(_);

81 #define OID_SHA384_VALUE NIST_HASH, 2

82 SHA384_OID(_);

83 #define OID_SHA512_VALUE NIST_HASH, 3

84 SHA512_OID(_);

85 #define OID_SM3_256_VALUE 0x06, 0x08, 0x2A, 0x81, 0x1C, 0xCF, 0x55, 0x01, \

86 0x83, 0x11

87 SM3_256_OID(_); // (1.2.156.10197.1.401)

88 #define OID_SHA3_256_VALUE NIST_HASH, 8

89 SHA3_256_OID(_);

90 #define OID_SHA3_384_VALUE NIST_HASH, 9

91 SHA3_384_OID(_);

92 #define OID_SHA3_512_VALUE NIST_HASH, 10

93 SHA3_512_OID(_);

These are used for RSA-PSS

94 #if ALG_RSA

95 #define OID_MGF1_VALUE 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, \

96 0x01, 0x01, 0x08

97 MAKE_OID(_MGF1);

98 #define OID_RSAPSS_VALUE 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, \

99 0x01, 0x01, 0x0A

100 MAKE_OID(_RSAPSS);

This is the OID to designate the public part of an RSA key.

101 #define OID_PKCS1_PUB_VALUE 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, \

102 0x01, 0x01, 0x01

103 MAKE_OID(_PKCS1_PUB);

Trusted Platform Module Library Part 4: Supporting Routines

Page 628 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

These are used for RSA PKCS1 signature Algorithms

104 #define OID_PKCS1_SHA1_VALUE 0x06,0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, \

105 0x0D, 0x01, 0x01, 0x05

106 SHA1_OID(_PKCS1_); // (1.2.840.113549.1.1.5)

107 #define OID_PKCS1_SHA256_VALUE 0x06,0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, \

108 0x0D, 0x01, 0x01, 0x0B

109 SHA256_OID(_PKCS1_); // (1.2.840.113549.1.1.11)

110 #define OID_PKCS1_SHA384_VALUE 0x06,0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, \

111 0x0D, 0x01, 0x01, 0x0C

112 SHA384_OID(_PKCS1_); // (1.2.840.113549.1.1.12)

113 #define OID_PKCS1_SHA512_VALUE 0x06,0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, \

114 0x0D, 0x01, 0x01, 0x0D

115 SHA512_OID(_PKCS1_); //(1.2.840.113549.1.1.13)

116 #define OID_PKCS1_SM3_256_VALUE 0x06, 0x08, 0x2A, 0x81, 0x1C, 0xCF, 0x55, \

117 0x01, 0x83, 0x78

118 SM3_256_OID(_PKCS1_); // 1.2.156.10197.1.504

119 #define OID_PKCS1_SHA3_256_VALUE NIST_SIG, 14

120 SHA3_256_OID(_PKCS1_);

121 #define OID_PKCS1_SHA3_384_VALUE NIST_SIG, 15

122 SHA3_256_OID(_PKCS1_);

123 #define OID_PKCS1_SHA3_512_VALUE NIST_SIG, 16

124 SHA3_512_OID(_PKCS1_);

125 #endif // ALG_RSA

126 #if ALG_ECDSA

127 #define OID_ECDSA_SHA1_VALUE 0x06, 0x07, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, \

128 0x01

129 SHA1_OID(_ECDSA_); // (1.2.840.10045.4.1) SHA1 digest signed by an ECDSA key.

130 #define OID_ECDSA_SHA256_VALUE 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, \

131 0x03, 0x02

132 SHA256_OID(_ECDSA_); // (1.2.840.10045.4.3.2) SHA256 digest signed by an ECDSA key.

133 #define OID_ECDSA_SHA384_VALUE 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, \

134 0x03, 0x03

135 SHA384_OID(_ECDSA_); // (1.2.840.10045.4.3.3) SHA384 digest signed by an ECDSA key.

136 #define OID_ECDSA_SHA512_VALUE 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, \

137 0x03, 0x04

138 SHA512_OID(_ECDSA_); // (1.2.840.10045.4.3.4) SHA512 digest signed by an ECDSA key.

139 #define OID_ECDSA_SM3_256_VALUE 0x06, 0x08, 0x2A, 0x81, 0x1C, 0xCF, 0x55, 0x01, \

140 0x83, 0x75

141 SM3_256_OID(_ECDSA_); // 1.2.156.10197.1.501

142 #define OID_ECDSA_SHA3_256_VALUE NIST_SIG, 10

143 SHA3_256_OID(_ECDSA_);

144 #define OID_ECDSA_SHA3_384_VALUE NIST_SIG, 11

145 SHA3_384_OID(_ECDSA_);

146 #define OID_ECDSA_SHA3_512_VALUE NIST_SIG, 12

147 SHA3_512_OID(_ECDSA_);

148 #endif // ALG_ECDSA

149 #if ALG_ECC

150 #define OID_ECC_PUBLIC_VALUE 0x06, 0x07, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, \

151 0x01

152 MAKE_OID(_ECC_PUBLIC);

153 #define OID_ECC_NIST_P192_VALUE 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, \

154 0x01, 0x01

155 #if ECC_NIST_P192

156 MAKE_OID(_ECC_NIST_P192); // (1.2.840.10045.3.1.1) 'nistP192'

157 #endif // ECC_NIST_P192

158 #define OID_ECC_NIST_P224_VALUE 0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x21

159 #if ECC_NIST_P224

160 MAKE_OID(_ECC_NIST_P224); // (1.3.132.0.33) 'nistP224'

161 #endif // ECC_NIST_P224

162 #define OID_ECC_NIST_P256_VALUE 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, \

163 0x01, 0x07

164 #if ECC_NIST_P256

165 MAKE_OID(_ECC_NIST_P256); // (1.2.840.10045.3.1.7) 'nistP256'

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 629

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

166 #endif // ECC_NIST_P256

167 #define OID_ECC_NIST_P384_VALUE 0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x22

168 #if ECC_NIST_P384

169 MAKE_OID(_ECC_NIST_P384); // (1.3.132.0.34) 'nistP384'

170 #endif // ECC_NIST_P384

171 #define OID_ECC_NIST_P521_VALUE 0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x23

172 #if ECC_NIST_P521

173 MAKE_OID(_ECC_NIST_P521); // (1.3.132.0.35) 'nistP521'

174 #endif // ECC_NIST_P521

No OIDs defined for these anonymous curves

175 #define OID_ECC_BN_P256_VALUE 0x00

176 #if ECC_BN_P256

177 MAKE_OID(_ECC_BN_P256);

178 #endif // ECC_BN_P256

179 #define OID_ECC_BN_P638_VALUE 0x00

180 #if ECC_BN_P638

181 MAKE_OID(_ECC_BN_P638);

182 #endif // ECC_BN_P638

183 #define OID_ECC_SM2_P256_VALUE 0x06, 0x08, 0x2A, 0x81, 0x1C, 0xCF, 0x55, 0x01, \

184 0x82, 0x2D

185 #if ECC_SM2_P256

186 MAKE_OID(_ECC_SM2_P256); // Don't know where I found this OID. It needs checking

187 #endif // ECC_SM2_P256

188 #if ECC_BN_P256

189 #define OID_ECC_BN_P256 NULL

190 #endif // ECC_BN_P256

191 #endif // ALG_ECC

192 #define OID_SIZE(OID) (OID[1] + 2)

193 #endif // !_OIDS_H_

10.1.17 PRNG_TestVectors.h

1 #ifndef _MSBN_DRBG_TEST_VECTORS_H

2 #define _MSBN_DRBG_TEST_VECTORS_H

3 //#if DRBG_ALGORITHM == TPM_ALG_AES && DRBG_KEY_BITS == 256

4 #if DRBG_KEY_SIZE_BITS == 256

Entropy is the size of the state. The state is the size of the key plus the IV. The IV is a block. If Key = 256

and Block = 128 then State = 384

5 # define DRBG_TEST_INITIATE_ENTROPY \

6 0x0d, 0x15, 0xaa, 0x80, 0xb1, 0x6c, 0x3a, 0x10, \

7 0x90, 0x6c, 0xfe, 0xdb, 0x79, 0x5d, 0xae, 0x0b, \

8 0x5b, 0x81, 0x04, 0x1c, 0x5c, 0x5b, 0xfa, 0xcb, \

9 0x37, 0x3d, 0x44, 0x40, 0xd9, 0x12, 0x0f, 0x7e, \

10 0x3d, 0x6c, 0xf9, 0x09, 0x86, 0xcf, 0x52, 0xd8, \

11 0x5d, 0x3e, 0x94, 0x7d, 0x8c, 0x06, 0x1f, 0x91

12 # define DRBG_TEST_RESEED_ENTROPY \

13 0x6e, 0xe7, 0x93, 0xa3, 0x39, 0x55, 0xd7, 0x2a, \

14 0xd1, 0x2f, 0xd8, 0x0a, 0x8a, 0x3f, 0xcf, 0x95, \

15 0xed, 0x3b, 0x4d, 0xac, 0x57, 0x95, 0xfe, 0x25, \

16 0xcf, 0x86, 0x9f, 0x7c, 0x27, 0x57, 0x3b, 0xbc, \

17 0x56, 0xf1, 0xac, 0xae, 0x13, 0xa6, 0x50, 0x42, \

18 0xb3, 0x40, 0x09, 0x3c, 0x46, 0x4a, 0x7a, 0x22

19 # define DRBG_TEST_GENERATED_INTERM \

20 0x28, 0xe0, 0xeb, 0xb8, 0x21, 0x01, 0x66, 0x50, \

21 0x8c, 0x8f, 0x65, 0xf2, 0x20, 0x7b, 0xd0, 0xa3

22 # define DRBG_TEST_GENERATED \

23 0x94, 0x6f, 0x51, 0x82, 0xd5, 0x45, 0x10, 0xb9, \

24 0x46, 0x12, 0x48, 0xf5, 0x71, 0xca, 0x06, 0xc9

25 #elif DRBG_KEY_SIZE_BITS == 128

Trusted Platform Module Library Part 4: Supporting Routines

Page 630 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

26 # define DRBG_TEST_INITIATE_ENTROPY \

27 0x8f, 0xc1, 0x1b, 0xdb, 0x5a, 0xab, 0xb7, 0xe0, \

28 0x93, 0xb6, 0x14, 0x28, 0xe0, 0x90, 0x73, 0x03, \

29 0xcb, 0x45, 0x9f, 0x3b, 0x60, 0x0d, 0xad, 0x87, \

30 0x09, 0x55, 0xf2, 0x2d, 0xa8, 0x0a, 0x44, 0xf8

31 # define DRBG_TEST_RESEED_ENTROPY \

32 0x0c, 0xd5, 0x3c, 0xd5, 0xec, 0xcd, 0x5a, 0x10, \

33 0xd7, 0xea, 0x26, 0x61, 0x11, 0x25, 0x9b, 0x05, \

34 0x57, 0x4f, 0xc6, 0xdd, 0xd8, 0xbe, 0xd8, 0xbd, \

35 0x72, 0x37, 0x8c, 0xf8, 0x2f, 0x1d, 0xba, 0x2a

36 #define DRBG_TEST_GENERATED_INTERM \

37 0xdc, 0x3c, 0xf6, 0xbf, 0x5b, 0xd3, 0x41, 0x13, \

38 0x5f, 0x2c, 0x68, 0x11, 0xa1, 0x07, 0x1c, 0x87

39 # define DRBG_TEST_GENERATED \

40 0xb6, 0x18, 0x50, 0xde, 0xcf, 0xd7, 0x10, 0x6d, \

41 0x44, 0x76, 0x9a, 0x8e, 0x6e, 0x8c, 0x1a, 0xd4

42 #endif

43 #endif // _MSBN_DRBG_TEST_VECTORS_H

10.1.18 TpmAsn1.h

10.1.18.1 Introduction

This file contains the macro and structure definitions for the X509 commands and functions.

1 #ifndef _TPMASN1_H_

2 #define _TPMASN1_H_

10.1.18.2 Includes

3 #include "Tpm.h"

4 #include "OIDs.h"

10.1.18.3 Defined Constants

10.1.18.3.1 ASN.1 Universal Types (Class 00b

5 #define ASN1_EOC 0x00

6 #define ASN1_BOOLEAN 0x01

7 #define ASN1_INTEGER 0x02

8 #define ASN1_BITSTRING 0x03

9 #define ASN1_OCTET_STRING 0x04

10 #define ASN1_NULL 0x05

11 #define ASN1_OBJECT_IDENTIFIER 0x06

12 #define ASN1_OBJECT_DESCRIPTOR 0x07

13 #define ASN1_EXTERNAL 0x08

14 #define ASN1_REAL 0x09

15 #define ASN1_ENUMERATED 0x0A

16 #define ASN1_EMBEDDED 0x0B

17 #define ASN1_UTF8String 0x0C

18 #define ASN1_RELATIVE_OID 0x0D

19 #define ASN1_SEQUENCE 0x10 // Primitive + Constructed + 0x10

20 #define ASN1_SET 0x11 // Primitive + Constructed + 0x11

21 #define ASN1_NumericString 0x12

22 #define ASN1_PrintableString 0x13

23 #define ASN1_T61String 0x14

24 #define ASN1_VideoString 0x15

25 #define ASN1_IA5String 0x16

26 #define ASN1_UTCTime 0x17

27 #define ASN1_GeneralizeTime 0x18

28 #define ASN1_VisibleString 0x1A

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 631

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

29 #define ASN1_GeneralString 0x1B

30 #define ASN1_UniversalString 0x1C

31 #define ASN1_CHARACTER STRING 0x1D

32 #define ASN1_BMPString 0x1E

33 #define ASN1_CONSTRUCTED 0x20

34 #define ASN1_APPLICAIION_SPECIFIC 0xA0

35 #define ASN1_CONSTRUCTED_SEQUENCE (ASN1_SEQUENCE + ASN1_CONSTRUCTED)

36 #define MAX_DEPTH 10 // maximum push depth for marshaling context.

10.1.18.4 Macros

10.1.18.4.1 Unmarshaling Macros

37 #ifndef VERIFY

38 #define VERIFY(_X_) {if(!(_X_)) goto Error; }

39 #endif

Checks the validity of the size making sure that there is no wrap around

40 #define CHECK_SIZE(context, length) \

41 VERIFY((((length) + (context)->offset) >= (context)->offset) \

42 && (((length) + (context)->offset) <= (context)->size))

43 #define NEXT_OCTET(context) ((context)->buffer[(context)->offset++])

44 #define PEEK_NEXT(context) ((context)->buffer[(context)->offset])

10.1.18.4.2 Marshaling Macros

Marshaling works in reverse order. The offset is set to the top of the buffer and, as the buffer is filled,

offset counts down to zero. When the full thing is encoded it can be moved to the top of the buffer. This

happens when the last context is closed.

45 #define CHECK_SPACE(context, length) VERIFY(context->offset > length)

10.1.18.5 Structures

46 typedef struct ASN1UnmarshalContext {

47 BYTE *buffer; // pointer to the buffer

48 INT16 size; // size of the buffer (a negative number indicates

49 // a parsing failure).

50 INT16 offset; // current offset into the buffer (a negative number

51 // indicates a parsing failure). Not used

52 BYTE tag; // The last unmarshaled tag

53 } ASN1UnmarshalContext;

54 typedef struct ASN1MarshalContext {

55 BYTE *buffer; // pointer to the start of the buffer

56 INT16 offset; // place on the top where the last entry was added

57 // items are added from the bottom up.

58 INT16 end; // the end offset of the current value

59 INT16 depth; // how many pushed end values.

60 INT16 ends[MAX_DEPTH];

61 } ASN1MarshalContext;

62 #endif // _TPMASN1_H_

10.1.19 X509.h

10.1.19.1 Introduction

This file contains the macro and structure definitions for the X509 commands and functions.

Trusted Platform Module Library Part 4: Supporting Routines

Page 632 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1 #ifndef _X509_H_

2 #define _X509_H_

10.1.19.2 Includes

3 #include "Tpm.h"

4 #include "TpmASN1.h"

10.1.19.3 Defined Constants

10.1.19.3.1 X509 Application-specific types

5 #define X509_SELECTION 0xA0

6 #define X509_ISSUER_UNIQUE_ID 0xA1

7 #define X509_SUBJECT_UNIQUE_ID 0xA2

8 #define X509_EXTENSIONS 0xA3

These defines give the order in which values appear in the TBScertificate of an x.509 certificate. These

values are used to index into an array of

9 #define ENCODED_SIZE_REF 0

10 #define VERSION_REF (ENCODED_SIZE_REF + 1)

11 #define SERIAL_NUMBER_REF (VERSION_REF + 1)

12 #define SIGNATURE_REF (SERIAL_NUMBER_REF + 1)

13 #define ISSUER_REF (SIGNATURE_REF + 1)

14 #define VALIDITY_REF (ISSUER_REF + 1)

15 #define SUBJECT_KEY_REF (VALIDITY_REF + 1)

16 #define SUBJECT_PUBLIC_KEY_REF (SUBJECT_KEY_REF + 1)

17 #define EXTENSIONS_REF (SUBJECT_PUBLIC_KEY_REF + 1)

18 #define REF_COUNT (EXTENSIONS_REF + 1)

10.1.19.4 Structures

Used to access the fields of a TBSsignature some of which are in the in_CertifyX509 structure and some

of which are in the out_CertifyX509 structure.

19 typedef struct stringRef

20 {

21 BYTE *buf;

22 INT16 len;

23 } stringRef;

This is defined to avoid bit by bit comparisons within a UINT32

24 typedef union x509KeyUsageUnion {

25 TPMA_X509_KEY_USAGE x509;

26 UINT32 integer;

27 } x509KeyUsageUnion;

10.1.19.5 Global X509 Constants

These values are instanced by X509_spt.c and referenced by other X509-related files. This is the DER-

encoded value for the Key Usage OID (2.5.29.15). This is the full OID, not just the numeric value

28 #define OID_KEY_USAGE_EXTENSION_VALUE 0x06, 0x03, 0x55, 0x1D, 0x0F

29 MAKE_OID(_KEY_USAGE_EXTENSION);

This is the DER-encoded value for the TCG-defined TPMA_OBJECT OID (2.23.133.10.1.1.1)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 633

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

30 #define OID_TCG_TPMA_OBJECT_VALUE 0x06, 0x07, 0x67, 0x81, 0x05, 0x0a, 0x01, \

31 0x01, 0x01

32 MAKE_OID(_TCG_TPMA_OBJECT);

33 #ifdef _X509_SPT_

If a bit is SET in KEY_USAGE_SIGN is also SET in keyUsagem then the associated key has to have sign

SET.

34 const x509KeyUsageUnion KEY_USAGE_SIGN =

35 { TPMA_X509_KEY_USAGE_INITIALIZER(

36 /* bits_at_0 */ 0, /* decipheronly */ 0, /* encipheronly */ 0,

37 /* crlsign */ 1, /* keycertsign */ 1, /* keyagreement */ 0,

38 /* dataencipherment */ 0, /* keyencipherment */ 0, /* nonrepudiation */ 0,

39 /* digitalsignature */ 1) };

If a bit is SET in KEY_USAGE_DECRYPT is also SET in keyUsagem then the associated key has to

have decrypt SET.

40 const x509KeyUsageUnion KEY_USAGE_DECRYPT =

41 { TPMA_X509_KEY_USAGE_INITIALIZER(

42 /* bits_at_0 */ 0, /* decipheronly */ 1, /* encipheronly */ 1,

43 /* crlsign */ 0, /* keycertsign */ 0, /* keyagreement */ 1,

44 /* dataencipherment */ 1, /* keyencipherment */ 1, /* nonrepudiation */ 0,

45 /* digitalsignature */ 0) };

46 #else

47 extern x509KeyUsageUnion KEY_USAGE_SIGN;

48 extern x509KeyUsageUnion KEY_USAGE_DECRYPT;

49 #endif

50

51 #endif // _X509_H_

10.1.20 TpmAlgorithmDefines.h

This file contains the algorithm values from the TCG Algorithm Registry.

1 #ifndef _TPM_ALGORITHM_DEFINES_H_

2 #define _TPM_ALGORITHM_DEFINES_H_

Table 2:3 - Definition of Base Types Base Types are in BaseTypes.h

3 #define ECC_CURVES \

4 {TPM_ECC_BN_P256, TPM_ECC_BN_P638, TPM_ECC_NIST_P192, \

5 TPM_ECC_NIST_P224, TPM_ECC_NIST_P256, TPM_ECC_NIST_P384, \

6 TPM_ECC_NIST_P521, TPM_ECC_SM2_P256}

7 #define ECC_CURVE_COUNT \

8 (ECC_BN_P256 + ECC_BN_P638 + ECC_NIST_P192 + ECC_NIST_P224 + \

9 ECC_NIST_P256 + ECC_NIST_P384 + ECC_NIST_P521 + ECC_SM2_P256)

10 #define MAX_ECC_KEY_BITS \

11 MAX(ECC_BN_P256 * 256, MAX(ECC_BN_P638 * 638, \

12 MAX(ECC_NIST_P192 * 192, MAX(ECC_NIST_P224 * 224, \

13 MAX(ECC_NIST_P256 * 256, MAX(ECC_NIST_P384 * 384, \

14 MAX(ECC_NIST_P521 * 521, MAX(ECC_SM2_P256 * 256, \

15 0))))))))

16 #define MAX_ECC_KEY_BYTES BITS_TO_BYTES(MAX_ECC_KEY_BITS)

Table 0:6 - Defines for PLATFORM Values

17 #define PLATFORM_FAMILY TPM_SPEC_FAMILY

18 #define PLATFORM_LEVEL TPM_SPEC_LEVEL

19 #define PLATFORM_VERSION TPM_SPEC_VERSION

20 #define PLATFORM_YEAR TPM_SPEC_YEAR

21 #define PLATFORM_DAY_OF_YEAR TPM_SPEC_DAY_OF_YEAR

Trusted Platform Module Library Part 4: Supporting Routines

Page 634 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Table 1:3 - Defines for RSA Asymmetric Cipher Algorithm Constants

22 #define RSA_KEY_SIZES_BITS \

23 (1024 * RSA_1024), (2048 * RSA_2048), (3072 * RSA_3072), \

24 (4096 * RSA_4096)

25 #if RSA_4096

26 # define RSA_MAX_KEY_SIZE_BITS 4096

27 #elif RSA_3072

28 # define RSA_MAX_KEY_SIZE_BITS 3072

29 #elif RSA_2048

30 # define RSA_MAX_KEY_SIZE_BITS 2048

31 #elif RSA_1024

32 # define RSA_MAX_KEY_SIZE_BITS 1024

33 #else

34 # define RSA_MAX_KEY_SIZE_BITS 0

35 #endif

36 #define MAX_RSA_KEY_BITS RSA_MAX_KEY_SIZE_BITS

37 #define MAX_RSA_KEY_BYTES ((RSA_MAX_KEY_SIZE_BITS + 7) / 8)

Table 1:13 - Defines for SHA1 Hash Values

38 #define SHA1_DIGEST_SIZE 20

39 #define SHA1_BLOCK_SIZE 64

Table 1:14 - Defines for SHA256 Hash Values

40 #define SHA256_DIGEST_SIZE 32

41 #define SHA256_BLOCK_SIZE 64

Table 1:15 - Defines for SHA384 Hash Values

42 #define SHA384_DIGEST_SIZE 48

43 #define SHA384_BLOCK_SIZE 128

Table 1:16 - Defines for SHA512 Hash Values

44 #define SHA512_DIGEST_SIZE 64

45 #define SHA512_BLOCK_SIZE 128

Table 1:17 - Defines for SM3_256 Hash Values

46 #define SM3_256_DIGEST_SIZE 32

47 #define SM3_256_BLOCK_SIZE 64

Table 1:18 - Defines for SHA3_256 Hash Values

48 #define SHA3_256_DIGEST_SIZE 32

49 #define SHA3_256_BLOCK_SIZE 136

Table 1:19 - Defines for SHA3_384 Hash Values

50 #define SHA3_384_DIGEST_SIZE 48

51 #define SHA3_384_BLOCK_SIZE 104

Table 1:20 - Defines for SHA3_512 Hash Values

52 #define SHA3_512_DIGEST_SIZE 64

53 #define SHA3_512_BLOCK_SIZE 72

Table 1:21 - Defines for AES Symmetric Cipher Algorithm Constants

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 635

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

54 #define AES_KEY_SIZES_BITS \

55 (128 * AES_128), (192 * AES_192), (256 * AES_256)

56 #if AES_256

57 # define AES_MAX_KEY_SIZE_BITS 256

58 #elif AES_192

59 # define AES_MAX_KEY_SIZE_BITS 192

60 #elif AES_128

61 # define AES_MAX_KEY_SIZE_BITS 128

62 #else

63 # define AES_MAX_KEY_SIZE_BITS 0

64 #endif

65 #define MAX_AES_KEY_BITS AES_MAX_KEY_SIZE_BITS

66 #define MAX_AES_KEY_BYTES ((AES_MAX_KEY_SIZE_BITS + 7) / 8)

67 #define AES_128_BLOCK_SIZE_BYTES (AES_128 * 16)

68 #define AES_192_BLOCK_SIZE_BYTES (AES_192 * 16)

69 #define AES_256_BLOCK_SIZE_BYTES (AES_256 * 16)

70 #define AES_BLOCK_SIZES \

71 AES_128_BLOCK_SIZE_BYTES, AES_192_BLOCK_SIZE_BYTES, \

72 AES_256_BLOCK_SIZE_BYTES

73 #if ALG_AES

74 # define AES_MAX_BLOCK_SIZE 16

75 #else

76 # define AES_MAX_BLOCK_SIZE 0

77 #endif

78 #define MAX_AES_BLOCK_SIZE_BYTES AES_MAX_BLOCK_SIZE

Table 1:22 - Defines for SM4 Symmetric Cipher Algorithm Constants

79 #define SM4_KEY_SIZES_BITS (128 * SM4_128)

80 #if SM4_128

81 # define SM4_MAX_KEY_SIZE_BITS 128

82 #else

83 # define SM4_MAX_KEY_SIZE_BITS 0

84 #endif

85 #define MAX_SM4_KEY_BITS SM4_MAX_KEY_SIZE_BITS

86 #define MAX_SM4_KEY_BYTES ((SM4_MAX_KEY_SIZE_BITS + 7) / 8)

87 #define SM4_128_BLOCK_SIZE_BYTES (SM4_128 * 16)

88 #define SM4_BLOCK_SIZES SM4_128_BLOCK_SIZE_BYTES

89 #if ALG_SM4

90 # define SM4_MAX_BLOCK_SIZE 16

91 #else

92 # define SM4_MAX_BLOCK_SIZE 0

93 #endif

94 #define MAX_SM4_BLOCK_SIZE_BYTES SM4_MAX_BLOCK_SIZE

Table 1:23 - Defines for CAMELLIA Symmetric Cipher Algorithm Constants

95 #define CAMELLIA_KEY_SIZES_BITS \

96 (128 * CAMELLIA_128), (192 * CAMELLIA_192), (256 * CAMELLIA_256)

97 #if CAMELLIA_256

98 # define CAMELLIA_MAX_KEY_SIZE_BITS 256

99 #elif CAMELLIA_192

100 # define CAMELLIA_MAX_KEY_SIZE_BITS 192

101 #elif CAMELLIA_128

102 # define CAMELLIA_MAX_KEY_SIZE_BITS 128

103 #else

104 # define CAMELLIA_MAX_KEY_SIZE_BITS 0

105 #endif

106 #define MAX_CAMELLIA_KEY_BITS CAMELLIA_MAX_KEY_SIZE_BITS

107 #define MAX_CAMELLIA_KEY_BYTES ((CAMELLIA_MAX_KEY_SIZE_BITS + 7) / 8)

108 #define CAMELLIA_128_BLOCK_SIZE_BYTES (CAMELLIA_128 * 16)

109 #define CAMELLIA_192_BLOCK_SIZE_BYTES (CAMELLIA_192 * 16)

110 #define CAMELLIA_256_BLOCK_SIZE_BYTES (CAMELLIA_256 * 16)

111 #define CAMELLIA_BLOCK_SIZES \

112 CAMELLIA_128_BLOCK_SIZE_BYTES, CAMELLIA_192_BLOCK_SIZE_BYTES, \

Trusted Platform Module Library Part 4: Supporting Routines

Page 636 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

113 CAMELLIA_256_BLOCK_SIZE_BYTES

114 #if ALG_CAMELLIA

115 # define CAMELLIA_MAX_BLOCK_SIZE 16

116 #else

117 # define CAMELLIA_MAX_BLOCK_SIZE 0

118 #endif

119 #define MAX_CAMELLIA_BLOCK_SIZE_BYTES CAMELLIA_MAX_BLOCK_SIZE

Table 1:24 - Defines for TDES Symmetric Cipher Algorithm Constants

120 #define TDES_KEY_SIZES_BITS (128 * TDES_128), (192 * TDES_192)

121 #if TDES_192

122 # define TDES_MAX_KEY_SIZE_BITS 192

123 #elif TDES_128

124 # define TDES_MAX_KEY_SIZE_BITS 128

125 #else

126 # define TDES_MAX_KEY_SIZE_BITS 0

127 #endif

128 #define MAX_TDES_KEY_BITS TDES_MAX_KEY_SIZE_BITS

129 #define MAX_TDES_KEY_BYTES ((TDES_MAX_KEY_SIZE_BITS + 7) / 8)

130 #define TDES_128_BLOCK_SIZE_BYTES (TDES_128 * 8)

131 #define TDES_192_BLOCK_SIZE_BYTES (TDES_192 * 8)

132 #define TDES_BLOCK_SIZES \

133 TDES_128_BLOCK_SIZE_BYTES, TDES_192_BLOCK_SIZE_BYTES

134 #if ALG_TDES

135 # define TDES_MAX_BLOCK_SIZE 8

136 #else

137 # define TDES_MAX_BLOCK_SIZE 0

138 #endif

139 #define MAX_TDES_BLOCK_SIZE_BYTES TDES_MAX_BLOCK_SIZE

Additional values for benefit of code

140 #define TPM_CC_FIRST 0x0000011F

141 #define TPM_CC_LAST 0x00000198

142 #if COMPRESSED_LISTS

143 #define ADD_FILL 0

144 #else

145 #define ADD_FILL 1

146 #endif

Size the array of library commands based on whether or not the array is packed (only defined commands)

or dense (having entries for unimplemented commands)

147 #define LIBRARY_COMMAND_ARRAY_SIZE (0 \

148 + (ADD_FILL || CC_NV_UndefineSpaceSpecial) /* 0x0000011F */ \

149 + (ADD_FILL || CC_EvictControl) /* 0x00000120 */ \

150 + (ADD_FILL || CC_HierarchyControl) /* 0x00000121 */ \

151 + (ADD_FILL || CC_NV_UndefineSpace) /* 0x00000122 */ \

152 + ADD_FILL /* 0x00000123 */ \

153 + (ADD_FILL || CC_ChangeEPS) /* 0x00000124 */ \

154 + (ADD_FILL || CC_ChangePPS) /* 0x00000125 */ \

155 + (ADD_FILL || CC_Clear) /* 0x00000126 */ \

156 + (ADD_FILL || CC_ClearControl) /* 0x00000127 */ \

157 + (ADD_FILL || CC_ClockSet) /* 0x00000128 */ \

158 + (ADD_FILL || CC_HierarchyChangeAuth) /* 0x00000129 */ \

159 + (ADD_FILL || CC_NV_DefineSpace) /* 0x0000012A */ \

160 + (ADD_FILL || CC_PCR_Allocate) /* 0x0000012B */ \

161 + (ADD_FILL || CC_PCR_SetAuthPolicy) /* 0x0000012C */ \

162 + (ADD_FILL || CC_PP_Commands) /* 0x0000012D */ \

163 + (ADD_FILL || CC_SetPrimaryPolicy) /* 0x0000012E */ \

164 + (ADD_FILL || CC_FieldUpgradeStart) /* 0x0000012F */ \

165 + (ADD_FILL || CC_ClockRateAdjust) /* 0x00000130 */ \

166 + (ADD_FILL || CC_CreatePrimary) /* 0x00000131 */ \

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 637

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

167 + (ADD_FILL || CC_NV_GlobalWriteLock) /* 0x00000132 */ \

168 + (ADD_FILL || CC_GetCommandAuditDigest) /* 0x00000133 */ \

169 + (ADD_FILL || CC_NV_Increment) /* 0x00000134 */ \

170 + (ADD_FILL || CC_NV_SetBits) /* 0x00000135 */ \

171 + (ADD_FILL || CC_NV_Extend) /* 0x00000136 */ \

172 + (ADD_FILL || CC_NV_Write) /* 0x00000137 */ \

173 + (ADD_FILL || CC_NV_WriteLock) /* 0x00000138 */ \

174 + (ADD_FILL || CC_DictionaryAttackLockReset) /* 0x00000139 */ \

175 + (ADD_FILL || CC_DictionaryAttackParameters) /* 0x0000013A */ \

176 + (ADD_FILL || CC_NV_ChangeAuth) /* 0x0000013B */ \

177 + (ADD_FILL || CC_PCR_Event) /* 0x0000013C */ \

178 + (ADD_FILL || CC_PCR_Reset) /* 0x0000013D */ \

179 + (ADD_FILL || CC_SequenceComplete) /* 0x0000013E */ \

180 + (ADD_FILL || CC_SetAlgorithmSet) /* 0x0000013F */ \

181 + (ADD_FILL || CC_SetCommandCodeAuditStatus) /* 0x00000140 */ \

182 + (ADD_FILL || CC_FieldUpgradeData) /* 0x00000141 */ \

183 + (ADD_FILL || CC_IncrementalSelfTest) /* 0x00000142 */ \

184 + (ADD_FILL || CC_SelfTest) /* 0x00000143 */ \

185 + (ADD_FILL || CC_Startup) /* 0x00000144 */ \

186 + (ADD_FILL || CC_Shutdown) /* 0x00000145 */ \

187 + (ADD_FILL || CC_StirRandom) /* 0x00000146 */ \

188 + (ADD_FILL || CC_ActivateCredential) /* 0x00000147 */ \

189 + (ADD_FILL || CC_Certify) /* 0x00000148 */ \

190 + (ADD_FILL || CC_PolicyNV) /* 0x00000149 */ \

191 + (ADD_FILL || CC_CertifyCreation) /* 0x0000014A */ \

192 + (ADD_FILL || CC_Duplicate) /* 0x0000014B */ \

193 + (ADD_FILL || CC_GetTime) /* 0x0000014C */ \

194 + (ADD_FILL || CC_GetSessionAuditDigest) /* 0x0000014D */ \

195 + (ADD_FILL || CC_NV_Read) /* 0x0000014E */ \

196 + (ADD_FILL || CC_NV_ReadLock) /* 0x0000014F */ \

197 + (ADD_FILL || CC_ObjectChangeAuth) /* 0x00000150 */ \

198 + (ADD_FILL || CC_PolicySecret) /* 0x00000151 */ \

199 + (ADD_FILL || CC_Rewrap) /* 0x00000152 */ \

200 + (ADD_FILL || CC_Create) /* 0x00000153 */ \

201 + (ADD_FILL || CC_ECDH_ZGen) /* 0x00000154 */ \

202 + (ADD_FILL || CC_HMAC || CC_MAC) /* 0x00000155 */ \

203 + (ADD_FILL || CC_Import) /* 0x00000156 */ \

204 + (ADD_FILL || CC_Load) /* 0x00000157 */ \

205 + (ADD_FILL || CC_Quote) /* 0x00000158 */ \

206 + (ADD_FILL || CC_RSA_Decrypt) /* 0x00000159 */ \

207 + ADD_FILL /* 0x0000015A */ \

208 + (ADD_FILL || CC_HMAC_Start || CC_MAC_Start) /* 0x0000015B */ \

209 + (ADD_FILL || CC_SequenceUpdate) /* 0x0000015C */ \

210 + (ADD_FILL || CC_Sign) /* 0x0000015D */ \

211 + (ADD_FILL || CC_Unseal) /* 0x0000015E */ \

212 + ADD_FILL /* 0x0000015F */ \

213 + (ADD_FILL || CC_PolicySigned) /* 0x00000160 */ \

214 + (ADD_FILL || CC_ContextLoad) /* 0x00000161 */ \

215 + (ADD_FILL || CC_ContextSave) /* 0x00000162 */ \

216 + (ADD_FILL || CC_ECDH_KeyGen) /* 0x00000163 */ \

217 + (ADD_FILL || CC_EncryptDecrypt) /* 0x00000164 */ \

218 + (ADD_FILL || CC_FlushContext) /* 0x00000165 */ \

219 + ADD_FILL /* 0x00000166 */ \

220 + (ADD_FILL || CC_LoadExternal) /* 0x00000167 */ \

221 + (ADD_FILL || CC_MakeCredential) /* 0x00000168 */ \

222 + (ADD_FILL || CC_NV_ReadPublic) /* 0x00000169 */ \

223 + (ADD_FILL || CC_PolicyAuthorize) /* 0x0000016A */ \

224 + (ADD_FILL || CC_PolicyAuthValue) /* 0x0000016B */ \

225 + (ADD_FILL || CC_PolicyCommandCode) /* 0x0000016C */ \

226 + (ADD_FILL || CC_PolicyCounterTimer) /* 0x0000016D */ \

227 + (ADD_FILL || CC_PolicyCpHash) /* 0x0000016E */ \

228 + (ADD_FILL || CC_PolicyLocality) /* 0x0000016F */ \

229 + (ADD_FILL || CC_PolicyNameHash) /* 0x00000170 */ \

230 + (ADD_FILL || CC_PolicyOR) /* 0x00000171 */ \

231 + (ADD_FILL || CC_PolicyTicket) /* 0x00000172 */ \

232 + (ADD_FILL || CC_ReadPublic) /* 0x00000173 */ \

Trusted Platform Module Library Part 4: Supporting Routines

Page 638 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

233 + (ADD_FILL || CC_RSA_Encrypt) /* 0x00000174 */ \

234 + ADD_FILL /* 0x00000175 */ \

235 + (ADD_FILL || CC_StartAuthSession) /* 0x00000176 */ \

236 + (ADD_FILL || CC_VerifySignature) /* 0x00000177 */ \

237 + (ADD_FILL || CC_ECC_Parameters) /* 0x00000178 */ \

238 + (ADD_FILL || CC_FirmwareRead) /* 0x00000179 */ \

239 + (ADD_FILL || CC_GetCapability) /* 0x0000017A */ \

240 + (ADD_FILL || CC_GetRandom) /* 0x0000017B */ \

241 + (ADD_FILL || CC_GetTestResult) /* 0x0000017C */ \

242 + (ADD_FILL || CC_Hash) /* 0x0000017D */ \

243 + (ADD_FILL || CC_PCR_Read) /* 0x0000017E */ \

244 + (ADD_FILL || CC_PolicyPCR) /* 0x0000017F */ \

245 + (ADD_FILL || CC_PolicyRestart) /* 0x00000180 */ \

246 + (ADD_FILL || CC_ReadClock) /* 0x00000181 */ \

247 + (ADD_FILL || CC_PCR_Extend) /* 0x00000182 */ \

248 + (ADD_FILL || CC_PCR_SetAuthValue) /* 0x00000183 */ \

249 + (ADD_FILL || CC_NV_Certify) /* 0x00000184 */ \

250 + (ADD_FILL || CC_EventSequenceComplete) /* 0x00000185 */ \

251 + (ADD_FILL || CC_HashSequenceStart) /* 0x00000186 */ \

252 + (ADD_FILL || CC_PolicyPhysicalPresence) /* 0x00000187 */ \

253 + (ADD_FILL || CC_PolicyDuplicationSelect) /* 0x00000188 */ \

254 + (ADD_FILL || CC_PolicyGetDigest) /* 0x00000189 */ \

255 + (ADD_FILL || CC_TestParms) /* 0x0000018A */ \

256 + (ADD_FILL || CC_Commit) /* 0x0000018B */ \

257 + (ADD_FILL || CC_PolicyPassword) /* 0x0000018C */ \

258 + (ADD_FILL || CC_ZGen_2Phase) /* 0x0000018D */ \

259 + (ADD_FILL || CC_EC_Ephemeral) /* 0x0000018E */ \

260 + (ADD_FILL || CC_PolicyNvWritten) /* 0x0000018F */ \

261 + (ADD_FILL || CC_PolicyTemplate) /* 0x00000190 */ \

262 + (ADD_FILL || CC_CreateLoaded) /* 0x00000191 */ \

263 + (ADD_FILL || CC_PolicyAuthorizeNV) /* 0x00000192 */ \

264 + (ADD_FILL || CC_EncryptDecrypt2) /* 0x00000193 */ \

265 + (ADD_FILL || CC_AC_GetCapability) /* 0x00000194 */ \

266 + (ADD_FILL || CC_AC_Send) /* 0x00000195 */ \

267 + (ADD_FILL || CC_Policy_AC_SendSelect) /* 0x00000196 */ \

268 + (ADD_FILL || CC_CertifyX509) /* 0x00000197 */ \

269 + (ADD_FILL || CC_ACT_SetTimeout) /* 0x00000198 */ \

270)

271 #define VENDOR_COMMAND_ARRAY_SIZE (0 + CC_Vendor_TCG_Test)

272 #define COMMAND_COUNT (LIBRARY_COMMAND_ARRAY_SIZE + VENDOR_COMMAND_ARRAY_SIZE)

273 #define HASH_COUNT \

274 (ALG_SHA1 + ALG_SHA256 + ALG_SHA384 + ALG_SHA3_256 + \

275 ALG_SHA3_384 + ALG_SHA3_512 + ALG_SHA512 + ALG_SM3_256)

276 #define MAX_HASH_BLOCK_SIZE \

277 (MAX(ALG_SHA1 * SHA1_BLOCK_SIZE, \

278 MAX(ALG_SHA256 * SHA256_BLOCK_SIZE, \

279 MAX(ALG_SHA384 * SHA384_BLOCK_SIZE, \

280 MAX(ALG_SHA3_256 * SHA3_256_BLOCK_SIZE, \

281 MAX(ALG_SHA3_384 * SHA3_384_BLOCK_SIZE, \

282 MAX(ALG_SHA3_512 * SHA3_512_BLOCK_SIZE, \

283 MAX(ALG_SHA512 * SHA512_BLOCK_SIZE, \

284 MAX(ALG_SM3_256 * SM3_256_BLOCK_SIZE, \

285 0)))))))))

286 #define MAX_DIGEST_SIZE \

287 (MAX(ALG_SHA1 * SHA1_DIGEST_SIZE, \

288 MAX(ALG_SHA256 * SHA256_DIGEST_SIZE, \

289 MAX(ALG_SHA384 * SHA384_DIGEST_SIZE, \

290 MAX(ALG_SHA3_256 * SHA3_256_DIGEST_SIZE, \

291 MAX(ALG_SHA3_384 * SHA3_384_DIGEST_SIZE, \

292 MAX(ALG_SHA3_512 * SHA3_512_DIGEST_SIZE, \

293 MAX(ALG_SHA512 * SHA512_DIGEST_SIZE, \

294 MAX(ALG_SM3_256 * SM3_256_DIGEST_SIZE, \

295 0)))))))))

296 #if MAX_DIGEST_SIZE == 0 || MAX_HASH_BLOCK_SIZE == 0

297 #error "Hash data not valid"

298 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 639

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Define the 2B structure that would hold any hash block

299 TPM2B_TYPE(MAX_HASH_BLOCK, MAX_HASH_BLOCK_SIZE);

Following typedef is for some old code

300 typedef TPM2B_MAX_HASH_BLOCK TPM2B_HASH_BLOCK;

Additional symmetric constants

301 #define MAX_SYM_KEY_BITS \

302 (MAX(AES_MAX_KEY_SIZE_BITS, MAX(CAMELLIA_MAX_KEY_SIZE_BITS, \

303 MAX(SM4_MAX_KEY_SIZE_BITS, MAX(TDES_MAX_KEY_SIZE_BITS, \

304 0)))))

305 #define MAX_SYM_KEY_BYTES ((MAX_SYM_KEY_BITS + 7) / 8)

306 #define MAX_SYM_BLOCK_SIZE \

307 (MAX(AES_MAX_BLOCK_SIZE, MAX(CAMELLIA_MAX_BLOCK_SIZE, \

308 MAX(SM4_MAX_BLOCK_SIZE, MAX(TDES_MAX_BLOCK_SIZE, \

309 0)))))

310 #if MAX_SYM_KEY_BITS == 0 || MAX_SYM_BLOCK_SIZE == 0

311 # error Bad size for MAX_SYM_KEY_BITS or MAX_SYM_BLOCK

312 #endif

313 #endif // _TPM_ALGORITHM_DEFINES_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 640 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2 Source

10.2.1 AlgorithmTests.c

10.2.1.1 Introduction

This file contains the code to perform the various self-test functions.

NOTE: In this implementation, large local variables are made static to minimize stack usage, which is critical for stack-
constrained platforms.

10.2.1.2 Includes and Defines

1 #include "Tpm.h"

2 #define SELF_TEST_DATA

3 #if SELF_TEST

These includes pull in the data structures. They contain data definitions for the various tests.

4 #include "SelfTest.h"

5 #include "SymmetricTest.h"

6 #include "RsaTestData.h"

7 #include "EccTestData.h"

8 #include "HashTestData.h"

9 #include "KdfTestData.h"

10 #define TEST_DEFAULT_TEST_HASH(vector) \

11 if(TEST_BIT(DEFAULT_TEST_HASH, g_toTest)) \

12 TestHash(DEFAULT_TEST_HASH, vector);

Make sure that the algorithm has been tested

13 #define CLEAR_BOTH(alg) { CLEAR_BIT(alg, *toTest); \

14 if(toTest != &g_toTest) \

15 CLEAR_BIT(alg, g_toTest); }

16 #define SET_BOTH(alg) { SET_BIT(alg, *toTest); \

17 if(toTest != &g_toTest) \

18 SET_BIT(alg, g_toTest); }

19 #define TEST_BOTH(alg) ((toTest != &g_toTest) \

20 ? TEST_BIT(alg, *toTest) || TEST_BIT(alg, g_toTest) \

21 : TEST_BIT(alg, *toTest))

Can only cancel if doing a list.

22 #define CHECK_CANCELED \

23 if(_plat__IsCanceled() && toTest != &g_toTest) \

24 return TPM_RC_CANCELED;

10.2.1.3 Hash Tests

10.2.1.3.1 Description

The hash test does a known-value HMAC using the specified hash algorithm.

10.2.1.3.2 TestHash()

The hash test function.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 641

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

25 static TPM_RC

26 TestHash(

27 TPM_ALG_ID hashAlg,

28 ALGORITHM_VECTOR *toTest

29)

30 {

31 static TPM2B_DIGEST computed; // value computed

32 static HMAC_STATE state;

33 UINT16 digestSize;

34 const TPM2B *testDigest = NULL;

35 // TPM2B_TYPE(HMAC_BLOCK, DEFAULT_TEST_HASH_BLOCK_SIZE);

36

37 pAssert(hashAlg != ALG_NULL_VALUE);

38 switch(hashAlg)

39 {

40 #if ALG_SHA1

41 case ALG_SHA1_VALUE:

42 testDigest = &c_SHA1_digest.b;

43 break;

44 #endif

45 #if ALG_SHA256

46 case ALG_SHA256_VALUE:

47 testDigest = &c_SHA256_digest.b;

48 break;

49 #endif

50 #if ALG_SHA384

51 case ALG_SHA384_VALUE:

52 testDigest = &c_SHA384_digest.b;

53 break;

54 #endif

55 #if ALG_SHA512

56 case ALG_SHA512_VALUE:

57 testDigest = &c_SHA512_digest.b;

58 break;

59 #endif

60 #if ALG_SM3_256

61 case ALG_SM3_256_VALUE:

62 // There are currently not test vectors for SM3

63 // testDigest = &c_SM3_256_digest.b;

64 testDigest = NULL;

65 break;

66 #endif

67 default:

68 FAIL(FATAL_ERROR_INTERNAL);

69 }

70 // Clear the to-test bits

71 CLEAR_BOTH(hashAlg);

72

73 // If there is an algorithm without test vectors, then assume that things are OK.

74 if(testDigest == NULL)

75 return TPM_RC_SUCCESS;

76

77 // Set the HMAC key to twice the digest size

78 digestSize = CryptHashGetDigestSize(hashAlg);

79 CryptHmacStart(&state, hashAlg, digestSize * 2,

80 (BYTE *)c_hashTestKey.t.buffer);

81 CryptDigestUpdate(&state.hashState, 2 * CryptHashGetBlockSize(hashAlg),

82 (BYTE *)c_hashTestData.t.buffer);

83 computed.t.size = digestSize;

84 CryptHmacEnd(&state, digestSize, computed.t.buffer);

85 if((testDigest->size != computed.t.size)

86 || (memcmp(testDigest->buffer, computed.t.buffer, computed.b.size) != 0))

87 SELF_TEST_FAILURE;

88 return TPM_RC_SUCCESS;

89 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 642 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.1.4 Symmetric Test Functions

10.2.1.4.1 MakeIv()

Internal function to make the appropriate IV depending on the mode.

90 static UINT32

91 MakeIv(

92 TPM_ALG_ID mode, // IN: symmetric mode

93 UINT32 size, // IN: block size of the algorithm

94 BYTE *iv // OUT: IV to fill in

95)

96 {

97 BYTE i;

98

99 if(mode == ALG_ECB_VALUE)

100 return 0;

101 if(mode == ALG_CTR_VALUE)

102 {

103 // The test uses an IV that has 0xff in the last byte

104 for(i = 1; i <= size; i++)

105 *iv++ = 0xff - (BYTE)(size - i);

106 }

107 else

108 {

109 for(i = 0; i < size; i++)

110 *iv++ = i;

111 }

112 return size;

113 }

10.2.1.4.2 TestSymmetricAlgorithm()

Function to test a specific algorithm, key size, and mode.

114 static void

115 TestSymmetricAlgorithm(

116 const SYMMETRIC_TEST_VECTOR *test, //

117 TPM_ALG_ID mode //

118)

119 {

120 static BYTE encrypted[MAX_SYM_BLOCK_SIZE * 2];

121 static BYTE decrypted[MAX_SYM_BLOCK_SIZE * 2];

122 static TPM2B_IV iv;

123 //

124 // Get the appropriate IV

125 iv.t.size = (UINT16)MakeIv(mode, test->ivSize, iv.t.buffer);

126

127 // Encrypt known data

128 CryptSymmetricEncrypt(encrypted, test->alg, test->keyBits, test->key, &iv,

129 mode, test->dataInOutSize, test->dataIn);

130 // Check that it matches the expected value

131 if(!MemoryEqual(encrypted, test->dataOut[mode - ALG_CTR_VALUE],

132 test->dataInOutSize))

133 SELF_TEST_FAILURE;

134 // Reinitialize the iv for decryption

135 MakeIv(mode, test->ivSize, iv.t.buffer);

136 CryptSymmetricDecrypt(decrypted, test->alg, test->keyBits, test->key, &iv,

137 mode, test->dataInOutSize,

138 test->dataOut[mode - ALG_CTR_VALUE]);

139 // Make sure that it matches what we started with

140 if(!MemoryEqual(decrypted, test->dataIn, test->dataInOutSize))

141 SELF_TEST_FAILURE;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 643

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

142 }

10.2.1.4.3 AllSymsAreDone()

Checks if both symmetric algorithms have been tested. This is put here so that addition of a symmetric

algorithm will be relatively easy to handle

Return Value Meaning

TRUE(1) all symmetric algorithms tested

FALSE(0) not all symmetric algorithms tested

143 static BOOL

144 AllSymsAreDone(

145 ALGORITHM_VECTOR *toTest

146)

147 {

148 return (!TEST_BOTH(ALG_AES_VALUE) && !TEST_BOTH(ALG_SM4_VALUE));

149 }

10.2.1.4.4 AllModesAreDone()

Checks if all the modes have been tested

Return Value Meaning

TRUE(1) all modes tested

FALSE(0) all modes not tested

150 static BOOL

151 AllModesAreDone(

152 ALGORITHM_VECTOR *toTest

153)

154 {

155 TPM_ALG_ID alg;

156 for(alg = TPM_SYM_MODE_FIRST; alg <= TPM_SYM_MODE_LAST; alg++)

157 if(TEST_BOTH(alg))

158 return FALSE;

159 return TRUE;

160 }

10.2.1.4.5 TestSymmetric()

If alg is a symmetric block cipher, then all of the modes that are selected are tested. If alg is a mode, then

all algorithms of that mode are tested.

161 static TPM_RC

162 TestSymmetric(

163 TPM_ALG_ID alg,

164 ALGORITHM_VECTOR *toTest

165)

166 {

167 SYM_INDEX index;

168 TPM_ALG_ID mode;

169 //

170 if(!TEST_BIT(alg, *toTest))

171 return TPM_RC_SUCCESS;

172 if(alg == ALG_AES_VALUE || alg == ALG_SM4_VALUE || alg == ALG_CAMELLIA_VALUE)

173 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 644 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

174 // Will test the algorithm for all modes and key sizes

175 CLEAR_BOTH(alg);

176

177 // A test this algorithm for all modes

178 for(index = 0; index < NUM_SYMS; index++)

179 {

180 if(c_symTestValues[index].alg == alg)

181 {

182 for(mode = TPM_SYM_MODE_FIRST;

183 mode <= TPM_SYM_MODE_LAST;

184 mode++)

185 {

186 if(TEST_BIT(mode, *toTest))

187 TestSymmetricAlgorithm(&c_symTestValues[index], mode);

188 }

189 }

190 }

191 // if all the symmetric tests are done

192 if(AllSymsAreDone(toTest))

193 {

194 // all symmetric algorithms tested so no modes should be set

195 for(alg = TPM_SYM_MODE_FIRST; alg <= TPM_SYM_MODE_LAST; alg++)

196 CLEAR_BOTH(alg);

197 }

198 }

199 else if(TPM_SYM_MODE_FIRST <= alg && alg <= TPM_SYM_MODE_LAST)

200 {

201 // Test this mode for all key sizes and algorithms

202 for(index = 0; index < NUM_SYMS; index++)

203 {

204 // The mode testing only comes into play when doing self tests

205 // by command. When doing self tests by command, the block ciphers are

206 // tested first. That means that all of their modes would have been

207 // tested for all key sizes. If there is no block cipher left to

208 // test, then clear this mode bit.

209 if(!TEST_BIT(ALG_AES_VALUE, *toTest)

210 && !TEST_BIT(ALG_SM4_VALUE, *toTest))

211 {

212 CLEAR_BOTH(alg);

213 }

214 else

215 {

216 for(index = 0; index < NUM_SYMS; index++)

217 {

218 if(TEST_BIT(c_symTestValues[index].alg, *toTest))

219 TestSymmetricAlgorithm(&c_symTestValues[index], alg);

220 }

221 // have tested this mode for all algorithms

222 CLEAR_BOTH(alg);

223 }

224 }

225 if(AllModesAreDone(toTest))

226 {

227 CLEAR_BOTH(ALG_AES_VALUE);

228 CLEAR_BOTH(ALG_SM4_VALUE);

229 }

230 }

231 else

232 pAssert(alg == 0 && alg != 0);

233 return TPM_RC_SUCCESS;

234 }

10.2.1.5 RSA Tests

235 #if ALG_RSA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 645

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.1.5.1 Introduction

The tests are for public key only operations and for private key operations. Signature verification and

encryption are public key operations. They are tested by using a KVT. For signature verification, this

means that a known good signature is checked by CryptRsaValidateSignature(). If it fails, then the TPM

enters failure mode. For encryption, the TPM encrypts known values using the selected scheme and

checks that the returned value matches the expected value.

For private key operations, a full scheme check is used. For a signing key, a known key is used to sign a

known message. Then that signature is verified. since the signature may involve use of random values,

the signature will be different each time and we can't always check that the signature matches a known

value. The same technique is used for decryption (RSADP/RSAEP).

When an operation uses the public key and the verification has not been tested, the TPM will do a KVT.

The test for the signing algorithm is built into the call for the algorithm

10.2.1.5.2 RsaKeyInitialize()

The test key is defined by a public modulus and a private prime. The TPM's RSA code computes the

second prime and the private exponent.

236 static void

237 RsaKeyInitialize(

238 OBJECT *testObject

239)

240 {

241 MemoryCopy2B(&testObject->publicArea.unique.rsa.b, (P2B)&c_rsaPublicModulus,

242 sizeof(c_rsaPublicModulus));

243 MemoryCopy2B(&testObject->sensitive.sensitive.rsa.b, (P2B)&c_rsaPrivatePrime,

244 sizeof(testObject->sensitive.sensitive.rsa.t.buffer));

245 testObject->publicArea.parameters.rsaDetail.keyBits = RSA_TEST_KEY_SIZE * 8;

246 // Use the default exponent

247 testObject->publicArea.parameters.rsaDetail.exponent = 0;

248 }

10.2.1.5.3 TestRsaEncryptDecrypt()

These tests are for a public key encryption that uses a random value.

249 static TPM_RC

250 TestRsaEncryptDecrypt(

251 TPM_ALG_ID scheme, // IN: the scheme

252 ALGORITHM_VECTOR *toTest //

253)

254 {

255 static TPM2B_PUBLIC_KEY_RSA testInput;

256 static TPM2B_PUBLIC_KEY_RSA testOutput;

257 static OBJECT testObject;

258 const TPM2B_RSA_TEST_KEY *kvtValue = NULL;

259 TPM_RC result = TPM_RC_SUCCESS;

260 const TPM2B *testLabel = NULL;

261 TPMT_RSA_DECRYPT rsaScheme;

262 //

263 // Don't need to initialize much of the test object

264 RsaKeyInitialize(&testObject);

265 rsaScheme.scheme = scheme;

266 rsaScheme.details.anySig.hashAlg = DEFAULT_TEST_HASH;

267 CLEAR_BOTH(scheme);

268 CLEAR_BOTH(ALG_NULL_VALUE);

269 if(scheme == ALG_NULL_VALUE)

270 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 646 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

271 // This is an encryption scheme using the private key without any encoding.

272 memcpy(testInput.t.buffer, c_RsaTestValue, sizeof(c_RsaTestValue));

273 testInput.t.size = sizeof(c_RsaTestValue);

274 if(TPM_RC_SUCCESS != CryptRsaEncrypt(&testOutput, &testInput.b,

275 &testObject, &rsaScheme, NULL, NULL))

276 SELF_TEST_FAILURE;

277 if(!MemoryEqual(testOutput.t.buffer, c_RsaepKvt.buffer, c_RsaepKvt.size))

278 SELF_TEST_FAILURE;

279 MemoryCopy2B(&testInput.b, &testOutput.b, sizeof(testInput.t.buffer));

280 if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,

281 &testObject, &rsaScheme, NULL))

282 SELF_TEST_FAILURE;

283 if(!MemoryEqual(testOutput.t.buffer, c_RsaTestValue,

284 sizeof(c_RsaTestValue)))

285 SELF_TEST_FAILURE;

286 }

287 else

288 {

289 // ALG_RSAES_VALUE:

290 // This is an decryption scheme using padding according to

291 // PKCS#1v2.1, 7.2. This padding uses random bits. To test a public

292 // key encryption that uses random data, encrypt a value and then

293 // decrypt the value and see that we get the encrypted data back.

294 // The hash is not used by this encryption so it can be TMP_ALG_NULL

295

296 // ALG_OAEP_VALUE:

297 // This is also an decryption scheme and it also uses a

298 // pseudo-random

299 // value. However, this also uses a hash algorithm. So, we may need

300 // to test that algorithm before use.

301 if(scheme == ALG_OAEP_VALUE)

302 {

303 TEST_DEFAULT_TEST_HASH(toTest);

304 kvtValue = &c_OaepKvt;

305 testLabel = OAEP_TEST_STRING;

306 }

307 else if(scheme == ALG_RSAES_VALUE)

308 {

309 kvtValue = &c_RsaesKvt;

310 testLabel = NULL;

311 }

312 else

313 SELF_TEST_FAILURE;

314 // Only use a digest-size portion of the test value

315 memcpy(testInput.t.buffer, c_RsaTestValue, DEFAULT_TEST_DIGEST_SIZE);

316 testInput.t.size = DEFAULT_TEST_DIGEST_SIZE;

317

318 // See if the encryption works

319 if(TPM_RC_SUCCESS != CryptRsaEncrypt(&testOutput, &testInput.b,

320 &testObject, &rsaScheme, testLabel,

321 NULL))

322 SELF_TEST_FAILURE;

323 MemoryCopy2B(&testInput.b, &testOutput.b, sizeof(testInput.t.buffer));

324 // see if we can decrypt this value and get the original data back

325 if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,

326 &testObject, &rsaScheme, testLabel))

327 SELF_TEST_FAILURE;

328 // See if the results compare

329 if(testOutput.t.size != DEFAULT_TEST_DIGEST_SIZE

330 || !MemoryEqual(testOutput.t.buffer, c_RsaTestValue,

331 DEFAULT_TEST_DIGEST_SIZE))

332 SELF_TEST_FAILURE;

333 // Now check that the decryption works on a known value

334 MemoryCopy2B(&testInput.b, (P2B)kvtValue,

335 sizeof(testInput.t.buffer));

336 if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 647

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

337 &testObject, &rsaScheme, testLabel))

338 SELF_TEST_FAILURE;

339 if(testOutput.t.size != DEFAULT_TEST_DIGEST_SIZE

340 || !MemoryEqual(testOutput.t.buffer, c_RsaTestValue,

341 DEFAULT_TEST_DIGEST_SIZE))

342 SELF_TEST_FAILURE;

343 }

344 return result;

345 }

10.2.1.5.4 TestRsaSignAndVerify()

This function does the testing of the RSA sign and verification functions. This test does a KVT.

346 static TPM_RC

347 TestRsaSignAndVerify(

348 TPM_ALG_ID scheme,

349 ALGORITHM_VECTOR *toTest

350)

351 {

352 TPM_RC result = TPM_RC_SUCCESS;

353 static OBJECT testObject;

354 static TPM2B_DIGEST testDigest;

355 static TPMT_SIGNATURE testSig;

356

357 // Do a sign and signature verification.

358 // RSASSA:

359 // This is a signing scheme according to PKCS#1-v2.1 8.2. It does not

360 // use random data so there is a KVT for the signing operation. On

361 // first use of the scheme for signing, use the TPM's RSA key to

362 // sign a portion of c_RsaTestData and compare the results to c_RsassaKvt. Then

363 // decrypt the data to see that it matches the starting value. This verifies

364 // the signature with a KVT

365

366 // Clear the bits indicating that the function has not been checked. This is to

367 // prevent looping

368 CLEAR_BOTH(scheme);

369 CLEAR_BOTH(ALG_NULL_VALUE);

370 CLEAR_BOTH(ALG_RSA_VALUE);

371

372 RsaKeyInitialize(&testObject);

373 memcpy(testDigest.t.buffer, (BYTE *)c_RsaTestValue, DEFAULT_TEST_DIGEST_SIZE);

374 testDigest.t.size = DEFAULT_TEST_DIGEST_SIZE;

375 testSig.sigAlg = scheme;

376 testSig.signature.rsapss.hash = DEFAULT_TEST_HASH;

377

378 // RSAPSS:

379 // This is a signing scheme a according to PKCS#1-v2.2 8.1 it uses

380 // random data in the signature so there is no KVT for the signing

381 // operation. To test signing, the TPM will use the TPM's RSA key

382 // to sign a portion of c_RsaTestValue and then it will verify the

383 // signature. For verification, c_RsapssKvt is verified before the

384 // user signature blob is verified. The worst case for testing of this

385 // algorithm is two private and one public key operation.

386

387 // The process is to sign known data. If RSASSA is being done, verify that the

388 // signature matches the precomputed value. For both, use the signed value and

389 // see that the verification says that it is a good signature. Then

390 // if testing RSAPSS, do a verify of a known good signature. This ensures that

391 // the validation function works.

392

393 if(TPM_RC_SUCCESS != CryptRsaSign(&testSig, &testObject, &testDigest, NULL))

394 SELF_TEST_FAILURE;

395 // For RSASSA, make sure the results is what we are looking for

Trusted Platform Module Library Part 4: Supporting Routines

Page 648 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

396 if(testSig.sigAlg == ALG_RSASSA_VALUE)

397 {

398 if(testSig.signature.rsassa.sig.t.size != RSA_TEST_KEY_SIZE

399 || !MemoryEqual(c_RsassaKvt.buffer,

400 testSig.signature.rsassa.sig.t.buffer,

401 RSA_TEST_KEY_SIZE))

402 SELF_TEST_FAILURE;

403 }

404 // See if the TPM will validate its own signatures

405 if(TPM_RC_SUCCESS != CryptRsaValidateSignature(&testSig, &testObject,

406 &testDigest))

407 SELF_TEST_FAILURE;

408 // If this is RSAPSS, check the verification with known signature

409 // Have to copy because CrytpRsaValidateSignature() eats the signature

410 if(ALG_RSAPSS_VALUE == scheme)

411 {

412 MemoryCopy2B(&testSig.signature.rsapss.sig.b, (P2B)&c_RsapssKvt,

413 sizeof(testSig.signature.rsapss.sig.t.buffer));

414 if(TPM_RC_SUCCESS != CryptRsaValidateSignature(&testSig, &testObject,

415 &testDigest))

416 SELF_TEST_FAILURE;

417 }

418 return result;

419 }

10.2.1.5.5 TestRSA()

Function uses the provided vector to indicate which tests to run. It will clear the vector after each test is

run and also clear g_toTest

420 static TPM_RC

421 TestRsa(

422 TPM_ALG_ID alg,

423 ALGORITHM_VECTOR *toTest

424)

425 {

426 TPM_RC result = TPM_RC_SUCCESS;

427 //

428 switch(alg)

429 {

430 case ALG_NULL_VALUE:

431 // This is the RSAEP/RSADP function. If we are processing a list, don't

432 // need to test these now because any other test will validate

433 // RSAEP/RSADP. Can tell this is list of test by checking to see if

434 // 'toTest' is pointing at g_toTest. If so, this is an isolated test

435 // an need to go ahead and do the test;

436 if((toTest == &g_toTest)

437 || (!TEST_BIT(ALG_RSASSA_VALUE, *toTest)

438 && !TEST_BIT(ALG_RSAES_VALUE, *toTest)

439 && !TEST_BIT(ALG_RSAPSS_VALUE, *toTest)

440 && !TEST_BIT(ALG_OAEP_VALUE, *toTest)))

441 // Not running a list of tests or no other tests on the list

442 // so run the test now

443 result = TestRsaEncryptDecrypt(alg, toTest);

444 // if not running the test now, leave the bit on, just in case things

445 // get interrupted

446 break;

447 case ALG_OAEP_VALUE:

448 case ALG_RSAES_VALUE:

449 result = TestRsaEncryptDecrypt(alg, toTest);

450 break;

451 case ALG_RSAPSS_VALUE:

452 case ALG_RSASSA_VALUE:

453 result = TestRsaSignAndVerify(alg, toTest);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 649

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

454 break;

455 default:

456 SELF_TEST_FAILURE;

457 }

458 return result;

459 }

460 #endif // ALG_RSA

10.2.1.6 ECC Tests

461 #if ALG_ECC

10.2.1.6.1 LoadEccParameter()

This function is mostly for readability and type checking

462 static void

463 LoadEccParameter(

464 TPM2B_ECC_PARAMETER *to, // target

465 const TPM2B_EC_TEST *from // source

466)

467 {

468 MemoryCopy2B(&to->b, &from->b, sizeof(to->t.buffer));

469 }

10.2.1.6.2 LoadEccPoint()

470 static void

471 LoadEccPoint(

472 TPMS_ECC_POINT *point, // target

473 const TPM2B_EC_TEST *x, // source

474 const TPM2B_EC_TEST *y

475)

476 {

477 MemoryCopy2B(&point->x.b, (TPM2B *)x, sizeof(point->x.t.buffer));

478 MemoryCopy2B(&point->y.b, (TPM2B *)y, sizeof(point->y.t.buffer));

479 }

10.2.1.6.3 TestECDH()

This test does a KVT on a point multiply.

480 static TPM_RC

481 TestECDH(

482 TPM_ALG_ID scheme, // IN: for consistency

483 ALGORITHM_VECTOR *toTest // IN/OUT: modified after test is run

484)

485 {

486 static TPMS_ECC_POINT Z;

487 static TPMS_ECC_POINT Qe;

488 static TPM2B_ECC_PARAMETER ds;

489 TPM_RC result = TPM_RC_SUCCESS;

490 //

491 NOT_REFERENCED(scheme);

492 CLEAR_BOTH(ALG_ECDH_VALUE);

493 LoadEccParameter(&ds, &c_ecTestKey_ds);

494 LoadEccPoint(&Qe, &c_ecTestKey_QeX, &c_ecTestKey_QeY);

495 if(TPM_RC_SUCCESS != CryptEccPointMultiply(&Z, c_testCurve, &Qe, &ds,

496 NULL, NULL))

497 SELF_TEST_FAILURE;

498 if(!MemoryEqual2B(&c_ecTestEcdh_X.b, &Z.x.b)

Trusted Platform Module Library Part 4: Supporting Routines

Page 650 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

499 || !MemoryEqual2B(&c_ecTestEcdh_Y.b, &Z.y.b))

500 SELF_TEST_FAILURE;

501 return result;

502 }

10.2.1.6.4 TestEccSignAndVerify()

503 static TPM_RC

504 TestEccSignAndVerify(

505 TPM_ALG_ID scheme,

506 ALGORITHM_VECTOR *toTest

507)

508 {

509 static OBJECT testObject;

510 static TPMT_SIGNATURE testSig;

511 static TPMT_ECC_SCHEME eccScheme;

512

513 testSig.sigAlg = scheme;

514 testSig.signature.ecdsa.hash = DEFAULT_TEST_HASH;

515

516 eccScheme.scheme = scheme;

517 eccScheme.details.anySig.hashAlg = DEFAULT_TEST_HASH;

518

519 CLEAR_BOTH(scheme);

520 CLEAR_BOTH(ALG_ECDH_VALUE);

521

522 // ECC signature verification testing uses a KVT.

523 switch(scheme)

524 {

525 case ALG_ECDSA_VALUE:

526 LoadEccParameter(&testSig.signature.ecdsa.signatureR, &c_TestEcDsa_r);

527 LoadEccParameter(&testSig.signature.ecdsa.signatureS, &c_TestEcDsa_s);

528 break;

529 case ALG_ECSCHNORR_VALUE:

530 LoadEccParameter(&testSig.signature.ecschnorr.signatureR,

531 &c_TestEcSchnorr_r);

532 LoadEccParameter(&testSig.signature.ecschnorr.signatureS,

533 &c_TestEcSchnorr_s);

534 break;

535 case ALG_SM2_VALUE:

536 // don't have a test for SM2

537 return TPM_RC_SUCCESS;

538 default:

539 SELF_TEST_FAILURE;

540 break;

541 }

542 TEST_DEFAULT_TEST_HASH(toTest);

543

544 // Have to copy the key. This is because the size used in the test vectors

545 // is the size of the ECC parameter for the test key while the size of a point

546 // is TPM dependent

547 MemoryCopy2B(&testObject.sensitive.sensitive.ecc.b, &c_ecTestKey_ds.b,

548 sizeof(testObject.sensitive.sensitive.ecc.t.buffer));

549 LoadEccPoint(&testObject.publicArea.unique.ecc, &c_ecTestKey_QsX,

550 &c_ecTestKey_QsY);

551 testObject.publicArea.parameters.eccDetail.curveID = c_testCurve;

552

553 if(TPM_RC_SUCCESS != CryptEccValidateSignature(&testSig, &testObject,

554 (TPM2B_DIGEST *)&c_ecTestValue.b))

555 {

556 SELF_TEST_FAILURE;

557 }

558 CHECK_CANCELED;

559

560 // Now sign and verify some data

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 651

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

561 if(TPM_RC_SUCCESS != CryptEccSign(&testSig, &testObject,

562 (TPM2B_DIGEST *)&c_ecTestValue,

563 &eccScheme, NULL))

564 SELF_TEST_FAILURE;

565

566 CHECK_CANCELED;

567

568 if(TPM_RC_SUCCESS != CryptEccValidateSignature(&testSig, &testObject,

569 (TPM2B_DIGEST *)&c_ecTestValue))

570 SELF_TEST_FAILURE;

571

572 CHECK_CANCELED;

573

574 return TPM_RC_SUCCESS;

575 }

10.2.1.6.5 TestKDFa()

576 static TPM_RC

577 TestKDFa(

578 ALGORITHM_VECTOR *toTest

579)

580 {

581 static TPM2B_KDF_TEST_KEY keyOut;

582 UINT32 counter = 0;

583 //

584 CLEAR_BOTH(ALG_KDF1_SP800_108_VALUE);

585

586 keyOut.t.size = CryptKDFa(KDF_TEST_ALG, &c_kdfTestKeyIn.b, &c_kdfTestLabel.b,

587 &c_kdfTestContextU.b, &c_kdfTestContextV.b,

588 TEST_KDF_KEY_SIZE * 8, keyOut.t.buffer,

589 &counter, FALSE);

590 if (keyOut.t.size != TEST_KDF_KEY_SIZE

591 || !MemoryEqual(keyOut.t.buffer, c_kdfTestKeyOut.t.buffer,

592 TEST_KDF_KEY_SIZE))

593 SELF_TEST_FAILURE;

594

595 return TPM_RC_SUCCESS;

596 }

10.2.1.6.6 TestEcc()

597 static TPM_RC

598 TestEcc(

599 TPM_ALG_ID alg,

600 ALGORITHM_VECTOR *toTest

601)

602 {

603 TPM_RC result = TPM_RC_SUCCESS;

604 NOT_REFERENCED(toTest);

605 switch(alg)

606 {

607 case ALG_ECC_VALUE:

608 case ALG_ECDH_VALUE:

609 // If this is in a loop then see if another test is going to deal with

610 // this.

611 // If toTest is not a self-test list

612 if((toTest == &g_toTest)

613 // or this is the only ECC test in the list

614 || !(TEST_BIT(ALG_ECDSA_VALUE, *toTest)

615 || TEST_BIT(ALG_ECSCHNORR, *toTest)

616 || TEST_BIT(ALG_SM2_VALUE, *toTest)))

617 {

618 result = TestECDH(alg, toTest);

Trusted Platform Module Library Part 4: Supporting Routines

Page 652 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

619 }

620 break;

621 case ALG_ECDSA_VALUE:

622 case ALG_ECSCHNORR_VALUE:

623 case ALG_SM2_VALUE:

624 result = TestEccSignAndVerify(alg, toTest);

625 break;

626 default:

627 SELF_TEST_FAILURE;

628 break;

629 }

630 return result;

631 }

632 #endif // ALG_ECC

10.2.1.6.7 TestAlgorithm()

Dispatches to the correct test function for the algorithm or gets a list of testable algorithms.

If toTest is not NULL, then the test decisions are based on the algorithm selections in toTest. Otherwise,

g_toTest is used. When bits are clear in g_toTest they will also be cleared toTest.

If there doesn't happen to be a test for the algorithm, its associated bit is quietly cleared.

If alg is zero (TPM_ALG_ERROR), then the toTest vector is cleared of any bits for which there is no test

(i.e. no tests are actually run but the vector is cleared).

NOTE: toTest will only ever have bits set for implemented algorithms but alg can be anything.

Error Returns Meaning

TPM_RC_CANCELED test was canceled

633 LIB_EXPORT

634 TPM_RC

635 TestAlgorithm(

636 TPM_ALG_ID alg,

637 ALGORITHM_VECTOR *toTest

638)

639 {

640 TPM_ALG_ID first = (alg == ALG_ERROR_VALUE) ? ALG_FIRST_VALUE : alg;

641 TPM_ALG_ID last = (alg == ALG_ERROR_VALUE) ? ALG_LAST_VALUE : alg;

642 BOOL doTest = (alg != ALG_ERROR_VALUE);

643 TPM_RC result = TPM_RC_SUCCESS;

644

645 if(toTest == NULL)

646 toTest = &g_toTest;

647

648 // This is kind of strange. This function will either run a test of the selected

649 // algorithm or just clear a bit if there is no test for the algorithm. So,

650 // either this loop will be executed once for the selected algorithm or once for

651 // each of the possible algorithms. If it is executed more than once ('alg' ==

652 // ALG_ERROR), then no test will be run but bits will be cleared for

653 // unimplemented algorithms. This was done this way so that there is only one

654 // case statement with all of the algorithms. It was easier to have one case

655 // statement than to have multiple ones to manage whenever an algorithm ID is

656 // added.

657 for(alg = first; (alg <= last); alg++)

658 {

659 // if 'alg' was TPM_ALG_ERROR, then we will be cycling through

660 // values, some of which may not be implemented. If the bit in toTest

661 // happens to be set, then we could either generated an assert, or just

662 // silently CLEAR it. Decided to just clear.

663 if(!TEST_BIT(alg, g_implementedAlgorithms))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 653

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

664 {

665 CLEAR_BIT(alg, *toTest);

666 continue;

667 }

668 // Process whatever is left.

669 // NOTE: since this switch will only be called if the algorithm is

670 // implemented, it is not necessary to modify this list except to comment

671 // out the algorithms for which there is no test

672 switch(alg)

673 {

674 // Symmetric block ciphers

675 #if ALG_AES

676 case ALG_AES_VALUE:

677 #endif // ALG_AES

678 #if ALG_SM4

679 // if SM4 is implemented, its test is like other block ciphers but there

680 // aren't any test vectors for it yet

681 // case ALG_SM4_VALUE:

682 #endif // ALG_SM4

683 #if ALG_CAMELLIA

684 // no test vectors for camellia

685 // case ALG_CAMELLIA_VALUE:

686 #endif

687 // Symmetric modes

688 #if !ALG_CFB

689 # error CFB is required in all TPM implementations

690 #endif // !ALG_CFB

691 case ALG_CFB_VALUE:

692 if(doTest)

693 result = TestSymmetric(alg, toTest);

694 break;

695 #if ALG_CTR

696 case ALG_CTR_VALUE:

697 #endif // ALG_CRT

698 #if ALG_OFB

699 case ALG_OFB_VALUE:

700 #endif // ALG_OFB

701 #if ALG_CBC

702 case ALG_CBC_VALUE:

703 #endif // ALG_CBC

704 #if ALG_ECB

705 case ALG_ECB_VALUE:

706 #endif

707 if(doTest)

708 result = TestSymmetric(alg, toTest);

709 else

710 // If doing the initialization of g_toTest vector, only need

711 // to test one of the modes for the symmetric algorithms. If

712 // initializing for a SelfTest(FULL_TEST), allow all the modes.

713 if(toTest == &g_toTest)

714 CLEAR_BIT(alg, *toTest);

715 break;

716 #if !ALG_HMAC

717 # error HMAC is required in all TPM implementations

718 #endif

719 case ALG_HMAC_VALUE:

720 // Clear the bit that indicates that HMAC is required because

721 // HMAC is used as the basic test for all hash algorithms.

722 CLEAR_BOTH(alg);

723 // Testing HMAC means test the default hash

724 if(doTest)

725 TestHash(DEFAULT_TEST_HASH, toTest);

726 else

727 // If not testing, then indicate that the hash needs to be

728 // tested because this uses HMAC

729 SET_BOTH(DEFAULT_TEST_HASH);

Trusted Platform Module Library Part 4: Supporting Routines

Page 654 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

730 break;

731 #if ALG_SHA1

732 case ALG_SHA1_VALUE:

733 #endif // ALG_SHA1

734 #if ALG_SHA256

735 case ALG_SHA256_VALUE:

736 #endif // ALG_SHA256

737 #if ALG_SHA384

738 case ALG_SHA384_VALUE:

739 #endif // ALG_SHA384

740 #if ALG_SHA512

741 case ALG_SHA512_VALUE:

742 #endif // ALG_SHA512

743 // if SM3 is implemented its test is like any other hash, but there

744 // aren't any test vectors yet.

745 #if ALG_SM3_256

746 // case ALG_SM3_256_VALUE:

747 #endif // ALG_SM3_256

748 if(doTest)

749 result = TestHash(alg, toTest);

750 break;

751 // RSA-dependent

752 #if ALG_RSA

753 case ALG_RSA_VALUE:

754 CLEAR_BOTH(alg);

755 if(doTest)

756 result = TestRsa(ALG_NULL_VALUE, toTest);

757 else

758 SET_BOTH(ALG_NULL_VALUE);

759 break;

760 case ALG_RSASSA_VALUE:

761 case ALG_RSAES_VALUE:

762 case ALG_RSAPSS_VALUE:

763 case ALG_OAEP_VALUE:

764 case ALG_NULL_VALUE: // used or RSADP

765 if(doTest)

766 result = TestRsa(alg, toTest);

767 break;

768 #endif // ALG_RSA

769 #if ALG_KDF1_SP800_108

770 case ALG_KDF1_SP800_108_VALUE:

771 if(doTest)

772 result = TestKDFa(toTest);

773 break;

774 #endif // ALG_KDF1_SP800_108

775 #if ALG_ECC

776 // ECC dependent but no tests

777 // case ALG_ECDAA_VALUE:

778 // case ALG_ECMQV_VALUE:

779 // case ALG_KDF1_SP800_56a_VALUE:

780 // case ALG_KDF2_VALUE:

781 // case ALG_MGF1_VALUE:

782 case ALG_ECC_VALUE:

783 CLEAR_BOTH(alg);

784 if(doTest)

785 result = TestEcc(ALG_ECDH_VALUE, toTest);

786 else

787 SET_BOTH(ALG_ECDH_VALUE);

788 break;

789 case ALG_ECDSA_VALUE:

790 case ALG_ECDH_VALUE:

791 case ALG_ECSCHNORR_VALUE:

792 // case ALG_SM2_VALUE:

793 if(doTest)

794 result = TestEcc(alg, toTest);

795 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 655

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

796 #endif // ALG_ECC

797 default:

798 CLEAR_BIT(alg, *toTest);

799 break;

800 }

801 if(result != TPM_RC_SUCCESS)

802 break;

803 }

804 return result;

805 }

806 #endif // SELF_TESTS

Trusted Platform Module Library Part 4: Supporting Routines

Page 656 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.2 BnConvert.c

10.2.2.1 Introduction

This file contains the basic conversion functions that will convert TPM2B to/from the internal format. The

internal format is a bigNum,

10.2.2.2 Includes

1 #include "Tpm.h"

10.2.2.3 Functions

10.2.2.3.1 BnFromBytes()

This function will convert a big-endian byte array to the internal number format. If bn is NULL, then the

output is NULL. If bytes is null or the required size is 0, then the output is set to zero

2 LIB_EXPORT bigNum

3 BnFromBytes(

4 bigNum bn,

5 const BYTE *bytes,

6 NUMBYTES nBytes

7)

8 {

9 const BYTE *pFrom; // 'p' points to the least significant bytes of source

10 BYTE *pTo; // points to least significant bytes of destination

11 crypt_uword_t size;

12 //

13

14 size = (bytes != NULL) ? BYTES_TO_CRYPT_WORDS(nBytes) : 0;

15

16 // If nothing in, nothing out

17 if(bn == NULL)

18 return NULL;

19

20 // make sure things fit

21 pAssert(BnGetAllocated(bn) >= size);

22

23 if(size > 0)

24 {

25 // Clear the topmost word in case it is not filled with data

26 bn->d[size - 1] = 0;

27 // Moving the input bytes from the end of the list (LSB) end

28 pFrom = bytes + nBytes - 1;

29 // To the LS0 of the LSW of the bigNum.

30 pTo = (BYTE *)bn->d;

31 for(; nBytes != 0; nBytes--)

32 *pTo++ = *pFrom--;

33 // For a little-endian machine, the conversion is a straight byte

34 // reversal. For a big-endian machine, we have to put the words in

35 // big-endian byte order

36 #if BIG_ENDIAN_TPM

37 {

38 crypt_word_t t;

39 for(t = (crypt_word_t)size - 1; t >= 0; t--)

40 bn->d[t] = SWAP_CRYPT_WORD(bn->d[t]);

41 }

42 #endif

43 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 657

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

44 BnSetTop(bn, size);

45 return bn;

46 }

10.2.2.3.2 BnFrom2B()

Convert an TPM2B to a BIG_NUM. If the input value does not exist, or the output does not exist, or the

input will not fit into the output the function returns NULL

47 LIB_EXPORT bigNum

48 BnFrom2B(

49 bigNum bn, // OUT:

50 const TPM2B *a2B // IN: number to convert

51)

52 {

53 if(a2B != NULL)

54 return BnFromBytes(bn, a2B->buffer, a2B->size);

55 // Make sure that the number has an initialized value rather than whatever

56 // was there before

57 BnSetTop(bn, 0); // Function accepts NULL

58 return NULL;

59 }

10.2.2.3.3 BnFromHex()

Convert a hex string into a bigNum. This is primarily used in debugging.

60 LIB_EXPORT bigNum

61 BnFromHex(

62 bigNum bn, // OUT:

63 const char *hex // IN:

64)

65 {

66 #define FromHex(a) ((a) - (((a) > 'a') ? ('a' + 10) \

67 : ((a) > 'A') ? ('A' - 10) : '0'))

68 unsigned i;

69 unsigned wordCount;

70 const char *p;

71 BYTE *d = (BYTE *)&(bn->d[0]);

72 //

73 pAssert(bn && hex);

74 i = (unsigned)strlen(hex);

75 wordCount = BYTES_TO_CRYPT_WORDS((i + 1) / 2);

76 if((i == 0) || (wordCount >= BnGetAllocated(bn)))

77 BnSetWord(bn, 0);

78 else

79 {

80 bn->d[wordCount - 1] = 0;

81 p = hex + i - 1;

82 for(;i > 1; i -= 2)

83 {

84 BYTE a;

85 a = FromHex(*p);

86 p--;

87 *d++ = a + (FromHex(*p) << 4);

88 p--;

89 }

90 if(i == 1)

91 *d = FromHex(*p);

92 }

93 #if !BIG_ENDIAN_TPM

94 for(i = 0; i < wordCount; i++)

95 bn->d[i] = SWAP_CRYPT_WORD(bn->d[i]);

Trusted Platform Module Library Part 4: Supporting Routines

Page 658 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

96 #endif // BIG_ENDIAN_TPM

97 BnSetTop(bn, wordCount);

98 return bn;

99 }

10.2.2.3.4 BnToBytes()

This function converts a BIG_NUM to a byte array. It converts the bigNum to a big-endian byte string and

sets size to the normalized value. If size is an input 0, then the receiving buffer is guaranteed to be large

enough for the result and the size will be set to the size required for bigNum (leading zeros suppressed).

The conversion for a little-endian machine simply requires that all significant bytes of the bigNum be

reversed. For a big-endian machine, rather than unpack each word individually, the bigNum is converted

to little-endian words, copied, and then converted back to big-endian.

100 LIB_EXPORT BOOL

101 BnToBytes(

102 bigConst bn,

103 BYTE *buffer,

104 NUMBYTES *size // This the number of bytes that are

105 // available in the buffer. The result

106 // should be this big.

107)

108 {

109 crypt_uword_t requiredSize;

110 BYTE *pFrom;

111 BYTE *pTo;

112 crypt_uword_t count;

113 //

114 // validate inputs

115 pAssert(bn && buffer && size);

116

117 requiredSize = (BnSizeInBits(bn) + 7) / 8;

118 if(requiredSize == 0)

119 {

120 // If the input value is 0, return a byte of zero

121 *size = 1;

122 *buffer = 0;

123 }

124 else

125 {

126 #if BIG_ENDIAN_TPM

127 // Copy the constant input value into a modifiable value

128 BN_VAR(bnL, LARGEST_NUMBER_BITS * 2);

129 BnCopy(bnL, bn);

130 // byte swap the words in the local value to make them little-endian

131 for(count = 0; count < bnL->size; count++)

132 bnL->d[count] = SWAP_CRYPT_WORD(bnL->d[count]);

133 bn = (bigConst)bnL;

134 #endif

135 if(*size == 0)

136 *size = (NUMBYTES)requiredSize;

137 pAssert(requiredSize <= *size);

138 // Byte swap the number (not words but the whole value)

139 count = *size;

140 // Start from the least significant word and offset to the most significant

141 // byte which is in some high word

142 pFrom = (BYTE *)(&bn->d[0]) + requiredSize - 1;

143 pTo = buffer;

144

145 // If the number of output bytes is larger than the number bytes required

146 // for the input number, pad with zeros

147 for(count = *size; count > requiredSize; count--)

148 *pTo++ = 0;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 659

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

149 // Move the most significant byte at the end of the BigNum to the next most

150 // significant byte position of the 2B and repeat for all significant bytes.

151 for(; requiredSize > 0; requiredSize--)

152 *pTo++ = *pFrom--;

153 }

154 return TRUE;

155 }

10.2.2.3.5 BnTo2B()

Function to convert a BIG_NUM to TPM2B. The TPM2B size is set to the requested size which may

require padding. If size is non-zero and less than required by the value in bn then an error is returned. If

size is zero, then the TPM2B is assumed to be large enough for the data and a2b->size will be adjusted

accordingly.

156 LIB_EXPORT BOOL

157 BnTo2B(

158 bigConst bn, // IN:

159 TPM2B *a2B, // OUT:

160 NUMBYTES size // IN: the desired size

161)

162 {

163 // Set the output size

164 if(bn && a2B)

165 {

166 a2B->size = size;

167 return BnToBytes(bn, a2B->buffer, &a2B->size);

168 }

169 return FALSE;

170 }

171 #if ALG_ECC

10.2.2.3.6 BnPointFrom2B()

Function to create a BIG_POINT structure from a 2B point. A point is going to be two ECC values in the

same buffer. The values are going to be the size of the modulus. They are in modular form.

172 LIB_EXPORT bn_point_t *

173 BnPointFrom2B(

174 bigPoint ecP, // OUT: the preallocated point structure

175 TPMS_ECC_POINT *p // IN: the number to convert

176)

177 {

178 if(p == NULL)

179 return NULL;

180

181 if(NULL != ecP)

182 {

183 BnFrom2B(ecP->x, &p->x.b);

184 BnFrom2B(ecP->y, &p->y.b);

185 BnSetWord(ecP->z, 1);

186 }

187 return ecP;

188 }

10.2.2.3.7 BnPointTo2B()

This function converts a BIG_POINT into a TPMS_ECC_POINT. A TPMS_ECC_POINT contains two

TPM2B_ECC_PARAMETER values. The maximum size of the parameters is dependent on the maximum

Trusted Platform Module Library Part 4: Supporting Routines

Page 660 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

EC key size used in an implementation. The presumption is that the TPMS_ECC_POINT is large enough

to hold 2 TPM2B values, each as large as a MAX_ECC_PARAMETER_BYTES

189 LIB_EXPORT BOOL

190 BnPointTo2B(

191 TPMS_ECC_POINT *p, // OUT: the converted 2B structure

192 bigPoint ecP, // IN: the values to be converted

193 bigCurve E // IN: curve descriptor for the point

194)

195 {

196 UINT16 size;

197 //

198 pAssert(p && ecP && E);

199 pAssert(BnEqualWord(ecP->z, 1));

200 // BnMsb is the bit number of the MSB. This is one less than the number of bits

201 size = (UINT16)BITS_TO_BYTES(BnSizeInBits(CurveGetOrder(AccessCurveData(E))));

202 BnTo2B(ecP->x, &p->x.b, size);

203 BnTo2B(ecP->y, &p->y.b, size);

204 return TRUE;

205 }

206 #endif // ALG_ECC

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 661

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.3 BnMath.c

10.2.3.1 Introduction

The simulator code uses the canonical form whenever possible in order to make the code in Part 3 more

accessible. The canonical data formats are simple and not well suited for complex big number

computations. When operating on big numbers, the data format is changed for easier manipulation. The

format is native words in little-endian format. As the magnitude of the number decreases, the length of the

array containing the number decreases but the starting address doesn't change.

The functions in this file perform simple operations on these big numbers. Only the more complex

operations are passed to the underlying support library. Although the support library would have most of

these functions, the interface code to convert the format for the values is greater than the size of the code

to implement the functions here. So, rather than incur the overhead of conversion, they are done here.

If an implementer would prefer, the underlying library can be used simply by making code substitutions

here.

NOTE: There is an intention to continue to augment these functions so that there would be no need to use an external
big number library.

Many of these functions have no error returns and will always return TRUE. This is to allow them to be

used in guarded sequences. That is: OK = OK || BnSomething(s); where the BnSomething() function

should not be called if OK isn't true.

10.2.3.2 Includes

1 #include "Tpm.h"

A constant value of zero as a stand in for NULL bigNum values

2 const bignum_t BnConstZero = {1, 0, {0}};

3

4 //** Functions

5

6 //*** AddSame()

7 // Adds two values that are the same size. This function allows 'result' to be

8 // the same as either of the addends. This is a nice function to put into assembly

9 // because handling the carry for multi-precision stuff is not as easy in C

10 // (unless there is a REALLY smart compiler). It would be nice if there were idioms

11 // in a language that a compiler could recognize what is going on and optimize

12 // loops like this.

13 // Return Type: int

14 // 0 no carry out

15 // 1 carry out

16 static BOOL

17 AddSame(

18 crypt_uword_t *result,

19 const crypt_uword_t *op1,

20 const crypt_uword_t *op2,

21 int count

22)

23 {

24 int carry = 0;

25 int i;

26

27 for(i = 0; i < count; i++)

28 {

29 crypt_uword_t a = op1[i];

30 crypt_uword_t sum = a + op2[i];

31 result[i] = sum + carry;

Trusted Platform Module Library Part 4: Supporting Routines

Page 662 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

32 // generate a carry if the sum is less than either of the inputs

33 // propagate a carry if there was a carry and the sum + carry is zero

34 // do this using bit operations rather than logical operations so that

35 // the time is about the same.

36 // propagate term | generate term

37 carry = ((result[i] == 0) & carry) | (sum < a);

38 }

39 return carry;

40 }

10.2.3.2.1 CarryProp()

Propagate a carry

41 static int

42 CarryProp(

43 crypt_uword_t *result,

44 const crypt_uword_t *op,

45 int count,

46 int carry

47)

48 {

49 for(; count; count--)

50 carry = ((*result++ = *op++ + carry) == 0) & carry;

51 return carry;

52 }

53 static void

54 CarryResolve(

55 bigNum result,

56 int stop,

57 int carry

58)

59 {

60 if(carry)

61 {

62 pAssert((unsigned)stop < result->allocated);

63 result->d[stop++] = 1;

64 }

65 BnSetTop(result, stop);

66 }

10.2.3.2.2 BnAdd()

This function adds two bigNum values. This function always returns TRUE.

67 LIB_EXPORT BOOL

68 BnAdd(

69 bigNum result,

70 bigConst op1,

71 bigConst op2

72)

73 {

74 crypt_uword_t stop;

75 int carry;

76 const bignum_t *n1 = op1;

77 const bignum_t *n2 = op2;

78

79 //

80 if(n2->size > n1->size)

81 {

82 n1 = op2;

83 n2 = op1;

84 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 663

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

85 pAssert(result->allocated >= n1->size);

86 stop = MIN(n1->size, n2->allocated);

87 carry = (int)AddSame(result->d, n1->d, n2->d, (int)stop);

88 if(n1->size > stop)

89 carry = CarryProp(&result->d[stop], &n1->d[stop], (int)(n1->size - stop),

carry);

90 CarryResolve(result, (int)n1->size, carry);

91 return TRUE;

92 }

10.2.3.2.3 BnAddWord()

This function adds a word value to a bigNum. This function always returns TRUE.

93 LIB_EXPORT BOOL

94 BnAddWord(

95 bigNum result,

96 bigConst op,

97 crypt_uword_t word

98)

99 {

100 int carry;

101 //

102 carry = (result->d[0] = op->d[0] + word) < word;

103 carry = CarryProp(&result->d[1], &op->d[1], (int)(op->size - 1), carry);

104 CarryResolve(result, (int)op->size, carry);

105 return TRUE;

106 }

10.2.3.2.4 SubSame()

This function subtracts two values that have the same size.

107 static int

108 SubSame(

109 crypt_uword_t *result,

110 const crypt_uword_t *op1,

111 const crypt_uword_t *op2,

112 int count

113)

114 {

115 int borrow = 0;

116 int i;

117 for(i = 0; i < count; i++)

118 {

119 crypt_uword_t a = op1[i];

120 crypt_uword_t diff = a - op2[i];

121 result[i] = diff - borrow;

122 // generate | propagate

123 borrow = (diff > a) | ((diff == 0) & borrow);

124 }

125 return borrow;

126 }

10.2.3.2.5 BorrowProp()

This propagates a borrow. If borrow is true when the end of the array is reached, then it means that op2

was larger than op1 and we don't handle that case so an assert is generated. This design choice was

made because our only bigNum computations are on large positive numbers (primes) or on fields.

Propagate a borrow.

Trusted Platform Module Library Part 4: Supporting Routines

Page 664 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

127 static int

128 BorrowProp(

129 crypt_uword_t *result,

130 const crypt_uword_t *op,

131 int size,

132 int borrow

133)

134 {

135 for(; size > 0; size--)

136 borrow = ((*result++ = *op++ - borrow) == MAX_CRYPT_UWORD) && borrow;

137 return borrow;

138 }

10.2.3.2.6 BnSub()

This function does subtraction of two bigNum values and returns result = op1 - op2 when op1 is greater

than op2. If op2 is greater than op1, then a fault is generated. This function always returns TRUE.

139 LIB_EXPORT BOOL

140 BnSub(

141 bigNum result,

142 bigConst op1,

143 bigConst op2

144)

145 {

146 int borrow;

147 int stop = (int)MIN(op1->size, op2->allocated);

148 //

149 // Make sure that op2 is not obviously larger than op1

150 pAssert(op1->size >= op2->size);

151 borrow = SubSame(result->d, op1->d, op2->d, stop);

152 if(op1->size > (crypt_uword_t)stop)

153 borrow = BorrowProp(&result->d[stop], &op1->d[stop], (int)(op1->size - stop),

154 borrow);

155 pAssert(!borrow);

156 BnSetTop(result, op1->size);

157 return TRUE;

158 }

10.2.3.2.7 BnSubWord()

This function subtracts a word value from a bigNum. This function always returns TRUE.

159 LIB_EXPORT BOOL

160 BnSubWord(

161 bigNum result,

162 bigConst op,

163 crypt_uword_t word

164)

165 {

166 int borrow;

167 //

168 pAssert(op->size > 1 || word <= op->d[0]);

169 borrow = word > op->d[0];

170 result->d[0] = op->d[0] - word;

171 borrow = BorrowProp(&result->d[1], &op->d[1], (int)(op->size - 1), borrow);

172 pAssert(!borrow);

173 BnSetTop(result, op->size);

174 return TRUE;

175 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 665

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.3.2.8 BnUnsignedCmp()

This function performs a comparison of op1 to op2. The compare is approximately constant time if the

size of the values used in the compare is consistent across calls (from the same line in the calling code).

Return Value Meaning

0 op1 is less than op2

0 op1 is equal to op2

0 op1 is greater than op2

176 LIB_EXPORT int

177 BnUnsignedCmp(

178 bigConst op1,

179 bigConst op2

180)

181 {

182 int retVal;

183 int diff;

184 int i;

185 //

186 pAssert((op1 != NULL) && (op2 != NULL));

187 retVal = (int)(op1->size - op2->size);

188 if(retVal == 0)

189 {

190 for(i = (int)(op1->size - 1); i >= 0; i--)

191 {

192 diff = (op1->d[i] < op2->d[i]) ? -1 : (op1->d[i] != op2->d[i]);

193 retVal = retVal == 0 ? diff : retVal;

194 }

195 }

196 else

197 retVal = (retVal < 0) ? -1 : 1;

198 return retVal;

199 }

10.2.3.2.9 BnUnsignedCmpWord()

Compare a bigNum to a crypt_uword_t.

Return Value Meaning

-1 op1 is less that word

0 op1 is equal to word

1 op1 is greater than word

200 LIB_EXPORT int

201 BnUnsignedCmpWord(

202 bigConst op1,

203 crypt_uword_t word

204)

205 {

206 if(op1->size > 1)

207 return 1;

208 else if(op1->size == 1)

209 return (op1->d[0] < word) ? -1 : (op1->d[0] > word);

210 else // op1 is zero

211 // equal if word is zero

212 return (word == 0) ? 0 : -1;

213 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 666 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.3.2.10 BnModWord()

This function does modular division of a big number when the modulus is a word value.

214 LIB_EXPORT crypt_word_t

215 BnModWord(

216 bigConst numerator,

217 crypt_word_t modulus

218)

219 {

220 BN_MAX(remainder);

221 BN_VAR(mod, RADIX_BITS);

222 //

223 mod->d[0] = modulus;

224 mod->size = (modulus != 0);

225 BnDiv(NULL, remainder, numerator, mod);

226 return remainder->d[0];

227 }

10.2.3.2.11 Msb()

This function returns the bit number of the most significant bit of a crypt_uword_t. The number for the

least significant bit of any bigNum value is 0. The maximum return value is RADIX_BITS - 1,

Return Value Meaning

-1 the word was zero

n the bit number of the most significant bit in the word

228 LIB_EXPORT int

229 Msb(

230 crypt_uword_t word

231)

232 {

233 int retVal = -1;

234 //

235 #if RADIX_BITS == 64

236 if(word & 0xffffffff00000000) { retVal += 32; word >>= 32; }

237 #endif

238 if(word & 0xffff0000) { retVal += 16; word >>= 16; }

239 if(word & 0x0000ff00) { retVal += 8; word >>= 8; }

240 if(word & 0x000000f0) { retVal += 4; word >>= 4; }

241 if(word & 0x0000000c) { retVal += 2; word >>= 2; }

242 if(word & 0x00000002) { retVal += 1; word >>= 1; }

243 return retVal + (int)word;

244 }

10.2.3.2.12 BnMsb()

This function returns the number of the MSb of a bigNum value.

Return Value Meaning

-1 the word was zero or bn was NULL

n the bit number of the most significant bit in the word

245 LIB_EXPORT int

246 BnMsb(

247 bigConst bn

248)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 667

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

249 {

250 // If the value is NULL, or the size is zero then treat as zero and return -1

251 if(bn != NULL && bn->size > 0)

252 {

253 int retVal = Msb(bn->d[bn->size - 1]);

254 retVal += (int)(bn->size - 1) * RADIX_BITS;

255 return retVal;

256 }

257 else

258 return -1;

259 }

10.2.3.2.13 BnSizeInBits()

This function returns the number of bits required to hold a number. It is one greater than the Msb.

260 LIB_EXPORT unsigned

261 BnSizeInBits(

262 bigConst n

263)

264 {

265 int bits = BnMsb(n) + 1;

266 //

267 return bits < 0? 0 : (unsigned)bits;

268 }

10.2.3.2.14 BnSetWord()

Change the value of a bignum_t to a word value.

269 LIB_EXPORT bigNum

270 BnSetWord(

271 bigNum n,

272 crypt_uword_t w

273)

274 {

275 if(n != NULL)

276 {

277 pAssert(n->allocated > 1);

278 n->d[0] = w;

279 BnSetTop(n, (w != 0) ? 1 : 0);

280 }

281 return n;

282 }

10.2.3.2.15 BnSetBit()

This function will SET a bit in a bigNum. Bit 0 is the least-significant bit in the 0th digit_t. The function

always return TRUE

283 LIB_EXPORT BOOL

284 BnSetBit(

285 bigNum bn, // IN/OUT: big number to modify

286 unsigned int bitNum // IN: Bit number to SET

287)

288 {

289 crypt_uword_t offset = bitNum / RADIX_BITS;

290 pAssert(bn->allocated * RADIX_BITS >= bitNum);

291 // Grow the number if necessary to set the bit.

292 while(bn->size <= offset)

293 bn->d[bn->size++] = 0;

Trusted Platform Module Library Part 4: Supporting Routines

Page 668 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

294 bn->d[offset] |= ((crypt_uword_t)1 << RADIX_MOD(bitNum));

295 return TRUE;

296 }

10.2.3.2.16 BnTestBit()

This function is used to check to see if a bit is SET in a bignum_t. The 0th bit is the LSb of d[0].

Return Value Meaning

TRUE(1) the bit is set

FALSE(0) the bit is not set or the number is out of range

297 LIB_EXPORT BOOL

298 BnTestBit(

299 bigNum bn, // IN: number to check

300 unsigned int bitNum // IN: bit to test

301)

302 {

303 crypt_uword_t offset = RADIX_DIV(bitNum);

304 //

305 if(bn->size > offset)

306 return ((bn->d[offset] & (((crypt_uword_t)1) << RADIX_MOD(bitNum))) != 0);

307 else

308 return FALSE;

309 }

10.2.3.2.17 BnMaskBits()

This function is used to mask off high order bits of a big number. The returned value will have no more

than maskBit bits set.

NOTE: There is a requirement that unused words of a bignum_t are set to zero.

Return Value Meaning

TRUE(1) result masked

FALSE(0) the input was not as large as the mask

310 LIB_EXPORT BOOL

311 BnMaskBits(

312 bigNum bn, // IN/OUT: number to mask

313 crypt_uword_t maskBit // IN: the bit number for the mask.

314)

315 {

316 crypt_uword_t finalSize;

317 BOOL retVal;

318

319 finalSize = BITS_TO_CRYPT_WORDS(maskBit);

320 retVal = (finalSize <= bn->allocated);

321 if(retVal && (finalSize > 0))

322 {

323 crypt_uword_t mask;

324 mask = ~((crypt_uword_t)0) >> RADIX_MOD(maskBit);

325 bn->d[finalSize - 1] &= mask;

326 }

327 BnSetTop(bn, finalSize);

328 return retVal;

329 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 669

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.3.2.18 BnShiftRight()

This function will shift a bigNum to the right by the shiftAmount. This function always returns TRUE.

330 LIB_EXPORT BOOL

331 BnShiftRight(

332 bigNum result,

333 bigConst toShift,

334 uint32_t shiftAmount

335)

336 {

337 uint32_t offset = (shiftAmount >> RADIX_LOG2);

338 uint32_t i;

339 uint32_t shiftIn;

340 crypt_uword_t finalSize;

341 //

342 shiftAmount = shiftAmount & RADIX_MASK;

343 shiftIn = RADIX_BITS - shiftAmount;

344

345 // The end size is toShift->size - offset less one additional

346 // word if the shiftAmount would make the upper word == 0

347 if(toShift->size > offset)

348 {

349 finalSize = toShift->size - offset;

350 finalSize -= (toShift->d[toShift->size - 1] >> shiftAmount) == 0 ? 1 : 0;

351 }

352 else

353 finalSize = 0;

354

355 pAssert(finalSize <= result->allocated);

356 if(finalSize != 0)

357 {

358 for(i = 0; i < finalSize; i++)

359 {

360 result->d[i] = (toShift->d[i + offset] >> shiftAmount)

361 | (toShift->d[i + offset + 1] << shiftIn);

362 }

363 if(offset == 0)

364 result->d[i] = toShift->d[i] >> shiftAmount;

365 }

366 BnSetTop(result, finalSize);

367 return TRUE;

368 }

10.2.3.2.19 BnGetRandomBits()

This function gets random bits for use in various places. To make sure that the number is generated in a

portable format, it is created as a TPM2B and then converted to the internal format.

One consequence of the generation scheme is that, if the number of bits requested is not a multiple of 8,

then the high-order bits are set to zero. This would come into play when generating a 521-bit ECC key. A

66-byte (528-bit) value is generated an the high order 7 bits are masked off (CLEAR).

Return Value Meaning

TRUE(1) success

FALSE(0) failure

369 LIB_EXPORT BOOL

370 BnGetRandomBits(

371 bigNum n,

372 size_t bits,

Trusted Platform Module Library Part 4: Supporting Routines

Page 670 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

373 RAND_STATE *rand

374)

375 {

376 // Since this could be used for ECC key generation using the extra bits method,

377 // make sure that the value is large enough

378 TPM2B_TYPE(LARGEST, LARGEST_NUMBER + 8);

379 TPM2B_LARGEST large;

380 //

381 large.b.size = (UINT16)BITS_TO_BYTES(bits);

382 if(DRBG_Generate(rand, large.t.buffer, large.t.size) == large.t.size)

383 {

384 if(BnFrom2B(n, &large.b) != NULL)

385 {

386 if(BnMaskBits(n, (crypt_uword_t)bits))

387 return TRUE;

388 }

389 }

390 return FALSE;

391 }

10.2.3.2.20 BnGenerateRandomInRange()

This function is used to generate a random number r in the range 1 <= r < limit. The function gets a

random number of bits that is the size of limit. There is some some probability that the returned number is

going to be greater than or equal to the limit. If it is, try again. There is no more than 50% chance that the

next number is also greater, so try again. We keep trying until we get a value that meets the criteria.

Since limit is very often a number with a LOT of high order ones, this rarely would need a second try.

Return Value Meaning

TRUE(1) success

FALSE(0) failure (limit is too small)

392 LIB_EXPORT BOOL

393 BnGenerateRandomInRange(

394 bigNum dest,

395 bigConst limit,

396 RAND_STATE *rand

397)

398 {

399 size_t bits = BnSizeInBits(limit);

400 //

401 if(bits < 2)

402 {

403 BnSetWord(dest, 0);

404 return FALSE;

405 }

406 else

407 {

408 while(BnGetRandomBits(dest, bits, rand)

409 && (BnEqualZero(dest) || (BnUnsignedCmp(dest, limit) >= 0)));

410 }

411 return !g_inFailureMode;

412 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 671

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.4 BnMemory.c

10.2.4.1 Introduction

This file contains the memory setup functions used by the bigNum functions in CryptoEngine()

10.2.4.2 Includes

1 #include "Tpm.h"

10.2.4.3 Functions

10.2.4.3.1 BnSetTop()

This function is used when the size of a bignum_t is changed. It makes sure that the unused words are

set to zero and that any significant words of zeros are eliminated from the used size indicator.

2 LIB_EXPORT bigNum

3 BnSetTop(

4 bigNum bn, // IN/OUT: number to clean

5 crypt_uword_t top // IN: the new top

6)

7 {

8 if(bn != NULL)

9 {

10 pAssert(top <= bn->allocated);

11 // If forcing the size to be decreased, make sure that the words being

12 // discarded are being set to 0

13 while(bn->size > top)

14 bn->d[--bn->size] = 0;

15 bn->size = top;

16 // Now make sure that the words that are left are 'normalized' (no high-order

17 // words of zero.

18 while((bn->size > 0) && (bn->d[bn->size - 1] == 0))

19 bn->size -= 1;

20 }

21 return bn;

22 }

10.2.4.3.2 BnClearTop()

This function will make sure that all unused words are zero.

23 LIB_EXPORT bigNum

24 BnClearTop(

25 bigNum bn

26)

27 {

28 crypt_uword_t i;

29 //

30 if(bn != NULL)

31 {

32 for(i = bn->size; i < bn->allocated; i++)

33 bn->d[i] = 0;

34 while((bn->size > 0) && (bn->d[bn->size] == 0))

35 bn->size -= 1;

36 }

37 return bn;

38 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 672 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.4.3.3 BnInitializeWord()

This function is used to initialize an allocated bigNum with a word value. The bigNum does not have to be

allocated with a single word.

39 LIB_EXPORT bigNum

40 BnInitializeWord(

41 bigNum bn, // IN:

42 crypt_uword_t allocated, // IN:

43 crypt_uword_t word // IN:

44)

45 {

46 bn->allocated = allocated;

47 bn->size = (word != 0);

48 bn->d[0] = word;

49 while(allocated > 1)

50 bn->d[--allocated] = 0;

51 return bn;

52 }

10.2.4.3.4 BnInit()

This function initializes a stack allocated bignum_t. It initializes allocated and size and zeros the words of

d.

53 LIB_EXPORT bigNum

54 BnInit(

55 bigNum bn,

56 crypt_uword_t allocated

57)

58 {

59 if(bn != NULL)

60 {

61 bn->allocated = allocated;

62 bn->size = 0;

63 while(allocated != 0)

64 bn->d[--allocated] = 0;

65 }

66 return bn;

67 }

10.2.4.3.5 BnCopy()

Function to copy a bignum_t. If the output is NULL, then nothing happens. If the input is NULL, the output

is set to zero.

68 LIB_EXPORT BOOL

69 BnCopy(

70 bigNum out,

71 bigConst in

72)

73 {

74 if(in == out)

75 BnSetTop(out, BnGetSize(out));

76 else if(out != NULL)

77 {

78 if(in != NULL)

79 {

80 unsigned int i;

81 pAssert(BnGetAllocated(out) >= BnGetSize(in));

82 for(i = 0; i < BnGetSize(in); i++)

83 out->d[i] = in->d[i];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 673

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

84 BnSetTop(out, BnGetSize(in));

85 }

86 else

87 BnSetTop(out, 0);

88 }

89 return TRUE;

90 }

91 #if ALG_ECC

10.2.4.3.6 BnPointCopy()

Function to copy a bn point.

92 LIB_EXPORT BOOL

93 BnPointCopy(

94 bigPoint pOut,

95 pointConst pIn

96)

97 {

98 return BnCopy(pOut->x, pIn->x)

99 && BnCopy(pOut->y, pIn->y)

100 && BnCopy(pOut->z, pIn->z);

101 }

10.2.4.3.7 BnInitializePoint()

This function is used to initialize a point structure with the addresses of the coordinates.

102 LIB_EXPORT bn_point_t *

103 BnInitializePoint(

104 bigPoint p, // OUT: structure to receive pointers

105 bigNum x, // IN: x coordinate

106 bigNum y, // IN: y coordinate

107 bigNum z // IN: x coordinate

108)

109 {

110 p->x = x;

111 p->y = y;

112 p->z = z;

113 BnSetWord(z, 1);

114 return p;

115 }

116 #endif // ALG_ECC

Trusted Platform Module Library Part 4: Supporting Routines

Page 674 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.5 CryptCmac.c

10.2.5.1 Introduction

This file contains the implementation of the message authentication codes based on a symmetric block

cipher. These functions only use the single block encryption functions of the selected symmetric

cryptographic library.

10.2.5.2 Includes, Defines, and Typedefs

1 #define _CRYPT_HASH_C_

2 #include "Tpm.h"

3 #include "CryptSym.h"

4 #if ALG_CMAC

10.2.5.3 Functions

10.2.5.3.1 CryptCmacStart()

This is the function to start the CMAC sequence operation. It initializes the dispatch functions for the data

and end operations for CMAC and initializes the parameters that are used for the processing of data,

including the key, key size and block cipher algorithm.

5 UINT16

6 CryptCmacStart(

7 SMAC_STATE *state,

8 TPMU_PUBLIC_PARMS *keyParms,

9 TPM_ALG_ID macAlg,

10 TPM2B *key

11)

12 {

13 tpmCmacState_t *cState = &state->state.cmac;

14 TPMT_SYM_DEF_OBJECT *def = &keyParms->symDetail.sym;

15 //

16 if(macAlg != TPM_ALG_CMAC)

17 return 0;

18 // set up the encryption algorithm and parameters

19 cState->symAlg = def->algorithm;

20 cState->keySizeBits = def->keyBits.sym;

21 cState->iv.t.size = CryptGetSymmetricBlockSize(def->algorithm,

22 def->keyBits.sym);

23 MemoryCopy2B(&cState->symKey.b, key, sizeof(cState->symKey.t.buffer));

24

25 // Set up the dispatch methods for the CMAC

26 state->smacMethods.data = CryptCmacData;

27 state->smacMethods.end = CryptCmacEnd;

28 return cState->iv.t.size;

29 }

10.2.5.3.2 CryptCmacData()

This function is used to add data to the CMAC sequence computation. The function will XOR new data

into the IV. If the buffer is full, and there is additional input data, the data is encrypted into the IV buffer,

the new data is then XOR into the IV. When the data runs out, the function returns without encrypting

even if the buffer is full. The last data block of a sequence will not be encrypted until the call to

CryptCmacEnd(). This is to allow the proper subkey to be computed and applied before the last block is

encrypted.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 675

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

30 void

31 CryptCmacData(

32 SMAC_STATES *state,

33 UINT32 size,

34 const BYTE *buffer

35)

36 {

37 tpmCmacState_t *cmacState = &state->cmac;

38 TPM_ALG_ID algorithm = cmacState->symAlg;

39 BYTE *key = cmacState->symKey.t.buffer;

40 UINT16 keySizeInBits = cmacState->keySizeBits;

41 tpmCryptKeySchedule_t keySchedule;

42 TpmCryptSetSymKeyCall_t encrypt;

43 //

44 SELECT(ENCRYPT);

45 while(size > 0)

46 {

47 if(cmacState->bcount == cmacState->iv.t.size)

48 {

49 ENCRYPT(&keySchedule, cmacState->iv.t.buffer, cmacState->iv.t.buffer);

50 cmacState->bcount = 0;

51 }

52 for(;(size > 0) && (cmacState->bcount < cmacState->iv.t.size);

53 size--, cmacState->bcount++)

54 {

55 cmacState->iv.t.buffer[cmacState->bcount] ^= *buffer++;

56 }

57 }

58 }

10.2.5.3.3 CryptCmacEnd()

This is the completion function for the CMAC. It does padding, if needed, and selects the subkey to be

applied before the last block is encrypted.

59 UINT16

60 CryptCmacEnd(

61 SMAC_STATES *state,

62 UINT32 outSize,

63 BYTE *outBuffer

64)

65 {

66 tpmCmacState_t *cState = &state->cmac;

67 // Need to set algorithm, key, and keySizeInBits in the local context so that

68 // the SELECT and ENCRYPT macros will work here

69 TPM_ALG_ID algorithm = cState->symAlg;

70 BYTE *key = cState->symKey.t.buffer;

71 UINT16 keySizeInBits = cState->keySizeBits;

72 tpmCryptKeySchedule_t keySchedule;

73 TpmCryptSetSymKeyCall_t encrypt;

74 TPM2B_IV subkey = {{0, {0}}};

75 BOOL xorVal;

76 UINT16 i;

77

78 subkey.t.size = cState->iv.t.size;

79 // Encrypt a block of zero

80 SELECT(ENCRYPT);

81 ENCRYPT(&keySchedule, subkey.t.buffer, subkey.t.buffer);

82

83 // shift left by 1 and XOR with 0x0...87 if the MSb was 0

84 xorVal = ((subkey.t.buffer[0] & 0x80) == 0) ? 0 : 0x87;

85 ShiftLeft(&subkey.b);

86 subkey.t.buffer[subkey.t.size - 1] ^= xorVal;

87 // this is a sanity check to make sure that the algorithm is working properly.

Trusted Platform Module Library Part 4: Supporting Routines

Page 676 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

88 // remove this check when debug is done

89 pAssert(cState->bcount <= cState->iv.t.size);

90 // If the buffer is full then no need to compute subkey 2.

91 if(cState->bcount < cState->iv.t.size)

92 {

93 //Pad the data

94 cState->iv.t.buffer[cState->bcount++] ^= 0x80;

95 // The rest of the data is a pad of zero which would simply be XORed

96 // with the iv value so nothing to do...

97 // Now compute K2

98 xorVal = ((subkey.t.buffer[0] & 0x80) == 0) ? 0 : 0x87;

99 ShiftLeft(&subkey.b);

100 subkey.t.buffer[subkey.t.size - 1] ^= xorVal;

101 }

102 // XOR the subkey into the IV

103 for(i = 0; i < subkey.t.size; i++)

104 cState->iv.t.buffer[i] ^= subkey.t.buffer[i];

105 ENCRYPT(&keySchedule, cState->iv.t.buffer, cState->iv.t.buffer);

106 i = (UINT16)MIN(cState->iv.t.size, outSize);

107 MemoryCopy(outBuffer, cState->iv.t.buffer, i);

108

109 return i;

110 }

111 #endif

8

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 677

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.6 CryptUtil.c

10.2.6.1 Introduction

This module contains the interfaces to the CryptoEngine() and provides miscellaneous cryptographic

functions in support of the TPM.

10.2.6.2 Includes

1 #include "Tpm.h"

10.2.6.3 Hash/HMAC Functions

10.2.6.3.1 CryptHmacSign()

Sign a digest using an HMAC key. This an HMAC of a digest, not an HMAC of a message.

Error Returns Meaning

TPM_RC_HASH not a valid hash

2 static TPM_RC

3 CryptHmacSign(

4 TPMT_SIGNATURE *signature, // OUT: signature

5 OBJECT *signKey, // IN: HMAC key sign the hash

6 TPM2B_DIGEST *hashData // IN: hash to be signed

7)

8 {

9 HMAC_STATE hmacState;

10 UINT32 digestSize;

11

12 digestSize = CryptHmacStart2B(&hmacState, signature->signature.any.hashAlg,

13 &signKey->sensitive.sensitive.bits.b);

14 CryptDigestUpdate2B(&hmacState.hashState, &hashData->b);

15 CryptHmacEnd(&hmacState, digestSize,

16 (BYTE *)&signature->signature.hmac.digest);

17 return TPM_RC_SUCCESS;

18 }

10.2.6.3.2 CryptHMACVerifySignature()

This function will verify a signature signed by a HMAC key. Note that a caller needs to prepare signature

with the signature algorithm (TPM_ALG_HMAC) and the hash algorithm to use. This function then builds

a signature of that type.

Error Returns Meaning

TPM_RC_SCHEME not the proper scheme for this key type

TPM_RC_SIGNATURE if invalid input or signature is not genuine

19 static TPM_RC

20 CryptHMACVerifySignature(

21 OBJECT *signKey, // IN: HMAC key signed the hash

22 TPM2B_DIGEST *hashData, // IN: digest being verified

23 TPMT_SIGNATURE *signature // IN: signature to be verified

24)

25 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 678 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

26 TPMT_SIGNATURE test;

27 TPMT_KEYEDHASH_SCHEME *keyScheme =

28 &signKey->publicArea.parameters.keyedHashDetail.scheme;

29 //

30 if((signature->sigAlg != ALG_HMAC_VALUE)

31 || (signature->signature.hmac.hashAlg == ALG_NULL_VALUE))

32 return TPM_RC_SCHEME;

33 // This check is not really needed for verification purposes. However, it does

34 // prevent someone from trying to validate a signature using a weaker hash

35 // algorithm than otherwise allowed by the key. That is, a key with a scheme

36 // other than TMP_ALG_NULL can only be used to validate signatures that have

37 // a matching scheme.

38 if((keyScheme->scheme != ALG_NULL_VALUE)

39 && ((keyScheme->scheme != signature->sigAlg)

40 || (keyScheme->details.hmac.hashAlg

41 != signature->signature.any.hashAlg)))

42 return TPM_RC_SIGNATURE;

43 test.sigAlg = signature->sigAlg;

44 test.signature.hmac.hashAlg = signature->signature.hmac.hashAlg;

45

46 CryptHmacSign(&test, signKey, hashData);

47

48 // Compare digest

49 if(!MemoryEqual(&test.signature.hmac.digest,

50 &signature->signature.hmac.digest,

51 CryptHashGetDigestSize(signature->signature.any.hashAlg)))

52 return TPM_RC_SIGNATURE;

53

54 return TPM_RC_SUCCESS;

55 }

10.2.6.3.3 CryptGenerateKeyedHash()

This function creates a keyedHash object.

Error Returns Meaning

TPM_RC_NO_RESULT cannot get values from random number generator

TPM_RC_SIZE sensitive data size is larger than allowed for the scheme

56 static TPM_RC

57 CryptGenerateKeyedHash(

58 TPMT_PUBLIC *publicArea, // IN/OUT: the public area template

59 // for the new key.

60 TPMT_SENSITIVE *sensitive, // OUT: sensitive area

61 TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation data

62 RAND_STATE *rand // IN: "entropy" source

63)

64 {

65 TPMT_KEYEDHASH_SCHEME *scheme;

66 TPM_ALG_ID hashAlg;

67 UINT16 digestSize;

68

69 scheme = &publicArea->parameters.keyedHashDetail.scheme;

70

71 if(publicArea->type != ALG_KEYEDHASH_VALUE)

72 return TPM_RC_FAILURE;

73

74 // Pick the limiting hash algorithm

75 if(scheme->scheme == ALG_NULL_VALUE)

76 hashAlg = publicArea->nameAlg;

77 else if(scheme->scheme == ALG_XOR_VALUE)

78 hashAlg = scheme->details.xor.hashAlg;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 679

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

79 else

80 hashAlg = scheme->details.hmac.hashAlg;

81 digestSize = CryptHashGetDigestSize(hashAlg);

82

83 // if this is a signing or a decryption key, then the limit

84 // for the data size is the block size of the hash. This limit

85 // is set because larger values have lower entropy because of the

86 // HMAC function. The lower limit is 1/2 the size of the digest

87 //

88 //If the user provided the key, check that it is a proper size

89 if(sensitiveCreate->data.t.size != 0)

90 {

91 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, decrypt)

92 || IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

93 {

94 if(sensitiveCreate->data.t.size > CryptHashGetBlockSize(hashAlg))

95 return TPM_RC_SIZE;

96 #if 0 // May make this a FIPS-mode requirement

97 if(sensitiveCreate->data.t.size < (digestSize / 2))

98 return TPM_RC_SIZE;

99 #endif

100 }

101 // If this is a data blob, then anything that will get past the unmarshaling

102 // is OK

103 MemoryCopy2B(&sensitive->sensitive.bits.b, &sensitiveCreate->data.b,

104 sizeof(sensitive->sensitive.bits.t.buffer));

105 }

106 else

107 {

108 // The TPM is going to generate the data so set the size to be the

109 // size of the digest of the algorithm

110 sensitive->sensitive.bits.t.size =

111 DRBG_Generate(rand, sensitive->sensitive.bits.t.buffer, digestSize);

112 if(sensitive->sensitive.bits.t.size == 0)

113 return (g_inFailureMode) ? TPM_RC_FAILURE : TPM_RC_NO_RESULT;

114 }

115 return TPM_RC_SUCCESS;

116 }

10.2.6.3.4 CryptIsSchemeAnonymous()

This function is used to test a scheme to see if it is an anonymous scheme The only anonymous scheme

is ECDAA. ECDAA can be used to do things like U-Prove.

117 BOOL

118 CryptIsSchemeAnonymous(

119 TPM_ALG_ID scheme // IN: the scheme algorithm to test

120)

121 {

122 return scheme == ALG_ECDAA_VALUE;

123 }

10.2.6.4 Symmetric Functions

10.2.6.4.1 ParmDecryptSym()

This function performs parameter decryption using symmetric block cipher.

124 void

125 ParmDecryptSym(

126 TPM_ALG_ID symAlg, // IN: the symmetric algorithm

127 TPM_ALG_ID hash, // IN: hash algorithm for KDFa

Trusted Platform Module Library Part 4: Supporting Routines

Page 680 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

128 UINT16 keySizeInBits, // IN: the key size in bits

129 TPM2B *key, // IN: KDF HMAC key

130 TPM2B *nonceCaller, // IN: nonce caller

131 TPM2B *nonceTpm, // IN: nonce TPM

132 UINT32 dataSize, // IN: size of parameter buffer

133 BYTE *data // OUT: buffer to be decrypted

134)

135 {

136 // KDF output buffer

137 // It contains parameters for the CFB encryption

138 // From MSB to LSB, they are the key and iv

139 BYTE symParmString[MAX_SYM_KEY_BYTES + MAX_SYM_BLOCK_SIZE];

140 // Symmetric key size in byte

141 UINT16 keySize = (keySizeInBits + 7) / 8;

142 TPM2B_IV iv;

143

144 iv.t.size = CryptGetSymmetricBlockSize(symAlg, keySizeInBits);

145 // If there is decryption to do...

146 if(iv.t.size > 0)

147 {

148 // Generate key and iv

149 CryptKDFa(hash, key, CFB_KEY, nonceCaller, nonceTpm,

150 keySizeInBits + (iv.t.size * 8), symParmString, NULL, FALSE);

151 MemoryCopy(iv.t.buffer, &symParmString[keySize], iv.t.size);

152

153 CryptSymmetricDecrypt(data, symAlg, keySizeInBits, symParmString,

154 &iv, ALG_CFB_VALUE, dataSize, data);

155 }

156 return;

157 }

10.2.6.4.2 ParmEncryptSym()

This function performs parameter encryption using symmetric block cipher.

158 void

159 ParmEncryptSym(

160 TPM_ALG_ID symAlg, // IN: symmetric algorithm

161 TPM_ALG_ID hash, // IN: hash algorithm for KDFa

162 UINT16 keySizeInBits, // IN: symmetric key size in bits

163 TPM2B *key, // IN: KDF HMAC key

164 TPM2B *nonceCaller, // IN: nonce caller

165 TPM2B *nonceTpm, // IN: nonce TPM

166 UINT32 dataSize, // IN: size of parameter buffer

167 BYTE *data // OUT: buffer to be encrypted

168)

169 {

170 // KDF output buffer

171 // It contains parameters for the CFB encryption

172 BYTE symParmString[MAX_SYM_KEY_BYTES + MAX_SYM_BLOCK_SIZE];

173

174 // Symmetric key size in bytes

175 UINT16 keySize = (keySizeInBits + 7) / 8;

176

177 TPM2B_IV iv;

178

179 iv.t.size = CryptGetSymmetricBlockSize(symAlg, keySizeInBits);

180 // See if there is any encryption to do

181 if(iv.t.size > 0)

182 {

183 // Generate key and iv

184 CryptKDFa(hash, key, CFB_KEY, nonceTpm, nonceCaller,

185 keySizeInBits + (iv.t.size * 8), symParmString, NULL, FALSE);

186 MemoryCopy(iv.t.buffer, &symParmString[keySize], iv.t.size);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 681

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

187

188 CryptSymmetricEncrypt(data, symAlg, keySizeInBits, symParmString, &iv,

189 ALG_CFB_VALUE, dataSize, data);

190 }

191 return;

192 }

10.2.6.4.3 CryptGenerateKeySymmetric()

This function generates a symmetric cipher key. The derivation process is determined by the type of the

provided rand

Error Returns Meaning

TPM_RC_NO_RESULT cannot get a random value

TPM_RC_KEY_SIZE key size in the public area does not match the size in the sensitive
creation area

TPM_RC_KEY provided key value is not allowed

193 static TPM_RC

194 CryptGenerateKeySymmetric(

195 TPMT_PUBLIC *publicArea, // IN/OUT: The public area template

196 // for the new key.

197 TPMT_SENSITIVE *sensitive, // OUT: sensitive area

198 TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation data

199 RAND_STATE *rand // IN: the "entropy" source for

200)

201 {

202 UINT16 keyBits = publicArea->parameters.symDetail.sym.keyBits.sym;

203 TPM_RC result;

204 //

205 // only do multiples of RADIX_BITS

206 if((keyBits % RADIX_BITS) != 0)

207 return TPM_RC_KEY_SIZE;

208 // If this is not a new key, then the provided key data must be the right size

209 if(sensitiveCreate->data.t.size != 0)

210 {

211 result = CryptSymKeyValidate(&publicArea->parameters.symDetail.sym,

212 (TPM2B_SYM_KEY *)&sensitiveCreate->data);

213 if(result == TPM_RC_SUCCESS)

214 MemoryCopy2B(&sensitive->sensitive.sym.b, &sensitiveCreate->data.b,

215 sizeof(sensitive->sensitive.sym.t.buffer));

216 }

217 #if ALG_TDES

218 else if(publicArea->parameters.symDetail.sym.algorithm == ALG_TDES_VALUE)

219 {

220 result = CryptGenerateKeyDes(publicArea, sensitive, rand);

221 }

222 #endif

223 else

224 {

225 sensitive->sensitive.sym.t.size =

226 DRBG_Generate(rand, sensitive->sensitive.sym.t.buffer,

227 BITS_TO_BYTES(keyBits));

228 if(g_inFailureMode)

229 result = TPM_RC_FAILURE;

230 else if(sensitive->sensitive.sym.t.size == 0)

231 result = TPM_RC_NO_RESULT;

232 else

233 result = TPM_RC_SUCCESS;

234 }

235 return result;

236 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 682 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.6.4.4 CryptXORObfuscation()

This function implements XOR obfuscation. It should not be called if the hash algorithm is not

implemented. The only return value from this function is TPM_RC_SUCCESS.

237 void

238 CryptXORObfuscation(

239 TPM_ALG_ID hash, // IN: hash algorithm for KDF

240 TPM2B *key, // IN: KDF key

241 TPM2B *contextU, // IN: contextU

242 TPM2B *contextV, // IN: contextV

243 UINT32 dataSize, // IN: size of data buffer

244 BYTE *data // IN/OUT: data to be XORed in place

245)

246 {

247 BYTE mask[MAX_DIGEST_SIZE]; // Allocate a digest sized buffer

248 BYTE *pm;

249 UINT32 i;

250 UINT32 counter = 0;

251 UINT16 hLen = CryptHashGetDigestSize(hash);

252 UINT32 requestSize = dataSize * 8;

253 INT32 remainBytes = (INT32)dataSize;

254

255 pAssert((key != NULL) && (data != NULL) && (hLen != 0));

256

257 // Call KDFa to generate XOR mask

258 for(; remainBytes > 0; remainBytes -= hLen)

259 {

260 // Make a call to KDFa to get next iteration

261 CryptKDFa(hash, key, XOR_KEY, contextU, contextV,

262 requestSize, mask, &counter, TRUE);

263

264 // XOR next piece of the data

265 pm = mask;

266 for(i = hLen < remainBytes ? hLen : remainBytes; i > 0; i--)

267 *data++ ^= *pm++;

268 }

269 return;

270 }

10.2.6.5 Initialization and shut down

10.2.6.5.1 CryptInit()

This function is called when the TPM receives a _TPM_Init() indication.

NOTE: The hash algorithms do not have to be tested, they just need to be available. They have to be tested before the
TPM can accept HMAC authorization or return any result that relies on a hash algorithm.

Return Value Meaning

TRUE(1) initializations succeeded

FALSE(0) initialization failed and caller should place the TPM into Failure Mode

271 BOOL

272 CryptInit(

273 void

274)

275 {

276 BOOL ok;

277 // Initialize the vector of implemented algorithms

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 683

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

278 AlgorithmGetImplementedVector(&g_implementedAlgorithms);

279

280 // Indicate that all test are necessary

281 CryptInitializeToTest();

282

283 // Do any library initializations that are necessary. If any fails,

284 // the caller should go into failure mode;

285 ok = SupportLibInit();

286 ok = ok && CryptSymInit();

287 ok = ok && CryptRandInit();

288 ok = ok && CryptHashInit();

289 #if ALG_RSA

290 ok = ok && CryptRsaInit();

291 #endif // ALG_RSA

292 #if ALG_ECC

293 ok = ok && CryptEccInit();

294 #endif // ALG_ECC

295 return ok;

296 }

10.2.6.5.2 CryptStartup()

This function is called by TPM2_Startup() to initialize the functions in this cryptographic library and in the

provided CryptoLibrary(). This function and CryptUtilInit() are both provided so that the implementation

may move the initialization around to get the best interaction.

Return Value Meaning

TRUE(1) startup succeeded

FALSE(0) startup failed and caller should place the TPM into Failure Mode

297 BOOL

298 CryptStartup(

299 STARTUP_TYPE type // IN: the startup type

300)

301 {

302 BOOL OK;

303 NOT_REFERENCED(type);

304

305 OK = CryptSymStartup() && CryptRandStartup() && CryptHashStartup()

306 #if ALG_RSA

307 && CryptRsaStartup()

308 #endif // ALG_RSA

309 #if ALG_ECC

310 && CryptEccStartup()

311 #endif // ALG_ECC

312 ;

313 #if ALG_ECC

314 // Don't directly check for SU_RESET because that is the default

315 if(OK && (type != SU_RESTART) && (type != SU_RESUME))

316 {

317 // If the shutdown was orderly, then the values recovered from NV will

318 // be OK to use.

319 // Get a new random commit nonce

320 gr.commitNonce.t.size = sizeof(gr.commitNonce.t.buffer);

321 CryptRandomGenerate(gr.commitNonce.t.size, gr.commitNonce.t.buffer);

322 // Reset the counter and commit array

323 gr.commitCounter = 0;

324 MemorySet(gr.commitArray, 0, sizeof(gr.commitArray));

325 }

326 #endif // ALG_ECC

327 return OK;

328 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 684 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.6.6 Algorithm-Independent Functions

10.2.6.6.1 Introduction

These functions are used generically when a function of a general type (e.g., symmetric encryption) is

required. The functions will modify the parameters as required to interface to the indicated algorithms.

10.2.6.6.2 CryptIsAsymAlgorithm()

This function indicates if an algorithm is an asymmetric algorithm.

Return Value Meaning

TRUE(1) if it is an asymmetric algorithm

FALSE(0) if it is not an asymmetric algorithm

329 BOOL

330 CryptIsAsymAlgorithm(

331 TPM_ALG_ID algID // IN: algorithm ID

332)

333 {

334 switch(algID)

335 {

336 #if ALG_RSA

337 case ALG_RSA_VALUE:

338 #endif

339 #if ALG_ECC

340 case ALG_ECC_VALUE:

341 #endif

342 return TRUE;

343 break;

344 default:

345 break;

346 }

347 return FALSE;

348 }

10.2.6.6.3 CryptSecretEncrypt()

This function creates a secret value and its associated secret structure using an asymmetric algorithm.

This function is used by TPM2_Rewrap() TPM2_MakeCredential(), and TPM2_Duplicate().

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a valid decryption key

TPM_RC_KEY invalid ECC key (public point is not on the curve)

TPM_RC_SCHEME RSA key with an unsupported padding scheme

TPM_RC_VALUE numeric value of the data to be decrypted is greater than the RSA
key modulus

349 TPM_RC

350 CryptSecretEncrypt(

351 OBJECT *encryptKey, // IN: encryption key object

352 const TPM2B *label, // IN: a null-terminated string as L

353 TPM2B_DATA *data, // OUT: secret value

354 TPM2B_ENCRYPTED_SECRET *secret // OUT: secret structure

355)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 685

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

356 {

357 TPMT_RSA_DECRYPT scheme;

358 TPM_RC result = TPM_RC_SUCCESS;

359 //

360 if(data == NULL || secret == NULL)

361 return TPM_RC_FAILURE;

362

363 // The output secret value has the size of the digest produced by the nameAlg.

364 data->t.size = CryptHashGetDigestSize(encryptKey->publicArea.nameAlg);

365 // The encryption scheme is OAEP using the nameAlg of the encrypt key.

366 scheme.scheme = ALG_OAEP_VALUE;

367 scheme.details.anySig.hashAlg = encryptKey->publicArea.nameAlg;

368

369 if(!IS_ATTRIBUTE(encryptKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

370 return TPM_RC_ATTRIBUTES;

371 switch(encryptKey->publicArea.type)

372 {

373 #if ALG_RSA

374 case ALG_RSA_VALUE:

375 {

376 // Create secret data from RNG

377 CryptRandomGenerate(data->t.size, data->t.buffer);

378

379 // Encrypt the data by RSA OAEP into encrypted secret

380 result = CryptRsaEncrypt((TPM2B_PUBLIC_KEY_RSA *)secret, &data->b,

381 encryptKey, &scheme, label, NULL);

382 }

383 break;

384 #endif // ALG_RSA

385

386 #if ALG_ECC

387 case ALG_ECC_VALUE:

388 {

389 TPMS_ECC_POINT eccPublic;

390 TPM2B_ECC_PARAMETER eccPrivate;

391 TPMS_ECC_POINT eccSecret;

392 BYTE *buffer = secret->t.secret;

393

394 // Need to make sure that the public point of the key is on the

395 // curve defined by the key.

396 if(!CryptEccIsPointOnCurve(

397 encryptKey->publicArea.parameters.eccDetail.curveID,

398 &encryptKey->publicArea.unique.ecc))

399 result = TPM_RC_KEY;

400 else

401 {

402 // Call crypto engine to create an auxiliary ECC key

403 // We assume crypt engine initialization should always success.

404 // Otherwise, TPM should go to failure mode.

405

406 CryptEccNewKeyPair(&eccPublic, &eccPrivate,

407 encryptKey->publicArea.parameters.eccDetail.curveID);

408 // Marshal ECC public to secret structure. This will be used by the

409 // recipient to decrypt the secret with their private key.

410 secret->t.size = TPMS_ECC_POINT_Marshal(&eccPublic, &buffer, NULL);

411

412 // Compute ECDH shared secret which is R = [d]Q where d is the

413 // private part of the ephemeral key and Q is the public part of a

414 // TPM key. TPM_RC_KEY error return from CryptComputeECDHSecret

415 // because the auxiliary ECC key is just created according to the

416 // parameters of input ECC encrypt key.

417 if(CryptEccPointMultiply(&eccSecret,

418 encryptKey->publicArea.parameters.eccDetail.curveID,

419 &encryptKey->publicArea.unique.ecc, &eccPrivate,

420 NULL, NULL)

421 != TPM_RC_SUCCESS)

Trusted Platform Module Library Part 4: Supporting Routines

Page 686 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

422 result = TPM_RC_KEY;

423 else

424 {

425 // The secret value is computed from Z using KDFe as:

426 // secret := KDFe(HashID, Z, Use, PartyUInfo, PartyVInfo, bits)

427 // Where:

428 // HashID the nameAlg of the decrypt key

429 // Z the x coordinate (Px) of the product (P) of the point

430 // (Q) of the secret and the private x coordinate (de,V)

431 // of the decryption key

432 // Use a null-terminated string containing "SECRET"

433 // PartyUInfo the x coordinate of the point in the secret

434 // (Qe,U)

435 // PartyVInfo the x coordinate of the public key (Qs,V)

436 // bits the number of bits in the digest of HashID

437 // Retrieve seed from KDFe

438 CryptKDFe(encryptKey->publicArea.nameAlg, &eccSecret.x.b,

439 label, &eccPublic.x.b,

440 &encryptKey->publicArea.unique.ecc.x.b,

441 data->t.size * 8, data->t.buffer);

442 }

443 }

444 }

445 break;

446 #endif // ALG_ECC

447 default:

448 FAIL(FATAL_ERROR_INTERNAL);

449 break;

450 }

451 return result;

452 }

10.2.6.6.4 CryptSecretDecrypt()

Decrypt a secret value by asymmetric (or symmetric) algorithm This function is used for

ActivateCredential() and Import for asymmetric decryption, and StartAuthSession() for both asymmetric

and symmetric decryption process

Error Returns Meaning

TPM_RC_ATTRIBUTES RSA key is not a decryption key

TPM_RC_BINDING Invalid RSA key (public and private parts are not cryptographically
bound.

TPM_RC_ECC_POINT ECC point in the secret is not on the curve

TPM_RC_INSUFFICIENT failed to retrieve ECC point from the secret

TPM_RC_NO_RESULT multiplication resulted in ECC point at infinity

TPM_RC_SIZE data to decrypt is not of the same size as RSA key

TPM_RC_VALUE For RSA key, numeric value of the encrypted data is greater than the
modulus, or the recovered data is larger than the output buffer. For
keyedHash or symmetric key, the secret is larger than the size of the
digest produced by the name algorithm.

TPM_RC_FAILURE internal error

453 TPM_RC

454 CryptSecretDecrypt(

455 OBJECT *decryptKey, // IN: decrypt key

456 TPM2B_NONCE *nonceCaller, // IN: nonceCaller. It is needed for

457 // symmetric decryption. For

458 // asymmetric decryption, this

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 687

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

459 // parameter is NULL

460 const TPM2B *label, // IN: a value for L

461 TPM2B_ENCRYPTED_SECRET *secret, // IN: input secret

462 TPM2B_DATA *data // OUT: decrypted secret value

463)

464 {

465 TPM_RC result = TPM_RC_SUCCESS;

466

467 // Decryption for secret

468 switch(decryptKey->publicArea.type)

469 {

470 #if ALG_RSA

471 case ALG_RSA_VALUE:

472 {

473 TPMT_RSA_DECRYPT scheme;

474 TPMT_RSA_SCHEME *keyScheme

475 = &decryptKey->publicArea.parameters.rsaDetail.scheme;

476 UINT16 digestSize;

477

478 scheme = *(TPMT_RSA_DECRYPT *)keyScheme;

479 // If the key scheme is ALG_NULL_VALUE, set the scheme to OAEP and

480 // set the algorithm to the name algorithm.

481 if(scheme.scheme == ALG_NULL_VALUE)

482 {

483 // Use OAEP scheme

484 scheme.scheme = ALG_OAEP_VALUE;

485 scheme.details.oaep.hashAlg = decryptKey->publicArea.nameAlg;

486 }

487 // use the digestSize as an indicator of whether or not the scheme

488 // is using a supported hash algorithm.

489 // Note: depending on the scheme used for encryption, a hashAlg might

490 // not be needed. However, the return value has to have some upper

491 // limit on the size. In this case, it is the size of the digest of the

492 // hash algorithm. It is checked after the decryption is done but, there

493 // is no point in doing the decryption if the size is going to be

494 // 'wrong' anyway.

495 digestSize = CryptHashGetDigestSize(scheme.details.oaep.hashAlg);

496 if(scheme.scheme != ALG_OAEP_VALUE || digestSize == 0)

497 return TPM_RC_SCHEME;

498

499 // Set the output buffer capacity

500 data->t.size = sizeof(data->t.buffer);

501

502 // Decrypt seed by RSA OAEP

503 result = CryptRsaDecrypt(&data->b, &secret->b,

504 decryptKey, &scheme, label);

505 if((result == TPM_RC_SUCCESS) && (data->t.size > digestSize))

506 result = TPM_RC_VALUE;

507 }

508 break;

509 #endif // ALG_RSA

510 #if ALG_ECC

511 case ALG_ECC_VALUE:

512 {

513 TPMS_ECC_POINT eccPublic;

514 TPMS_ECC_POINT eccSecret;

515 BYTE *buffer = secret->t.secret;

516 INT32 size = secret->t.size;

517

518 // Retrieve ECC point from secret buffer

519 result = TPMS_ECC_POINT_Unmarshal(&eccPublic, &buffer, &size);

520 if(result == TPM_RC_SUCCESS)

521 {

522 result = CryptEccPointMultiply(&eccSecret,

523 decryptKey->publicArea.parameters.eccDetail.curveID,

524 &eccPublic, &decryptKey->sensitive.sensitive.ecc,

Trusted Platform Module Library Part 4: Supporting Routines

Page 688 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

525 NULL, NULL);

526 if(result == TPM_RC_SUCCESS)

527 {

528 // Set the size of the "recovered" secret value to be the size

529 // of the digest produced by the nameAlg.

530 data->t.size =

531 CryptHashGetDigestSize(decryptKey->publicArea.nameAlg);

532

533 // The secret value is computed from Z using KDFe as:

534 // secret := KDFe(HashID, Z, Use, PartyUInfo, PartyVInfo, bits)

535 // Where:

536 // HashID -- the nameAlg of the decrypt key

537 // Z -- the x coordinate (Px) of the product (P) of the point

538 // (Q) of the secret and the private x coordinate (de,V)

539 // of the decryption key

540 // Use -- a null-terminated string containing "SECRET"

541 // PartyUInfo -- the x coordinate of the point in the secret

542 // (Qe,U)

543 // PartyVInfo -- the x coordinate of the public key (Qs,V)

544 // bits -- the number of bits in the digest of HashID

545 // Retrieve seed from KDFe

546 CryptKDFe(decryptKey->publicArea.nameAlg, &eccSecret.x.b, label,

547 &eccPublic.x.b,

548 &decryptKey->publicArea.unique.ecc.x.b,

549 data->t.size * 8, data->t.buffer);

550 }

551 }

552 }

553 break;

554 #endif // ALG_ECC

555 #if !ALG_KEYEDHASH

556 # error "KEYEDHASH support is required"

557 #endif

558 case ALG_KEYEDHASH_VALUE:

559 // The seed size can not be bigger than the digest size of nameAlg

560 if(secret->t.size >

561 CryptHashGetDigestSize(decryptKey->publicArea.nameAlg))

562 result = TPM_RC_VALUE;

563 else

564 {

565 // Retrieve seed by XOR Obfuscation:

566 // seed = XOR(secret, hash, key, nonceCaller, nullNonce)

567 // where:

568 // secret the secret parameter from the TPM2_StartAuthHMAC

569 // command that contains the seed value

570 // hash nameAlg of tpmKey

571 // key the key or data value in the object referenced by

572 // entityHandle in the TPM2_StartAuthHMAC command

573 // nonceCaller the parameter from the TPM2_StartAuthHMAC command

574 // nullNonce a zero-length nonce

575 // XOR Obfuscation in place

576 CryptXORObfuscation(decryptKey->publicArea.nameAlg,

577 &decryptKey->sensitive.sensitive.bits.b,

578 &nonceCaller->b, NULL,

579 secret->t.size, secret->t.secret);

580 // Copy decrypted seed

581 MemoryCopy2B(&data->b, &secret->b, sizeof(data->t.buffer));

582 }

583 break;

584 case ALG_SYMCIPHER_VALUE:

585 {

586 TPM2B_IV iv = {{0}};

587 TPMT_SYM_DEF_OBJECT *symDef;

588 // The seed size can not be bigger than the digest size of nameAlg

589 if(secret->t.size >

590 CryptHashGetDigestSize(decryptKey->publicArea.nameAlg))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 689

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

591 result = TPM_RC_VALUE;

592 else

593 {

594 symDef = &decryptKey->publicArea.parameters.symDetail.sym;

595 iv.t.size = CryptGetSymmetricBlockSize(symDef->algorithm,

596 symDef->keyBits.sym);

597 if(iv.t.size == 0)

598 return TPM_RC_FAILURE;

599 if(nonceCaller->t.size >= iv.t.size)

600 {

601 MemoryCopy(iv.t.buffer, nonceCaller->t.buffer, iv.t.size);

602 }

603 else

604 {

605 if(nonceCaller->t.size > sizeof(iv.t.buffer))

606 return TPM_RC_FAILURE;

607 MemoryCopy(iv.b.buffer, nonceCaller->t.buffer,

608 nonceCaller->t.size);

609 }

610 // make sure secret will fit

611 if(secret->t.size > data->t.size)

612 return TPM_RC_FAILURE;

613 data->t.size = secret->t.size;

614 // CFB decrypt, using nonceCaller as iv

615 CryptSymmetricDecrypt(data->t.buffer, symDef->algorithm,

616 symDef->keyBits.sym,

617 decryptKey->sensitive.sensitive.sym.t.buffer,

618 &iv, ALG_CFB_VALUE, secret->t.size,

619 secret->t.secret);

620 }

621 }

622 break;

623 default:

624 FAIL(FATAL_ERROR_INTERNAL);

625 break;

626 }

627 return result;

628 }

10.2.6.6.5 CryptParameterEncryption()

This function does in-place encryption of a response parameter.

629 void

630 CryptParameterEncryption(

631 TPM_HANDLE handle, // IN: encrypt session handle

632 TPM2B *nonceCaller, // IN: nonce caller

633 UINT16 leadingSizeInByte, // IN: the size of the leading size field in

634 // bytes

635 TPM2B_AUTH *extraKey, // IN: additional key material other than

636 // sessionAuth

637 BYTE *buffer // IN/OUT: parameter buffer to be encrypted

638)

639 {

640 SESSION *session = SessionGet(handle); // encrypt session

641 TPM2B_TYPE(TEMP_KEY, (sizeof(extraKey->t.buffer)

642 + sizeof(session->sessionKey.t.buffer)));

643 TPM2B_TEMP_KEY key; // encryption key

644 UINT32 cipherSize = 0; // size of cipher text

645 //

646 // Retrieve encrypted data size.

647 if(leadingSizeInByte == 2)

648 {

649 // Extract the first two bytes as the size field as the data size

Trusted Platform Module Library Part 4: Supporting Routines

Page 690 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

650 // encrypt

651 cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer);

652 // advance the buffer

653 buffer = &buffer[2];

654 }

655 #ifdef TPM4B

656 else if(leadingSizeInByte == 4)

657 {

658 // use the first four bytes to indicate the number of bytes to encrypt

659 cipherSize = BYTE_ARRAY_TO_UINT32(buffer);

660 //advance pointer

661 buffer = &buffer[4];

662 }

663 #endif

664 else

665 {

666 FAIL(FATAL_ERROR_INTERNAL);

667 }

668

669 // Compute encryption key by concatenating sessionKey with extra key

670 MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));

671 MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer));

672

673 if(session->symmetric.algorithm == ALG_XOR_VALUE)

674

675 // XOR parameter encryption formulation:

676 // XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder)

677 CryptXORObfuscation(session->authHashAlg, &(key.b),

678 &(session->nonceTPM.b),

679 nonceCaller, cipherSize, buffer);

680 else

681 ParmEncryptSym(session->symmetric.algorithm, session->authHashAlg,

682 session->symmetric.keyBits.aes, &(key.b),

683 nonceCaller, &(session->nonceTPM.b),

684 cipherSize, buffer);

685 return;

686 }

10.2.6.6.6 CryptParameterDecryption()

This function does in-place decryption of a command parameter.

Error Returns Meaning

TPM_RC_SIZE The number of bytes in the input buffer is less than the number of
bytes to be decrypted.

687 TPM_RC

688 CryptParameterDecryption(

689 TPM_HANDLE handle, // IN: encrypted session handle

690 TPM2B *nonceCaller, // IN: nonce caller

691 UINT32 bufferSize, // IN: size of parameter buffer

692 UINT16 leadingSizeInByte, // IN: the size of the leading size field in

693 // byte

694 TPM2B_AUTH *extraKey, // IN: the authValue

695 BYTE *buffer // IN/OUT: parameter buffer to be decrypted

696)

697 {

698 SESSION *session = SessionGet(handle); // encrypt session

699 // The HMAC key is going to be the concatenation of the session key and any

700 // additional key material (like the authValue). The size of both of these

701 // is the size of the buffer which can contain a TPMT_HA.

702 TPM2B_TYPE(HMAC_KEY, (sizeof(extraKey->t.buffer)

703 + sizeof(session->sessionKey.t.buffer)));

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 691

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

704 TPM2B_HMAC_KEY key; // decryption key

705 UINT32 cipherSize = 0; // size of cipher text

706 //

707 // Retrieve encrypted data size.

708 if(leadingSizeInByte == 2)

709 {

710 // The first two bytes of the buffer are the size of the

711 // data to be decrypted

712 cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer);

713 buffer = &buffer[2]; // advance the buffer

714 }

715 #ifdef TPM4B

716 else if(leadingSizeInByte == 4)

717 {

718 // the leading size is four bytes so get the four byte size field

719 cipherSize = BYTE_ARRAY_TO_UINT32(buffer);

720 buffer = &buffer[4]; //advance pointer

721 }

722 #endif

723 else

724 {

725 FAIL(FATAL_ERROR_INTERNAL);

726 }

727 if(cipherSize > bufferSize)

728 return TPM_RC_SIZE;

729

730 // Compute decryption key by concatenating sessionAuth with extra input key

731 MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));

732 MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer));

733

734 if(session->symmetric.algorithm == ALG_XOR_VALUE)

735 // XOR parameter decryption formulation:

736 // XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder)

737 // Call XOR obfuscation function

738 CryptXORObfuscation(session->authHashAlg, &key.b, nonceCaller,

739 &(session->nonceTPM.b), cipherSize, buffer);

740 else

741 // Assume that it is one of the symmetric block ciphers.

742 ParmDecryptSym(session->symmetric.algorithm, session->authHashAlg,

743 session->symmetric.keyBits.sym,

744 &key.b, nonceCaller, &session->nonceTPM.b,

745 cipherSize, buffer);

746

747 return TPM_RC_SUCCESS;

748 }

10.2.6.6.7 CryptComputeSymmetricUnique()

This function computes the unique field in public area for symmetric objects.

749 void

750 CryptComputeSymmetricUnique(

751 TPMT_PUBLIC *publicArea, // IN: the object's public area

752 TPMT_SENSITIVE *sensitive, // IN: the associated sensitive area

753 TPM2B_DIGEST *unique // OUT: unique buffer

754)

755 {

756 // For parents (symmetric and derivation), use an HMAC to compute

757 // the 'unique' field

758 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted)

759 && IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, decrypt))

760 {

761 // Unique field is HMAC(sensitive->seedValue, sensitive->sensitive)

762 HMAC_STATE hmacState;

Trusted Platform Module Library Part 4: Supporting Routines

Page 692 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

763 unique->b.size = CryptHmacStart2B(&hmacState, publicArea->nameAlg,

764 &sensitive->seedValue.b);

765 CryptDigestUpdate2B(&hmacState.hashState,

766 &sensitive->sensitive.any.b);

767 CryptHmacEnd2B(&hmacState, &unique->b);

768 }

769 else

770 {

771 HASH_STATE hashState;

772 // Unique := Hash(sensitive->seedValue || sensitive->sensitive)

773 unique->t.size = CryptHashStart(&hashState, publicArea->nameAlg);

774 CryptDigestUpdate2B(&hashState, &sensitive->seedValue.b);

775 CryptDigestUpdate2B(&hashState, &sensitive->sensitive.any.b);

776 CryptHashEnd2B(&hashState, &unique->b);

777 }

778 return;

779 }

10.2.6.6.8 CryptCreateObject()

This function creates an object. For an asymmetric key, it will create a key pair and, for a parent key, a

seed value for child protections.

For an symmetric object, (TPM_ALG_SYMCIPHER or TPM_ALG_KEYEDHASH), it will create a secret

key if the caller did not provide one. It will create a random secret seed value that is hashed with the

secret value to create the public unique value.

publicArea, sensitive, and sensitiveCreate are the only required parameters and are the only ones that

are used by TPM2_Create(). The other parameters are optional and are used when the generated Object

needs to be deterministic. This is the case for both Primary Objects and Derived Objects.

When a seed value is provided, a RAND_STATE will be populated and used for all operations in the

object generation that require a random number. In the simplest case, TPM2_CreatePrimary() will use

seed, label and context with context being the hash of the template. If the Primary Object is in the

Endorsement hierarchy, it will also populate proof with ehProof.

For derived keys, seed will be the secret value from the parent, label and context will be set according to

the parameters of TPM2_CreateLoaded() and hashAlg will be set which causes the RAND_STATE to be

a KDF generator.

Error Returns Meaning

TPM_RC_KEY a provided key is not an allowed value

TPM_RC_KEY_SIZE key size in the public area does not match the size in the sensitive
creation area for a symmetric key

TPM_RC_NO_RESULT unable to get random values (only in derivation)

TPM_RC_RANGE for an RSA key, the exponent is not supported

TPM_RC_SIZE sensitive data size is larger than allowed for the scheme for a keyed
hash object

TPM_RC_VALUE exponent is not prime or could not find a prime using the provided
parameters for an RSA key; unsupported name algorithm for an ECC
key

780 TPM_RC

781 CryptCreateObject(

782 OBJECT *object, // IN: new object structure pointer

783 TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation

784 RAND_STATE *rand // IN: the random number generator

785 // to use

786)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 693

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

787 {

788 TPMT_PUBLIC *publicArea = &object->publicArea;

789 TPMT_SENSITIVE *sensitive = &object->sensitive;

790 TPM_RC result = TPM_RC_SUCCESS;

791 //

792 // Set the sensitive type for the object

793 sensitive->sensitiveType = publicArea->type;

794

795 // For all objects, copy the initial authorization data

796 sensitive->authValue = sensitiveCreate->userAuth;

797

798 // If the TPM is the source of the data, set the size of the provided data to

799 // zero so that there's no confusion about what to do.

800 if(IS_ATTRIBUTE(publicArea->objectAttributes,

801 TPMA_OBJECT, sensitiveDataOrigin))

802 sensitiveCreate->data.t.size = 0;

803

804 // Generate the key and unique fields for the asymmetric keys and just the

805 // sensitive value for symmetric object

806 switch(publicArea->type)

807 {

808 #if ALG_RSA

809 // Create RSA key

810 case ALG_RSA_VALUE:

811 // RSA uses full object so that it has a place to put the private

812 // exponent

813 result = CryptRsaGenerateKey(publicArea, sensitive, rand);

814 break;

815 #endif // ALG_RSA

816

817 #if ALG_ECC

818 // Create ECC key

819 case ALG_ECC_VALUE:

820 result = CryptEccGenerateKey(publicArea, sensitive, rand);

821 break;

822 #endif // ALG_ECC

823 case ALG_SYMCIPHER_VALUE:

824 result = CryptGenerateKeySymmetric(publicArea, sensitive,

825 sensitiveCreate, rand);

826 break;

827 case ALG_KEYEDHASH_VALUE:

828 result = CryptGenerateKeyedHash(publicArea, sensitive,

829 sensitiveCreate, rand);

830 break;

831 default:

832 FAIL(FATAL_ERROR_INTERNAL);

833 break;

834 }

835 if(result != TPM_RC_SUCCESS)

836 return result;

837 // Create the sensitive seed value

838 // If this is a primary key in the endorsement hierarchy, stir the DRBG state

839 // This implementation uses both shProof and ehProof to make sure that there

840 // is no leakage of either.

841 if(object->attributes.primary && object->attributes.epsHierarchy)

842 {

843 DRBG_AdditionalData((DRBG_STATE *)rand, &gp.shProof.b);

844 DRBG_AdditionalData((DRBG_STATE *)rand, &gp.ehProof.b);

845 }

846 // Generate a seedValue that is the size of the digest produced by nameAlg

847 sensitive->seedValue.t.size =

848 DRBG_Generate(rand, sensitive->seedValue.t.buffer,

849 CryptHashGetDigestSize(publicArea->nameAlg));

850 if(g_inFailureMode)

851 return TPM_RC_FAILURE;

852 else if(sensitive->seedValue.t.size == 0)

Trusted Platform Module Library Part 4: Supporting Routines

Page 694 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

853 return TPM_RC_NO_RESULT;

854 // For symmetric objects, need to compute the unique value for the public area

855 if(publicArea->type == ALG_SYMCIPHER_VALUE

856 || publicArea->type == ALG_KEYEDHASH_VALUE)

857 {

858 CryptComputeSymmetricUnique(publicArea, sensitive, &publicArea->unique.sym);

859 }

860 else

861 {

862 // if this is an asymmetric key and it isn't a parent, then

863 // get rid of the seed.

864 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign)

865 || !IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

866 memset(&sensitive->seedValue, 0, sizeof(sensitive->seedValue));

867 }

868 // Compute the name

869 PublicMarshalAndComputeName(publicArea, &object->name);

870 return result;

871 }

10.2.6.6.9 CryptGetSignHashAlg()

Get the hash algorithm of signature from a TPMT_SIGNATURE structure. It assumes the signature is not

NULL This is a function for easy access

872 TPMI_ALG_HASH

873 CryptGetSignHashAlg(

874 TPMT_SIGNATURE *auth // IN: signature

875)

876 {

877 if(auth->sigAlg == ALG_NULL_VALUE)

878 FAIL(FATAL_ERROR_INTERNAL);

879

880 // Get authHash algorithm based on signing scheme

881 switch(auth->sigAlg)

882 {

883 #if ALG_RSA

884 // If RSA is supported, both RSASSA and RSAPSS are required

885 # if !defined ALG_RSASSA_VALUE || !defined ALG_RSAPSS_VALUE

886 # error "RSASSA and RSAPSS are required for RSA"

887 # endif

888 case ALG_RSASSA_VALUE:

889 return auth->signature.rsassa.hash;

890 case ALG_RSAPSS_VALUE:

891 return auth->signature.rsapss.hash;

892 #endif // ALG_RSA

893

894 #if ALG_ECC

895 // If ECC is defined, ECDSA is mandatory

896 # if !ALG_ECDSA

897 # error "ECDSA is requried for ECC"

898 # endif

899 case ALG_ECDSA_VALUE:

900 // SM2 and ECSCHNORR are optional

901

902 # if ALG_SM2

903 case ALG_SM2_VALUE:

904 # endif

905 # if ALG_ECSCHNORR

906 case ALG_ECSCHNORR_VALUE:

907 # endif

908 //all ECC signatures look the same

909 return auth->signature.ecdsa.hash;

910

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 695

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

911 # if ALG_ECDAA

912 // Don't know how to verify an ECDAA signature

913 case ALG_ECDAA_VALUE:

914 break;

915 # endif

916

917 #endif // ALG_ECC

918

919 case ALG_HMAC_VALUE:

920 return auth->signature.hmac.hashAlg;

921

922 default:

923 break;

924 }

925 return ALG_NULL_VALUE;

926 }

10.2.6.6.10 CryptIsSplitSign()

This function us used to determine if the signing operation is a split signing operation that required a

TPM2_Commit().

927 BOOL

928 CryptIsSplitSign(

929 TPM_ALG_ID scheme // IN: the algorithm selector

930)

931 {

932 switch(scheme)

933 {

934 # if ALG_ECDAA

935 case ALG_ECDAA_VALUE:

936 return TRUE;

937 break;

938 # endif // ALG_ECDAA

939 default:

940 return FALSE;

941 break;

942 }

943 }

10.2.6.6.11 CryptIsAsymSignScheme()

This function indicates if a scheme algorithm is a sign algorithm.

944 BOOL

945 CryptIsAsymSignScheme(

946 TPMI_ALG_PUBLIC publicType, // IN: Type of the object

947 TPMI_ALG_ASYM_SCHEME scheme // IN: the scheme

948)

949 {

950 BOOL isSignScheme = TRUE;

951

952 switch(publicType)

953 {

954 #if ALG_RSA

955 case ALG_RSA_VALUE:

956 switch(scheme)

957 {

958 # if !ALG_RSASSA || !ALG_RSAPSS

959 # error "RSASSA and PSAPSS required if RSA used."

960 # endif

961 case ALG_RSASSA_VALUE:

962 case ALG_RSAPSS_VALUE:

Trusted Platform Module Library Part 4: Supporting Routines

Page 696 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

963 break;

964 default:

965 isSignScheme = FALSE;

966 break;

967 }

968 break;

969 #endif // ALG_RSA

970

971 #if ALG_ECC

972 // If ECC is implemented ECDSA is required

973 case ALG_ECC_VALUE:

974 switch(scheme)

975 {

976 // Support for ECDSA is required for ECC

977 case ALG_ECDSA_VALUE:

978 #if ALG_ECDAA // ECDAA is optional

979 case ALG_ECDAA_VALUE:

980 #endif

981 #if ALG_ECSCHNORR // Schnorr is also optional

982 case ALG_ECSCHNORR_VALUE:

983 #endif

984 #if ALG_SM2 // SM2 is optional

985 case ALG_SM2_VALUE:

986 #endif

987 break;

988 default:

989 isSignScheme = FALSE;

990 break;

991 }

992 break;

993 #endif // ALG_ECC

994 default:

995 isSignScheme = FALSE;

996 break;

997 }

998 return isSignScheme;

999 }

10.2.6.6.12 CryptIsAsymDecryptScheme()

This function indicate if a scheme algorithm is a decrypt algorithm.

1000 BOOL

1001 CryptIsAsymDecryptScheme(

1002 TPMI_ALG_PUBLIC publicType, // IN: Type of the object

1003 TPMI_ALG_ASYM_SCHEME scheme // IN: the scheme

1004)

1005 {

1006 BOOL isDecryptScheme = TRUE;

1007

1008 switch(publicType)

1009 {

1010 #if ALG_RSA

1011 case ALG_RSA_VALUE:

1012 switch(scheme)

1013 {

1014 case ALG_RSAES_VALUE:

1015 case ALG_OAEP_VALUE:

1016 break;

1017 default:

1018 isDecryptScheme = FALSE;

1019 break;

1020 }

1021 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 697

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1022 #endif // ALG_RSA

1023

1024 #if ALG_ECC

1025 // If ECC is implemented ECDH is required

1026 case ALG_ECC_VALUE:

1027 switch(scheme)

1028 {

1029 #if !ALG_ECDH

1030 # error "ECDH is required for ECC"

1031 #endif

1032 case ALG_ECDH_VALUE:

1033 #if ALG_SM2

1034 case ALG_SM2_VALUE:

1035 #endif

1036 #if ALG_ECMQV

1037 case ALG_ECMQV_VALUE:

1038 #endif

1039 break;

1040 default:

1041 isDecryptScheme = FALSE;

1042 break;

1043 }

1044 break;

1045 #endif // ALG_ECC

1046 default:

1047 isDecryptScheme = FALSE;

1048 break;

1049 }

1050 return isDecryptScheme;

1051 }

10.2.6.6.13 CryptSelectSignScheme()

This function is used by the attestation and signing commands. It implements the rules for selecting the

signature scheme to use in signing. This function requires that the signing key either be TPM_RH_NULL

or be loaded.

If a default scheme is defined in object, the default scheme should be chosen, otherwise, the input

scheme should be chosen. In the case that both object and input scheme has a non-NULL scheme

algorithm, if the schemes are compatible, the input scheme will be chosen.

This function should not be called if 'signObject->publicArea.type' == ALG_SYMCIPHER.

Return Value Meaning

TRUE(1) scheme selected

FALSE(0) both scheme and key's default scheme are empty; or scheme is
empty while key's default scheme requires explicit input scheme (split
signing); or non-empty default key scheme differs from scheme

1052 BOOL

1053 CryptSelectSignScheme(

1054 OBJECT *signObject, // IN: signing key

1055 TPMT_SIG_SCHEME *scheme // IN/OUT: signing scheme

1056)

1057 {

1058 TPMT_SIG_SCHEME *objectScheme;

1059 TPMT_PUBLIC *publicArea;

1060 BOOL OK;

1061

1062 // If the signHandle is TPM_RH_NULL, then the NULL scheme is used, regardless

1063 // of the setting of scheme

1064 if(signObject == NULL)

Trusted Platform Module Library Part 4: Supporting Routines

Page 698 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1065 {

1066 OK = TRUE;

1067 scheme->scheme = ALG_NULL_VALUE;

1068 scheme->details.any.hashAlg = ALG_NULL_VALUE;

1069 }

1070 else

1071 {

1072 // assignment to save typing.

1073 publicArea = &signObject->publicArea;

1074

1075 // A symmetric cipher can be used to encrypt and decrypt but it can't

1076 // be used for signing

1077 if(publicArea->type == ALG_SYMCIPHER_VALUE)

1078 return FALSE;

1079 // Point to the scheme object

1080 if(CryptIsAsymAlgorithm(publicArea->type))

1081 objectScheme =

1082 (TPMT_SIG_SCHEME *)&publicArea->parameters.asymDetail.scheme;

1083 else

1084 objectScheme =

1085 (TPMT_SIG_SCHEME *)&publicArea->parameters.keyedHashDetail.scheme;

1086

1087 // If the object doesn't have a default scheme, then use the

1088 // input scheme.

1089 if(objectScheme->scheme == ALG_NULL_VALUE)

1090 {

1091 // Input and default can't both be NULL

1092 OK = (scheme->scheme != ALG_NULL_VALUE);

1093 // Assume that the scheme is compatible with the key. If not,

1094 // an error will be generated in the signing operation.

1095 }

1096 else if(scheme->scheme == ALG_NULL_VALUE)

1097 {

1098 // input scheme is NULL so use default

1099

1100 // First, check to see if the default requires that the caller

1101 // provided scheme data

1102 OK = !CryptIsSplitSign(objectScheme->scheme);

1103 if(OK)

1104 {

1105 // The object has a scheme and the input is TPM_ALG_NULL so copy

1106 // the object scheme as the final scheme. It is better to use a

1107 // structure copy than a copy of the individual fields.

1108 *scheme = *objectScheme;

1109 }

1110 }

1111 else

1112 {

1113 // Both input and object have scheme selectors

1114 // If the scheme and the hash are not the same then...

1115 // NOTE: the reason that there is no copy here is that the input

1116 // might contain extra data for a split signing scheme and that

1117 // data is not in the object so, it has to be preserved.

1118 OK = (objectScheme->scheme == scheme->scheme)

1119 && (objectScheme->details.any.hashAlg

1120 == scheme->details.any.hashAlg);

1121 }

1122 }

1123 return OK;

1124 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 699

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.6.6.14 CryptSign()

Sign a digest with asymmetric key or HMAC. This function is called by attestation commands and the

generic TPM2_Sign() command. This function checks the key scheme and digest size. It does not check

if the sign operation is allowed for restricted key. It should be checked before the function is called. The

function will assert if the key is not a signing key.

Error Returns Meaning

TPM_RC_SCHEME signScheme is not compatible with the signing key type

TPM_RC_VALUE digest value is greater than the modulus of signHandle or size of
hashData does not match hash algorithm insignScheme (for an RSA
key); invalid commit status or failed to generate r value (for an ECC
key)

1125 TPM_RC

1126 CryptSign(

1127 OBJECT *signKey, // IN: signing key

1128 TPMT_SIG_SCHEME *signScheme, // IN: sign scheme.

1129 TPM2B_DIGEST *digest, // IN: The digest being signed

1130 TPMT_SIGNATURE *signature // OUT: signature

1131)

1132 {

1133 TPM_RC result = TPM_RC_SCHEME;

1134

1135 // Initialize signature scheme

1136 signature->sigAlg = signScheme->scheme;

1137

1138 // If the signature algorithm is TPM_ALG_NULL or the signing key is NULL,

1139 // then we are done

1140 if((signature->sigAlg == ALG_NULL_VALUE) || (signKey == NULL))

1141 return TPM_RC_SUCCESS;

1142

1143 // Initialize signature hash

1144 // Note: need to do the check for TPM_ALG_NULL first because the null scheme

1145 // doesn't have a hashAlg member.

1146 signature->signature.any.hashAlg = signScheme->details.any.hashAlg;

1147

1148 // perform sign operation based on different key type

1149 switch(signKey->publicArea.type)

1150 {

1151 #if ALG_RSA

1152 case ALG_RSA_VALUE:

1153 result = CryptRsaSign(signature, signKey, digest, NULL);

1154 break;

1155 #endif // ALG_RSA

1156 #if ALG_ECC

1157 case ALG_ECC_VALUE:

1158 // The reason that signScheme is passed to CryptEccSign but not to the

1159 // other signing methods is that the signing for ECC may be split and

1160 // need the 'r' value that is in the scheme but not in the signature.

1161 result = CryptEccSign(signature, signKey, digest,

1162 (TPMT_ECC_SCHEME *)signScheme, NULL);

1163 break;

1164 #endif // ALG_ECC

1165 case ALG_KEYEDHASH_VALUE:

1166 result = CryptHmacSign(signature, signKey, digest);

1167 break;

1168 default:

1169 FAIL(FATAL_ERROR_INTERNAL);

1170 break;

1171 }

1172 return result;

1173 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 700 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.6.6.15 CryptValidateSignature()

This function is used to verify a signature. It is called by TPM2_VerifySignature() and

TPM2_PolicySigned().

Since this operation only requires use of a public key, no consistency checks are necessary for the key to

signature type because a caller can load any public key that they like with any scheme that they like. This

routine simply makes sure that the signature is correct, whatever the type.

Error Returns Meaning

TPM_RC_SIGNATURE the signature is not genuine

TPM_RC_SCHEME the scheme is not supported

TPM_RC_HANDLE an HMAC key was selected but the private part of the key is not
loaded

1174 TPM_RC

1175 CryptValidateSignature(

1176 TPMI_DH_OBJECT keyHandle, // IN: The handle of sign key

1177 TPM2B_DIGEST *digest, // IN: The digest being validated

1178 TPMT_SIGNATURE *signature // IN: signature

1179)

1180 {

1181 // NOTE: HandleToObject will either return a pointer to a loaded object or

1182 // will assert. It will never return a non-valid value. This makes it save

1183 // to initialize 'publicArea' with the return value from HandleToObject()

1184 // without checking it first.

1185 OBJECT *signObject = HandleToObject(keyHandle);

1186 TPMT_PUBLIC *publicArea = &signObject->publicArea;

1187 TPM_RC result = TPM_RC_SCHEME;

1188

1189 // The input unmarshaling should prevent any input signature from being

1190 // a NULL signature, but just in case

1191 if(signature->sigAlg == ALG_NULL_VALUE)

1192 return TPM_RC_SIGNATURE;

1193

1194 switch(publicArea->type)

1195 {

1196 #if ALG_RSA

1197 case ALG_RSA_VALUE:

1198 {

1199 //

1200 // Call RSA code to verify signature

1201 result = CryptRsaValidateSignature(signature, signObject, digest);

1202 break;

1203 }

1204 #endif // ALG_RSA

1205

1206 #if ALG_ECC

1207 case ALG_ECC_VALUE:

1208 result = CryptEccValidateSignature(signature, signObject, digest);

1209 break;

1210 #endif // ALG_ECC

1211

1212 case ALG_KEYEDHASH_VALUE:

1213 if(signObject->attributes.publicOnly)

1214 result = TPM_RCS_HANDLE;

1215 else

1216 result = CryptHMACVerifySignature(signObject, digest, signature);

1217 break;

1218 default:

1219 break;

1220 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 701

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1221 return result;

1222 }

10.2.6.6.16 CryptGetTestResult

This function returns the results of a self-test function.

NOTE: the behavior in this function is NOT the correct behavior for a real TPM implementation. An artificial behavior is
placed here due to the limitation of a software simulation environment. For the correct behavior, consult the part
3 specification for TPM2_GetTestResult().

1223 TPM_RC

1224 CryptGetTestResult(

1225 TPM2B_MAX_BUFFER *outData // OUT: test result data

1226)

1227 {

1228 outData->t.size = 0;

1229 return TPM_RC_SUCCESS;

1230 }

10.2.6.6.17 CryptValidateKeys()

This function is used to verify that the key material of and object is valid. For a publicOnly object, the key

is verified for size and, if it is an ECC key, it is verified to be on the specified curve. For a key with a

sensitive area, the binding between the public and private parts of the key are verified. If the nameAlg of

the key is TPM_ALG_NULL, then the size of the sensitive area is verified but the public portion is not

verified, unless the key is an RSA key. For an RSA key, the reason for loading the sensitive area is to use

it. The only way to use a private RSA key is to compute the private exponent. To compute the private

exponent, the public modulus is used.

Error Returns Meaning

TPM_RC_BINDING the public and private parts are not cryptographically bound

TPM_RC_HASH cannot have a publicOnly key with nameAlg of TPM_ALG_NULL

TPM_RC_KEY the public unique is not valid

TPM_RC_KEY_SIZE the private area key is not valid

TPM_RC_TYPE the types of the sensitive and private parts do not match

1231 TPM_RC

1232 CryptValidateKeys(

1233 TPMT_PUBLIC *publicArea,

1234 TPMT_SENSITIVE *sensitive,

1235 TPM_RC blamePublic,

1236 TPM_RC blameSensitive

1237)

1238 {

1239 TPM_RC result;

1240 UINT16 keySizeInBytes;

1241 UINT16 digestSize = CryptHashGetDigestSize(publicArea->nameAlg);

1242 TPMU_PUBLIC_PARMS *params = &publicArea->parameters;

1243 TPMU_PUBLIC_ID *unique = &publicArea->unique;

1244

1245 if(sensitive != NULL)

1246 {

1247 // Make sure that the types of the public and sensitive are compatible

1248 if(publicArea->type != sensitive->sensitiveType)

1249 return TPM_RCS_TYPE + blameSensitive;

1250 // Make sure that the authValue is not bigger than allowed

1251 // If there is no name algorithm, then the size just needs to be less than

Trusted Platform Module Library Part 4: Supporting Routines

Page 702 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1252 // the maximum size of the buffer used for authorization. That size check

1253 // was made during unmarshaling of the sensitive area

1254 if((sensitive->authValue.t.size) > digestSize && (digestSize > 0))

1255 return TPM_RCS_SIZE + blameSensitive;

1256 }

1257 switch(publicArea->type)

1258 {

1259 #if ALG_RSA

1260 case ALG_RSA_VALUE:

1261 keySizeInBytes = BITS_TO_BYTES(params->rsaDetail.keyBits);

1262

1263 // Regardless of whether there is a sensitive area, the public modulus

1264 // needs to have the correct size. Otherwise, it can't be used for

1265 // any public key operation nor can it be used to compute the private

1266 // exponent.

1267 // NOTE: This implementation only supports key sizes that are multiples

1268 // of 1024 bits which means that the MSb of the 0th byte will always be

1269 // SET in any prime and in the public modulus.

1270 if((unique->rsa.t.size != keySizeInBytes)

1271 || (unique->rsa.t.buffer[0] < 0x80))

1272 return TPM_RCS_KEY + blamePublic;

1273 if(params->rsaDetail.exponent != 0

1274 && params->rsaDetail.exponent < 7)

1275 return TPM_RCS_VALUE + blamePublic;

1276 if(sensitive != NULL)

1277 {

1278 // If there is a sensitive area, it has to be the correct size

1279 // including having the correct high order bit SET.

1280 if(((sensitive->sensitive.rsa.t.size * 2) != keySizeInBytes)

1281 || (sensitive->sensitive.rsa.t.buffer[0] < 0x80))

1282 return TPM_RCS_KEY_SIZE + blameSensitive;

1283 }

1284 break;

1285 #endif

1286 #if ALG_ECC

1287 case ALG_ECC_VALUE:

1288 {

1289 TPMI_ECC_CURVE curveId;

1290 curveId = params->eccDetail.curveID;

1291 keySizeInBytes = BITS_TO_BYTES(CryptEccGetKeySizeForCurve(curveId));

1292 if(sensitive == NULL)

1293 {

1294 // Validate the public key size

1295 if(unique->ecc.x.t.size != keySizeInBytes

1296 || unique->ecc.y.t.size != keySizeInBytes)

1297 return TPM_RCS_KEY + blamePublic;

1298 if(publicArea->nameAlg != ALG_NULL_VALUE)

1299 {

1300 if(!CryptEccIsPointOnCurve(curveId, &unique->ecc))

1301 return TPM_RCS_ECC_POINT + blamePublic;

1302 }

1303 }

1304 else

1305 {

1306 // If the nameAlg is TPM_ALG_NULL, then only verify that the

1307 // private part of the key is OK.

1308 if(!CryptEccIsValidPrivateKey(&sensitive->sensitive.ecc,

1309 curveId))

1310 return TPM_RCS_KEY_SIZE;

1311 if(publicArea->nameAlg != ALG_NULL_VALUE)

1312 {

1313 // Full key load, verify that the public point belongs to the

1314 // private key.

1315 TPMS_ECC_POINT toCompare;

1316 result = CryptEccPointMultiply(&toCompare, curveId, NULL,

1317 &sensitive->sensitive.ecc,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 703

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1318 NULL, NULL);

1319 if(result != TPM_RC_SUCCESS)

1320 return TPM_RCS_BINDING;

1321 else

1322 {

1323 // Make sure that the private key generated the public key.

1324 // The input values and the values produced by the point

1325 // multiply may not be the same size so adjust the computed

1326 // value to match the size of the input value by adding or

1327 // removing zeros.

1328 AdjustNumberB(&toCompare.x.b, unique->ecc.x.t.size);

1329 AdjustNumberB(&toCompare.y.b, unique->ecc.y.t.size);

1330 if(!MemoryEqual2B(&unique->ecc.x.b, &toCompare.x.b)

1331 || !MemoryEqual2B(&unique->ecc.y.b, &toCompare.y.b))

1332 return TPM_RCS_BINDING;

1333 }

1334 }

1335 }

1336 break;

1337 }

1338 #endif

1339 default:

1340 // Checks for SYMCIPHER and KEYEDHASH are largely the same

1341 // If public area has a nameAlg, then validate the public area size

1342 // and if there is also a sensitive area, validate the binding

1343

1344 // For consistency, if the object is public-only just make sure that

1345 // the unique field is consistent with the name algorithm

1346 if(sensitive == NULL)

1347 {

1348 if(unique->sym.t.size != digestSize)

1349 return TPM_RCS_KEY + blamePublic;

1350 }

1351 else

1352 {

1353 // Make sure that the key size in the sensitive area is consistent.

1354 if(publicArea->type == ALG_SYMCIPHER_VALUE)

1355 {

1356 result = CryptSymKeyValidate(¶ms->symDetail.sym,

1357 &sensitive->sensitive.sym);

1358 if(result != TPM_RC_SUCCESS)

1359 return result + blameSensitive;

1360 }

1361 else

1362 {

1363 // For a keyed hash object, the key has to be less than the

1364 // smaller of the block size of the hash used in the scheme or

1365 // 128 bytes. The worst case value is limited by the

1366 // unmarshaling code so the only thing left to be checked is

1367 // that it does not exceed the block size of the hash.

1368 // by the hash algorithm of the scheme.

1369 TPMT_KEYEDHASH_SCHEME *scheme;

1370 UINT16 maxSize;

1371 scheme = ¶ms->keyedHashDetail.scheme;

1372 if(scheme->scheme == ALG_XOR_VALUE)

1373 {

1374 maxSize = CryptHashGetBlockSize(scheme->details.xor.hashAlg);

1375 }

1376 else if(scheme->scheme == ALG_HMAC_VALUE)

1377 {

1378 maxSize = CryptHashGetBlockSize(scheme->details.hmac.hashAlg);

1379 }

1380 else if(scheme->scheme == ALG_NULL_VALUE)

1381 {

1382 // Not signing or xor so must be a data block

1383 maxSize = 128;

Trusted Platform Module Library Part 4: Supporting Routines

Page 704 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1384 }

1385 else

1386 return TPM_RCS_SCHEME + blamePublic;

1387 if(sensitive->sensitive.bits.t.size > maxSize)

1388 return TPM_RCS_KEY_SIZE + blameSensitive;

1389 }

1390 // If there is a nameAlg, check the binding

1391 if(publicArea->nameAlg != ALG_NULL_VALUE)

1392 {

1393 TPM2B_DIGEST compare;

1394 if(sensitive->seedValue.t.size != digestSize)

1395 return TPM_RCS_KEY_SIZE + blameSensitive;

1396

1397 CryptComputeSymmetricUnique(publicArea, sensitive, &compare);

1398 if(!MemoryEqual2B(&unique->sym.b, &compare.b))

1399 return TPM_RC_BINDING;

1400 }

1401 }

1402 break;

1403 }

1404 // For a parent, need to check that the seedValue is the correct size for

1405 // protections. It should be at least half the size of the nameAlg

1406 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted)

1407 && IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, decrypt)

1408 && sensitive != NULL

1409 && publicArea->nameAlg != ALG_NULL_VALUE)

1410 {

1411 if((sensitive->seedValue.t.size < (digestSize / 2))

1412 || (sensitive->seedValue.t.size > digestSize))

1413 return TPM_RCS_SIZE + blameSensitive;

1414 }

1415 return TPM_RC_SUCCESS;

1416 }

10.2.6.6.18 CryptSelectMac()

This function is used to set the MAC scheme based on the key parameters and the input scheme.

Error Returns Meaning

TPM_RC_SCHEME the scheme is not a valid mac scheme

TPM_RC_TYPE the input key is not a type that supports a mac

TPM_RC_VALUE the input scheme and the key scheme are not compatible

1417 TPM_RC

1418 CryptSelectMac(

1419 TPMT_PUBLIC *publicArea,

1420 TPMI_ALG_MAC_SCHEME *inMac

1421)

1422 {

1423 TPM_ALG_ID macAlg = ALG_NULL_VALUE;

1424 switch(publicArea->type)

1425 {

1426 case ALG_KEYEDHASH_VALUE:

1427 {

1428 // Local value to keep lines from getting too long

1429 TPMT_KEYEDHASH_SCHEME *scheme;

1430 scheme = &publicArea->parameters.keyedHashDetail.scheme;

1431 // Expect that the scheme is either HMAC or NULL

1432 if(scheme->scheme != ALG_NULL_VALUE)

1433 macAlg = scheme->details.hmac.hashAlg;

1434 break;

1435 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 705

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1436 case ALG_SYMCIPHER_VALUE:

1437 {

1438 TPMT_SYM_DEF_OBJECT *scheme;

1439 scheme = &publicArea->parameters.symDetail.sym;

1440 // Expect that the scheme is either valid symmetric cipher or NULL

1441 if(scheme->algorithm != ALG_NULL_VALUE)

1442 macAlg = scheme->mode.sym;

1443 break;

1444 }

1445 default:

1446 return TPM_RCS_TYPE;

1447 }

1448 // If the input value is not TPM_ALG_NULL ...

1449 if(*inMac != ALG_NULL_VALUE)

1450 {

1451 // ... then either the scheme in the key must be TPM_ALG_NULL or the input

1452 // value must match

1453 if((macAlg != ALG_NULL_VALUE) && (*inMac != macAlg))

1454 return TPM_RCS_VALUE;

1455 }

1456 else

1457 {

1458 // Since the input value is TPM_ALG_NULL, then the key value can't be

1459 // TPM_ALG_NULL

1460 if(macAlg == ALG_NULL_VALUE)

1461 return TPM_RCS_VALUE;

1462 *inMac = macAlg;

1463 }

1464 if(!CryptMacIsValidForKey(publicArea->type, *inMac, FALSE))

1465 return TPM_RCS_SCHEME;

1466 return TPM_RC_SUCCESS;

1467 }

10.2.6.6.19 CryptMacIsValidForKey()

Check to see if the key type is compatible with the mac type

1468 BOOL

1469 CryptMacIsValidForKey(

1470 TPM_ALG_ID keyType,

1471 TPM_ALG_ID macAlg,

1472 BOOL flag

1473)

1474 {

1475 switch(keyType)

1476 {

1477 case ALG_KEYEDHASH_VALUE:

1478 return CryptHashIsValidAlg(macAlg, flag);

1479 break;

1480 case ALG_SYMCIPHER_VALUE:

1481 return CryptSmacIsValidAlg(macAlg, flag);

1482 break;

1483 default:

1484 break;

1485 }

1486 return FALSE;

1487 }

10.2.6.6.20 CryptSmacIsValidAlg()

This function is used to test if an algorithm is a supported SMAC algorithm. It needs to be updated as new

algorithms are added.

Trusted Platform Module Library Part 4: Supporting Routines

Page 706 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1488 BOOL

1489 CryptSmacIsValidAlg(

1490 TPM_ALG_ID alg,

1491 BOOL FLAG // IN: Indicates if TPM_ALG_NULL is valid

1492)

1493 {

1494 switch (alg)

1495 {

1496 #if ALG_CMAC

1497 case ALG_CMAC_VALUE:

1498 return TRUE;

1499 break;

1500 #endif

1501 case ALG_NULL_VALUE:

1502 return FLAG;

1503 break;

1504 default:

1505 return FALSE;

1506 }

1507 }

10.2.6.6.21 CryptSymModeIsValid()

Function checks to see if an algorithm ID is a valid, symmetric block cipher mode for the TPM. If flag is

SET, them TPM_ALG_NULL is a valid mode. not include the modes used for SMAC

1508 BOOL

1509 CryptSymModeIsValid(

1510 TPM_ALG_ID mode,

1511 BOOL flag

1512)

1513 {

1514 switch(mode)

1515 {

1516 #if ALG_CTR

1517 case ALG_CTR_VALUE:

1518 #endif // ALG_CTR

1519 #if ALG_OFB

1520 case ALG_OFB_VALUE:

1521 #endif // ALG_OFB

1522 #if ALG_CBC

1523 case ALG_CBC_VALUE:

1524 #endif // ALG_CBC

1525 #if ALG_CFB

1526 case ALG_CFB_VALUE:

1527 #endif // ALG_CFB

1528 #if ALG_ECB

1529 case ALG_ECB_VALUE:

1530 #endif // ALG_ECB

1531 return TRUE;

1532 case ALG_NULL_VALUE:

1533 return flag;

1534 break;

1535 default:

1536 break;

1537 }

1538 return FALSE;

1539 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 707

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.7 CryptSelfTest.c

10.2.7.1 Introduction

The functions in this file are designed to support self-test of cryptographic functions in the TPM. The TPM

allows the user to decide whether to run self-test on a demand basis or to run all the self-tests before

proceeding.

The self-tests are controlled by a set of bit vectors. The g_untestedDecryptionAlgorithms vector has a bit

for each decryption algorithm that needs to be tested and g_untestedEncryptionAlgorithms has a bit for

each encryption algorithm that needs to be tested. Before an algorithm is used, the appropriate vector is

checked (indexed using the algorithm ID). If the bit is 1, then the test function should be called.

For more information, see TpmSelfTests().txt

1 #include "Tpm.h"

10.2.7.2 Functions

10.2.7.2.1 RunSelfTest()

Local function to run self-test

2 static TPM_RC

3 CryptRunSelfTests(

4 ALGORITHM_VECTOR *toTest // IN: the vector of the algorithms to test

5)

6 {

7 TPM_ALG_ID alg;

8

9 // For each of the algorithms that are in the toTestVecor, need to run a

10 // test

11 for(alg = TPM_ALG_FIRST; alg <= TPM_ALG_LAST; alg++)

12 {

13 if(TEST_BIT(alg, *toTest))

14 {

15 TPM_RC result = CryptTestAlgorithm(alg, toTest);

16 if(result != TPM_RC_SUCCESS)

17 return result;

18 }

19 }

20 return TPM_RC_SUCCESS;

21 }

10.2.7.2.2 CryptSelfTest()

This function is called to start/complete a full self-test. If fullTest is NO, then only the untested algorithms

will be run. If fullTest is YES, then g_untestedDecryptionAlgorithms is reinitialized and then all tests are

run. This implementation of the reference design does not support processing outside the framework of a

TPM command. As a consequence, this command does not complete until all tests are done. Since this

can take a long time, the TPM will check after each test to see if the command is canceled. If so, then the

TPM will returned TPM_RC_CANCELLED. To continue with the self-tests, call TPM2_SelfTest(fullTest ==

No) and the TPM will complete the testing.

Trusted Platform Module Library Part 4: Supporting Routines

Page 708 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Error Returns Meaning

TPM_RC_CANCELED if the command is canceled

22 LIB_EXPORT

23 TPM_RC

24 CryptSelfTest(

25 TPMI_YES_NO fullTest // IN: if full test is required

26)

27 {

28 #if SIMULATION

29 if(g_forceFailureMode)

30 FAIL(FATAL_ERROR_FORCED);

31 #endif

32

33 // If the caller requested a full test, then reset the to test vector so that

34 // all the tests will be run

35 if(fullTest == YES)

36 {

37 MemoryCopy(g_toTest,

38 g_implementedAlgorithms,

39 sizeof(g_toTest));

40 }

41 return CryptRunSelfTests(&g_toTest);

42 }

10.2.7.2.3 CryptIncrementalSelfTest()

This function is used to perform an incremental self-test. This implementation will perform the toTest

values before returning. That is, it assumes that the TPM cannot perform background tasks between

commands.

This command may be canceled. If it is, then there is no return result. However, this command can be run

again and the incremental progress will not be lost.

Error Returns Meaning

TPM_RC_CANCELED processing of this command was canceled

TPM_RC_TESTING if toTest list is not empty

TPM_RC_VALUE an algorithm in the toTest list is not implemented

43 TPM_RC

44 CryptIncrementalSelfTest(

45 TPML_ALG *toTest, // IN: list of algorithms to be tested

46 TPML_ALG *toDoList // OUT: list of algorithms needing test

47)

48 {

49 ALGORITHM_VECTOR toTestVector = {0};

50 TPM_ALG_ID alg;

51 UINT32 i;

52

53 pAssert(toTest != NULL && toDoList != NULL);

54 if(toTest->count > 0)

55 {

56 // Transcribe the toTest list into the toTestVector

57 for(i = 0; i < toTest->count; i++)

58 {

59 alg = toTest->algorithms[i];

60

61 // make sure that the algorithm value is not out of range

62 if((alg > TPM_ALG_LAST) || !TEST_BIT(alg, g_implementedAlgorithms))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 709

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

63 return TPM_RC_VALUE;

64 SET_BIT(alg, toTestVector);

65 }

66 // Run the test

67 if(CryptRunSelfTests(&toTestVector) == TPM_RC_CANCELED)

68 return TPM_RC_CANCELED;

69 }

70 // Fill in the toDoList with the algorithms that are still untested

71 toDoList->count = 0;

72

73 for(alg = TPM_ALG_FIRST;

74 toDoList->count < MAX_ALG_LIST_SIZE && alg <= TPM_ALG_LAST;

75 alg++)

76 {

77 if(TEST_BIT(alg, g_toTest))

78 toDoList->algorithms[toDoList->count++] = alg;

79 }

80 return TPM_RC_SUCCESS;

81 }

10.2.7.2.4 CryptInitializeToTest()

This function will initialize the data structures for testing all the algorithms.

82 void

83 CryptInitializeToTest(

84 void

85)

86 {

87 // Indicate that nothing has been tested

88 memset(&g_cryptoSelfTestState, 0, sizeof(g_cryptoSelfTestState));

89

90 // Copy the implemented algorithm vector

91 MemoryCopy(g_toTest, g_implementedAlgorithms, sizeof(g_toTest));

92

93 // Setting the algorithm to null causes the test function to just clear

94 // out any algorithms for which there is no test.

95 CryptTestAlgorithm(TPM_ALG_ERROR, &g_toTest);

96

97 return;

98 }

10.2.7.2.5 CryptTestAlgorithm()

Only point of contact with the actual self tests. If a self-test fails, there is no return and the TPM goes into

failure mode. The call to TestAlgorithm() uses an algorithm selector and a bit vector. When the test is run,

the corresponding bit in toTest and in g_toTest is CLEAR. If toTest is NULL, then only the bit in g_toTest

is CLEAR. There is a special case for the call to TestAlgorithm(). When alg is ALG_ERROR,

TestAlgorithm() will CLEAR any bit in toTest for which it has no test. This allows the knowledge about

which algorithms have test to be accessed through the interface that provides the test.

Error Returns Meaning

TPM_RC_CANCELED test was canceled

99 LIB_EXPORT

100 TPM_RC

101 CryptTestAlgorithm(

102 TPM_ALG_ID alg,

103 ALGORITHM_VECTOR *toTest

104)

105 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 710 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

106 TPM_RC result;

107 #if SELF_TEST

108 result = TestAlgorithm(alg, toTest);

109 #else

110 // If this is an attempt to determine the algorithms for which there is a

111 // self test, pretend that all of them do. We do that by not clearing any

112 // of the algorithm bits. When/if this function is called to run tests, it

113 // will over report. This can be changed so that any call to check on which

114 // algorithms have tests, 'toTest' can be cleared.

115 if(alg != TPM_ALG_ERROR)

116 {

117 CLEAR_BIT(alg, g_toTest);

118 if(toTest != NULL)

119 CLEAR_BIT(alg, *toTest);

120 }

121 result = TPM_RC_SUCCESS;

122 #endif

123 return result;

124 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 711

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.8 CryptEccData.c

1 #include "Tpm.h"

2 #include "OIDs.h"

This file contains the ECC curve data. The format of the data depends on the setting of

USE_BN_ECC_DATA. If it is defined, then the TPM's BigNum() format is used. Otherwise, it is kept in

TPM2B format. The purpose of having the data in BigNum() format is so that it does not have to be

reformatted before being used by the crypto library.

3 #if ALG_ECC

4 #if USE_BN_ECC_DATA

5 # define TO_ECC_64 TO_CRYPT_WORD_64

6 # define TO_ECC_56(a, b, c, d, e, f, g) TO_ECC_64(0, a, b, c, d, e, f, g)

7 # define TO_ECC_48(a, b, c, d, e, f) TO_ECC_64(0, 0, a, b, c, d, e, f)

8 # define TO_ECC_40(a, b, c, d, e) TO_ECC_64(0, 0, 0, a, b, c, d, e)

9 # if RADIX_BITS > 32

10 # define TO_ECC_32(a, b, c, d) TO_ECC_64(0, 0, 0, 0, a, b, c, d)

11 # define TO_ECC_24(a, b, c) TO_ECC_64(0, 0, 0, 0, 0, a, b, c)

12 # define TO_ECC_16(a, b) TO_ECC_64(0, 0, 0, 0, 0, 0, a, b)

13 # define TO_ECC_8(a) TO_ECC_64(0, 0, 0, 0, 0, 0, 0, a)

14 # else // RADIX_BITS == 32

15 # define TO_ECC_32 BIG_ENDIAN_BYTES_TO_UINT32

16 # define TO_ECC_24(a, b, c) TO_ECC_32(0, a, b, c)

17 # define TO_ECC_16(a, b) TO_ECC_32(0, 0, a, b)

18 # define TO_ECC_8(a) TO_ECC_32(0, 0, 0, a)

19 # endif

20 #else // TPM2B_

21 # define TO_ECC_64(a, b, c, d, e, f, g, h) a, b, c, d, e, f, g, h

22 # define TO_ECC_56(a, b, c, d, e, f, g) a, b, c, d, e, f, g

23 # define TO_ECC_48(a, b, c, d, e, f) a, b, c, d, e, f

24 # define TO_ECC_40(a, b, c, d, e) a, b, c, d, e

25 # define TO_ECC_32(a, b, c, d) a, b, c, d

26 # define TO_ECC_24(a, b, c) a, b, c

27 # define TO_ECC_16(a, b) a, b

28 # define TO_ECC_8(a) a

29 #endif

30 #if USE_BN_ECC_DATA

31 #define BN_MIN_ALLOC(bytes) \

32 (BYTES_TO_CRYPT_WORDS(bytes) == 0) ? 1 : BYTES_TO_CRYPT_WORDS(bytes)

33 # define ECC_CONST(NAME, bytes, initializer) \

34 const struct { \

35 crypt_uword_t allocate, size, d[BN_MIN_ALLOC(bytes)]; \

36 } NAME = {BN_MIN_ALLOC(bytes), BYTES_TO_CRYPT_WORDS(bytes),{initializer}}

37 ECC_CONST(ECC_ZERO, 0, 0);

38 #else

39 # define ECC_CONST(NAME, bytes, initializer) \

40 const TPM2B_##bytes##_BYTE_VALUE NAME = {bytes, {initializer}}

Have to special case ECC_ZERO

41 TPM2B_BYTE_VALUE(1);

42 TPM2B_1_BYTE_VALUE ECC_ZERO = {1, {0}};

43

44 #endif

45

46 ECC_CONST(ECC_ONE, 1, 1);

47 #if !USE_BN_ECC_DATA

48 TPM2B_BYTE_VALUE(24);

49 #define TO_ECC_192(a, b, c) a, b, c

50 TPM2B_BYTE_VALUE(28);

51 #define TO_ECC_224(a, b, c, d) a, b, c, d

52 TPM2B_BYTE_VALUE(32);

Trusted Platform Module Library Part 4: Supporting Routines

Page 712 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

53 #define TO_ECC_256(a, b, c, d) a, b, c, d

54 TPM2B_BYTE_VALUE(48);

55 #define TO_ECC_384(a, b, c, d, e, f) a, b, c, d, e, f

56 TPM2B_BYTE_VALUE(66);

57 #define TO_ECC_528(a, b, c, d, e, f, g, h, i) a, b, c, d, e, f, g, h, i

58 TPM2B_BYTE_VALUE(80);

59 #define TO_ECC_640(a, b, c, d, e, f, g, h, i, j) a, b, c, d, e, f, g, h, i, j

60 #else

61 #define TO_ECC_192(a, b, c) c, b, a

62 #define TO_ECC_224(a, b, c, d) d, c, b, a

63 #define TO_ECC_256(a, b, c, d) d, c, b, a

64 #define TO_ECC_384(a, b, c, d, e, f) f, e, d, c, b, a

65 #define TO_ECC_528(a, b, c, d, e, f, g, h, i) i, h, g, f, e, d, c, b, a

66 #define TO_ECC_640(a, b, c, d, e, f, g, h, i, j) j, i, h, g, f, e, d, c, b, a

67 #endif // !USE_BN_ECC_DATA

68 #if ECC_NIST_P192

69 ECC_CONST(NIST_P192_p, 24, TO_ECC_192(

70 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

71 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE),

72 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)));

73 ECC_CONST(NIST_P192_a, 24, TO_ECC_192(

74 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

75 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE),

76 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC)));

77 ECC_CONST(NIST_P192_b, 24, TO_ECC_192(

78 TO_ECC_64(0x64, 0x21, 0x05, 0x19, 0xE5, 0x9C, 0x80, 0xE7),

79 TO_ECC_64(0x0F, 0xA7, 0xE9, 0xAB, 0x72, 0x24, 0x30, 0x49),

80 TO_ECC_64(0xFE, 0xB8, 0xDE, 0xEC, 0xC1, 0x46, 0xB9, 0xB1)));

81 ECC_CONST(NIST_P192_gX, 24, TO_ECC_192(

82 TO_ECC_64(0x18, 0x8D, 0xA8, 0x0E, 0xB0, 0x30, 0x90, 0xF6),

83 TO_ECC_64(0x7C, 0xBF, 0x20, 0xEB, 0x43, 0xA1, 0x88, 0x00),

84 TO_ECC_64(0xF4, 0xFF, 0x0A, 0xFD, 0x82, 0xFF, 0x10, 0x12)));

85 ECC_CONST(NIST_P192_gY, 24, TO_ECC_192(

86 TO_ECC_64(0x07, 0x19, 0x2B, 0x95, 0xFF, 0xC8, 0xDA, 0x78),

87 TO_ECC_64(0x63, 0x10, 0x11, 0xED, 0x6B, 0x24, 0xCD, 0xD5),

88 TO_ECC_64(0x73, 0xF9, 0x77, 0xA1, 0x1E, 0x79, 0x48, 0x11)));

89 ECC_CONST(NIST_P192_n, 24, TO_ECC_192(

90 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

91 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x99, 0xDE, 0xF8, 0x36),

92 TO_ECC_64(0x14, 0x6B, 0xC9, 0xB1, 0xB4, 0xD2, 0x28, 0x31)));

93 #define NIST_P192_h ECC_ONE

94 #define NIST_P192_gZ ECC_ONE

95 #if USE_BN_ECC_DATA

96 const ECC_CURVE_DATA NIST_P192 = {

97 (bigNum)&NIST_P192_p, (bigNum)&NIST_P192_n, (bigNum)&NIST_P192_h,

98 (bigNum)&NIST_P192_a, (bigNum)&NIST_P192_b,

99 {(bigNum)&NIST_P192_gX, (bigNum)&NIST_P192_gY, (bigNum)&NIST_P192_gZ}};

100 #else

101 const ECC_CURVE_DATA NIST_P192 = {

102 &NIST_P192_p.b, &NIST_P192_n.b, &NIST_P192_h.b,

103 &NIST_P192_a.b, &NIST_P192_b.b,

104 {&NIST_P192_gX.b, &NIST_P192_gY.b, &NIST_P192_gZ.b}};

105

106 #endif // USE_BN_ECC_DATA

107

108 #endif // ECC_NIST_P192

109

110

111 #if ECC_NIST_P224

112 ECC_CONST(NIST_P224_p, 28, TO_ECC_224(

113 TO_ECC_32(0xFF, 0xFF, 0xFF, 0xFF),

114 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

115 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),

116 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01)));

117 ECC_CONST(NIST_P224_a, 28, TO_ECC_224(

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 713

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

118 TO_ECC_32(0xFF, 0xFF, 0xFF, 0xFF),

119 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

120 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF),

121 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE)));

122 ECC_CONST(NIST_P224_b, 28, TO_ECC_224(

123 TO_ECC_32(0xB4, 0x05, 0x0A, 0x85),

124 TO_ECC_64(0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56),

125 TO_ECC_64(0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA),

126 TO_ECC_64(0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4)));

127 ECC_CONST(NIST_P224_gX, 28, TO_ECC_224(

128 TO_ECC_32(0xB7, 0x0E, 0x0C, 0xBD),

129 TO_ECC_64(0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9),

130 TO_ECC_64(0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22),

131 TO_ECC_64(0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21)));

132 ECC_CONST(NIST_P224_gY, 28, TO_ECC_224(

133 TO_ECC_32(0xBD, 0x37, 0x63, 0x88),

134 TO_ECC_64(0xB5, 0xF7, 0x23, 0xFB, 0x4C, 0x22, 0xDF, 0xE6),

135 TO_ECC_64(0xCD, 0x43, 0x75, 0xA0, 0x5A, 0x07, 0x47, 0x64),

136 TO_ECC_64(0x44, 0xD5, 0x81, 0x99, 0x85, 0x00, 0x7E, 0x34)));

137 ECC_CONST(NIST_P224_n, 28, TO_ECC_224(

138 TO_ECC_32(0xFF, 0xFF, 0xFF, 0xFF),

139 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

140 TO_ECC_64(0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E),

141 TO_ECC_64(0x13, 0xDD, 0x29, 0x45, 0x5C, 0x5C, 0x2A, 0x3D)));

142 #define NIST_P224_h ECC_ONE

143 #define NIST_P224_gZ ECC_ONE

144 #if USE_BN_ECC_DATA

145 const ECC_CURVE_DATA NIST_P224 = {

146 (bigNum)&NIST_P224_p, (bigNum)&NIST_P224_n, (bigNum)&NIST_P224_h,

147 (bigNum)&NIST_P224_a, (bigNum)&NIST_P224_b,

148 {(bigNum)&NIST_P224_gX, (bigNum)&NIST_P224_gY, (bigNum)&NIST_P224_gZ}};

149 #else

150 const ECC_CURVE_DATA NIST_P224 = {

151 &NIST_P224_p.b, &NIST_P224_n.b, &NIST_P224_h.b,

152 &NIST_P224_a.b, &NIST_P224_b.b,

153 {&NIST_P224_gX.b, &NIST_P224_gY.b, &NIST_P224_gZ.b}};

154

155 #endif // USE_BN_ECC_DATA

156

157 #endif // ECC_NIST_P224

158

159

160 #if ECC_NIST_P256

161 ECC_CONST(NIST_P256_p, 32, TO_ECC_256(

162 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01),

163 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),

164 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),

165 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)));

166 ECC_CONST(NIST_P256_a, 32, TO_ECC_256(

167 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01),

168 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),

169 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),

170 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC)));

171 ECC_CONST(NIST_P256_b, 32, TO_ECC_256(

172 TO_ECC_64(0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7),

173 TO_ECC_64(0xB3, 0xEB, 0xBD, 0x55, 0x76, 0x98, 0x86, 0xBC),

174 TO_ECC_64(0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6),

175 TO_ECC_64(0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B)));

176 ECC_CONST(NIST_P256_gX, 32, TO_ECC_256(

177 TO_ECC_64(0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47),

178 TO_ECC_64(0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2),

179 TO_ECC_64(0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0),

180 TO_ECC_64(0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96)));

181 ECC_CONST(NIST_P256_gY, 32, TO_ECC_256(

182 TO_ECC_64(0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B),

Trusted Platform Module Library Part 4: Supporting Routines

Page 714 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

183 TO_ECC_64(0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16),

184 TO_ECC_64(0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE),

185 TO_ECC_64(0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5)));

186 ECC_CONST(NIST_P256_n, 32, TO_ECC_256(

187 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),

188 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

189 TO_ECC_64(0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84),

190 TO_ECC_64(0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51)));

191 #define NIST_P256_h ECC_ONE

192 #define NIST_P256_gZ ECC_ONE

193 #if USE_BN_ECC_DATA

194 const ECC_CURVE_DATA NIST_P256 = {

195 (bigNum)&NIST_P256_p, (bigNum)&NIST_P256_n, (bigNum)&NIST_P256_h,

196 (bigNum)&NIST_P256_a, (bigNum)&NIST_P256_b,

197 {(bigNum)&NIST_P256_gX, (bigNum)&NIST_P256_gY, (bigNum)&NIST_P256_gZ}};

198 #else

199 const ECC_CURVE_DATA NIST_P256 = {

200 &NIST_P256_p.b, &NIST_P256_n.b, &NIST_P256_h.b,

201 &NIST_P256_a.b, &NIST_P256_b.b,

202 {&NIST_P256_gX.b, &NIST_P256_gY.b, &NIST_P256_gZ.b}};

203

204 #endif // USE_BN_ECC_DATA

205

206 #endif // ECC_NIST_P256

207

208

209 #if ECC_NIST_P384

210 ECC_CONST(NIST_P384_p, 48, TO_ECC_384(

211 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

212 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

213 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

214 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE),

215 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),

216 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF)));

217 ECC_CONST(NIST_P384_a, 48, TO_ECC_384(

218 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

219 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

220 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

221 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE),

222 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),

223 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC)));

224 ECC_CONST(NIST_P384_b, 48, TO_ECC_384(

225 TO_ECC_64(0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4),

226 TO_ECC_64(0x98, 0x8E, 0x05, 0x6B, 0xE3, 0xF8, 0x2D, 0x19),

227 TO_ECC_64(0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12),

228 TO_ECC_64(0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A),

229 TO_ECC_64(0xC6, 0x56, 0x39, 0x8D, 0x8A, 0x2E, 0xD1, 0x9D),

230 TO_ECC_64(0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF)));

231 ECC_CONST(NIST_P384_gX, 48, TO_ECC_384(

232 TO_ECC_64(0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37),

233 TO_ECC_64(0x8E, 0xB1, 0xC7, 0x1E, 0xF3, 0x20, 0xAD, 0x74),

234 TO_ECC_64(0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98),

235 TO_ECC_64(0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38),

236 TO_ECC_64(0x55, 0x02, 0xF2, 0x5D, 0xBF, 0x55, 0x29, 0x6C),

237 TO_ECC_64(0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7)));

238 ECC_CONST(NIST_P384_gY, 48, TO_ECC_384(

239 TO_ECC_64(0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F),

240 TO_ECC_64(0x5D, 0x9E, 0x98, 0xBF, 0x92, 0x92, 0xDC, 0x29),

241 TO_ECC_64(0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C),

242 TO_ECC_64(0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0),

243 TO_ECC_64(0x0A, 0x60, 0xB1, 0xCE, 0x1D, 0x7E, 0x81, 0x9D),

244 TO_ECC_64(0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F)));

245 ECC_CONST(NIST_P384_n, 48, TO_ECC_384(

246 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

247 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 715

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

248 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

249 TO_ECC_64(0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF),

250 TO_ECC_64(0x58, 0x1A, 0x0D, 0xB2, 0x48, 0xB0, 0xA7, 0x7A),

251 TO_ECC_64(0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73)));

252 #define NIST_P384_h ECC_ONE

253 #define NIST_P384_gZ ECC_ONE

254 #if USE_BN_ECC_DATA

255 const ECC_CURVE_DATA NIST_P384 = {

256 (bigNum)&NIST_P384_p, (bigNum)&NIST_P384_n, (bigNum)&NIST_P384_h,

257 (bigNum)&NIST_P384_a, (bigNum)&NIST_P384_b,

258 {(bigNum)&NIST_P384_gX, (bigNum)&NIST_P384_gY, (bigNum)&NIST_P384_gZ}};

259 #else

260 const ECC_CURVE_DATA NIST_P384 = {

261 &NIST_P384_p.b, &NIST_P384_n.b, &NIST_P384_h.b,

262 &NIST_P384_a.b, &NIST_P384_b.b,

263 {&NIST_P384_gX.b, &NIST_P384_gY.b, &NIST_P384_gZ.b}};

264

265 #endif // USE_BN_ECC_DATA

266

267 #endif // ECC_NIST_P384

268

269

270 #if ECC_NIST_P521

271 ECC_CONST(NIST_P521_p, 66, TO_ECC_528(

272 TO_ECC_16(0x01, 0xFF),

273 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

274 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

275 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

276 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

277 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

278 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

279 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

280 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)));

281 ECC_CONST(NIST_P521_a, 66, TO_ECC_528(

282 TO_ECC_16(0x01, 0xFF),

283 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

284 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

285 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

286 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

287 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

288 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

289 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

290 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC)));

291 ECC_CONST(NIST_P521_b, 66, TO_ECC_528(

292 TO_ECC_16(0x00, 0x51),

293 TO_ECC_64(0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F),

294 TO_ECC_64(0x92, 0x9A, 0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE),

295 TO_ECC_64(0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3, 0x15, 0xF3),

296 TO_ECC_64(0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1),

297 TO_ECC_64(0x56, 0x19, 0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B),

298 TO_ECC_64(0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1, 0xBF, 0x07),

299 TO_ECC_64(0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1),

300 TO_ECC_64(0xEF, 0x45, 0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00)));

301 ECC_CONST(NIST_P521_gX, 66, TO_ECC_528(

302 TO_ECC_16(0x00, 0xC6),

303 TO_ECC_64(0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD),

304 TO_ECC_64(0x9E, 0x3E, 0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42),

305 TO_ECC_64(0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F, 0xB5, 0x21),

306 TO_ECC_64(0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA),

307 TO_ECC_64(0xA1, 0x4B, 0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28),

308 TO_ECC_64(0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF, 0xA8, 0xDE),

309 TO_ECC_64(0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B),

310 TO_ECC_64(0xF9, 0x7E, 0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66)));

311 ECC_CONST(NIST_P521_gY, 66, TO_ECC_528(

312 TO_ECC_16(0x01, 0x18),

Trusted Platform Module Library Part 4: Supporting Routines

Page 716 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

313 TO_ECC_64(0x39, 0x29, 0x6A, 0x78, 0x9A, 0x3B, 0xC0, 0x04),

314 TO_ECC_64(0x5C, 0x8A, 0x5F, 0xB4, 0x2C, 0x7D, 0x1B, 0xD9),

315 TO_ECC_64(0x98, 0xF5, 0x44, 0x49, 0x57, 0x9B, 0x44, 0x68),

316 TO_ECC_64(0x17, 0xAF, 0xBD, 0x17, 0x27, 0x3E, 0x66, 0x2C),

317 TO_ECC_64(0x97, 0xEE, 0x72, 0x99, 0x5E, 0xF4, 0x26, 0x40),

318 TO_ECC_64(0xC5, 0x50, 0xB9, 0x01, 0x3F, 0xAD, 0x07, 0x61),

319 TO_ECC_64(0x35, 0x3C, 0x70, 0x86, 0xA2, 0x72, 0xC2, 0x40),

320 TO_ECC_64(0x88, 0xBE, 0x94, 0x76, 0x9F, 0xD1, 0x66, 0x50)));

321 ECC_CONST(NIST_P521_n, 66, TO_ECC_528(

322 TO_ECC_16(0x01, 0xFF),

323 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

324 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

325 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

326 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA),

327 TO_ECC_64(0x51, 0x86, 0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B),

328 TO_ECC_64(0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, 0xA5, 0xD0),

329 TO_ECC_64(0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE),

330 TO_ECC_64(0xBB, 0x6F, 0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09)));

331 #define NIST_P521_h ECC_ONE

332 #define NIST_P521_gZ ECC_ONE

333 #if USE_BN_ECC_DATA

334 const ECC_CURVE_DATA NIST_P521 = {

335 (bigNum)&NIST_P521_p, (bigNum)&NIST_P521_n, (bigNum)&NIST_P521_h,

336 (bigNum)&NIST_P521_a, (bigNum)&NIST_P521_b,

337 {(bigNum)&NIST_P521_gX, (bigNum)&NIST_P521_gY, (bigNum)&NIST_P521_gZ}};

338 #else

339 const ECC_CURVE_DATA NIST_P521 = {

340 &NIST_P521_p.b, &NIST_P521_n.b, &NIST_P521_h.b,

341 &NIST_P521_a.b, &NIST_P521_b.b,

342 {&NIST_P521_gX.b, &NIST_P521_gY.b, &NIST_P521_gZ.b}};

343

344 #endif // USE_BN_ECC_DATA

345

346 #endif // ECC_NIST_P521

347

348

349 #if ECC_BN_P256

350 ECC_CONST(BN_P256_p, 32, TO_ECC_256(

351 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0xF0, 0xCD),

352 TO_ECC_64(0x46, 0xE5, 0xF2, 0x5E, 0xEE, 0x71, 0xA4, 0x9F),

353 TO_ECC_64(0x0C, 0xDC, 0x65, 0xFB, 0x12, 0x98, 0x0A, 0x82),

354 TO_ECC_64(0xD3, 0x29, 0x2D, 0xDB, 0xAE, 0xD3, 0x30, 0x13)));

355 #define BN_P256_a ECC_ZERO

356 ECC_CONST(BN_P256_b, 1, TO_ECC_8(3));

357 #define BN_P256_gX ECC_ONE

358 ECC_CONST(BN_P256_gY, 1, TO_ECC_8(2));

359 ECC_CONST(BN_P256_n, 32, TO_ECC_256(

360 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0xF0, 0xCD),

361 TO_ECC_64(0x46, 0xE5, 0xF2, 0x5E, 0xEE, 0x71, 0xA4, 0x9E),

362 TO_ECC_64(0x0C, 0xDC, 0x65, 0xFB, 0x12, 0x99, 0x92, 0x1A),

363 TO_ECC_64(0xF6, 0x2D, 0x53, 0x6C, 0xD1, 0x0B, 0x50, 0x0D)));

364 #define BN_P256_h ECC_ONE

365 #define BN_P256_gZ ECC_ONE

366 #if USE_BN_ECC_DATA

367 const ECC_CURVE_DATA BN_P256 = {

368 (bigNum)&BN_P256_p, (bigNum)&BN_P256_n, (bigNum)&BN_P256_h,

369 (bigNum)&BN_P256_a, (bigNum)&BN_P256_b,

370 {(bigNum)&BN_P256_gX, (bigNum)&BN_P256_gY, (bigNum)&BN_P256_gZ}};

371 #else

372 const ECC_CURVE_DATA BN_P256 = {

373 &BN_P256_p.b, &BN_P256_n.b, &BN_P256_h.b,

374 &BN_P256_a.b, &BN_P256_b.b,

375 {&BN_P256_gX.b, &BN_P256_gY.b, &BN_P256_gZ.b}};

376

377 #endif // USE_BN_ECC_DATA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 717

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

378

379 #endif // ECC_BN_P256

380

381

382 #if ECC_BN_P638

383 ECC_CONST(BN_P638_p, 80, TO_ECC_640(

384 TO_ECC_64(0x23, 0xFF, 0xFF, 0xFD, 0xC0, 0x00, 0x00, 0x0D),

385 TO_ECC_64(0x7F, 0xFF, 0xFF, 0xB8, 0x00, 0x00, 0x01, 0xD3),

386 TO_ECC_64(0xFF, 0xFF, 0xF9, 0x42, 0xD0, 0x00, 0x16, 0x5E),

387 TO_ECC_64(0x3F, 0xFF, 0x94, 0x87, 0x00, 0x00, 0xD5, 0x2F),

388 TO_ECC_64(0xFF, 0xFD, 0xD0, 0xE0, 0x00, 0x08, 0xDE, 0x55),

389 TO_ECC_64(0xC0, 0x00, 0x86, 0x52, 0x00, 0x21, 0xE5, 0x5B),

390 TO_ECC_64(0xFF, 0xFF, 0xF5, 0x1F, 0xFF, 0xF4, 0xEB, 0x80),

391 TO_ECC_64(0x00, 0x00, 0x00, 0x4C, 0x80, 0x01, 0x5A, 0xCD),

392 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEC, 0xE0),

393 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x67)));

394 #define BN_P638_a ECC_ZERO

395 ECC_CONST(BN_P638_b, 2, TO_ECC_16(0x01,0x01));

396 ECC_CONST(BN_P638_gX, 80, TO_ECC_640(

397 TO_ECC_64(0x23, 0xFF, 0xFF, 0xFD, 0xC0, 0x00, 0x00, 0x0D),

398 TO_ECC_64(0x7F, 0xFF, 0xFF, 0xB8, 0x00, 0x00, 0x01, 0xD3),

399 TO_ECC_64(0xFF, 0xFF, 0xF9, 0x42, 0xD0, 0x00, 0x16, 0x5E),

400 TO_ECC_64(0x3F, 0xFF, 0x94, 0x87, 0x00, 0x00, 0xD5, 0x2F),

401 TO_ECC_64(0xFF, 0xFD, 0xD0, 0xE0, 0x00, 0x08, 0xDE, 0x55),

402 TO_ECC_64(0xC0, 0x00, 0x86, 0x52, 0x00, 0x21, 0xE5, 0x5B),

403 TO_ECC_64(0xFF, 0xFF, 0xF5, 0x1F, 0xFF, 0xF4, 0xEB, 0x80),

404 TO_ECC_64(0x00, 0x00, 0x00, 0x4C, 0x80, 0x01, 0x5A, 0xCD),

405 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEC, 0xE0),

406 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x66)));

407 ECC_CONST(BN_P638_gY, 1, TO_ECC_8(0x10));

408 ECC_CONST(BN_P638_n, 80, TO_ECC_640(

409 TO_ECC_64(0x23, 0xFF, 0xFF, 0xFD, 0xC0, 0x00, 0x00, 0x0D),

410 TO_ECC_64(0x7F, 0xFF, 0xFF, 0xB8, 0x00, 0x00, 0x01, 0xD3),

411 TO_ECC_64(0xFF, 0xFF, 0xF9, 0x42, 0xD0, 0x00, 0x16, 0x5E),

412 TO_ECC_64(0x3F, 0xFF, 0x94, 0x87, 0x00, 0x00, 0xD5, 0x2F),

413 TO_ECC_64(0xFF, 0xFD, 0xD0, 0xE0, 0x00, 0x08, 0xDE, 0x55),

414 TO_ECC_64(0x60, 0x00, 0x86, 0x55, 0x00, 0x21, 0xE5, 0x55),

415 TO_ECC_64(0xFF, 0xFF, 0xF5, 0x4F, 0xFF, 0xF4, 0xEA, 0xC0),

416 TO_ECC_64(0x00, 0x00, 0x00, 0x49, 0x80, 0x01, 0x54, 0xD9),

417 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xED, 0xA0),

418 TO_ECC_64(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61)));

419 #define BN_P638_h ECC_ONE

420 #define BN_P638_gZ ECC_ONE

421 #if USE_BN_ECC_DATA

422 const ECC_CURVE_DATA BN_P638 = {

423 (bigNum)&BN_P638_p, (bigNum)&BN_P638_n, (bigNum)&BN_P638_h,

424 (bigNum)&BN_P638_a, (bigNum)&BN_P638_b,

425 {(bigNum)&BN_P638_gX, (bigNum)&BN_P638_gY, (bigNum)&BN_P638_gZ}};

426 #else

427 const ECC_CURVE_DATA BN_P638 = {

428 &BN_P638_p.b, &BN_P638_n.b, &BN_P638_h.b,

429 &BN_P638_a.b, &BN_P638_b.b,

430 {&BN_P638_gX.b, &BN_P638_gY.b, &BN_P638_gZ.b}};

431

432 #endif // USE_BN_ECC_DATA

433

434 #endif // ECC_BN_P638

435

436

437 #if ECC_SM2_P256

438 ECC_CONST(SM2_P256_p, 32, TO_ECC_256(

439 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF),

440 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

441 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),

442 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)));

Trusted Platform Module Library Part 4: Supporting Routines

Page 718 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

443 ECC_CONST(SM2_P256_a, 32, TO_ECC_256(

444 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF),

445 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

446 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),

447 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC)));

448 ECC_CONST(SM2_P256_b, 32, TO_ECC_256(

449 TO_ECC_64(0x28, 0xE9, 0xFA, 0x9E, 0x9D, 0x9F, 0x5E, 0x34),

450 TO_ECC_64(0x4D, 0x5A, 0x9E, 0x4B, 0xCF, 0x65, 0x09, 0xA7),

451 TO_ECC_64(0xF3, 0x97, 0x89, 0xF5, 0x15, 0xAB, 0x8F, 0x92),

452 TO_ECC_64(0xDD, 0xBC, 0xBD, 0x41, 0x4D, 0x94, 0x0E, 0x93)));

453 ECC_CONST(SM2_P256_gX, 32, TO_ECC_256(

454 TO_ECC_64(0x32, 0xC4, 0xAE, 0x2C, 0x1F, 0x19, 0x81, 0x19),

455 TO_ECC_64(0x5F, 0x99, 0x04, 0x46, 0x6A, 0x39, 0xC9, 0x94),

456 TO_ECC_64(0x8F, 0xE3, 0x0B, 0xBF, 0xF2, 0x66, 0x0B, 0xE1),

457 TO_ECC_64(0x71, 0x5A, 0x45, 0x89, 0x33, 0x4C, 0x74, 0xC7)));

458 ECC_CONST(SM2_P256_gY, 32, TO_ECC_256(

459 TO_ECC_64(0xBC, 0x37, 0x36, 0xA2, 0xF4, 0xF6, 0x77, 0x9C),

460 TO_ECC_64(0x59, 0xBD, 0xCE, 0xE3, 0x6B, 0x69, 0x21, 0x53),

461 TO_ECC_64(0xD0, 0xA9, 0x87, 0x7C, 0xC6, 0x2A, 0x47, 0x40),

462 TO_ECC_64(0x02, 0xDF, 0x32, 0xE5, 0x21, 0x39, 0xF0, 0xA0)));

463 ECC_CONST(SM2_P256_n, 32, TO_ECC_256(

464 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF),

465 TO_ECC_64(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),

466 TO_ECC_64(0x72, 0x03, 0xDF, 0x6B, 0x21, 0xC6, 0x05, 0x2B),

467 TO_ECC_64(0x53, 0xBB, 0xF4, 0x09, 0x39, 0xD5, 0x41, 0x23)));

468 #define SM2_P256_h ECC_ONE

469 #define SM2_P256_gZ ECC_ONE

470 #if USE_BN_ECC_DATA

471 const ECC_CURVE_DATA SM2_P256 = {

472 (bigNum)&SM2_P256_p, (bigNum)&SM2_P256_n, (bigNum)&SM2_P256_h,

473 (bigNum)&SM2_P256_a, (bigNum)&SM2_P256_b,

474 {(bigNum)&SM2_P256_gX, (bigNum)&SM2_P256_gY, (bigNum)&SM2_P256_gZ}};

475 #else

476 const ECC_CURVE_DATA SM2_P256 = {

477 &SM2_P256_p.b, &SM2_P256_n.b, &SM2_P256_h.b,

478 &SM2_P256_a.b, &SM2_P256_b.b,

479 {&SM2_P256_gX.b, &SM2_P256_gY.b, &SM2_P256_gZ.b}};

480

481 #endif // USE_BN_ECC_DATA

482

483 #endif // ECC_SM2_P256

484

485

486 #define comma

487 const ECC_CURVE eccCurves[] = {

488 #if ECC_NIST_P192

489 comma

490 {TPM_ECC_NIST_P192,

491 192,

492 {ALG_KDF1_SP800_56A_VALUE, {{ALG_SHA256_VALUE}}},

493 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

494 &NIST_P192,

495 OID_ECC_NIST_P192

496 CURVE_NAME("NIST_P192")}

497 # undef comma

498 # define comma ,

499 #endif // ECC_NIST_P192

500 #if ECC_NIST_P224

501 comma

502 {TPM_ECC_NIST_P224,

503 224,

504 {ALG_KDF1_SP800_56A_VALUE, {{ALG_SHA256_VALUE}}},

505 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

506 &NIST_P224,

507 OID_ECC_NIST_P224

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 719

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

508 CURVE_NAME("NIST_P224")}

509 # undef comma

510 # define comma ,

511 #endif // ECC_NIST_P224

512 #if ECC_NIST_P256

513 comma

514 {TPM_ECC_NIST_P256,

515 256,

516 {ALG_KDF1_SP800_56A_VALUE, {{ALG_SHA256_VALUE}}},

517 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

518 &NIST_P256,

519 OID_ECC_NIST_P256

520 CURVE_NAME("NIST_P256")}

521 # undef comma

522 # define comma ,

523 #endif // ECC_NIST_P256

524 #if ECC_NIST_P384

525 comma

526 {TPM_ECC_NIST_P384,

527 384,

528 {ALG_KDF1_SP800_56A_VALUE, {{ALG_SHA384_VALUE}}},

529 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

530 &NIST_P384,

531 OID_ECC_NIST_P384

532 CURVE_NAME("NIST_P384")}

533 # undef comma

534 # define comma ,

535 #endif // ECC_NIST_P384

536 #if ECC_NIST_P521

537 comma

538 {TPM_ECC_NIST_P521,

539 521,

540 {ALG_KDF1_SP800_56A_VALUE, {{ALG_SHA512_VALUE}}},

541 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

542 &NIST_P521,

543 OID_ECC_NIST_P521

544 CURVE_NAME("NIST_P521")}

545 # undef comma

546 # define comma ,

547 #endif // ECC_NIST_P521

548 #if ECC_BN_P256

549 comma

550 {TPM_ECC_BN_P256,

551 256,

552 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

553 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

554 &BN_P256,

555 OID_ECC_BN_P256

556 CURVE_NAME("BN_P256")}

557 # undef comma

558 # define comma ,

559 #endif // ECC_BN_P256

560 #if ECC_BN_P638

561 comma

562 {TPM_ECC_BN_P638,

563 638,

564 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

565 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

566 &BN_P638,

567 OID_ECC_BN_P638

568 CURVE_NAME("BN_P638")}

569 # undef comma

570 # define comma ,

571 #endif // ECC_BN_P638

572 #if ECC_SM2_P256

573 comma

Trusted Platform Module Library Part 4: Supporting Routines

Page 720 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

574 {TPM_ECC_SM2_P256,

575 256,

576 {ALG_KDF1_SP800_56A_VALUE, {{ALG_SM3_256_VALUE}}},

577 {ALG_NULL_VALUE, {{ALG_NULL_VALUE}}},

578 &SM2_P256,

579 OID_ECC_SM2_P256

580 CURVE_NAME("SM2_P256")}

581 # undef comma

582 # define comma ,

583 #endif // ECC_SM2_P256

584 };

585 #endif // TPM_ALG_ECC

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 721

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.9 CryptDes.c

10.2.9.1 Introduction

This file contains the extra functions required for TDES.

10.2.9.2 Includes, Defines, and Typedefs

1 #include "Tpm.h"

2 #if ALG_TDES

3 #define DES_NUM_WEAK 64

4 const UINT64 DesWeakKeys[DES_NUM_WEAK] = {

5 0x0101010101010101ULL, 0xFEFEFEFEFEFEFEFEULL,

6 0xE0E0E0E0F1F1F1F1ULL, 0x1F1F1F1F0E0E0E0EULL,

7 0x011F011F010E010EULL, 0x1F011F010E010E01ULL,

8 0x01E001E001F101F1ULL, 0xE001E001F101F101ULL,

9 0x01FE01FE01FE01FEULL, 0xFE01FE01FE01FE01ULL,

10 0x1FE01FE00EF10EF1ULL, 0xE01FE01FF10EF10EULL,

11 0x1FFE1FFE0EFE0EFEULL, 0xFE1FFE1FFE0EFE0EULL,

12 0xE0FEE0FEF1FEF1FEULL, 0xFEE0FEE0FEF1FEF1ULL,

13 0x01011F1F01010E0EULL, 0x1F1F01010E0E0101ULL,

14 0xE0E01F1FF1F10E0EULL, 0x0101E0E00101F1F1ULL,

15 0x1F1FE0E00E0EF1F1ULL, 0xE0E0FEFEF1F1FEFEULL,

16 0x0101FEFE0101FEFEULL, 0x1F1FFEFE0E0EFEFEULL,

17 0xE0FE011FF1FE010EULL, 0x011F1F01010E0E01ULL,

18 0x1FE001FE0EF101FEULL, 0xE0FE1F01F1FE0E01ULL,

19 0x011FE0FE010EF1FEULL, 0x1FE0E01F0EF1F10EULL,

20 0xE0FEFEE0F1FEFEF1ULL, 0x011FFEE0010EFEF1ULL,

21 0x1FE0FE010EF1FE01ULL, 0xFE0101FEFE0101FEULL,

22 0x01E01FFE01F10EFEULL, 0x1FFE01E00EFE01F1ULL,

23 0xFE011FE0FE010EF1ULL, 0xFE01E01FFE01F10EULL,

24 0x1FFEE0010EFEF101ULL, 0xFE1F01E0FE0E01F1ULL,

25 0x01E0E00101F1F101ULL, 0x1FFEFE1F0EFEFE0EULL,

26 0xFE1FE001FE0EF101ULL, 0x01E0FE1F01F1FE0EULL,

27 0xE00101E0F10101F1ULL, 0xFE1F1FFEFE0E0EFEULL,

28 0x01FE1FE001FE0EF1ULL, 0xE0011FFEF1010EFEULL,

29 0xFEE0011FFEF1010EULL, 0x01FEE01F01FEF10EULL,

30 0xE001FE1FF101FE0EULL, 0xFEE01F01FEF10E01ULL,

31 0x01FEFE0101FEFE01ULL, 0xE01F01FEF10E01FEULL,

32 0xFEE0E0FEFEF1F1FEULL, 0x1F01011F0E01010EULL,

33 0xE01F1FE0F10E0EF1ULL, 0xFEFE0101FEFE0101ULL,

34 0x1F01E0FE0E01F1FEULL, 0xE01FFE01F10EFE01ULL,

35 0xFEFE1F1FFEFE0E0EULL, 0x1F01FEE00E01FEF1ULL,

36 0xE0E00101F1F10101ULL, 0xFEFEE0E0FEFEF1F1ULL};

37

38 //*** CryptSetOddByteParity()

39 // This function sets the per byte parity of a 64-bit value. The least-significant

40 // bit is of each byte is replaced with the odd parity of the other 7 bits in the

41 // byte. With odd parity, no byte will ever be 0x00.

42 UINT64

43 CryptSetOddByteParity(

44 UINT64 k

45)

46 {

47 #define PMASK 0x0101010101010101ULL

48 UINT64 out;

49 k |= PMASK; // set the parity bit

50 out = k;

51 k ^= k >> 4;

52 k ^= k >> 2;

53 k ^= k >> 1;

Trusted Platform Module Library Part 4: Supporting Routines

Page 722 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

54 k &= PMASK; // odd parity extracted

55 out ^= k; // out is now even parity because parity bit was already set

56 out ^= PMASK; // out is now even parity

57 return out;

58 }

10.2.9.2.1 CryptDesIsWeakKey()

Check to see if a DES key is on the list of weak, semi-weak, or possibly weak keys.

Return Value Meaning

TRUE(1) DES key is weak

FALSE(0) DES key is not weak

59 static BOOL

60 CryptDesIsWeakKey(

61 UINT64 k

62)

63 {

64 int i;

65 //

66 for(i = 0; i < DES_NUM_WEAK; i++)

67 {

68 if(k == DesWeakKeys[i])

69 return TRUE;

70 }

71 return FALSE;

72 }

10.2.9.2.2 CryptDesValidateKey()

Function to check to see if the input key is a valid DES key where the definition of valid is that none of the

elements are on the list of weak, semi-weak, or possibly weak keys; and that for two keys, K1!=K2, and

for three keys that K1!=K2 and K2!=K3.

73 BOOL

74 CryptDesValidateKey(

75 TPM2B_SYM_KEY *desKey // IN: key to validate

76)

77 {

78 UINT64 k[3];

79 int i;

80 int keys = (desKey->t.size + 7) / 8;

81 BYTE *pk = desKey->t.buffer;

82 BOOL ok;

83 //

84 // Note: 'keys' is the number of keys, not the maximum index for 'k'

85 ok = ((keys == 2) || (keys == 3)) && ((desKey->t.size % 8) == 0);

86 for(i = 0; ok && i < keys; pk += 8, i++)

87 {

88 k[i] = CryptSetOddByteParity(BYTE_ARRAY_TO_UINT64(pk));

89 ok = !CryptDesIsWeakKey(k[i]);

90 }

91 ok = ok && k[0] != k[1];

92 if(keys == 3)

93 ok = ok && k[1] != k[2];

94 return ok;

95 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 723

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.9.2.3 CryptGenerateKeyDes()

This function is used to create a DES key of the appropriate size. The key will have odd parity in the

bytes.

96 TPM_RC

97 CryptGenerateKeyDes(

98 TPMT_PUBLIC *publicArea, // IN/OUT: The public area template

99 // for the new key.

100 TPMT_SENSITIVE *sensitive, // OUT: sensitive area

101 RAND_STATE *rand // IN: the "entropy" source for

102)

103 {

104

105 // Assume that the publicArea key size has been validated and is a supported

106 // number of bits.

107 sensitive->sensitive.sym.t.size =

108 BITS_TO_BYTES(publicArea->parameters.symDetail.sym.keyBits.sym);

109 do

110 {

111 BYTE *pK = sensitive->sensitive.sym.t.buffer;

112 int i = (sensitive->sensitive.sym.t.size + 7) / 8;

113 // Use the random number generator to generate the required number of bits

114 if(DRBG_Generate(rand, pK, sensitive->sensitive.sym.t.size) == 0)

115 return TPM_RC_NO_RESULT;

116 for(; i > 0; pK += 8, i--)

117 {

118 UINT64 k = BYTE_ARRAY_TO_UINT64(pK);

119 k = CryptSetOddByteParity(k);

120 UINT64_TO_BYTE_ARRAY(k, pK);

121 }

122 } while(!CryptDesValidateKey(&sensitive->sensitive.sym));

123 return TPM_RC_SUCCESS;

124 }

125 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 724 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.10 CryptEccKeyExchange.c

10.2.10.1 Introduction

This file contains the functions that are used for the two-phase, ECC, key-exchange protocols

1 #include "Tpm.h"

2 #if CC_ZGen_2Phase == YES

10.2.10.2 Functions

3 #if ALG_ECMQV

10.2.10.2.1 avf1()

This function does the associated value computation required by MQV key exchange. Process:

 Convert xQ to an integer xqi using the convention specified in Appendix C.3.

 Calculate xqm = xqi mod 2^ceil(f/2) (where f = ceil(log2(n)).

 Calculate the associate value function avf(Q) = xqm + 2ceil(f / 2) Always returns TRUE(1).

4 static BOOL

5 avf1(

6 bigNum bnX, // IN/OUT: the reduced value

7 bigNum bnN // IN: the order of the curve

8)

9 {

10 // compute f = 2^(ceil(ceil(log2(n)) / 2))

11 int f = (BnSizeInBits(bnN) + 1) / 2;

12 // x' = 2^f + (x mod 2^f)

13 BnMaskBits(bnX, f); // This is mod 2*2^f but it doesn't matter because

14 // the next operation will SET the extra bit anyway

15 BnSetBit(bnX, f);

16 return TRUE;

17 }

10.2.10.2.2 C_2_2_MQV()

This function performs the key exchange defined in SP800-56A 6.1.1.4 Full MQV, C(2, 2, ECC MQV).

CAUTION: Implementation of this function may require use of essential claims in patents not owned by

TCG members.

Points QsB and QeB are required to be on the curve of inQsA. The function will fail, possibly

catastrophically, if this is not the case.

Error Returns Meaning

TPM_RC_NO_RESULT the value for dsA does not give a valid point on the curve

18 static TPM_RC

19 C_2_2_MQV(

20 TPMS_ECC_POINT *outZ, // OUT: the computed point

21 TPM_ECC_CURVE curveId, // IN: the curve for the computations

22 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key

23 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key

24 TPMS_ECC_POINT *QsB, // IN: static public party B key

25 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 725

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

26)

27 {

28 CURVE_INITIALIZED(E, curveId);

29 const ECC_CURVE_DATA *C;

30 POINT(pQeA);

31 POINT_INITIALIZED(pQeB, QeB);

32 POINT_INITIALIZED(pQsB, QsB);

33 ECC_NUM(bnTa);

34 ECC_INITIALIZED(bnDeA, deA);

35 ECC_INITIALIZED(bnDsA, dsA);

36 ECC_NUM(bnN);

37 ECC_NUM(bnXeB);

38 TPM_RC retVal;

39 //

40 // Parameter checks

41 if(E == NULL)

42 ERROR_RETURN(TPM_RC_VALUE);

43 pAssert(outZ != NULL && pQeB != NULL && pQsB != NULL && deA != NULL

44 && dsA != NULL);

45 C = AccessCurveData(E);

46 // Process:

47 // 1. implicitsigA = (de,A + avf(Qe,A)ds,A) mod n.

48 // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B).

49 // 3. If P = O, output an error indicator.

50 // 4. Z=xP, where xP is the x-coordinate of P.

51

52 // Compute the public ephemeral key pQeA = [de,A]G

53 if((retVal = BnPointMult(pQeA, CurveGetG(C), bnDeA, NULL, NULL, E))

54 != TPM_RC_SUCCESS)

55 goto Exit;

56

57 // 1. implicitsigA = (de,A + avf(Qe,A)ds,A) mod n.

58 // tA := (ds,A + de,A avf(Xe,A)) mod n (3)

59 // Compute 'tA' = ('deA' + 'dsA' avf('XeA')) mod n

60 // Ta = avf(XeA);

61 BnCopy(bnTa, pQeA->x);

62 avf1(bnTa, bnN);

63 // do Ta = ds,A * Ta mod n = dsA * avf(XeA) mod n

64 BnModMult(bnTa, bnDsA, bnTa, bnN);

65 // now Ta = deA + Ta mod n = deA + dsA * avf(XeA) mod n

66 BnAdd(bnTa, bnTa, bnDeA);

67 BnMod(bnTa, bnN);

68

69 // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B).

70 // Put this in because almost every case of h is == 1 so skip the call when

71 // not necessary.

72 if(!BnEqualWord(CurveGetCofactor(C), 1))

73 // Cofactor is not 1 so compute Ta := Ta * h mod n

74 BnModMult(bnTa, bnTa, CurveGetCofactor(C), CurveGetOrder(C));

75

76 // Now that 'tA' is (h * 'tA' mod n)

77 // 'outZ' = (tA)(Qe,B + avf(Qe,B)Qs,B).

78

79 // first, compute XeB = avf(XeB)

80 avf1(bnXeB, bnN);

81

82 // QsB := [XeB]QsB

83 BnPointMult(pQsB, pQsB, bnXeB, NULL, NULL, E);

84 BnEccAdd(pQeB, pQeB, pQsB, E);

85

86 // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity

87 // If the result is not the point at infinity, return QeB

88 BnPointMult(pQeB, pQeB, bnTa, NULL, NULL, E);

89 if(BnEqualZero(pQeB->z))

90 ERROR_RETURN(TPM_RC_NO_RESULT);

91 // Convert BIGNUM E to TPM2B E

Trusted Platform Module Library Part 4: Supporting Routines

Page 726 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

92 BnPointTo2B(outZ, pQeB, E);

93

94 Exit:

95 CURVE_FREE(E);

96 return retVal;

97 }

98 #endif // ALG_ECMQV

10.2.10.2.3 C_2_2_ECDH()

This function performs the two phase key exchange defined in SP800-56A, 6.1.1.2 Full Unified Model,

C(2, 2, ECC CDH).

99 static TPM_RC

100 C_2_2_ECDH(

101 TPMS_ECC_POINT *outZs, // OUT: Zs

102 TPMS_ECC_POINT *outZe, // OUT: Ze

103 TPM_ECC_CURVE curveId, // IN: the curve for the computations

104 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key

105 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key

106 TPMS_ECC_POINT *QsB, // IN: static public party B key

107 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key

108)

109 {

110 CURVE_INITIALIZED(E, curveId);

111 ECC_INITIALIZED(bnAs, dsA);

112 ECC_INITIALIZED(bnAe, deA);

113 POINT_INITIALIZED(ecBs, QsB);

114 POINT_INITIALIZED(ecBe, QeB);

115 POINT(ecZ);

116 TPM_RC retVal;

117 //

118 // Parameter checks

119 if(E == NULL)

120 ERROR_RETURN(TPM_RC_CURVE);

121 pAssert(outZs != NULL && dsA != NULL && deA != NULL && QsB != NULL

122 && QeB != NULL);

123

124 // Do the point multiply for the Zs value ([dsA]QsB)

125 retVal = BnPointMult(ecZ, ecBs, bnAs, NULL, NULL, E);

126 if(retVal == TPM_RC_SUCCESS)

127 {

128 // Convert the Zs value.

129 BnPointTo2B(outZs, ecZ, E);

130 // Do the point multiply for the Ze value ([deA]QeB)

131 retVal = BnPointMult(ecZ, ecBe, bnAe, NULL, NULL, E);

132 if(retVal == TPM_RC_SUCCESS)

133 BnPointTo2B(outZe, ecZ, E);

134 }

135 Exit:

136 CURVE_FREE(E);

137 return retVal;

138 }

10.2.10.2.4 CryptEcc2PhaseKeyExchange()

This function is the dispatch routine for the EC key exchange functions that use two ephemeral and two

static keys.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 727

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Error Returns Meaning

TPM_RC_SCHEME scheme is not defined

139 LIB_EXPORT TPM_RC

140 CryptEcc2PhaseKeyExchange(

141 TPMS_ECC_POINT *outZ1, // OUT: a computed point

142 TPMS_ECC_POINT *outZ2, // OUT: and optional second point

143 TPM_ECC_CURVE curveId, // IN: the curve for the computations

144 TPM_ALG_ID scheme, // IN: the key exchange scheme

145 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key

146 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key

147 TPMS_ECC_POINT *QsB, // IN: static public party B key

148 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key

149)

150 {

151 pAssert(outZ1 != NULL

152 && dsA != NULL && deA != NULL

153 && QsB != NULL && QeB != NULL);

154

155 // Initialize the output points so that they are empty until one of the

156 // functions decides otherwise

157 outZ1->x.b.size = 0;

158 outZ1->y.b.size = 0;

159 if(outZ2 != NULL)

160 {

161 outZ2->x.b.size = 0;

162 outZ2->y.b.size = 0;

163 }

164 switch(scheme)

165 {

166 case ALG_ECDH_VALUE:

167 return C_2_2_ECDH(outZ1, outZ2, curveId, dsA, deA, QsB, QeB);

168 break;

169 #if ALG_ECMQV

170 case ALG_ECMQV_VALUE:

171 return C_2_2_MQV(outZ1, curveId, dsA, deA, QsB, QeB);

172 break;

173 #endif

174 #if ALG_SM2

175 case ALG_SM2_VALUE:

176 return SM2KeyExchange(outZ1, curveId, dsA, deA, QsB, QeB);

177 break;

178 #endif

179 default:

180 return TPM_RC_SCHEME;

181 }

182 }

183 #if ALG_SM2

10.2.10.2.5 ComputeWForSM2()

Compute the value for w used by SM2

184 static UINT32

185 ComputeWForSM2(

186 bigCurve E

187)

188 {

189 // w := ceil(ceil(log2(n)) / 2) - 1

190 return (BnMsb(CurveGetOrder(AccessCurveData(E))) / 2 - 1);

191 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 728 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.10.2.6 avfSm2()

This function does the associated value computation required by SM2 key exchange. This is different

from the avf() in the international standards because it returns a value that is half the size of the value

returned by the standard avf(). For example, if n is 15, Ws (w in the standard) is 2 but the W here is 1.

This means that an input value of 14 (1110b) would return a value of 110b with the standard but 10b with

the scheme in SM2.

192 static bigNum

193 avfSm2(

194 bigNum bn, // IN/OUT: the reduced value

195 UINT32 w // IN: the value of w

196)

197 {

198 // a) set w := ceil(ceil(log2(n)) / 2) - 1

199 // b) set x' := 2^w + (x & (2^w - 1))

200 // This is just like the avf for MQV where x' = 2^w + (x mod 2^w)

201

202 BnMaskBits(bn, w); // as with avf1, this is too big by a factor of 2 but

203 // it doesn't matter because we SET the extra bit

204 // anyway

205 BnSetBit(bn, w);

206 return bn;

207 }

10.2.10.2.7 SM2KeyExchange()

This function performs the key exchange defined in SM2. The first step is to compute tA = (dsA + deA

avf(Xe,A)) mod n Then, compute the Z value from outZ = (h tA mod n) (QsA + [avf(QeB.x)](QeB)). The

function will compute the ephemeral public key from the ephemeral private key. All points are required to

be on the curve of inQsA. The function will fail catastrophically if this is not the case

Error Returns Meaning

TPM_RC_NO_RESULT the value for dsA does not give a valid point on the curve

208 LIB_EXPORT TPM_RC

209 SM2KeyExchange(

210 TPMS_ECC_POINT *outZ, // OUT: the computed point

211 TPM_ECC_CURVE curveId, // IN: the curve for the computations

212 TPM2B_ECC_PARAMETER *dsAIn, // IN: static private TPM key

213 TPM2B_ECC_PARAMETER *deAIn, // IN: ephemeral private TPM key

214 TPMS_ECC_POINT *QsBIn, // IN: static public party B key

215 TPMS_ECC_POINT *QeBIn // IN: ephemeral public party B key

216)

217 {

218 CURVE_INITIALIZED(E, curveId);

219 const ECC_CURVE_DATA *C;

220 ECC_INITIALIZED(dsA, dsAIn);

221 ECC_INITIALIZED(deA, deAIn);

222 POINT_INITIALIZED(QsB, QsBIn);

223 POINT_INITIALIZED(QeB, QeBIn);

224 BN_WORD_INITIALIZED(One, 1);

225 POINT(QeA);

226 ECC_NUM(XeB);

227 POINT(Z);

228 ECC_NUM(Ta);

229 UINT32 w;

230 TPM_RC retVal = TPM_RC_NO_RESULT;

231 //

232 // Parameter checks

233 if(E == NULL)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 729

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

234 ERROR_RETURN(TPM_RC_CURVE);

235 C = AccessCurveData(E);

236 pAssert(outZ != NULL && dsA != NULL && deA != NULL && QsB != NULL

237 && QeB != NULL);

238

239 // Compute the value for w

240 w = ComputeWForSM2(E);

241

242 // Compute the public ephemeral key pQeA = [de,A]G

243 if(!BnEccModMult(QeA, CurveGetG(C), deA, E))

244 goto Exit;

245

246 // tA := (ds,A + de,A avf(Xe,A)) mod n (3)

247 // Compute 'tA' = ('dsA' + 'deA' avf('XeA')) mod n

248 // Ta = avf(XeA);

249 // do Ta = de,A * Ta = deA * avf(XeA)

250 BnMult(Ta, deA, avfSm2(QeA->x, w));

251 // now Ta = dsA + Ta = dsA + deA * avf(XeA)

252 BnAdd(Ta, dsA, Ta);

253 BnMod(Ta, CurveGetOrder(C));

254

255 // outZ = [h tA mod n] (Qs,B + [avf(Xe,B)](Qe,B)) (4)

256 // Put this in because almost every case of h is == 1 so skip the call when

257 // not necessary.

258 if(!BnEqualWord(CurveGetCofactor(C), 1))

259 // Cofactor is not 1 so compute Ta := Ta * h mod n

260 BnModMult(Ta, Ta, CurveGetCofactor(C), CurveGetOrder(C));

261 // Now that 'tA' is (h * 'tA' mod n)

262 // 'outZ' = ['tA'](QsB + [avf(QeB.x)](QeB)).

263 BnCopy(XeB, QeB->x);

264 if(!BnEccModMult2(Z, QsB, One, QeB, avfSm2(XeB, w), E))

265 goto Exit;

266 // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity

267 if(!BnEccModMult(Z, Z, Ta, E))

268 goto Exit;

269 // Convert BIGNUM E to TPM2B E

270 BnPointTo2B(outZ, Z, E);

271 retVal = TPM_RC_SUCCESS;

272 Exit:

273 CURVE_FREE(E);

274 return retVal;

275 }

276 #endif

277 #endif // CC_ZGen_2Phase

Trusted Platform Module Library Part 4: Supporting Routines

Page 730 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.11 CryptEccMain.c

10.2.11.1 Includes and Defines

1 #include "Tpm.h"

2 #if ALG_ECC

This version requires that the new format for ECC data be used

3 #if !USE_BN_ECC_DATA

4 #error "Need to SET USE_BN_ECC_DATA to YES in Implementaion.h"

5 #endif

10.2.11.2 Functions

6 #if SIMULATION

7 void

8 EccSimulationEnd(

9 void

10)

11 {

12 #if SIMULATION

13 // put things to be printed at the end of the simulation here

14 #endif

15 }

16 #endif // SIMULATION

10.2.11.2.1 CryptEccInit()

This function is called at _TPM_Init()

17 BOOL

18 CryptEccInit(

19 void

20)

21 {

22 return TRUE;

23 }

10.2.11.2.2 CryptEccStartup()

This function is called at TPM2_Startup().

24 BOOL

25 CryptEccStartup(

26 void

27)

28 {

29 return TRUE;

30 }

10.2.11.2.3 ClearPoint2B(generic

Initialize the size values of a TPMS_ECC_POINT structure.

31 void

32 ClearPoint2B(

33 TPMS_ECC_POINT *p // IN: the point

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 731

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

34)

35 {

36 if(p != NULL)

37 {

38 p->x.t.size = 0;

39 p->y.t.size = 0;

40 }

41 }

10.2.11.2.4 CryptEccGetParametersByCurveId()

This function returns a pointer to the curve data that is associated with the indicated curveId. If there is no

curve with the indicated ID, the function returns NULL. This function is in this module so that it can be

called by GetCurve() data.

Return Value Meaning

NULL curve with the indicated TPM_ECC_CURVE is not implemented

NULL pointer to the curve data

42 LIB_EXPORT const ECC_CURVE *

43 CryptEccGetParametersByCurveId(

44 TPM_ECC_CURVE curveId // IN: the curveID

45)

46 {

47 int i;

48 for(i = 0; i < ECC_CURVE_COUNT; i++)

49 {

50 if(eccCurves[i].curveId == curveId)

51 return &eccCurves[i];

52 }

53 return NULL;

54 }

10.2.11.2.5 CryptEccGetKeySizeForCurve()

This function returns the key size in bits of the indicated curve.

55 LIB_EXPORT UINT16

56 CryptEccGetKeySizeForCurve(

57 TPM_ECC_CURVE curveId // IN: the curve

58)

59 {

60 const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId);

61 UINT16 keySizeInBits;

62 //

63 keySizeInBits = (curve != NULL) ? curve->keySizeBits : 0;

64 return keySizeInBits;

65 }

10.2.11.2.6 GetCurveData()

This function returns the a pointer for the parameter data associated with a curve.

66 const ECC_CURVE_DATA *

67 GetCurveData(

68 TPM_ECC_CURVE curveId // IN: the curveID

69)

70 {

71 const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId);

Trusted Platform Module Library Part 4: Supporting Routines

Page 732 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

72 return (curve != NULL) ? curve->curveData : NULL;

73 }

10.2.11.2.7 CryptEccGetOID()

74 const BYTE *

75 CryptEccGetOID(

76 TPM_ECC_CURVE curveId

77)

78 {

79 const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId);

80 return (curve != NULL) ? curve->OID : NULL;

81 }

10.2.11.2.8 CryptEccGetCurveByIndex()

This function returns the number of the i-th implemented curve. The normal use would be to call this

function with i starting at 0. When the i is greater than or equal to the number of implemented curves,

TPM_ECC_NONE is returned.

82 LIB_EXPORT TPM_ECC_CURVE

83 CryptEccGetCurveByIndex(

84 UINT16 i

85)

86 {

87 if(i >= ECC_CURVE_COUNT)

88 return TPM_ECC_NONE;

89 return eccCurves[i].curveId;

90 }

10.2.11.2.9 CryptEccGetParameter()

This function returns an ECC curve parameter. The parameter is selected by a single character

designator from the set of "PNABXYH".

Return Value Meaning

TRUE(1) curve exists and parameter returned

FALSE(0) curve does not exist or parameter selector

91 LIB_EXPORT BOOL

92 CryptEccGetParameter(

93 TPM2B_ECC_PARAMETER *out, // OUT: place to put parameter

94 char p, // IN: the parameter selector

95 TPM_ECC_CURVE curveId // IN: the curve id

96)

97 {

98 const ECC_CURVE_DATA *curve = GetCurveData(curveId);

99 bigConst parameter = NULL;

100

101 if(curve != NULL)

102 {

103 switch(p)

104 {

105 case 'p':

106 parameter = CurveGetPrime(curve);

107 break;

108 case 'n':

109 parameter = CurveGetOrder(curve);

110 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 733

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

111 case 'a':

112 parameter = CurveGet_a(curve);

113 break;

114 case 'b':

115 parameter = CurveGet_b(curve);

116 break;

117 case 'x':

118 parameter = CurveGetGx(curve);

119 break;

120 case 'y':

121 parameter = CurveGetGy(curve);

122 break;

123 case 'h':

124 parameter = CurveGetCofactor(curve);

125 break;

126 default:

127 FAIL(FATAL_ERROR_INTERNAL);

128 break;

129 }

130 }

131 // If not debugging and we get here with parameter still NULL, had better

132 // not try to convert so just return FALSE instead.

133 return (parameter != NULL) ? BnTo2B(parameter, &out->b, 0) : 0;

134 }

10.2.11.2.10 CryptCapGetECCCurve()

This function returns the list of implemented ECC curves.

Return Value Meaning

YES if no more ECC curve is available

NO if there are more ECC curves not reported

135 TPMI_YES_NO

136 CryptCapGetECCCurve(

137 TPM_ECC_CURVE curveID, // IN: the starting ECC curve

138 UINT32 maxCount, // IN: count of returned curves

139 TPML_ECC_CURVE *curveList // OUT: ECC curve list

140)

141 {

142 TPMI_YES_NO more = NO;

143 UINT16 i;

144 UINT32 count = ECC_CURVE_COUNT;

145 TPM_ECC_CURVE curve;

146

147 // Initialize output property list

148 curveList->count = 0;

149

150 // The maximum count of curves we may return is MAX_ECC_CURVES

151 if(maxCount > MAX_ECC_CURVES) maxCount = MAX_ECC_CURVES;

152

153 // Scan the eccCurveValues array

154 for(i = 0; i < count; i++)

155 {

156 curve = CryptEccGetCurveByIndex(i);

157 // If curveID is less than the starting curveID, skip it

158 if(curve < curveID)

159 continue;

160 if(curveList->count < maxCount)

161 {

162 // If we have not filled up the return list, add more curves to

163 // it

Trusted Platform Module Library Part 4: Supporting Routines

Page 734 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

164 curveList->eccCurves[curveList->count] = curve;

165 curveList->count++;

166 }

167 else

168 {

169 // If the return list is full but we still have curves

170 // available, report this and stop iterating

171 more = YES;

172 break;

173 }

174 }

175 return more;

176 }

10.2.11.2.11 CryptGetCurveSignScheme()

This function will return a pointer to the scheme of the curve.

177 const TPMT_ECC_SCHEME *

178 CryptGetCurveSignScheme(

179 TPM_ECC_CURVE curveId // IN: The curve selector

180)

181 {

182 const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId);

183

184 if(curve != NULL)

185 return &(curve->sign);

186 else

187 return NULL;

188 }

10.2.11.2.12 CryptGenerateR()

This function computes the commit random value for a split signing scheme.

If c is NULL, it indicates that r is being generated for TPM2_Commit(). If c is not NULL, the TPM will

validate that the gr.commitArray bit associated with the input value of c is SET. If not, the TPM returns

FALSE and no r value is generated.

Return Value Meaning

TRUE(1) r value computed

FALSE(0) no r value computed

189 BOOL

190 CryptGenerateR(

191 TPM2B_ECC_PARAMETER *r, // OUT: the generated random value

192 UINT16 *c, // IN/OUT: count value.

193 TPMI_ECC_CURVE curveID, // IN: the curve for the value

194 TPM2B_NAME *name // IN: optional name of a key to

195 // associate with 'r'

196)

197 {

198 // This holds the marshaled g_commitCounter.

199 TPM2B_TYPE(8B, 8);

200 TPM2B_8B cntr = {{8,{0}}};

201 UINT32 iterations;

202 TPM2B_ECC_PARAMETER n;

203 UINT64 currentCount = gr.commitCounter;

204 UINT16 t1;

205 //

206 if(!CryptEccGetParameter(&n, 'n', curveID))

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 735

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

207 return FALSE;

208

209 // If this is the commit phase, use the current value of the commit counter

210 if(c != NULL)

211 {

212 // if the array bit is not set, can't use the value.

213 if(!TEST_BIT((*c & COMMIT_INDEX_MASK), gr.commitArray))

214 return FALSE;

215

216 // If it is the sign phase, figure out what the counter value was

217 // when the commitment was made.

218 //

219 // When gr.commitArray has less than 64K bits, the extra

220 // bits of 'c' are used as a check to make sure that the

221 // signing operation is not using an out of range count value

222 t1 = (UINT16)currentCount;

223

224 // If the lower bits of c are greater or equal to the lower bits of t1

225 // then the upper bits of t1 must be one more than the upper bits

226 // of c

227 if((*c & COMMIT_INDEX_MASK) >= (t1 & COMMIT_INDEX_MASK))

228 // Since the counter is behind, reduce the current count

229 currentCount = currentCount - (COMMIT_INDEX_MASK + 1);

230

231 t1 = (UINT16)currentCount;

232 if((t1 & ~COMMIT_INDEX_MASK) != (*c & ~COMMIT_INDEX_MASK))

233 return FALSE;

234 // set the counter to the value that was

235 // present when the commitment was made

236 currentCount = (currentCount & 0xffffffffffff0000) | *c;

237 }

238 // Marshal the count value to a TPM2B buffer for the KDF

239 cntr.t.size = sizeof(currentCount);

240 UINT64_TO_BYTE_ARRAY(currentCount, cntr.t.buffer);

241

242 // Now can do the KDF to create the random value for the signing operation

243 // During the creation process, we may generate an r that does not meet the

244 // requirements of the random value.

245 // want to generate a new r.

246 r->t.size = n.t.size;

247

248 for(iterations = 1; iterations < 1000000;)

249 {

250 int i;

251 CryptKDFa(CONTEXT_INTEGRITY_HASH_ALG, &gr.commitNonce.b, COMMIT_STRING,

252 &name->b, &cntr.b, n.t.size * 8, r->t.buffer, &iterations, FALSE);

253

254 // "random" value must be less than the prime

255 if(UnsignedCompareB(r->b.size, r->b.buffer, n.t.size, n.t.buffer) >= 0)

256 continue;

257

258 // in this implementation it is required that at least bit

259 // in the upper half of the number be set

260 for(i = n.t.size / 2; i >= 0; i--)

261 if(r->b.buffer[i] != 0)

262 return TRUE;

263 }

264 return FALSE;

265 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 736 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.11.2.13 CryptCommit()

This function is called when the count value is committed. The gr.commitArray value associated with the

current count value is SET and g_commitCounter is incremented. The low-order 16 bits of old value of the

counter is returned.

266 UINT16

267 CryptCommit(

268 void

269)

270 {

271 UINT16 oldCount = (UINT16)gr.commitCounter;

272 gr.commitCounter++;

273 SET_BIT(oldCount & COMMIT_INDEX_MASK, gr.commitArray);

274 return oldCount;

275 }

10.2.11.2.14 CryptEndCommit()

This function is called when the signing operation using the committed value is completed. It clears the

gr.commitArray bit associated with the count value so that it can't be used again.

276 void

277 CryptEndCommit(

278 UINT16 c // IN: the counter value of the commitment

279)

280 {

281 ClearBit((c & COMMIT_INDEX_MASK), gr.commitArray, sizeof(gr.commitArray));

282 }

10.2.11.2.15 CryptEccGetParameters()

This function returns the ECC parameter details of the given curve.

Return Value Meaning

TRUE(1) success

FALSE(0) unsupported ECC curve ID

283 BOOL

284 CryptEccGetParameters(

285 TPM_ECC_CURVE curveId, // IN: ECC curve ID

286 TPMS_ALGORITHM_DETAIL_ECC *parameters // OUT: ECC parameters

287)

288 {

289 const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId);

290 const ECC_CURVE_DATA *data;

291 BOOL found = curve != NULL;

292

293 if(found)

294 {

295 data = curve->curveData;

296 parameters->curveID = curve->curveId;

297 parameters->keySize = curve->keySizeBits;

298 parameters->kdf = curve->kdf;

299 parameters->sign = curve->sign;

300 // BnTo2B(data->prime, ¶meters->p.b, 0);

301 BnTo2B(data->prime, ¶meters->p.b, parameters->p.t.size);

302 BnTo2B(data->a, ¶meters->a.b, 0);

303 BnTo2B(data->b, ¶meters->b.b, 0);

304 BnTo2B(data->base.x, ¶meters->gX.b, parameters->p.t.size);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 737

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

305 BnTo2B(data->base.y, ¶meters->gY.b, parameters->p.t.size);

306 // BnTo2B(data->base.x, ¶meters->gX.b, 0);

307 // BnTo2B(data->base.y, ¶meters->gY.b, 0);

308 BnTo2B(data->order, ¶meters->n.b, 0);

309 BnTo2B(data->h, ¶meters->h.b, 0);

310 }

311 return found;

312 }

10.2.11.2.16 BnGetCurvePrime()

This function is used to get just the prime modulus associated with a curve.

313 const bignum_t *

314 BnGetCurvePrime(

315 TPM_ECC_CURVE curveId

316)

317 {

318 const ECC_CURVE_DATA *C = GetCurveData(curveId);

319 return (C != NULL) ? CurveGetPrime(C) : NULL;

320 }

10.2.11.2.17 BnGetCurveOrder()

This function is used to get just the curve order

321 const bignum_t *

322 BnGetCurveOrder(

323 TPM_ECC_CURVE curveId

324)

325 {

326 const ECC_CURVE_DATA *C = GetCurveData(curveId);

327 return (C != NULL) ? CurveGetOrder(C) : NULL;

328 }

10.2.11.2.18 BnIsOnCurve()

This function checks if a point is on the curve.

329 BOOL

330 BnIsOnCurve(

331 pointConst Q,

332 const ECC_CURVE_DATA *C

333)

334 {

335 BN_VAR(right, (MAX_ECC_KEY_BITS * 3));

336 BN_VAR(left, (MAX_ECC_KEY_BITS * 2));

337 bigConst prime = CurveGetPrime(C);

338 //

339 // Show that point is on the curve y^2 = x^3 + ax + b;

340 // Or y^2 = x(x^2 + a) + b

341 // y^2

342 BnMult(left, Q->y, Q->y);

343

344 BnMod(left, prime);

345 // x^2

346 BnMult(right, Q->x, Q->x);

347

348 // x^2 + a

349 BnAdd(right, right, CurveGet_a(C));

350

Trusted Platform Module Library Part 4: Supporting Routines

Page 738 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

351 // BnMod(right, CurveGetPrime(C));

352 // x(x^2 + a)

353 BnMult(right, right, Q->x);

354

355 // x(x^2 + a) + b

356 BnAdd(right, right, CurveGet_b(C));

357

358 BnMod(right, prime);

359 if(BnUnsignedCmp(left, right) == 0)

360 return TRUE;

361 else

362 return FALSE;

363 }

10.2.11.2.19 BnIsValidPrivateEcc()

Checks that 0 < x < q

364 BOOL

365 BnIsValidPrivateEcc(

366 bigConst x, // IN: private key to check

367 bigCurve E // IN: the curve to check

368)

369 {

370 BOOL retVal;

371 retVal = (!BnEqualZero(x)

372 && (BnUnsignedCmp(x, CurveGetOrder(AccessCurveData(E))) < 0));

373 return retVal;

374 }

375 LIB_EXPORT BOOL

376 CryptEccIsValidPrivateKey(

377 TPM2B_ECC_PARAMETER *d,

378 TPM_ECC_CURVE curveId

379)

380 {

381 BN_INITIALIZED(bnD, MAX_ECC_PARAMETER_BYTES * 8, d);

382 return !BnEqualZero(bnD) && (BnUnsignedCmp(bnD, BnGetCurveOrder(curveId)) < 0);

383 }

10.2.11.2.20 BnPointMul()

This function does a point multiply of the form R = [d]S + [u]Q where the parameters are bigNum values.

If S is NULL and d is not NULL, then it computes R = [d]G + [u]Q or just R = [d]G if u and Q are NULL. If

skipChecks is TRUE, then the function will not verify that the inputs are correct for the domain. This would

be the case when the values were created by the CryptoEngine() code. It will return

TPM_RC_NO_RESULT if the resulting point is the point at infinity.

Error Returns Meaning

TPM_RC_NO_RESULT result of multiplication is a point at infinity

TPM_RC_ECC_POINT S or Q is not on the curve

TPM_RC_VALUE d or u is not < n

384 TPM_RC

385 BnPointMult(

386 bigPoint R, // OUT: computed point

387 pointConst S, // IN: optional point to multiply by 'd'

388 bigConst d, // IN: scalar for [d]S or [d]G

389 pointConst Q, // IN: optional second point

390 bigConst u, // IN: optional second scalar

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 739

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

391 bigCurve E // IN: curve parameters

392)

393 {

394 BOOL OK;

395 //

396 TEST(TPM_ALG_ECDH);

397

398 // Need one scalar

399 OK = (d != NULL || u != NULL);

400

401 // If S is present, then d has to be present. If S is not

402 // present, then d may or may not be present

403 OK = OK && (((S == NULL) == (d == NULL)) || (d != NULL));

404

405 // either both u and Q have to be provided or neither can be provided (don't

406 // know what to do if only one is provided.

407 OK = OK && ((u == NULL) == (Q == NULL));

408

409 OK = OK && (E != NULL);

410 if(!OK)

411 return TPM_RC_VALUE;

412

413 OK = (S == NULL) || BnIsOnCurve(S, AccessCurveData(E));

414 OK = OK && ((Q == NULL) || BnIsOnCurve(Q, AccessCurveData(E)));

415 if(!OK)

416 return TPM_RC_ECC_POINT;

417

418 if((d != NULL) && (S == NULL))

419 S = CurveGetG(AccessCurveData(E));

420 // If only one scalar, don't need Shamir's trick

421 if((d == NULL) || (u == NULL))

422 {

423 if(d == NULL)

424 OK = BnEccModMult(R, Q, u, E);

425 else

426 OK = BnEccModMult(R, S, d, E);

427 }

428 else

429 {

430 OK = BnEccModMult2(R, S, d, Q, u, E);

431 }

432 return (OK ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT);

433 }

10.2.11.2.21 BnEccGetPrivate()

This function gets random values that are the size of the key plus 64 bits. The value is reduced (mod (q -

1)) and incremented by 1 (q is the order of the curve. This produces a value (d) such that 1 <= d < q. This

is the method of FIPS 186-4 Section B.4.1 "Key Pair Generation Using Extra Random Bits".

Return Value Meaning

TRUE(1) success

FALSE(0) failure generating private key

434 BOOL

435 BnEccGetPrivate(

436 bigNum dOut, // OUT: the qualified random value

437 const ECC_CURVE_DATA *C, // IN: curve for which the private key

438 // needs to be appropriate

439 RAND_STATE *rand // IN: state for DRBG

440)

441 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 740 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

442 bigConst order = CurveGetOrder(C);

443 BOOL OK;

444 UINT32 orderBits = BnSizeInBits(order);

445 UINT32 orderBytes = BITS_TO_BYTES(orderBits);

446 BN_VAR(bnExtraBits, MAX_ECC_KEY_BITS + 64);

447 BN_VAR(nMinus1, MAX_ECC_KEY_BITS);

448 //

449 OK = BnGetRandomBits(bnExtraBits, (orderBytes * 8) + 64, rand);

450 OK = OK && BnSubWord(nMinus1, order, 1);

451 OK = OK && BnMod(bnExtraBits, nMinus1);

452 OK = OK && BnAddWord(dOut, bnExtraBits, 1);

453 return OK && !g_inFailureMode;

454 }

10.2.11.2.22 BnEccGenerateKeyPair()

This function gets a private scalar from the source of random bits and does the point multiply to get the

public key.

455 BOOL

456 BnEccGenerateKeyPair(

457 bigNum bnD, // OUT: private scalar

458 bn_point_t *ecQ, // OUT: public point

459 bigCurve E, // IN: curve for the point

460 RAND_STATE *rand // IN: DRBG state to use

461)

462 {

463 BOOL OK = FALSE;

464 // Get a private scalar

465 OK = BnEccGetPrivate(bnD, AccessCurveData(E), rand);

466

467 // Do a point multiply

468 OK = OK && BnEccModMult(ecQ, NULL, bnD, E);

469 if(!OK)

470 BnSetWord(ecQ->z, 0);

471 else

472 BnSetWord(ecQ->z, 1);

473 return OK;

474 }

10.2.11.2.23 CryptEccNewKeyPair

This function creates an ephemeral ECC. It is ephemeral in that is expected that the private part of the

key will be discarded

475 LIB_EXPORT TPM_RC

476 CryptEccNewKeyPair(

477 TPMS_ECC_POINT *Qout, // OUT: the public point

478 TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar

479 TPM_ECC_CURVE curveId // IN: the curve for the key

480)

481 {

482 CURVE_INITIALIZED(E, curveId);

483 POINT(ecQ);

484 ECC_NUM(bnD);

485 BOOL OK;

486

487 if(E == NULL)

488 return TPM_RC_CURVE;

489

490 TEST(TPM_ALG_ECDH);

491 OK = BnEccGenerateKeyPair(bnD, ecQ, E, NULL);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 741

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

492 if(OK)

493 {

494 BnPointTo2B(Qout, ecQ, E);

495 BnTo2B(bnD, &dOut->b, Qout->x.t.size);

496 }

497 else

498 {

499 Qout->x.t.size = Qout->y.t.size = dOut->t.size = 0;

500 }

501 CURVE_FREE(E);

502 return OK ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT;

503 }

10.2.11.2.24 CryptEccPointMultiply()

This function computes R := [dIn]G + [uIn]QIn. Where dIn and uIn are scalars, G and QIn are points on

the specified curve and G is the default generator of the curve.

The xOut and yOut parameters are optional and may be set to NULL if not used.

It is not necessary to provide uIn if QIn is specified but one of uIn and dIn must be provided. If dIn and

QIn are specified but uIn is not provided, then R = [dIn]QIn.

If the multiply produces the point at infinity, the TPM_RC_NO_RESULT is returned.

The sizes of xOut and yOut' will be set to be the size of the degree of the curve

It is a fatal error if dIn and uIn are both unspecified (NULL) or if Qin or Rout is unspecified.

Error Returns Meaning

TPM_RC_ECC_POINT the point Pin or Qin is not on the curve

TPM_RC_NO_RESULT the product point is at infinity

TPM_RC_CURVE bad curve

TPM_RC_VALUE dIn or uIn out of range

504 LIB_EXPORT TPM_RC

505 CryptEccPointMultiply(

506 TPMS_ECC_POINT *Rout, // OUT: the product point R

507 TPM_ECC_CURVE curveId, // IN: the curve to use

508 TPMS_ECC_POINT *Pin, // IN: first point (can be null)

509 TPM2B_ECC_PARAMETER *dIn, // IN: scalar value for [dIn]Qin

510 // the Pin

511 TPMS_ECC_POINT *Qin, // IN: point Q

512 TPM2B_ECC_PARAMETER *uIn // IN: scalar value for the multiplier

513 // of Q

514)

515 {

516 CURVE_INITIALIZED(E, curveId);

517 POINT_INITIALIZED(ecP, Pin);

518 ECC_INITIALIZED(bnD, dIn); // If dIn is null, then bnD is null

519 ECC_INITIALIZED(bnU, uIn);

520 POINT_INITIALIZED(ecQ, Qin);

521 POINT(ecR);

522 TPM_RC retVal;

523 //

524 retVal = BnPointMult(ecR, ecP, bnD, ecQ, bnU, E);

525

526 if(retVal == TPM_RC_SUCCESS)

527 BnPointTo2B(Rout, ecR, E);

528 else

529 ClearPoint2B(Rout);

530 CURVE_FREE(E);

Trusted Platform Module Library Part 4: Supporting Routines

Page 742 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

531 return retVal;

532 }

10.2.11.2.25 CryptEccIsPointOnCurve()

This function is used to test if a point is on a defined curve. It does this by checking that y^2 mod p = x^3

+ a*x + b mod p.

It is a fatal error if Q is not specified (is NULL).

Return Value Meaning

TRUE(1) point is on curve

FALSE(0) point is not on curve or curve is not supported

533 LIB_EXPORT BOOL

534 CryptEccIsPointOnCurve(

535 TPM_ECC_CURVE curveId, // IN: the curve selector

536 TPMS_ECC_POINT *Qin // IN: the point.

537)

538 {

539 const ECC_CURVE_DATA *C = GetCurveData(curveId);

540 POINT_INITIALIZED(ecQ, Qin);

541 BOOL OK;

542 //

543 pAssert(Qin != NULL);

544 OK = (C != NULL && (BnIsOnCurve(ecQ, C)));

545 return OK;

546 }

10.2.11.2.26 CryptEccGenerateKey()

This function generates an ECC key pair based on the input parameters. This routine uses KDFa to

produce candidate numbers. The method is according to FIPS 186-3, section B.1.2 "Key Pair Generation

by Testing Candidates." According to the method in FIPS 186-3, the resulting private value d should be 1

<= d < n where n is the order of the base point.

It is a fatal error if Qout, dOut, is not provided (is NULL).

If the curve is not supported If seed is not provided, then a random number will be used for the key

Error Returns Meaning

TPM_RC_CURVE curve is not supported

TPM_RC_NO_RESULT could not verify key with signature (FIPS only)

547 LIB_EXPORT TPM_RC

548 CryptEccGenerateKey(

549 TPMT_PUBLIC *publicArea, // IN/OUT: The public area template for

550 // the new key. The public key

551 // area will be replaced computed

552 // ECC public key

553 TPMT_SENSITIVE *sensitive, // OUT: the sensitive area will be

554 // updated to contain the private

555 // ECC key and the symmetric

556 // encryption key

557 RAND_STATE *rand // IN: if not NULL, the deterministic

558 // RNG state

559)

560 {

561 CURVE_INITIALIZED(E, publicArea->parameters.eccDetail.curveID);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 743

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

562 ECC_NUM(bnD);

563 POINT(ecQ);

564 BOOL OK;

565 TPM_RC retVal;

566 //

567 TEST(TPM_ALG_ECDSA); // ECDSA is used to verify each key

568

569 // Validate parameters

570 if(E == NULL)

571 ERROR_RETURN(TPM_RC_CURVE);

572

573 publicArea->unique.ecc.x.t.size = 0;

574 publicArea->unique.ecc.y.t.size = 0;

575 sensitive->sensitive.ecc.t.size = 0;

576

577 OK = BnEccGenerateKeyPair(bnD, ecQ, E, rand);

578 if(OK)

579 {

580 BnPointTo2B(&publicArea->unique.ecc, ecQ, E);

581 BnTo2B(bnD, &sensitive->sensitive.ecc.b, publicArea->unique.ecc.x.t.size);

582 }

583 #if FIPS_COMPLIANT

584 // See if PWCT is required

585 if(OK && IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

586 {

587 ECC_NUM(bnT);

588 ECC_NUM(bnS);

589 TPM2B_DIGEST digest;

590 //

591 TEST(TPM_ALG_ECDSA);

592 digest.t.size = MIN(sensitive->sensitive.ecc.t.size, sizeof(digest.t.buffer));

593 // Get a random value to sign using the built in DRBG state

594 DRBG_Generate(NULL, digest.t.buffer, digest.t.size);

595 if(g_inFailureMode)

596 return TPM_RC_FAILURE;

597 BnSignEcdsa(bnT, bnS, E, bnD, &digest, NULL);

598 // and make sure that we can validate the signature

599 OK = BnValidateSignatureEcdsa(bnT, bnS, E, ecQ, &digest) == TPM_RC_SUCCESS;

600 }

601 #endif

602 retVal = (OK) ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT;

603 Exit:

604 CURVE_FREE(E);

605 return retVal;

606 }

607 #endif // ALG_ECC

Trusted Platform Module Library Part 4: Supporting Routines

Page 744 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.12 CryptEccSignature.c

10.2.12.1 Includes and Defines

1 #include "Tpm.h"

2 #include "CryptEccSignature_fp.h"

3 #if ALG_ECC

10.2.12.2 Utility Functions

10.2.12.2.1 EcdsaDigest()

Function to adjust the digest so that it is no larger than the order of the curve. This is used for ECDSA

sign and verification.

4 static bigNum

5 EcdsaDigest(

6 bigNum bnD, // OUT: the adjusted digest

7 const TPM2B_DIGEST *digest, // IN: digest to adjust

8 bigConst max // IN: value that indicates the maximum

9 // number of bits in the results

10)

11 {

12 int bitsInMax = BnSizeInBits(max);

13 int shift;

14 //

15 if(digest == NULL)

16 BnSetWord(bnD, 0);

17 else

18 {

19 BnFromBytes(bnD, digest->t.buffer,

20 (NUMBYTES)MIN(digest->t.size, BITS_TO_BYTES(bitsInMax)));

21 shift = BnSizeInBits(bnD) - bitsInMax;

22 if(shift > 0)

23 BnShiftRight(bnD, bnD, shift);

24 }

25 return bnD;

26 }

10.2.12.2.2 BnSchnorrSign()

This contains the Schnorr signature computation. It is used by both ECDSA and Schnorr signing. The

result is computed as: [s = k + r * d (mod n)] where

 s is the signature

 k is a random value

 r is the value to sign

 d is the private EC key

 n is the order of the curve

Error Returns Meaning

TPM_RC_NO_RESULT the result of the operation was zero or r (mod n) is zero

27 static TPM_RC

28 BnSchnorrSign(

29 bigNum bnS, // OUT: 's' component of the signature

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 745

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

30 bigConst bnK, // IN: a random value

31 bigNum bnR, // IN: the signature 'r' value

32 bigConst bnD, // IN: the private key

33 bigConst bnN // IN: the order of the curve

34)

35 {

36 // Need a local temp value to store the intermediate computation because product

37 // size can be larger than will fit in bnS.

38 BN_VAR(bnT1, MAX_ECC_PARAMETER_BYTES * 2 * 8);

39 //

40 // Reduce bnR without changing the input value

41 BnDiv(NULL, bnT1, bnR, bnN);

42 if(BnEqualZero(bnT1))

43 return TPM_RC_NO_RESULT;

44 // compute s = (k + r * d)(mod n)

45 // r * d

46 BnMult(bnT1, bnT1, bnD);

47 // k * r * d

48 BnAdd(bnT1, bnT1, bnK);

49 // k + r * d (mod n)

50 BnDiv(NULL, bnS, bnT1, bnN);

51 return (BnEqualZero(bnS)) ? TPM_RC_NO_RESULT : TPM_RC_SUCCESS;

52 }

10.2.12.3 Signing Functions

10.2.12.3.1 BnSignEcdsa()

This function implements the ECDSA signing algorithm. The method is described in the comments below.

53 TPM_RC

54 BnSignEcdsa(

55 bigNum bnR, // OUT: 'r' component of the signature

56 bigNum bnS, // OUT: 's' component of the signature

57 bigCurve E, // IN: the curve used in the signature

58 // process

59 bigNum bnD, // IN: private signing key

60 const TPM2B_DIGEST *digest, // IN: the digest to sign

61 RAND_STATE *rand // IN: used in debug of signing

62)

63 {

64 ECC_NUM(bnK);

65 ECC_NUM(bnIk);

66 BN_VAR(bnE, MAX(MAX_ECC_KEY_BYTES, MAX_DIGEST_SIZE) * 8);

67 POINT(ecR);

68 bigConst order = CurveGetOrder(AccessCurveData(E));

69 TPM_RC retVal = TPM_RC_SUCCESS;

70 INT32 tries = 10;

71 BOOL OK = FALSE;

72 //

73 pAssert(digest != NULL);

74 // The algorithm as described in "Suite B Implementer's Guide to FIPS

75 // 186-3(ECDSA)"

76 // 1. Use one of the routines in Appendix A.2 to generate (k, k^-1), a

77 // per-message secret number and its inverse modulo n. Since n is prime,

78 // the output will be invalid only if there is a failure in the RBG.

79 // 2. Compute the elliptic curve point R = [k]G = (xR, yR) using EC scalar

80 // multiplication (see [Routines]), where G is the base point included in

81 // the set of domain parameters.

82 // 3. Compute r = xR mod n. If r = 0, then return to Step 1. 1.

83 // 4. Use the selected hash function to compute H = Hash(M).

84 // 5. Convert the bit string H to an integer e as described in Appendix B.2.

85 // 6. Compute s = (k^-1 * (e + d * r)) mod q. If s = 0, return to Step 1.2.

Trusted Platform Module Library Part 4: Supporting Routines

Page 746 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

86 // 7. Return (r, s).

87 // In the code below, q is n (that it, the order of the curve is p)

88

89 do // This implements the loop at step 6. If s is zero, start over.

90 {

91 for(; tries > 0; tries--)

92 {

93 // Step 1 and 2 -- generate an ephemeral key and the modular inverse

94 // of the private key.

95 if(!BnEccGenerateKeyPair(bnK, ecR, E, rand))

96 continue;

97 // x coordinate is mod p. Make it mod q

98 BnMod(ecR->x, order);

99 // Make sure that it is not zero;

100 if(BnEqualZero(ecR->x))

101 continue;

102 // write the modular reduced version of r as part of the signature

103 BnCopy(bnR, ecR->x);

104 // Make sure that a modular inverse exists and try again if not

105 OK = (BnModInverse(bnIk, bnK, order));

106 if(OK)

107 break;

108 }

109 if(!OK)

110 goto Exit;

111

112 EcdsaDigest(bnE, digest, order);

113

114 // now have inverse of K (bnIk), e (bnE), r (bnR), d (bnD) and

115 // CurveGetOrder(E)

116 // Compute s = k^-1 (e + r*d)(mod q)

117 // first do s = r*d mod q

118 BnModMult(bnS, bnR, bnD, order);

119 // s = e + s = e + r * d

120 BnAdd(bnS, bnE, bnS);

121 // s = k^(-1)s (mod n) = k^(-1)(e + r * d)(mod n)

122 BnModMult(bnS, bnIk, bnS, order);

123

124 // If S is zero, try again

125 } while(BnEqualZero(bnS));

126 Exit:

127 return retVal;

128 }

129 #if ALG_ECDAA

10.2.12.3.2 BnSignEcdaa()

This function performs s = r + T * d mod q where

 'r is a random, or pseudo-random value created in the commit phase

 nonceK is a TPM-generated, random value 0 < nonceK < n

 T is mod q of Hash(nonceK || digest), and

 d is a private key.

The signature is the tuple (nonceK, s)

Regrettably, the parameters in this function kind of collide with the parameter names used in

ECSCHNORR making for a lot of confusion.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 747

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Error Returns Meaning

TPM_RC_SCHEME unsupported hash algorithm

TPM_RC_NO_RESULT cannot get values from random number generator

130 static TPM_RC

131 BnSignEcdaa(

132 TPM2B_ECC_PARAMETER *nonceK, // OUT: 'nonce' component of the signature

133 bigNum bnS, // OUT: 's' component of the signature

134 bigCurve E, // IN: the curve used in signing

135 bigNum bnD, // IN: the private key

136 const TPM2B_DIGEST *digest, // IN: the value to sign (mod 'q')

137 TPMT_ECC_SCHEME *scheme, // IN: signing scheme (contains the

138 // commit count value).

139 OBJECT *eccKey, // IN: The signing key

140 RAND_STATE *rand // IN: a random number state

141)

142 {

143 TPM_RC retVal;

144 TPM2B_ECC_PARAMETER r;

145 HASH_STATE state;

146 TPM2B_DIGEST T;

147 BN_MAX(bnT);

148 //

149 NOT_REFERENCED(rand);

150 if(!CryptGenerateR(&r, &scheme->details.ecdaa.count,

151 eccKey->publicArea.parameters.eccDetail.curveID,

152 &eccKey->name))

153 retVal = TPM_RC_VALUE;

154 else

155 {

156 // This allocation is here because 'r' doesn't have a value until

157 // CrypGenerateR() is done.

158 ECC_INITIALIZED(bnR, &r);

159 do

160 {

161 // generate nonceK such that 0 < nonceK < n

162 // use bnT as a temp.

163 if(!BnEccGetPrivate(bnT, AccessCurveData(E), rand))

164 {

165 retVal = TPM_RC_NO_RESULT;

166 break;

167 }

168 BnTo2B(bnT, &nonceK->b, 0);

169

170 T.t.size = CryptHashStart(&state, scheme->details.ecdaa.hashAlg);

171 if(T.t.size == 0)

172 {

173 retVal = TPM_RC_SCHEME;

174 }

175 else

176 {

177 CryptDigestUpdate2B(&state, &nonceK->b);

178 CryptDigestUpdate2B(&state, &digest->b);

179 CryptHashEnd2B(&state, &T.b);

180 BnFrom2B(bnT, &T.b);

181 // Watch out for the name collisions in this call!!

182 retVal = BnSchnorrSign(bnS, bnR, bnT, bnD,

183 AccessCurveData(E)->order);

184 }

185 } while(retVal == TPM_RC_NO_RESULT);

186 // Because the rule is that internal state is not modified if the command

187 // fails, only end the commit if the command succeeds.

188 // NOTE that if the result of the Schnorr computation was zero

Trusted Platform Module Library Part 4: Supporting Routines

Page 748 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

189 // it will probably not be worthwhile to run the same command again because

190 // the result will still be zero. This means that the Commit command will

191 // need to be run again to get a new commit value for the signature.

192 if(retVal == TPM_RC_SUCCESS)

193 CryptEndCommit(scheme->details.ecdaa.count);

194 }

195 return retVal;

196 }

197 #endif // ALG_ECDAA

198 #if ALG_ECSCHNORR

10.2.12.3.3 SchnorrReduce()

Function to reduce a hash result if it's magnitude is too large. The size of number is set so that it has no

more bytes of significance than reference value. If the resulting number can have more bits of

significance than reference.

199 static void

200 SchnorrReduce(

201 TPM2B *number, // IN/OUT: Value to reduce

202 bigConst reference // IN: the reference value

203)

204 {

205 UINT16 maxBytes = (UINT16)BITS_TO_BYTES(BnSizeInBits(reference));

206 if(number->size > maxBytes)

207 number->size = maxBytes;

208 }

10.2.12.3.4 SchnorrEcc()

This function is used to perform a modified Schnorr signature.

This function will generate a random value k and compute

 (xR, yR) = [k]G

 r = Hash(xR || P)(mod q)

 rT = truncated r

 s= k + rT * ds (mod q)

 return the tuple rT, s

Error Returns Meaning

TPM_RC_NO_RESULT failure in the Schnorr sign process

TPM_RC_SCHEME hashAlg can't produce zero-length digest

209 static TPM_RC

210 BnSignEcSchnorr(

211 bigNum bnR, // OUT: 'r' component of the signature

212 bigNum bnS, // OUT: 's' component of the signature

213 bigCurve E, // IN: the curve used in signing

214 bigNum bnD, // IN: the signing key

215 const TPM2B_DIGEST *digest, // IN: the digest to sign

216 TPM_ALG_ID hashAlg, // IN: signing scheme (contains a hash)

217 RAND_STATE *rand // IN: non-NULL when testing

218)

219 {

220 HASH_STATE hashState;

221 UINT16 digestSize = CryptHashGetDigestSize(hashAlg);

222 TPM2B_TYPE(T, MAX(MAX_DIGEST_SIZE, MAX_ECC_KEY_BYTES));

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 749

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

223 TPM2B_T T2b;

224 TPM2B *e = &T2b.b;

225 TPM_RC retVal = TPM_RC_NO_RESULT;

226 const ECC_CURVE_DATA *C;

227 bigConst order;

228 bigConst prime;

229 ECC_NUM(bnK);

230 POINT(ecR);

231 //

232 // Parameter checks

233 if(E == NULL)

234 ERROR_RETURN(TPM_RC_VALUE);

235 C = AccessCurveData(E);

236 order = CurveGetOrder(C);

237 prime = CurveGetOrder(C);

238

239 // If the digest does not produce a hash, then null the signature and return

240 // a failure.

241 if(digestSize == 0)

242 {

243 BnSetWord(bnR, 0);

244 BnSetWord(bnS, 0);

245 ERROR_RETURN(TPM_RC_SCHEME);

246 }

247 do

248 {

249 // Generate a random key pair

250 if(!BnEccGenerateKeyPair(bnK, ecR, E, rand))

251 break;

252 // Convert R.x to a string

253 BnTo2B(ecR->x, e, (NUMBYTES)BITS_TO_BYTES(BnSizeInBits(prime)));

254

255 // f) compute r = Hash(e || P) (mod n)

256 CryptHashStart(&hashState, hashAlg);

257 CryptDigestUpdate2B(&hashState, e);

258 CryptDigestUpdate2B(&hashState, &digest->b);

259 e->size = CryptHashEnd(&hashState, digestSize, e->buffer);

260 // Reduce the hash size if it is larger than the curve order

261 SchnorrReduce(e, order);

262 // Convert hash to number

263 BnFrom2B(bnR, e);

264 // Do the Schnorr computation

265 retVal = BnSchnorrSign(bnS, bnK, bnR, bnD, CurveGetOrder(C));

266 } while(retVal == TPM_RC_NO_RESULT);

267 Exit:

268 return retVal;

269 }

270 #endif // ALG_ECSCHNORR

271 #if ALG_SM2

272 #ifdef _SM2_SIGN_DEBUG

10.2.12.3.5 BnHexEqual()

This function compares a bignum value to a hex string.

Return Value Meaning

TRUE(1) values equal

FALSE(0) values not equal

273 static BOOL

274 BnHexEqual(

275 bigNum bn, //IN: big number value

Trusted Platform Module Library Part 4: Supporting Routines

Page 750 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

276 const char *c //IN: character string number

277)

278 {

279 ECC_NUM(bnC);

280 BnFromHex(bnC, c);

281 return (BnUnsignedCmp(bn, bnC) == 0);

282 }

283 #endif // _SM2_SIGN_DEBUG

10.2.12.3.6 BnSignEcSm2()

This function signs a digest using the method defined in SM2 Part 2. The method in the standard will add

a header to the message to be signed that is a hash of the values that define the key. This then hashed

with the message to produce a digest (e). This function signs e.

Error Returns Meaning

TPM_RC_VALUE bad curve

284 static TPM_RC

285 BnSignEcSm2(

286 bigNum bnR, // OUT: 'r' component of the signature

287 bigNum bnS, // OUT: 's' component of the signature

288 bigCurve E, // IN: the curve used in signing

289 bigNum bnD, // IN: the private key

290 const TPM2B_DIGEST *digest, // IN: the digest to sign

291 RAND_STATE *rand // IN: random number generator (mostly for

292 // debug)

293)

294 {

295 BN_MAX_INITIALIZED(bnE, digest); // Don't know how big digest might be

296 ECC_NUM(bnN);

297 ECC_NUM(bnK);

298 ECC_NUM(bnT); // temp

299 POINT(Q1);

300 bigConst order = (E != NULL)

301 ? CurveGetOrder(AccessCurveData(E)) : NULL;

302 //

303 #ifdef _SM2_SIGN_DEBUG

304 BnFromHex(bnE, "B524F552CD82B8B028476E005C377FB1"

305 "9A87E6FC682D48BB5D42E3D9B9EFFE76");

306 BnFromHex(bnD, "128B2FA8BD433C6C068C8D803DFF7979"

307 "2A519A55171B1B650C23661D15897263");

308 #endif

309 // A3: Use random number generator to generate random number 1 <= k <= n-1;

310 // NOTE: Ax: numbers are from the SM2 standard

311 loop:

312 {

313 // Get a random number 0 < k < n

314 BnGenerateRandomInRange(bnK, order, rand);

315 #ifdef _SM2_SIGN_DEBUG

316 BnFromHex(bnK, "6CB28D99385C175C94F94E934817663F"

317 "C176D925DD72B727260DBAAE1FB2F96F");

318 #endif

319 // A4: Figure out the point of elliptic curve (x1, y1)=[k]G, and according

320 // to details specified in 4.2.7 in Part 1 of this document, transform the

321 // data type of x1 into an integer;

322 if(!BnEccModMult(Q1, NULL, bnK, E))

323 goto loop;

324 // A5: Figure out 'r' = ('e' + 'x1') mod 'n',

325 BnAdd(bnR, bnE, Q1->x);

326 BnMod(bnR, order);

327 #ifdef _SM2_SIGN_DEBUG

328 pAssert(BnHexEqual(bnR, "40F1EC59F793D9F49E09DCEF49130D41"

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 751

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

329 "94F79FB1EED2CAA55BACDB49C4E755D1"));

330 #endif

331 // if r=0 or r+k=n, return to A3;

332 if(BnEqualZero(bnR))

333 goto loop;

334 BnAdd(bnT, bnK, bnR);

335 if(BnUnsignedCmp(bnT, bnN) == 0)

336 goto loop;

337 // A6: Figure out s = ((1 + dA)^-1 (k - r dA)) mod n,

338 // if s=0, return to A3;

339 // compute t = (1+dA)^-1

340 BnAddWord(bnT, bnD, 1);

341 BnModInverse(bnT, bnT, order);

342 #ifdef _SM2_SIGN_DEBUG

343 pAssert(BnHexEqual(bnT, "79BFCF3052C80DA7B939E0C6914A18CB"

344 "B2D96D8555256E83122743A7D4F5F956"));

345 #endif

346 // compute s = t * (k - r * dA) mod n

347 BnModMult(bnS, bnR, bnD, order);

348 // k - r * dA mod n = k + n - ((r * dA) mod n)

349 BnSub(bnS, order, bnS);

350 BnAdd(bnS, bnK, bnS);

351 BnModMult(bnS, bnS, bnT, order);

352 #ifdef _SM2_SIGN_DEBUG

353 pAssert(BnHexEqual(bnS, "6FC6DAC32C5D5CF10C77DFB20F7C2EB6"

354 "67A457872FB09EC56327A67EC7DEEBE7"));

355 #endif

356 if(BnEqualZero(bnS))

357 goto loop;

358 }

359 // A7: According to details specified in 4.2.1 in Part 1 of this document,

360 // transform the data type of r, s into bit strings, signature of message M

361 // is (r, s).

362 // This is handled by the common return code

363 #ifdef _SM2_SIGN_DEBUG

364 pAssert(BnHexEqual(bnR, "40F1EC59F793D9F49E09DCEF49130D41"

365 "94F79FB1EED2CAA55BACDB49C4E755D1"));

366 pAssert(BnHexEqual(bnS, "6FC6DAC32C5D5CF10C77DFB20F7C2EB6"

367 "67A457872FB09EC56327A67EC7DEEBE7"));

368 #endif

369 return TPM_RC_SUCCESS;

370 }

371 #endif // ALG_SM2

10.2.12.3.7 CryptEccSign()

This function is the dispatch function for the various ECC-based signing schemes. There is a bit of

ugliness to the parameter passing. In order to test this, we sometime would like to use a deterministic

RNG so that we can get the same signatures during testing. The easiest way to do this for most schemes

is to pass in a deterministic RNG and let it return canned values during testing. There is a competing

need for a canned parameter to use in ECDAA. To accommodate both needs with minimal fuss, a special

type of RAND_STATE is defined to carry the address of the commit value. The setup and handling of this

is not very different for the caller than what was in previous versions of the code.

Error Returns Meaning

TPM_RC_SCHEME scheme is not supported

372 LIB_EXPORT TPM_RC

373 CryptEccSign(

374 TPMT_SIGNATURE *signature, // OUT: signature

375 OBJECT *signKey, // IN: ECC key to sign the hash

376 const TPM2B_DIGEST *digest, // IN: digest to sign

Trusted Platform Module Library Part 4: Supporting Routines

Page 752 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

377 TPMT_ECC_SCHEME *scheme, // IN: signing scheme

378 RAND_STATE *rand

379)

380 {

381 CURVE_INITIALIZED(E, signKey->publicArea.parameters.eccDetail.curveID);

382 ECC_INITIALIZED(bnD, &signKey->sensitive.sensitive.ecc.b);

383 ECC_NUM(bnR);

384 ECC_NUM(bnS);

385 const ECC_CURVE_DATA *C;

386 TPM_RC retVal = TPM_RC_SCHEME;

387 //

388 NOT_REFERENCED(scheme);

389 if(E == NULL)

390 ERROR_RETURN(TPM_RC_VALUE);

391 C = AccessCurveData(E);

392 signature->signature.ecdaa.signatureR.t.size

393 = sizeof(signature->signature.ecdaa.signatureR.t.buffer);

394 signature->signature.ecdaa.signatureS.t.size

395 = sizeof(signature->signature.ecdaa.signatureS.t.buffer);

396 TEST(signature->sigAlg);

397 switch(signature->sigAlg)

398 {

399 case ALG_ECDSA_VALUE:

400 retVal = BnSignEcdsa(bnR, bnS, E, bnD, digest, rand);

401 break;

402 #if ALG_ECDAA

403 case ALG_ECDAA_VALUE:

404 retVal = BnSignEcdaa(&signature->signature.ecdaa.signatureR, bnS, E,

405 bnD, digest, scheme, signKey, rand);

406 bnR = NULL;

407 break;

408 #endif

409 #if ALG_ECSCHNORR

410 case ALG_ECSCHNORR_VALUE:

411 retVal = BnSignEcSchnorr(bnR, bnS, E, bnD, digest,

412 signature->signature.ecschnorr.hash,

413 rand);

414 break;

415 #endif

416 #if ALG_SM2

417 case ALG_SM2_VALUE:

418 retVal = BnSignEcSm2(bnR, bnS, E, bnD, digest, rand);

419 break;

420 #endif

421 default:

422 break;

423 }

424 // If signature generation worked, convert the results.

425 if(retVal == TPM_RC_SUCCESS)

426 {

427 NUMBYTES orderBytes =

428 (NUMBYTES)BITS_TO_BYTES(BnSizeInBits(CurveGetOrder(C)));

429 if(bnR != NULL)

430 BnTo2B(bnR, &signature->signature.ecdaa.signatureR.b, orderBytes);

431 if(bnS != NULL)

432 BnTo2B(bnS, &signature->signature.ecdaa.signatureS.b, orderBytes);

433 }

434 Exit:

435 CURVE_FREE(E);

436 return retVal;

437 }

438 #if ALG_ECDSA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 753

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.12.3.8 BnValidateSignatureEcdsa()

This function validates an ECDSA signature. rIn and sIn should have been checked to make sure that

they are in the range 0 < v < n

Error Returns Meaning

TPM_RC_SIGNATURE signature not valid

439 TPM_RC

440 BnValidateSignatureEcdsa(

441 bigNum bnR, // IN: 'r' component of the signature

442 bigNum bnS, // IN: 's' component of the signature

443 bigCurve E, // IN: the curve used in the signature

444 // process

445 bn_point_t *ecQ, // IN: the public point of the key

446 const TPM2B_DIGEST *digest // IN: the digest that was signed

447)

448 {

449 // Make sure that the allocation for the digest is big enough for a maximum

450 // digest

451 BN_VAR(bnE, MAX(MAX_ECC_KEY_BYTES, MAX_DIGEST_SIZE) * 8);

452 POINT(ecR);

453 ECC_NUM(bnU1);

454 ECC_NUM(bnU2);

455 ECC_NUM(bnW);

456 bigConst order = CurveGetOrder(AccessCurveData(E));

457 TPM_RC retVal = TPM_RC_SIGNATURE;

458 //

459 // Get adjusted digest

460 EcdsaDigest(bnE, digest, order);

461 // 1. If r and s are not both integers in the interval [1, n - 1], output

462 // INVALID.

463 // bnR and bnS were validated by the caller

464 // 2. Use the selected hash function to compute H0 = Hash(M0).

465 // This is an input parameter

466 // 3. Convert the bit string H0 to an integer e as described in Appendix B.2.

467 // Done at entry

468 // 4. Compute w = (s')^-1 mod n, using the routine in Appendix B.1.

469 if(!BnModInverse(bnW, bnS, order))

470 goto Exit;

471 // 5. Compute u1 = (e' * w) mod n, and compute u2 = (r' * w) mod n.

472 BnModMult(bnU1, bnE, bnW, order);

473 BnModMult(bnU2, bnR, bnW, order);

474 // 6. Compute the elliptic curve point R = (xR, yR) = u1G+u2Q, using EC

475 // scalar multiplication and EC addition (see [Routines]). If R is equal to

476 // the point at infinity O, output INVALID.

477 if(BnPointMult(ecR, CurveGetG(AccessCurveData(E)), bnU1, ecQ, bnU2, E)

478 != TPM_RC_SUCCESS)

479 goto Exit;

480 // 7. Compute v = Rx mod n.

481 BnMod(ecR->x, order);

482 // 8. Compare v and r0. If v = r0, output VALID; otherwise, output INVALID

483 if(BnUnsignedCmp(ecR->x, bnR) != 0)

484 goto Exit;

485

486 retVal = TPM_RC_SUCCESS;

487 Exit:

488 return retVal;

489 }

490 #endif // ALG_ECDSA

491 #if ALG_SM2

Trusted Platform Module Library Part 4: Supporting Routines

Page 754 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.12.3.9 BnValidateSignatureEcSm2()

This function is used to validate an SM2 signature.

Error Returns Meaning

TPM_RC_SIGNATURE signature not valid

492 static TPM_RC

493 BnValidateSignatureEcSm2(

494 bigNum bnR, // IN: 'r' component of the signature

495 bigNum bnS, // IN: 's' component of the signature

496 bigCurve E, // IN: the curve used in the signature

497 // process

498 bigPoint ecQ, // IN: the public point of the key

499 const TPM2B_DIGEST *digest // IN: the digest that was signed

500)

501 {

502 POINT(P);

503 ECC_NUM(bnRp);

504 ECC_NUM(bnT);

505 BN_MAX_INITIALIZED(bnE, digest);

506 BOOL OK;

507 bigConst order = CurveGetOrder(AccessCurveData(E));

508

509 #ifdef _SM2_SIGN_DEBUG

510 // Make sure that the input signature is the test signature

511 pAssert(BnHexEqual(bnR,

512 "40F1EC59F793D9F49E09DCEF49130D41"

513 "94F79FB1EED2CAA55BACDB49C4E755D1"));

514 pAssert(BnHexEqual(bnS,

515 "6FC6DAC32C5D5CF10C77DFB20F7C2EB6"

516 "67A457872FB09EC56327A67EC7DEEBE7"));

517 #endif

518 // b) compute t := (r + s) mod n

519 BnAdd(bnT, bnR, bnS);

520 BnMod(bnT, order);

521 #ifdef _SM2_SIGN_DEBUG

522 pAssert(BnHexEqual(bnT,

523 "2B75F07ED7ECE7CCC1C8986B991F441A"

524 "D324D6D619FE06DD63ED32E0C997C801"));

525 #endif

526 // c) verify that t > 0

527 OK = !BnEqualZero(bnT);

528 if(!OK)

529 // set T to a value that should allow rest of the computations to run

530 // without trouble

531 BnCopy(bnT, bnS);

532 // d) compute (x, y) := [s]G + [t]Q

533 OK = BnEccModMult2(P, NULL, bnS, ecQ, bnT, E);

534 #ifdef _SM2_SIGN_DEBUG

535 pAssert(OK && BnHexEqual(P->x,

536 "110FCDA57615705D5E7B9324AC4B856D"

537 "23E6D9188B2AE47759514657CE25D112"));

538 #endif

539 // e) compute r' := (e + x) mod n (the x coordinate is in bnT)

540 OK = OK && BnAdd(bnRp, bnE, P->x);

541 OK = OK && BnMod(bnRp, order);

542

543 // f) verify that r' = r

544 OK = OK && (BnUnsignedCmp(bnR, bnRp) == 0);

545

546 if(!OK)

547 return TPM_RC_SIGNATURE;

548 else

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 755

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

549 return TPM_RC_SUCCESS;

550 }

551 #endif // ALG_SM2

552 #if ALG_ECSCHNORR

10.2.12.3.10 BnValidateSignatureEcSchnorr()

This function is used to validate an EC Schnorr signature.

Error Returns Meaning

TPM_RC_SIGNATURE signature not valid

553 static TPM_RC

554 BnValidateSignatureEcSchnorr(

555 bigNum bnR, // IN: 'r' component of the signature

556 bigNum bnS, // IN: 's' component of the signature

557 TPM_ALG_ID hashAlg, // IN: hash algorithm of the signature

558 bigCurve E, // IN: the curve used in the signature

559 // process

560 bigPoint ecQ, // IN: the public point of the key

561 const TPM2B_DIGEST *digest // IN: the digest that was signed

562)

563 {

564 BN_MAX(bnRn);

565 POINT(ecE);

566 BN_MAX(bnEx);

567 const ECC_CURVE_DATA *C = AccessCurveData(E);

568 bigConst order = CurveGetOrder(C);

569 UINT16 digestSize = CryptHashGetDigestSize(hashAlg);

570 HASH_STATE hashState;

571 TPM2B_TYPE(BUFFER, MAX(MAX_ECC_PARAMETER_BYTES, MAX_DIGEST_SIZE));

572 TPM2B_BUFFER Ex2 = {{sizeof(Ex2.t.buffer),{ 0 }}};

573 BOOL OK;

574 //

575 // E = [s]G - [r]Q

576 BnMod(bnR, order);

577 // Make -r = n - r

578 BnSub(bnRn, order, bnR);

579 // E = [s]G + [-r]Q

580 OK = BnPointMult(ecE, CurveGetG(C), bnS, ecQ, bnRn, E) == TPM_RC_SUCCESS;

581 // // reduce the x portion of E mod q

582 // OK = OK && BnMod(ecE->x, order);

583 // Convert to byte string

584 OK = OK && BnTo2B(ecE->x, &Ex2.b,

585 (NUMBYTES)(BITS_TO_BYTES(BnSizeInBits(order))));

586 if(OK)

587 {

588 // Ex = h(pE.x || digest)

589 CryptHashStart(&hashState, hashAlg);

590 CryptDigestUpdate(&hashState, Ex2.t.size, Ex2.t.buffer);

591 CryptDigestUpdate(&hashState, digest->t.size, digest->t.buffer);

592 Ex2.t.size = CryptHashEnd(&hashState, digestSize, Ex2.t.buffer);

593 SchnorrReduce(&Ex2.b, order);

594 BnFrom2B(bnEx, &Ex2.b);

595 // see if Ex matches R

596 OK = BnUnsignedCmp(bnEx, bnR) == 0;

597 }

598 return (OK) ? TPM_RC_SUCCESS : TPM_RC_SIGNATURE;

599 }

600 #endif // ALG_ECSCHNORR

Trusted Platform Module Library Part 4: Supporting Routines

Page 756 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.12.3.11 CryptEccValidateSignature()

This function validates an EcDsa() or EcSchnorr() signature. The point Qin needs to have been validated

to be on the curve of curveId.

Error Returns Meaning

TPM_RC_SIGNATURE not a valid signature

601 LIB_EXPORT TPM_RC

602 CryptEccValidateSignature(

603 TPMT_SIGNATURE *signature, // IN: signature to be verified

604 OBJECT *signKey, // IN: ECC key signed the hash

605 const TPM2B_DIGEST *digest // IN: digest that was signed

606)

607 {

608 CURVE_INITIALIZED(E, signKey->publicArea.parameters.eccDetail.curveID);

609 ECC_NUM(bnR);

610 ECC_NUM(bnS);

611 POINT_INITIALIZED(ecQ, &signKey->publicArea.unique.ecc);

612 bigConst order;

613 TPM_RC retVal;

614

615 if(E == NULL)

616 ERROR_RETURN(TPM_RC_VALUE);

617

618 order = CurveGetOrder(AccessCurveData(E));

619

620 // // Make sure that the scheme is valid

621 switch(signature->sigAlg)

622 {

623 case ALG_ECDSA_VALUE:

624 #if ALG_ECSCHNORR

625 case ALG_ECSCHNORR_VALUE:

626 #endif

627 #if ALG_SM2

628 case ALG_SM2_VALUE:

629 #endif

630 break;

631 default:

632 ERROR_RETURN(TPM_RC_SCHEME);

633 break;

634 }

635 // Can convert r and s after determining that the scheme is an ECC scheme. If

636 // this conversion doesn't work, it means that the unmarshaling code for

637 // an ECC signature is broken.

638 BnFrom2B(bnR, &signature->signature.ecdsa.signatureR.b);

639 BnFrom2B(bnS, &signature->signature.ecdsa.signatureS.b);

640

641 // r and s have to be greater than 0 but less than the curve order

642 if(BnEqualZero(bnR) || BnEqualZero(bnS))

643 ERROR_RETURN(TPM_RC_SIGNATURE);

644 if((BnUnsignedCmp(bnS, order) >= 0)

645 || (BnUnsignedCmp(bnR, order) >= 0))

646 ERROR_RETURN(TPM_RC_SIGNATURE);

647

648 switch(signature->sigAlg)

649 {

650 case ALG_ECDSA_VALUE:

651 retVal = BnValidateSignatureEcdsa(bnR, bnS, E, ecQ, digest);

652 break;

653

654 #if ALG_ECSCHNORR

655 case ALG_ECSCHNORR_VALUE:

656 retVal = BnValidateSignatureEcSchnorr(bnR, bnS,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 757

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

657 signature->signature.any.hashAlg,

658 E, ecQ, digest);

659 break;

660 #endif

661 #if ALG_SM2

662 case ALG_SM2_VALUE:

663 retVal = BnValidateSignatureEcSm2(bnR, bnS, E, ecQ, digest);

664 break;

665 #endif

666 default:

667 FAIL(FATAL_ERROR_INTERNAL);

668 }

669 Exit:

670 CURVE_FREE(E);

671 return retVal;

672 }

10.2.12.3.12 CryptEccCommitCompute()

This function performs the point multiply operations required by TPM2_Commit().

If B or M is provided, they must be on the curve defined by curveId. This routine does not check that they

are on the curve and results are unpredictable if they are not.

It is a fatal error if r is NULL. If B is not NULL, then it is a fatal error if d is NULL or if K and L are both

NULL. If M is not NULL, then it is a fatal error if E is NULL.

Error Returns Meaning

TPM_RC_NO_RESULT if K, L or E was computed to be the point at infinity

TPM_RC_CANCELED a cancel indication was asserted during this function

673 LIB_EXPORT TPM_RC

674 CryptEccCommitCompute(

675 TPMS_ECC_POINT *K, // OUT: [d]B or [r]Q

676 TPMS_ECC_POINT *L, // OUT: [r]B

677 TPMS_ECC_POINT *E, // OUT: [r]M

678 TPM_ECC_CURVE curveId, // IN: the curve for the computations

679 TPMS_ECC_POINT *M, // IN: M (optional)

680 TPMS_ECC_POINT *B, // IN: B (optional)

681 TPM2B_ECC_PARAMETER *d, // IN: d (optional)

682 TPM2B_ECC_PARAMETER *r // IN: the computed r value (required)

683)

684 {

685 CURVE_INITIALIZED(curve, curveId); // Normally initialize E as the curve, but

686 // E means something else in this function

687 ECC_INITIALIZED(bnR, r);

688 TPM_RC retVal = TPM_RC_SUCCESS;

689 //

690 // Validate that the required parameters are provided.

691 // Note: E has to be provided if computing E := [r]Q or E := [r]M. Will do

692 // E := [r]Q if both M and B are NULL.

693 pAssert(r != NULL && E != NULL);

694

695 // Initialize the output points in case they are not computed

696 ClearPoint2B(K);

697 ClearPoint2B(L);

698 ClearPoint2B(E);

699

700 // Sizes of the r parameter may not be zero

701 pAssert(r->t.size > 0);

702

703 // If B is provided, compute K=[d]B and L=[r]B

704 if(B != NULL)

Trusted Platform Module Library Part 4: Supporting Routines

Page 758 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

705 {

706 ECC_INITIALIZED(bnD, d);

707 POINT_INITIALIZED(pB, B);

708 POINT(pK);

709 POINT(pL);

710 //

711 pAssert(d != NULL && K != NULL && L != NULL);

712

713 if(!BnIsOnCurve(pB, AccessCurveData(curve)))

714 ERROR_RETURN(TPM_RC_VALUE);

715 // do the math for K = [d]B

716 if((retVal = BnPointMult(pK, pB, bnD, NULL, NULL, curve)) != TPM_RC_SUCCESS)

717 goto Exit;

718 // Convert BN K to TPM2B K

719 BnPointTo2B(K, pK, curve);

720 // compute L= [r]B after checking for cancel

721 if(_plat__IsCanceled())

722 ERROR_RETURN(TPM_RC_CANCELED);

723 // compute L = [r]B

724 if(!BnIsValidPrivateEcc(bnR, curve))

725 ERROR_RETURN(TPM_RC_VALUE);

726 if((retVal = BnPointMult(pL, pB, bnR, NULL, NULL, curve)) != TPM_RC_SUCCESS)

727 goto Exit;

728 // Convert BN L to TPM2B L

729 BnPointTo2B(L, pL, curve);

730 }

731 if((M != NULL) || (B == NULL))

732 {

733 POINT_INITIALIZED(pM, M);

734 POINT(pE);

735 //

736 // Make sure that a place was provided for the result

737 pAssert(E != NULL);

738

739 // if this is the third point multiply, check for cancel first

740 if((B != NULL) && _plat__IsCanceled())

741 ERROR_RETURN(TPM_RC_CANCELED);

742

743 // If M provided, then pM will not be NULL and will compute E = [r]M.

744 // However, if M was not provided, then pM will be NULL and E = [r]G

745 // will be computed

746 if((retVal = BnPointMult(pE, pM, bnR, NULL, NULL, curve)) != TPM_RC_SUCCESS)

747 goto Exit;

748 // Convert E to 2B format

749 BnPointTo2B(E, pE, curve);

750 }

751 Exit:

752 CURVE_FREE(curve);

753 return retVal;

754 }

755 #endif // ALG_ECC

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 759

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.13 CryptHash.c

10.2.13.1 Description

This file contains implementation of cryptographic functions for hashing.

10.2.13.2 Includes, Defines, and Types

1 #define _CRYPT_HASH_C_

2 #include "Tpm.h"

3 #include "CryptHash_fp.h"

4 #include "CryptHash.h"

5 #include "OIDs.h"

6 #define HASH_TABLE_SIZE (HASH_COUNT + 1)

7 #if ALG_SHA1

8 HASH_DEF_TEMPLATE(SHA1, Sha1);

9 #endif

10 #if ALG_SHA256

11 HASH_DEF_TEMPLATE(SHA256, Sha256);

12 #endif

13 #if ALG_SHA384

14 HASH_DEF_TEMPLATE(SHA384, Sha384);

15 #endif

16 #if ALG_SHA512

17 HASH_DEF_TEMPLATE(SHA512, Sha512);

18 #endif

19 #if ALG_SM3_256

20 HASH_DEF_TEMPLATE(SM3_256, Sm3_256);

21 #endif

22 HASH_DEF NULL_Def = {{0}};

23

24 PHASH_DEF HashDefArray[] = {

25 #if ALG_SHA1

26 &Sha1_Def,

27 #endif

28 #if ALG_SHA256

29 &Sha256_Def,

30 #endif

31 #if ALG_SHA384

32 &Sha384_Def,

33 #endif

34 #if ALG_SHA512

35 &Sha512_Def,

36 #endif

37 #if ALG_SM3_256

38 &Sm3_256_Def,

39 #endif

40 &NULL_Def

41 };

42

43 //** Obligatory Initialization Functions

44

45 //*** CryptHashInit()

46 // This function is called by _TPM_Init do perform the initialization operations for

47 // the library.

48 BOOL

49 CryptHashInit(

50 void

51)

52 {

53 LibHashInit();

54 return TRUE;

Trusted Platform Module Library Part 4: Supporting Routines

Page 760 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

55 }

10.2.13.2.1 CryptHashStartup()

This function is called by TPM2_Startup(). It checks that the size of the HashDefArray() is consistent with

the HASH_COUNT.

56 BOOL

57 CryptHashStartup(

58 void

59)

60 {

61 int i = sizeof(HashDefArray) / sizeof(PHASH_DEF) - 1;

62 return (i == HASH_COUNT);

63 }

10.2.13.3 Hash Information Access Functions

10.2.13.3.1 Introduction

These functions provide access to the hash algorithm description information.

10.2.13.3.2 CryptGetHashDef()

This function accesses the hash descriptor associated with a hash a algorithm. The function returns a

pointer to a null descriptor if hashAlg is TPM_ALG_NULL or not a defined algorithm.

64 PHASH_DEF

65 CryptGetHashDef(

66 TPM_ALG_ID hashAlg

67)

68 {

69 size_t i;

70 #define HASHES (sizeof(HashDefArray) / sizeof(PHASH_DEF))

71 for(i = 0; i < HASHES; i++)

72 {

73 PHASH_DEF p = HashDefArray[i];

74 if(p->hashAlg == hashAlg)

75 return p;

76 }

77 return &NULL_Def;

78 }

10.2.13.3.3 CryptHashIsValidAlg()

This function tests to see if an algorithm ID is a valid hash algorithm. If flag is true, then TPM_ALG_NULL

is a valid hash.

Return Value Meaning

TRUE(1) hashAlg is a valid, implemented hash on this TPM

FALSE(0) hashAlg is not valid for this TPM

79 BOOL

80 CryptHashIsValidAlg(

81 TPM_ALG_ID hashAlg, // IN: the algorithm to check

82 BOOL flag // IN: TRUE if TPM_ALG_NULL is to be treated

83 // as a valid hash

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 761

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

84)

85 {

86 if(hashAlg == TPM_ALG_NULL)

87 return flag;

88 return CryptGetHashDef(hashAlg) != &NULL_Def;

89 }

10.2.13.3.4 CryptHashGetAlgByIndex()

This function is used to iterate through the hashes. TPM_ALG_NULL is returned for all indexes that are

not valid hashes. If the TPM implements 3 hashes, then an index value of 0 will return the first

implemented hash and an index of 2 will return the last. All other index values will return

TPM_ALG_NULL.

Return Value Meaning

TPM_ALG_xxx a hash algorithm

TPM_ALG_NULL this can be used as a stop value

90 LIB_EXPORT TPM_ALG_ID

91 CryptHashGetAlgByIndex(

92 UINT32 index // IN: the index

93)

94 {

95 TPM_ALG_ID hashAlg;

96 if(index >= HASH_COUNT)

97 hashAlg = TPM_ALG_NULL;

98 else

99 hashAlg = HashDefArray[index]->hashAlg;

100 return hashAlg;

101 }

10.2.13.3.5 CryptHashGetDigestSize()

Returns the size of the digest produced by the hash. If hashAlg is not a hash algorithm, the TPM will

FAIL.

Return Value Meaning

0 TPM_ALG_NULL

0 the digest size

102 LIB_EXPORT UINT16

103 CryptHashGetDigestSize(

104 TPM_ALG_ID hashAlg // IN: hash algorithm to look up

105)

106 {

107 return CryptGetHashDef(hashAlg)->digestSize;

108 }

10.2.13.3.6 CryptHashGetBlockSize()

Returns the size of the block used by the hash. If hashAlg is not a hash algorithm, the TPM will FAIL.

Trusted Platform Module Library Part 4: Supporting Routines

Page 762 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Return Value Meaning

0 TPM_ALG_NULL

0 the digest size

109 LIB_EXPORT UINT16

110 CryptHashGetBlockSize(

111 TPM_ALG_ID hashAlg // IN: hash algorithm to look up

112)

113 {

114 return CryptGetHashDef(hashAlg)->blockSize;

115 }

10.2.13.3.7 CryptHashGetOid()

This function returns a pointer to DER=encoded OID for a hash algorithm. All OIDs are full OID values

including the Tag (0x06) and length byte.

116 LIB_EXPORT const BYTE *

117 CryptHashGetOid(

118 TPM_ALG_ID hashAlg

119)

120 {

121 return CryptGetHashDef(hashAlg)->OID;

122 }

10.2.13.3.8 CryptHashGetContextAlg()

This function returns the hash algorithm associated with a hash context.

123 TPM_ALG_ID

124 CryptHashGetContextAlg(

125 PHASH_STATE state // IN: the context to check

126)

127 {

128 return state->hashAlg;

129 }

10.2.13.4 State Import and Export

10.2.13.4.1 CryptHashCopyState

This function is used to clone a HASH_STATE.

130 LIB_EXPORT void

131 CryptHashCopyState(

132 HASH_STATE *out, // OUT: destination of the state

133 const HASH_STATE *in // IN: source of the state

134)

135 {

136 pAssert(out->type == in->type);

137 out->hashAlg = in->hashAlg;

138 out->def = in->def;

139 if(in->hashAlg != TPM_ALG_NULL)

140 {

141 HASH_STATE_COPY(out, in);

142 }

143 if(in->type == HASH_STATE_HMAC)

144 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 763

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

145 const HMAC_STATE *hIn = (HMAC_STATE *)in;

146 HMAC_STATE *hOut = (HMAC_STATE *)out;

147 hOut->hmacKey = hIn->hmacKey;

148 }

149 return;

150 }

10.2.13.4.2 CryptHashExportState()

This function is used to export a hash or HMAC hash state. This function would be called when preparing

to context save a sequence object.

151 void

152 CryptHashExportState(

153 PCHASH_STATE internalFmt, // IN: the hash state formatted for use by

154 // library

155 PEXPORT_HASH_STATE externalFmt // OUT: the exported hash state

156)

157 {

158 BYTE *outBuf = (BYTE *)externalFmt;

159 //

160 cAssert(sizeof(HASH_STATE) <= sizeof(EXPORT_HASH_STATE));

161 // the following #define is used to move data from an aligned internal data

162 // structure to a byte buffer (external format data.

163 #define CopyToOffset(value) \

164 memcpy(&outBuf[offsetof(HASH_STATE,value)], &internalFmt->value, \

165 sizeof(internalFmt->value))

166 // Copy the hashAlg

167 CopyToOffset(hashAlg);

168 CopyToOffset(type);

169 #ifdef HASH_STATE_SMAC

170 if(internalFmt->type == HASH_STATE_SMAC)

171 {

172 memcpy(outBuf, internalFmt, sizeof(HASH_STATE));

173 return;

174

175 }

176 #endif

177 if(internalFmt->type == HASH_STATE_HMAC)

178 {

179 HMAC_STATE *from = (HMAC_STATE *)internalFmt;

180 memcpy(&outBuf[offsetof(HMAC_STATE, hmacKey)], &from->hmacKey,

181 sizeof(from->hmacKey));

182 }

183 if(internalFmt->hashAlg != TPM_ALG_NULL)

184 HASH_STATE_EXPORT(externalFmt, internalFmt);

185 }

10.2.13.4.3 CryptHashImportState()

This function is used to import the hash state. This function would be called to import a hash state when

the context of a sequence object was being loaded.

186 void

187 CryptHashImportState(

188 PHASH_STATE internalFmt, // OUT: the hash state formatted for use by

189 // the library

190 PCEXPORT_HASH_STATE externalFmt // IN: the exported hash state

191)

192 {

193 BYTE *inBuf = (BYTE *)externalFmt;

194 //

Trusted Platform Module Library Part 4: Supporting Routines

Page 764 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

195 #define CopyFromOffset(value) \

196 memcpy(&internalFmt->value, &inBuf[offsetof(HASH_STATE,value)], \

197 sizeof(internalFmt->value))

198

199 // Copy the hashAlg of the byte-aligned input structure to the structure-aligned

200 // internal structure.

201 CopyFromOffset(hashAlg);

202 CopyFromOffset(type);

203 if(internalFmt->hashAlg != TPM_ALG_NULL)

204 {

205 #ifdef HASH_STATE_SMAC

206 if(internalFmt->type == HASH_STATE_SMAC)

207 {

208 memcpy(internalFmt, inBuf, sizeof(HASH_STATE));

209 return;

210 }

211 #endif

212 internalFmt->def = CryptGetHashDef(internalFmt->hashAlg);

213 HASH_STATE_IMPORT(internalFmt, inBuf);

214 if(internalFmt->type == HASH_STATE_HMAC)

215 {

216 HMAC_STATE *to = (HMAC_STATE *)internalFmt;

217 memcpy(&to->hmacKey, &inBuf[offsetof(HMAC_STATE, hmacKey)],

218 sizeof(to->hmacKey));

219 }

220 }

221 }

10.2.13.5 State Modification Functions

10.2.13.5.1 HashEnd()

Local function to complete a hash that uses the hashDef instead of an algorithm ID. This function is used

to complete the hash and only return a partial digest. The return value is the size of the data copied.

222 static UINT16

223 HashEnd(

224 PHASH_STATE hashState, // IN: the hash state

225 UINT32 dOutSize, // IN: the size of receive buffer

226 PBYTE dOut // OUT: the receive buffer

227)

228 {

229 BYTE temp[MAX_DIGEST_SIZE];

230 if((hashState->hashAlg == TPM_ALG_NULL)

231 || (hashState->type != HASH_STATE_HASH))

232 dOutSize = 0;

233 if(dOutSize > 0)

234 {

235 hashState->def = CryptGetHashDef(hashState->hashAlg);

236 // Set the final size

237 dOutSize = MIN(dOutSize, hashState->def->digestSize);

238 // Complete into the temp buffer and then copy

239 HASH_END(hashState, temp);

240 // Don't want any other functions calling the HASH_END method

241 // directly.

242 #undef HASH_END

243 memcpy(dOut, &temp, dOutSize);

244 }

245 hashState->type = HASH_STATE_EMPTY;

246 return (UINT16)dOutSize;

247 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 765

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.13.5.2 CryptHashStart()

Functions starts a hash stack Start a hash stack and returns the digest size. As a side effect, the value of

stateSize in hashState is updated to indicate the number of bytes of state that were saved. This function

calls GetHashServer() and that function will put the TPM into failure mode if the hash algorithm is not

supported.

This function does not use the sequence parameter. If it is necessary to import or export context, this will

start the sequence in a local state and export the state to the input buffer. Will need to add a flag to the

state structure to indicate that it needs to be imported before it can be used. (BLEH).

Return Value Meaning

0 hash is TPM_ALG_NULL

>0 digest size

248 LIB_EXPORT UINT16

249 CryptHashStart(

250 PHASH_STATE hashState, // OUT: the running hash state

251 TPM_ALG_ID hashAlg // IN: hash algorithm

252)

253 {

254 UINT16 retVal;

255

256 TEST(hashAlg);

257

258 hashState->hashAlg = hashAlg;

259 if(hashAlg == TPM_ALG_NULL)

260 {

261 retVal = 0;

262 }

263 else

264 {

265 hashState->def = CryptGetHashDef(hashAlg);

266 HASH_START(hashState);

267 retVal = hashState->def->digestSize;

268 }

269 #undef HASH_START

270 hashState->type = HASH_STATE_HASH;

271 return retVal;

272 }

10.2.13.5.3 CryptDigestUpdate()

Add data to a hash or HMAC, SMAC stack.

273 void

274 CryptDigestUpdate(

275 PHASH_STATE hashState, // IN: the hash context information

276 UINT32 dataSize, // IN: the size of data to be added

277 const BYTE *data // IN: data to be hashed

278)

279 {

280 if(hashState->hashAlg != TPM_ALG_NULL)

281 {

282 if((hashState->type == HASH_STATE_HASH)

283 || (hashState->type == HASH_STATE_HMAC))

284 HASH_DATA(hashState, dataSize, (BYTE *)data);

285 #if SMAC_IMPLEMENTED

286 else if(hashState->type == HASH_STATE_SMAC)

287 (hashState->state.smac.smacMethods.data)(&hashState->state.smac.state,

288 dataSize, data);

Trusted Platform Module Library Part 4: Supporting Routines

Page 766 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

289 #endif // SMAC_IMPLEMENTED

290 else

291 FAIL(FATAL_ERROR_INTERNAL);

292 }

293 return;

294 }

10.2.13.5.4 CryptHashEnd()

Complete a hash or HMAC computation. This function will place the smaller of digestSize or the size of

the digest in dOut. The number of bytes in the placed in the buffer is returned. If there is a failure, the

returned value is <= 0.

Return Value Meaning

0 no data returned

0 the number of bytes in the digest or dOutSize, whichever is smaller

295 LIB_EXPORT UINT16

296 CryptHashEnd(

297 PHASH_STATE hashState, // IN: the state of hash stack

298 UINT32 dOutSize, // IN: size of digest buffer

299 BYTE *dOut // OUT: hash digest

300)

301 {

302 pAssert(hashState->type == HASH_STATE_HASH);

303 return HashEnd(hashState, dOutSize, dOut);

304 }

10.2.13.5.5 CryptHashBlock()

Start a hash, hash a single block, update digest and return the size of the results.

The digestSize parameter can be smaller than the digest. If so, only the more significant bytes are

returned.

Return Value Meaning

0 number of bytes placed in dOut

305 LIB_EXPORT UINT16

306 CryptHashBlock(

307 TPM_ALG_ID hashAlg, // IN: The hash algorithm

308 UINT32 dataSize, // IN: size of buffer to hash

309 const BYTE *data, // IN: the buffer to hash

310 UINT32 dOutSize, // IN: size of the digest buffer

311 BYTE *dOut // OUT: digest buffer

312)

313 {

314 HASH_STATE state;

315 CryptHashStart(&state, hashAlg);

316 CryptDigestUpdate(&state, dataSize, data);

317 return HashEnd(&state, dOutSize, dOut);

318 }

10.2.13.5.6 CryptDigestUpdate2B()

This function updates a digest (hash or HMAC) with a TPM2B.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 767

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

This function can be used for both HMAC and hash functions so the digestState is void so that either

state type can be passed.

319 LIB_EXPORT void

320 CryptDigestUpdate2B(

321 PHASH_STATE state, // IN: the digest state

322 const TPM2B *bIn // IN: 2B containing the data

323)

324 {

325 // Only compute the digest if a pointer to the 2B is provided.

326 // In CryptDigestUpdate(), if size is zero or buffer is NULL, then no change

327 // to the digest occurs. This function should not provide a buffer if bIn is

328 // not provided.

329 pAssert(bIn != NULL);

330 CryptDigestUpdate(state, bIn->size, bIn->buffer);

331 return;

332 }

10.2.13.5.7 CryptHashEnd2B()

This function is the same as CryptCompleteHash() but the digest is placed in a TPM2B. This is the most

common use and this is provided for specification clarity. digest.size should be set to indicate the number

of bytes to place in the buffer

Return Value Meaning

>=0 the number of bytes placed in digest.buffer

333 LIB_EXPORT UINT16

334 CryptHashEnd2B(

335 PHASH_STATE state, // IN: the hash state

336 P2B digest // IN: the size of the buffer Out: requested

337 // number of bytes

338)

339 {

340 return CryptHashEnd(state, digest->size, digest->buffer);

341 }

10.2.13.5.8 CryptDigestUpdateInt()

This function is used to include an integer value to a hash stack. The function marshals the integer into its

canonical form before calling CryptDigestUpdate().

342 LIB_EXPORT void

343 CryptDigestUpdateInt(

344 void *state, // IN: the state of hash stack

345 UINT32 intSize, // IN: the size of 'intValue' in bytes

346 UINT64 intValue // IN: integer value to be hashed

347)

348 {

349 #if LITTLE_ENDIAN_TPM

350 intValue = REVERSE_ENDIAN_64(intValue);

351 #endif

352 CryptDigestUpdate(state, intSize, &((BYTE *)&intValue)[8 - intSize]);

353 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 768 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.13.6 HMAC Functions

10.2.13.6.1 CryptHmacStart()

This function is used to start an HMAC using a temp hash context. The function does the initialization of

the hash with the HMAC key XOR iPad and updates the HMAC key XOR oPad.

The function returns the number of bytes in a digest produced by hashAlg.

Return Value Meaning

0 number of bytes in digest produced by hashAlg (may be zero)

354 LIB_EXPORT UINT16

355 CryptHmacStart(

356 PHMAC_STATE state, // IN/OUT: the state buffer

357 TPM_ALG_ID hashAlg, // IN: the algorithm to use

358 UINT16 keySize, // IN: the size of the HMAC key

359 const BYTE *key // IN: the HMAC key

360)

361 {

362 PHASH_DEF hashDef;

363 BYTE * pb;

364 UINT32 i;

365 //

366 hashDef = CryptGetHashDef(hashAlg);

367 if(hashDef->digestSize != 0)

368 {

369 // If the HMAC key is larger than the hash block size, it has to be reduced

370 // to fit. The reduction is a digest of the hashKey.

371 if(keySize > hashDef->blockSize)

372 {

373 // if the key is too big, reduce it to a digest of itself

374 state->hmacKey.t.size = CryptHashBlock(hashAlg, keySize, key,

375 hashDef->digestSize,

376 state->hmacKey.t.buffer);

377 }

378 else

379 {

380 memcpy(state->hmacKey.t.buffer, key, keySize);

381 state->hmacKey.t.size = keySize;

382 }

383 // XOR the key with iPad (0x36)

384 pb = state->hmacKey.t.buffer;

385 for(i = state->hmacKey.t.size; i > 0; i--)

386 *pb++ ^= 0x36;

387

388 // if the keySize is smaller than a block, fill the rest with 0x36

389 for(i = hashDef->blockSize - state->hmacKey.t.size; i > 0; i--)

390 *pb++ = 0x36;

391

392 // Increase the oPadSize to a full block

393 state->hmacKey.t.size = hashDef->blockSize;

394

395 // Start a new hash with the HMAC key

396 // This will go in the caller's state structure and may be a sequence or not

397 CryptHashStart((PHASH_STATE)state, hashAlg);

398 CryptDigestUpdate((PHASH_STATE)state, state->hmacKey.t.size,

399 state->hmacKey.t.buffer);

400 // XOR the key block with 0x5c ^ 0x36

401 for(pb = state->hmacKey.t.buffer, i = hashDef->blockSize; i > 0; i--)

402 *pb++ ^= (0x5c ^ 0x36);

403 }

404 // Set the hash algorithm

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 769

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

405 state->hashState.hashAlg = hashAlg;

406 // Set the hash state type

407 state->hashState.type = HASH_STATE_HMAC;

408

409 return hashDef->digestSize;

410 }

10.2.13.6.2 CryptHmacEnd()

This function is called to complete an HMAC. It will finish the current digest, and start a new digest. It will

then add the oPadKey and the completed digest and return the results in dOut. It will not return more than

dOutSize bytes.

Return Value Meaning

0 number of bytes in dOut (may be zero)

411 LIB_EXPORT UINT16

412 CryptHmacEnd(

413 PHMAC_STATE state, // IN: the hash state buffer

414 UINT32 dOutSize, // IN: size of digest buffer

415 BYTE *dOut // OUT: hash digest

416)

417 {

418 BYTE temp[MAX_DIGEST_SIZE];

419 PHASH_STATE hState = (PHASH_STATE)&state->hashState;

420

421 #if SMAC_IMPLEMENTED

422 if(hState->type == HASH_STATE_SMAC)

423 return (state->hashState.state.smac.smacMethods.end)

424 (&state->hashState.state.smac.state,

425 dOutSize,

426 dOut);

427 #endif

428 pAssert(hState->type == HASH_STATE_HMAC);

429 hState->def = CryptGetHashDef(hState->hashAlg);

430 // Change the state type for completion processing

431 hState->type = HASH_STATE_HASH;

432 if(hState->hashAlg == TPM_ALG_NULL)

433 dOutSize = 0;

434 else

435 {

436

437 // Complete the current hash

438 HashEnd(hState, hState->def->digestSize, temp);

439 // Do another hash starting with the oPad

440 CryptHashStart(hState, hState->hashAlg);

441 CryptDigestUpdate(hState, state->hmacKey.t.size, state->hmacKey.t.buffer);

442 CryptDigestUpdate(hState, hState->def->digestSize, temp);

443 }

444 return HashEnd(hState, dOutSize, dOut);

445 }

10.2.13.6.3 CryptHmacStart2B()

This function starts an HMAC and returns the size of the digest that will be produced.

This function is provided to support the most common use of starting an HMAC with a TPM2B key.

The caller must provide a block of memory in which the hash sequence state is kept. The caller should

not alter the contents of this buffer until the hash sequence is completed or abandoned.

Trusted Platform Module Library Part 4: Supporting Routines

Page 770 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Return Value Meaning

0 the digest size of the algorithm

0 the hashAlg was TPM_ALG_NULL

446 LIB_EXPORT UINT16

447 CryptHmacStart2B(

448 PHMAC_STATE hmacState, // OUT: the state of HMAC stack. It will be used

449 // in HMAC update and completion

450 TPMI_ALG_HASH hashAlg, // IN: hash algorithm

451 P2B key // IN: HMAC key

452)

453 {

454 return CryptHmacStart(hmacState, hashAlg, key->size, key->buffer);

455 }

10.2.13.6.4 CryptHmacEnd2B()

This function is the same as CryptHmacEnd() but the HMAC result is returned in a TPM2B which is the

most common use.

Return Value Meaning

>=0 the number of bytes placed in digest

456 LIB_EXPORT UINT16

457 CryptHmacEnd2B(

458 PHMAC_STATE hmacState, // IN: the state of HMAC stack

459 P2B digest // OUT: HMAC

460)

461 {

462 return CryptHmacEnd(hmacState, digest->size, digest->buffer);

463 }

10.2.13.7 Mask and Key Generation Functions

10.2.13.7.1 CryptMGF1()

This function performs MGF1 using the selected hash. MGF1 is T(n) = T(n-1) || H(seed || counter). This

function returns the length of the mask produced which could be zero if the digest algorithm is not

supported

Return Value Meaning

0 hash algorithm was TPM_ALG_NULL

0 should be the same as mSize

464 LIB_EXPORT UINT16

465 CryptMGF1(

466 UINT32 mSize, // IN: length of the mask to be produced

467 BYTE *mask, // OUT: buffer to receive the mask

468 TPM_ALG_ID hashAlg, // IN: hash to use

469 UINT32 seedSize, // IN: size of the seed

470 BYTE *seed // IN: seed size

471)

472 {

473 HASH_STATE hashState;

474 PHASH_DEF hDef = CryptGetHashDef(hashAlg);

475 UINT32 remaining;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 771

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

476 UINT32 counter = 0;

477 BYTE swappedCounter[4];

478

479 // If there is no digest to compute return

480 if((hashAlg == TPM_ALG_NULL) || (mSize == 0))

481 return 0;

482

483 for(remaining = mSize; ; remaining -= hDef->digestSize)

484 {

485 // Because the system may be either Endian...

486 UINT32_TO_BYTE_ARRAY(counter, swappedCounter);

487

488 // Start the hash and include the seed and counter

489 CryptHashStart(&hashState, hashAlg);

490 CryptDigestUpdate(&hashState, seedSize, seed);

491 CryptDigestUpdate(&hashState, 4, swappedCounter);

492

493 // Handling the completion depends on how much space remains in the mask

494 // buffer. If it can hold the entire digest, put it there. If not

495 // put the digest in a temp buffer and only copy the amount that

496 // will fit into the mask buffer.

497 HashEnd(&hashState, remaining, mask);

498 if(remaining <= hDef->digestSize)

499 break;

500 mask = &mask[hDef->digestSize];

501 counter++;

502 }

503 return (UINT16)mSize;

504 }

10.2.13.7.2 CryptKDFa()

This function performs the key generation according to Part 1 of the TPM specification.

This function returns the number of bytes generated which may be zero.

The key and keyStream pointers are not allowed to be NULL. The other pointer values may be NULL.

The value of sizeInBits must be no larger than (2^18)-1 = 256K bits (32385 bytes).

The once parameter is set to allow incremental generation of a large value. If this flag is TRUE, sizeInBits

will be used in the HMAC computation but only one iteration of the KDF is performed. This would be used

for XOR obfuscation so that the mask value can be generated in digest-sized chunks rather than having

to be generated all at once in an arbitrarily large buffer and then XORed into the result. If once is TRUE,

then sizeInBits must be a multiple of 8.

Any error in the processing of this command is considered fatal.

Return Value Meaning

0 hash algorithm is not supported or is TPM_ALG_NULL

0 the number of bytes in the keyStream buffer

505 LIB_EXPORT UINT16

506 CryptKDFa(

507 TPM_ALG_ID hashAlg, // IN: hash algorithm used in HMAC

508 const TPM2B *key, // IN: HMAC key

509 const TPM2B *label, // IN: a label for the KDF

510 const TPM2B *contextU, // IN: context U

511 const TPM2B *contextV, // IN: context V

512 UINT32 sizeInBits, // IN: size of generated key in bits

513 BYTE *keyStream, // OUT: key buffer

514 UINT32 *counterInOut, // IN/OUT: caller may provide the iteration

515 // counter for incremental operations to

Trusted Platform Module Library Part 4: Supporting Routines

Page 772 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

516 // avoid large intermediate buffers.

517 UINT16 blocks // IN: If non-zero, this is the maximum number

518 // of blocks to be returned, regardless

519 // of sizeInBits

520)

521 {

522 UINT32 counter = 0; // counter value

523 INT16 bytes; // number of bytes to produce

524 UINT16 generated; // number of bytes generated

525 BYTE *stream = keyStream;

526 HMAC_STATE hState;

527 UINT16 digestSize = CryptHashGetDigestSize(hashAlg);

528

529 pAssert(key != NULL && keyStream != NULL);

530

531 TEST(TPM_ALG_KDF1_SP800_108);

532

533 if(digestSize == 0)

534 return 0;

535

536 if(counterInOut != NULL)

537 counter = *counterInOut;

538

539 // If the size of the request is larger than the numbers will handle,

540 // it is a fatal error.

541 pAssert(((sizeInBits + 7) / 8) <= INT16_MAX);

542

543 // The number of bytes to be generated is the smaller of the sizeInBits bytes or

544 // the number of requested blocks. The number of blocks is the smaller of the

545 // number requested or the number allowed by sizeInBits. A partial block is

546 // a full block.

547 bytes = (blocks > 0) ? blocks * digestSize : (UINT16)BITS_TO_BYTES(sizeInBits);

548 generated = bytes;

549

550 // Generate required bytes

551 for(; bytes > 0; bytes -= digestSize)

552 {

553 counter++;

554 // Start HMAC

555 if(CryptHmacStart(&hState, hashAlg, key->size, key->buffer) == 0)

556 return 0;

557 // Adding counter

558 CryptDigestUpdateInt(&hState.hashState, 4, counter);

559

560 // Adding label

561 if(label != NULL)

562 HASH_DATA(&hState.hashState, label->size, (BYTE *)label->buffer);

563 // Add a null. SP108 is not very clear about when the 0 is needed but to

564 // make this like the previous version that did not add an 0x00 after

565 // a null-terminated string, this version will only add a null byte

566 // if the label parameter did not end in a null byte, or if no label

567 // is present.

568 if((label == NULL)

569 || (label->size == 0)

570 || (label->buffer[label->size - 1] != 0))

571 CryptDigestUpdateInt(&hState.hashState, 1, 0);

572 // Adding contextU

573 if(contextU != NULL)

574 HASH_DATA(&hState.hashState, contextU->size, contextU->buffer);

575 // Adding contextV

576 if(contextV != NULL)

577 HASH_DATA(&hState.hashState, contextV->size, contextV->buffer);

578 // Adding size in bits

579 CryptDigestUpdateInt(&hState.hashState, 4, sizeInBits);

580

581 // Complete and put the data in the buffer

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 773

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

582 CryptHmacEnd(&hState, bytes, stream);

583 stream = &stream[digestSize];

584 }

585 // Masking in the KDF is disabled. If the calling function wants something

586 // less than even number of bytes, then the caller should do the masking

587 // because there is no universal way to do it here

588 if(counterInOut != NULL)

589 *counterInOut = counter;

590 return generated;

591 }

10.2.13.7.3 CryptKDFe()

This function implements KDFe() as defined in TPM specification part 1.

This function returns the number of bytes generated which may be zero.

The Z and keyStream pointers are not allowed to be NULL. The other pointer values may be NULL. The

value of sizeInBits must be no larger than (2^18)-1 = 256K bits (32385 bytes). Any error in the processing

of this command is considered fatal.

Return Value Meaning

0 hash algorithm is not supported or is TPM_ALG_NULL

0 the number of bytes in the keyStream buffer

592 LIB_EXPORT UINT16

593 CryptKDFe(

594 TPM_ALG_ID hashAlg, // IN: hash algorithm used in HMAC

595 TPM2B *Z, // IN: Z

596 const TPM2B *label, // IN: a label value for the KDF

597 TPM2B *partyUInfo, // IN: PartyUInfo

598 TPM2B *partyVInfo, // IN: PartyVInfo

599 UINT32 sizeInBits, // IN: size of generated key in bits

600 BYTE *keyStream // OUT: key buffer

601)

602 {

603 HASH_STATE hashState;

604 PHASH_DEF hashDef = CryptGetHashDef(hashAlg);

605

606 UINT32 counter = 0; // counter value

607 UINT16 hLen;

608 BYTE *stream = keyStream;

609 INT16 bytes; // number of bytes to generate

610

611 pAssert(keyStream != NULL && Z != NULL && ((sizeInBits + 7) / 8) < INT16_MAX);

612 //

613 hLen = hashDef->digestSize;

614 bytes = (INT16)((sizeInBits + 7) / 8);

615 if(hashAlg == TPM_ALG_NULL || bytes == 0)

616 return 0;

617

618 // Generate required bytes

619 //The inner loop of that KDF uses:

620 // Hash[i] := H(counter | Z | OtherInfo) (5)

621 // Where:

622 // Hash[i] the hash generated on the i-th iteration of the loop.

623 // H() an approved hash function

624 // counter a 32-bit counter that is initialized to 1 and incremented

625 // on each iteration

626 // Z the X coordinate of the product of a public ECC key and a

627 // different private ECC key.

628 // OtherInfo a collection of qualifying data for the KDF defined below.

629 // In this specification, OtherInfo will be constructed by:

Trusted Platform Module Library Part 4: Supporting Routines

Page 774 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

630 // OtherInfo := Use | PartyUInfo | PartyVInfo

631 for(; bytes > 0; stream = &stream[hLen], bytes = bytes - hLen)

632 {

633 if(bytes < hLen)

634 hLen = bytes;

635 counter++;

636 // Do the hash

637 CryptHashStart(&hashState, hashAlg);

638 // Add counter

639 CryptDigestUpdateInt(&hashState, 4, counter);

640

641 // Add Z

642 if(Z != NULL)

643 CryptDigestUpdate2B(&hashState, Z);

644 // Add label

645 if(label != NULL)

646 CryptDigestUpdate2B(&hashState, label);

647 // Add a null. SP108 is not very clear about when the 0 is needed but to

648 // make this like the previous version that did not add an 0x00 after

649 // a null-terminated string, this version will only add a null byte

650 // if the label parameter did not end in a null byte, or if no label

651 // is present.

652 if((label == NULL)

653 || (label->size == 0)

654 || (label->buffer[label->size - 1] != 0))

655 CryptDigestUpdateInt(&hashState, 1, 0);

656 // Add PartyUInfo

657 if(partyUInfo != NULL)

658 CryptDigestUpdate2B(&hashState, partyUInfo);

659

660 // Add PartyVInfo

661 if(partyVInfo != NULL)

662 CryptDigestUpdate2B(&hashState, partyVInfo);

663

664 // Compute Hash. hLen was changed to be the smaller of bytes or hLen

665 // at the start of each iteration.

666 CryptHashEnd(&hashState, hLen, stream);

667 }

668

669 // Mask off bits if the required bits is not a multiple of byte size

670 if((sizeInBits % 8) != 0)

671 keyStream[0] &= ((1 << (sizeInBits % 8)) - 1);

672

673 return (UINT16)((sizeInBits + 7) / 8);

674 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 775

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.14 CryptPrime.c

10.2.14.1 Introduction

This file contains the code for prime validation.

1 #include "Tpm.h"

2 #include "CryptPrime_fp.h"

3 //#define CPRI_PRIME

4 //#include "PrimeTable.h"

5 #include "CryptPrimeSieve_fp.h"

6 extern const uint32_t s_LastPrimeInTable;

7 extern const uint32_t s_PrimeTableSize;

8 extern const uint32_t s_PrimesInTable;

9 extern const unsigned char s_PrimeTable[];

10 extern bigConst s_CompositeOfSmallPrimes;

11

12 //** Functions

13

14 //*** Root2()

15 // This finds ceil(sqrt(n)) to use as a stopping point for searching the prime

16 // table.

17 static uint32_t

18 Root2(

19 uint32_t n

20)

21 {

22 int32_t last = (int32_t)(n >> 2);

23 int32_t next = (int32_t)(n >> 1);

24 int32_t diff;

25 int32_t stop = 10;

26 //

27 // get a starting point

28 for(; next != 0; last >>= 1, next >>= 2);

29 last++;

30 do

31 {

32 next = (last + (n / last)) >> 1;

33 diff = next - last;

34 last = next;

35 if(stop-- == 0)

36 FAIL(FATAL_ERROR_INTERNAL);

37 } while(diff < -1 || diff > 1);

38 if((n / next) > (unsigned)next)

39 next++;

40 pAssert(next != 0);

41 pAssert(((n / next) <= (unsigned)next) && (n / (next + 1) < (unsigned)next));

42 return next;

43 }

10.2.14.1.1 IsPrimeInt()

This will do a test of a word of up to 32-bits in size.

44 BOOL

45 IsPrimeInt(

46 uint32_t n

47)

48 {

49 uint32_t i;

50 uint32_t stop;

51 if(n < 3 || ((n & 1) == 0))

Trusted Platform Module Library Part 4: Supporting Routines

Page 776 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 return (n == 2);

53 if(n <= s_LastPrimeInTable)

54 {

55 n >>= 1;

56 return ((s_PrimeTable[n >> 3] >> (n & 7)) & 1);

57 }

58 // Need to search

59 stop = Root2(n) >> 1;

60 // starting at 1 is equivalent to staring at (1 << 1) + 1 = 3

61 for(i = 1; i < stop; i++)

62 {

63 if((s_PrimeTable[i >> 3] >> (i & 7)) & 1)

64 // see if this prime evenly divides the number

65 if((n % ((i << 1) + 1)) == 0)

66 return FALSE;

67 }

68 return TRUE;

69 }

10.2.14.1.2 BnIsProbablyPrime()

This function is used when the key sieve is not implemented. This function Will try to eliminate some of

the obvious things before going on to perform MillerRabin() as a final verification of primeness.

70 BOOL

71 BnIsProbablyPrime(

72 bigNum prime, // IN:

73 RAND_STATE *rand // IN: the random state just

74 // in case Miller-Rabin is required

75)

76 {

77 #if RADIX_BITS > 32

78 if(BnUnsignedCmpWord(prime, UINT32_MAX) <= 0)

79 #else

80 if(BnGetSize(prime) == 1)

81 #endif

82 return IsPrimeInt((uint32_t)prime->d[0]);

83

84 if(BnIsEven(prime))

85 return FALSE;

86 if(BnUnsignedCmpWord(prime, s_LastPrimeInTable) <= 0)

87 {

88 crypt_uword_t temp = prime->d[0] >> 1;

89 return ((s_PrimeTable[temp >> 3] >> (temp & 7)) & 1);

90 }

91 {

92 BN_VAR(n, LARGEST_NUMBER_BITS);

93 BnGcd(n, prime, s_CompositeOfSmallPrimes);

94 if(!BnEqualWord(n, 1))

95 return FALSE;

96 }

97 return MillerRabin(prime, rand);

98 }

10.2.14.1.3 MillerRabinRounds()

Function returns the number of Miller-Rabin rounds necessary to give an error probability equal to the

security strength of the prime. These values are from FIPS 186-3.

99 UINT32

100 MillerRabinRounds(

101 UINT32 bits // IN: Number of bits in the RSA prime

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 777

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

102)

103 {

104 if(bits < 511) return 8; // don't really expect this

105 if(bits < 1536) return 5; // for 512 and 1K primes

106 return 4; // for 3K public modulus and greater

107 }

10.2.14.1.4 MillerRabin()

This function performs a Miller-Rabin test from FIPS 186-3. It does iterations trials on the number. In all

likelihood, if the number is not prime, the first test fails.

Return Value Meaning

TRUE(1) probably prime

FALSE(0) composite

108 BOOL

109 MillerRabin(

110 bigNum bnW,

111 RAND_STATE *rand

112)

113 {

114 BN_MAX(bnWm1);

115 BN_PRIME(bnM);

116 BN_PRIME(bnB);

117 BN_PRIME(bnZ);

118 BOOL ret = FALSE; // Assumed composite for easy exit

119 unsigned int a;

120 unsigned int j;

121 int wLen;

122 int i;

123 int iterations = MillerRabinRounds(BnSizeInBits(bnW));

124 //

125 INSTRUMENT_INC(MillerRabinTrials[PrimeIndex]);

126

127 pAssert(bnW->size > 1);

128 // Let a be the largest integer such that 2^a divides w1.

129 BnSubWord(bnWm1, bnW, 1);

130 pAssert(bnWm1->size != 0);

131

132 // Since w is odd (w-1) is even so start at bit number 1 rather than 0

133 // Get the number of bits in bnWm1 so that it doesn't have to be recomputed

134 // on each iteration.

135 i = (int)(bnWm1->size * RADIX_BITS);

136 // Now find the largest power of 2 that divides w1

137 for(a = 1;

138 (a < (bnWm1->size * RADIX_BITS)) &&

139 (BnTestBit(bnWm1, a) == 0);

140 a++);

141 // 2. m = (w1) / 2^a

142 BnShiftRight(bnM, bnWm1, a);

143 // 3. wlen = len (w).

144 wLen = BnSizeInBits(bnW);

145 // 4. For i = 1 to iterations do

146 for(i = 0; i < iterations; i++)

147 {

148 // 4.1 Obtain a string b of wlen bits from an RBG.

149 // Ensure that 1 < b < w1.

150 // 4.2 If ((b <= 1) or (b >= w1)), then go to step 4.1.

151 while(BnGetRandomBits(bnB, wLen, rand) && ((BnUnsignedCmpWord(bnB, 1) <= 0)

152 || (BnUnsignedCmp(bnB, bnWm1) >= 0)));

153 if(g_inFailureMode)

Trusted Platform Module Library Part 4: Supporting Routines

Page 778 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

154 return FALSE;

155

156 // 4.3 z = b^m mod w.

157 // if ModExp fails, then say this is not

158 // prime and bail out.

159 BnModExp(bnZ, bnB, bnM, bnW);

160

161 // 4.4 If ((z == 1) or (z = w == 1)), then go to step 4.7.

162 if((BnUnsignedCmpWord(bnZ, 1) == 0)

163 || (BnUnsignedCmp(bnZ, bnWm1) == 0))

164 goto step4point7;

165 // 4.5 For j = 1 to a 1 do.

166 for(j = 1; j < a; j++)

167 {

168 // 4.5.1 z = z^2 mod w.

169 BnModMult(bnZ, bnZ, bnZ, bnW);

170 // 4.5.2 If (z = w1), then go to step 4.7.

171 if(BnUnsignedCmp(bnZ, bnWm1) == 0)

172 goto step4point7;

173 // 4.5.3 If (z = 1), then go to step 4.6.

174 if(BnEqualWord(bnZ, 1))

175 goto step4point6;

176 }

177 // 4.6 Return COMPOSITE.

178 step4point6:

179 INSTRUMENT_INC(failedAtIteration[i]);

180 goto end;

181 // 4.7 Continue. Comment: Increment i for the do-loop in step 4.

182 step4point7:

183 continue;

184 }

185 // 5. Return PROBABLY PRIME

186 ret = TRUE;

187 end:

188 return ret;

189 }

190 #if ALG_RSA

10.2.14.1.5 RsaCheckPrime()

This will check to see if a number is prime and appropriate for an RSA prime.

This has different functionality based on whether we are using key sieving or not. If not, the number

checked to see if it is divisible by the public exponent, then the number is adjusted either up or down in

order to make it a better candidate. It is then checked for being probably prime.

If sieving is used, the number is used to root a sieving process.

191 TPM_RC

192 RsaCheckPrime(

193 bigNum prime,

194 UINT32 exponent,

195 RAND_STATE *rand

196)

197 {

198 #if !RSA_KEY_SIEVE

199 TPM_RC retVal = TPM_RC_SUCCESS;

200 UINT32 modE = BnModWord(prime, exponent);

201

202 NOT_REFERENCED(rand);

203

204 if(modE == 0)

205 // evenly divisible so add two keeping the number odd

206 BnAddWord(prime, prime, 2);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 779

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

207 // want 0 != (p - 1) mod e

208 // which is 1 != p mod e

209 else if(modE == 1)

210 // subtract 2 keeping number odd and insuring that

211 // 0 != (p - 1) mod e

212 BnSubWord(prime, prime, 2);

213

214 if(BnIsProbablyPrime(prime, rand) == 0)

215 ERROR_RETURN(g_inFailureMode ? TPM_RC_FAILURE : TPM_RC_VALUE);

216 Exit:

217 return retVal;

218 #else

219 return PrimeSelectWithSieve(prime, exponent, rand);

220 #endif

221 }

10.2.14.1.6 AdjustPrimeCandiate()

For this math, we assume that the RSA numbers are fixed-point numbers with the decimal point to the left

of the most significant bit. This approach helps make it clear what is happening with the MSb of the

values. The two RSA primes have to be large enough so that their product will be a number with the

necessary number of significant bits. For example, we want to be able to multiply two 1024-bit numbers to

produce a number with 2048 significant bits. If we accept any 1024-bit prime that has its MSb set, then it

is possible to produce a product that does not have the MSb SET. For example, if we use tiny keys of 16

bits and have two 8-bit primes of 0x80, then the public key would be 0x4000 which is only 15-bits. So,

what we need to do is made sure that each of the primes is large enough so that the product of the

primes is twice as large as each prime. A little arithmetic will show that the only way to do this is to make

sure that each of the primes is no less than root(2)/2. That's what this functions does. This function

adjusts the candidate prime so that it is odd and >= root(2)/2. This allows the product of these two

numbers to be .5, which, in fixed point notation means that the most significant bit is 1. For this routine,

the root(2)/2 (0.7071067811865475) approximated with 0xB505 which is, in fixed point,

0.7071075439453125 or an error of 0.000108%. Just setting the upper two bits would give a value > 0.75

which is an error of > 6%. Given the amount of time all the other computations take, reducing the error is

not much of a cost, but it isn't totally required either.

This function can be replaced with a function that just sets the two most significant bits of each prime

candidate without introducing any computational issues.

222 LIB_EXPORT void

223 RsaAdjustPrimeCandidate(

224 bigNum prime

225)

226 {

227 UINT32 msw;

228 UINT32 adjusted;

229

230 // If the radix is 32, the compiler should turn this into a simple assignment

231 msw = prime->d[prime->size - 1] >> ((RADIX_BITS == 64) ? 32 : 0);

232 // Multiplying 0xff...f by 0x4AFB gives 0xff..f - 0xB5050...0

233 adjusted = (msw >> 16) * 0x4AFB;

234 adjusted += ((msw & 0xFFFF) * 0x4AFB) >> 16;

235 adjusted += 0xB5050000UL;

236 #if RADIX_BITS == 64

237 // Save the low-order 32 bits

238 prime->d[prime->size - 1] &= 0xFFFFFFFFUL;

239 // replace the upper 32-bits

240 prime->d[prime->size -1] |= ((crypt_uword_t)adjusted << 32);

241 #else

242 prime->d[prime->size - 1] = (crypt_uword_t)adjusted;

243 #endif

244 // make sure the number is odd

245 prime->d[0] |= 1;

Trusted Platform Module Library Part 4: Supporting Routines

Page 780 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

246 }

10.2.14.1.7 BnGeneratePrimeForRSA()

Function to generate a prime of the desired size with the proper attributes for an RSA prime.

247 TPM_RC

248 BnGeneratePrimeForRSA(

249 bigNum prime, // IN/OUT: points to the BN that will get the

250 // random value

251 UINT32 bits, // IN: number of bits to get

252 UINT32 exponent, // IN: the exponent

253 RAND_STATE *rand // IN: the random state

254)

255 {

256 BOOL found = FALSE;

257 //

258 // Make sure that the prime is large enough

259 pAssert(prime->allocated >= BITS_TO_CRYPT_WORDS(bits));

260 // Only try to handle specific sizes of keys in order to save overhead

261 pAssert((bits % 32) == 0);

262

263 prime->size = BITS_TO_CRYPT_WORDS(bits);

264

265 while(!found)

266 {

267 // The change below is to make sure that all keys that are generated from the same

268 // seed value will be the same regardless of the endianess or word size of the CPU.

269 // DRBG_Generate(rand, (BYTE *)prime->d, (UINT16)BITS_TO_BYTES(bits));// old

270 // if(g_inFailureMode) // old

271 if(!BnGetRandomBits(prime, bits, rand)) // new

272 return TPM_RC_FAILURE;

273 RsaAdjustPrimeCandidate(prime);

274 found = RsaCheckPrime(prime, exponent, rand) == TPM_RC_SUCCESS;

275 }

276 return TPM_RC_SUCCESS;

277 }

278 #endif // ALG_RSA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 781

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.15 CryptPrimeSieve.c

10.2.15.1 Includes and defines

1 #include "Tpm.h"

2 #if RSA_KEY_SIEVE

3 #include "CryptPrimeSieve_fp.h"

This determines the number of bits in the largest sieve field.

4 #define MAX_FIELD_SIZE 2048

5 extern const uint32_t s_LastPrimeInTable;

6 extern const uint32_t s_PrimeTableSize;

7 extern const uint32_t s_PrimesInTable;

8 extern const unsigned char s_PrimeTable[];

9

10 // This table is set of prime markers. Each entry is the prime value

11 // for the ((n + 1) * 1024) prime. That is, the entry in s_PrimeMarkers[1]

12 // is the value for the 2,048th prime. This is used in the PrimeSieve

13 // to adjust the limit for the prime search. When processing smaller

14 // prime candidates, fewer primes are checked directly before going to

15 // Miller-Rabin. As the prime grows, it is worth spending more time eliminating

16 // primes as, a) the density is lower, and b) the cost of Miller-Rabin is

17 // higher.

18 const uint32_t s_PrimeMarkersCount = 6;

19 const uint32_t s_PrimeMarkers[] = {

20 8167, 17881, 28183, 38891, 49871, 60961 };

21 uint32_t primeLimit;

22

23 //** Functions

24

25 //*** RsaAdjustPrimeLimit()

26 // This used during the sieve process. The iterator for getting the

27 // next prime (RsaNextPrime()) will return primes until it hits the

28 // limit (primeLimit) set up by this function. This causes the sieve

29 // process to stop when an appropriate number of primes have been

30 // sieved.

31 LIB_EXPORT void

32 RsaAdjustPrimeLimit(

33 uint32_t requestedPrimes

34)

35 {

36 if(requestedPrimes == 0 || requestedPrimes > s_PrimesInTable)

37 requestedPrimes = s_PrimesInTable;

38 requestedPrimes = (requestedPrimes - 1) / 1024;

39 if(requestedPrimes < s_PrimeMarkersCount)

40 primeLimit = s_PrimeMarkers[requestedPrimes];

41 else

42 primeLimit = s_LastPrimeInTable;

43 primeLimit >>= 1;

44

45 }

10.2.15.1.1 RsaNextPrime()

This the iterator used during the sieve process. The input is the last prime returned (or any starting point)

and the output is the next higher prime. The function returns 0 when the primeLimit is reached.

46 LIB_EXPORT uint32_t

47 RsaNextPrime(

48 uint32_t lastPrime

Trusted Platform Module Library Part 4: Supporting Routines

Page 782 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

49)

50 {

51 if(lastPrime == 0)

52 return 0;

53 lastPrime >>= 1;

54 for(lastPrime += 1; lastPrime <= primeLimit; lastPrime++)

55 {

56 if(((s_PrimeTable[lastPrime >> 3] >> (lastPrime & 0x7)) & 1) == 1)

57 return ((lastPrime << 1) + 1);

58 }

59 return 0;

60 }

This table contains a previously sieved table. It has the bits for 3, 5, and 7 removed. Because of the

factors, it needs to be aligned to 105 and has a repeat of 105.

61 const BYTE seedValues[] = {

62 0x16, 0x29, 0xcb, 0xa4, 0x65, 0xda, 0x30, 0x6c,

63 0x99, 0x96, 0x4c, 0x53, 0xa2, 0x2d, 0x52, 0x96,

64 0x49, 0xcb, 0xb4, 0x61, 0xd8, 0x32, 0x2d, 0x99,

65 0xa6, 0x44, 0x5b, 0xa4, 0x2c, 0x93, 0x96, 0x69,

66 0xc3, 0xb0, 0x65, 0x5a, 0x32, 0x4d, 0x89, 0xb6,

67 0x48, 0x59, 0x26, 0x2d, 0xd3, 0x86, 0x61, 0xcb,

68 0xb4, 0x64, 0x9a, 0x12, 0x6d, 0x91, 0xb2, 0x4c,

69 0x5a, 0xa6, 0x0d, 0xc3, 0x96, 0x69, 0xc9, 0x34,

70 0x25, 0xda, 0x22, 0x65, 0x99, 0xb4, 0x4c, 0x1b,

71 0x86, 0x2d, 0xd3, 0x92, 0x69, 0x4a, 0xb4, 0x45,

72 0xca, 0x32, 0x69, 0x99, 0x36, 0x0c, 0x5b, 0xa6,

73 0x25, 0xd3, 0x94, 0x68, 0x8b, 0x94, 0x65, 0xd2,

74 0x32, 0x6d, 0x18, 0xb6, 0x4c, 0x4b, 0xa6, 0x29,

75 0xd1};

76

77 #define USE_NIBBLE

78

79 #ifndef USE_NIBBLE

80 static const BYTE bitsInByte[256] = {

81 0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03,

82 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,

83 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,

84 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

85 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,

86 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

87 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

88 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

89 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,

90 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

91 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

92 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

93 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

94 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

95 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

96 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,

97 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,

98 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

99 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

100 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

101 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

102 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

103 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

104 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,

105 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,

106 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

107 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 783

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

108 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,

109 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,

110 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,

111 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,

112 0x05, 0x06, 0x06, 0x07, 0x06, 0x07, 0x07, 0x08

113 };

114 #define BitsInByte(x) bitsInByte[(unsigned char)x]

115 #else

116 const BYTE bitsInNibble[16] = {

117 0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03,

118 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04};

119 #define BitsInByte(x) \

120 (bitsInNibble[(unsigned char)(x) & 0xf] \

121 + bitsInNibble[((unsigned char)(x) >> 4) & 0xf])

122 #endif

10.2.15.1.2 BitsInArry()

This function counts the number of bits set in an array of bytes.

123 static int

124 BitsInArray(

125 const unsigned char *a, // IN: A pointer to an array of bytes

126 unsigned int aSize // IN: the number of bytes to sum

127)

128 {

129 int j = 0;

130 for(; aSize; a++, aSize--)

131 j += BitsInByte(*a);

132 return j;

133 }

10.2.15.1.3 FindNthSetBit()

This function finds the nth SET bit in a bit array. The n parameter is between 1 and the number of bits in

the array (always a multiple of 8). If called when the array does not have n bits set, it will return -1

Return Value Meaning

<0 no bit is set or no bit with the requested number is set

>=0 the number of the bit in the array that is the nth set

134 LIB_EXPORT int

135 FindNthSetBit(

136 const UINT16 aSize, // IN: the size of the array to check

137 const BYTE *a, // IN: the array to check

138 const UINT32 n // IN, the number of the SET bit

139)

140 {

141 UINT16 i;

142 int retValue;

143 UINT32 sum = 0;

144 BYTE sel;

145

146 //find the bit

147 for(i = 0; (i < (int)aSize) && (sum < n); i++)

148 sum += BitsInByte(a[i]);

149 i--;

150 // The chosen bit is in the byte that was just accessed

151 // Compute the offset to the start of that byte

152 retValue = i * 8 - 1;

Trusted Platform Module Library Part 4: Supporting Routines

Page 784 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

153 sel = a[i];

154 // Subtract the bits in the last byte added.

155 sum -= BitsInByte(sel);

156 // Now process the byte, one bit at a time.

157 for(; (sel != 0) && (sum != n); retValue++, sel = sel >> 1)

158 sum += (sel & 1) != 0;

159 return (sum == n) ? retValue : -1;

160 }

161 typedef struct

162 {

163 UINT16 prime;

164 UINT16 count;

165 } SIEVE_MARKS;

166 const SIEVE_MARKS sieveMarks[5] = {

167 {31, 7}, {73, 5}, {241, 4}, {1621, 3}, {UINT16_MAX, 2}};

168

169 //*** PrimeSieve()

170 // This function does a prime sieve over the input 'field' which has as its

171 // starting address the value in bnN. Since this initializes the Sieve

172 // using a precomputed field with the bits associated with 3, 5 and 7 already

173 // turned off, the value of pnN may need to be adjusted by a few counts to allow

174 // the precomputed field to be used without modification.

175 //

176 // To get better performance, one could address the issue of developing the

177 // composite numbers. When the size of the prime gets large, the time for doing

178 // the divisions goes up, noticeably. It could be better to develop larger composite

179 // numbers even if they need to be bigNum's themselves. The object would be to

180 // reduce the number of times that the large prime is divided into a few large

181 // divides and then use smaller divides to get to the final 16 bit (or smaller)

182 // remainders.

183 LIB_EXPORT UINT32

184 PrimeSieve(

185 bigNum bnN, // IN/OUT: number to sieve

186 UINT32 fieldSize, // IN: size of the field area in bytes

187 BYTE *field // IN: field

188)

189 {

190 UINT32 i;

191 UINT32 j;

192 UINT32 fieldBits = fieldSize * 8;

193 UINT32 r;

194 BYTE *pField;

195 INT32 iter;

196 UINT32 adjust;

197 UINT32 mark = 0;

198 UINT32 count = sieveMarks[0].count;

199 UINT32 stop = sieveMarks[0].prime;

200 UINT32 composite;

201 UINT32 pList[8];

202 UINT32 next;

203

204 pAssert(field != NULL && bnN != NULL);

205

206 // If the remainder is odd, then subtracting the value will give an even number,

207 // but we want an odd number, so subtract the 105+rem. Otherwise, just subtract

208 // the even remainder.

209 adjust = (UINT32)BnModWord(bnN, 105);

210 if(adjust & 1)

211 adjust += 105;

212

213 // Adjust the input number so that it points to the first number in a

214 // aligned field.

215 BnSubWord(bnN, bnN, adjust);

216 // pAssert(BnModWord(bnN, 105) == 0);

217 pField = field;

218 for(i = fieldSize; i >= sizeof(seedValues);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 785

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

219 pField += sizeof(seedValues), i -= sizeof(seedValues))

220 {

221 memcpy(pField, seedValues, sizeof(seedValues));

222 }

223 if(i != 0)

224 memcpy(pField, seedValues, i);

225

226 // Cycle through the primes, clearing bits

227 // Have already done 3, 5, and 7

228 iter = 7;

229

230 #define NEXT_PRIME(iter) (iter = RsaNextPrime(iter))

231 // Get the next N primes where N is determined by the mark in the sieveMarks

232 while((composite = NEXT_PRIME(iter)) != 0)

233 {

234 next = 0;

235 i = count;

236 pList[i--] = composite;

237 for(; i > 0; i--)

238 {

239 next = NEXT_PRIME(iter);

240 pList[i] = next;

241 if(next != 0)

242 composite *= next;

243 }

244 // Get the remainder when dividing the base field address

245 // by the composite

246 composite = (UINT32)BnModWord(bnN, composite);

247 // 'composite' is divisible by the composite components. for each of the

248 // composite components, divide 'composite'. That remainder (r) is used to

249 // pick a starting point for clearing the array. The stride is equal to the

250 // composite component. Note, the field only contains odd numbers. If the

251 // field were expanded to contain all numbers, then half of the bits would

252 // have already been cleared. We can save the trouble of clearing them a

253 // second time by having a stride of 2*next. Or we can take all of the even

254 // numbers out of the field and use a stride of 'next'

255 for(i = count; i > 0; i--)

256 {

257 next = pList[i];

258 if(next == 0)

259 goto done;

260 r = composite % next;

261 // these computations deal with the fact that we have picked a field-sized

262 // range that is aligned to a 105 count boundary. The problem is, this field

263 // only contains odd numbers. If we take our prime guess and walk through all

264 // the numbers using that prime as the 'stride', then every other 'stride' is

265 // going to be an even number. So, we are actually counting by 2 * the stride

266 // We want the count to start on an odd number at the start of our field. That

267 // is, we want to assume that we have counted up to the edge of the field by

268 // the 'stride' and now we are going to start flipping bits in the field as we

269 // continue to count up by 'stride'. If we take the base of our field and

270 // divide by the stride, we find out how much we find out how short the last

271 // count was from reaching the edge of the bit field. Say we get a quotient of

272 // 3 and remainder of 1. This means that after 3 strides, we are 1 short of

273 // the start of the field and the next stride will either land within the

274 // field or step completely over it. The confounding factor is that our field

275 // only contains odd numbers and our stride is actually 2 * stride. If the

276 // quoitent is even, then that means that when we add 2 * stride, we are going

277 // to hit another even number. So, we have to know if we need to back off

278 // by 1 stride before we start couting by 2 * stride.

279 // We can tell from the remainder whether we are on an even or odd

280 // stride when we hit the beginning of the table. If we are on an odd stride

281 // (r & 1), we would start half a stride in (next - r)/2. If we are on an

282 // even stride, we need 0.5 strides (next - r/2) because the table only has

283 // odd numbers. If the remainder happens to be zero, then the start of the

284 // table is on stride so no adjustment is necessary.

Trusted Platform Module Library Part 4: Supporting Routines

Page 786 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

285 if(r & 1) j = (next - r) / 2;

286 else if(r == 0) j = 0;

287 else j = next - (r / 2);

288 for(; j < fieldBits; j += next)

289 ClearBit(j, field, fieldSize);

290 }

291 if(next >= stop)

292 {

293 mark++;

294 count = sieveMarks[mark].count;

295 stop = sieveMarks[mark].prime;

296 }

297 }

298 done:

299 INSTRUMENT_INC(totalFieldsSieved[PrimeIndex]);

300 i = BitsInArray(field, fieldSize);

301 INSTRUMENT_ADD(bitsInFieldAfterSieve[PrimeIndex], i);

302 INSTRUMENT_ADD(emptyFieldsSieved[PrimeIndex], (i == 0));

303 return i;

304 }

305 #ifdef SIEVE_DEBUG

306 static uint32_t fieldSize = 210;

307

308 //***SetFieldSize()

309 // Function to set the field size used for prime generation. Used for tuning.

310 LIB_EXPORT uint32_t

311 SetFieldSize(

312 uint32_t newFieldSize

313)

314 {

315 if(newFieldSize == 0 || newFieldSize > MAX_FIELD_SIZE)

316 fieldSize = MAX_FIELD_SIZE;

317 else

318 fieldSize = newFieldSize;

319 return fieldSize;

320 }

321 #endif // SIEVE_DEBUG

10.2.15.1.4 PrimeSelectWithSieve()

This function will sieve the field around the input prime candidate. If the sieve field is not empty, one of

the one bits in the field is chosen for testing with Miller-Rabin. If the value is prime, pnP is updated with

this value and the function returns success. If this value is not prime, another pseudo-random candidate

is chosen and tested. This process repeats until all values in the field have been checked. If all bits in the

field have been checked and none is prime, the function returns FALSE and a new random value needs

to be chosen.

Error Returns Meaning

TPM_RC_FAILURE TPM in failure mode, probably due to entropy source

TPM_RC_SUCCESS candidate is probably prime

TPM_RC_NO_RESULT candidate is not prime and couldn't find and alternative in the field

322 LIB_EXPORT TPM_RC

323 PrimeSelectWithSieve(

324 bigNum candidate, // IN/OUT: The candidate to filter

325 UINT32 e, // IN: the exponent

326 RAND_STATE *rand // IN: the random number generator state

327)

328 {

329 BYTE field[MAX_FIELD_SIZE];

330 UINT32 first;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 787

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

331 UINT32 ones;

332 INT32 chosen;

333 BN_PRIME(test);

334 UINT32 modE;

335 #ifndef SIEVE_DEBUG

336 UINT32 fieldSize = MAX_FIELD_SIZE;

337 #endif

338 UINT32 primeSize;

339 //

340 // Adjust the field size and prime table list to fit the size of the prime

341 // being tested. This is done to try to optimize the trade-off between the

342 // dividing done for sieving and the time for Miller-Rabin. When the size

343 // of the prime is large, the cost of Miller-Rabin is fairly high, as is the

344 // cost of the sieving. However, the time for Miller-Rabin goes up considerably

345 // faster than the cost of dividing by a number of primes.

346 primeSize = BnSizeInBits(candidate);

347

348 if(primeSize <= 512)

349 {

350 RsaAdjustPrimeLimit(1024); // Use just the first 1024 primes

351 }

352 else if(primeSize <= 1024)

353 {

354 RsaAdjustPrimeLimit(4096); // Use just the first 4K primes

355 }

356 else

357 {

358 RsaAdjustPrimeLimit(0); // Use all available

359 }

360

361 // Save the low-order word to use as a search generator and make sure that

362 // it has some interesting range to it

363 first = (UINT32)(candidate->d[0] | 0x80000000);

364

365 // Sieve the field

366 ones = PrimeSieve(candidate, fieldSize, field);

367 pAssert(ones > 0 && ones < (fieldSize * 8));

368 for(; ones > 0; ones--)

369 {

370 // Decide which bit to look at and find its offset

371 chosen = FindNthSetBit((UINT16)fieldSize, field, ((first % ones) + 1));

372

373 if((chosen < 0) || (chosen >= (INT32)(fieldSize * 8)))

374 FAIL(FATAL_ERROR_INTERNAL);

375

376 // Set this as the trial prime

377 BnAddWord(test, candidate, (crypt_uword_t)(chosen * 2));

378

379 // The exponent might not have been one of the tested primes so

380 // make sure that it isn't divisible and make sure that 0 != (p-1) mod e

381 // Note: This is the same as 1 != p mod e

382 modE = (UINT32)BnModWord(test, e);

383 if((modE != 0) && (modE != 1) && MillerRabin(test, rand))

384 {

385 BnCopy(candidate, test);

386 return TPM_RC_SUCCESS;

387 }

388 // Clear the bit just tested

389 ClearBit(chosen, field, fieldSize);

390 }

391 // Ran out of bits and couldn't find a prime in this field

392 INSTRUMENT_INC(noPrimeFields[PrimeIndex]);

393 return (g_inFailureMode ? TPM_RC_FAILURE : TPM_RC_NO_RESULT);

394 }

395 #if RSA_INSTRUMENT

396 static char a[256];

Trusted Platform Module Library Part 4: Supporting Routines

Page 788 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

397

398 //*** PrintTuple()

399 char *

400 PrintTuple(

401 UINT32 *i

402)

403 {

404 sprintf(a, "{%d, %d, %d}", i[0], i[1], i[2]);

405 return a;

406 }

407

408 #define CLEAR_VALUE(x) memset(x, 0, sizeof(x))

409

410 //*** RsaSimulationEnd()

411 void

412 RsaSimulationEnd(

413 void

414)

415 {

416 int i;

417 UINT32 averages[3];

418 UINT32 nonFirst = 0;

419 if((PrimeCounts[0] + PrimeCounts[1] + PrimeCounts[2]) != 0)

420 {

421 printf("Primes generated = %s\n", PrintTuple(PrimeCounts));

422 printf("Fields sieved = %s\n", PrintTuple(totalFieldsSieved));

423 printf("Fields with no primes = %s\n", PrintTuple(noPrimeFields));

424 printf("Primes checked with Miller-Rabin = %s\n",

425 PrintTuple(MillerRabinTrials));

426 for(i = 0; i < 3; i++)

427 averages[i] = (totalFieldsSieved[i]

428 != 0 ? bitsInFieldAfterSieve[i] / totalFieldsSieved[i]

429 : 0);

430 printf("Average candidates in field %s\n", PrintTuple(averages));

431 for(i = 1; i < (sizeof(failedAtIteration) / sizeof(failedAtIteration[0]));

432 i++)

433 nonFirst += failedAtIteration[i];

434 printf("Miller-Rabin failures not in first round = %d\n", nonFirst);

435

436 }

437 CLEAR_VALUE(PrimeCounts);

438 CLEAR_VALUE(totalFieldsSieved);

439 CLEAR_VALUE(noPrimeFields);

440 CLEAR_VALUE(MillerRabinTrials);

441 CLEAR_VALUE(bitsInFieldAfterSieve);

442 }

443

444 //*** GetSieveStats()

445 LIB_EXPORT void

446 GetSieveStats(

447 uint32_t *trials,

448 uint32_t *emptyFields,

449 uint32_t *averageBits

450)

451 {

452 uint32_t totalBits;

453 uint32_t fields;

454 *trials = MillerRabinTrials[0] + MillerRabinTrials[1] + MillerRabinTrials[2];

455 *emptyFields = noPrimeFields[0] + noPrimeFields[1] + noPrimeFields[2];

456 fields = totalFieldsSieved[0] + totalFieldsSieved[1]

457 + totalFieldsSieved[2];

458 totalBits = bitsInFieldAfterSieve[0] + bitsInFieldAfterSieve[1]

459 + bitsInFieldAfterSieve[2];

460 if(fields != 0)

461 *averageBits = totalBits / fields;

462 else

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 789

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

463 *averageBits = 0;

464 CLEAR_VALUE(PrimeCounts);

465 CLEAR_VALUE(totalFieldsSieved);

466 CLEAR_VALUE(noPrimeFields);

467 CLEAR_VALUE(MillerRabinTrials);

468 CLEAR_VALUE(bitsInFieldAfterSieve);

469

470 }

471 #endif

472

473 #endif // RSA_KEY_SIEVE

474

475 #if !RSA_INSTRUMENT

476

477 //*** RsaSimulationEnd()

478 // Stub for call when not doing instrumentation.

479 void

480 RsaSimulationEnd(

481 void

482)

483 {

484 return;

485 }

486 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 790 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.16 CryptRand.c

10.2.16.1 Introduction

This file implements a DRBG with a behavior according to SP800-90A using a block cypher. This is also

compliant to ISO/IEC 18031:2011(E) C.3.2.

A state structure is created for use by TPM.lib and functions within the CryptoEngine() my use their own

state structures when they need to have deterministic values.

A debug mode is available that allows the random numbers generated for TPM.lib to be repeated during

runs of the simulator. The switch for it is in TpmBuildSwitches.h. It is USE_DEBUG_RNG.

This is the implementation layer of CTR DRGB mechanism as defined in SP800-90A and the functions

are organized as closely as practical to the organization in SP800-90A. It is intended to be compiled as a

separate module that is linked with a secure application so that both reside inside the same boundary [SP

800-90A 8.5]. The secure application in particular manages the accesses protected storage for the state

of the DRBG instantiations, and supplies the implementation functions here with a valid pointer to the

working state of the given instantiations (as a DRBG_STATE structure).

This DRBG mechanism implementation does not support prediction resistance. Thus

prediction_resistance_flag is omitted from Instantiate_function(), Reseed_function(), Generate_function()

argument lists [SP 800-90A 9.1, 9.2, 9.3], as well as from the working state data structure DRBG_STATE

[SP 800-90A 9.1].

This DRBG mechanism implementation always uses the highest security strength of available in the block

ciphers. Thus requested_security_strength parameter is omitted from Instantiate_function() and

Generate_function() argument lists [SP 800-90A 9.1, 9.2, 9.3], as well as from the working state data

structure DRBG_STATE [SP 800-90A 9.1].

Internal functions (ones without Crypt prefix) expect validated arguments and therefore use assertions

instead of runtime parameter checks and mostly return void instead of a status value.

1 #include "Tpm.h"

Pull in the test vector definitions and define the space

2 #include "PRNG_TestVectors.h"

3 const BYTE DRBG_NistTestVector_Entropy[] = {DRBG_TEST_INITIATE_ENTROPY};

4 const BYTE DRBG_NistTestVector_GeneratedInterm[] =

5 {DRBG_TEST_GENERATED_INTERM};

6

7 const BYTE DRBG_NistTestVector_EntropyReseed[] =

8 {DRBG_TEST_RESEED_ENTROPY};

9 const BYTE DRBG_NistTestVector_Generated[] = {DRBG_TEST_GENERATED};

10

11 //** Derivation Functions

12 //*** Description

13 // The functions in this section are used to reduce the personalization input values

14 // to make them usable as input for reseeding and instantiation. The overall

15 // behavior is intended to produce the same results as described in SP800-90A,

16 // section 10.4.2 "Derivation Function Using a Block Cipher Algorithm

17 // (Block_Cipher_df)." The code is broken into several subroutines to deal with the

18 // fact that the data used for personalization may come in several separate blocks

19 // such as a Template hash and a proof value and a primary seed.

20

21 //*** Derivation Function Defines and Structures

22

23 #define DF_COUNT (DRBG_KEY_SIZE_WORDS / DRBG_IV_SIZE_WORDS + 1)

24 #if DRBG_KEY_SIZE_BITS != 128 && DRBG_KEY_SIZE_BITS != 256

25 # error "CryptRand.c only written for AES with 128- or 256-bit keys."

26 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 791

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

27 typedef struct

28 {

29 DRBG_KEY_SCHEDULE keySchedule;

30 DRBG_IV iv[DF_COUNT];

31 DRBG_IV out1;

32 DRBG_IV buf;

33 int contents;

34 } DF_STATE, *PDF_STATE;

10.2.16.1.1 DfCompute()

This function does the incremental update of the derivation function state. It encrypts the iv value and

XOR's the results into each of the blocks of the output. This is equivalent to processing all of input data

for each output block.

35 static void

36 DfCompute(

37 PDF_STATE dfState

38)

39 {

40 int i;

41 int iv;

42 crypt_uword_t *pIv;

43 crypt_uword_t temp[DRBG_IV_SIZE_WORDS] = {0};

44 //

45 for(iv = 0; iv < DF_COUNT; iv++)

46 {

47 pIv = (crypt_uword_t *)&dfState->iv[iv].words[0];

48 for(i = 0; i < DRBG_IV_SIZE_WORDS; i++)

49 {

50 temp[i] ^= pIv[i] ^ dfState->buf.words[i];

51 }

52 DRBG_ENCRYPT(&dfState->keySchedule, &temp, pIv);

53 }

54 for(i = 0; i < DRBG_IV_SIZE_WORDS; i++)

55 dfState->buf.words[i] = 0;

56 dfState->contents = 0;

57 }

10.2.16.1.2 DfStart()

This initializes the output blocks with an encrypted counter value and initializes the key schedule.

58 static void

59 DfStart(

60 PDF_STATE dfState,

61 uint32_t inputLength

62)

63 {

64 BYTE init[8];

65 int i;

66 UINT32 drbgSeedSize = sizeof(DRBG_SEED);

67

68 const BYTE dfKey[DRBG_KEY_SIZE_BYTES] = {

69 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

70 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f

71 #if DRBG_KEY_SIZE_BYTES > 16

72 ,0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,

73 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f

74 #endif

75 };

76 memset(dfState, 0, sizeof(DF_STATE));

Trusted Platform Module Library Part 4: Supporting Routines

Page 792 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

77 DRBG_ENCRYPT_SETUP(&dfKey[0], DRBG_KEY_SIZE_BITS, &dfState->keySchedule);

78 // Create the first chaining values

79 for(i = 0; i < DF_COUNT; i++)

80 ((BYTE *)&dfState->iv[i])[3] = (BYTE)i;

81 DfCompute(dfState);

82 // initialize the first 64 bits of the IV in a way that doesn't depend

83 // on the size of the words used.

84 UINT32_TO_BYTE_ARRAY(inputLength, init);

85 UINT32_TO_BYTE_ARRAY(drbgSeedSize, &init[4]);

86 memcpy(&dfState->iv[0], init, 8);

87 dfState->contents = 4;

88 }

10.2.16.1.3 DfUpdate()

This updates the state with the input data. A byte at a time is moved into the state buffer until it is full and

then that block is encrypted by DfCompute().

89 static void

90 DfUpdate(

91 PDF_STATE dfState,

92 int size,

93 const BYTE *data

94)

95 {

96 while(size > 0)

97 {

98 int toFill = DRBG_IV_SIZE_BYTES - dfState->contents;

99 if(size < toFill)

100 toFill = size;

101 // Copy as many bytes as there are or until the state buffer is full

102 memcpy(&dfState->buf.bytes[dfState->contents], data, toFill);

103 // Reduce the size left by the amount copied

104 size -= toFill;

105 // Advance the data pointer by the amount copied

106 data += toFill;

107 // increase the buffer contents count by the amount copied

108 dfState->contents += toFill;

109 pAssert(dfState->contents <= DRBG_IV_SIZE_BYTES);

110 // If we have a full buffer, do a computation pass.

111 if(dfState->contents == DRBG_IV_SIZE_BYTES)

112 DfCompute(dfState);

113 }

114 }

10.2.16.1.4 DfEnd()

This function is called to get the result of the derivation function computation. If the buffer is not full, it is

padded with zeros. The output buffer is structured to be the same as a DRBG_SEED value so that the

function can return a pointer to the DRBG_SEED value in the DF_STATE structure.

115 static DRBG_SEED *

116 DfEnd(

117 PDF_STATE dfState

118)

119 {

120 // Since DfCompute is always called when a buffer is full, there is always

121 // space in the buffer for the terminator

122 dfState->buf.bytes[dfState->contents++] = 0x80;

123 // If the buffer is not full, pad with zeros

124 while(dfState->contents < DRBG_IV_SIZE_BYTES)

125 dfState->buf.bytes[dfState->contents++] = 0;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 793

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

126 // Do a final state update

127 DfCompute(dfState);

128 return (DRBG_SEED *)&dfState->iv;

129 }

10.2.16.1.5 DfBuffer()

Function to take an input buffer and do the derivation function to produce a DRBG_SEED value that can

be used in DRBG_Reseed();

130 static DRBG_SEED *

131 DfBuffer(

132 DRBG_SEED *output, // OUT: receives the result

133 int size, // IN: size of the buffer to add

134 BYTE *buf // IN: address of the buffer

135)

136 {

137 DF_STATE dfState;

138 if(size == 0 || buf == NULL)

139 return NULL;

140 // Initialize the derivation function

141 DfStart(&dfState, size);

142 DfUpdate(&dfState, size, buf);

143 DfEnd(&dfState);

144 memcpy(output, &dfState.iv[0], sizeof(DRBG_SEED));

145 return output;

146 }

10.2.16.1.6 DRBG_GetEntropy()

Even though this implementation never fails, it may get blocked indefinitely long in the call to get entropy

from the platform (DRBG_GetEntropy32()). This function is only used during instantiation of the DRBG for

manufacturing and on each start-up after an non-orderly shutdown.

Return Value Meaning

TRUE(1) requested entropy returned

FALSE(0) entropy Failure

147 BOOL

148 DRBG_GetEntropy(

149 UINT32 requiredEntropy, // IN: requested number of bytes of full

150 // entropy

151 BYTE *entropy // OUT: buffer to return collected entropy

152)

153 {

154 #if !USE_DEBUG_RNG

155

156 UINT32 obtainedEntropy;

157 INT32 returnedEntropy;

158

159 // If in debug mode, always use the self-test values for initialization

160 if(IsSelfTest())

161 {

162 #endif

163 // If doing simulated DRBG, then check to see if the

164 // entropyFailure condition is being tested

165 if(!IsEntropyBad())

166 {

167 // In self-test, the caller should be asking for exactly the seed

168 // size of entropy.

Trusted Platform Module Library Part 4: Supporting Routines

Page 794 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

169 pAssert(requiredEntropy == sizeof(DRBG_NistTestVector_Entropy));

170 memcpy(entropy, DRBG_NistTestVector_Entropy,

171 sizeof(DRBG_NistTestVector_Entropy));

172 }

173 #if !USE_DEBUG_RNG

174 }

175 else if(!IsEntropyBad())

176 {

177 // Collect entropy

178 // Note: In debug mode, the only "entropy" value ever returned

179 // is the value of the self-test vector.

180 for(returnedEntropy = 1, obtainedEntropy = 0;

181 obtainedEntropy < requiredEntropy && !IsEntropyBad();

182 obtainedEntropy += returnedEntropy)

183 {

184 returnedEntropy = _plat__GetEntropy(&entropy[obtainedEntropy],

185 requiredEntropy - obtainedEntropy);

186 if(returnedEntropy <= 0)

187 SetEntropyBad();

188 }

189 }

190 #endif

191 return !IsEntropyBad();

192 }

10.2.16.1.7 IncrementIv()

This function increments the IV value by 1. It is used by EncryptDRBG().

193 void

194 IncrementIv(

195 DRBG_IV *iv

196)

197 {

198 BYTE *ivP = ((BYTE *)iv) + DRBG_IV_SIZE_BYTES;

199 while((--ivP >= (BYTE *)iv) && ((*ivP = ((*ivP + 1) & 0xFF)) == 0));

200 }

10.2.16.1.8 EncryptDRBG()

This does the encryption operation for the DRBG. It will encrypt the input state counter (IV) using the

state key. Into the output buffer for as many times as it takes to generate the required number of bytes.

201 static BOOL

202 EncryptDRBG(

203 BYTE *dOut,

204 UINT32 dOutBytes,

205 DRBG_KEY_SCHEDULE *keySchedule,

206 DRBG_IV *iv,

207 UINT32 *lastValue // Points to the last output value

208)

209 {

210 #if FIPS_COMPLIANT

211 // For FIPS compliance, the DRBG has to do a continuous self-test to make sure that

212 // no two consecutive values are the same. This overhead is not incurred if the TPM

213 // is not required to be FIPS compliant

214 //

215 UINT32 temp[DRBG_IV_SIZE_BYTES / sizeof(UINT32)];

216 int i;

217 BYTE *p;

218

219 for(; dOutBytes > 0;)

220 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 795

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

221 // Increment the IV before each encryption (this is what makes this

222 // different from normal counter-mode encryption

223 IncrementIv(iv);

224 DRBG_ENCRYPT(keySchedule, iv, temp);

225 // Expect a 16 byte block

226 #if DRBG_IV_SIZE_BITS != 128

227 #error "Unsuppored IV size in DRBG"

228 #endif

229 if((lastValue[0] == temp[0])

230 && (lastValue[1] == temp[1])

231 && (lastValue[2] == temp[2])

232 && (lastValue[3] == temp[3])

233)

234 {

235 LOG_FAILURE(FATAL_ERROR_ENTROPY);

236 return FALSE;

237 }

238 lastValue[0] = temp[0];

239 lastValue[1] = temp[1];

240 lastValue[2] = temp[2];

241 lastValue[3] = temp[3];

242 i = MIN(dOutBytes, DRBG_IV_SIZE_BYTES);

243 dOutBytes -= i;

244 for(p = (BYTE *)temp; i > 0; i--)

245 *dOut++ = *p++;

246 }

247 #else // version without continuous self-test

248 NOT_REFERENCED(lastValue);

249 for(; dOutBytes >= DRBG_IV_SIZE_BYTES;

250 dOut = &dOut[DRBG_IV_SIZE_BYTES], dOutBytes -= DRBG_IV_SIZE_BYTES)

251 {

252 // Increment the IV

253 IncrementIv(iv);

254 DRBG_ENCRYPT(keySchedule, iv, dOut);

255 }

256 // If there is a partial, generate into a block-sized

257 // temp buffer and copy to the output.

258 if(dOutBytes != 0)

259 {

260 BYTE temp[DRBG_IV_SIZE_BYTES];

261 // Increment the IV

262 IncrementIv(iv);

263 DRBG_ENCRYPT(keySchedule, iv, temp);

264 memcpy(dOut, temp, dOutBytes);

265 }

266 #endif

267 return TRUE;

268 }

10.2.16.1.9 DRBG_Update()

This function performs the state update function. According to SP800-90A, a temp value is created by

doing CTR mode encryption of providedData and replacing the key and IV with these values. The one

difference is that, with counter mode, the IV is incremented after each block is encrypted and in this

operation, the counter is incremented before each block is encrypted. This function implements an

optimized version of the algorithm in that it does the update of the drbgState->seed in place and then

providedData is XORed into drbgState->seed to complete the encryption of providedData. This works

because the IV is the last thing that gets encrypted.

269 static BOOL

270 DRBG_Update(

271 DRBG_STATE *drbgState, // IN:OUT state to update

272 DRBG_KEY_SCHEDULE *keySchedule, // IN: the key schedule (optional)

Trusted Platform Module Library Part 4: Supporting Routines

Page 796 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

273 DRBG_SEED *providedData // IN: additional data

274)

275 {

276 UINT32 i;

277 BYTE *temp = (BYTE *)&drbgState->seed;

278 DRBG_KEY *key = pDRBG_KEY(&drbgState->seed);

279 DRBG_IV *iv = pDRBG_IV(&drbgState->seed);

280 DRBG_KEY_SCHEDULE localKeySchedule;

281 //

282 pAssert(drbgState->magic == DRBG_MAGIC);

283

284 // If an key schedule was not provided, make one

285 if(keySchedule == NULL)

286 {

287 if(DRBG_ENCRYPT_SETUP((BYTE *)key,

288 DRBG_KEY_SIZE_BITS, &localKeySchedule) != 0)

289 {

290 LOG_FAILURE(FATAL_ERROR_INTERNAL);

291 return FALSE;

292 }

293 keySchedule = &localKeySchedule;

294 }

295 // Encrypt the temp value

296

297 EncryptDRBG(temp, sizeof(DRBG_SEED), keySchedule, iv,

298 drbgState->lastValue);

299 if(providedData != NULL)

300 {

301 BYTE *pP = (BYTE *)providedData;

302 for(i = DRBG_SEED_SIZE_BYTES; i != 0; i--)

303 *temp++ ^= *pP++;

304 }

305 // Since temp points to the input key and IV, we are done and

306 // don't need to copy the resulting 'temp' to drbgState->seed

307 return TRUE;

308 }

10.2.16.1.10 DRBG_Reseed()

This function is used when reseeding of the DRBG is required. If entropy is provided, it is used in lieu of

using hardware entropy.

NOTE: the provided entropy must be the required size.

Return Value Meaning

TRUE(1) reseed succeeded

FALSE(0) reseed failed, probably due to the entropy generation

309 BOOL

310 DRBG_Reseed(

311 DRBG_STATE *drbgState, // IN: the state to update

312 DRBG_SEED *providedEntropy, // IN: entropy

313 DRBG_SEED *additionalData // IN:

314)

315 {

316 DRBG_SEED seed;

317

318 pAssert((drbgState != NULL) && (drbgState->magic == DRBG_MAGIC));

319

320 if(providedEntropy == NULL)

321 {

322 providedEntropy = &seed;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 797

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

323 if(!DRBG_GetEntropy(sizeof(DRBG_SEED), (BYTE *)providedEntropy))

324 return FALSE;

325 }

326 if(additionalData != NULL)

327 {

328 unsigned int i;

329

330 // XOR the provided data into the provided entropy

331 for(i = 0; i < sizeof(DRBG_SEED); i++)

332 ((BYTE *)providedEntropy)[i] ^= ((BYTE *)additionalData)[i];

333 }

334 DRBG_Update(drbgState, NULL, providedEntropy);

335

336 drbgState->reseedCounter = 1;

337

338 return TRUE;

339 }

10.2.16.1.11 DRBG_SelfTest()

This is run when the DRBG is instantiated and at startup

Return Value Meaning

TRUE(1) test OK

FALSE(0) test failed

340 BOOL

341 DRBG_SelfTest(

342 void

343)

344 {

345 BYTE buf[sizeof(DRBG_NistTestVector_Generated)];

346 DRBG_SEED seed;

347 UINT32 i;

348 BYTE *p;

349 DRBG_STATE testState;

350 //

351 pAssert(!IsSelfTest());

352

353 SetSelfTest();

354 SetDrbgTested();

355 // Do an instantiate

356 if(!DRBG_Instantiate(&testState, 0, NULL))

357 return FALSE;

358 #if DRBG_DEBUG_PRINT

359 dbgDumpMemBlock(pDRBG_KEY(&testState), DRBG_KEY_SIZE_BYTES,

360 "Key after Instantiate");

361 dbgDumpMemBlock(pDRBG_IV(&testState), DRBG_IV_SIZE_BYTES,

362 "Value after Instantiate");

363 #endif

364 if(DRBG_Generate((RAND_STATE *)&testState, buf, sizeof(buf)) == 0)

365 return FALSE;

366 #if DRBG_DEBUG_PRINT

367 dbgDumpMemBlock(pDRBG_KEY(&testState.seed), DRBG_KEY_SIZE_BYTES,

368 "Key after 1st Generate");

369 dbgDumpMemBlock(pDRBG_IV(&testState.seed), DRBG_IV_SIZE_BYTES,

370 "Value after 1st Generate");

371 #endif

372 if(memcmp(buf, DRBG_NistTestVector_GeneratedInterm, sizeof(buf)) != 0)

373 return FALSE;

374 memcpy(seed.bytes, DRBG_NistTestVector_EntropyReseed, sizeof(seed));

375 DRBG_Reseed(&testState, &seed, NULL);

Trusted Platform Module Library Part 4: Supporting Routines

Page 798 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

376 #if DRBG_DEBUG_PRINT

377 dbgDumpMemBlock((BYTE *)pDRBG_KEY(&testState.seed), DRBG_KEY_SIZE_BYTES,

378 "Key after 2nd Generate");

379 dbgDumpMemBlock((BYTE *)pDRBG_IV(&testState.seed), DRBG_IV_SIZE_BYTES,

380 "Value after 2nd Generate");

381 dbgDumpMemBlock(buf, sizeof(buf), "2nd Generated");

382 #endif

383 if(DRBG_Generate((RAND_STATE *)&testState, buf, sizeof(buf)) == 0)

384 return FALSE;

385 if(memcmp(buf, DRBG_NistTestVector_Generated, sizeof(buf)) != 0)

386 return FALSE;

387 ClearSelfTest();

388

389 DRBG_Uninstantiate(&testState);

390 for(p = (BYTE *)&testState, i = 0; i < sizeof(DRBG_STATE); i++)

391 {

392 if(*p++)

393 return FALSE;

394 }

395 // Simulate hardware failure to make sure that we get an error when

396 // trying to instantiate

397 SetEntropyBad();

398 if(DRBG_Instantiate(&testState, 0, NULL))

399 return FALSE;

400 ClearEntropyBad();

401

402 return TRUE;

403 }

10.2.16.2 Public Interface

10.2.16.2.1 Description

The functions in this section are the interface to the RNG. These are the functions that are used by

TPM.lib.

10.2.16.2.2 CryptRandomStir()

This function is used to cause a reseed. A DRBG_SEED amount of entropy is collected from the

hardware and then additional data is added.

Error Returns Meaning

TPM_RC_NO_RESULT failure of the entropy generator

404 LIB_EXPORT TPM_RC

405 CryptRandomStir(

406 UINT16 additionalDataSize,

407 BYTE *additionalData

408)

409 {

410 #if !USE_DEBUG_RNG

411 DRBG_SEED tmpBuf;

412 DRBG_SEED dfResult;

413 //

414 // All reseed with outside data starts with a buffer full of entropy

415 if(!DRBG_GetEntropy(sizeof(tmpBuf), (BYTE *)&tmpBuf))

416 return TPM_RC_NO_RESULT;

417

418 DRBG_Reseed(&drbgDefault, &tmpBuf,

419 DfBuffer(&dfResult, additionalDataSize, additionalData));

420 drbgDefault.reseedCounter = 1;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 799

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

421

422 return TPM_RC_SUCCESS;

423

424 #else

425 // If doing debug, use the input data as the initial setting for the RNG state

426 // so that the test can be reset at any time.

427 // Note: If this is called with a data size of 0 or less, nothing happens. The

428 // presumption is that, in a debug environment, the caller will have specific

429 // values for initialization, so this check is just a simple way to prevent

430 // inadvertent programming errors from screwing things up. This doesn't use an

431 // pAssert() because the non-debug version of this function will accept these

432 // parameters as meaning that there is no additionalData and only hardware

433 // entropy is used.

434 if((additionalDataSize > 0) && (additionalData != NULL))

435 {

436 memset(drbgDefault.seed.bytes, 0, sizeof(drbgDefault.seed.bytes));

437 memcpy(drbgDefault.seed.bytes, additionalData,

438 MIN(additionalDataSize, sizeof(drbgDefault.seed.bytes)));

439 }

440 drbgDefault.reseedCounter = 1;

441

442 return TPM_RC_SUCCESS;

443 #endif

444 }

10.2.16.2.3 CryptRandomGenerate()

Generate a randomSize number or random bytes.

445 LIB_EXPORT UINT16

446 CryptRandomGenerate(

447 UINT16 randomSize,

448 BYTE *buffer

449)

450 {

451 return DRBG_Generate((RAND_STATE *)&drbgDefault, buffer, randomSize);

452 }

10.2.16.2.4 DRBG_InstantiateSeededKdf()

This function is used to instantiate a KDF-based RNG. This is used for derivations. This function always

returns TRUE.

453 LIB_EXPORT BOOL

454 DRBG_InstantiateSeededKdf(

455 KDF_STATE *state, // OUT: buffer to hold the state

456 TPM_ALG_ID hashAlg, // IN: hash algorithm

457 TPM_ALG_ID kdf, // IN: the KDF to use

458 TPM2B *seed, // IN: the seed to use

459 const TPM2B *label, // IN: a label for the generation process.

460 TPM2B *context, // IN: the context value

461 UINT32 limit // IN: Maximum number of bits from the KDF

462)

463 {

464 state->magic = KDF_MAGIC;

465 state->limit = limit;

466 state->seed = seed;

467 state->hash = hashAlg;

468 state->kdf = kdf;

469 state->label = label;

470 state->context = context;

471 state->digestSize = CryptHashGetDigestSize(hashAlg);

472 state->counter = 0;

Trusted Platform Module Library Part 4: Supporting Routines

Page 800 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

473 state->residual.t.size = 0;

474 return TRUE;

475 }

10.2.16.2.5 DRBG_AdditionalData()

Function to reseed the DRBG with additional entropy. This is normally called before computing the

protection value of a primary key in the Endorsement hierarchy.

476 LIB_EXPORT void

477 DRBG_AdditionalData(

478 DRBG_STATE *drbgState, // IN:OUT state to update

479 TPM2B *additionalData // IN: value to incorporate

480)

481 {

482 DRBG_SEED dfResult;

483 if(drbgState->magic == DRBG_MAGIC)

484 {

485 DfBuffer(&dfResult, additionalData->size, additionalData->buffer);

486 DRBG_Reseed(drbgState, &dfResult, NULL);

487 }

488 }

10.2.16.2.6 DRBG_InstantiateSeeded()

This function is used to instantiate a random number generator from seed values. The nominal use of this

generator is to create sequences of pseudo-random numbers from a seed value.

Error Returns Meaning

TPM_RC_FAILURE DRBG self-test failure

489 LIB_EXPORT TPM_RC

490 DRBG_InstantiateSeeded(

491 DRBG_STATE *drbgState, // IN/OUT: buffer to hold the state

492 const TPM2B *seed, // IN: the seed to use

493 const TPM2B *purpose, // IN: a label for the generation process.

494 const TPM2B *name, // IN: name of the object

495 const TPM2B *additional // IN: additional data

496)

497 {

498 DF_STATE dfState;

499 int totalInputSize;

500 // DRBG should have been tested, but...

501 if(!IsDrbgTested() && !DRBG_SelfTest())

502 {

503 LOG_FAILURE(FATAL_ERROR_SELF_TEST);

504 return TPM_RC_FAILURE;

505 }

506 // Initialize the DRBG state

507 memset(drbgState, 0, sizeof(DRBG_STATE));

508 drbgState->magic = DRBG_MAGIC;

509

510 // Size all of the values

511 totalInputSize = (seed != NULL) ? seed->size : 0;

512 totalInputSize += (purpose != NULL) ? purpose->size : 0;

513 totalInputSize += (name != NULL) ? name->size : 0;

514 totalInputSize += (additional != NULL) ? additional->size : 0;

515

516 // Initialize the derivation

517 DfStart(&dfState, totalInputSize);

518

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 801

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

519 // Run all the input strings through the derivation function

520 if(seed != NULL)

521 DfUpdate(&dfState, seed->size, seed->buffer);

522 if(purpose != NULL)

523 DfUpdate(&dfState, purpose->size, purpose->buffer);

524 if(name != NULL)

525 DfUpdate(&dfState, name->size, name->buffer);

526 if(additional != NULL)

527 DfUpdate(&dfState, additional->size, additional->buffer);

528

529 // Used the derivation function output as the "entropy" input. This is not

530 // how it is described in SP800-90A but this is the equivalent function

531 DRBG_Reseed(((DRBG_STATE *)drbgState), DfEnd(&dfState), NULL);

532

533 return TPM_RC_SUCCESS;

534 }

10.2.16.2.7 CryptRandStartup()

This function is called when TPM_Startup is executed. This function always returns TRUE.

535 LIB_EXPORT BOOL

536 CryptRandStartup(

537 void

538)

539 {

540 #if ! _DRBG_STATE_SAVE

541 // If not saved in NV, re-instantiate on each startup

542 DRBG_Instantiate(&drbgDefault, 0, NULL);

543 #else

544 // If the running state is saved in NV, NV has to be loaded before it can

545 // be updated

546 if(go.drbgState.magic == DRBG_MAGIC)

547 DRBG_Reseed(&go.drbgState, NULL, NULL);

548 else

549 DRBG_Instantiate(&go.drbgState, 0, NULL);

550 #endif

551 return TRUE;

552 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 802 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.16.2.7.1 CryptRandInit()

This function is called when _TPM_Init() is being processed.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

553 LIB_EXPORT BOOL

554 CryptRandInit(

555 void

556)

557 {

558 #if !USE_DEBUG_RNG

559 _plat__GetEntropy(NULL, 0);

560 #endif

561 return DRBG_SelfTest();

562 }

10.2.16.2.8 DRBG_Generate()

This function generates a random sequence according SP800-90A. If random is not NULL, then

randomSize bytes of random values are generated. If random is NULL or randomSize is zero, then the

function returns zero without generating any bits or updating the reseed counter. This function returns the

number of bytes produced which could be less than the number requested if the request is too large ("too

large" is implementation dependent.)

563 LIB_EXPORT UINT16

564 DRBG_Generate(

565 RAND_STATE *state,

566 BYTE *random, // OUT: buffer to receive the random values

567 UINT16 randomSize // IN: the number of bytes to generate

568)

569 {

570 if(state == NULL)

571 state = (RAND_STATE *)&drbgDefault;

572 if(random == NULL)

573 return 0;

574

575 // If the caller used a KDF state, generate a sequence from the KDF not to

576 // exceed the limit.

577 if(state->kdf.magic == KDF_MAGIC)

578 {

579 KDF_STATE *kdf = (KDF_STATE *)state;

580 UINT32 counter = (UINT32)kdf->counter;

581 INT32 bytesLeft = randomSize;

582 //

583 // If the number of bytes to be returned would put the generator

584 // over the limit, then return 0

585 if((((kdf->counter * kdf->digestSize) + randomSize) * 8) > kdf->limit)

586 return 0;

587 // Process partial and full blocks until all requested bytes provided

588 while(bytesLeft > 0)

589 {

590 // If there is any residual data in the buffer, copy it to the output

591 // buffer

592 if(kdf->residual.t.size > 0)

593 {

594 INT32 size;

595 //

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 803

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

596 // Don't use more of the residual than will fit or more than are

597 // available

598 size = MIN(kdf->residual.t.size, bytesLeft);

599

600 // Copy some or all of the residual to the output. The residual is

601 // at the end of the buffer. The residual might be a full buffer.

602 MemoryCopy(random,

603 &kdf->residual.t.buffer

604 [kdf->digestSize - kdf->residual.t.size], size);

605

606 // Advance the buffer pointer

607 random += size;

608

609 // Reduce the number of bytes left to get

610 bytesLeft -= size;

611

612 // And reduce the residual size appropriately

613 kdf->residual.t.size -= (UINT16)size;

614 }

615 else

616 {

617 UINT16 blocks = (UINT16)(bytesLeft / kdf->digestSize);

618 //

619 // Get the number of required full blocks

620 if(blocks > 0)

621 {

622 UINT16 size = blocks * kdf->digestSize;

623 // Get some number of full blocks and put them in the return buffer

624 CryptKDFa(kdf->hash, kdf->seed, kdf->label, kdf->context, NULL,

625 kdf->limit, random, &counter, blocks);

626

627 // reduce the size remaining to be moved and advance the pointer

628 bytesLeft -= size;

629 random += size;

630 }

631 else

632 {

633 // Fill the residual buffer with a full block and then loop to

634 // top to get part of it copied to the output.

635 kdf->residual.t.size = CryptKDFa(kdf->hash, kdf->seed,

636 kdf->label, kdf->context, NULL,

637 kdf->limit,

638 kdf->residual.t.buffer,

639 &counter, 1);

640 }

641 }

642 }

643 kdf->counter = counter;

644 return randomSize;

645 }

646 else if(state->drbg.magic == DRBG_MAGIC)

647 {

648 DRBG_STATE *drbgState = (DRBG_STATE *)state;

649 DRBG_KEY_SCHEDULE keySchedule;

650 DRBG_SEED *seed = &drbgState->seed;

651

652 if(drbgState->reseedCounter >= CTR_DRBG_MAX_REQUESTS_PER_RESEED)

653 {

654 if(drbgState == &drbgDefault)

655 {

656 DRBG_Reseed(drbgState, NULL, NULL);

657 if(IsEntropyBad() && !IsSelfTest())

658 return 0;

659 }

660 else

661 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 804 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

662 // If this is a PRNG then the only way to get

663 // here is if the SW has run away.

664 LOG_FAILURE(FATAL_ERROR_INTERNAL);

665 return 0;

666 }

667 }

668 // if the allowed number of bytes in a request is larger than the

669 // less than the number of bytes that can be requested, then check

670 #if UINT16_MAX >= CTR_DRBG_MAX_BYTES_PER_REQUEST

671 if(randomSize > CTR_DRBG_MAX_BYTES_PER_REQUEST)

672 randomSize = CTR_DRBG_MAX_BYTES_PER_REQUEST;

673 #endif

674 // Create encryption schedule

675 if(DRBG_ENCRYPT_SETUP((BYTE *)pDRBG_KEY(seed),

676 DRBG_KEY_SIZE_BITS, &keySchedule) != 0)

677 {

678 LOG_FAILURE(FATAL_ERROR_INTERNAL);

679 return 0;

680 }

681 // Generate the random data

682 EncryptDRBG(random, randomSize, &keySchedule, pDRBG_IV(seed),

683 drbgState->lastValue);

684 // Do a key update

685 DRBG_Update(drbgState, &keySchedule, NULL);

686

687 // Increment the reseed counter

688 drbgState->reseedCounter += 1;

689 }

690 else

691 {

692 LOG_FAILURE(FATAL_ERROR_INTERNAL);

693 return FALSE;

694 }

695 return randomSize;

696 }

10.2.16.2.9 DRBG_Instantiate()

This is CTR_DRBG_Instantiate_algorithm() from [SP 800-90A 10.2.1.3.1]. This is called when a the TPM

DRBG is to be instantiated. This is called to instantiate a DRBG used by the TPM for normal operations.

Return Value Meaning

TRUE(1) instantiation succeeded

FALSE(0) instantiation failed

697 LIB_EXPORT BOOL

698 DRBG_Instantiate(

699 DRBG_STATE *drbgState, // OUT: the instantiated value

700 UINT16 pSize, // IN: Size of personalization string

701 BYTE *personalization // IN: The personalization string

702)

703 {

704 DRBG_SEED seed;

705 DRBG_SEED dfResult;

706 //

707 pAssert((pSize == 0) || (pSize <= sizeof(seed)) || (personalization != NULL));

708 // If the DRBG has not been tested, test when doing an instantiation. Since

709 // Instantiation is called during self test, make sure we don't get stuck in a

710 // loop.

711 if(!IsDrbgTested() && !IsSelfTest() && !DRBG_SelfTest())

712 return FALSE;

713 // If doing a self test, DRBG_GetEntropy will return the NIST

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 805

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

714 // test vector value.

715 if(!DRBG_GetEntropy(sizeof(seed), (BYTE *)&seed))

716 return FALSE;

717 // set everything to zero

718 memset(drbgState, 0, sizeof(DRBG_STATE));

719 drbgState->magic = DRBG_MAGIC;

720

721 // Steps 1, 2, 3, 6, 7 of SP 800-90A 10.2.1.3.1 are exactly what

722 // reseeding does. So, do a reduction on the personalization value (if any)

723 // and do a reseed.

724 DRBG_Reseed(drbgState, &seed, DfBuffer(&dfResult, pSize, personalization));

725

726 return TRUE;

727 }

10.2.16.2.10 DRBG_Uninstantiate()

This is Uninstantiate_function() from [SP 800-90A 9.4].

Error Returns Meaning

TPM_RC_VALUE not a valid state

728 LIB_EXPORT TPM_RC

729 DRBG_Uninstantiate(

730 DRBG_STATE *drbgState // IN/OUT: working state to erase

731)

732 {

733 if((drbgState == NULL) || (drbgState->magic != DRBG_MAGIC))

734 return TPM_RC_VALUE;

735 memset(drbgState, 0, sizeof(DRBG_STATE));

736 return TPM_RC_SUCCESS;

737 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 806 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.17 CryptRsa.c

10.2.17.1 Introduction

This file contains implementation of cryptographic primitives for RSA. Vendors may replace the

implementation in this file with their own library functions.

10.2.17.2 Includes

Need this define to get the private defines for this function

1 #define CRYPT_RSA_C

2 #include "Tpm.h"

3 #if ALG_RSA

10.2.17.3 Obligatory Initialization Functions

10.2.17.3.1 CryptRsaInit()

Function called at _TPM_Init().

4 BOOL

5 CryptRsaInit(

6 void

7)

8 {

9 return TRUE;

10 }

10.2.17.3.2 CryptRsaStartup()

Function called at TPM2_Startup()

11 BOOL

12 CryptRsaStartup(

13 void

14)

15 {

16 return TRUE;

17 }

10.2.17.4 Internal Functions

10.2.17.4.1 RsaInitializeExponent()

This function initializes the bignum data structure that holds the private exponent. This function returns

the pointer to the private exponent value so that it can be used in an initializer for a data declaration.

18 static privateExponent *

19 RsaInitializeExponent(

20 privateExponent *Z

21)

22 {

23 bigNum *bn = (bigNum *)&Z->P;

24 int i;

25 //

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 807

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

26 for(i = 0; i < 5; i++)

27 {

28 bn[i] = (bigNum)&Z->entries[i];

29 BnInit(bn[i], BYTES_TO_CRYPT_WORDS(sizeof(Z->entries[0].d)));

30 }

31 return Z;

32 }

10.2.17.4.2 MakePgreaterThanQ()

This function swaps the pointers for P and Q if Q happens to be larger than Q.

33 static void

34 MakePgreaterThanQ(

35 privateExponent *Z

36)

37 {

38 if(BnUnsignedCmp(Z->P, Z->Q) < 0)

39 {

40 bigNum bnT = Z->P;

41 Z->P = Z->Q;

42 Z->Q = bnT;

43 }

44 }

10.2.17.4.3 PackExponent()

This function takes the bignum private exponent and converts it into TPM2B form. In this form, the size

field contains the overall size of the packed data. The buffer contains 5, equal sized values in P, Q, dP,

dQ, qInv order. For example, if a key has a 2Kb public key, then the packed private key will contain 5,

1Kb values. This form makes it relatively easy to load and save the values without changing the normal

unmarshaling to do anything more than allow a larger TPM2B for the private key. Also, when exporting

the value, all that is needed is to change the size field of the private key in order to save just the P value.

Return Value Meaning

TRUE(1) success

FALSE(0) failure // The data is too big to fit

45 static BOOL

46 PackExponent(

47 TPM2B_PRIVATE_KEY_RSA *packed,

48 privateExponent *Z

49)

50 {

51 int i;

52 UINT16 primeSize = (UINT16)BITS_TO_BYTES(BnMsb(Z->P));

53 UINT16 pS = primeSize;

54 //

55 pAssert((primeSize * 5) <= sizeof(packed->t.buffer));

56 packed->t.size = (primeSize * 5) + RSA_prime_flag;

57 for(i = 0; i < 5; i++)

58 if(!BnToBytes((bigNum)&Z->entries[i], &packed->t.buffer[primeSize * i], &pS))

59 return FALSE;

60 if(pS != primeSize)

61 return FALSE;

62 return TRUE;

63 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 808 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.17.4.4 UnpackExponent()

This function unpacks the private exponent from its TPM2B form into its bignum form.

Return Value Meaning

TRUE(1) success

FALSE(0) TPM2B is not the correct size

64 static BOOL

65 UnpackExponent(

66 TPM2B_PRIVATE_KEY_RSA *b,

67 privateExponent *Z

68)

69 {

70 UINT16 primeSize = b->t.size & ~RSA_prime_flag;

71 int i;

72 bigNum *bn = &Z->P;

73 //

74 VERIFY(b->t.size & RSA_prime_flag);

75 RsaInitializeExponent(Z);

76 VERIFY((primeSize % 5) == 0);

77 primeSize /= 5;

78 for(i = 0; i < 5; i++)

79 VERIFY(BnFromBytes(bn[i], &b->t.buffer[primeSize * i], primeSize)

80 != NULL);

81 MakePgreaterThanQ(Z);

82 return TRUE;

83 Error:

84 return FALSE;

85 }

10.2.17.4.5 ComputePrivateExponent()

This function computes the private exponent from the primes.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

86 static BOOL

87 ComputePrivateExponent(

88 bigNum pubExp, // IN: the public exponent

89 privateExponent *Z // IN/OUT: on input, has primes P and Q. On

90 // output, has P, Q, dP, dQ, and pInv

91)

92 {

93 BOOL pOK;

94 BOOL qOK;

95 BN_PRIME(pT);

96 //

97 // make p the larger value so that m2 is always less than p

98 MakePgreaterThanQ(Z);

99

100 //dP = (1/e) mod (p-1)

101 pOK = BnSubWord(pT, Z->P, 1);

102 pOK = pOK && BnModInverse(Z->dP, pubExp, pT);

103 //dQ = (1/e) mod (q-1)

104 qOK = BnSubWord(pT, Z->Q, 1);

105 qOK = qOK && BnModInverse(Z->dQ, pubExp, pT);

106 // qInv = (1/q) mod p

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 809

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

107 if(pOK && qOK)

108 pOK = qOK = BnModInverse(Z->qInv, Z->Q, Z->P);

109 if(!pOK)

110 BnSetWord(Z->P, 0);

111 if(!qOK)

112 BnSetWord(Z->Q, 0);

113 return pOK && qOK;

114 }

10.2.17.4.6 RsaPrivateKeyOp()

This function is called to do the exponentiation with the private key. Compile options allow use of the

simple (but slow) private exponent, or the more complex but faster CRT method.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

115 static BOOL

116 RsaPrivateKeyOp(

117 bigNum inOut, // IN/OUT: number to be exponentiated

118 privateExponent *Z

119)

120 {

121 BN_RSA(M1);

122 BN_RSA(M2);

123 BN_RSA(M);

124 BN_RSA(H);

125 //

126 MakePgreaterThanQ(Z);

127 // m1 = cdP mod p

128 VERIFY(BnModExp(M1, inOut, Z->dP, Z->P));

129 // m2 = cdQ mod q

130 VERIFY(BnModExp(M2, inOut, Z->dQ, Z->Q));

131 // h = qInv * (m1 - m2) mod p = qInv * (m1 + P - m2) mod P because Q < P

132 // so m2 < P

133 VERIFY(BnSub(H, Z->P, M2));

134 VERIFY(BnAdd(H, H, M1));

135 VERIFY(BnModMult(H, H, Z->qInv, Z->P));

136 // m = m2 + h * q

137 VERIFY(BnMult(M, H, Z->Q));

138 VERIFY(BnAdd(inOut, M2, M));

139 return TRUE;

140 Error:

141 return FALSE;

142 }

10.2.17.4.7 RSAEP()

This function performs the RSAEP operation defined in PKCS#1v2.1. It is an exponentiation of a value

(m) with the public exponent (e), modulo the public (n).

Error Returns Meaning

TPM_RC_VALUE number to exponentiate is larger than the modulus

143 static TPM_RC

144 RSAEP(

145 TPM2B *dInOut, // IN: size of the encrypted block and the size of

146 // the encrypted value. It must be the size of

Trusted Platform Module Library Part 4: Supporting Routines

Page 810 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

147 // the modulus.

148 // OUT: the encrypted data. Will receive the

149 // decrypted value

150 OBJECT *key // IN: the key to use

151)

152 {

153 TPM2B_TYPE(4BYTES, 4);

154 TPM2B_4BYTES e2B;

155 UINT32 e = key->publicArea.parameters.rsaDetail.exponent;

156 //

157 if(e == 0)

158 e = RSA_DEFAULT_PUBLIC_EXPONENT;

159 UINT32_TO_BYTE_ARRAY(e, e2B.t.buffer);

160 e2B.t.size = 4;

161 return ModExpB(dInOut->size, dInOut->buffer, dInOut->size, dInOut->buffer,

162 e2B.t.size, e2B.t.buffer, key->publicArea.unique.rsa.t.size,

163 key->publicArea.unique.rsa.t.buffer);

164 }

10.2.17.4.8 RSADP()

This function performs the RSADP operation defined in PKCS#1v2.1. It is an exponentiation of a value (c)

with the private exponent (d), modulo the public modulus (n). The decryption is in place.

This function also checks the size of the private key. If the size indicates that only a prime value is

present, the key is converted to being a private exponent.

Error Returns Meaning

TPM_RC_SIZE the value to decrypt is larger than the modulus

165 static TPM_RC

166 RSADP(

167 TPM2B *inOut, // IN/OUT: the value to encrypt

168 OBJECT *key // IN: the key

169)

170 {

171 BN_RSA_INITIALIZED(bnM, inOut);

172 NEW_PRIVATE_EXPONENT(Z);

173 if(UnsignedCompareB(inOut->size, inOut->buffer,

174 key->publicArea.unique.rsa.t.size,

175 key->publicArea.unique.rsa.t.buffer) >= 0)

176 return TPM_RC_SIZE;

177 // private key operation requires that private exponent be loaded

178 // During self-test, this might not be the case so load it up if it hasn't

179 // already done

180 // been done

181 if((key->sensitive.sensitive.rsa.t.size & RSA_prime_flag) == 0)

182 {

183 if(CryptRsaLoadPrivateExponent(&key->publicArea, &key->sensitive)

184 != TPM_RC_SUCCESS)

185 return TPM_RC_BINDING;

186 }

187 VERIFY(UnpackExponent(&key->sensitive.sensitive.rsa, Z));

188 VERIFY(RsaPrivateKeyOp(bnM, Z));

189 VERIFY(BnTo2B(bnM, inOut, inOut->size));

190 return TPM_RC_SUCCESS;

191 Error:

192 return TPM_RC_FAILURE;

193 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 811

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.17.4.9 OaepEncode()

This function performs OAEP padding. The size of the buffer to receive the OAEP padded data must

equal the size of the modulus

Error Returns Meaning

TPM_RC_VALUE hashAlg is not valid or message size is too large

194 static TPM_RC

195 OaepEncode(

196 TPM2B *padded, // OUT: the pad data

197 TPM_ALG_ID hashAlg, // IN: algorithm to use for padding

198 const TPM2B *label, // IN: null-terminated string (may be NULL)

199 TPM2B *message, // IN: the message being padded

200 RAND_STATE *rand // IN: the random number generator to use

201)

202 {

203 INT32 padLen;

204 INT32 dbSize;

205 INT32 i;

206 BYTE mySeed[MAX_DIGEST_SIZE];

207 BYTE *seed = mySeed;

208 UINT16 hLen = CryptHashGetDigestSize(hashAlg);

209 BYTE mask[MAX_RSA_KEY_BYTES];

210 BYTE *pp;

211 BYTE *pm;

212 TPM_RC retVal = TPM_RC_SUCCESS;

213

214 pAssert(padded != NULL && message != NULL);

215

216 // A value of zero is not allowed because the KDF can't produce a result

217 // if the digest size is zero.

218 if(hLen == 0)

219 return TPM_RC_VALUE;

220

221 // Basic size checks

222 // make sure digest isn't too big for key size

223 if(padded->size < (2 * hLen) + 2)

224 ERROR_RETURN(TPM_RC_HASH);

225

226 // and that message will fit messageSize <= k - 2hLen - 2

227 if(message->size > (padded->size - (2 * hLen) - 2))

228 ERROR_RETURN(TPM_RC_VALUE);

229

230 // Hash L even if it is null

231 // Offset into padded leaving room for masked seed and byte of zero

232 pp = &padded->buffer[hLen + 1];

233 if(CryptHashBlock(hashAlg, label->size, (BYTE *)label->buffer,

234 hLen, pp) != hLen)

235 ERROR_RETURN(TPM_RC_FAILURE);

236

237 // concatenate PS of k mLen 2hLen 2

238 padLen = padded->size - message->size - (2 * hLen) - 2;

239 MemorySet(&pp[hLen], 0, padLen);

240 pp[hLen + padLen] = 0x01;

241 padLen += 1;

242 memcpy(&pp[hLen + padLen], message->buffer, message->size);

243

244 // The total size of db = hLen + pad + mSize;

245 dbSize = hLen + padLen + message->size;

246

247 // If testing, then use the provided seed. Otherwise, use values

248 // from the RNG

249 CryptRandomGenerate(hLen, mySeed);

Trusted Platform Module Library Part 4: Supporting Routines

Page 812 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

250 DRBG_Generate(rand, mySeed, (UINT16)hLen);

251 if(g_inFailureMode)

252 ERROR_RETURN(TPM_RC_FAILURE);

253 // mask = MGF1 (seed, nSize hLen 1)

254 CryptMGF1(dbSize, mask, hashAlg, hLen, seed);

255

256 // Create the masked db

257 pm = mask;

258 for(i = dbSize; i > 0; i--)

259 *pp++ ^= *pm++;

260 pp = &padded->buffer[hLen + 1];

261

262 // Run the masked data through MGF1

263 if(CryptMGF1(hLen, &padded->buffer[1], hashAlg, dbSize, pp) != (unsigned)hLen)

264 ERROR_RETURN(TPM_RC_VALUE);

265 // Now XOR the seed to create masked seed

266 pp = &padded->buffer[1];

267 pm = seed;

268 for(i = hLen; i > 0; i--)

269 *pp++ ^= *pm++;

270 // Set the first byte to zero

271 padded->buffer[0] = 0x00;

272 Exit:

273 return retVal;

274 }

10.2.17.4.10 OaepDecode()

This function performs OAEP padding checking. The size of the buffer to receive the recovered data. If

the padding is not valid, the dSize size is set to zero and the function returns TPM_RC_VALUE.

The dSize parameter is used as an input to indicate the size available in the buffer. If insufficient space is

available, the size is not changed and the return code is TPM_RC_VALUE.

Error Returns Meaning

TPM_RC_VALUE the value to decode was larger than the modulus, or the padding is
wrong or the buffer to receive the results is too small

275 static TPM_RC

276 OaepDecode(

277 TPM2B *dataOut, // OUT: the recovered data

278 TPM_ALG_ID hashAlg, // IN: algorithm to use for padding

279 const TPM2B *label, // IN: null-terminated string (may be NULL)

280 TPM2B *padded // IN: the padded data

281)

282 {

283 UINT32 i;

284 BYTE seedMask[MAX_DIGEST_SIZE];

285 UINT32 hLen = CryptHashGetDigestSize(hashAlg);

286

287 BYTE mask[MAX_RSA_KEY_BYTES];

288 BYTE *pp;

289 BYTE *pm;

290 TPM_RC retVal = TPM_RC_SUCCESS;

291

292 // Strange size (anything smaller can't be an OAEP padded block)

293 // Also check for no leading 0

294 if((padded->size < (unsigned)((2 * hLen) + 2)) || (padded->buffer[0] != 0))

295 ERROR_RETURN(TPM_RC_VALUE);

296 // Use the hash size to determine what to put through MGF1 in order

297 // to recover the seedMask

298 CryptMGF1(hLen, seedMask, hashAlg, padded->size - hLen - 1,

299 &padded->buffer[hLen + 1]);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 813

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

300

301 // Recover the seed into seedMask

302 pAssert(hLen <= sizeof(seedMask));

303 pp = &padded->buffer[1];

304 pm = seedMask;

305 for(i = hLen; i > 0; i--)

306 *pm++ ^= *pp++;

307

308 // Use the seed to generate the data mask

309 CryptMGF1(padded->size - hLen - 1, mask, hashAlg, hLen, seedMask);

310

311 // Use the mask generated from seed to recover the padded data

312 pp = &padded->buffer[hLen + 1];

313 pm = mask;

314 for(i = (padded->size - hLen - 1); i > 0; i--)

315 *pm++ ^= *pp++;

316

317 // Make sure that the recovered data has the hash of the label

318 // Put trial value in the seed mask

319 if((CryptHashBlock(hashAlg, label->size, (BYTE *)label->buffer,

320 hLen, seedMask)) != hLen)

321 FAIL(FATAL_ERROR_INTERNAL);

322 if(memcmp(seedMask, mask, hLen) != 0)

323 ERROR_RETURN(TPM_RC_VALUE);

324

325 // find the start of the data

326 pm = &mask[hLen];

327 for(i = (UINT32)padded->size - (2 * hLen) - 1; i > 0; i--)

328 {

329 if(*pm++ != 0)

330 break;

331 }

332 // If we ran out of data or didn't end with 0x01, then return an error

333 if(i == 0 || pm[-1] != 0x01)

334 ERROR_RETURN(TPM_RC_VALUE);

335

336 // pm should be pointing at the first part of the data

337 // and i is one greater than the number of bytes to move

338 i--;

339 if(i > dataOut->size)

340 // Special exit to preserve the size of the output buffer

341 return TPM_RC_VALUE;

342 memcpy(dataOut->buffer, pm, i);

343 dataOut->size = (UINT16)i;

344 Exit:

345 if(retVal != TPM_RC_SUCCESS)

346 dataOut->size = 0;

347 return retVal;

348 }

10.2.17.4.11 PKCS1v1_5Encode()

This function performs the encoding for RSAES-PKCS1-V1_5-ENCRYPT as defined in PKCS#1V2.1

Error Returns Meaning

TPM_RC_VALUE message size is too large

349 static TPM_RC

350 RSAES_PKCS1v1_5Encode(

351 TPM2B *padded, // OUT: the pad data

352 TPM2B *message, // IN: the message being padded

353 RAND_STATE *rand

354)

Trusted Platform Module Library Part 4: Supporting Routines

Page 814 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

355 {

356 UINT32 ps = padded->size - message->size - 3;

357 //

358 if(message->size > padded->size - 11)

359 return TPM_RC_VALUE;

360 // move the message to the end of the buffer

361 memcpy(&padded->buffer[padded->size - message->size], message->buffer,

362 message->size);

363 // Set the first byte to 0x00 and the second to 0x02

364 padded->buffer[0] = 0;

365 padded->buffer[1] = 2;

366

367 // Fill with random bytes

368 DRBG_Generate(rand, &padded->buffer[2], (UINT16)ps);

369 if(g_inFailureMode)

370 return TPM_RC_FAILURE;

371

372 // Set the delimiter for the random field to 0

373 padded->buffer[2 + ps] = 0;

374

375 // Now, the only messy part. Make sure that all the 'ps' bytes are non-zero

376 // In this implementation, use the value of the current index

377 for(ps++; ps > 1; ps--)

378 {

379 if(padded->buffer[ps] == 0)

380 padded->buffer[ps] = 0x55; // In the < 0.5% of the cases that the

381 // random value is 0, just pick a value to

382 // put into the spot.

383 }

384 return TPM_RC_SUCCESS;

385 }

10.2.17.4.12 RSAES_Decode()

This function performs the decoding for RSAES-PKCS1-V1_5-ENCRYPT as defined in PKCS#1V2.1

Error Returns Meaning

TPM_RC_FAIL decoding error or results would no fit into provided buffer

386 static TPM_RC

387 RSAES_Decode(

388 TPM2B *message, // OUT: the recovered message

389 TPM2B *coded // IN: the encoded message

390)

391 {

392 BOOL fail = FALSE;

393 UINT16 pSize;

394

395 fail = (coded->size < 11);

396 fail = (coded->buffer[0] != 0x00) | fail;

397 fail = (coded->buffer[1] != 0x02) | fail;

398 for(pSize = 2; pSize < coded->size; pSize++)

399 {

400 if(coded->buffer[pSize] == 0)

401 break;

402 }

403 pSize++;

404

405 // Make sure that pSize has not gone over the end and that there are at least 8

406 // bytes of pad data.

407 fail = (pSize > coded->size) | fail;

408 fail = ((pSize - 2) < 8) | fail;

409 if((message->size < (UINT16)(coded->size - pSize)) || fail)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 815

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

410 return TPM_RC_VALUE;

411 message->size = coded->size - pSize;

412 memcpy(message->buffer, &coded->buffer[pSize], coded->size - pSize);

413 return TPM_RC_SUCCESS;

414 }

10.2.17.4.13 CryptRsaPssSaltSize()

This function computes the salt size used in PSS. It is broken out so that the X509 code can get the same

value that is used by the encoding function in this module.

415 INT16

416 CryptRsaPssSaltSize(

417 INT16 hashSize,

418 INT16 outSize

419)

420 {

421 INT16 saltSize;

422 //

423 // (Mask Length) = (outSize - hashSize - 1);

424 // Max saltSize is (Mask Length) - 1

425 saltSize = (outSize - hashSize - 1) - 1;

426 // Use the maximum salt size allowed by FIPS 186-4

427 if(saltSize > hashSize)

428 saltSize = hashSize;

429 else if(saltSize < 0)

430 saltSize = 0;

431 return saltSize;

432 }

10.2.17.4.14 PssEncode()

This function creates an encoded block of data that is the size of modulus. The function uses the

maximum salt size that will fit in the encoded block.

Returns TPM_RC_SUCCESS or goes into failure mode.

433 static TPM_RC

434 PssEncode(

435 TPM2B *out, // OUT: the encoded buffer

436 TPM_ALG_ID hashAlg, // IN: hash algorithm for the encoding

437 TPM2B *digest, // IN: the digest

438 RAND_STATE *rand // IN: random number source

439)

440 {

441 UINT32 hLen = CryptHashGetDigestSize(hashAlg);

442 BYTE salt[MAX_RSA_KEY_BYTES - 1];

443 UINT16 saltSize;

444 BYTE *ps = salt;

445 BYTE *pOut;

446 UINT16 mLen;

447 HASH_STATE hashState;

448

449 // These are fatal errors indicating bad TPM firmware

450 pAssert(out != NULL && hLen > 0 && digest != NULL);

451

452 // Get the size of the mask

453 mLen = (UINT16)(out->size - hLen - 1);

454

455 // Set the salt size

456 saltSize = CryptRsaPssSaltSize((INT16)hLen, (INT16)out->size);

457

458 //using eOut for scratch space

Trusted Platform Module Library Part 4: Supporting Routines

Page 816 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

459 // Set the first 8 bytes to zero

460 pOut = out->buffer;

461 memset(pOut, 0, 8);

462

463 // Get set the salt

464 DRBG_Generate(rand, salt, saltSize);

465 if(g_inFailureMode)

466 return TPM_RC_FAILURE;

467

468 // Create the hash of the pad || input hash || salt

469 CryptHashStart(&hashState, hashAlg);

470 CryptDigestUpdate(&hashState, 8, pOut);

471 CryptDigestUpdate2B(&hashState, digest);

472 CryptDigestUpdate(&hashState, saltSize, salt);

473 CryptHashEnd(&hashState, hLen, &pOut[out->size - hLen - 1]);

474

475 // Create a mask

476 if(CryptMGF1(mLen, pOut, hashAlg, hLen, &pOut[mLen]) != mLen)

477 FAIL(FATAL_ERROR_INTERNAL);

478

479 // Since this implementation uses key sizes that are all even multiples of

480 // 8, just need to make sure that the most significant bit is CLEAR

481 *pOut &= 0x7f;

482

483 // Before we mess up the pOut value, set the last byte to 0xbc

484 pOut[out->size - 1] = 0xbc;

485

486 // XOR a byte of 0x01 at the position just before where the salt will be XOR'ed

487 pOut = &pOut[mLen - saltSize - 1];

488 *pOut++ ^= 0x01;

489

490 // XOR the salt data into the buffer

491 for(; saltSize > 0; saltSize--)

492 *pOut++ ^= *ps++;

493

494 // and we are done

495 return TPM_RC_SUCCESS;

496 }

10.2.17.4.15 PssDecode()

This function checks that the PSS encoded block was built from the provided digest. If the check is

successful, TPM_RC_SUCCESS is returned. Any other value indicates an error.

This implementation of PSS decoding is intended for the reference TPM implementation and is not at all

generalized. It is used to check signatures over hashes and assumptions are made about the sizes of

values. Those assumptions are enforce by this implementation. This implementation does allow for a

variable size salt value to have been used by the creator of the signature.

Error Returns Meaning

TPM_RC_SCHEME hashAlg is not a supported hash algorithm

TPM_RC_VALUE decode operation failed

497 static TPM_RC

498 PssDecode(

499 TPM_ALG_ID hashAlg, // IN: hash algorithm to use for the encoding

500 TPM2B *dIn, // In: the digest to compare

501 TPM2B *eIn // IN: the encoded data

502)

503 {

504 UINT32 hLen = CryptHashGetDigestSize(hashAlg);

505 BYTE mask[MAX_RSA_KEY_BYTES];

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 817

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

506 BYTE *pm = mask;

507 BYTE *pe;

508 BYTE pad[8] = {0};

509 UINT32 i;

510 UINT32 mLen;

511 BYTE fail;

512 TPM_RC retVal = TPM_RC_SUCCESS;

513 HASH_STATE hashState;

514

515 // These errors are indicative of failures due to programmer error

516 pAssert(dIn != NULL && eIn != NULL);

517 pe = eIn->buffer;

518

519 // check the hash scheme

520 if(hLen == 0)

521 ERROR_RETURN(TPM_RC_SCHEME);

522

523 // most significant bit must be zero

524 fail = pe[0] & 0x80;

525

526 // last byte must be 0xbc

527 fail |= pe[eIn->size - 1] ^ 0xbc;

528

529 // Use the hLen bytes at the end of the buffer to generate a mask

530 // Doesn't start at the end which is a flag byte

531 mLen = eIn->size - hLen - 1;

532 CryptMGF1(mLen, mask, hashAlg, hLen, &pe[mLen]);

533

534 // Clear the MSO of the mask to make it consistent with the encoding.

535 mask[0] &= 0x7F;

536

537 pAssert(mLen <= sizeof(mask));

538 // XOR the data into the mask to recover the salt. This sequence

539 // advances eIn so that it will end up pointing to the seed data

540 // which is the hash of the signature data

541 for(i = mLen; i > 0; i--)

542 *pm++ ^= *pe++;

543

544 // Find the first byte of 0x01 after a string of all 0x00

545 for(pm = mask, i = mLen; i > 0; i--)

546 {

547 if(*pm == 0x01)

548 break;

549 else

550 fail |= *pm++;

551 }

552 // i should not be zero

553 fail |= (i == 0);

554

555 // if we have failed, will continue using the entire mask as the salt value so

556 // that the timing attacks will not disclose anything (I don't think that this

557 // is a problem for TPM applications but, usually, we don't fail so this

558 // doesn't cost anything).

559 if(fail)

560 {

561 i = mLen;

562 pm = mask;

563 }

564 else

565 {

566 pm++;

567 i--;

568 }

569 // i contains the salt size and pm points to the salt. Going to use the input

570 // hash and the seed to recreate the hash in the lower portion of eIn.

571 CryptHashStart(&hashState, hashAlg);

Trusted Platform Module Library Part 4: Supporting Routines

Page 818 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

572

573 // add the pad of 8 zeros

574 CryptDigestUpdate(&hashState, 8, pad);

575

576 // add the provided digest value

577 CryptDigestUpdate(&hashState, dIn->size, dIn->buffer);

578

579 // and the salt

580 CryptDigestUpdate(&hashState, i, pm);

581

582 // get the result

583 fail |= (CryptHashEnd(&hashState, hLen, mask) != hLen);

584

585 // Compare all bytes

586 for(pm = mask; hLen > 0; hLen--)

587 // don't use fail = because that could skip the increment and compare

588 // operations after the first failure and that gives away timing

589 // information.

590 fail |= *pm++ ^ *pe++;

591

592 retVal = (fail != 0) ? TPM_RC_VALUE : TPM_RC_SUCCESS;

593 Exit:

594 return retVal;

595 }

10.2.17.4.16 MakeDerTag()

Construct the DER value that is used in RSASSA

Return Value Meaning

0 size of value

0 no hash exists

596 INT16

597 MakeDerTag(

598 TPM_ALG_ID hashAlg,

599 INT16 sizeOfBuffer,

600 BYTE *buffer

601)

602 {

603 // 0x30, 0x31, // SEQUENCE (2 elements) 1st

604 // 0x30, 0x0D, // SEQUENCE (2 elements)

605 // 0x06, 0x09, // HASH OID

606 // 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,

607 // 0x05, 0x00, // NULL

608 // 0x04, 0x20 // OCTET STRING

609 HASH_DEF *info = CryptGetHashDef(hashAlg);

610 INT16 oidSize;

611 // If no OID, can't do encode

612 VERIFY(info != NULL);

613 oidSize = 2 + (info->OID)[1];

614 // make sure this fits in the buffer

615 VERIFY(sizeOfBuffer >= (oidSize + 8));

616 *buffer++ = 0x30; // 1st SEQUENCE

617 // Size of the 1st SEQUENCE is 6 bytes + size of the hash OID + size of the

618 // digest size

619 *buffer++ = (BYTE)(6 + oidSize + info->digestSize); //

620 *buffer++ = 0x30; // 2nd SEQUENCE

621 // size is 4 bytes of overhead plus the side of the OID

622 *buffer++ = (BYTE)(2 + oidSize);

623 MemoryCopy(buffer, info->OID, oidSize);

624 buffer += oidSize;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 819

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

625 *buffer++ = 0x05; // Add a NULL

626 *buffer++ = 0x00;

627

628 *buffer++ = 0x04;

629 *buffer++ = (BYTE)(info->digestSize);

630 return oidSize + 8;

631 Error:

632 return 0;

633

634 }

10.2.17.4.17 RSASSA_Encode()

Encode a message using PKCS1v1.5 method.

Error Returns Meaning

TPM_RC_SCHEME hashAlg is not a supported hash algorithm

TPM_RC_SIZE eOutSize is not large enough

TPM_RC_VALUE hInSize does not match the digest size of hashAlg

635 static TPM_RC

636 RSASSA_Encode(

637 TPM2B *pOut, // IN:OUT on in, the size of the public key

638 // on out, the encoded area

639 TPM_ALG_ID hashAlg, // IN: hash algorithm for PKCS1v1_5

640 TPM2B *hIn // IN: digest value to encode

641)

642 {

643 BYTE DER[20];

644 BYTE *der = DER;

645 INT32 derSize = MakeDerTag(hashAlg, sizeof(DER), DER);

646 BYTE *eOut;

647 INT32 fillSize;

648 TPM_RC retVal = TPM_RC_SUCCESS;

649

650 // Can't use this scheme if the algorithm doesn't have a DER string defined.

651 if(derSize == 0)

652 ERROR_RETURN(TPM_RC_SCHEME);

653

654 // If the digest size of 'hashAl' doesn't match the input digest size, then

655 // the DER will misidentify the digest so return an error

656 if(CryptHashGetDigestSize(hashAlg) != hIn->size)

657 ERROR_RETURN(TPM_RC_VALUE);

658 fillSize = pOut->size - derSize - hIn->size - 3;

659 eOut = pOut->buffer;

660

661 // Make sure that this combination will fit in the provided space

662 if(fillSize < 8)

663 ERROR_RETURN(TPM_RC_SIZE);

664

665 // Start filling

666 *eOut++ = 0; // initial byte of zero

667 *eOut++ = 1; // byte of 0x01

668 for(; fillSize > 0; fillSize--)

669 *eOut++ = 0xff; // bunch of 0xff

670 *eOut++ = 0; // another 0

671 for(; derSize > 0; derSize--)

672 *eOut++ = *der++; // copy the DER

673 der = hIn->buffer;

674 for(fillSize = hIn->size; fillSize > 0; fillSize--)

675 *eOut++ = *der++; // copy the hash

676 Exit:

Trusted Platform Module Library Part 4: Supporting Routines

Page 820 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

677 return retVal;

678 }

10.2.17.4.18 RSASSA_Decode()

This function performs the RSASSA decoding of a signature.

Error Returns Meaning

TPM_RC_VALUE decode unsuccessful

TPM_RC_SCHEME haslAlg is not supported

679 static TPM_RC

680 RSASSA_Decode(

681 TPM_ALG_ID hashAlg, // IN: hash algorithm to use for the encoding

682 TPM2B *hIn, // In: the digest to compare

683 TPM2B *eIn // IN: the encoded data

684)

685 {

686 BYTE fail;

687 BYTE DER[20];

688 BYTE *der = DER;

689 INT32 derSize = MakeDerTag(hashAlg, sizeof(DER), DER);

690 BYTE *pe;

691 INT32 hashSize = CryptHashGetDigestSize(hashAlg);

692 INT32 fillSize;

693 TPM_RC retVal;

694 BYTE *digest;

695 UINT16 digestSize;

696

697 pAssert(hIn != NULL && eIn != NULL);

698 pe = eIn->buffer;

699

700 // Can't use this scheme if the algorithm doesn't have a DER string

701 // defined or if the provided hash isn't the right size

702 if(derSize == 0 || (unsigned)hashSize != hIn->size)

703 ERROR_RETURN(TPM_RC_SCHEME);

704

705 // Make sure that this combination will fit in the provided space

706 // Since no data movement takes place, can just walk though this

707 // and accept nearly random values. This can only be called from

708 // CryptValidateSignature() so eInSize is known to be in range.

709 fillSize = eIn->size - derSize - hashSize - 3;

710

711 // Start checking (fail will become non-zero if any of the bytes do not have

712 // the expected value.

713 fail = *pe++; // initial byte of zero

714 fail |= *pe++ ^ 1; // byte of 0x01

715 for(; fillSize > 0; fillSize--)

716 fail |= *pe++ ^ 0xff; // bunch of 0xff

717 fail |= *pe++; // another 0

718 for(; derSize > 0; derSize--)

719 fail |= *pe++ ^ *der++; // match the DER

720 digestSize = hIn->size;

721 digest = hIn->buffer;

722 for(; digestSize > 0; digestSize--)

723 fail |= *pe++ ^ *digest++; // match the hash

724 retVal = (fail != 0) ? TPM_RC_VALUE : TPM_RC_SUCCESS;

725 Exit:

726 return retVal;

727 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 821

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.17.5 Externally Accessible Functions

10.2.17.5.1 CryptRsaSelectScheme()

This function is used by TPM2_RSA_Decrypt() and TPM2_RSA_Encrypt(). It sets up the rules to select a

scheme between input and object default. This function assume the RSA object is loaded. If a default

scheme is defined in object, the default scheme should be chosen, otherwise, the input scheme should

be chosen. In the case that both the object and scheme are not TPM_ALG_NULL, then if the schemes

are the same, the input scheme will be chosen. if the scheme are not compatible, a NULL pointer will be

returned.

The return pointer may point to a TPM_ALG_NULL scheme.

728 TPMT_RSA_DECRYPT*

729 CryptRsaSelectScheme(

730 TPMI_DH_OBJECT rsaHandle, // IN: handle of an RSA key

731 TPMT_RSA_DECRYPT *scheme // IN: a sign or decrypt scheme

732)

733 {

734 OBJECT *rsaObject;

735 TPMT_ASYM_SCHEME *keyScheme;

736 TPMT_RSA_DECRYPT *retVal = NULL;

737

738 // Get sign object pointer

739 rsaObject = HandleToObject(rsaHandle);

740 keyScheme = &rsaObject->publicArea.parameters.asymDetail.scheme;

741

742 // if the default scheme of the object is TPM_ALG_NULL, then select the

743 // input scheme

744 if(keyScheme->scheme == TPM_ALG_NULL)

745 {

746 retVal = scheme;

747 }

748 // if the object scheme is not TPM_ALG_NULL and the input scheme is

749 // TPM_ALG_NULL, then select the default scheme of the object.

750 else if(scheme->scheme == TPM_ALG_NULL)

751 {

752 // if input scheme is NULL

753 retVal = (TPMT_RSA_DECRYPT *)keyScheme;

754 }

755 // get here if both the object scheme and the input scheme are

756 // not TPM_ALG_NULL. Need to insure that they are the same.

757 // IMPLEMENTATION NOTE: This could cause problems if future versions have

758 // schemes that have more values than just a hash algorithm. A new function

759 // (IsSchemeSame()) might be needed then.

760 else if(keyScheme->scheme == scheme->scheme

761 && keyScheme->details.anySig.hashAlg == scheme->details.anySig.hashAlg)

762 {

763 retVal = scheme;

764 }

765 // two different, incompatible schemes specified will return NULL

766 return retVal;

767 }

10.2.17.5.2 CryptRsaLoadPrivateExponent()

This function is called to generate the private exponent of an RSA key.

Trusted Platform Module Library Part 4: Supporting Routines

Page 822 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Error Returns Meaning

TPM_RC_BINDING public and private parts of rsaKey are not matched

768 TPM_RC

769 CryptRsaLoadPrivateExponent(

770 TPMT_PUBLIC *publicArea,

771 TPMT_SENSITIVE *sensitive

772)

773 {

774 //

775 if((sensitive->sensitive.rsa.t.size & RSA_prime_flag) == 0)

776 {

777 if((sensitive->sensitive.rsa.t.size * 2) == publicArea->unique.rsa.t.size)

778 {

779 NEW_PRIVATE_EXPONENT(Z);

780 BN_RSA_INITIALIZED(bnN, &publicArea->unique.rsa);

781 BN_RSA(bnQr);

782 BN_VAR(bnE, RADIX_BITS);

783

784 TEST(ALG_NULL_VALUE);

785

786 VERIFY((sensitive->sensitive.rsa.t.size * 2)

787 == publicArea->unique.rsa.t.size);

788 // Initialize the exponent

789 BnSetWord(bnE, publicArea->parameters.rsaDetail.exponent);

790 if(BnEqualZero(bnE))

791 BnSetWord(bnE, RSA_DEFAULT_PUBLIC_EXPONENT);

792 // Convert first prime to 2B

793 VERIFY(BnFrom2B(Z->P, &sensitive->sensitive.rsa.b) != NULL);

794

795 // Find the second prime by division. This uses 'bQ' rather than Z->Q

796 // because the division could make the quotient larger than a prime during

797 // some intermediate step.

798 VERIFY(BnDiv(Z->Q, bnQr, bnN, Z->P));

799 VERIFY(BnEqualZero(bnQr));

800 // Compute the private exponent and return it if found

801 VERIFY(ComputePrivateExponent(bnE, Z));

802 VERIFY(PackExponent(&sensitive->sensitive.rsa, Z));

803 }

804 else

805 VERIFY(((sensitive->sensitive.rsa.t.size / 5) * 2)

806 == publicArea->unique.rsa.t.size);

807 sensitive->sensitive.rsa.t.size |= RSA_prime_flag;

808 }

809 return TPM_RC_SUCCESS;

810 Error:

811 return TPM_RC_BINDING;

812 }

10.2.17.5.3 CryptRsaEncrypt()

This is the entry point for encryption using RSA. Encryption is use of the public exponent. The padding

parameter determines what padding will be used.

The cOutSize parameter must be at least as large as the size of the key.

If the padding is RSA_PAD_NONE, dIn is treated as a number. It must be lower in value than the key

modulus.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 823

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

NOTE: If dIn has fewer bytes than cOut, then we don't add low-order zeros to dIn to make it the size of the RSA key for
the call to RSAEP. This is because the high order bytes of dIn might have a numeric value that is greater than
the value of the key modulus. If this had low-order zeros added, it would have a numeric value larger than the
modulus even though it started out with a lower numeric value.

Error Returns Meaning

TPM_RC_VALUE cOutSize is too small (must be the size of the modulus)

TPM_RC_SCHEME padType is not a supported scheme

813 LIB_EXPORT TPM_RC

814 CryptRsaEncrypt(

815 TPM2B_PUBLIC_KEY_RSA *cOut, // OUT: the encrypted data

816 TPM2B *dIn, // IN: the data to encrypt

817 OBJECT *key, // IN: the key used for encryption

818 TPMT_RSA_DECRYPT *scheme, // IN: the type of padding and hash

819 // if needed

820 const TPM2B *label, // IN: in case it is needed

821 RAND_STATE *rand // IN: random number generator

822 // state (mostly for testing)

823)

824 {

825 TPM_RC retVal = TPM_RC_SUCCESS;

826 TPM2B_PUBLIC_KEY_RSA dataIn;

827 //

828 // if the input and output buffers are the same, copy the input to a scratch

829 // buffer so that things don't get messed up.

830 if(dIn == &cOut->b)

831 {

832 MemoryCopy2B(&dataIn.b, dIn, sizeof(dataIn.t.buffer));

833 dIn = &dataIn.b;

834 }

835 // All encryption schemes return the same size of data

836 cOut->t.size = key->publicArea.unique.rsa.t.size;

837 TEST(scheme->scheme);

838

839 switch(scheme->scheme)

840 {

841 case ALG_NULL_VALUE: // 'raw' encryption

842 {

843 INT32 i;

844 INT32 dSize = dIn->size;

845 // dIn can have more bytes than cOut as long as the extra bytes

846 // are zero. Note: the more significant bytes of a number in a byte

847 // buffer are the bytes at the start of the array.

848 for(i = 0; (i < dSize) && (dIn->buffer[i] == 0); i++);

849 dSize -= i;

850 if(dSize > cOut->t.size)

851 ERROR_RETURN(TPM_RC_VALUE);

852 // Pad cOut with zeros if dIn is smaller

853 memset(cOut->t.buffer, 0, cOut->t.size - dSize);

854 // And copy the rest of the value

855 memcpy(&cOut->t.buffer[cOut->t.size - dSize], &dIn->buffer[i], dSize);

856

857 // If the size of dIn is the same as cOut dIn could be larger than

858 // the modulus. If it is, then RSAEP() will catch it.

859 }

860 break;

861 case ALG_RSAES_VALUE:

862 retVal = RSAES_PKCS1v1_5Encode(&cOut->b, dIn, rand);

863 break;

864 case ALG_OAEP_VALUE:

865 retVal = OaepEncode(&cOut->b, scheme->details.oaep.hashAlg, label, dIn,

866 rand);

Trusted Platform Module Library Part 4: Supporting Routines

Page 824 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

867 break;

868 default:

869 ERROR_RETURN(TPM_RC_SCHEME);

870 break;

871 }

872 // All the schemes that do padding will come here for the encryption step

873 // Check that the Encoding worked

874 if(retVal == TPM_RC_SUCCESS)

875 // Padding OK so do the encryption

876 retVal = RSAEP(&cOut->b, key);

877 Exit:

878 return retVal;

879 }

10.2.17.5.4 CryptRsaDecrypt()

This is the entry point for decryption using RSA. Decryption is use of the private exponent. The padType

parameter determines what padding was used.

Error Returns Meaning

TPM_RC_SIZE cInSize is not the same as the size of the public modulus of key; or
numeric value of the encrypted data is greater than the modulus

TPM_RC_VALUE dOutSize is not large enough for the result

TPM_RC_SCHEME padType is not supported

880 LIB_EXPORT TPM_RC

881 CryptRsaDecrypt(

882 TPM2B *dOut, // OUT: the decrypted data

883 TPM2B *cIn, // IN: the data to decrypt

884 OBJECT *key, // IN: the key to use for decryption

885 TPMT_RSA_DECRYPT *scheme, // IN: the padding scheme

886 const TPM2B *label // IN: in case it is needed for the scheme

887)

888 {

889 TPM_RC retVal;

890

891 // Make sure that the necessary parameters are provided

892 pAssert(cIn != NULL && dOut != NULL && key != NULL);

893

894 // Size is checked to make sure that the encrypted value is the right size

895 if(cIn->size != key->publicArea.unique.rsa.t.size)

896 ERROR_RETURN(TPM_RC_SIZE);

897

898 TEST(scheme->scheme);

899

900 // For others that do padding, do the decryption in place and then

901 // go handle the decoding.

902 retVal = RSADP(cIn, key);

903 if(retVal == TPM_RC_SUCCESS)

904 {

905 // Remove padding

906 switch(scheme->scheme)

907 {

908 case ALG_NULL_VALUE:

909 if(dOut->size < cIn->size)

910 return TPM_RC_VALUE;

911 MemoryCopy2B(dOut, cIn, dOut->size);

912 break;

913 case ALG_RSAES_VALUE:

914 retVal = RSAES_Decode(dOut, cIn);

915 break;

916 case ALG_OAEP_VALUE:

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 825

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

917 retVal = OaepDecode(dOut, scheme->details.oaep.hashAlg, label, cIn);

918 break;

919 default:

920 retVal = TPM_RC_SCHEME;

921 break;

922 }

923 }

924 Exit:

925 return retVal;

926 }

10.2.17.5.5 CryptRsaSign()

This function is used to generate an RSA signature of the type indicated in scheme.

Error Returns Meaning

TPM_RC_SCHEME scheme or hashAlg are not supported

TPM_RC_VALUE hInSize does not match hashAlg (for RSASSA)

927 LIB_EXPORT TPM_RC

928 CryptRsaSign(

929 TPMT_SIGNATURE *sigOut,

930 OBJECT *key, // IN: key to use

931 TPM2B_DIGEST *hIn, // IN: the digest to sign

932 RAND_STATE *rand // IN: the random number generator

933 // to use (mostly for testing)

934)

935 {

936 TPM_RC retVal = TPM_RC_SUCCESS;

937 UINT16 modSize;

938

939 // parameter checks

940 pAssert(sigOut != NULL && key != NULL && hIn != NULL);

941

942 modSize = key->publicArea.unique.rsa.t.size;

943

944 // for all non-null signatures, the size is the size of the key modulus

945 sigOut->signature.rsapss.sig.t.size = modSize;

946

947 TEST(sigOut->sigAlg);

948

949 switch(sigOut->sigAlg)

950 {

951 case ALG_NULL_VALUE:

952 sigOut->signature.rsapss.sig.t.size = 0;

953 return TPM_RC_SUCCESS;

954 case ALG_RSAPSS_VALUE:

955 retVal = PssEncode(&sigOut->signature.rsapss.sig.b,

956 sigOut->signature.rsapss.hash, &hIn->b, rand);

957 break;

958 case ALG_RSASSA_VALUE:

959 retVal = RSASSA_Encode(&sigOut->signature.rsassa.sig.b,

960 sigOut->signature.rsassa.hash, &hIn->b);

961 break;

962 default:

963 retVal = TPM_RC_SCHEME;

964 }

965 if(retVal == TPM_RC_SUCCESS)

966 {

967 // Do the encryption using the private key

968 retVal = RSADP(&sigOut->signature.rsapss.sig.b, key);

969 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 826 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

970 return retVal;

971 }

10.2.17.5.6 CryptRsaValidateSignature()

This function is used to validate an RSA signature. If the signature is valid TPM_RC_SUCCESS is

returned. If the signature is not valid, TPM_RC_SIGNATURE is returned. Other return codes indicate

either parameter problems or fatal errors.

Error Returns Meaning

TPM_RC_SIGNATURE the signature does not check

TPM_RC_SCHEME unsupported scheme or hash algorithm

972 LIB_EXPORT TPM_RC

973 CryptRsaValidateSignature(

974 TPMT_SIGNATURE *sig, // IN: signature

975 OBJECT *key, // IN: public modulus

976 TPM2B_DIGEST *digest // IN: The digest being validated

977)

978 {

979 TPM_RC retVal;

980 //

981 // Fatal programming errors

982 pAssert(key != NULL && sig != NULL && digest != NULL);

983 switch(sig->sigAlg)

984 {

985 case ALG_RSAPSS_VALUE:

986 case ALG_RSASSA_VALUE:

987 break;

988 default:

989 return TPM_RC_SCHEME;

990 }

991

992 // Errors that might be caused by calling parameters

993 if(sig->signature.rsassa.sig.t.size != key->publicArea.unique.rsa.t.size)

994 ERROR_RETURN(TPM_RC_SIGNATURE);

995

996 TEST(sig->sigAlg);

997

998 // Decrypt the block

999 retVal = RSAEP(&sig->signature.rsassa.sig.b, key);

1000 if(retVal == TPM_RC_SUCCESS)

1001 {

1002 switch(sig->sigAlg)

1003 {

1004 case ALG_RSAPSS_VALUE:

1005 retVal = PssDecode(sig->signature.any.hashAlg, &digest->b,

1006 &sig->signature.rsassa.sig.b);

1007 break;

1008 case ALG_RSASSA_VALUE:

1009 retVal = RSASSA_Decode(sig->signature.any.hashAlg, &digest->b,

1010 &sig->signature.rsassa.sig.b);

1011 break;

1012 default:

1013 return TPM_RC_SCHEME;

1014 }

1015 }

1016 Exit:

1017 return (retVal != TPM_RC_SUCCESS) ? TPM_RC_SIGNATURE : TPM_RC_SUCCESS;

1018 }

1019 #if SIMULATION && USE_RSA_KEY_CACHE

1020 extern int s_rsaKeyCacheEnabled;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 827

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1021 int GetCachedRsaKey(TPMT_PUBLIC *publicArea, TPMT_SENSITIVE *sensitive,

1022 RAND_STATE *rand);

1023 #define GET_CACHED_KEY(publicArea, sensitive, rand) \

1024 (s_rsaKeyCacheEnabled && GetCachedRsaKey(publicArea, sensitive, rand))

1025 #else

1026 #define GET_CACHED_KEY(key, rand)

1027 #endif

10.2.17.5.7 CryptRsaGenerateKey()

Generate an RSA key from a provided seed

Error Returns Meaning

TPM_RC_CANCELED operation was canceled

TPM_RC_RANGE public exponent is not supported

TPM_RC_VALUE could not find a prime using the provided parameters

1028 LIB_EXPORT TPM_RC

1029 CryptRsaGenerateKey(

1030 TPMT_PUBLIC *publicArea,

1031 TPMT_SENSITIVE *sensitive,

1032 RAND_STATE *rand // IN: if not NULL, the deterministic

1033 // RNG state

1034)

1035 {

1036 UINT32 i;

1037 BN_RSA(bnD);

1038 BN_RSA(bnN);

1039 BN_WORD(bnPubExp);

1040 UINT32 e = publicArea->parameters.rsaDetail.exponent;

1041 int keySizeInBits;

1042 TPM_RC retVal = TPM_RC_NO_RESULT;

1043 NEW_PRIVATE_EXPONENT(Z);

1044 //

1045

1046 // Need to make sure that the caller did not specify an exponent that is

1047 // not supported

1048 e = publicArea->parameters.rsaDetail.exponent;

1049 if(e == 0)

1050 e = RSA_DEFAULT_PUBLIC_EXPONENT;

1051 else

1052 {

1053 if(e < 65537)

1054 ERROR_RETURN(TPM_RC_RANGE);

1055 // Check that e is prime

1056 if(!IsPrimeInt(e))

1057 ERROR_RETURN(TPM_RC_RANGE);

1058 }

1059 BnSetWord(bnPubExp, e);

1060

1061 // check for supported key size.

1062 keySizeInBits = publicArea->parameters.rsaDetail.keyBits;

1063 if(((keySizeInBits % 1024) != 0)

1064 || (keySizeInBits > MAX_RSA_KEY_BITS) // this might be redundant, but...

1065 || (keySizeInBits == 0))

1066 ERROR_RETURN(TPM_RC_VALUE);

1067

1068 // Set the prime size for instrumentation purposes

1069 INSTRUMENT_SET(PrimeIndex, PRIME_INDEX(keySizeInBits / 2));

1070

1071 #if SIMULATION && USE_RSA_KEY_CACHE

1072 if(GET_CACHED_KEY(publicArea, sensitive, rand))

Trusted Platform Module Library Part 4: Supporting Routines

Page 828 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

1073 return TPM_RC_SUCCESS;

1074 #endif

1075

1076 // Make sure that key generation has been tested

1077 TEST(ALG_NULL_VALUE);

1078

1079 // The prime is computed in P. When a new prime is found, Q is checked to

1080 // see if it is zero. If so, P is copied to Q and a new P is found.

1081 // When both P and Q are non-zero, the modulus and

1082 // private exponent are computed and a trial encryption/decryption is

1083 // performed. If the encrypt/decrypt fails, assume that at least one of the

1084 // primes is composite. Since we don't know which one, set Q to zero and start

1085 // over and find a new pair of primes.

1086

1087 for(i = 1; (retVal == TPM_RC_NO_RESULT) && (i != 100); i++)

1088 {

1089 if(_plat__IsCanceled())

1090 ERROR_RETURN(TPM_RC_CANCELED);

1091

1092 if(BnGeneratePrimeForRSA(Z->P, keySizeInBits / 2, e, rand) == TPM_RC_FAILURE)

1093 {

1094 retVal = TPM_RC_FAILURE;

1095 goto Exit;

1096 }

1097

1098 INSTRUMENT_INC(PrimeCounts[PrimeIndex]);

1099

1100 // If this is the second prime, make sure that it differs from the

1101 // first prime by at least 2^100

1102 if(BnEqualZero(Z->Q))

1103 {

1104 // copy p to q and compute another prime in p

1105 BnCopy(Z->Q, Z->P);

1106 continue;

1107 }

1108 // Make sure that the difference is at least 100 bits. Need to do it this

1109 // way because the big numbers are only positive values

1110 if(BnUnsignedCmp(Z->P, Z->Q) < 0)

1111 BnSub(bnD, Z->Q, Z->P);

1112 else

1113 BnSub(bnD, Z->P, Z->Q);

1114 if(BnMsb(bnD) < 100)

1115 continue;

1116

1117 //Form the public modulus and set the unique value

1118 BnMult(bnN, Z->P, Z->Q);

1119 BnTo2B(bnN, &publicArea->unique.rsa.b,

1120 (NUMBYTES)BITS_TO_BYTES(keySizeInBits));

1121 // Make sure everything came out right. The MSb of the values must be one

1122 if(((publicArea->unique.rsa.t.buffer[0] & 0x80) == 0)

1123 || (publicArea->unique.rsa.t.size

1124 != (NUMBYTES)BITS_TO_BYTES(keySizeInBits)))

1125 FAIL(FATAL_ERROR_INTERNAL);

1126

1127 // Make sure that we can form the private exponent values

1128 if(ComputePrivateExponent(bnPubExp, Z) != TRUE)

1129 {

1130 // If ComputePrivateExponent could not find an inverse for

1131 // Q, then copy P and recompute P. This might

1132 // cause both to be recomputed if P is also zero

1133 if(BnEqualZero(Z->Q))

1134 BnCopy(Z->Q, Z->P);

1135 continue;

1136 }

1137

1138 // Pack the private exponent into the sensitive area

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 829

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

1139 PackExponent(&sensitive->sensitive.rsa, Z);

1140 // Make sure everything came out right. The MSb of the values must be one

1141 if(((publicArea->unique.rsa.t.buffer[0] & 0x80) == 0)

1142 || ((sensitive->sensitive.rsa.t.buffer[0] & 0x80) == 0))

1143 FAIL(FATAL_ERROR_INTERNAL);

1144

1145 retVal = TPM_RC_SUCCESS;

1146 // Do a trial encryption decryption if this is a signing key

1147 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

1148 {

1149 BN_RSA(temp1);

1150 BN_RSA(temp2);

1151 BnGenerateRandomInRange(temp1, bnN, rand);

1152

1153 // Encrypt with public exponent...

1154 BnModExp(temp2, temp1, bnPubExp, bnN);

1155 // ... then decrypt with private exponent

1156 RsaPrivateKeyOp(temp2, Z);

1157

1158 // If the starting and ending values are not the same,

1159 // start over)-;

1160 if(BnUnsignedCmp(temp2, temp1) != 0)

1161 {

1162 BnSetWord(Z->Q, 0);

1163 retVal = TPM_RC_NO_RESULT;

1164 }

1165 }

1166 }

1167 Exit:

1168 return retVal;

1169 }

1170 #endif // ALG_RSA

Trusted Platform Module Library Part 4: Supporting Routines

Page 830 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.18 CryptSmac.c

10.2.18.1 Introduction

This file contains the implementation of the message authentication codes based on a symmetric block

cipher. These functions only use the single block encryption functions of the selected symmetric

cryptographic library.

10.2.18.2 Includes, Defines, and Typedefs

1 #define _CRYPT_HASH_C_

2 #include "Tpm.h"

3 #if SMAC_IMPLEMENTED

10.2.18.2.1 CryptSmacStart()

Function to start an SMAC.

4 UINT16

5 CryptSmacStart(

6 HASH_STATE *state,

7 TPMU_PUBLIC_PARMS *keyParameters,

8 TPM_ALG_ID macAlg, // IN: the type of MAC

9 TPM2B *key

10)

11 {

12 UINT16 retVal = 0;

13 //

14 // Make sure that the key size is correct. This should have been checked

15 // at key load, but...

16 if(BITS_TO_BYTES(keyParameters->symDetail.sym.keyBits.sym) == key->size)

17 {

18 switch(macAlg)

19 {

20 #if ALG_CMAC

21 case ALG_CMAC_VALUE:

22 retVal = CryptCmacStart(&state->state.smac, keyParameters,

23 macAlg, key);

24 break;

25 #endif

26 default:

27 break;

28 }

29 }

30 state->type = (retVal != 0) ? HASH_STATE_SMAC : HASH_STATE_EMPTY;

31 return retVal;

32 }

10.2.18.2.2 CryptMacStart()

Function to start either an HMAC or an SMAC. Cannot reuse the CryptHmacStart() function because of

the difference in number of parameters.

33 UINT16

34 CryptMacStart(

35 HMAC_STATE *state,

36 TPMU_PUBLIC_PARMS *keyParameters,

37 TPM_ALG_ID macAlg, // IN: the type of MAC

38 TPM2B *key

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 831

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

39)

40 {

41 MemorySet(state, 0, sizeof(HMAC_STATE));

42 if(CryptHashIsValidAlg(macAlg, FALSE))

43 {

44 return CryptHmacStart(state, macAlg, key->size, key->buffer);

45 }

46 else if(CryptSmacIsValidAlg(macAlg, FALSE))

47 {

48 return CryptSmacStart(&state->hashState, keyParameters, macAlg, key);

49 }

50 else

51 return 0;

52 }

10.2.18.2.3 CryptMacEnd()

Dispatch to the MAC end function using a size and buffer pointer.

53 UINT16

54 CryptMacEnd(

55 HMAC_STATE *state,

56 UINT32 size,

57 BYTE *buffer

58)

59 {

60 UINT16 retVal = 0;

61 if(state->hashState.type == HASH_STATE_SMAC)

62 retVal = (state->hashState.state.smac.smacMethods.end)(

63 &state->hashState.state.smac.state, size, buffer);

64 else if(state->hashState.type == HASH_STATE_HMAC)

65 retVal = CryptHmacEnd(state, size, buffer);

66 state->hashState.type = HASH_STATE_EMPTY;

67 return retVal;

68 }

10.2.18.2.4 CryptMacEnd2B()

Dispatch to the MAC end function using a 2B.

69 UINT16

70 CryptMacEnd2B (

71 HMAC_STATE *state,

72 TPM2B *data

73)

74 {

75 return CryptMacEnd(state, data->size, data->buffer);

76 }

77 #endif // SMAC_IMPLEMENTED

Trusted Platform Module Library Part 4: Supporting Routines

Page 832 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.19 CryptSym.c

10.2.19.1 Introduction

This file contains the implementation of the symmetric block cipher modes allowed for a TPM. These

functions only use the single block encryption functions of the selected symmetric crypto library.

10.2.19.2 Includes, Defines, and Typedefs

1 #include "Tpm.h"

2 #include "CryptSym.h"

3 #define KEY_BLOCK_SIZES(ALG, alg) \

4 static const INT16 alg##KeyBlockSizes[] = { \

5 ALG##_KEY_SIZES_BITS, -1, ALG##_BLOCK_SIZES };

6 #if ALG_AES

7 KEY_BLOCK_SIZES(AES, aes);

8 #endif // ALG_AES

9 #if ALG_SM4

10 KEY_BLOCK_SIZES(SM4, sm4);

11 #endif

12 #if ALG_CAMELLIA

13 KEY_BLOCK_SIZES(CAMELLIA, camellia);

14 #endif

15 #if ALG_TDES

16 KEY_BLOCK_SIZES(TDES, tdes);

17 #endif

10.2.19.3 Initialization and Data Access Functions

10.2.19.3.1 CryptSymInit()

This function is called to do _TPM_Init() processing

18 BOOL

19 CryptSymInit(

20 void

21)

22 {

23 return TRUE;

24 }

10.2.19.3.2 CryptSymStartup()

This function is called to do TPM2_Startup() processing

25 BOOL

26 CryptSymStartup(

27 void

28)

29 {

30 return TRUE;

31 }

10.2.19.3.3 CryptGetSymmetricBlockSize()

This function returns the block size of the algorithm. The table of bit sizes has an entry for each allowed

key size. The entry for a key size is 0 if the TPM does not implement that key size. The key size table is

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 833

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

delimited with a negative number (-1). After the delimiter is a list of block sizes with each entry

corresponding to the key bit size. For most symmetric algorithms, the block size is the same regardless of

the key size but this arrangement allows them to be different.

Return Value Meaning

0 cipher not supported

0 the cipher block size in bytes

32 LIB_EXPORT INT16

33 CryptGetSymmetricBlockSize(

34 TPM_ALG_ID symmetricAlg, // IN: the symmetric algorithm

35 UINT16 keySizeInBits // IN: the key size

36)

37 {

38 const INT16 *sizes;

39 INT16 i;

40 #define ALG_CASE(SYM, sym) case ALG_##SYM##_VALUE: sizes = sym##KeyBlockSizes; break

41 switch(symmetricAlg)

42 {

43 #if ALG_AES

44 ALG_CASE(AES, aes);

45 #endif

46 #if ALG_SM4

47 ALG_CASE(SM4, sm4);

48 #endif

49 #if ALG_CAMELLIA

50 ALG_CASE(CAMELLIA, camellia);

51 #endif

52 #if ALG_TDES

53 ALG_CASE(TDES, tdes);

54 #endif

55 default:

56 return 0;

57 }

58 // Find the index of the indicated keySizeInBits

59 for(i = 0; *sizes >= 0; i++, sizes++)

60 {

61 if(*sizes == keySizeInBits)

62 break;

63 }

64 // If sizes is pointing at the end of the list of key sizes, then the desired

65 // key size was not found so set the block size to zero.

66 if(*sizes++ < 0)

67 return 0;

68 // Advance until the end of the list is found

69 while(*sizes++ >= 0);

70 // sizes is pointing to the first entry in the list of block sizes. Use the

71 // ith index to find the block size for the corresponding key size.

72 return sizes[i];

73 }

10.2.19.4 Symmetric Encryption

This function performs symmetric encryption based on the mode.

Trusted Platform Module Library Part 4: Supporting Routines

Page 834 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Error Returns Meaning

TPM_RC_SIZE dSize is not a multiple of the block size for an algorithm that requires
it

TPM_RC_FAILURE Fatal error

74 LIB_EXPORT TPM_RC

75 CryptSymmetricEncrypt(

76 BYTE *dOut, // OUT:

77 TPM_ALG_ID algorithm, // IN: the symmetric algorithm

78 UINT16 keySizeInBits, // IN: key size in bits

79 const BYTE *key, // IN: key buffer. The size of this buffer

80 // in bytes is (keySizeInBits + 7) / 8

81 TPM2B_IV *ivInOut, // IN/OUT: IV for decryption.

82 TPM_ALG_ID mode, // IN: Mode to use

83 INT32 dSize, // IN: data size (may need to be a

84 // multiple of the blockSize)

85 const BYTE *dIn // IN: data buffer

86)

87 {

88 BYTE *pIv;

89 int i;

90 BYTE tmp[MAX_SYM_BLOCK_SIZE];

91 BYTE *pT;

92 tpmCryptKeySchedule_t keySchedule;

93 INT16 blockSize;

94 TpmCryptSetSymKeyCall_t encrypt;

95 BYTE *iv;

96 BYTE defaultIv[MAX_SYM_BLOCK_SIZE] = {0};

97 //

98 pAssert(dOut != NULL && key != NULL && dIn != NULL);

99 if(dSize == 0)

100 return TPM_RC_SUCCESS;

101

102 TEST(algorithm);

103 blockSize = CryptGetSymmetricBlockSize(algorithm, keySizeInBits);

104 if(blockSize == 0)

105 return TPM_RC_FAILURE;

106 // If the iv is provided, then it is expected to be block sized. In some cases,

107 // the caller is providing an array of 0's that is equal to [MAX_SYM_BLOCK_SIZE]

108 // with no knowledge of the actual block size. This function will set it.

109 if((ivInOut != NULL) && (mode != ALG_ECB_VALUE))

110 {

111 ivInOut->t.size = blockSize;

112 iv = ivInOut->t.buffer;

113 }

114 else

115 iv = defaultIv;

116 pIv = iv;

117

118 // Create encrypt key schedule and set the encryption function pointer.

119

120 SELECT(ENCRYPT);

121

122 switch(mode)

123 {

124 #if ALG_CTR

125 case ALG_CTR_VALUE:

126 for(; dSize > 0; dSize -= blockSize)

127 {

128 // Encrypt the current value of the IV(counter)

129 ENCRYPT(&keySchedule, iv, tmp);

130

131 //increment the counter (counter is big-endian so start at end)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 835

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

132 for(i = blockSize - 1; i >= 0; i--)

133 if((iv[i] += 1) != 0)

134 break;

135 // XOR the encrypted counter value with input and put into output

136 pT = tmp;

137 for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)

138 *dOut++ = *dIn++ ^ *pT++;

139 }

140 break;

141 #endif

142 #if ALG_OFB

143 case ALG_OFB_VALUE:

144 // This is written so that dIn and dOut may be the same

145 for(; dSize > 0; dSize -= blockSize)

146 {

147 // Encrypt the current value of the "IV"

148 ENCRYPT(&keySchedule, iv, iv);

149

150 // XOR the encrypted IV into dIn to create the cipher text (dOut)

151 pIv = iv;

152 for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)

153 *dOut++ = (*pIv++ ^ *dIn++);

154 }

155 break;

156 #endif

157 #if ALG_CBC

158 case ALG_CBC_VALUE:

159 // For CBC the data size must be an even multiple of the

160 // cipher block size

161 if((dSize % blockSize) != 0)

162 return TPM_RC_SIZE;

163 // XOR the data block into the IV, encrypt the IV into the IV

164 // and then copy the IV to the output

165 for(; dSize > 0; dSize -= blockSize)

166 {

167 pIv = iv;

168 for(i = blockSize; i > 0; i--)

169 *pIv++ ^= *dIn++;

170 ENCRYPT(&keySchedule, iv, iv);

171 pIv = iv;

172 for(i = blockSize; i > 0; i--)

173 *dOut++ = *pIv++;

174 }

175 break;

176 #endif

177 // CFB is not optional

178 case ALG_CFB_VALUE:

179 // Encrypt the IV into the IV, XOR in the data, and copy to output

180 for(; dSize > 0; dSize -= blockSize)

181 {

182 // Encrypt the current value of the IV

183 ENCRYPT(&keySchedule, iv, iv);

184 pIv = iv;

185 for(i = (int)(dSize < blockSize) ? dSize : blockSize; i > 0; i--)

186 // XOR the data into the IV to create the cipher text

187 // and put into the output

188 *dOut++ = *pIv++ ^= *dIn++;

189 }

190 // If the inner loop (i loop) was smaller than blockSize, then dSize

191 // would have been smaller than blockSize and it is now negative. If

192 // it is negative, then it indicates how many bytes are needed to pad

193 // out the IV for the next round.

194 for(; dSize < 0; dSize++)

195 *pIv++ = 0;

196 break;

197 #if ALG_ECB

Trusted Platform Module Library Part 4: Supporting Routines

Page 836 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

198 case ALG_ECB_VALUE:

199 // For ECB the data size must be an even multiple of the

200 // cipher block size

201 if((dSize % blockSize) != 0)

202 return TPM_RC_SIZE;

203 // Encrypt the input block to the output block

204 for(; dSize > 0; dSize -= blockSize)

205 {

206 ENCRYPT(&keySchedule, dIn, dOut);

207 dIn = &dIn[blockSize];

208 dOut = &dOut[blockSize];

209 }

210 break;

211 #endif

212 default:

213 return TPM_RC_FAILURE;

214 }

215 return TPM_RC_SUCCESS;

216 }

10.2.19.4.1 CryptSymmetricDecrypt()

This function performs symmetric decryption based on the mode.

Error Returns Meaning

TPM_RC_FAILURE A fatal error

TPM_RCS_SIZE dSize is not a multiple of the block size for an algorithm that requires
it

217 LIB_EXPORT TPM_RC

218 CryptSymmetricDecrypt(

219 BYTE *dOut, // OUT: decrypted data

220 TPM_ALG_ID algorithm, // IN: the symmetric algorithm

221 UINT16 keySizeInBits, // IN: key size in bits

222 const BYTE *key, // IN: key buffer. The size of this buffer

223 // in bytes is (keySizeInBits + 7) / 8

224 TPM2B_IV *ivInOut, // IN/OUT: IV for decryption.

225 TPM_ALG_ID mode, // IN: Mode to use

226 INT32 dSize, // IN: data size (may need to be a

227 // multiple of the blockSize)

228 const BYTE *dIn // IN: data buffer

229)

230 {

231 BYTE *pIv;

232 int i;

233 BYTE tmp[MAX_SYM_BLOCK_SIZE];

234 BYTE *pT;

235 tpmCryptKeySchedule_t keySchedule;

236 INT16 blockSize;

237 BYTE *iv;

238 TpmCryptSetSymKeyCall_t encrypt;

239 TpmCryptSetSymKeyCall_t decrypt;

240 BYTE defaultIv[MAX_SYM_BLOCK_SIZE] = {0};

241

242 // These are used but the compiler can't tell because they are initialized

243 // in case statements and it can't tell if they are always initialized

244 // when needed, so... Comment these out if the compiler can tell or doesn't

245 // care that these are initialized before use.

246 encrypt = NULL;

247 decrypt = NULL;

248

249 pAssert(dOut != NULL && key != NULL && dIn != NULL);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 837

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

250 if(dSize == 0)

251 return TPM_RC_SUCCESS;

252

253 TEST(algorithm);

254 blockSize = CryptGetSymmetricBlockSize(algorithm, keySizeInBits);

255 if(blockSize == 0)

256 return TPM_RC_FAILURE;

257 // If the iv is provided, then it is expected to be block sized. In some cases,

258 // the caller is providing an array of 0's that is equal to [MAX_SYM_BLOCK_SIZE]

259 // with no knowledge of the actual block size. This function will set it.

260 if((ivInOut != NULL) && (mode != ALG_ECB_VALUE))

261 {

262 ivInOut->t.size = blockSize;

263 iv = ivInOut->t.buffer;

264 }

265 else

266 iv = defaultIv;

267

268 pIv = iv;

269 // Use the mode to select the key schedule to create. Encrypt always uses the

270 // encryption schedule. Depending on the mode, decryption might use either

271 // the decryption or encryption schedule.

272 switch(mode)

273 {

274 #if ALG_CBC || ALG_ECB

275 case ALG_CBC_VALUE: // decrypt = decrypt

276 case ALG_ECB_VALUE:

277 // For ECB and CBC, the data size must be an even multiple of the

278 // cipher block size

279 if((dSize % blockSize) != 0)

280 return TPM_RC_SIZE;

281 SELECT(DECRYPT);

282 break;

283 #endif

284 default:

285 // For the remaining stream ciphers, use encryption to decrypt

286 SELECT(ENCRYPT);

287 break;

288 }

289 // Now do the mode-dependent decryption

290 switch(mode)

291 {

292 #if ALG_CBC

293 case ALG_CBC_VALUE:

294 // Copy the input data to a temp buffer, decrypt the buffer into the

295 // output, XOR in the IV, and copy the temp buffer to the IV and repeat.

296 for(; dSize > 0; dSize -= blockSize)

297 {

298 pT = tmp;

299 for(i = blockSize; i > 0; i--)

300 *pT++ = *dIn++;

301 DECRYPT(&keySchedule, tmp, dOut);

302 pIv = iv;

303 pT = tmp;

304 for(i = blockSize; i > 0; i--)

305 {

306 *dOut++ ^= *pIv;

307 *pIv++ = *pT++;

308 }

309 }

310 break;

311 #endif

312 case ALG_CFB_VALUE:

313 for(; dSize > 0; dSize -= blockSize)

314 {

315 // Encrypt the IV into the temp buffer

Trusted Platform Module Library Part 4: Supporting Routines

Page 838 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

316 ENCRYPT(&keySchedule, iv, tmp);

317 pT = tmp;

318 pIv = iv;

319 for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)

320 // Copy the current cipher text to IV, XOR

321 // with the temp buffer and put into the output

322 *dOut++ = *pT++ ^ (*pIv++ = *dIn++);

323 }

324 // If the inner loop (i loop) was smaller than blockSize, then dSize

325 // would have been smaller than blockSize and it is now negative

326 // If it is negative, then it indicates how may fill bytes

327 // are needed to pad out the IV for the next round.

328 for(; dSize < 0; dSize++)

329 *pIv++ = 0;

330

331 break;

332 #if ALG_CTR

333 case ALG_CTR_VALUE:

334 for(; dSize > 0; dSize -= blockSize)

335 {

336 // Encrypt the current value of the IV(counter)

337 ENCRYPT(&keySchedule, iv, tmp);

338

339 //increment the counter (counter is big-endian so start at end)

340 for(i = blockSize - 1; i >= 0; i--)

341 if((iv[i] += 1) != 0)

342 break;

343 // XOR the encrypted counter value with input and put into output

344 pT = tmp;

345 for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)

346 *dOut++ = *dIn++ ^ *pT++;

347 }

348 break;

349 #endif

350 #if ALG_ECB

351 case ALG_ECB_VALUE:

352 for(; dSize > 0; dSize -= blockSize)

353 {

354 DECRYPT(&keySchedule, dIn, dOut);

355 dIn = &dIn[blockSize];

356 dOut = &dOut[blockSize];

357 }

358 break;

359 #endif

360 #if ALG_OFB

361 case ALG_OFB_VALUE:

362 // This is written so that dIn and dOut may be the same

363 for(; dSize > 0; dSize -= blockSize)

364 {

365 // Encrypt the current value of the "IV"

366 ENCRYPT(&keySchedule, iv, iv);

367

368 // XOR the encrypted IV into dIn to create the cipher text (dOut)

369 pIv = iv;

370 for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)

371 *dOut++ = (*pIv++ ^ *dIn++);

372 }

373 break;

374 #endif

375 default:

376 return TPM_RC_FAILURE;

377 }

378 return TPM_RC_SUCCESS;

379 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 839

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.19.4.2 CryptSymKeyValidate()

Validate that a provided symmetric key meets the requirements of the TPM

Error Returns Meaning

TPM_RC_KEY_SIZE Key size specifiers do not match

TPM_RC_KEY Key is not allowed

380 TPM_RC

381 CryptSymKeyValidate(

382 TPMT_SYM_DEF_OBJECT *symDef,

383 TPM2B_SYM_KEY *key

384)

385 {

386 if(key->t.size != BITS_TO_BYTES(symDef->keyBits.sym))

387 return TPM_RCS_KEY_SIZE;

388 #if ALG_TDES

389 if(symDef->algorithm == TPM_ALG_TDES && !CryptDesValidateKey(key))

390 return TPM_RCS_KEY;

391 #endif // ALG_TDES

392 return TPM_RC_SUCCESS;

393 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 840 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.20 PrimeData.c

1 #include "Tpm.h"

This table is the product of all of the primes up to 1000. Checking to see if there is a GCD between a

prime candidate and this number will eliminate many prime candidates from consideration before running

Miller-Rabin on the result.

2 const BN_STRUCT(43 * RADIX_BITS) s_CompositeOfSmallPrimes_ =

3 {44, 44,

4 { 0x2ED42696, 0x2BBFA177, 0x4820594F, 0xF73F4841,

5 0xBFAC313A, 0xCAC3EB81, 0xF6F26BF8, 0x7FAB5061,

6 0x59746FB7, 0xF71377F6, 0x3B19855B, 0xCBD03132,

7 0xBB92EF1B, 0x3AC3152C, 0xE87C8273, 0xC0AE0E69,

8 0x74A9E295, 0x448CCE86, 0x63CA1907, 0x8A0BF944,

9 0xF8CC3BE0, 0xC26F0AF5, 0xC501C02F, 0x6579441A,

10 0xD1099CDA, 0x6BC76A00, 0xC81A3228, 0xBFB1AB25,

11 0x70FA3841, 0x51B3D076, 0xCC2359ED, 0xD9EE0769,

12 0x75E47AF0, 0xD45FF31E, 0x52CCE4F6, 0x04DBC891,

13 0x96658ED2, 0x1753EFE5, 0x3AE4A5A6, 0x8FD4A97F,

14 0x8B15E7EB, 0x0243C3E1, 0xE0F0C31D, 0x0000000B }

15 };

16 bigConst s_CompositeOfSmallPrimes = (const bigNum)&s_CompositeOfSmallPrimes_;

This table contains a bit for each of the odd values between 1 and 2^16 + 1. This table allows fast

checking of the primes in that range. Don't change the size of this table unless you are prepared to do

redo IsPrimeInt().

17 const uint32_t s_LastPrimeInTable = 65537;

18 const uint32_t s_PrimeTableSize = 4097;

19 const uint32_t s_PrimesInTable = 6542;

20 const unsigned char s_PrimeTable[] = {

21 0x6e, 0xcb, 0xb4, 0x64, 0x9a, 0x12, 0x6d, 0x81, 0x32, 0x4c, 0x4a, 0x86,

22 0x0d, 0x82, 0x96, 0x21, 0xc9, 0x34, 0x04, 0x5a, 0x20, 0x61, 0x89, 0xa4,

23 0x44, 0x11, 0x86, 0x29, 0xd1, 0x82, 0x28, 0x4a, 0x30, 0x40, 0x42, 0x32,

24 0x21, 0x99, 0x34, 0x08, 0x4b, 0x06, 0x25, 0x42, 0x84, 0x48, 0x8a, 0x14,

25 0x05, 0x42, 0x30, 0x6c, 0x08, 0xb4, 0x40, 0x0b, 0xa0, 0x08, 0x51, 0x12,

26 0x28, 0x89, 0x04, 0x65, 0x98, 0x30, 0x4c, 0x80, 0x96, 0x44, 0x12, 0x80,

27 0x21, 0x42, 0x12, 0x41, 0xc9, 0x04, 0x21, 0xc0, 0x32, 0x2d, 0x98, 0x00,

28 0x00, 0x49, 0x04, 0x08, 0x81, 0x96, 0x68, 0x82, 0xb0, 0x25, 0x08, 0x22,

29 0x48, 0x89, 0xa2, 0x40, 0x59, 0x26, 0x04, 0x90, 0x06, 0x40, 0x43, 0x30,

30 0x44, 0x92, 0x00, 0x69, 0x10, 0x82, 0x08, 0x08, 0xa4, 0x0d, 0x41, 0x12,

31 0x60, 0xc0, 0x00, 0x24, 0xd2, 0x22, 0x61, 0x08, 0x84, 0x04, 0x1b, 0x82,

32 0x01, 0xd3, 0x10, 0x01, 0x02, 0xa0, 0x44, 0xc0, 0x22, 0x60, 0x91, 0x14,

33 0x0c, 0x40, 0xa6, 0x04, 0xd2, 0x94, 0x20, 0x09, 0x94, 0x20, 0x52, 0x00,

34 0x08, 0x10, 0xa2, 0x4c, 0x00, 0x82, 0x01, 0x51, 0x10, 0x08, 0x8b, 0xa4,

35 0x25, 0x9a, 0x30, 0x44, 0x81, 0x10, 0x4c, 0x03, 0x02, 0x25, 0x52, 0x80,

36 0x08, 0x49, 0x84, 0x20, 0x50, 0x32, 0x00, 0x18, 0xa2, 0x40, 0x11, 0x24,

37 0x28, 0x01, 0x84, 0x01, 0x01, 0xa0, 0x41, 0x0a, 0x12, 0x45, 0x00, 0x36,

38 0x08, 0x00, 0x26, 0x29, 0x83, 0x82, 0x61, 0xc0, 0x80, 0x04, 0x10, 0x10,

39 0x6d, 0x00, 0x22, 0x48, 0x58, 0x26, 0x0c, 0xc2, 0x10, 0x48, 0x89, 0x24,

40 0x20, 0x58, 0x20, 0x45, 0x88, 0x24, 0x00, 0x19, 0x02, 0x25, 0xc0, 0x10,

41 0x68, 0x08, 0x14, 0x01, 0xca, 0x32, 0x28, 0x80, 0x00, 0x04, 0x4b, 0x26,

42 0x00, 0x13, 0x90, 0x60, 0x82, 0x80, 0x25, 0xd0, 0x00, 0x01, 0x10, 0x32,

43 0x0c, 0x43, 0x86, 0x21, 0x11, 0x00, 0x08, 0x43, 0x24, 0x04, 0x48, 0x10,

44 0x0c, 0x90, 0x92, 0x00, 0x43, 0x20, 0x2d, 0x00, 0x06, 0x09, 0x88, 0x24,

45 0x40, 0xc0, 0x32, 0x09, 0x09, 0x82, 0x00, 0x53, 0x80, 0x08, 0x80, 0x96,

46 0x41, 0x81, 0x00, 0x40, 0x48, 0x10, 0x48, 0x08, 0x96, 0x48, 0x58, 0x20,

47 0x29, 0xc3, 0x80, 0x20, 0x02, 0x94, 0x60, 0x92, 0x00, 0x20, 0x81, 0x22,

48 0x44, 0x10, 0xa0, 0x05, 0x40, 0x90, 0x01, 0x49, 0x20, 0x04, 0x0a, 0x00,

49 0x24, 0x89, 0x34, 0x48, 0x13, 0x80, 0x2c, 0xc0, 0x82, 0x29, 0x00, 0x24,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 841

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

50 0x45, 0x08, 0x00, 0x08, 0x98, 0x36, 0x04, 0x52, 0x84, 0x04, 0xd0, 0x04,

51 0x00, 0x8a, 0x90, 0x44, 0x82, 0x32, 0x65, 0x18, 0x90, 0x00, 0x0a, 0x02,

52 0x01, 0x40, 0x02, 0x28, 0x40, 0xa4, 0x04, 0x92, 0x30, 0x04, 0x11, 0x86,

53 0x08, 0x42, 0x00, 0x2c, 0x52, 0x04, 0x08, 0xc9, 0x84, 0x60, 0x48, 0x12,

54 0x09, 0x99, 0x24, 0x44, 0x00, 0x24, 0x00, 0x03, 0x14, 0x21, 0x00, 0x10,

55 0x01, 0x1a, 0x32, 0x05, 0x88, 0x20, 0x40, 0x40, 0x06, 0x09, 0xc3, 0x84,

56 0x40, 0x01, 0x30, 0x60, 0x18, 0x02, 0x68, 0x11, 0x90, 0x0c, 0x02, 0xa2,

57 0x04, 0x00, 0x86, 0x29, 0x89, 0x14, 0x24, 0x82, 0x02, 0x41, 0x08, 0x80,

58 0x04, 0x19, 0x80, 0x08, 0x10, 0x12, 0x68, 0x42, 0xa4, 0x04, 0x00, 0x02,

59 0x61, 0x10, 0x06, 0x0c, 0x10, 0x00, 0x01, 0x12, 0x10, 0x20, 0x03, 0x94,

60 0x21, 0x42, 0x12, 0x65, 0x18, 0x94, 0x0c, 0x0a, 0x04, 0x28, 0x01, 0x14,

61 0x29, 0x0a, 0xa4, 0x40, 0xd0, 0x00, 0x40, 0x01, 0x90, 0x04, 0x41, 0x20,

62 0x2d, 0x40, 0x82, 0x48, 0xc1, 0x20, 0x00, 0x10, 0x30, 0x01, 0x08, 0x24,

63 0x04, 0x59, 0x84, 0x24, 0x00, 0x02, 0x29, 0x82, 0x00, 0x61, 0x58, 0x02,

64 0x48, 0x81, 0x16, 0x48, 0x10, 0x00, 0x21, 0x11, 0x06, 0x00, 0xca, 0xa0,

65 0x40, 0x02, 0x00, 0x04, 0x91, 0xb0, 0x00, 0x42, 0x04, 0x0c, 0x81, 0x06,

66 0x09, 0x48, 0x14, 0x25, 0x92, 0x20, 0x25, 0x11, 0xa0, 0x00, 0x0a, 0x86,

67 0x0c, 0xc1, 0x02, 0x48, 0x00, 0x20, 0x45, 0x08, 0x32, 0x00, 0x98, 0x06,

68 0x04, 0x13, 0x22, 0x00, 0x82, 0x04, 0x48, 0x81, 0x14, 0x44, 0x82, 0x12,

69 0x24, 0x18, 0x10, 0x40, 0x43, 0x80, 0x28, 0xd0, 0x04, 0x20, 0x81, 0x24,

70 0x64, 0xd8, 0x00, 0x2c, 0x09, 0x12, 0x08, 0x41, 0xa2, 0x00, 0x00, 0x02,

71 0x41, 0xca, 0x20, 0x41, 0xc0, 0x10, 0x01, 0x18, 0xa4, 0x04, 0x18, 0xa4,

72 0x20, 0x12, 0x94, 0x20, 0x83, 0xa0, 0x40, 0x02, 0x32, 0x44, 0x80, 0x04,

73 0x00, 0x18, 0x00, 0x0c, 0x40, 0x86, 0x60, 0x8a, 0x00, 0x64, 0x88, 0x12,

74 0x05, 0x01, 0x82, 0x00, 0x4a, 0xa2, 0x01, 0xc1, 0x10, 0x61, 0x09, 0x04,

75 0x01, 0x88, 0x00, 0x60, 0x01, 0xb4, 0x40, 0x08, 0x06, 0x01, 0x03, 0x80,

76 0x08, 0x40, 0x94, 0x04, 0x8a, 0x20, 0x29, 0x80, 0x02, 0x0c, 0x52, 0x02,

77 0x01, 0x42, 0x84, 0x00, 0x80, 0x84, 0x64, 0x02, 0x32, 0x48, 0x00, 0x30,

78 0x44, 0x40, 0x22, 0x21, 0x00, 0x02, 0x08, 0xc3, 0xa0, 0x04, 0xd0, 0x20,

79 0x40, 0x18, 0x16, 0x40, 0x40, 0x00, 0x28, 0x52, 0x90, 0x08, 0x82, 0x14,

80 0x01, 0x18, 0x10, 0x08, 0x09, 0x82, 0x40, 0x0a, 0xa0, 0x20, 0x93, 0x80,

81 0x08, 0xc0, 0x00, 0x20, 0x52, 0x00, 0x05, 0x01, 0x10, 0x40, 0x11, 0x06,

82 0x0c, 0x82, 0x00, 0x00, 0x4b, 0x90, 0x44, 0x9a, 0x00, 0x28, 0x80, 0x90,

83 0x04, 0x4a, 0x06, 0x09, 0x43, 0x02, 0x28, 0x00, 0x34, 0x01, 0x18, 0x00,

84 0x65, 0x09, 0x80, 0x44, 0x03, 0x00, 0x24, 0x02, 0x82, 0x61, 0x48, 0x14,

85 0x41, 0x00, 0x12, 0x28, 0x00, 0x34, 0x08, 0x51, 0x04, 0x05, 0x12, 0x90,

86 0x28, 0x89, 0x84, 0x60, 0x12, 0x10, 0x49, 0x10, 0x26, 0x40, 0x49, 0x82,

87 0x00, 0x91, 0x10, 0x01, 0x0a, 0x24, 0x40, 0x88, 0x10, 0x4c, 0x10, 0x04,

88 0x00, 0x50, 0xa2, 0x2c, 0x40, 0x90, 0x48, 0x0a, 0xb0, 0x01, 0x50, 0x12,

89 0x08, 0x00, 0xa4, 0x04, 0x09, 0xa0, 0x28, 0x92, 0x02, 0x00, 0x43, 0x10,

90 0x21, 0x02, 0x20, 0x41, 0x81, 0x32, 0x00, 0x08, 0x04, 0x0c, 0x52, 0x00,

91 0x21, 0x49, 0x84, 0x20, 0x10, 0x02, 0x01, 0x81, 0x10, 0x48, 0x40, 0x22,

92 0x01, 0x01, 0x84, 0x69, 0xc1, 0x30, 0x01, 0xc8, 0x02, 0x44, 0x88, 0x00,

93 0x0c, 0x01, 0x02, 0x2d, 0xc0, 0x12, 0x61, 0x00, 0xa0, 0x00, 0xc0, 0x30,

94 0x40, 0x01, 0x12, 0x08, 0x0b, 0x20, 0x00, 0x80, 0x94, 0x40, 0x01, 0x84,

95 0x40, 0x00, 0x32, 0x00, 0x10, 0x84, 0x00, 0x0b, 0x24, 0x00, 0x01, 0x06,

96 0x29, 0x8a, 0x84, 0x41, 0x80, 0x10, 0x08, 0x08, 0x94, 0x4c, 0x03, 0x80,

97 0x01, 0x40, 0x96, 0x40, 0x41, 0x20, 0x20, 0x50, 0x22, 0x25, 0x89, 0xa2,

98 0x40, 0x40, 0xa4, 0x20, 0x02, 0x86, 0x28, 0x01, 0x20, 0x21, 0x4a, 0x10,

99 0x08, 0x00, 0x14, 0x08, 0x40, 0x04, 0x25, 0x42, 0x02, 0x21, 0x43, 0x10,

100 0x04, 0x92, 0x00, 0x21, 0x11, 0xa0, 0x4c, 0x18, 0x22, 0x09, 0x03, 0x84,

101 0x41, 0x89, 0x10, 0x04, 0x82, 0x22, 0x24, 0x01, 0x14, 0x08, 0x08, 0x84,

102 0x08, 0xc1, 0x00, 0x09, 0x42, 0xb0, 0x41, 0x8a, 0x02, 0x00, 0x80, 0x36,

103 0x04, 0x49, 0xa0, 0x24, 0x91, 0x00, 0x00, 0x02, 0x94, 0x41, 0x92, 0x02,

104 0x01, 0x08, 0x06, 0x08, 0x09, 0x00, 0x01, 0xd0, 0x16, 0x28, 0x89, 0x80,

105 0x60, 0x00, 0x00, 0x68, 0x01, 0x90, 0x0c, 0x50, 0x20, 0x01, 0x40, 0x80,

106 0x40, 0x42, 0x30, 0x41, 0x00, 0x20, 0x25, 0x81, 0x06, 0x40, 0x49, 0x00,

107 0x08, 0x01, 0x12, 0x49, 0x00, 0xa0, 0x20, 0x18, 0x30, 0x05, 0x01, 0xa6,

108 0x00, 0x10, 0x24, 0x28, 0x00, 0x02, 0x20, 0xc8, 0x20, 0x00, 0x88, 0x12,

109 0x0c, 0x90, 0x92, 0x00, 0x02, 0x26, 0x01, 0x42, 0x16, 0x49, 0x00, 0x04,

110 0x24, 0x42, 0x02, 0x01, 0x88, 0x80, 0x0c, 0x1a, 0x80, 0x08, 0x10, 0x00,

111 0x60, 0x02, 0x94, 0x44, 0x88, 0x00, 0x69, 0x11, 0x30, 0x08, 0x12, 0xa0,

Trusted Platform Module Library Part 4: Supporting Routines

Page 842 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

112 0x24, 0x13, 0x84, 0x00, 0x82, 0x00, 0x65, 0xc0, 0x10, 0x28, 0x00, 0x30,

113 0x04, 0x03, 0x20, 0x01, 0x11, 0x06, 0x01, 0xc8, 0x80, 0x00, 0xc2, 0x20,

114 0x08, 0x10, 0x82, 0x0c, 0x13, 0x02, 0x0c, 0x52, 0x06, 0x40, 0x00, 0xb0,

115 0x61, 0x40, 0x10, 0x01, 0x98, 0x86, 0x04, 0x10, 0x84, 0x08, 0x92, 0x14,

116 0x60, 0x41, 0x80, 0x41, 0x1a, 0x10, 0x04, 0x81, 0x22, 0x40, 0x41, 0x20,

117 0x29, 0x52, 0x00, 0x41, 0x08, 0x34, 0x60, 0x10, 0x00, 0x28, 0x01, 0x10,

118 0x40, 0x00, 0x84, 0x08, 0x42, 0x90, 0x20, 0x48, 0x04, 0x04, 0x52, 0x02,

119 0x00, 0x08, 0x20, 0x04, 0x00, 0x82, 0x0d, 0x00, 0x82, 0x40, 0x02, 0x10,

120 0x05, 0x48, 0x20, 0x40, 0x99, 0x00, 0x00, 0x01, 0x06, 0x24, 0xc0, 0x00,

121 0x68, 0x82, 0x04, 0x21, 0x12, 0x10, 0x44, 0x08, 0x04, 0x00, 0x40, 0xa6,

122 0x20, 0xd0, 0x16, 0x09, 0xc9, 0x24, 0x41, 0x02, 0x20, 0x0c, 0x09, 0x92,

123 0x40, 0x12, 0x00, 0x00, 0x40, 0x00, 0x09, 0x43, 0x84, 0x20, 0x98, 0x02,

124 0x01, 0x11, 0x24, 0x00, 0x43, 0x24, 0x00, 0x03, 0x90, 0x08, 0x41, 0x30,

125 0x24, 0x58, 0x20, 0x4c, 0x80, 0x82, 0x08, 0x10, 0x24, 0x25, 0x81, 0x06,

126 0x41, 0x09, 0x10, 0x20, 0x18, 0x10, 0x44, 0x80, 0x10, 0x00, 0x4a, 0x24,

127 0x0d, 0x01, 0x94, 0x28, 0x80, 0x30, 0x00, 0xc0, 0x02, 0x60, 0x10, 0x84,

128 0x0c, 0x02, 0x00, 0x09, 0x02, 0x82, 0x01, 0x08, 0x10, 0x04, 0xc2, 0x20,

129 0x68, 0x09, 0x06, 0x04, 0x18, 0x00, 0x00, 0x11, 0x90, 0x08, 0x0b, 0x10,

130 0x21, 0x82, 0x02, 0x0c, 0x10, 0xb6, 0x08, 0x00, 0x26, 0x00, 0x41, 0x02,

131 0x01, 0x4a, 0x24, 0x21, 0x1a, 0x20, 0x24, 0x80, 0x00, 0x44, 0x02, 0x00,

132 0x2d, 0x40, 0x02, 0x00, 0x8b, 0x94, 0x20, 0x10, 0x00, 0x20, 0x90, 0xa6,

133 0x40, 0x13, 0x00, 0x2c, 0x11, 0x86, 0x61, 0x01, 0x80, 0x41, 0x10, 0x02,

134 0x04, 0x81, 0x30, 0x48, 0x48, 0x20, 0x28, 0x50, 0x80, 0x21, 0x8a, 0x10,

135 0x04, 0x08, 0x10, 0x09, 0x10, 0x10, 0x48, 0x42, 0xa0, 0x0c, 0x82, 0x92,

136 0x60, 0xc0, 0x20, 0x05, 0xd2, 0x20, 0x40, 0x01, 0x00, 0x04, 0x08, 0x82,

137 0x2d, 0x82, 0x02, 0x00, 0x48, 0x80, 0x41, 0x48, 0x10, 0x00, 0x91, 0x04,

138 0x04, 0x03, 0x84, 0x00, 0xc2, 0x04, 0x68, 0x00, 0x00, 0x64, 0xc0, 0x22,

139 0x40, 0x08, 0x32, 0x44, 0x09, 0x86, 0x00, 0x91, 0x02, 0x28, 0x01, 0x00,

140 0x64, 0x48, 0x00, 0x24, 0x10, 0x90, 0x00, 0x43, 0x00, 0x21, 0x52, 0x86,

141 0x41, 0x8b, 0x90, 0x20, 0x40, 0x20, 0x08, 0x88, 0x04, 0x44, 0x13, 0x20,

142 0x00, 0x02, 0x84, 0x60, 0x81, 0x90, 0x24, 0x40, 0x30, 0x00, 0x08, 0x10,

143 0x08, 0x08, 0x02, 0x01, 0x10, 0x04, 0x20, 0x43, 0xb4, 0x40, 0x90, 0x12,

144 0x68, 0x01, 0x80, 0x4c, 0x18, 0x00, 0x08, 0xc0, 0x12, 0x49, 0x40, 0x10,

145 0x24, 0x1a, 0x00, 0x41, 0x89, 0x24, 0x4c, 0x10, 0x00, 0x04, 0x52, 0x10,

146 0x09, 0x4a, 0x20, 0x41, 0x48, 0x22, 0x69, 0x11, 0x14, 0x08, 0x10, 0x06,

147 0x24, 0x80, 0x84, 0x28, 0x00, 0x10, 0x00, 0x40, 0x10, 0x01, 0x08, 0x26,

148 0x08, 0x48, 0x06, 0x28, 0x00, 0x14, 0x01, 0x42, 0x84, 0x04, 0x0a, 0x20,

149 0x00, 0x01, 0x82, 0x08, 0x00, 0x82, 0x24, 0x12, 0x04, 0x40, 0x40, 0xa0,

150 0x40, 0x90, 0x10, 0x04, 0x90, 0x22, 0x40, 0x10, 0x20, 0x2c, 0x80, 0x10,

151 0x28, 0x43, 0x00, 0x04, 0x58, 0x00, 0x01, 0x81, 0x10, 0x48, 0x09, 0x20,

152 0x21, 0x83, 0x04, 0x00, 0x42, 0xa4, 0x44, 0x00, 0x00, 0x6c, 0x10, 0xa0,

153 0x44, 0x48, 0x80, 0x00, 0x83, 0x80, 0x48, 0xc9, 0x00, 0x00, 0x00, 0x02,

154 0x05, 0x10, 0xb0, 0x04, 0x13, 0x04, 0x29, 0x10, 0x92, 0x40, 0x08, 0x04,

155 0x44, 0x82, 0x22, 0x00, 0x19, 0x20, 0x00, 0x19, 0x20, 0x01, 0x81, 0x90,

156 0x60, 0x8a, 0x00, 0x41, 0xc0, 0x02, 0x45, 0x10, 0x04, 0x00, 0x02, 0xa2,

157 0x09, 0x40, 0x10, 0x21, 0x49, 0x20, 0x01, 0x42, 0x30, 0x2c, 0x00, 0x14,

158 0x44, 0x01, 0x22, 0x04, 0x02, 0x92, 0x08, 0x89, 0x04, 0x21, 0x80, 0x10,

159 0x05, 0x01, 0x20, 0x40, 0x41, 0x80, 0x04, 0x00, 0x12, 0x09, 0x40, 0xb0,

160 0x64, 0x58, 0x32, 0x01, 0x08, 0x90, 0x00, 0x41, 0x04, 0x09, 0xc1, 0x80,

161 0x61, 0x08, 0x90, 0x00, 0x9a, 0x00, 0x24, 0x01, 0x12, 0x08, 0x02, 0x26,

162 0x05, 0x82, 0x06, 0x08, 0x08, 0x00, 0x20, 0x48, 0x20, 0x00, 0x18, 0x24,

163 0x48, 0x03, 0x02, 0x00, 0x11, 0x00, 0x09, 0x00, 0x84, 0x01, 0x4a, 0x10,

164 0x01, 0x98, 0x00, 0x04, 0x18, 0x86, 0x00, 0xc0, 0x00, 0x20, 0x81, 0x80,

165 0x04, 0x10, 0x30, 0x05, 0x00, 0xb4, 0x0c, 0x4a, 0x82, 0x29, 0x91, 0x02,

166 0x28, 0x00, 0x20, 0x44, 0xc0, 0x00, 0x2c, 0x91, 0x80, 0x40, 0x01, 0xa2,

167 0x00, 0x12, 0x04, 0x09, 0xc3, 0x20, 0x00, 0x08, 0x02, 0x0c, 0x10, 0x22,

168 0x04, 0x00, 0x00, 0x2c, 0x11, 0x86, 0x00, 0xc0, 0x00, 0x00, 0x12, 0x32,

169 0x40, 0x89, 0x80, 0x40, 0x40, 0x02, 0x05, 0x50, 0x86, 0x60, 0x82, 0xa4,

170 0x60, 0x0a, 0x12, 0x4d, 0x80, 0x90, 0x08, 0x12, 0x80, 0x09, 0x02, 0x14,

171 0x48, 0x01, 0x24, 0x20, 0x8a, 0x00, 0x44, 0x90, 0x04, 0x04, 0x01, 0x02,

172 0x00, 0xd1, 0x12, 0x00, 0x0a, 0x04, 0x40, 0x00, 0x32, 0x21, 0x81, 0x24,

173 0x08, 0x19, 0x84, 0x20, 0x02, 0x04, 0x08, 0x89, 0x80, 0x24, 0x02, 0x02,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 843

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

174 0x68, 0x18, 0x82, 0x44, 0x42, 0x00, 0x21, 0x40, 0x00, 0x28, 0x01, 0x80,

175 0x45, 0x82, 0x20, 0x40, 0x11, 0x80, 0x0c, 0x02, 0x00, 0x24, 0x40, 0x90,

176 0x01, 0x40, 0x20, 0x20, 0x50, 0x20, 0x28, 0x19, 0x00, 0x40, 0x09, 0x20,

177 0x08, 0x80, 0x04, 0x60, 0x40, 0x80, 0x20, 0x08, 0x30, 0x49, 0x09, 0x34,

178 0x00, 0x11, 0x24, 0x24, 0x82, 0x00, 0x41, 0xc2, 0x00, 0x04, 0x92, 0x02,

179 0x24, 0x80, 0x00, 0x0c, 0x02, 0xa0, 0x00, 0x01, 0x06, 0x60, 0x41, 0x04,

180 0x21, 0xd0, 0x00, 0x01, 0x01, 0x00, 0x48, 0x12, 0x84, 0x04, 0x91, 0x12,

181 0x08, 0x00, 0x24, 0x44, 0x00, 0x12, 0x41, 0x18, 0x26, 0x0c, 0x41, 0x80,

182 0x00, 0x52, 0x04, 0x20, 0x09, 0x00, 0x24, 0x90, 0x20, 0x48, 0x18, 0x02,

183 0x00, 0x03, 0xa2, 0x09, 0xd0, 0x14, 0x00, 0x8a, 0x84, 0x25, 0x4a, 0x00,

184 0x20, 0x98, 0x14, 0x40, 0x00, 0xa2, 0x05, 0x00, 0x00, 0x00, 0x40, 0x14,

185 0x01, 0x58, 0x20, 0x2c, 0x80, 0x84, 0x00, 0x09, 0x20, 0x20, 0x91, 0x02,

186 0x08, 0x02, 0xb0, 0x41, 0x08, 0x30, 0x00, 0x09, 0x10, 0x00, 0x18, 0x02,

187 0x21, 0x02, 0x02, 0x00, 0x00, 0x24, 0x44, 0x08, 0x12, 0x60, 0x00, 0xb2,

188 0x44, 0x12, 0x02, 0x0c, 0xc0, 0x80, 0x40, 0xc8, 0x20, 0x04, 0x50, 0x20,

189 0x05, 0x00, 0xb0, 0x04, 0x0b, 0x04, 0x29, 0x53, 0x00, 0x61, 0x48, 0x30,

190 0x00, 0x82, 0x20, 0x29, 0x00, 0x16, 0x00, 0x53, 0x22, 0x20, 0x43, 0x10,

191 0x48, 0x00, 0x80, 0x04, 0xd2, 0x00, 0x40, 0x00, 0xa2, 0x44, 0x03, 0x80,

192 0x29, 0x00, 0x04, 0x08, 0xc0, 0x04, 0x64, 0x40, 0x30, 0x28, 0x09, 0x84,

193 0x44, 0x50, 0x80, 0x21, 0x02, 0x92, 0x00, 0xc0, 0x10, 0x60, 0x88, 0x22,

194 0x08, 0x80, 0x00, 0x00, 0x18, 0x84, 0x04, 0x83, 0x96, 0x00, 0x81, 0x20,

195 0x05, 0x02, 0x00, 0x45, 0x88, 0x84, 0x00, 0x51, 0x20, 0x20, 0x51, 0x86,

196 0x41, 0x4b, 0x94, 0x00, 0x80, 0x00, 0x08, 0x11, 0x20, 0x4c, 0x58, 0x80,

197 0x04, 0x03, 0x06, 0x20, 0x89, 0x00, 0x05, 0x08, 0x22, 0x05, 0x90, 0x00,

198 0x40, 0x00, 0x82, 0x09, 0x50, 0x00, 0x00, 0x00, 0xa0, 0x41, 0xc2, 0x20,

199 0x08, 0x00, 0x16, 0x08, 0x40, 0x26, 0x21, 0xd0, 0x90, 0x08, 0x81, 0x90,

200 0x41, 0x00, 0x02, 0x44, 0x08, 0x10, 0x0c, 0x0a, 0x86, 0x09, 0x90, 0x04,

201 0x00, 0xc8, 0xa0, 0x04, 0x08, 0x30, 0x20, 0x89, 0x84, 0x00, 0x11, 0x22,

202 0x2c, 0x40, 0x00, 0x08, 0x02, 0xb0, 0x01, 0x48, 0x02, 0x01, 0x09, 0x20,

203 0x04, 0x03, 0x04, 0x00, 0x80, 0x02, 0x60, 0x42, 0x30, 0x21, 0x4a, 0x10,

204 0x44, 0x09, 0x02, 0x00, 0x01, 0x24, 0x00, 0x12, 0x82, 0x21, 0x80, 0xa4,

205 0x20, 0x10, 0x02, 0x04, 0x91, 0xa0, 0x40, 0x18, 0x04, 0x00, 0x02, 0x06,

206 0x69, 0x09, 0x00, 0x05, 0x58, 0x02, 0x01, 0x00, 0x00, 0x48, 0x00, 0x00,

207 0x00, 0x03, 0x92, 0x20, 0x00, 0x34, 0x01, 0xc8, 0x20, 0x48, 0x08, 0x30,

208 0x08, 0x42, 0x80, 0x20, 0x91, 0x90, 0x68, 0x01, 0x04, 0x40, 0x12, 0x02,

209 0x61, 0x00, 0x12, 0x08, 0x01, 0xa0, 0x00, 0x11, 0x04, 0x21, 0x48, 0x04,

210 0x24, 0x92, 0x00, 0x0c, 0x01, 0x84, 0x04, 0x00, 0x00, 0x01, 0x12, 0x96,

211 0x40, 0x01, 0xa0, 0x41, 0x88, 0x22, 0x28, 0x88, 0x00, 0x44, 0x42, 0x80,

212 0x24, 0x12, 0x14, 0x01, 0x42, 0x90, 0x60, 0x1a, 0x10, 0x04, 0x81, 0x10,

213 0x48, 0x08, 0x06, 0x29, 0x83, 0x02, 0x40, 0x02, 0x24, 0x64, 0x80, 0x10,

214 0x05, 0x80, 0x10, 0x40, 0x02, 0x02, 0x08, 0x42, 0x84, 0x01, 0x09, 0x20,

215 0x04, 0x50, 0x00, 0x60, 0x11, 0x30, 0x40, 0x13, 0x02, 0x04, 0x81, 0x00,

216 0x09, 0x08, 0x20, 0x45, 0x4a, 0x10, 0x61, 0x90, 0x26, 0x0c, 0x08, 0x02,

217 0x21, 0x91, 0x00, 0x60, 0x02, 0x04, 0x00, 0x02, 0x00, 0x0c, 0x08, 0x06,

218 0x08, 0x48, 0x84, 0x08, 0x11, 0x02, 0x00, 0x80, 0xa4, 0x00, 0x5a, 0x20,

219 0x00, 0x88, 0x04, 0x04, 0x02, 0x00, 0x09, 0x00, 0x14, 0x08, 0x49, 0x14,

220 0x20, 0xc8, 0x00, 0x04, 0x91, 0xa0, 0x40, 0x59, 0x80, 0x00, 0x12, 0x10,

221 0x00, 0x80, 0x80, 0x65, 0x00, 0x00, 0x04, 0x00, 0x80, 0x40, 0x19, 0x00,

222 0x21, 0x03, 0x84, 0x60, 0xc0, 0x04, 0x24, 0x1a, 0x12, 0x61, 0x80, 0x80,

223 0x08, 0x02, 0x04, 0x09, 0x42, 0x12, 0x20, 0x08, 0x34, 0x04, 0x90, 0x20,

224 0x01, 0x01, 0xa0, 0x00, 0x0b, 0x00, 0x08, 0x91, 0x92, 0x40, 0x02, 0x34,

225 0x40, 0x88, 0x10, 0x61, 0x19, 0x02, 0x00, 0x40, 0x04, 0x25, 0xc0, 0x80,

226 0x68, 0x08, 0x04, 0x21, 0x80, 0x22, 0x04, 0x00, 0xa0, 0x0c, 0x01, 0x84,

227 0x20, 0x41, 0x00, 0x08, 0x8a, 0x00, 0x20, 0x8a, 0x00, 0x48, 0x88, 0x04,

228 0x04, 0x11, 0x82, 0x08, 0x40, 0x86, 0x09, 0x49, 0xa4, 0x40, 0x00, 0x10,

229 0x01, 0x01, 0xa2, 0x04, 0x50, 0x80, 0x0c, 0x80, 0x00, 0x48, 0x82, 0xa0,

230 0x01, 0x18, 0x12, 0x41, 0x01, 0x04, 0x48, 0x41, 0x00, 0x24, 0x01, 0x00,

231 0x00, 0x88, 0x14, 0x00, 0x02, 0x00, 0x68, 0x01, 0x20, 0x08, 0x4a, 0x22,

232 0x08, 0x83, 0x80, 0x00, 0x89, 0x04, 0x01, 0xc2, 0x00, 0x00, 0x00, 0x34,

233 0x04, 0x00, 0x82, 0x28, 0x02, 0x02, 0x41, 0x4a, 0x90, 0x05, 0x82, 0x02,

234 0x09, 0x80, 0x24, 0x04, 0x41, 0x00, 0x01, 0x92, 0x80, 0x28, 0x01, 0x14,

235 0x00, 0x50, 0x20, 0x4c, 0x10, 0xb0, 0x04, 0x43, 0xa4, 0x21, 0x90, 0x04,

Trusted Platform Module Library Part 4: Supporting Routines

Page 844 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

236 0x01, 0x02, 0x00, 0x44, 0x48, 0x00, 0x64, 0x08, 0x06, 0x00, 0x42, 0x20,

237 0x08, 0x02, 0x92, 0x01, 0x4a, 0x00, 0x20, 0x50, 0x32, 0x25, 0x90, 0x22,

238 0x04, 0x09, 0x00, 0x08, 0x11, 0x80, 0x21, 0x01, 0x10, 0x05, 0x00, 0x32,

239 0x08, 0x88, 0x94, 0x08, 0x08, 0x24, 0x0d, 0xc1, 0x80, 0x40, 0x0b, 0x20,

240 0x40, 0x18, 0x12, 0x04, 0x00, 0x22, 0x40, 0x10, 0x26, 0x05, 0xc1, 0x82,

241 0x00, 0x01, 0x30, 0x24, 0x02, 0x22, 0x41, 0x08, 0x24, 0x48, 0x1a, 0x00,

242 0x25, 0xd2, 0x12, 0x28, 0x42, 0x00, 0x04, 0x40, 0x30, 0x41, 0x00, 0x02,

243 0x00, 0x13, 0x20, 0x24, 0xd1, 0x84, 0x08, 0x89, 0x80, 0x04, 0x52, 0x00,

244 0x44, 0x18, 0xa4, 0x00, 0x00, 0x06, 0x20, 0x91, 0x10, 0x09, 0x42, 0x20,

245 0x24, 0x40, 0x30, 0x28, 0x00, 0x84, 0x40, 0x40, 0x80, 0x08, 0x10, 0x04,

246 0x09, 0x08, 0x04, 0x40, 0x08, 0x22, 0x00, 0x19, 0x02, 0x00, 0x00, 0x80,

247 0x2c, 0x02, 0x02, 0x21, 0x01, 0x90, 0x20, 0x40, 0x00, 0x0c, 0x00, 0x34,

248 0x48, 0x58, 0x20, 0x01, 0x43, 0x04, 0x20, 0x80, 0x14, 0x00, 0x90, 0x00,

249 0x6d, 0x11, 0x00, 0x00, 0x40, 0x20, 0x00, 0x03, 0x10, 0x40, 0x88, 0x30,

250 0x05, 0x4a, 0x00, 0x65, 0x10, 0x24, 0x08, 0x18, 0x84, 0x28, 0x03, 0x80,

251 0x20, 0x42, 0xb0, 0x40, 0x00, 0x10, 0x69, 0x19, 0x04, 0x00, 0x00, 0x80,

252 0x04, 0xc2, 0x04, 0x00, 0x01, 0x00, 0x05, 0x00, 0x22, 0x25, 0x08, 0x96,

253 0x04, 0x02, 0x22, 0x00, 0xd0, 0x10, 0x29, 0x01, 0xa0, 0x60, 0x08, 0x10,

254 0x04, 0x01, 0x16, 0x44, 0x10, 0x02, 0x28, 0x02, 0x82, 0x48, 0x40, 0x84,

255 0x20, 0x90, 0x22, 0x28, 0x80, 0x04, 0x00, 0x40, 0x04, 0x24, 0x00, 0x80,

256 0x29, 0x03, 0x10, 0x60, 0x48, 0x00, 0x00, 0x81, 0xa0, 0x00, 0x51, 0x20,

257 0x0c, 0xd1, 0x00, 0x01, 0x41, 0x20, 0x04, 0x92, 0x00, 0x00, 0x10, 0x92,

258 0x00, 0x42, 0x04, 0x05, 0x01, 0x86, 0x40, 0x80, 0x10, 0x20, 0x52, 0x20,

259 0x21, 0x00, 0x10, 0x48, 0x0a, 0x02, 0x00, 0xd0, 0x12, 0x41, 0x48, 0x80,

260 0x04, 0x00, 0x00, 0x48, 0x09, 0x22, 0x04, 0x00, 0x24, 0x00, 0x43, 0x10,

261 0x60, 0x0a, 0x00, 0x44, 0x12, 0x20, 0x2c, 0x08, 0x20, 0x44, 0x00, 0x84,

262 0x09, 0x40, 0x06, 0x08, 0xc1, 0x00, 0x40, 0x80, 0x20, 0x00, 0x98, 0x12,

263 0x48, 0x10, 0xa2, 0x20, 0x00, 0x84, 0x48, 0xc0, 0x10, 0x20, 0x90, 0x12,

264 0x08, 0x98, 0x82, 0x00, 0x0a, 0xa0, 0x04, 0x03, 0x00, 0x28, 0xc3, 0x00,

265 0x44, 0x42, 0x10, 0x04, 0x08, 0x04, 0x40, 0x00, 0x00, 0x05, 0x10, 0x00,

266 0x21, 0x03, 0x80, 0x04, 0x88, 0x12, 0x69, 0x10, 0x00, 0x04, 0x08, 0x04,

267 0x04, 0x02, 0x84, 0x48, 0x49, 0x04, 0x20, 0x18, 0x02, 0x64, 0x80, 0x30,

268 0x08, 0x01, 0x02, 0x00, 0x52, 0x12, 0x49, 0x08, 0x20, 0x41, 0x88, 0x10,

269 0x48, 0x08, 0x34, 0x00, 0x01, 0x86, 0x05, 0xd0, 0x00, 0x00, 0x83, 0x84,

270 0x21, 0x40, 0x02, 0x41, 0x10, 0x80, 0x48, 0x40, 0xa2, 0x20, 0x51, 0x00,

271 0x00, 0x49, 0x00, 0x01, 0x90, 0x20, 0x40, 0x18, 0x02, 0x40, 0x02, 0x22,

272 0x05, 0x40, 0x80, 0x08, 0x82, 0x10, 0x20, 0x18, 0x00, 0x05, 0x01, 0x82,

273 0x40, 0x58, 0x00, 0x04, 0x81, 0x90, 0x29, 0x01, 0xa0, 0x64, 0x00, 0x22,

274 0x40, 0x01, 0xa2, 0x00, 0x18, 0x04, 0x0d, 0x00, 0x00, 0x60, 0x80, 0x94,

275 0x60, 0x82, 0x10, 0x0d, 0x80, 0x30, 0x0c, 0x12, 0x20, 0x00, 0x00, 0x12,

276 0x40, 0xc0, 0x20, 0x21, 0x58, 0x02, 0x41, 0x10, 0x80, 0x44, 0x03, 0x02,

277 0x04, 0x13, 0x90, 0x29, 0x08, 0x00, 0x44, 0xc0, 0x00, 0x21, 0x00, 0x26,

278 0x00, 0x1a, 0x80, 0x01, 0x13, 0x14, 0x20, 0x0a, 0x14, 0x20, 0x00, 0x32,

279 0x61, 0x08, 0x00, 0x40, 0x42, 0x20, 0x09, 0x80, 0x06, 0x01, 0x81, 0x80,

280 0x60, 0x42, 0x00, 0x68, 0x90, 0x82, 0x08, 0x42, 0x80, 0x04, 0x02, 0x80,

281 0x09, 0x0b, 0x04, 0x00, 0x98, 0x00, 0x0c, 0x81, 0x06, 0x44, 0x48, 0x84,

282 0x28, 0x03, 0x92, 0x00, 0x01, 0x80, 0x40, 0x0a, 0x00, 0x0c, 0x81, 0x02,

283 0x08, 0x51, 0x04, 0x28, 0x90, 0x02, 0x20, 0x09, 0x10, 0x60, 0x00, 0x00,

284 0x09, 0x81, 0xa0, 0x0c, 0x00, 0xa4, 0x09, 0x00, 0x02, 0x28, 0x80, 0x20,

285 0x00, 0x02, 0x02, 0x04, 0x81, 0x14, 0x04, 0x00, 0x04, 0x09, 0x11, 0x12,

286 0x60, 0x40, 0x20, 0x01, 0x48, 0x30, 0x40, 0x11, 0x00, 0x08, 0x0a, 0x86,

287 0x00, 0x00, 0x04, 0x60, 0x81, 0x04, 0x01, 0xd0, 0x02, 0x41, 0x18, 0x90,

288 0x00, 0x0a, 0x20, 0x00, 0xc1, 0x06, 0x01, 0x08, 0x80, 0x64, 0xca, 0x10,

289 0x04, 0x99, 0x80, 0x48, 0x01, 0x82, 0x20, 0x50, 0x90, 0x48, 0x80, 0x84,

290 0x20, 0x90, 0x22, 0x00, 0x19, 0x00, 0x04, 0x18, 0x20, 0x24, 0x10, 0x86,

291 0x40, 0xc2, 0x00, 0x24, 0x12, 0x10, 0x44, 0x00, 0x16, 0x08, 0x10, 0x24,

292 0x00, 0x12, 0x06, 0x01, 0x08, 0x90, 0x00, 0x12, 0x02, 0x4d, 0x10, 0x80,

293 0x40, 0x50, 0x22, 0x00, 0x43, 0x10, 0x01, 0x00, 0x30, 0x21, 0x0a, 0x00,

294 0x00, 0x01, 0x14, 0x00, 0x10, 0x84, 0x04, 0xc1, 0x10, 0x29, 0x0a, 0x00,

295 0x01, 0x8a, 0x00, 0x20, 0x01, 0x12, 0x0c, 0x49, 0x20, 0x04, 0x81, 0x00,

296 0x48, 0x01, 0x04, 0x60, 0x80, 0x12, 0x0c, 0x08, 0x10, 0x48, 0x4a, 0x04,

297 0x28, 0x10, 0x00, 0x28, 0x40, 0x84, 0x45, 0x50, 0x10, 0x60, 0x10, 0x06,

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 845

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

298 0x44, 0x01, 0x80, 0x09, 0x00, 0x86, 0x01, 0x42, 0xa0, 0x00, 0x90, 0x00,

299 0x05, 0x90, 0x22, 0x40, 0x41, 0x00, 0x08, 0x80, 0x02, 0x08, 0xc0, 0x00,

300 0x01, 0x58, 0x30, 0x49, 0x09, 0x14, 0x00, 0x41, 0x02, 0x0c, 0x02, 0x80,

301 0x40, 0x89, 0x00, 0x24, 0x08, 0x10, 0x05, 0x90, 0x32, 0x40, 0x0a, 0x82,

302 0x08, 0x00, 0x12, 0x61, 0x00, 0x04, 0x21, 0x00, 0x22, 0x04, 0x10, 0x24,

303 0x08, 0x0a, 0x04, 0x01, 0x10, 0x00, 0x20, 0x40, 0x84, 0x04, 0x88, 0x22,

304 0x20, 0x90, 0x12, 0x00, 0x53, 0x06, 0x24, 0x01, 0x04, 0x40, 0x0b, 0x14,

305 0x60, 0x82, 0x02, 0x0d, 0x10, 0x90, 0x0c, 0x08, 0x20, 0x09, 0x00, 0x14,

306 0x09, 0x80, 0x80, 0x24, 0x82, 0x00, 0x40, 0x01, 0x02, 0x44, 0x01, 0x20,

307 0x0c, 0x40, 0x84, 0x40, 0x0a, 0x10, 0x41, 0x00, 0x30, 0x05, 0x09, 0x80,

308 0x44, 0x08, 0x20, 0x20, 0x02, 0x00, 0x49, 0x43, 0x20, 0x21, 0x00, 0x20,

309 0x00, 0x01, 0xb6, 0x08, 0x40, 0x04, 0x08, 0x02, 0x80, 0x01, 0x41, 0x80,

310 0x40, 0x08, 0x10, 0x24, 0x00, 0x20, 0x04, 0x12, 0x86, 0x09, 0xc0, 0x12,

311 0x21, 0x81, 0x14, 0x04, 0x00, 0x02, 0x20, 0x89, 0xb4, 0x44, 0x12, 0x80,

312 0x00, 0xd1, 0x00, 0x69, 0x40, 0x80, 0x00, 0x42, 0x12, 0x00, 0x18, 0x04,

313 0x00, 0x49, 0x06, 0x21, 0x02, 0x04, 0x28, 0x02, 0x84, 0x01, 0xc0, 0x10,

314 0x68, 0x00, 0x20, 0x08, 0x40, 0x00, 0x08, 0x91, 0x10, 0x01, 0x81, 0x24,

315 0x04, 0xd2, 0x10, 0x4c, 0x88, 0x86, 0x00, 0x10, 0x80, 0x0c, 0x02, 0x14,

316 0x00, 0x8a, 0x90, 0x40, 0x18, 0x20, 0x21, 0x80, 0xa4, 0x00, 0x58, 0x24,

317 0x20, 0x10, 0x10, 0x60, 0xc1, 0x30, 0x41, 0x48, 0x02, 0x48, 0x09, 0x00,

318 0x40, 0x09, 0x02, 0x05, 0x11, 0x82, 0x20, 0x4a, 0x20, 0x24, 0x18, 0x02,

319 0x0c, 0x10, 0x22, 0x0c, 0x0a, 0x04, 0x00, 0x03, 0x06, 0x48, 0x48, 0x04,

320 0x04, 0x02, 0x00, 0x21, 0x80, 0x84, 0x00, 0x18, 0x00, 0x0c, 0x02, 0x12,

321 0x01, 0x00, 0x14, 0x05, 0x82, 0x10, 0x41, 0x89, 0x12, 0x08, 0x40, 0xa4,

322 0x21, 0x01, 0x84, 0x48, 0x02, 0x10, 0x60, 0x40, 0x02, 0x28, 0x00, 0x14,

323 0x08, 0x40, 0xa0, 0x20, 0x51, 0x12, 0x00, 0xc2, 0x00, 0x01, 0x1a, 0x30,

324 0x40, 0x89, 0x12, 0x4c, 0x02, 0x80, 0x00, 0x00, 0x14, 0x01, 0x01, 0xa0,

325 0x21, 0x18, 0x22, 0x21, 0x18, 0x06, 0x40, 0x01, 0x80, 0x00, 0x90, 0x04,

326 0x48, 0x02, 0x30, 0x04, 0x08, 0x00, 0x05, 0x88, 0x24, 0x08, 0x48, 0x04,

327 0x24, 0x02, 0x06, 0x00, 0x80, 0x00, 0x00, 0x00, 0x10, 0x65, 0x11, 0x90,

328 0x00, 0x0a, 0x82, 0x04, 0xc3, 0x04, 0x60, 0x48, 0x24, 0x04, 0x92, 0x02,

329 0x44, 0x88, 0x80, 0x40, 0x18, 0x06, 0x29, 0x80, 0x10, 0x01, 0x00, 0x00,

330 0x44, 0xc8, 0x10, 0x21, 0x89, 0x30, 0x00, 0x4b, 0xa0, 0x01, 0x10, 0x14,

331 0x00, 0x02, 0x94, 0x40, 0x00, 0x20, 0x65, 0x00, 0xa2, 0x0c, 0x40, 0x22,

332 0x20, 0x81, 0x12, 0x20, 0x82, 0x04, 0x01, 0x10, 0x00, 0x08, 0x88, 0x00,

333 0x00, 0x11, 0x80, 0x04, 0x42, 0x80, 0x40, 0x41, 0x14, 0x00, 0x40, 0x32,

334 0x2c, 0x80, 0x24, 0x04, 0x19, 0x00, 0x00, 0x91, 0x00, 0x20, 0x83, 0x00,

335 0x05, 0x40, 0x20, 0x09, 0x01, 0x84, 0x40, 0x40, 0x20, 0x20, 0x11, 0x00,

336 0x40, 0x41, 0x90, 0x20, 0x00, 0x00, 0x40, 0x90, 0x92, 0x48, 0x18, 0x06,

337 0x08, 0x81, 0x80, 0x48, 0x01, 0x34, 0x24, 0x10, 0x20, 0x04, 0x00, 0x20,

338 0x04, 0x18, 0x06, 0x2d, 0x90, 0x10, 0x01, 0x00, 0x90, 0x00, 0x0a, 0x22,

339 0x01, 0x00, 0x22, 0x00, 0x11, 0x84, 0x01, 0x01, 0x00, 0x20, 0x88, 0x00,

340 0x44, 0x00, 0x22, 0x01, 0x00, 0xa6, 0x40, 0x02, 0x06, 0x20, 0x11, 0x00,

341 0x01, 0xc8, 0xa0, 0x04, 0x8a, 0x00, 0x28, 0x19, 0x80, 0x00, 0x52, 0xa0,

342 0x24, 0x12, 0x12, 0x09, 0x08, 0x24, 0x01, 0x48, 0x00, 0x04, 0x00, 0x24,

343 0x40, 0x02, 0x84, 0x08, 0x00, 0x04, 0x48, 0x40, 0x90, 0x60, 0x0a, 0x22,

344 0x01, 0x88, 0x14, 0x08, 0x01, 0x02, 0x08, 0xd3, 0x00, 0x20, 0xc0, 0x90,

345 0x24, 0x10, 0x00, 0x00, 0x01, 0xb0, 0x08, 0x0a, 0xa0, 0x00, 0x80, 0x00,

346 0x01, 0x09, 0x00, 0x20, 0x52, 0x02, 0x25, 0x00, 0x24, 0x04, 0x02, 0x84,

347 0x24, 0x10, 0x92, 0x40, 0x02, 0xa0, 0x40, 0x00, 0x22, 0x08, 0x11, 0x04,

348 0x08, 0x01, 0x22, 0x00, 0x42, 0x14, 0x00, 0x09, 0x90, 0x21, 0x00, 0x30,

349 0x6c, 0x00, 0x00, 0x0c, 0x00, 0x22, 0x09, 0x90, 0x10, 0x28, 0x40, 0x00,

350 0x20, 0xc0, 0x20, 0x00, 0x90, 0x00, 0x40, 0x01, 0x82, 0x05, 0x12, 0x12,

351 0x09, 0xc1, 0x04, 0x61, 0x80, 0x02, 0x28, 0x81, 0x24, 0x00, 0x49, 0x04,

352 0x08, 0x10, 0x86, 0x29, 0x41, 0x80, 0x21, 0x0a, 0x30, 0x49, 0x88, 0x90,

353 0x00, 0x41, 0x04, 0x29, 0x81, 0x80, 0x41, 0x09, 0x00, 0x40, 0x12, 0x10,

354 0x40, 0x00, 0x10, 0x40, 0x48, 0x02, 0x05, 0x80, 0x02, 0x21, 0x40, 0x20,

355 0x00, 0x58, 0x20, 0x60, 0x00, 0x90, 0x48, 0x00, 0x80, 0x28, 0xc0, 0x80,

356 0x48, 0x00, 0x00, 0x44, 0x80, 0x02, 0x00, 0x09, 0x06, 0x00, 0x12, 0x02,

357 0x01, 0x00, 0x10, 0x08, 0x83, 0x10, 0x45, 0x12, 0x00, 0x2c, 0x08, 0x04,

358 0x44, 0x00, 0x20, 0x20, 0xc0, 0x10, 0x20, 0x01, 0x00, 0x05, 0xc8, 0x20,

359 0x04, 0x98, 0x10, 0x08, 0x10, 0x00, 0x24, 0x02, 0x16, 0x40, 0x88, 0x00,

Trusted Platform Module Library Part 4: Supporting Routines

Page 846 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

360 0x61, 0x88, 0x12, 0x24, 0x80, 0xa6, 0x00, 0x42, 0x00, 0x08, 0x10, 0x06,

361 0x48, 0x40, 0xa0, 0x00, 0x50, 0x20, 0x04, 0x81, 0xa4, 0x40, 0x18, 0x00,

362 0x08, 0x10, 0x80, 0x01, 0x01};

363

364 #if RSA_KEY_SIEVE && SIMULATION && RSA_INSTRUMENT

365 UINT32 PrimeIndex = 0;

366 UINT32 failedAtIteration[10] = {0};

367 UINT32 PrimeCounts[3] = {0};

368 UINT32 MillerRabinTrials[3] = {0};

369 UINT32 totalFieldsSieved[3] = {0};

370 UINT32 bitsInFieldAfterSieve[3] = {0};

371 UINT32 emptyFieldsSieved[3] = {0};

372 UINT32 noPrimeFields[3] = {0};

373 UINT32 primesChecked[3] = {0};

374 UINT16 lastSievePrime = 0;

375 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 847

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.21 RsaKeyCache.c

10.2.21.1 Introduction

This file contains the functions to implement the RSA key cache that can be used to speed up simulation.

Only one key is created for each supported key size and it is returned whenever a key of that size is

requested.

If desired, the key cache can be populated from a file. This allows multiple TPM to run with the same RSA

keys. Also, when doing simulation, the DRBG will use preset sequences so it is not too hard to repeat

sequences for debug or profile or stress.

When the key cache is enabled, a call to CryptRsaGenerateKey() will call the GetCachedRsaKey(). If the

cache is enabled and populated, then the cached key of the requested size is returned. If a key of the

requested size is not available, the no key is loaded and the requested key will need to be generated. If

the cache is not populated, the TPM will open a file that has the appropriate name for the type of keys

required (CRT or no-CRT). If the file is the right size, it is used. If the file doesn't exist or the file does not

have the correct size, the TMP will populate the cache with new keys of the required size and write the

cache data to the file so that they will be available the next time.

Currently, if two simulations are being run with TPM's that have different RSA key sizes (e.g,, one with

1024 and 2048 and another with 2048 and 3072, then the files will not match for the both of them and

they will both try to overwrite the other's cache file. I may try to do something about this if necessary.

10.2.21.2 Includes, Types, Locals, and Defines

1 #include "Tpm.h"

2 #if USE_RSA_KEY_CACHE

3 #include <stdio.h>

4 #include "RsaKeyCache_fp.h"

5 #if CRT_FORMAT_RSA == YES

6 #define CACHE_FILE_NAME "RsaKeyCacheCrt.data"

7 #else

8 #define CACHE_FILE_NAME "RsaKeyCacheNoCrt.data"

9 #endif

10 typedef struct _RSA_KEY_CACHE_

11 {

12 TPM2B_PUBLIC_KEY_RSA publicModulus;

13 TPM2B_PRIVATE_KEY_RSA privateExponent;

14 } RSA_KEY_CACHE;

Determine the number of RSA key sizes for the cache

15 TPMI_RSA_KEY_BITS SupportedRsaKeySizes[] = {

16 #if RSA_1024

17 1024,

18 #endif

19 #if RSA_2048

20 2048,

21 #endif

22 #if RSA_3072

23 3072,

24 #endif

25 #if RSA_4096

26 4096,

27 #endif

28 0

29 };

30

31 #define RSA_KEY_CACHE_ENTRIES (RSA_1024 + RSA_2048 + RSA_3072 + RSA_4096)

Trusted Platform Module Library Part 4: Supporting Routines

Page 848 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The key cache holds one entry for each of the supported key sizes

32 RSA_KEY_CACHE s_rsaKeyCache[RSA_KEY_CACHE_ENTRIES];

33 // Indicates if the key cache is loaded. It can be loaded and enabled or disabled.

34 BOOL s_keyCacheLoaded = 0;

35

36 // Indicates if the key cache is enabled

37 int s_rsaKeyCacheEnabled = FALSE;

38

39 //*** RsaKeyCacheControl()

40 // Used to enable and disable the RSA key cache.

41 LIB_EXPORT void

42 RsaKeyCacheControl(

43 int state

44)

45 {

46 s_rsaKeyCacheEnabled = state;

47 }

10.2.21.2.1 InitializeKeyCache()

This will initialize the key cache and attempt to write it to a file for later use.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

48 static BOOL

49 InitializeKeyCache(

50 TPMT_PUBLIC *publicArea,

51 TPMT_SENSITIVE *sensitive,

52 RAND_STATE *rand // IN: if not NULL, the deterministic

53 // RNG state

54)

55 {

56 int index;

57 TPM_KEY_BITS keySave = publicArea->parameters.rsaDetail.keyBits;

58 BOOL OK = TRUE;

59 //

60 s_rsaKeyCacheEnabled = FALSE;

61 for(index = 0; OK && index < RSA_KEY_CACHE_ENTRIES; index++)

62 {

63 publicArea->parameters.rsaDetail.keyBits

64 = SupportedRsaKeySizes[index];

65 OK = (CryptRsaGenerateKey(publicArea, sensitive, rand) == TPM_RC_SUCCESS);

66 if(OK)

67 {

68 s_rsaKeyCache[index].publicModulus = publicArea->unique.rsa;

69 s_rsaKeyCache[index].privateExponent = sensitive->sensitive.rsa;

70 }

71 }

72 publicArea->parameters.rsaDetail.keyBits = keySave;

73 s_keyCacheLoaded = OK;

74 #if SIMULATION && USE_RSA_KEY_CACHE && USE_KEY_CACHE_FILE

75 if(OK)

76 {

77 FILE *cacheFile;

78 const char *fn = CACHE_FILE_NAME;

79

80 #if defined _MSC_VER

81 if(fopen_s(&cacheFile, fn, "w+b") != 0)

82 #else

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 849

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

83 cacheFile = fopen(fn, "w+b");

84 if(NULL == cacheFile)

85 #endif

86 {

87 printf("Can't open %s for write.\n", fn);

88 }

89 else

90 {

91 fseek(cacheFile, 0, SEEK_SET);

92 if(fwrite(s_rsaKeyCache, 1, sizeof(s_rsaKeyCache), cacheFile)

93 != sizeof(s_rsaKeyCache))

94 {

95 printf("Error writing cache to %s.", fn);

96 }

97 }

98 if(cacheFile)

99 fclose(cacheFile);

100 }

101 #endif

102 return s_keyCacheLoaded;

103 }

10.2.21.2.2 KeyCacheLoaded()

Checks that key cache is loaded.

Return Value Meaning

TRUE(1) cache loaded

FALSE(0) cache not loaded

104 static BOOL

105 KeyCacheLoaded(

106 TPMT_PUBLIC *publicArea,

107 TPMT_SENSITIVE *sensitive,

108 RAND_STATE *rand // IN: if not NULL, the deterministic

109 // RNG state

110)

111 {

112 #if SIMULATION && USE_RSA_KEY_CACHE && USE_KEY_CACHE_FILE

113 if(!s_keyCacheLoaded)

114 {

115 FILE *cacheFile;

116 const char * fn = CACHE_FILE_NAME;

117 #if defined _MSC_VER && 1

118 if(fopen_s(&cacheFile, fn, "r+b") == 0)

119 #else

120 cacheFile = fopen(fn, "r+b");

121 if(NULL != cacheFile)

122 #endif

123 {

124 fseek(cacheFile, 0L, SEEK_END);

125 if(ftell(cacheFile) == sizeof(s_rsaKeyCache))

126 {

127 fseek(cacheFile, 0L, SEEK_SET);

128 s_keyCacheLoaded = (

129 fread(&s_rsaKeyCache, 1, sizeof(s_rsaKeyCache), cacheFile)

130 == sizeof(s_rsaKeyCache));

131 }

132 fclose(cacheFile);

133 }

134 }

135 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 850 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

136 if(!s_keyCacheLoaded)

137 s_rsaKeyCacheEnabled = InitializeKeyCache(publicArea, sensitive, rand);

138 return s_keyCacheLoaded;

139 }

10.2.21.2.3 GetCachedRsaKey()

Return Value Meaning

TRUE(1) key loaded

FALSE(0) key not loaded

140 BOOL

141 GetCachedRsaKey(

142 TPMT_PUBLIC *publicArea,

143 TPMT_SENSITIVE *sensitive,

144 RAND_STATE *rand // IN: if not NULL, the deterministic

145 // RNG state

146)

147 {

148 int keyBits = publicArea->parameters.rsaDetail.keyBits;

149 int index;

150 //

151 if(KeyCacheLoaded(publicArea, sensitive, rand))

152 {

153 for(index = 0; index < RSA_KEY_CACHE_ENTRIES; index++)

154 {

155 if((s_rsaKeyCache[index].publicModulus.t.size * 8) == keyBits)

156 {

157 publicArea->unique.rsa = s_rsaKeyCache[index].publicModulus;

158 sensitive->sensitive.rsa = s_rsaKeyCache[index].privateExponent;

159 return TRUE;

160 }

161 }

162 return FALSE;

163 }

164 return s_keyCacheLoaded;

165 }

166 #endif // defined SIMULATION && defined USE_RSA_KEY_CACHE

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 851

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.22 Ticket.c

10.2.22.1 Introduction

This clause contains the functions used for ticket computations.

10.2.22.2 Includes

1 #include "Tpm.h"

10.2.22.3 Functions

10.2.22.3.1 TicketIsSafe()

This function indicates if producing a ticket is safe. It checks if the leading bytes of an input buffer is

TPM_GENERATED_VALUE or its substring of canonical form. If so, it is not safe to produce ticket for an

input buffer claiming to be TPM generated buffer

Return Value Meaning

TRUE(1) safe to produce ticket

FALSE(0) not safe to produce ticket

2 BOOL

3 TicketIsSafe(

4 TPM2B *buffer

5)

6 {

7 TPM_GENERATED valueToCompare = TPM_GENERATED_VALUE;

8 BYTE bufferToCompare[sizeof(valueToCompare)];

9 BYTE *marshalBuffer;

10 //

11 // If the buffer size is less than the size of TPM_GENERATED_VALUE, assume

12 // it is not safe to generate a ticket

13 if(buffer->size < sizeof(valueToCompare))

14 return FALSE;

15 marshalBuffer = bufferToCompare;

16 TPM_GENERATED_Marshal(&valueToCompare, &marshalBuffer, NULL);

17 if(MemoryEqual(buffer->buffer, bufferToCompare, sizeof(valueToCompare)))

18 return FALSE;

19 else

20 return TRUE;

21 }

10.2.22.3.2 TicketComputeVerified()

This function creates a TPMT_TK_VERIFIED ticket.

22 void

23 TicketComputeVerified(

24 TPMI_RH_HIERARCHY hierarchy, // IN: hierarchy constant for ticket

25 TPM2B_DIGEST *digest, // IN: digest

26 TPM2B_NAME *keyName, // IN: name of key that signed the values

27 TPMT_TK_VERIFIED *ticket // OUT: verified ticket

28)

29 {

30 TPM2B_PROOF *proof;

31 HMAC_STATE hmacState;

Trusted Platform Module Library Part 4: Supporting Routines

Page 852 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

32 //

33 // Fill in ticket fields

34 ticket->tag = TPM_ST_VERIFIED;

35 ticket->hierarchy = hierarchy;

36 proof = HierarchyGetProof(hierarchy);

37

38 // Start HMAC using the proof value of the hierarchy as the HMAC key

39 ticket->digest.t.size = CryptHmacStart2B(&hmacState, CONTEXT_INTEGRITY_HASH_ALG,

40 &proof->b);

41 // TPM_ST_VERIFIED

42 CryptDigestUpdateInt(&hmacState, sizeof(TPM_ST), ticket->tag);

43 // digest

44 CryptDigestUpdate2B(&hmacState.hashState, &digest->b);

45 // key name

46 CryptDigestUpdate2B(&hmacState.hashState, &keyName->b);

47 // done

48 CryptHmacEnd2B(&hmacState, &ticket->digest.b);

49

50 return;

51 }

10.2.22.3.3 TicketComputeAuth()

This function creates a TPMT_TK_AUTH ticket.

52 void

53 TicketComputeAuth(

54 TPM_ST type, // IN: the type of ticket.

55 TPMI_RH_HIERARCHY hierarchy, // IN: hierarchy constant for ticket

56 UINT64 timeout, // IN: timeout

57 BOOL expiresOnReset,// IN: flag to indicate if ticket expires on

58 // TPM Reset

59 TPM2B_DIGEST *cpHashA, // IN: input cpHashA

60 TPM2B_NONCE *policyRef, // IN: input policyRef

61 TPM2B_NAME *entityName, // IN: name of entity

62 TPMT_TK_AUTH *ticket // OUT: Created ticket

63)

64 {

65 TPM2B_PROOF *proof;

66 HMAC_STATE hmacState;

67 //

68 // Get proper proof

69 proof = HierarchyGetProof(hierarchy);

70

71 // Fill in ticket fields

72 ticket->tag = type;

73 ticket->hierarchy = hierarchy;

74

75 // Start HMAC with hierarchy proof as the HMAC key

76 ticket->digest.t.size = CryptHmacStart2B(&hmacState, CONTEXT_INTEGRITY_HASH_ALG,

77 &proof->b);

78 // TPM_ST_AUTH_SECRET or TPM_ST_AUTH_SIGNED,

79 CryptDigestUpdateInt(&hmacState, sizeof(UINT16), ticket->tag);

80 // cpHash

81 CryptDigestUpdate2B(&hmacState.hashState, &cpHashA->b);

82 // policyRef

83 CryptDigestUpdate2B(&hmacState.hashState, &policyRef->b);

84 // keyName

85 CryptDigestUpdate2B(&hmacState.hashState, &entityName->b);

86 // timeout

87 CryptDigestUpdateInt(&hmacState, sizeof(timeout), timeout);

88 if(timeout != 0)

89 {

90 // epoch

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 853

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

91 CryptDigestUpdateInt(&hmacState.hashState, sizeof(CLOCK_NONCE),

92 g_timeEpoch);

93 // reset count

94 if(expiresOnReset)

95 CryptDigestUpdateInt(&hmacState.hashState, sizeof(gp.totalResetCount),

96 gp.totalResetCount);

97 }

98 // done

99 CryptHmacEnd2B(&hmacState, &ticket->digest.b);

100

101 return;

102 }

10.2.22.3.4 TicketComputeHashCheck()

This function creates a TPMT_TK_HASHCHECK ticket.

103 void

104 TicketComputeHashCheck(

105 TPMI_RH_HIERARCHY hierarchy, // IN: hierarchy constant for ticket

106 TPM_ALG_ID hashAlg, // IN: the hash algorithm for 'digest'

107 TPM2B_DIGEST *digest, // IN: input digest

108 TPMT_TK_HASHCHECK *ticket // OUT: Created ticket

109)

110 {

111 TPM2B_PROOF *proof;

112 HMAC_STATE hmacState;

113 //

114 // Get proper proof

115 proof = HierarchyGetProof(hierarchy);

116

117 // Fill in ticket fields

118 ticket->tag = TPM_ST_HASHCHECK;

119 ticket->hierarchy = hierarchy;

120

121 // Start HMAC using hierarchy proof as HMAC key

122 ticket->digest.t.size = CryptHmacStart2B(&hmacState, CONTEXT_INTEGRITY_HASH_ALG,

123 &proof->b);

124 // TPM_ST_HASHCHECK

125 CryptDigestUpdateInt(&hmacState, sizeof(TPM_ST), ticket->tag);

126 // hash algorithm

127 CryptDigestUpdateInt(&hmacState, sizeof(hashAlg), hashAlg);

128 // digest

129 CryptDigestUpdate2B(&hmacState.hashState, &digest->b);

130 // done

131 CryptHmacEnd2B(&hmacState, &ticket->digest.b);

132

133 return;

134 }

10.2.22.3.5 TicketComputeCreation()

This function creates a TPMT_TK_CREATION ticket.

135 void

136 TicketComputeCreation(

137 TPMI_RH_HIERARCHY hierarchy, // IN: hierarchy for ticket

138 TPM2B_NAME *name, // IN: object name

139 TPM2B_DIGEST *creation, // IN: creation hash

140 TPMT_TK_CREATION *ticket // OUT: created ticket

141)

142 {

143 TPM2B_PROOF *proof;

Trusted Platform Module Library Part 4: Supporting Routines

Page 854 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

144 HMAC_STATE hmacState;

145

146 // Get proper proof

147 proof = HierarchyGetProof(hierarchy);

148

149 // Fill in ticket fields

150 ticket->tag = TPM_ST_CREATION;

151 ticket->hierarchy = hierarchy;

152

153 // Start HMAC using hierarchy proof as HMAC key

154 ticket->digest.t.size = CryptHmacStart2B(&hmacState, CONTEXT_INTEGRITY_HASH_ALG,

155 &proof->b);

156 // TPM_ST_CREATION

157 CryptDigestUpdateInt(&hmacState, sizeof(TPM_ST), ticket->tag);

158 // name if provided

159 if(name != NULL)

160 CryptDigestUpdate2B(&hmacState.hashState, &name->b);

161 // creation hash

162 CryptDigestUpdate2B(&hmacState.hashState, &creation->b);

163 // Done

164 CryptHmacEnd2B(&hmacState, &ticket->digest.b);

165

166 return;

167 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 855

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.23 TpmAsn1.c

10.2.23.1 Includes

1 #include "Tpm.h"

2 #define _OIDS_

3 #include "OIDs.h"

4 #include "TpmASN1.h"

5 #include "TpmASN1_fp.h"

10.2.23.2 Unmarshaling Functions

10.2.23.2.1 ASN1UnmarshalContextInitialize()

Function does standard initialization of a context.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

6 BOOL

7 ASN1UnmarshalContextInitialize(

8 ASN1UnmarshalContext *ctx,

9 INT16 size,

10 BYTE *buffer

11)

12 {

13 VERIFY(buffer != NULL);

14 VERIFY(size > 0);

15 ctx->buffer = buffer;

16 ctx->size = size;

17 ctx->offset = 0;

18 ctx->tag = 0xFF;

19 return TRUE;

20 Error:

21 return FALSE;

22 }

10.2.23.2.2 ASN1DecodeLength()

This function extracts the length of an element from buffer starting at offset.

Return Value Meaning

>=0 the extracted length

<0 an error

23 INT16

24 ASN1DecodeLength(

25 ASN1UnmarshalContext *ctx

26)

27 {

28 BYTE first; // Next octet in buffer

29 INT16 value;

30 //

31 VERIFY(ctx->offset < ctx->size);

32 first = NEXT_OCTET(ctx);

Trusted Platform Module Library Part 4: Supporting Routines

Page 856 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

33 // If the number of octets of the entity is larger than 127, then the first octet

34 // is the number of octets in the length specifier.

35 if(first >= 0x80)

36 {

37 // Make sure that this length field is contained with the structure being

38 // parsed

39 CHECK_SIZE(ctx, (first & 0x7F));

40 if(first == 0x82)

41 {

42 // Two octets of size

43 // get the next value

44 value = (INT16)NEXT_OCTET(ctx);

45 // Make sure that the result will fit in an INT16

46 VERIFY(value < 0x0080);

47 // Shift up and add next octet

48 value = (value << 8) + NEXT_OCTET(ctx);

49 }

50 else if(first == 0x81)

51 value = NEXT_OCTET(ctx);

52 // Sizes larger than will fit in a INT16 are an error

53 else

54 goto Error;

55 }

56 else

57 value = first;

58 // Make sure that the size defined something within the current context

59 CHECK_SIZE(ctx, value);

60 return value;

61 Error:

62 ctx->size = -1; // Makes everything fail from now on.

63 return -1;

64 }

10.2.23.2.3 ASN1NextTag()

This function extracts the next type from buffer starting at offset. It advances offset as it parses the type

and the length of the type. It returns the length of the type. On return, the length octets starting at offset

are the octets of the type.

Return Value Meaning

>=0 the number of octets in type

<0 an error

65 INT16

66 ASN1NextTag(

67 ASN1UnmarshalContext *ctx

68)

69 {

70 // A tag to get?

71 VERIFY(ctx->offset < ctx->size);

72 // Get it

73 ctx->tag = NEXT_OCTET(ctx);

74 // Make sure that it is not an extended tag

75 VERIFY((ctx->tag & 0x1F) != 0x1F);

76 // Get the length field and return that

77 return ASN1DecodeLength(ctx);

78

79 Error:

80 // Attempt to read beyond the end of the context or an illegal tag

81 ctx->size = -1; // Persistent failure

82 ctx->tag = 0xFF;

83 return -1;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 857

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

84 }

10.2.23.2.4 ASN1GetBitStringValue()

Try to parse a bit string of up to 32 bits from a value that is expected to be a bit string. The bit string is left

justified so that the MSb of the input is the MSb of the returned value. If there is a general parsing error,

the context->size is set to -1.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

85 BOOL

86 ASN1GetBitStringValue(

87 ASN1UnmarshalContext *ctx,

88 UINT32 *val

89)

90 {

91 int shift;

92 INT16 length;

93 UINT32 value = 0;

94 int inputBits;

95 //

96 length = ASN1NextTag(ctx);

97 VERIFY(length >= 1);

98 VERIFY(ctx->tag == ASN1_BITSTRING);

99 // Get the shift value for the bit field (how many bits to lop off of the end)

100 shift = NEXT_OCTET(ctx);

101 length--;

102 // Get the number of bits in the input

103 inputBits = (8 * length) - shift;

104 // the shift count has to make sense

105 VERIFY((shift < 8) && ((length > 0) || (shift == 0)));

106 // if there are any bytes left

107 for(; length > 1; length--)

108 {

109

110 // for all but the last octet, just shift and add the new octet

111 VERIFY((value & 0xFF000000) == 0); // can't loose significant bits

112 value = (value << 8) + NEXT_OCTET(ctx);

113

114 }

115 if(length == 1)

116 {

117 // for the last octet, just shift the accumulated value enough to

118 // accept the significant bits in the last octet and shift the last

119 // octet down

120 VERIFY(((value & (0xFF000000 << (8 - shift)))) == 0);

121 value = (value << (8 - shift)) + (NEXT_OCTET(ctx) >> shift);

122

123 }

124 // 'Left justify' the result

125 if(inputBits > 0)

126 value <<= (32 - inputBits);

127 *val = value;

128 return TRUE;

129 Error:

130 ctx->size = -1;

131 return FALSE;

132 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 858 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.23.3 Marshaling Functions

10.2.23.3.1 Introduction

Marshaling of an ASN.1 structure is accomplished from the bottom up. That is, the things that will be at

the end of the structure are added last. To manage the collecting of the relative sizes, start a context for

the outermost container, if there is one, and then placing items in from the bottom up. If the bottom-most

item is also within a structure, create a nested context by calling ASN1StartMarshalingContext().

The context control structure contains a buffer pointer, an offset, an end and a stack. offset is the offset

from the start of the buffer of the last added byte. When offset reaches 0, the buffer is full. offset is a

signed value so that, when it becomes negative, there is an overflow. Only two functions are allowed to

move bytes into the buffer: ASN1PushByte() and ASN1PushBytes(). These functions make sure that no

data is written beyond the end of the buffer.

When a new context is started, the current value of end is pushed on the stack and end is set to 'offset.

As bytes are added, offset gets smaller. At any time, the count of bytes in the current context is simply

end - offset.

Since starting a new context involves setting end = offset, the number of bytes in the context starts at 0.

The nominal way of ending a context is to use end - offset to set the length value, and then a tag is added

to the buffer. Then the previous end value is popped meaning that the context just ended becomes a

member of the now current context.

The nominal strategy for building a completed ASN.1 structure is to push everything into the buffer and

then move everything to the start of the buffer. The move is simple as the size of the move is the initial

end value minus the final offset value. The destination is buffer and the source is buffer + offset. As

Skippy would say "Easy peasy, Joe."

It is not necessary to provide a buffer into which the data is placed. If no buffer is provided, then the

marshaling process will return values needed for marshaling. On strategy for filling the buffer would be to

execute the process for building the structure without using a buffer. This would return the overall size of

the structure. Then that amount of data could be allocated for the buffer and the fill process executed

again with the data going into the buffer. At the end, the data would be in its final resting place.

10.2.23.3.2 ASN1InitialializeMarshalContext()

This creates a structure for handling marshaling of an ASN.1 formatted data structure.

133 void

134 ASN1InitialializeMarshalContext(

135 ASN1MarshalContext *ctx,

136 INT16 length,

137 BYTE *buffer

138)

139 {

140 ctx->buffer = buffer;

141 if(buffer)

142 ctx->offset = length;

143 else

144 ctx->offset = INT16_MAX;

145 ctx->end = ctx->offset;

146 ctx->depth = -1;

147 }

10.2.23.3.3 ASN1StartMarshalContext()

This starts a new constructed element. It is constructed on top of the value that was previously placed in

the structure.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 859

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

148 void

149 ASN1StartMarshalContext(

150 ASN1MarshalContext *ctx

151)

152 {

153 pAssert((ctx->depth + 1) < MAX_DEPTH);

154 ctx->depth++;

155 ctx->ends[ctx->depth] = ctx->end;

156 ctx->end = ctx->offset;

157 }

10.2.23.3.4 ASN1EndMarshalContext()

This function restores the end pointer for an encapsulating structure.

Return Value Meaning

0 the size of the encapsulated structure that was just ended

0 an error

158 INT16

159 ASN1EndMarshalContext(

160 ASN1MarshalContext *ctx

161)

162 {

163 INT16 length;

164 pAssert(ctx->depth >= 0);

165 length = ctx->end - ctx->offset;

166 ctx->end = ctx->ends[ctx->depth--];

167 if((ctx->depth == -1) && (ctx->buffer))

168 {

169 MemoryCopy(ctx->buffer, ctx->buffer + ctx->offset, ctx->end - ctx->offset);

170 }

171 return length;

172 }

10.2.23.3.5 ASN1EndEncapsulation()

This function puts a tag and length in the buffer. In this function, an embedded BIT_STRING is assumed

to be a collection of octets. To indicate that all bits are used, a byte of zero is prepended. If a raw bit-

string is needed, a new function like ASN1PushInteger() would be needed.

Return Value Meaning

0 number of octets in the encapsulation

0 failure

173 UINT16

174 ASN1EndEncapsulation(

175 ASN1MarshalContext *ctx,

176 BYTE tag

177)

178 {

179 // only add a leading zero for an encapsulated BIT STRING

180 if (tag == ASN1_BITSTRING)

181 ASN1PushByte(ctx, 0);

182 ASN1PushTagAndLength(ctx, tag, ctx->end - ctx->offset);

183 return ASN1EndMarshalContext(ctx);

184 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 860 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.23.3.6 ASN1PushByte()

185 BOOL

186 ASN1PushByte(

187 ASN1MarshalContext *ctx,

188 BYTE b

189)

190 {

191 if(ctx->offset > 0)

192 {

193 ctx->offset -= 1;

194 if(ctx->buffer)

195 ctx->buffer[ctx->offset] = b;

196 return TRUE;

197 }

198 ctx->offset = -1;

199 return FALSE;

200 }

10.2.23.3.7 ASN1PushBytes()

Push some raw bytes onto the buffer. count cannot be zero.

Return Value Meaning

0 count bytes

0 failure unless count was zero

201 INT16

202 ASN1PushBytes(

203 ASN1MarshalContext *ctx,

204 INT16 count,

205 const BYTE *buffer

206)

207 {

208 // make sure that count is not negative which would mess up the math; and that

209 // if there is a count, there is a buffer

210 VERIFY((count >= 0) && ((buffer != NULL) || (count == 0)));

211 // back up the offset to determine where the new octets will get pushed

212 ctx->offset -= count;

213 // can't go negative

214 VERIFY(ctx->offset >= 0);

215 // if there are buffers, move the data, otherwise, assume that this is just a

216 // test.

217 if(count && buffer && ctx->buffer)

218 MemoryCopy(&ctx->buffer[ctx->offset], buffer, count);

219 return count;

220 Error:

221 ctx->offset = -1;

222 return 0;

223 }

10.2.23.3.8 ASN1PushNull()

Return Value Meaning

0 count bytes

0 failure unless count was zero

224 INT16

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 861

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

225 ASN1PushNull(

226 ASN1MarshalContext *ctx

227)

228 {

229 ASN1PushByte(ctx, 0);

230 ASN1PushByte(ctx, ASN1_NULL);

231 return (ctx->offset >= 0) ? 2 : 0;

232 }

10.2.23.3.9 ASN1PushLength()

Push a length value. This will only handle length values that fit in an INT16.

Return Value Meaning

0 number of bytes added

0 failure

233 INT16

234 ASN1PushLength(

235 ASN1MarshalContext *ctx,

236 INT16 len

237)

238 {

239 UINT16 start = ctx->offset;

240 VERIFY(len >= 0);

241 if(len <= 127)

242 ASN1PushByte(ctx, (BYTE)len);

243 else

244 {

245 ASN1PushByte(ctx, (BYTE)(len & 0xFF));

246 len >>= 8;

247 if(len == 0)

248 ASN1PushByte(ctx, 0x81);

249 else

250 {

251 ASN1PushByte(ctx, (BYTE)(len));

252 ASN1PushByte(ctx, 0x82);

253 }

254 }

255 goto Exit;

256 Error:

257 ctx->offset = -1;

258 Exit:

259 return (ctx->offset > 0) ? start - ctx->offset : 0;

260 }

10.2.23.3.10 ASN1PushTagAndLength()

Return Value Meaning

0 number of bytes added

0 failure

261 INT16

262 ASN1PushTagAndLength(

263 ASN1MarshalContext *ctx,

264 BYTE tag,

265 INT16 length

266)

267 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 862 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

268 INT16 bytes;

269 bytes = ASN1PushLength(ctx, length);

270 bytes += (INT16)ASN1PushByte(ctx, tag);

271 return (ctx->offset < 0) ? 0 : bytes;

272 }

10.2.23.3.11 ASN1PushTaggedOctetString()

This function will push a random octet string.

Return Value Meaning

0 number of bytes added

0 failure

273 INT16

274 ASN1PushTaggedOctetString(

275 ASN1MarshalContext *ctx,

276 INT16 size,

277 const BYTE *string,

278 BYTE tag

279)

280 {

281 ASN1PushBytes(ctx, size, string);

282 // PushTagAndLenght just tells how many octets it added so the total size of this

283 // element is the sum of those octets and input size.

284 size += ASN1PushTagAndLength(ctx, tag, size);

285 return size;

286 }

10.2.23.3.12 ASN1PushUINT()

This function pushes an native-endian integer value. This just changes a native-endian integer into a big-

endian byte string and calls ASN1PushInteger(). That function will remove leading zeros and make sure

that the number is positive.

Return Value Meaning

0 count bytes

0 failure unless count was zero

287 INT16

288 ASN1PushUINT(

289 ASN1MarshalContext *ctx,

290 UINT32 integer

291)

292 {

293 BYTE marshaled[4];

294 UINT32_TO_BYTE_ARRAY(integer, marshaled);

295 return ASN1PushInteger(ctx, 4, marshaled);

296 }

10.2.23.3.13 ASN1PushInteger

Push a big-endian integer on the end of the buffer

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 863

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

0 the number of bytes marshaled for the integer

0 failure

297 INT16

298 ASN1PushInteger(

299 ASN1MarshalContext *ctx, // IN/OUT: buffer context

300 INT16 iLen, // IN: octets of the integer

301 BYTE *integer // IN: big-endian integer

302)

303 {

304 // no leading 0's

305 while((*integer == 0) && (--iLen > 0))

306 integer++;

307 // Move the bytes to the buffer

308 ASN1PushBytes(ctx, iLen, integer);

309 // if needed, add a leading byte of 0 to make the number positive

310 if(*integer & 0x80)

311 iLen += (INT16)ASN1PushByte(ctx, 0);

312 // PushTagAndLenght just tells how many octets it added so the total size of this

313 // element is the sum of those octets and the adjusted input size.

314 iLen += ASN1PushTagAndLength(ctx, ASN1_INTEGER, iLen);

315 return iLen;

316 }

10.2.23.3.14 ASN1PushOID()

This function is used to add an OID. An OID is 0x06 followed by a byte of size followed by size bytes.

This is used to avoid having to do anything special in the definition of an OID.

Return Value Meaning

0 the number of bytes marshaled for the integer

0 failure

317 INT16

318 ASN1PushOID(

319 ASN1MarshalContext *ctx,

320 const BYTE *OID

321)

322 {

323 if((*OID == ASN1_OBJECT_IDENTIFIER) && ((OID[1] & 0x80) == 0))

324 {

325 return ASN1PushBytes(ctx, OID[1] + 2, OID);

326 }

327 ctx->offset = -1;

328 return 0;

329 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 864 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.24 X509_ECC.c

10.2.24.1 Includes

1 #include "Tpm.h"

2 #include "X509.h"

3 #include "OIDs.h"

4 #include "TpmASN1_fp.h"

5 #include "X509_spt_fp.h"

6 #include "CryptHash_fp.h"

10.2.24.2 Functions

10.2.24.2.1 X509PushPoint()

This seems like it might be used more than once so...

Return Value Meaning

0 number of bytes added

0 failure

7 INT16

8 X509PushPoint(

9 ASN1MarshalContext *ctx,

10 TPMS_ECC_POINT *p

11)

12 {

13 // Push a bit string containing the public key. For now, push the x, and y

14 // coordinates of the public point, bottom up

15 ASN1StartMarshalContext(ctx); // BIT STRING

16 {

17 ASN1PushBytes(ctx, p->y.t.size, p->y.t.buffer);

18 ASN1PushBytes(ctx, p->x.t.size, p->x.t.buffer);

19 ASN1PushByte(ctx, 0x04);

20 }

21 return ASN1EndEncapsulation(ctx, ASN1_BITSTRING); // Ends BIT STRING

22 }

10.2.24.2.2 X509AddSigningAlgorithmECC()

This creates the singing algorithm data.

Return Value Meaning

0 number of bytes added

0 failure

23 INT16

24 X509AddSigningAlgorithmECC(

25 OBJECT *signKey,

26 TPMT_SIG_SCHEME *scheme,

27 ASN1MarshalContext *ctx

28)

29 {

30 PHASH_DEF hashDef = CryptGetHashDef(scheme->details.any.hashAlg);

31 //

32 NOT_REFERENCED(signKey);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 865

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

33 // If the desired hashAlg definition wasn't found...

34 if(hashDef->hashAlg != scheme->details.any.hashAlg)

35 return 0;

36

37 switch(scheme->scheme)

38 {

39 case ALG_ECDSA_VALUE:

40 // Make sure that we have an OID for this hash and ECC

41 if((hashDef->ECDSA)[0] != ASN1_OBJECT_IDENTIFIER)

42 break;

43 // if this is just an implementation check, indicate that this

44 // combination is supported

45 if(!ctx)

46 return 1;

47 ASN1StartMarshalContext(ctx);

48 ASN1PushOID(ctx, hashDef->ECDSA);

49 return ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE);

50 default:

51 break;

52 }

53 return 0;

54 }

10.2.24.2.3 X509AddPublicECC()

This function will add the publicKey description to the DER data. If ctx is NULL, then no data is

transferred and this function will indicate if the TPM has the values for DER-encoding of the public key.

Return Value Meaning

0 number of bytes added

0 failure

55 INT16

56 X509AddPublicECC(

57 OBJECT *object,

58 ASN1MarshalContext *ctx

59)

60 {

61 const BYTE *curveOid =

62 CryptEccGetOID(object->publicArea.parameters.eccDetail.curveID);

63 if((curveOid == NULL) || (*curveOid != ASN1_OBJECT_IDENTIFIER))

64 return 0;

65 //

66 //

67 // SEQUENCE (2 elem) 1st

68 // SEQUENCE (2 elem) 2nd

69 // OBJECT IDENTIFIER 1.2.840.10045.2.1 ecPublicKey (ANSI X9.62 public key type)

70 // OBJECT IDENTIFIER 1.2.840.10045.3.1.7 prime256v1 (ANSI X9.62 named curve)

71 // BIT STRING (520 bit) 000001001010000111010101010111001001101101000100000010...

72 //

73 // If this is a check to see if the key can be encoded, it can.

74 // Need to mark the end sequence

75 if(ctx == NULL)

76 return 1;

77 ASN1StartMarshalContext(ctx); // SEQUENCE (2 elem) 1st

78 {

79 X509PushPoint(ctx, &object->publicArea.unique.ecc); // BIT STRING

80 ASN1StartMarshalContext(ctx); // SEQUENCE (2 elem) 2nd

81 {

82 ASN1PushOID(ctx, curveOid); // curve dependent

83 ASN1PushOID(ctx, OID_ECC_PUBLIC); // (1.2.840.10045.2.1)

84 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 866 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

85 ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE); // Ends SEQUENCE 2nd

86 }

87 return ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE); // Ends SEQUENCE 1st

88 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 867

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.25 X509_RSA.c

10.2.25.1 Includes

1 #include "Tpm.h"

2 #include "X509.h"

3 #include "TpmASN1_fp.h"

4 #include "X509_spt_fp.h"

5 #include "CryptHash_fp.h"

6 #include "CryptRsa_fp.h"

10.2.25.2 Functions

7 #if ALG_RSA

10.2.25.2.1 X509AddSigningAlgorithmRSA()

This creates the singing algorithm data.

Return Value Meaning

0 number of bytes added

0 failure

8 INT16

9 X509AddSigningAlgorithmRSA(

10 OBJECT *signKey,

11 TPMT_SIG_SCHEME *scheme,

12 ASN1MarshalContext *ctx

13)

14 {

15 TPM_ALG_ID hashAlg = scheme->details.any.hashAlg;

16 PHASH_DEF hashDef = CryptGetHashDef(hashAlg);

17 //

18 NOT_REFERENCED(signKey);

19 // return failure if hash isn't implemented

20 if(hashDef->hashAlg != hashAlg)

21 return 0;

22 switch(scheme->scheme)

23 {

24 case ALG_RSASSA_VALUE:

25 {

26 // if the hash is implemented but there is no PKCS1 OID defined

27 // then this is not a valid signing combination.

28 if(hashDef->PKCS1[0] != ASN1_OBJECT_IDENTIFIER)

29 break;

30 if(ctx == NULL)

31 return 1;

32 return X509PushAlgorithmIdentifierSequence(ctx, hashDef->PKCS1);

33 }

34 case ALG_RSAPSS_VALUE:

35 // leave if this is just an implementation check

36 if(ctx == NULL)

37 return 1;

38 // In the case of SHA1, everything is default and RFC4055 says that

39 // implementations that do signature generation MUST omit the parameter

40 // when defaults are used.)-:

41 if(hashDef->hashAlg == ALG_SHA1_VALUE)

42 {

43 return X509PushAlgorithmIdentifierSequence(ctx, OID_RSAPSS);

44 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 868 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

45 else

46 {

47 // Going to build something that looks like:

48 // SEQUENCE (2 elem)

49 // OBJECT IDENTIFIER 1.2.840.113549.1.1.10 rsaPSS (PKCS #1)

50 // SEQUENCE (3 elem)

51 // [0] (1 elem)

52 // SEQUENCE (2 elem)

53 // OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256

54 // NULL

55 // [1] (1 elem)

56 // SEQUENCE (2 elem)

57 // OBJECT IDENTIFIER 1.2.840.113549.1.1.8 pkcs1-MGF

58 // SEQUENCE (2 elem)

59 // OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256

60 // NULL

61 // [2] (1 elem) salt length

62 // INTEGER 32

63

64 // The indentation is just to keep track of where we are in the

65 // structure

66 ASN1StartMarshalContext(ctx); // SEQUENCE (2 elements)

67 {

68 ASN1StartMarshalContext(ctx); // SEQUENCE (3 elements)

69 {

70 // [2] (1 elem) salt length

71 // INTEGER 32

72 ASN1StartMarshalContext(ctx);

73 {

74 INT16 saltSize =

75 CryptRsaPssSaltSize((INT16)hashDef->digestSize,

76 (INT16)signKey->publicArea.unique.rsa.t.size);

77 ASN1PushUINT(ctx, saltSize);

78 }

79 ASN1EndEncapsulation(ctx, ASN1_APPLICAIION_SPECIFIC + 2);

80

81 // Add the mask generation algorithm

82 // [1] (1 elem)

83 // SEQUENCE (2 elem) 1st

84 // OBJECT IDENTIFIER 1.2.840.113549.1.1.8 pkcs1-MGF

85 // SEQUENCE (2 elem) 2nd

86 // OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256

87 // NULL

88 ASN1StartMarshalContext(ctx); // mask context [1] (1 elem)

89 {

90 ASN1StartMarshalContext(ctx); // SEQUENCE (2 elem) 1st

91 // Handle the 2nd Sequence (sequence (object, null))

92 {

93 // This adds a NULL, then an OID and a SEQUENCE

94 // wrapper.

95 X509PushAlgorithmIdentifierSequence(ctx,

96 hashDef->OID);

97 // add the pkcs1-MGF OID

98 ASN1PushOID(ctx, OID_MGF1);

99 }

100 // End outer sequence

101 ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE);

102 }

103 // End the [1]

104 ASN1EndEncapsulation(ctx, ASN1_APPLICAIION_SPECIFIC + 1);

105

106 // Add the hash algorithm

107 // [0] (1 elem)

108 // SEQUENCE (2 elem) (done by

109 // X509PushAlgorithmIdentifierSequence)

110 // OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256 (NIST)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 869

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

111 // NULL

112 ASN1StartMarshalContext(ctx); // [0] (1 elem)

113 {

114 X509PushAlgorithmIdentifierSequence(ctx, hashDef->OID);

115 }

116 ASN1EndEncapsulation(ctx, (ASN1_APPLICAIION_SPECIFIC + 0));

117 }

118 // SEQUENCE (3 elements) end

119 ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE);

120

121 // RSA PSS OID

122 // OBJECT IDENTIFIER 1.2.840.113549.1.1.10 rsaPSS (PKCS #1)

123 ASN1PushOID(ctx, OID_RSAPSS);

124 }

125 // End Sequence (2 elements)

126 return ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE);

127 }

128 default:

129 break;

130 }

131 return 0;

132 }

10.2.25.2.2 X509AddPublicRSA()

This function will add the publicKey description to the DER data. If fillPtr is NULL, then no data is

transferred and this function will indicate if the TPM has the values for DER-encoding of the public key.

Return Value Meaning

0 number of bytes added

0 failure

133 INT16

134 X509AddPublicRSA(

135 OBJECT *object,

136 ASN1MarshalContext *ctx

137)

138 {

139 UINT32 exp = object->publicArea.parameters.rsaDetail.exponent;

140 //

141 /*

142 SEQUENCE (2 elem) 1st

143 SEQUENCE (2 elem) 2nd

144 OBJECT IDENTIFIER 1.2.840.113549.1.1.1 rsaEncryption (PKCS #1)

145 NULL

146 BIT STRING (1 elem)

147 SEQUENCE (2 elem) 3rd

148 INTEGER (2048 bit) 2197304513741227955725834199357401

149 INTEGER 65537

150 */

151 // If this is a check to see if the key can be encoded, it can.

152 // Need to mark the end sequence

153 if(ctx == NULL)

154 return 1;

155 ASN1StartMarshalContext(ctx); // SEQUENCE (2 elem) 1st

156 ASN1StartMarshalContext(ctx); // BIT STRING

157 ASN1StartMarshalContext(ctx); // SEQUENCE *(2 elem) 3rd

158

159 // Get public exponent in big-endian byte order.

160 if(exp == 0)

161 exp = RSA_DEFAULT_PUBLIC_EXPONENT;

162

Trusted Platform Module Library Part 4: Supporting Routines

Page 870 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

163 // Push a 4 byte integer. This might get reduced if there are leading zeros or

164 // extended if the high order byte is negative.

165 ASN1PushUINT(ctx, exp);

166 // Push the public key as an integer

167 ASN1PushInteger(ctx, object->publicArea.unique.rsa.t.size,

168 object->publicArea.unique.rsa.t.buffer);

169 // Embed this in a SEQUENCE tag and length in for the key, exponent sequence

170 ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE); // SEQUENCE (3rd)

171

172 // Embed this in a BIT STRING

173 ASN1EndEncapsulation(ctx, ASN1_BITSTRING);

174

175 // Now add the formatted SEQUENCE for the RSA public key OID. This is a

176 // fully constructed value so it doesn't need to have a context started

177 X509PushAlgorithmIdentifierSequence(ctx, OID_PKCS1_PUB);

178

179 return ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE);

180 }

181 #endif // ALG_RSA

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 871

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.26 X509_spt.c

10.2.26.1 Includes

1 #include "Tpm.h"

2 #include "TpmASN1.h"

3 #include "TpmASN1_fp.h"

4 #define _X509_SPT_

5 #include "X509.h"

6 #include "X509_spt_fp.h"

7 #if ALG_RSA

8 # include "X509_RSA_fp.h"

9 #endif // ALG_RSA

10 #if ALG_ECC

11 # include "X509_ECC_fp.h"

12 #endif // ALG_ECC

13 #if ALG_SM2

14 //# include "X509_SM2_fp.h"

15 #endif // ALG_RSA

10.2.26.2 Unmarshaling Functions

10.2.26.2.1 X509FindExtensionByOID()

This will search a list of X509 extensions to find an extension with the requested OID. If the extension is

found, the output context (ctx) is set up to point to the OID in the extension.

Return Value Meaning

TRUE(1) success

FALSE(0) failure (could be catastrophic)

16 BOOL

17 X509FindExtensionByOID(

18 ASN1UnmarshalContext *ctxIn, // IN: the context to search

19 ASN1UnmarshalContext *ctx, // OUT: the extension context

20 const BYTE *OID // IN: oid to search for

21)

22 {

23 INT16 length;

24 //

25 pAssert(ctxIn != NULL);

26 // Make the search non-destructive of the input if ctx provided. Otherwise, use

27 // the provided context.

28 if (ctx == NULL)

29 ctx = ctxIn;

30 // if the provide search context is different from the context of the extension,

31 // then copy the search context to the search context.

32 else if(ctx != ctxIn)

33 *ctx = *ctxIn;

34 // Now, search in the extension context

35 for(;ctx->size > ctx->offset; ctx->offset += length)

36 {

37 VERIFY((length = ASN1NextTag(ctx)) >= 0);

38 // If this is not a constructed sequence, then it doesn't belong

39 // in the extensions.

40 VERIFY(ctx->tag == ASN1_CONSTRUCTED_SEQUENCE);

41 // Make sure that this entry could hold the OID

42 if (length >= OID_SIZE(OID))

43 {

44 // See if this is a match for the provided object identifier.

Trusted Platform Module Library Part 4: Supporting Routines

Page 872 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

45 if (MemoryEqual(OID, &(ctx->buffer[ctx->offset]), OID_SIZE(OID)))

46 {

47 // Return with ' ctx' set to point to the start of the OID with the

size

48 // set to be the size of the SEQUENCE

49 ctx->buffer += ctx->offset;

50 ctx->offset = 0;

51 ctx->size = length;

52 return TRUE;

53 }

54 }

55 }

56 VERIFY(ctx->offset == ctx->size);

57 return FALSE;

58 Error:

59 ctxIn->size = -1;

60 ctx->size = -1;

61 return FALSE;

62 }

10.2.26.2.2 X509GetExtensionBits()

This function will extract a bit field from an extension. If the extension doesn't contain a bit string, it will

fail.

Return Value Meaning

TRUE(1) success

FALSE(0) failure

63 UINT32

64 X509GetExtensionBits(

65 ASN1UnmarshalContext *ctx,

66 UINT32 *value

67)

68 {

69 INT16 length;

70 //

71 while (((length = ASN1NextTag(ctx)) > 0) && (ctx->size > ctx->offset))

72 {

73 // Since this is an extension, the extension value will be in an OCTET STRING

74 if (ctx->tag == ASN1_OCTET_STRING)

75 {

76 return ASN1GetBitStringValue(ctx, value);

77 }

78 ctx->offset += length;

79 }

80 ctx->size = -1;

81 return FALSE;

82 }

10.2.26.2.3 X509ProcessExtensions()

This function is used to process the TPMA_OBJECT and KeyUsage() extensions. It is not in the

CertifyX509.c code because it makes the code harder to follow.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 873

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Error Returns Meaning

TPM_RCS_ATTRIBUTES the attributes of object are not consistent with the extension setting

TPM_RC_VALUE problem parsing the extensions

83 TPM_RC

84 X509ProcessExtensions(

85 OBJECT *object, // IN: The object with the attributes to

86 // check

87 stringRef *extension // IN: The start and length of the extensions

88)

89 {

90 ASN1UnmarshalContext ctx;

91 ASN1UnmarshalContext extensionCtx;

92 INT16 length;

93 UINT32 value;

94 TPMA_OBJECT attributes = object->publicArea.objectAttributes;

95 //

96 if(!ASN1UnmarshalContextInitialize(&ctx, extension->len, extension->buf)

97 || ((length = ASN1NextTag(&ctx)) < 0)

98 || (ctx.tag != X509_EXTENSIONS))

99 return TPM_RCS_VALUE;

100 if(((length = ASN1NextTag(&ctx)) < 0)

101 || (ctx.tag != (ASN1_CONSTRUCTED_SEQUENCE)))

102 return TPM_RCS_VALUE;

103

104 // Get the extension for the TPMA_OBJECT if there is one

105 if(X509FindExtensionByOID(&ctx, &extensionCtx, OID_TCG_TPMA_OBJECT) &&

106 X509GetExtensionBits(&extensionCtx, &value))

107 {

108 // If an keyAttributes extension was found, it must be exactly the same as the

109 // attributes of the object.

110 // NOTE: MemoryEqual() is used rather than a simple UINT32 compare to avoid

111 // type-punned pointer warning/error.

112 if(!MemoryEqual(&value, &attributes, sizeof(value)))

113 return TPM_RCS_ATTRIBUTES;

114 }

115 // Make sure the failure to find the value wasn't because of a fatal error

116 else if(extensionCtx.size < 0)

117 return TPM_RCS_VALUE;

118

119 // Get the keyUsage extension. This one is required

120 if(X509FindExtensionByOID(&ctx, &extensionCtx, OID_KEY_USAGE_EXTENSION) &&

121 X509GetExtensionBits(&extensionCtx, &value))

122 {

123 x509KeyUsageUnion keyUsage;

124 BOOL bad;

125 //

126 keyUsage.integer = value;

127 // For KeyUsage:

128 // 1) 'sign' is SET if Key Usage includes signing

129 bad = (KEY_USAGE_SIGN.integer & keyUsage.integer) != 0

130 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign);

131 // 2) 'decrypt' is SET if Key Usage includes decryption uses

132 bad = bad || (KEY_USAGE_DECRYPT.integer & keyUsage.integer) != 0

133 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt);

134 // 3) 'fixedTPM' is SET if Key Usage is non-repudiation

135 bad = bad || IS_ATTRIBUTE(keyUsage.x509, TPMA_X509_KEY_USAGE, nonrepudiation)

136 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM);

137 // 4)'restricted' is SET if Key Usage is for key agreement.

138 bad = bad || IS_ATTRIBUTE(keyUsage.x509, TPMA_X509_KEY_USAGE, keyAgreement)

139 && !IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted);

140 if(bad)

141 return TPM_RCS_VALUE;

Trusted Platform Module Library Part 4: Supporting Routines

Page 874 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

142 }

143 else

144 // The KeyUsage extension is required

145 return TPM_RCS_VALUE;

146

147 return TPM_RC_SUCCESS;

148 }

10.2.26.3 Marshaling Functions

10.2.26.3.1 X509AddSigningAlgorithm()

This creates the singing algorithm data.

Return Value Meaning

0 number of octets added

0 failure

149 INT16

150 X509AddSigningAlgorithm(

151 ASN1MarshalContext *ctx,

152 OBJECT *signKey,

153 TPMT_SIG_SCHEME *scheme

154)

155 {

156 switch(signKey->publicArea.type)

157 {

158 #if ALG_RSA

159 case ALG_RSA_VALUE:

160 return X509AddSigningAlgorithmRSA(signKey, scheme, ctx);

161 #endif // ALG_RSA

162 #if ALG_ECC

163 case ALG_ECC_VALUE:

164 return X509AddSigningAlgorithmECC(signKey, scheme, ctx);

165 #endif // ALG_ECC

166 #if ALG_SM2

167 case ALG_SM2:

168 return X509AddSigningAlgorithmSM2(signKey, scheme,ctx);

169 #endif // ALG_SM2

170 default:

171 break;

172 }

173 return 0;

174 }

10.2.26.3.2 X509AddPublicKey()

This function will add the publicKey description to the DER data. If fillPtr is NULL, then no data is

transferred and this function will indicate if the TPM has the values for DER-encoding of the public key.

Return Value Meaning

0 number of octets added

0 failure

175 INT16

176 X509AddPublicKey(

177 ASN1MarshalContext *ctx,

178 OBJECT *object

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 875

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

179)

180 {

181 switch(object->publicArea.type)

182 {

183 #if ALG_RSA

184 case ALG_RSA_VALUE:

185 return X509AddPublicRSA(object, ctx);

186 #endif

187 #if ALG_ECC

188 case ALG_ECC_VALUE:

189 return X509AddPublicECC(object, ctx);

190 #endif

191 #if ALG_SM2

192 case ALG_SM2_VALUE:

193 break;

194 #endif

195 default:

196 break;

197 }

198 return FALSE;

199 }

10.2.26.3.3 X509PushAlgorithmIdentifierSequence()

The function adds the algorithm identifier sequence.

Return Value Meaning

0 number of bytes added

0 failure

200 INT16

201 X509PushAlgorithmIdentifierSequence(

202 ASN1MarshalContext *ctx,

203 const BYTE *OID

204)

205 {

206 ASN1StartMarshalContext(ctx); // hash algorithm

207 ASN1PushNull(ctx);

208 ASN1PushOID(ctx, OID);

209 return ASN1EndEncapsulation(ctx, ASN1_CONSTRUCTED_SEQUENCE);

210 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 876 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.27 AC_spt.c

10.2.27.1 Includes

1 #include "Tpm.h"

2 #include "AC_spt_fp.h"

3 #if 1 // This is the simulated AC data.

4 typedef struct {

5 TPMI_RH_AC ac;

6 TPML_AC_CAPABILITIES *acData;

7

8 } acCapabilities;

9 TPML_AC_CAPABILITIES acData0001 = {1,

10 {{TPM_AT_PV1, 0x01234567}}};

11

12 acCapabilities ac[1] = { {0x0001, &acData0001} };

13

14 #define NUM_AC (sizeof(ac) / sizeof(acCapabilities))

15 #endif // 1 The simulated AC data

10.2.27.1.1 AcToCapabilities()

This function returns a pointer to a list of AC capabilities.

16 TPML_AC_CAPABILITIES *

17 AcToCapabilities(

18 TPMI_RH_AC component // IN: component

19)

20 {

21 UINT32 index;

22 //

23 for(index = 0; index < NUM_AC; index++)

24 {

25 if(ac[index].ac == component)

26 return ac[index].acData;

27 }

28 return NULL;

29 }

10.2.27.1.2 AcIsAccessible()

Function to determine if an AC handle references an actual AC

Return Value Meaning

30 BOOL

31 AcIsAccessible(

32 TPM_HANDLE acHandle

33)

34 {

35 // In this implementation, the AC exists if there are some capabilities to go

36 // with the handle

37 return AcToCapabilities(acHandle) != NULL;

38 }

10.2.27.1.3 AcCapabilitiesGet()

This function returns a list of capabilities associated with an AC

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 877

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

YES if there are more handles available

NO all the available handles has been returned

39 TPMI_YES_NO

40 AcCapabilitiesGet(

41 TPMI_RH_AC component, // IN: the component

42 TPM_AT type, // IN: start capability type

43 TPML_AC_CAPABILITIES *capabilityList // OUT: list of handle

44)

45 {

46 TPMI_YES_NO more = NO;

47 UINT32 i;

48 TPML_AC_CAPABILITIES *capabilities = AcToCapabilities(component);

49

50 pAssert(HandleGetType(component) == TPM_HT_AC);

51

52 // Initialize output handle list

53 capabilityList->count = 0;

54

55 if(capabilities != NULL)

56 {

57 // Find the first capability less than or equal to type

58 for(i = 0; i < capabilities->count; i++)

59 {

60 if(capabilities->acCapabilities[i].tag >= type)

61 {

62 // copy the capabilities until we run out or fill the list

63 for(; (capabilityList->count < MAX_AC_CAPABILITIES)

64 && (i < capabilities->count); i++)

65 {

66 capabilityList->acCapabilities[capabilityList->count]

67 = capabilities->acCapabilities[i];

68 capabilityList->count++;

69 }

70 more = i < capabilities->count;

71 }

72 }

73 }

74 return more;

75 }

10.2.27.1.4 AcSendObject()

Stub to handle sending of an AC object

Error Returns Meaning

76 TPM_RC

77 AcSendObject(

78 TPM_HANDLE acHandle, // IN: Handle of AC receiving object

79 OBJECT *object, // IN: object structure to send

80 TPMS_AC_OUTPUT *acDataOut // OUT: results of operation

81)

82 {

83 NOT_REFERENCED(object);

84 NOT_REFERENCED(acHandle);

85 acDataOut->tag = TPM_AT_ERROR; // indicate that the response contains an

86 // error code

87 acDataOut->data = TPM_AE_NONE; // but there is no error.

88

Trusted Platform Module Library Part 4: Supporting Routines

Page 878 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

89 return TPM_RC_SUCCESS;

90 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 879

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Annex A
(informative)

Implementation Dependent

A.1 Introduction

This header file contains definitions that are used to define a TPM profile. The values are chosen by the

manufacturer. The values here are chosen to represent a full featured TPM so that all of the TPM’s

capabilities can be simulated and tested. This file would change based on the implementation.

The file listed below was generated by an automated tool using three documents as inputs. They are:

 The TCG_Algorithm Registery,

 Part 2 of this specification, and

 A purpose-built document that contains vendor-specific information in tables.

All of the values in this file have #ifdef ‘guards’ so that they may be defined in a command

line.Additionally, TpmBuildSwitches.h allows an additional file to be specified in the compiler command

line and preset any of these values.

A.2 TpmProfile.h

1 #ifndef _TPM_PROFILE_H_

2 #define _TPM_PROFILE_H_

Table 2:4 - Defines for Logic Values

3 #undef TRUE

4 #define TRUE 1

5 #undef FALSE

6 #define FALSE 0

7 #undef YES

8 #define YES 1

9 #undef NO

10 #define NO 0

11 #undef SET

12 #define SET 1

13 #undef CLEAR

14 #define CLEAR 0

Table 0:1 - Defines for Processor Values

15 #ifndef BIG_ENDIAN_TPM

16 #define BIG_ENDIAN_TPM NO

17 #endif

18 #ifndef LITTLE_ENDIAN_TPM

19 #define LITTLE_ENDIAN_TPM !BIG_ENDIAN_TPM

20 #endif

21 #ifndef MOST_SIGNIFICANT_BIT_0

22 #define MOST_SIGNIFICANT_BIT_0 NO

23 #endif

24 #ifndef LEAST_SIGNIFICANT_BIT_0

25 #define LEAST_SIGNIFICANT_BIT_0 !MOST_SIGNIFICANT_BIT_0

26 #endif

27 #ifndef AUTO_ALIGN

28 #define AUTO_ALIGN NO

29 #endif

Table 0:4 - Defines for Implemented Curves

Trusted Platform Module Library Part 4: Supporting Routines

Page 880 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

30 #ifndef ECC_NIST_P192

31 #define ECC_NIST_P192 NO

32 #endif

33 #ifndef ECC_NIST_P224

34 #define ECC_NIST_P224 NO

35 #endif

36 #ifndef ECC_NIST_P256

37 #define ECC_NIST_P256 YES

38 #endif

39 #ifndef ECC_NIST_P384

40 #define ECC_NIST_P384 YES

41 #endif

42 #ifndef ECC_NIST_P521

43 #define ECC_NIST_P521 NO

44 #endif

45 #ifndef ECC_BN_P256

46 #define ECC_BN_P256 YES

47 #endif

48 #ifndef ECC_BN_P638

49 #define ECC_BN_P638 NO

50 #endif

51 #ifndef ECC_SM2_P256

52 #define ECC_SM2_P256 NO

53 #endif

Table 0:6 - Defines for Implemented ACT

54 #ifndef RH_ACT_0

55 #define RH_ACT_0 YES

56 #endif

57 #ifndef RH_ACT_1

58 #define RH_ACT_1 NO

59 #endif

60 #ifndef RH_ACT_A

61 #define RH_ACT_A YES

62 #endif

Table 0:7 - Defines for Implementation Values

63 #ifndef FIELD_UPGRADE_IMPLEMENTED

64 #define FIELD_UPGRADE_IMPLEMENTED NO

65 #endif

66 #ifndef HASH_LIB

67 #define HASH_LIB Ossl

68 #endif

69 #ifndef SYM_LIB

70 #define SYM_LIB Ossl

71 #endif

72 #ifndef MATH_LIB

73 #define MATH_LIB Ossl

74 #endif

75 #ifndef IMPLEMENTATION_PCR

76 #define IMPLEMENTATION_PCR 24

77 #endif

78 #ifndef PLATFORM_PCR

79 #define PLATFORM_PCR 24

80 #endif

81 #ifndef DRTM_PCR

82 #define DRTM_PCR 17

83 #endif

84 #ifndef HCRTM_PCR

85 #define HCRTM_PCR 0

86 #endif

87 #ifndef NUM_LOCALITIES

88 #define NUM_LOCALITIES 5

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 881

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

89 #endif

90 #ifndef MAX_HANDLE_NUM

91 #define MAX_HANDLE_NUM 3

92 #endif

93 #ifndef MAX_ACTIVE_SESSIONS

94 #define MAX_ACTIVE_SESSIONS 64

95 #endif

96 #ifndef CONTEXT_SLOT

97 #define CONTEXT_SLOT UINT16

98 #endif

99 #ifndef MAX_LOADED_SESSIONS

100 #define MAX_LOADED_SESSIONS 3

101 #endif

102 #ifndef MAX_SESSION_NUM

103 #define MAX_SESSION_NUM 3

104 #endif

105 #ifndef MAX_LOADED_OBJECTS

106 #define MAX_LOADED_OBJECTS 3

107 #endif

108 #ifndef MIN_EVICT_OBJECTS

109 #define MIN_EVICT_OBJECTS 2

110 #endif

111 #ifndef NUM_POLICY_PCR_GROUP

112 #define NUM_POLICY_PCR_GROUP 1

113 #endif

114 #ifndef NUM_AUTHVALUE_PCR_GROUP

115 #define NUM_AUTHVALUE_PCR_GROUP 1

116 #endif

117 #ifndef MAX_CONTEXT_SIZE

118 #define MAX_CONTEXT_SIZE 1264

119 #endif

120 #ifndef MAX_DIGEST_BUFFER

121 #define MAX_DIGEST_BUFFER 1024

122 #endif

123 #ifndef MAX_NV_INDEX_SIZE

124 #define MAX_NV_INDEX_SIZE 2048

125 #endif

126 #ifndef MAX_NV_BUFFER_SIZE

127 #define MAX_NV_BUFFER_SIZE 1024

128 #endif

129 #ifndef MAX_CAP_BUFFER

130 #define MAX_CAP_BUFFER 1024

131 #endif

132 #ifndef NV_MEMORY_SIZE

133 #define NV_MEMORY_SIZE 16384

134 #endif

135 #ifndef MIN_COUNTER_INDICES

136 #define MIN_COUNTER_INDICES 8

137 #endif

138 #ifndef NUM_STATIC_PCR

139 #define NUM_STATIC_PCR 16

140 #endif

141 #ifndef MAX_ALG_LIST_SIZE

142 #define MAX_ALG_LIST_SIZE 64

143 #endif

144 #ifndef PRIMARY_SEED_SIZE

145 #define PRIMARY_SEED_SIZE 32

146 #endif

147 #ifndef CONTEXT_ENCRYPT_ALGORITHM

148 #define CONTEXT_ENCRYPT_ALGORITHM AES

149 #endif

150 #ifndef NV_CLOCK_UPDATE_INTERVAL

151 #define NV_CLOCK_UPDATE_INTERVAL 12

152 #endif

153 #ifndef NUM_POLICY_PCR

154 #define NUM_POLICY_PCR 1

Trusted Platform Module Library Part 4: Supporting Routines

Page 882 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

155 #endif

156 #ifndef MAX_COMMAND_SIZE

157 #define MAX_COMMAND_SIZE 4096

158 #endif

159 #ifndef MAX_RESPONSE_SIZE

160 #define MAX_RESPONSE_SIZE 4096

161 #endif

162 #ifndef ORDERLY_BITS

163 #define ORDERLY_BITS 8

164 #endif

165 #ifndef MAX_SYM_DATA

166 #define MAX_SYM_DATA 128

167 #endif

168 #ifndef MAX_RNG_ENTROPY_SIZE

169 #define MAX_RNG_ENTROPY_SIZE 64

170 #endif

171 #ifndef RAM_INDEX_SPACE

172 #define RAM_INDEX_SPACE 512

173 #endif

174 #ifndef RSA_DEFAULT_PUBLIC_EXPONENT

175 #define RSA_DEFAULT_PUBLIC_EXPONENT 0x00010001

176 #endif

177 #ifndef ENABLE_PCR_NO_INCREMENT

178 #define ENABLE_PCR_NO_INCREMENT YES

179 #endif

180 #ifndef CRT_FORMAT_RSA

181 #define CRT_FORMAT_RSA YES

182 #endif

183 #ifndef VENDOR_COMMAND_COUNT

184 #define VENDOR_COMMAND_COUNT 0

185 #endif

186 #ifndef MAX_VENDOR_BUFFER_SIZE

187 #define MAX_VENDOR_BUFFER_SIZE 1024

188 #endif

189 #ifndef MAX_DERIVATION_BITS

190 #define MAX_DERIVATION_BITS 8192

191 #endif

192 #ifndef SIZE_OF_X509_SERIAL_NUMBER

193 #define SIZE_OF_X509_SERIAL_NUMBER 20

194 #endif

195 #ifndef PRIVATE_VENDOR_SPECIFIC_BYTES

196 #define PRIVATE_VENDOR_SPECIFIC_BYTES RSA_PRIVATE_SIZE

197 #endif

Table 0:2 - Defines for Implemented Algorithms

198 #ifndef ALG_AES

199 #define ALG_AES ALG_YES

200 #endif

201 #ifndef ALG_CAMELLIA

202 #define ALG_CAMELLIA ALG_YES

203 #endif

204 #ifndef ALG_CBC

205 #define ALG_CBC ALG_YES

206 #endif

207 #ifndef ALG_CFB

208 #define ALG_CFB ALG_YES

209 #endif

210 #ifndef ALG_CMAC

211 #define ALG_CMAC ALG_YES

212 #endif

213 #ifndef ALG_CTR

214 #define ALG_CTR ALG_YES

215 #endif

216 #ifndef ALG_ECB

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 883

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

217 #define ALG_ECB ALG_YES

218 #endif

219 #ifndef ALG_ECC

220 #define ALG_ECC ALG_YES

221 #endif

222 #ifndef ALG_ECDAA

223 #define ALG_ECDAA (ALG_YES && ALG_ECC)

224 #endif

225 #ifndef ALG_ECDH

226 #define ALG_ECDH (ALG_YES && ALG_ECC)

227 #endif

228 #ifndef ALG_ECDSA

229 #define ALG_ECDSA (ALG_YES && ALG_ECC)

230 #endif

231 #ifndef ALG_ECMQV

232 #define ALG_ECMQV (ALG_NO && ALG_ECC)

233 #endif

234 #ifndef ALG_ECSCHNORR

235 #define ALG_ECSCHNORR (ALG_YES && ALG_ECC)

236 #endif

237 #ifndef ALG_HMAC

238 #define ALG_HMAC ALG_YES

239 #endif

240 #ifndef ALG_KDF1_SP800_108

241 #define ALG_KDF1_SP800_108 ALG_YES

242 #endif

243 #ifndef ALG_KDF1_SP800_56A

244 #define ALG_KDF1_SP800_56A (ALG_YES && ALG_ECC)

245 #endif

246 #ifndef ALG_KDF2

247 #define ALG_KDF2 ALG_NO

248 #endif

249 #ifndef ALG_KEYEDHASH

250 #define ALG_KEYEDHASH ALG_YES

251 #endif

252 #ifndef ALG_MGF1

253 #define ALG_MGF1 ALG_YES

254 #endif

255 #ifndef ALG_OAEP

256 #define ALG_OAEP (ALG_YES && ALG_RSA)

257 #endif

258 #ifndef ALG_OFB

259 #define ALG_OFB ALG_YES

260 #endif

261 #ifndef ALG_RSA

262 #define ALG_RSA ALG_YES

263 #endif

264 #ifndef ALG_RSAES

265 #define ALG_RSAES (ALG_YES && ALG_RSA)

266 #endif

267 #ifndef ALG_RSAPSS

268 #define ALG_RSAPSS (ALG_YES && ALG_RSA)

269 #endif

270 #ifndef ALG_RSASSA

271 #define ALG_RSASSA (ALG_YES && ALG_RSA)

272 #endif

273 #ifndef ALG_SHA

274 #define ALG_SHA ALG_NO /* Not specified by vendor */

275 #endif

276 #ifndef ALG_SHA1

277 #define ALG_SHA1 ALG_YES

278 #endif

279 #ifndef ALG_SHA256

280 #define ALG_SHA256 ALG_YES

281 #endif

282 #ifndef ALG_SHA384

Trusted Platform Module Library Part 4: Supporting Routines

Page 884 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

283 #define ALG_SHA384 ALG_YES

284 #endif

285 #ifndef ALG_SHA3_256

286 #define ALG_SHA3_256 ALG_NO /* Not specified by vendor */

287 #endif

288 #ifndef ALG_SHA3_384

289 #define ALG_SHA3_384 ALG_NO /* Not specified by vendor */

290 #endif

291 #ifndef ALG_SHA3_512

292 #define ALG_SHA3_512 ALG_NO /* Not specified by vendor */

293 #endif

294 #ifndef ALG_SHA512

295 #define ALG_SHA512 ALG_NO

296 #endif

297 #ifndef ALG_SM2

298 #define ALG_SM2 (ALG_NO && ALG_ECC)

299 #endif

300 #ifndef ALG_SM3_256

301 #define ALG_SM3_256 ALG_NO

302 #endif

303 #ifndef ALG_SM4

304 #define ALG_SM4 ALG_YES

305 #endif

306 #ifndef ALG_SYMCIPHER

307 #define ALG_SYMCIPHER ALG_YES

308 #endif

309 #ifndef ALG_TDES

310 #define ALG_TDES ALG_NO

311 #endif

312 #ifndef ALG_XOR

313 #define ALG_XOR ALG_YES

314 #endif

Table 1:3 - Defines for RSA Asymmetric Cipher Algorithm Constants

315 #ifndef RSA_1024

316 #define RSA_1024 (ALG_RSA && YES)

317 #endif

318 #ifndef RSA_2048

319 #define RSA_2048 (ALG_RSA && YES)

320 #endif

321 #ifndef RSA_3072

322 #define RSA_3072 (ALG_RSA && NO)

323 #endif

324 #ifndef RSA_4096

325 #define RSA_4096 (ALG_RSA && NO)

326 #endif

Table 1:21 - Defines for AES Symmetric Cipher Algorithm Constants

327 #ifndef AES_128

328 #define AES_128 (ALG_AES && YES)

329 #endif

330 #ifndef AES_192

331 #define AES_192 (ALG_AES && NO)

332 #endif

333 #ifndef AES_256

334 #define AES_256 (ALG_AES && YES)

335 #endif

Table 1:22 - Defines for SM4 Symmetric Cipher Algorithm Constants

336 #ifndef SM4_128

337 #define SM4_128 (ALG_SM4 && YES)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 885

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

338 #endif

Table 1:23 - Defines for CAMELLIA Symmetric Cipher Algorithm Constants

339 #ifndef CAMELLIA_128

340 #define CAMELLIA_128 (ALG_CAMELLIA && YES)

341 #endif

342 #ifndef CAMELLIA_192

343 #define CAMELLIA_192 (ALG_CAMELLIA && NO)

344 #endif

345 #ifndef CAMELLIA_256

346 #define CAMELLIA_256 (ALG_CAMELLIA && YES)

347 #endif

Table 1:24 - Defines for TDES Symmetric Cipher Algorithm Constants

348 #ifndef TDES_128

349 #define TDES_128 (ALG_TDES && YES)

350 #endif

351 #ifndef TDES_192

352 #define TDES_192 (ALG_TDES && YES)

353 #endif

Table 0:5 - Defines for Implemented Commands

354 #ifndef CC_ACT_SetTimeout

355 #define CC_ACT_SetTimeout CC_YES

356 #endif

357 #ifndef CC_AC_GetCapability

358 #define CC_AC_GetCapability CC_YES

359 #endif

360 #ifndef CC_AC_Send

361 #define CC_AC_Send CC_YES

362 #endif

363 #ifndef CC_ActivateCredential

364 #define CC_ActivateCredential CC_YES

365 #endif

366 #ifndef CC_Certify

367 #define CC_Certify CC_YES

368 #endif

369 #ifndef CC_CertifyCreation

370 #define CC_CertifyCreation CC_YES

371 #endif

372 #ifndef CC_CertifyX509

373 #define CC_CertifyX509 CC_YES

374 #endif

375 #ifndef CC_ChangeEPS

376 #define CC_ChangeEPS CC_YES

377 #endif

378 #ifndef CC_ChangePPS

379 #define CC_ChangePPS CC_YES

380 #endif

381 #ifndef CC_Clear

382 #define CC_Clear CC_YES

383 #endif

384 #ifndef CC_ClearControl

385 #define CC_ClearControl CC_YES

386 #endif

387 #ifndef CC_ClockRateAdjust

388 #define CC_ClockRateAdjust CC_YES

389 #endif

390 #ifndef CC_ClockSet

391 #define CC_ClockSet CC_YES

392 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 886 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

393 #ifndef CC_Commit

394 #define CC_Commit (CC_YES && ALG_ECC)

395 #endif

396 #ifndef CC_ContextLoad

397 #define CC_ContextLoad CC_YES

398 #endif

399 #ifndef CC_ContextSave

400 #define CC_ContextSave CC_YES

401 #endif

402 #ifndef CC_Create

403 #define CC_Create CC_YES

404 #endif

405 #ifndef CC_CreateLoaded

406 #define CC_CreateLoaded CC_YES

407 #endif

408 #ifndef CC_CreatePrimary

409 #define CC_CreatePrimary CC_YES

410 #endif

411 #ifndef CC_DictionaryAttackLockReset

412 #define CC_DictionaryAttackLockReset CC_YES

413 #endif

414 #ifndef CC_DictionaryAttackParameters

415 #define CC_DictionaryAttackParameters CC_YES

416 #endif

417 #ifndef CC_Duplicate

418 #define CC_Duplicate CC_YES

419 #endif

420 #ifndef CC_ECC_Parameters

421 #define CC_ECC_Parameters (CC_YES && ALG_ECC)

422 #endif

423 #ifndef CC_ECDH_KeyGen

424 #define CC_ECDH_KeyGen (CC_YES && ALG_ECC)

425 #endif

426 #ifndef CC_ECDH_ZGen

427 #define CC_ECDH_ZGen (CC_YES && ALG_ECC)

428 #endif

429 #ifndef CC_EC_Ephemeral

430 #define CC_EC_Ephemeral (CC_YES && ALG_ECC)

431 #endif

432 #ifndef CC_EncryptDecrypt

433 #define CC_EncryptDecrypt CC_YES

434 #endif

435 #ifndef CC_EncryptDecrypt2

436 #define CC_EncryptDecrypt2 CC_YES

437 #endif

438 #ifndef CC_EventSequenceComplete

439 #define CC_EventSequenceComplete CC_YES

440 #endif

441 #ifndef CC_EvictControl

442 #define CC_EvictControl CC_YES

443 #endif

444 #ifndef CC_FieldUpgradeData

445 #define CC_FieldUpgradeData CC_NO

446 #endif

447 #ifndef CC_FieldUpgradeStart

448 #define CC_FieldUpgradeStart CC_NO

449 #endif

450 #ifndef CC_FirmwareRead

451 #define CC_FirmwareRead CC_NO

452 #endif

453 #ifndef CC_FlushContext

454 #define CC_FlushContext CC_YES

455 #endif

456 #ifndef CC_GetCapability

457 #define CC_GetCapability CC_YES

458 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 887

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

459 #ifndef CC_GetCommandAuditDigest

460 #define CC_GetCommandAuditDigest CC_YES

461 #endif

462 #ifndef CC_GetRandom

463 #define CC_GetRandom CC_YES

464 #endif

465 #ifndef CC_GetSessionAuditDigest

466 #define CC_GetSessionAuditDigest CC_YES

467 #endif

468 #ifndef CC_GetTestResult

469 #define CC_GetTestResult CC_YES

470 #endif

471 #ifndef CC_GetTime

472 #define CC_GetTime CC_YES

473 #endif

474 #ifndef CC_HMAC

475 #define CC_HMAC (CC_YES && !ALG_CMAC)

476 #endif

477 #ifndef CC_HMAC_Start

478 #define CC_HMAC_Start (CC_YES && !ALG_CMAC)

479 #endif

480 #ifndef CC_Hash

481 #define CC_Hash CC_YES

482 #endif

483 #ifndef CC_HashSequenceStart

484 #define CC_HashSequenceStart CC_YES

485 #endif

486 #ifndef CC_HierarchyChangeAuth

487 #define CC_HierarchyChangeAuth CC_YES

488 #endif

489 #ifndef CC_HierarchyControl

490 #define CC_HierarchyControl CC_YES

491 #endif

492 #ifndef CC_Import

493 #define CC_Import CC_YES

494 #endif

495 #ifndef CC_IncrementalSelfTest

496 #define CC_IncrementalSelfTest CC_YES

497 #endif

498 #ifndef CC_Load

499 #define CC_Load CC_YES

500 #endif

501 #ifndef CC_LoadExternal

502 #define CC_LoadExternal CC_YES

503 #endif

504 #ifndef CC_MAC

505 #define CC_MAC (CC_YES && ALG_CMAC)

506 #endif

507 #ifndef CC_MAC_Start

508 #define CC_MAC_Start (CC_YES && ALG_CMAC)

509 #endif

510 #ifndef CC_MakeCredential

511 #define CC_MakeCredential CC_YES

512 #endif

513 #ifndef CC_NV_Certify

514 #define CC_NV_Certify CC_YES

515 #endif

516 #ifndef CC_NV_ChangeAuth

517 #define CC_NV_ChangeAuth CC_YES

518 #endif

519 #ifndef CC_NV_DefineSpace

520 #define CC_NV_DefineSpace CC_YES

521 #endif

522 #ifndef CC_NV_Extend

523 #define CC_NV_Extend CC_YES

524 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 888 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

525 #ifndef CC_NV_GlobalWriteLock

526 #define CC_NV_GlobalWriteLock CC_YES

527 #endif

528 #ifndef CC_NV_Increment

529 #define CC_NV_Increment CC_YES

530 #endif

531 #ifndef CC_NV_Read

532 #define CC_NV_Read CC_YES

533 #endif

534 #ifndef CC_NV_ReadLock

535 #define CC_NV_ReadLock CC_YES

536 #endif

537 #ifndef CC_NV_ReadPublic

538 #define CC_NV_ReadPublic CC_YES

539 #endif

540 #ifndef CC_NV_SetBits

541 #define CC_NV_SetBits CC_YES

542 #endif

543 #ifndef CC_NV_UndefineSpace

544 #define CC_NV_UndefineSpace CC_YES

545 #endif

546 #ifndef CC_NV_UndefineSpaceSpecial

547 #define CC_NV_UndefineSpaceSpecial CC_YES

548 #endif

549 #ifndef CC_NV_Write

550 #define CC_NV_Write CC_YES

551 #endif

552 #ifndef CC_NV_WriteLock

553 #define CC_NV_WriteLock CC_YES

554 #endif

555 #ifndef CC_ObjectChangeAuth

556 #define CC_ObjectChangeAuth CC_YES

557 #endif

558 #ifndef CC_PCR_Allocate

559 #define CC_PCR_Allocate CC_YES

560 #endif

561 #ifndef CC_PCR_Event

562 #define CC_PCR_Event CC_YES

563 #endif

564 #ifndef CC_PCR_Extend

565 #define CC_PCR_Extend CC_YES

566 #endif

567 #ifndef CC_PCR_Read

568 #define CC_PCR_Read CC_YES

569 #endif

570 #ifndef CC_PCR_Reset

571 #define CC_PCR_Reset CC_YES

572 #endif

573 #ifndef CC_PCR_SetAuthPolicy

574 #define CC_PCR_SetAuthPolicy CC_YES

575 #endif

576 #ifndef CC_PCR_SetAuthValue

577 #define CC_PCR_SetAuthValue CC_YES

578 #endif

579 #ifndef CC_PP_Commands

580 #define CC_PP_Commands CC_YES

581 #endif

582 #ifndef CC_PolicyAuthValue

583 #define CC_PolicyAuthValue CC_YES

584 #endif

585 #ifndef CC_PolicyAuthorize

586 #define CC_PolicyAuthorize CC_YES

587 #endif

588 #ifndef CC_PolicyAuthorizeNV

589 #define CC_PolicyAuthorizeNV CC_YES

590 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 889

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

591 #ifndef CC_PolicyCommandCode

592 #define CC_PolicyCommandCode CC_YES

593 #endif

594 #ifndef CC_PolicyCounterTimer

595 #define CC_PolicyCounterTimer CC_YES

596 #endif

597 #ifndef CC_PolicyCpHash

598 #define CC_PolicyCpHash CC_YES

599 #endif

600 #ifndef CC_PolicyDuplicationSelect

601 #define CC_PolicyDuplicationSelect CC_YES

602 #endif

603 #ifndef CC_PolicyGetDigest

604 #define CC_PolicyGetDigest CC_YES

605 #endif

606 #ifndef CC_PolicyLocality

607 #define CC_PolicyLocality CC_YES

608 #endif

609 #ifndef CC_PolicyNV

610 #define CC_PolicyNV CC_YES

611 #endif

612 #ifndef CC_PolicyNameHash

613 #define CC_PolicyNameHash CC_YES

614 #endif

615 #ifndef CC_PolicyNvWritten

616 #define CC_PolicyNvWritten CC_YES

617 #endif

618 #ifndef CC_PolicyOR

619 #define CC_PolicyOR CC_YES

620 #endif

621 #ifndef CC_PolicyPCR

622 #define CC_PolicyPCR CC_YES

623 #endif

624 #ifndef CC_PolicyPassword

625 #define CC_PolicyPassword CC_YES

626 #endif

627 #ifndef CC_PolicyPhysicalPresence

628 #define CC_PolicyPhysicalPresence CC_YES

629 #endif

630 #ifndef CC_PolicyRestart

631 #define CC_PolicyRestart CC_YES

632 #endif

633 #ifndef CC_PolicySecret

634 #define CC_PolicySecret CC_YES

635 #endif

636 #ifndef CC_PolicySigned

637 #define CC_PolicySigned CC_YES

638 #endif

639 #ifndef CC_PolicyTemplate

640 #define CC_PolicyTemplate CC_YES

641 #endif

642 #ifndef CC_PolicyTicket

643 #define CC_PolicyTicket CC_YES

644 #endif

645 #ifndef CC_Policy_AC_SendSelect

646 #define CC_Policy_AC_SendSelect CC_YES

647 #endif

648 #ifndef CC_Quote

649 #define CC_Quote CC_YES

650 #endif

651 #ifndef CC_RSA_Decrypt

652 #define CC_RSA_Decrypt (CC_YES && ALG_RSA)

653 #endif

654 #ifndef CC_RSA_Encrypt

655 #define CC_RSA_Encrypt (CC_YES && ALG_RSA)

656 #endif

Trusted Platform Module Library Part 4: Supporting Routines

Page 890 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

657 #ifndef CC_ReadClock

658 #define CC_ReadClock CC_YES

659 #endif

660 #ifndef CC_ReadPublic

661 #define CC_ReadPublic CC_YES

662 #endif

663 #ifndef CC_Rewrap

664 #define CC_Rewrap CC_YES

665 #endif

666 #ifndef CC_SelfTest

667 #define CC_SelfTest CC_YES

668 #endif

669 #ifndef CC_SequenceComplete

670 #define CC_SequenceComplete CC_YES

671 #endif

672 #ifndef CC_SequenceUpdate

673 #define CC_SequenceUpdate CC_YES

674 #endif

675 #ifndef CC_SetAlgorithmSet

676 #define CC_SetAlgorithmSet CC_YES

677 #endif

678 #ifndef CC_SetCommandCodeAuditStatus

679 #define CC_SetCommandCodeAuditStatus CC_YES

680 #endif

681 #ifndef CC_SetPrimaryPolicy

682 #define CC_SetPrimaryPolicy CC_YES

683 #endif

684 #ifndef CC_Shutdown

685 #define CC_Shutdown CC_YES

686 #endif

687 #ifndef CC_Sign

688 #define CC_Sign CC_YES

689 #endif

690 #ifndef CC_StartAuthSession

691 #define CC_StartAuthSession CC_YES

692 #endif

693 #ifndef CC_Startup

694 #define CC_Startup CC_YES

695 #endif

696 #ifndef CC_StirRandom

697 #define CC_StirRandom CC_YES

698 #endif

699 #ifndef CC_TestParms

700 #define CC_TestParms CC_YES

701 #endif

702 #ifndef CC_Unseal

703 #define CC_Unseal CC_YES

704 #endif

705 #ifndef CC_Vendor_TCG_Test

706 #define CC_Vendor_TCG_Test CC_YES

707 #endif

708 #ifndef CC_VerifySignature

709 #define CC_VerifySignature CC_YES

710 #endif

711 #ifndef CC_ZGen_2Phase

712 #define CC_ZGen_2Phase (CC_YES && ALG_ECC)

713 #endif

714 #endif // _TPM_PROFILE_H_

A.3 TpmSizeChecks.c

A.3.1. Includes, Defines, and Types

1 #include "Tpm.h"

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 891

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

2 #include <stdio.h>

3 #include <assert.h>

4 #if RUNTIME_SIZE_CHECKS

5 #if TABLE_DRIVEN_MARSHAL

6 extern uint32_t MarshalDataSize;

7 #endif

8

9 static int once = 0;

10

11 //** TpmSizeChecks()

12 // This function is used during the development process to make sure that the

13 // vendor-specific values result in a consistent implementation. When possible,

14 // the code contains #if to do compile-time checks. However, in some cases, the

15 // values require the use of "sizeof()" and that can't be used in an #if.

16 BOOL

17 TpmSizeChecks(

18 void

19)

20 {

21 BOOL PASS = TRUE;

22 #if DEBUG

23 //

24 if(once++ != 0)

25 return 1;

26 {

27 UINT32 maxAsymSecurityStrength = MAX_ASYM_SECURITY_STRENGTH;

28 UINT32 maxHashSecurityStrength = MAX_HASH_SECURITY_STRENGTH;

29 UINT32 maxSymSecurityStrength = MAX_SYM_SECURITY_STRENGTH;

30 UINT32 maxSecurityStrengthBits = MAX_SECURITY_STRENGTH_BITS;

31 UINT32 proofSize = PROOF_SIZE;

32 UINT32 compliantProofSize = COMPLIANT_PROOF_SIZE;

33 UINT32 compliantPrimarySeedSize = COMPLIANT_PRIMARY_SEED_SIZE;

34 UINT32 primarySeedSize = PRIMARY_SEED_SIZE;

35

36 UINT32 cmacState = sizeof(tpmCmacState_t);

37 UINT32 hashState = sizeof(HASH_STATE);

38 UINT32 keyScheduleSize = sizeof(tpmCryptKeySchedule_t);

39 //

40 NOT_REFERENCED(cmacState);

41 NOT_REFERENCED(hashState);

42 NOT_REFERENCED(keyScheduleSize);

43 NOT_REFERENCED(maxAsymSecurityStrength);

44 NOT_REFERENCED(maxHashSecurityStrength);

45 NOT_REFERENCED(maxSymSecurityStrength);

46 NOT_REFERENCED(maxSecurityStrengthBits);

47 NOT_REFERENCED(proofSize);

48 NOT_REFERENCED(compliantProofSize);

49 NOT_REFERENCED(compliantPrimarySeedSize);

50 NOT_REFERENCED(primarySeedSize);

51

52 {

53 TPMT_SENSITIVE *p;

54 // This assignment keeps compiler from complaining about a conditional

55 // comparison being between two constants

56 UINT16 max_rsa_key_bytes = MAX_RSA_KEY_BYTES;

57 if((max_rsa_key_bytes / 2) != (sizeof(p->sensitive.rsa.t.buffer) / 5))

58 {

59 printf("Sensitive part of TPMT_SENSITIVE is undersized. May be caused"

60 " by use of wrong version of Part 2.\n");

61 PASS = FALSE;

62 }

63 }

64 #if TABLE_DRIVEN_MARSHAL

65 printf("sizeof(MarshalData) = %zu\n", sizeof(MarshalData_st));

66 #endif

67

Trusted Platform Module Library Part 4: Supporting Routines

Page 892 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

68 printf("Size of OBJECT = %zu\n", sizeof(OBJECT));

69 printf("Size of components in TPMT_SENSITIVE = %zu\n",

sizeof(TPMT_SENSITIVE));

70 printf(" TPMI_ALG_PUBLIC %zu\n", sizeof(TPMI_ALG_PUBLIC));

71 printf(" TPM2B_AUTH %zu\n", sizeof(TPM2B_AUTH));

72 printf(" TPM2B_DIGEST %zu\n", sizeof(TPM2B_DIGEST));

73 printf(" TPMU_SENSITIVE_COMPOSITE %zu\n",

74 sizeof(TPMU_SENSITIVE_COMPOSITE));

75 }

76 // Make sure that the size of the context blob is large enough for the largest

77 // context

78 // TPMS_CONTEXT_DATA contains two TPM2B values. That is not how this is

79 // implemented. Rather, the size field of the TPM2B_CONTEXT_DATA is used to

80 // determine the amount of data in the encrypted data. That part is not

81 // independently sized. This makes the actual size 2 bytes smaller than

82 // calculated using Part 2. Since this is opaque to the caller, it is not

83 // necessary to fix. The actual size is returned by TPM2_GetCapabilties().

84

85 // Initialize output handle. At the end of command action, the output

86 // handle of an object will be replaced, while the output handle

87 // for a session will be the same as input

88

89 // Get the size of fingerprint in context blob. The sequence value in

90 // TPMS_CONTEXT structure is used as the fingerprint

91 {

92 UINT32 fingerprintSize = sizeof(UINT64);

93 UINT32 integritySize = sizeof(UINT16)

94 + CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

95 UINT32 biggestObject = MAX(MAX(sizeof(HASH_OBJECT), sizeof(OBJECT)),

96 sizeof(SESSION));

97 UINT32 biggestContext = fingerprintSize + integritySize + biggestObject;

98

99 // round required size up to nearest 8 byte boundary.

100 biggestContext = 8 * ((biggestContext + 7) / 8);

101

102 if(MAX_CONTEXT_SIZE != biggestContext)

103 {

104 printf("MAX_CONTEXT_SIZE should be changed to %d (%d)\n",

105 biggestContext, MAX_CONTEXT_SIZE);

106 PASS = FALSE;

107 }

108 }

109 {

110 union u

111 {

112 TPMA_OBJECT attributes;

113 UINT32 uint32Value;

114 } u;

115 // these are defined so that compiler doesn't complain about conditional

116 // expressions comparing two constants.

117 int aSize = sizeof(u.attributes);

118 int uSize = sizeof(u.uint32Value);

119 u.uint32Value = 0;

120 SET_ATTRIBUTE(u.attributes, TPMA_OBJECT, Reserved_bit_at_0);

121 if(u.uint32Value != 1)

122 {

123 printf("The bit allocation in a TPMA_OBJECT is not as expected");

124 PASS = FALSE;

125 }

126 if(aSize != uSize) // comparison of two sizeof() values annoys compiler

127 {

128 printf("A TPMA_OBJECT is not the expected size.");

129 PASS = FALSE;

130 }

131 }

132 // Check that the platform implements each of the ACT that the TPM thinks

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 893

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

133 {

134 uint32_t act;

135 for(act = 0; act < 16; act++)

136 {

137 switch(act)

138 {

139 FOR_EACH_ACT(CASE_ACT_NUMBER)

140 if(!_plat__ACT_GetImplemented(act))

141 {

142 printf("TPM_RH_ACT_%1X is not implemented by platform\n",

143 act);

144 PASS = FALSE;

145 }

146 default:

147 break;

148 }

149 }

150 }

151 #endif // DEBUG

152 return (PASS);

153 }

154 #endif // RUNTIME_SIZE_CHECKS

Trusted Platform Module Library Part 4: Supporting Routines

Page 894 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex B
(informative)

Library-Specific

B.1 Introduction

This clause contains the files that are specific to a cryptographic library used by the TPM code.

Three categories are defined for cryptographic functions:

 big number math (asymmetric cryptography),

 symmetric ciphers, and

 hash functions.

The code is structured to make it possible to use different libraries for different categories. For example,

one might choose to use OpenSSL for its math library, but use a different library for hashing and

symmetric cryptography. Since OpenSSL supports all three categories, it might be more typical to

combine libraries of specific functions; that is, one library might only contain block ciphers while another

supports big number math.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 895

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.2 OpenSSL-Specific Files

B.2.1. Introduction

The following files are specific to a port that uses the OpenSSL library for cryptographic functions.

B.2.2. Header Files

B.2.2.1. TpmToOsslHash.h

B.2.2.1.1. Introduction

This header file is used to splice the OpenSSL hash code into the TPM code.

1 #ifndef HASH_LIB_DEFINED

2 #define HASH_LIB_DEFINED

3 #define HASH_LIB_OSSL

4 #include <openssl/evp.h>

5 #include <openssl/sha.h>

6 #include <openssl/sm3.h>

7 #include <openssl/ossl_typ.h>

B.2.2.1.2. Links to the OpenSSL HASH code

Redefine the internal name used for each of the hash state structures to the name used by the library.

These defines need to be known in all parts of the TPM so that the structure sizes can be properly

computed when needed.

8 #define tpmHashStateSHA1_t SHA_CTX

9 #define tpmHashStateSHA256_t SHA256_CTX

10 #define tpmHashStateSHA384_t SHA512_CTX

11 #define tpmHashStateSHA512_t SHA512_CTX

12 #define tpmHashStateSM3_256_t SM3_CTX

The defines below are only needed when compiling CryptHash.c or CryptSmac.c. This isolation is

primarily to avoid name space collision. However, if there is a real collision, it will likely show up when the

linker tries to put things together.

13 #ifdef _CRYPT_HASH_C_

14 typedef BYTE *PBYTE;

15 typedef const BYTE *PCBYTE;

Define the interface between CryptHash.c to the functions provided by the library. For each method,

define the calling parameters of the method and then define how the method is invoked in CryptHash.c.

All hashes are required to have the same calling sequence. If they don't, create a simple adaptation

function that converts from the standard form of the call to the form used by the specific hash (and then

send a nasty letter to the person who wrote the hash function for the library).

The macro that calls the method also defines how the parameters get swizzled between the default form

(in CryptHash.c)and the library form.

16 #define HASH_ALIGNMENT RADIX_BYTES

Initialize the hash context

Trusted Platform Module Library Part 4: Supporting Routines

Page 896 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

17 #define HASH_START_METHOD_DEF void (HASH_START_METHOD)(PANY_HASH_STATE state)

18 #define HASH_START(hashState) \

19 ((hashState)->def->method.start)(&(hashState)->state);

Add data to the hash

20 #define HASH_DATA_METHOD_DEF \

21 void (HASH_DATA_METHOD)(PANY_HASH_STATE state, \

22 PCBYTE buffer, \

23 size_t size)

24 #define HASH_DATA(hashState, dInSize, dIn) \

25 ((hashState)->def->method.data)(&(hashState)->state, dIn, dInSize)

Finalize the hash and get the digest

26 #define HASH_END_METHOD_DEF \

27 void (HASH_END_METHOD)(BYTE *buffer, PANY_HASH_STATE state)

28 #define HASH_END(hashState, buffer) \

29 ((hashState)->def->method.end)(buffer, &(hashState)->state)

Copy the hash context

NOTE: For import, export, and copy, memcpy() is used since there is no reformatting necessary between the internal
and external forms.

30 #define HASH_STATE_COPY_METHOD_DEF \

31 void (HASH_STATE_COPY_METHOD)(PANY_HASH_STATE to, \

32 PCANY_HASH_STATE from, \

33 size_t size)

34 #define HASH_STATE_COPY(hashStateOut, hashStateIn) \

35 ((hashStateIn)->def->method.copy)(&(hashStateOut)->state, \

36 &(hashStateIn)->state, \

37 (hashStateIn)->def->contextSize)

Copy (with reformatting when necessary) an internal hash structure to an external blob

38 #define HASH_STATE_EXPORT_METHOD_DEF \

39 void (HASH_STATE_EXPORT_METHOD)(BYTE *to, \

40 PCANY_HASH_STATE from, \

41 size_t size)

42 #define HASH_STATE_EXPORT(to, hashStateFrom) \

43 ((hashStateFrom)->def->method.copyOut) \

44 (&(((BYTE *)(to))[offsetof(HASH_STATE, state)]), \

45 &(hashStateFrom)->state, \

46 (hashStateFrom)->def->contextSize)

Copy from an external blob to an internal formate (with reformatting when necessary

47 #define HASH_STATE_IMPORT_METHOD_DEF \

48 void (HASH_STATE_IMPORT_METHOD)(PANY_HASH_STATE to, \

49 const BYTE *from, \

50 size_t size)

51 #define HASH_STATE_IMPORT(hashStateTo, from) \

52 ((hashStateTo)->def->method.copyIn) \

53 (&(hashStateTo)->state, \

54 &(((const BYTE *)(from))[offsetof(HASH_STATE, state)]),\

55 (hashStateTo)->def->contextSize)

Function aliases. The code in CryptHash.c uses the internal designation for the functions. These need to

be translated to the function names of the library.

56 #define tpmHashStart_SHA1 SHA1_Init // external name of the

57 // initialization method

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 897

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

58 #define tpmHashData_SHA1 SHA1_Update

59 #define tpmHashEnd_SHA1 SHA1_Final

60 #define tpmHashStateCopy_SHA1 memcpy

61 #define tpmHashStateExport_SHA1 memcpy

62 #define tpmHashStateImport_SHA1 memcpy

63 #define tpmHashStart_SHA256 SHA256_Init

64 #define tpmHashData_SHA256 SHA256_Update

65 #define tpmHashEnd_SHA256 SHA256_Final

66 #define tpmHashStateCopy_SHA256 memcpy

67 #define tpmHashStateExport_SHA256 memcpy

68 #define tpmHashStateImport_SHA256 memcpy

69 #define tpmHashStart_SHA384 SHA384_Init

70 #define tpmHashData_SHA384 SHA384_Update

71 #define tpmHashEnd_SHA384 SHA384_Final

72 #define tpmHashStateCopy_SHA384 memcpy

73 #define tpmHashStateExport_SHA384 memcpy

74 #define tpmHashStateImport_SHA384 memcpy

75 #define tpmHashStart_SHA512 SHA512_Init

76 #define tpmHashData_SHA512 SHA512_Update

77 #define tpmHashEnd_SHA512 SHA512_Final

78 #define tpmHashStateCopy_SHA512 memcpy

79 #define tpmHashStateExport_SHA512 memcpy

80 #define tpmHashStateImport_SHA_512 memcpy

81 #define tpmHashStart_SM3_256 sm3_init

82 #define tpmHashData_SM3_256 sm3_update

83 #define tpmHashEnd_SM3_256 sm3_final

84 #define tpmHashStateCopy_SM3_256 memcpy

85 #define tpmHashStateExport_SM3_256 memcpy

86 #define tpmHashStateImport_SM3_256 memcpy

87 #endif // _CRYPT_HASH_C_

88 #define LibHashInit()

This definition would change if there were something to report

89 #define HashLibSimulationEnd()

90 #endif // HASH_LIB_DEFINED

Trusted Platform Module Library Part 4: Supporting Routines

Page 898 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.2.2. TpmToOsslMath.h

B.2.2.2.1. Introduction

This file contains the structure definitions used for ECC in the LibTomCrypt() version of the code. These

definitions would change, based on the library. The ECC-related structures that cross the TPM interface

are defined in TpmTypes.h

1 #ifndef MATH_LIB_DEFINED

2 #define MATH_LIB_DEFINED

3 #define MATH_LIB_OSSL

4 #include <openssl/evp.h>

5 #include <openssl/ec.h>

6 #if OPENSSL_VERSION_NUMBER >= 0x10200000L

7 // Check the bignum_st definition in crypto/bn/bn_lcl.h and either update the

8 // version check or provide the new definition for this version.

9 # error Untested OpenSSL version

10 #elif OPENSSL_VERSION_NUMBER >= 0x10100000L

11 // from crypto/bn/bn_lcl.h

12 struct bignum_st {

13 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit

14 * chunks. */

15 int top; /* Index of last used d +1. */

16 /* The next are internal book keeping for

bn_expand. */

17 int dmax; /* Size of the d array. */

18 int neg; /* one if the number is negative */

19 int flags;

20 };

21 #endif // OPENSSL_VERSION_NUMBER

22 #include <openssl/bn.h>

B.2.2.2.2. Macros and Defines

Make sure that the library is using the correct size for a crypt word

23 #if defined THIRTY_TWO_BIT && (RADIX_BITS != 32) \

24 || ((defined SIXTY_FOUR_BIT_LONG || defined SIXTY_FOUR_BIT) \

25 && (RADIX_BITS != 64))

26 # error Ossl library is using different radix

27 #endif

Allocate a local BIGNUM value. For the allocation, a bigNum structure is created as is a local BIGNUM.

The bigNum is initialized and then the BIGNUM is set to reference the local value.

28 #define BIG_VAR(name, bits) \

29 BN_VAR(name##Bn, (bits)); \

30 BIGNUM _##name; \

31 BIGNUM *name = BigInitialized(&_##name, \

32 BnInit(name##Bn, \

33 BYTES_TO_CRYPT_WORDS(sizeof(_##name##Bn.d))))

Allocate a BIGNUM and initialize with the values in a bigNum initializer

34 #define BIG_INITIALIZED(name, initializer) \

35 BIGNUM _##name; \

36 BIGNUM *name = BigInitialized(&_##name, initializer)

37 typedef struct

38 {

39 const ECC_CURVE_DATA *C; // the TPM curve values

40 EC_GROUP *G; // group parameters

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 899

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

41 BN_CTX *CTX; // the context for the math (this might not be

42 // the context in which the curve was created>;

43 } OSSL_CURVE_DATA;

44 typedef OSSL_CURVE_DATA *bigCurve;

45 #define AccessCurveData(E) ((E)->C)

46 #include "TpmToOsslSupport_fp.h"

Start and end a context within which the OpenSSL memory management works

47 #define OSSL_ENTER() BN_CTX *CTX = OsslContextEnter()

48 #define OSSL_LEAVE() OsslContextLeave(CTX)

Start and end a context that spans multiple ECC functions. This is used so that the group for the curve

can persist across multiple frames.

49 #define CURVE_INITIALIZED(name, initializer) \

50 OSSL_CURVE_DATA _##name; \

51 bigCurve name = BnCurveInitialize(&_##name, initializer)

52 #define CURVE_FREE(name) BnCurveFree(name)

Start and end a local stack frame within the context of the curve frame

53 #define ECC_ENTER() BN_CTX *CTX = OsslPushContext(E->CTX)

54 #define ECC_LEAVE() OsslPopContext(CTX)

55 #define BN_NEW() BnNewVariable(CTX)

This definition would change if there were something to report

56 #define MathLibSimulationEnd()

57 #endif // MATH_LIB_DEFINED

Trusted Platform Module Library Part 4: Supporting Routines

Page 900 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.2.3. TpmToOsslSym.h

B.2.2.3.1. Introduction

This header file is used to splice the OpenSSL library into the TPM code.

The support required of a library are a hash module, a block cipher module and portions of a big number

library. All of the library-dependent headers should have the same guard to that only the first one gets

defined.

1 #ifndef SYM_LIB_DEFINED

2 #define SYM_LIB_DEFINED

3 #define SYM_LIB_OSSL

4 #include <openssl/aes.h>

5 #include <openssl/des.h>

6 #include <openssl/sm4.h>

7 #include <openssl/camellia.h>

8 #include <openssl/bn.h>

9 #include <openssl/ossl_typ.h>

B.2.2.3.2. Links to the OpenSSL symmetric algorithms

The Crypt functions that call the block encryption function use the parameters in the order:

 keySchedule

 in buffer

 out buffer Since open SSL uses the order in encryptoCall_t above, need to swizzle the values to the

order required by the library.

10 #define SWIZZLE(keySchedule, in, out) \

11 (const BYTE *)(in), (BYTE *)(out), (void *)(keySchedule)

Define the order of parameters to the library functions that do block encryption and decryption.

12 typedef void(*TpmCryptSetSymKeyCall_t)(

13 const BYTE *in,

14 BYTE *out,

15 void *keySchedule

16);

17 #define SYM_ALIGNMENT RADIX_BYTES

B.2.2.3.3. Links to the OpenSSL AES code

Macros to set up the encryption/decryption key schedules

AES:

18 #define TpmCryptSetEncryptKeyAES(key, keySizeInBits, schedule) \

19 AES_set_encrypt_key((key), (keySizeInBits), (tpmKeyScheduleAES *)(schedule))

20 #define TpmCryptSetDecryptKeyAES(key, keySizeInBits, schedule) \

21 AES_set_decrypt_key((key), (keySizeInBits), (tpmKeyScheduleAES *)(schedule))

Macros to alias encryption calls to specific algorithms. This should be used sparingly. Currently, only used

by CryptSym.c and CryptRand.c

When using these calls, to call the AES block encryption code, the caller should use:

TpmCryptEncryptAES(SWIZZLE(keySchedule, in, out));

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 901

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

22 #define TpmCryptEncryptAES AES_encrypt

23 #define TpmCryptDecryptAES AES_decrypt

24 #define tpmKeyScheduleAES AES_KEY

B.2.2.3.4. Links to the OpenSSL DES code

25 #if ALG_TDES

26 #include "TpmToOsslDesSupport_fp.h"

27 #endif

28 #define TpmCryptSetEncryptKeyTDES(key, keySizeInBits, schedule) \

29 TDES_set_encrypt_key((key), (keySizeInBits), (tpmKeyScheduleTDES *)(schedule))

30 #define TpmCryptSetDecryptKeyTDES(key, keySizeInBits, schedule) \

31 TDES_set_encrypt_key((key), (keySizeInBits), (tpmKeyScheduleTDES *)(schedule))

Macros to alias encryption calls to specific algorithms. This should be used sparingly. Currently, only used

by CryptRand.c

32 #define TpmCryptEncryptTDES TDES_encrypt

33 #define TpmCryptDecryptTDES TDES_decrypt

34 #define tpmKeyScheduleTDES DES_key_schedule

B.2.2.3.5. Links to the OpenSSL SM4 code

Macros to set up the encryption/decryption key schedules

35 #define TpmCryptSetEncryptKeySM4(key, keySizeInBits, schedule) \

36 SM4_set_key((key), (tpmKeyScheduleSM4 *)(schedule))

37 #define TpmCryptSetDecryptKeySM4(key, keySizeInBits, schedule) \

38 SM4_set_key((key), (tpmKeyScheduleSM4 *)(schedule))

Macros to alias encryption calls to specific algorithms. This should be used sparingly.

39 #define TpmCryptEncryptSM4 SM4_encrypt

40 #define TpmCryptDecryptSM4 SM4_decrypt

41 #define tpmKeyScheduleSM4 SM4_KEY

B.2.2.3.6. Links to the OpenSSL CAMELLIA code

Macros to set up the encryption/decryption key schedules

42 #define TpmCryptSetEncryptKeyCAMELLIA(key, keySizeInBits, schedule) \

43 Camellia_set_key((key), (keySizeInBits), (tpmKeyScheduleCAMELLIA *)(schedule))

44 #define TpmCryptSetDecryptKeyCAMELLIA(key, keySizeInBits, schedule) \

45 Camellia_set_key((key), (keySizeInBits), (tpmKeyScheduleCAMELLIA *)(schedule))

Macros to alias encryption calls to specific algorithms. This should be used sparingly.

46 #define TpmCryptEncryptCAMELLIA Camellia_encrypt

47 #define TpmCryptDecryptCAMELLIA Camellia_decrypt

48 #define tpmKeyScheduleCAMELLIA CAMELLIA_KEY

Forward reference

49 typedef union tpmCryptKeySchedule_t tpmCryptKeySchedule_t;

This definition would change if there were something to report

50 #define SymLibSimulationEnd()

51 #endif // SYM_LIB_DEFINED

Trusted Platform Module Library Part 4: Supporting Routines

Page 902 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.3. Source Files

B.2.3.1. TpmToOsslDesSupport.c

B.2.3.1.1. Introduction

The functions in this file are used for initialization of the interface to the OpenSSL library.

B.2.3.1.2. Defines and Includes

1 #include "Tpm.h"

2 #if (defined SYM_LIB_OSSL) && ALG_TDES

B.2.3.1.3. Functions

B.2.3.1.3.1. TDES_set_encyrpt_key()

This function makes creation of a TDES key look like the creation of a key for any of the other OpenSSL

block ciphers. It will create three key schedules, one for each of the DES keys. If there are only two keys,

then the third schedule is a copy of the first.

3 void

4 TDES_set_encrypt_key(

5 const BYTE *key,

6 UINT16 keySizeInBits,

7 tpmKeyScheduleTDES *keySchedule

8)

9 {

10 DES_set_key_unchecked((const_DES_cblock *)key, &keySchedule[0]);

11 DES_set_key_unchecked((const_DES_cblock *)&key[8], &keySchedule[1]);

12 // If is two-key, copy the schedule for K1 into K3, otherwise, compute the

13 // the schedule for K3

14 if(keySizeInBits == 128)

15 keySchedule[2] = keySchedule[0];

16 else

17 DES_set_key_unchecked((const_DES_cblock *)&key[16],

18 &keySchedule[2]);

19 }

B.2.3.1.3.2. TDES_encyrpt()

The TPM code uses one key schedule. For TDES, the schedule contains three schedules. OpenSSL

wants the schedules referenced separately. This function does that.

20 void TDES_encrypt(

21 const BYTE *in,

22 BYTE *out,

23 tpmKeyScheduleTDES *ks

24)

25 {

26 DES_ecb3_encrypt((const_DES_cblock *)in, (DES_cblock *)out,

27 &ks[0], &ks[1], &ks[2],

28 DES_ENCRYPT);

29 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 903

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.2.3.1.3.3. TDES_decrypt()

As with TDES_encypt() this function bridges between the TPM single schedule model and the OpenSSL

three schedule model.

30 void TDES_decrypt(

31 const BYTE *in,

32 BYTE *out,

33 tpmKeyScheduleTDES *ks

34)

35 {

36 DES_ecb3_encrypt((const_DES_cblock *)in, (DES_cblock *)out,

37 &ks[0], &ks[1], &ks[2],

38 DES_DECRYPT);

39 }

40 #endif // SYM_LIB_OSSL

Trusted Platform Module Library Part 4: Supporting Routines

Page 904 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.3.2. TpmToOsslMath.c

B.2.3.2.1. Introduction

The functions in this file provide the low-level interface between the TPM code and the big number and

elliptic curve math routines in OpenSSL.

Most math on big numbers require a context. The context contains the memory in which OpenSSL

creates and manages the big number values. When a OpenSSL math function will be called that modifies

a BIGNUM value, that value must be created in an OpenSSL context. The first line of code in such a

function must be: OSSL_ENTER(); and the last operation before returning must be OSSL_LEAVE().

OpenSSL variables can then be created with BnNewVariable(). Constant values to be used by OpenSSL

are created from the bigNum values passed to the functions in this file. Space for the BIGNUM control

block is allocated in the stack of the function and then it is initialized by calling BigInitialized(). That

function sets up the values in the BIGNUM structure and sets the data pointer to point to the data in the

bignum_t. This is only used when the value is known to be a constant in the called function.

Because the allocations of constants is on the local stack and the OSSL_ENTER()/OSSL_LEAVE() pair

flushes everything created in OpenSSL memory, there should be no chance of a memory leak.

B.2.3.2.2. Includes and Defines

1 #include "Tpm.h"

2 #ifdef MATH_LIB_OSSL

3 #include "TpmToOsslMath_fp.h"

B.2.3.2.3. Functions

B.2.3.2.3.1. OsslToTpmBn()

This function converts an OpenSSL BIGNUM to a TPM bignum. In this implementation it is assumed that

OpenSSL uses a different control structure but the same data layout -- an array of native-endian words in

little-endian order.

Return Value Meaning

TRUE(1) success

FALSE(0) failure because value will not fit or OpenSSL variable doesn't exist

4 BOOL

5 OsslToTpmBn(

6 bigNum bn,

7 BIGNUM *osslBn

8)

9 {

10 VERIFY(osslBn != NULL);

11 // If the bn is NULL, it means that an output value pointer was NULL meaning that

12 // the results is simply to be discarded.

13 if(bn != NULL)

14 {

15 int i;

16 //

17 VERIFY((unsigned)osslBn->top <= BnGetAllocated(bn));

18 for(i = 0; i < osslBn->top; i++)

19 bn->d[i] = osslBn->d[i];

20 BnSetTop(bn, osslBn->top);

21 }

22 return TRUE;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 905

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

23 Error:

24 return FALSE;

25 }

B.2.3.2.3.2. BigInitialized()

This function initializes an OSSL BIGNUM from a TPM bigConst. Do not use this for values that are

passed to OpenSLL when they are not declared as const in the function prototype. Instead, use

BnNewVariable().

26 BIGNUM *

27 BigInitialized(

28 BIGNUM *toInit,

29 bigConst initializer

30)

31 {

32 if(initializer == NULL)

33 FAIL(FATAL_ERROR_PARAMETER);

34 if(toInit == NULL || initializer == NULL)

35 return NULL;

36 toInit->d = (BN_ULONG *)&initializer->d[0];

37 toInit->dmax = (int)initializer->allocated;

38 toInit->top = (int)initializer->size;

39 toInit->neg = 0;

40 toInit->flags = 0;

41 return toInit;

42 }

43 #ifndef OSSL_DEBUG

44 # define BIGNUM_PRINT(label, bn, eol)

45 # define DEBUG_PRINT(x)

46 #else

47 # define DEBUG_PRINT(x) printf("%s", x)

48 # define BIGNUM_PRINT(label, bn, eol) BIGNUM_print((label), (bn), (eol))

B.2.3.2.3.3. BIGNUM_print()

49 static void

50 BIGNUM_print(

51 const char *label,

52 const BIGNUM *a,

53 BOOL eol

54)

55 {

56 BN_ULONG *d;

57 int i;

58 int notZero = FALSE;

59

60 if(label != NULL)

61 printf("%s", label);

62 if(a == NULL)

63 {

64 printf("NULL");

65 goto done;

66 }

67 if (a->neg)

68 printf("-");

69 for(i = a->top, d = &a->d[i - 1]; i > 0; i--)

70 {

71 int j;

72 BN_ULONG l = *d--;

73 for(j = BN_BITS2 - 8; j >= 0; j -= 8)

74 {

75 BYTE b = (BYTE)((l >> j) & 0xFF);

Trusted Platform Module Library Part 4: Supporting Routines

Page 906 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

76 notZero = notZero || (b != 0);

77 if(notZero)

78 printf("%02x", b);

79 }

80 if(!notZero)

81 printf("0");

82 }

83 done:

84 if(eol)

85 printf("\n");

86 return;

87 }

88 #endif

B.2.3.2.3.4. BnNewVariable()

This function allocates a new variable in the provided context. If the context does not exist or the

allocation fails, it is a catastrophic failure.

89 static BIGNUM *

90 BnNewVariable(

91 BN_CTX *CTX

92)

93 {

94 BIGNUM *new;

95 //

96 // This check is intended to protect against calling this function without

97 // having initialized the CTX.

98 if((CTX == NULL) || ((new = BN_CTX_get(CTX)) == NULL))

99 FAIL(FATAL_ERROR_ALLOCATION);

100 return new;

101 }

102 #if LIBRARY_COMPATIBILITY_CHECK

B.2.3.2.3.5. MathLibraryCompatibilityCheck()

103 BOOL

104 MathLibraryCompatibilityCheck(

105 void

106)

107 {

108 OSSL_ENTER();

109 BIGNUM *osslTemp = BnNewVariable(CTX);

110 crypt_uword_t i;

111 BYTE test[] = {0x1F, 0x1E, 0x1D, 0x1C, 0x1B, 0x1A, 0x19, 0x18,

112 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,

113 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08,

114 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00};

115 BN_VAR(tpmTemp, sizeof(test) * 8); // allocate some space for a test value

116 //

117 // Convert the test data to a bigNum

118 BnFromBytes(tpmTemp, test, sizeof(test));

119 // Convert the test data to an OpenSSL BIGNUM

120 BN_bin2bn(test, sizeof(test), osslTemp);

121 // Make sure the values are consistent

122 VERIFY(osslTemp->top == (int)tpmTemp->size);

123 for(i = 0; i < tpmTemp->size; i++)

124 VERIFY(osslTemp->d[i] == tpmTemp->d[i]);

125 OSSL_LEAVE();

126 return 1;

127 Error:

128 return 0;

129 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 907

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

130 #endif

B.2.3.2.3.6. BnModMult()

This function does a modular multiply. It first does a multiply and then a divide and returns the remainder

of the divide.

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

131 LIB_EXPORT BOOL

132 BnModMult(

133 bigNum result,

134 bigConst op1,

135 bigConst op2,

136 bigConst modulus

137)

138 {

139 OSSL_ENTER();

140 BOOL OK = TRUE;

141 BIGNUM *bnResult = BN_NEW();

142 BIGNUM *bnTemp = BN_NEW();

143 BIG_INITIALIZED(bnOp1, op1);

144 BIG_INITIALIZED(bnOp2, op2);

145 BIG_INITIALIZED(bnMod, modulus);

146 //

147 VERIFY(BN_mul(bnTemp, bnOp1, bnOp2, CTX));

148 VERIFY(BN_div(NULL, bnResult, bnTemp, bnMod, CTX));

149 VERIFY(OsslToTpmBn(result, bnResult));

150 goto Exit;

151 Error:

152 OK = FALSE;

153 Exit:

154 OSSL_LEAVE();

155 return OK;

156 }

B.2.3.2.3.7. BnMult()

Multiplies two numbers

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

157 LIB_EXPORT BOOL

158 BnMult(

159 bigNum result,

160 bigConst multiplicand,

161 bigConst multiplier

162)

163 {

164 OSSL_ENTER();

165 BIGNUM *bnTemp = BN_NEW();

166 BOOL OK = TRUE;

167 BIG_INITIALIZED(bnA, multiplicand);

168 BIG_INITIALIZED(bnB, multiplier);

169 //

Trusted Platform Module Library Part 4: Supporting Routines

Page 908 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

170 VERIFY(BN_mul(bnTemp, bnA, bnB, CTX));

171 VERIFY(OsslToTpmBn(result, bnTemp));

172 goto Exit;

173 Error:

174 OK = FALSE;

175 Exit:

176 OSSL_LEAVE();

177 return OK;

178 }

B.2.3.2.3.8. BnDiv()

This function divides two bigNum values. The function returns FALSE if there is an error in the operation.

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

179 LIB_EXPORT BOOL

180 BnDiv(

181 bigNum quotient,

182 bigNum remainder,

183 bigConst dividend,

184 bigConst divisor

185)

186 {

187 OSSL_ENTER();

188 BIGNUM *bnQ = BN_NEW();

189 BIGNUM *bnR = BN_NEW();

190 BOOL OK = TRUE;

191 BIG_INITIALIZED(bnDend, dividend);

192 BIG_INITIALIZED(bnSor, divisor);

193 //

194 if(BnEqualZero(divisor))

195 FAIL(FATAL_ERROR_DIVIDE_ZERO);

196 VERIFY(BN_div(bnQ, bnR, bnDend, bnSor, CTX));

197 VERIFY(OsslToTpmBn(quotient, bnQ));

198 VERIFY(OsslToTpmBn(remainder, bnR));

199 DEBUG_PRINT("In BnDiv:\n");

200 BIGNUM_PRINT(" bnDividend: ", bnDend, TRUE);

201 BIGNUM_PRINT(" bnDivisor: ", bnSor, TRUE);

202 BIGNUM_PRINT(" bnQuotient: ", bnQ, TRUE);

203 BIGNUM_PRINT(" bnRemainder: ", bnR, TRUE);

204 goto Exit;

205 Error:

206 OK = FALSE;

207 Exit:

208 OSSL_LEAVE();

209 return OK;

210 }

211 #if ALG_RSA

B.2.3.2.3.9. BnGcd()

Get the greatest common divisor of two numbers

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 909

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

212 LIB_EXPORT BOOL

213 BnGcd(

214 bigNum gcd, // OUT: the common divisor

215 bigConst number1, // IN:

216 bigConst number2 // IN:

217)

218 {

219 OSSL_ENTER();

220 BIGNUM *bnGcd = BN_NEW();

221 BOOL OK = TRUE;

222 BIG_INITIALIZED(bn1, number1);

223 BIG_INITIALIZED(bn2, number2);

224 //

225 VERIFY(BN_gcd(bnGcd, bn1, bn2, CTX));

226 VERIFY(OsslToTpmBn(gcd, bnGcd));

227 goto Exit;

228 Error:

229 OK = FALSE;

230 Exit:

231 OSSL_LEAVE();

232 return OK;

233 }

B.2.3.2.3.10. BnModExp()

Do modular exponentiation using bigNum values. The conversion from a bignum_t to a bigNum is trivial

as they are based on the same structure

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

234 LIB_EXPORT BOOL

235 BnModExp(

236 bigNum result, // OUT: the result

237 bigConst number, // IN: number to exponentiate

238 bigConst exponent, // IN:

239 bigConst modulus // IN:

240)

241 {

242 OSSL_ENTER();

243 BIGNUM *bnResult = BN_NEW();

244 BOOL OK = TRUE;

245 BIG_INITIALIZED(bnN, number);

246 BIG_INITIALIZED(bnE, exponent);

247 BIG_INITIALIZED(bnM, modulus);

248 //

249 VERIFY(BN_mod_exp(bnResult, bnN, bnE, bnM, CTX));

250 VERIFY(OsslToTpmBn(result, bnResult));

251 goto Exit;

252 Error:

253 OK = FALSE;

254 Exit:

255 OSSL_LEAVE();

256 return OK;

257 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 910 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.3.2.3.11. BnModInverse()

Modular multiplicative inverse

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

258 LIB_EXPORT BOOL

259 BnModInverse(

260 bigNum result,

261 bigConst number,

262 bigConst modulus

263)

264 {

265 OSSL_ENTER();

266 BIGNUM *bnResult = BN_NEW();

267 BOOL OK = TRUE;

268 BIG_INITIALIZED(bnN, number);

269 BIG_INITIALIZED(bnM, modulus);

270 //

271 VERIFY(BN_mod_inverse(bnResult, bnN, bnM, CTX) != NULL);

272 VERIFY(OsslToTpmBn(result, bnResult));

273 goto Exit;

274 Error:

275 OK = FALSE;

276 Exit:

277 OSSL_LEAVE();

278 return OK;

279 }

280 #endif // ALG_RSA

281 #if ALG_ECC

B.2.3.2.3.12. PointFromOssl()

Function to copy the point result from an OSSL function to a bigNum

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation

282 static BOOL

283 PointFromOssl(

284 bigPoint pOut, // OUT: resulting point

285 EC_POINT *pIn, // IN: the point to return

286 bigCurve E // IN: the curve

287)

288 {

289 BIGNUM *x = NULL;

290 BIGNUM *y = NULL;

291 BOOL OK;

292 BN_CTX_start(E->CTX);

293 //

294 x = BN_CTX_get(E->CTX);

295 y = BN_CTX_get(E->CTX);

296

297 if(y == NULL)

298 FAIL(FATAL_ERROR_ALLOCATION);

299 // If this returns false, then the point is at infinity

300 OK = EC_POINT_get_affine_coordinates(E->G, pIn, x, y, E->CTX);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 911

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

301 if(OK)

302 {

303 OsslToTpmBn(pOut->x, x);

304 OsslToTpmBn(pOut->y, y);

305 BnSetWord(pOut->z, 1);

306 }

307 else

308 BnSetWord(pOut->z, 0);

309 BN_CTX_end(E->CTX);

310 return OK;

311 }

B.2.3.2.3.13. EcPointInitialized()

Allocate and initialize a point.

312 static EC_POINT *

313 EcPointInitialized(

314 pointConst initializer,

315 bigCurve E

316)

317 {

318 EC_POINT *P = NULL;

319

320 if(initializer != NULL)

321 {

322 BIG_INITIALIZED(bnX, initializer->x);

323 BIG_INITIALIZED(bnY, initializer->y);

324 P = EC_POINT_new(E->G);

325 if(E == NULL)

326 FAIL(FATAL_ERROR_ALLOCATION);

327 if(!EC_POINT_set_affine_coordinates(E->G, P, bnX, bnY, E->CTX))

328 P = NULL;

329 }

330 return P;

331 }

B.2.3.2.3.14. BnCurveInitialize()

This function initializes the OpenSSL curve information structure. This structure points to the TPM-defined

values for the curve, to the context for the number values in the frame, and to the OpenSSL-defined

group values.

Return Value Meaning

NULL the TPM_ECC_CURVE is not valid or there was a problem in in
initializing the curve data

non-NULL points to E

332 LIB_EXPORT bigCurve

333 BnCurveInitialize(

334 bigCurve E, // IN: curve structure to initialize

335 TPM_ECC_CURVE curveId // IN: curve identifier

336)

337 {

338 const ECC_CURVE_DATA *C = GetCurveData(curveId);

339 if(C == NULL)

340 E = NULL;

341 if(E != NULL)

342 {

343 // This creates the OpenSSL memory context that stays in effect as long as the

344 // curve (E) is defined.

Trusted Platform Module Library Part 4: Supporting Routines

Page 912 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

345 OSSL_ENTER(); // if the allocation fails, the TPM fails

346 EC_POINT *P = NULL;

347 BIG_INITIALIZED(bnP, C->prime);

348 BIG_INITIALIZED(bnA, C->a);

349 BIG_INITIALIZED(bnB, C->b);

350 BIG_INITIALIZED(bnX, C->base.x);

351 BIG_INITIALIZED(bnY, C->base.y);

352 BIG_INITIALIZED(bnN, C->order);

353 BIG_INITIALIZED(bnH, C->h);

354 //

355 E->C = C;

356 E->CTX = CTX;

357

358 // initialize EC group, associate a generator point and initialize the point

359 // from the parameter data

360 // Create a group structure

361 E->G = EC_GROUP_new_curve_GFp(bnP, bnA, bnB, CTX);

362 VERIFY(E->G != NULL);

363

364 // Allocate a point in the group that will be used in setting the

365 // generator. This is not needed after the generator is set.

366 P = EC_POINT_new(E->G);

367 VERIFY(P != NULL);

368

369 // Need to use this in case Montgomery method is being used

370 VERIFY(EC_POINT_set_affine_coordinates(E->G, P, bnX, bnY, CTX));

371 // Now set the generator

372 VERIFY(EC_GROUP_set_generator(E->G, P, bnN, bnH));

373

374 EC_POINT_free(P);

375 goto Exit;

376 Error:

377 EC_POINT_free(P);

378 BnCurveFree(E);

379 E = NULL;

380 }

381 Exit:

382 return E;

383 }

B.2.3.2.3.15. BnCurveFree()

This function will free the allocated components of the curve and end the frame in which the curve data

exists

384 LIB_EXPORT void

385 BnCurveFree(

386 bigCurve E

387)

388 {

389 if(E)

390 {

391 EC_GROUP_free(E->G);

392 OsslContextLeave(E->CTX);

393 }

394 }

B.2.3.2.3.16. BnEccModMult()

This function does a point multiply of the form R = [d]S

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 913

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation; treat as result being point at infinity

395 LIB_EXPORT BOOL

396 BnEccModMult(

397 bigPoint R, // OUT: computed point

398 pointConst S, // IN: point to multiply by 'd' (optional)

399 bigConst d, // IN: scalar for [d]S

400 bigCurve E

401)

402 {

403 EC_POINT *pR = EC_POINT_new(E->G);

404 EC_POINT *pS = EcPointInitialized(S, E);

405 BIG_INITIALIZED(bnD, d);

406

407 if(S == NULL)

408 EC_POINT_mul(E->G, pR, bnD, NULL, NULL, E->CTX);

409 else

410 EC_POINT_mul(E->G, pR, NULL, pS, bnD, E->CTX);

411 PointFromOssl(R, pR, E);

412 EC_POINT_free(pR);

413 EC_POINT_free(pS);

414 return !BnEqualZero(R->z);

415 }

B.2.3.2.3.17. BnEccModMult2()

This function does a point multiply of the form R = [d]G + [u]Q

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation; treat as result being point at infinity

416 LIB_EXPORT BOOL

417 BnEccModMult2(

418 bigPoint R, // OUT: computed point

419 pointConst S, // IN: optional point

420 bigConst d, // IN: scalar for [d]S or [d]G

421 pointConst Q, // IN: second point

422 bigConst u, // IN: second scalar

423 bigCurve E // IN: curve

424)

425 {

426 EC_POINT *pR = EC_POINT_new(E->G);

427 EC_POINT *pS = EcPointInitialized(S, E);

428 BIG_INITIALIZED(bnD, d);

429 EC_POINT *pQ = EcPointInitialized(Q, E);

430 BIG_INITIALIZED(bnU, u);

431

432 if(S == NULL || S == (pointConst)&(AccessCurveData(E)->base))

433 EC_POINT_mul(E->G, pR, bnD, pQ, bnU, E->CTX);

434 else

435 {

436 const EC_POINT *points[2];

437 const BIGNUM *scalars[2];

438 points[0] = pS;

439 points[1] = pQ;

440 scalars[0] = bnD;

441 scalars[1] = bnU;

Trusted Platform Module Library Part 4: Supporting Routines

Page 914 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

442 EC_POINTs_mul(E->G, pR, NULL, 2, points, scalars, E->CTX);

443 }

444 PointFromOssl(R, pR, E);

445 EC_POINT_free(pR);

446 EC_POINT_free(pS);

447 EC_POINT_free(pQ);

448 return !BnEqualZero(R->z);

449 }

B.2.3.2.4. BnEccAdd()

This function does addition of two points.

Return Value Meaning

TRUE(1) success

FALSE(0) failure in operation; treat as result being point at infinity

450 LIB_EXPORT BOOL

451 BnEccAdd(

452 bigPoint R, // OUT: computed point

453 pointConst S, // IN: point to multiply by 'd'

454 pointConst Q, // IN: second point

455 bigCurve E // IN: curve

456)

457 {

458 EC_POINT *pR = EC_POINT_new(E->G);

459 EC_POINT *pS = EcPointInitialized(S, E);

460 EC_POINT *pQ = EcPointInitialized(Q, E);

461 //

462 EC_POINT_add(E->G, pR, pS, pQ, E->CTX);

463

464 PointFromOssl(R, pR, E);

465 EC_POINT_free(pR);

466 EC_POINT_free(pS);

467 EC_POINT_free(pQ);

468 return !BnEqualZero(R->z);

469 }

470 #endif // ALG_ECC

471 #endif // MATHLIB OSSL

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 915

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.2.3.3. TpmToOsslSupport.c

B.2.3.3.1. Introduction

The functions in this file are used for initialization of the interface to the OpenSSL library.

B.2.3.3.2. Defines and Includes

1 #include "Tpm.h"

2 #if defined(HASH_LIB_OSSL) || defined(MATH_LIB_OSSL) || defined(SYM_LIB_OSSL)

Used to pass the pointers to the correct sub-keys

3 typedef const BYTE *desKeyPointers[3];

B.2.3.3.2.1. SupportLibInit()

This does any initialization required by the support library.

4 LIB_EXPORT int

5 SupportLibInit(

6 void

7)

8 {

9 return TRUE;

10 }

B.2.3.3.2.2. OsslContextEnter()

This function is used to initialize an OpenSSL context at the start of a function that will call to an

OpenSSL math function.

11 BN_CTX *

12 OsslContextEnter(

13 void

14)

15 {

16 BN_CTX *CTX = BN_CTX_new();

17 //

18 return OsslPushContext(CTX);

19 }

B.2.3.3.2.3. OsslContextLeave()

This is the companion function to OsslContextEnter().

20 void

21 OsslContextLeave(

22 BN_CTX *CTX

23)

24 {

25 OsslPopContext(CTX);

26 BN_CTX_free(CTX);

27 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 916 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.3.3.2.4. OsslPushContext()

This function is used to create a frame in a context. All values allocated within this context after the frame

is started will be automatically freed when the context (OsslPopContext()

28 BN_CTX *

29 OsslPushContext(

30 BN_CTX *CTX

31)

32 {

33 if(CTX == NULL)

34 FAIL(FATAL_ERROR_ALLOCATION);

35 BN_CTX_start(CTX);

36 return CTX;

37 }

B.2.3.3.2.5. OsslPopContext()

This is the companion function to OsslPushContext().

38 void

39 OsslPopContext(

40 BN_CTX *CTX

41)

42 {

43 // BN_CTX_end can't be called with NULL. It will blow up.

44 if(CTX != NULL)

45 BN_CTX_end(CTX);

46 }

47 #endif // HASH_LIB_OSSL || MATH_LIB_OSSL || SYM_LIB_OSSL

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 917

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Annex C
(informative)

Simulation Environment

C.1 Introduction

These files are used to simulate some of the implementation-dependent hardware of a TPM. These files

are provided to allow creation of a simulation environment for the TPM. These files are not expected to be

part of a hardware TPM implementation.

C.2 Cancel.c

C.2.1. Description

This module simulates the cancel pins on the TPM.

C.2.2. Includes, Typedefs, Structures, and Defines

1 #include "Platform.h"

C.2.3. Functions

C.2.3.1. _plat__IsCanceled()

Check if the cancel flag is set

Return Value Meaning

TRUE(1) if cancel flag is set

FALSE(0) if cancel flag is not set

2 LIB_EXPORT int

3 _plat__IsCanceled(

4 void

5)

6 {

7 // return cancel flag

8 return s_isCanceled;

9 }

C.2.3.2. _plat__SetCancel()

Set cancel flag.

10 LIB_EXPORT void

11 _plat__SetCancel(

12 void

13)

14 {

15 s_isCanceled = TRUE;

16 return;

17 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 918 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.2.3.3. _plat__ClearCancel()

Clear cancel flag

18 LIB_EXPORT void

19 _plat__ClearCancel(

20 void

21)

22 {

23 s_isCanceled = FALSE;

24 return;

25 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 919

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.3 Clock.c

C.3.1. Description

This file contains the routines that are used by the simulator to mimic a hardware clock on a TPM.

In this implementation, all the time values are measured in millisecond. However, the precision of the

clock functions may be implementation dependent.

C.3.2. Includes and Data Definitions

1 #include <assert.h>

2 #include "Platform.h"

3 #include "TpmFail_fp.h"

C.3.3. Simulator Functions

C.3.3.1. Introduction

This set of functions is intended to be called by the simulator environment in order to simulate hardware

events.

C.3.3.2. _plat__TimerReset()

This function sets current system clock time as t0 for counting TPM time. This function is called at a

power on event to reset the clock. When the clock is reset, the indication that the clock was stopped is

also set.

4 LIB_EXPORT void

5 _plat__TimerReset(

6 void

7)

8 {

9 s_lastSystemTime = 0;

10 s_tpmTime = 0;

11 s_adjustRate = CLOCK_NOMINAL;

12 s_timerReset = TRUE;

13 s_timerStopped = TRUE;

14 return;

15 }

C.3.3.3. _plat__TimerRestart()

This function should be called in order to simulate the restart of the timer should it be stopped while

power is still applied.

16 LIB_EXPORT void

17 _plat__TimerRestart(

18 void

19)

20 {

21 s_timerStopped = TRUE;

22 return;

23 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 920 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.3.4. Functions Used by TPM

C.3.4.1. Introduction

These functions are called by the TPM code. They should be replaced by appropriated hardware

functions.

24 #include <time.h>

25 clock_t debugTime;

26

27 //*** _plat__RealTime()

28 // This is another, probably futile, attempt to define a portable function

29 // that will return a 64-bit clock value that has mSec resolution.

30 LIB_EXPORT uint64_t

31 _plat__RealTime(

32 void

33)

34 {

35 clock64_t time;

36 #ifdef _MSC_VER

37 struct _timeb sysTime;

38 //

39 _ftime_s(&sysTime);

40 time = (clock64_t)(sysTime.time) * 1000 + sysTime.millitm;

41 // set the time back by one hour if daylight savings

42 if(sysTime.dstflag)

43 time -= 1000 * 60 * 60; // mSec/sec * sec/min * min/hour = ms/hour

44 #else

45 // hopefully, this will work with most UNIX systems

46 struct timespec systime;

47 //

48 clock_gettime(CLOCK_MONOTONIC, &systime);

49 time = (clock64_t)systime.tv_sec * 1000 + (systime.tv_nsec / 1000000);

50 #endif

51 return time;

52 }

C.3.4.2. _plat__TimerRead()

This function provides access to the tick timer of the platform. The TPM code uses this value to drive the

TPM Clock.

The tick timer is supposed to run when power is applied to the device. This timer should not be reset by

time events including _TPM_Init(). It should only be reset when TPM power is re-applied.

If the TPM is run in a protected environment, that environment may provide the tick time to the TPM as

long as the time provided by the environment is not allowed to go backwards. If the time provided by the

system can go backwards during a power discontinuity, then the _plat__Signal_PowerOn() should call

_plat__TimerReset().

53 LIB_EXPORT uint64_t

54 _plat__TimerRead(

55 void

56)

57 {

58 #ifdef HARDWARE_CLOCK

59 #error "need a defintion for reading the hardware clock"

60 return HARDWARE_CLOCK

61 #else

62 clock64_t timeDiff;

63 clock64_t adjustedTimeDiff;

64 clock64_t timeNow;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 921

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

65 clock64_t readjustedTimeDiff;

66

67 // This produces a timeNow that is basically locked to the system clock.

68 timeNow = _plat__RealTime();

69

70 // if this hasn't been initialized, initialize it

71 if(s_lastSystemTime == 0)

72 {

73 s_lastSystemTime = timeNow;

74 debugTime = clock();

75 s_lastReportedTime = 0;

76 s_realTimePrevious = 0;

77 }

78 // The system time can bounce around and that's OK as long as we don't allow

79 // time to go backwards. When the time does appear to go backwards, set

80 // lastSystemTime to be the new value and then update the reported time.

81 if(timeNow < s_lastReportedTime)

82 s_lastSystemTime = timeNow;

83 s_lastReportedTime = s_lastReportedTime + timeNow - s_lastSystemTime;

84 s_lastSystemTime = timeNow;

85 timeNow = s_lastReportedTime;

86

87 // The code above produces a timeNow that is similar to the value returned

88 // by Clock(). The difference is that timeNow does not max out, and it is

89 // at a ms. rate rather than at a CLOCKS_PER_SEC rate. The code below

90 // uses that value and does the rate adjustment on the time value.

91 // If there is no difference in time, then skip all the computations

92 if(s_realTimePrevious >= timeNow)

93 return s_tpmTime;

94 // Compute the amount of time since the last update of the system clock

95 timeDiff = timeNow - s_realTimePrevious;

96

97 // Do the time rate adjustment and conversion from CLOCKS_PER_SEC to mSec

98 adjustedTimeDiff = (timeDiff * CLOCK_NOMINAL) / ((uint64_t)s_adjustRate);

99

100 // update the TPM time with the adjusted timeDiff

101 s_tpmTime += (clock64_t)adjustedTimeDiff;

102

103 // Might have some rounding error that would loose CLOCKS. See what is not

104 // being used. As mentioned above, this could result in putting back more than

105 // is taken out. Here, we are trying to recreate timeDiff.

106 readjustedTimeDiff = (adjustedTimeDiff * (uint64_t)s_adjustRate)

107 / CLOCK_NOMINAL;

108

109 // adjusted is now converted back to being the amount we should advance the

110 // previous sampled time. It should always be less than or equal to timeDiff.

111 // That is, we could not have use more time than we started with.

112 s_realTimePrevious = s_realTimePrevious + readjustedTimeDiff;

113

114 #ifdef DEBUGGING_TIME

115 // Put this in so that TPM time will pass much faster than real time when

116 // doing debug.

117 // A value of 1000 for DEBUG_TIME_MULTIPLER will make each ms into a second

118 // A good value might be 100

119 return (s_tpmTime * DEBUG_TIME_MULTIPLIER);

120 #endif

121 return s_tpmTime;

122 #endif

123 }

C.3.4.3. _plat__TimerWasReset()

This function is used to interrogate the flag indicating if the tick timer has been reset.

If the resetFlag parameter is SET, then the flag will be CLEAR before the function returns.

Trusted Platform Module Library Part 4: Supporting Routines

Page 922 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

124 LIB_EXPORT int

125 _plat__TimerWasReset(

126 void

127)

128 {

129 int retVal = s_timerReset;

130 s_timerReset = FALSE;

131 return retVal;

132 }

C.3.4.4. _plat__TimerWasStopped()

This function is used to interrogate the flag indicating if the tick timer has been stopped. If so, this is

typically a reason to roll the nonce.

This function will CLEAR the s_timerStopped flag before returning. This provides functionality that is

similar to status register that is cleared when read. This is the model used here because it is the one that

has the most impact on the TPM code as the flag can only be accessed by one entity in the TPM. Any

other implementation of the hardware can be made to look like a read-once register.

133 LIB_EXPORT int

134 _plat__TimerWasStopped(

135 void

136)

137 {

138 int retVal = s_timerStopped;

139 s_timerStopped = FALSE;

140 return retVal;

141 }

C.3.4.5. _plat__ClockAdjustRate()

Adjust the clock rate

142 LIB_EXPORT void

143 _plat__ClockAdjustRate(

144 int adjust // IN: the adjust number. It could be positive

145 // or negative

146)

147 {

148 // We expect the caller should only use a fixed set of constant values to

149 // adjust the rate

150 switch(adjust)

151 {

152 case CLOCK_ADJUST_COARSE:

153 s_adjustRate += CLOCK_ADJUST_COARSE;

154 break;

155 case -CLOCK_ADJUST_COARSE:

156 s_adjustRate -= CLOCK_ADJUST_COARSE;

157 break;

158 case CLOCK_ADJUST_MEDIUM:

159 s_adjustRate += CLOCK_ADJUST_MEDIUM;

160 break;

161 case -CLOCK_ADJUST_MEDIUM:

162 s_adjustRate -= CLOCK_ADJUST_MEDIUM;

163 break;

164 case CLOCK_ADJUST_FINE:

165 s_adjustRate += CLOCK_ADJUST_FINE;

166 break;

167 case -CLOCK_ADJUST_FINE:

168 s_adjustRate -= CLOCK_ADJUST_FINE;

169 break;

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 923

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

170 default:

171 // ignore any other values;

172 break;

173 }

174

175 if(s_adjustRate > (CLOCK_NOMINAL + CLOCK_ADJUST_LIMIT))

176 s_adjustRate = CLOCK_NOMINAL + CLOCK_ADJUST_LIMIT;

177 if(s_adjustRate < (CLOCK_NOMINAL - CLOCK_ADJUST_LIMIT))

178 s_adjustRate = CLOCK_NOMINAL - CLOCK_ADJUST_LIMIT;

179

180 return;

181 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 924 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.4 Entropy.c

C.4.1. Includes and Local Values

1 #define _CRT_RAND_S

2 #include <stdlib.h>

3 #include <memory.h>

4 #include <time.h>

5 #include "Platform.h"

6 #ifdef _MSC_VER

7 #include <process.h>

8 #else

9 #include <unistd.h>

10 #endif

This is the last 32-bits of hardware entropy produced. We have to check to see that two consecutive 32-

bit values are not the same because (according to FIPS 140-2, annex C

"If each call to a RNG produces blocks of n bits (where n > 15), the first n-bit block generated after power-

up, initialization, or reset shall not be used, but shall be saved for comparison with the next n-bit block to

be generated. Each subsequent generation of an n-bit block shall be compared with the previously

generated block. The test shall fail if any two compared n-bit blocks are equal."

11 extern uint32_t lastEntropy;

12

13 //** Functions

14

15 //*** rand32()

16 // Local function to get a 32-bit random number

17 static uint32_t

18 rand32(

19 void

20)

21 {

22 uint32_t rndNum = rand();

23 #if RAND_MAX < UINT16_MAX

24 // If the maximum value of the random number is a 15-bit number, then shift it up

25 // 15 bits, get 15 more bits, shift that up 2 and then XOR in another value to get

26 // a full 32 bits.

27 rndNum = (rndNum << 15) ^ rand();

28 rndNum = (rndNum << 2) ^ rand();

29 #elif RAND_MAX == UINT16_MAX

30 // If the maximum size is 16-bits, shift it and add another 16 bits

31 rndNum = (rndNum << 16) ^ rand();

32 #elif RAND_MAX < UINT32_MAX

33 // If 31 bits, then shift 1 and include another random value to get the extra bit

34 rndNum = (rndNum << 1) ^ rand();

35 #endif

36 return rndNum;

37 }

C.4.1.1. _plat__GetEntropy()

This function is used to get available hardware entropy. In a hardware implementation of this function,

there would be no call to the system to get entropy.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 925

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

0 hardware failure of the entropy generator, this is sticky

0 the returned amount of entropy (bytes)

38 LIB_EXPORT int32_t

39 _plat__GetEntropy(

40 unsigned char *entropy, // output buffer

41 uint32_t amount // amount requested

42)

43 {

44 uint32_t rndNum;

45 int32_t ret;

46 //

47 if(amount == 0)

48 {

49 // Seed the platform entropy source if the entropy source is software. There

50 // is no reason to put a guard macro (#if or #ifdef) around this code because

51 // this code would not be here if someone was changing it for a system with

52 // actual hardware.

53 //

54 // NOTE 1: The following command does not provide proper cryptographic

55 // entropy. Its primary purpose to make sure that different instances of the

56 // simulator, possibly started by a script on the same machine, are seeded

57 // differently. Vendors of the actual TPMs need to ensure availability of

58 // proper entropy using their platform-specific means.

59 //

60 // NOTE 2: In debug builds by default the reference implementation will seed

61 // its RNG deterministically (without using any platform provided randomness).

62 // See the USE_DEBUG_RNG macro and DRBG_GetEntropy() function.

63 #ifdef _MSC_VER

64 srand((unsigned)_plat__RealTime() ^ _getpid());

65 #else

66 srand((unsigned)_plat__RealTime() ^ getpid());

67 #endif

68 lastEntropy = rand32();

69 ret = 0;

70 }

71 else

72 {

73 rndNum = rand32();

74 if(rndNum == lastEntropy)

75 {

76 ret = -1;

77 }

78 else

79 {

80 lastEntropy = rndNum;

81 // Each process will have its random number generator initialized

82 // according to the process id and the initialization time. This is not a

83 // lot of entropy so, to add a bit more, XOR the current time value into

84 // the returned entropy value.

85 // NOTE: the reason for including the time here rather than have it in

86 // in the value assigned to lastEntropy is that rand() could be broken and

87 // using the time would in the lastEntropy value would hide this.

88 rndNum ^= (uint32_t)_plat__RealTime();

89

90 // Only provide entropy 32 bits at a time to test the ability

91 // of the caller to deal with partial results.

92 ret = MIN(amount, sizeof(rndNum));

93 memcpy(entropy, &rndNum, ret);

94 }

95 }

96 return ret;

Trusted Platform Module Library Part 4: Supporting Routines

Page 926 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

97 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 927

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.5 LocalityPlat.c

C.5.1. Includes

1 #include "Platform.h"

C.5.2. Functions

C.5.2.1. _plat__LocalityGet()

Get the most recent command locality in locality value form. This is an integer value for locality and not a

locality structure The locality can be 0-4 or 32-255. 5-31 is not allowed.

2 LIB_EXPORT unsigned char

3 _plat__LocalityGet(

4 void

5)

6 {

7 return s_locality;

8 }

C.5.2.2. _plat__LocalitySet()

Set the most recent command locality in locality value form

9 LIB_EXPORT void

10 _plat__LocalitySet(

11 unsigned char locality

12)

13 {

14 if(locality > 4 && locality < 32)

15 locality = 0;

16 s_locality = locality;

17 return;

18 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 928 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.6 NVMem.c

C.6.1. Description

This file contains the NV read and write access methods. This implementation uses RAM/file and does

not manage the RAM/file as NV blocks. The implementation may become more sophisticated over time.

C.6.2. Includes and Local

1 #include <memory.h>

2 #include <string.h>

3 #include <assert.h>

4 #include "Platform.h"

5 #if FILE_BACKED_NV

6 # include <stdio.h>

7 FILE *s_NvFile = NULL;

8 int s_NeedsManufacture = FALSE;

9 #endif

10

11 //**Functions

12

13 #if FILE_BACKED_NV

14

15 //*** NvFileOpen()

16 // This function opens the file used to hold the NV image.

17 // Return Type: int

18 // >= 0 success

19 // -1 error

20 static int

21 NvFileOpen(

22 const char *mode

23)

24 {

25 #if defined(NV_FILE_PATH)

26 # define TO_STRING(s) TO_STRING_IMPL(s)

27 # define TO_STRING_IMPL(s) #s

28 const char* s_NvFilePath = TO_STRING(NV_FILE_PATH);

29 # undef TO_STRING

30 # undef TO_STRING_IMPL

31 #else

32 const char* s_NvFilePath = "NVChip";

33 #endif

34

35 // Try to open an exist NVChip file for read/write

36 # if defined _MSC_VER && 1

37 if(fopen_s(&s_NvFile, s_NvFilePath, mode) != 0)

38 s_NvFile = NULL;

39 # else

40 s_NvFile = fopen(s_NvFilePath, mode);

41 # endif

42 return (s_NvFile == NULL) ? -1 : 0;

43 }

C.6.2.1. NvFileCommit()

Write all of the contents of the NV image to a file.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 929

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Return Value Meaning

TRUE(1) success

FALSE(0) failure

44 static int

45 NvFileCommit(

46 void

47)

48 {

49 int OK;

50 // If NV file is not available, return failure

51 if(s_NvFile == NULL)

52 return 1;

53 // Write RAM data to NV

54 fseek(s_NvFile, 0, SEEK_SET);

55 OK = (NV_MEMORY_SIZE == fwrite(s_NV, 1, NV_MEMORY_SIZE, s_NvFile));

56 OK = OK && (0 == fflush(s_NvFile));

57 assert(OK);

58 return OK;

59 }

C.6.2.2. NvFileSize()

This function gets the size of the NV file and puts the file pointer were desired using the seek method

values. SEEK_SET => beginning; SEEK_CUR => current position and SEEK_END => to the end of the

file.

60 static long

61 NvFileSize(

62 int leaveAt

63)

64 {

65 long fileSize;

66 long filePos = ftell(s_NvFile);

67 //

68 assert(NULL != s_NvFile);

69

70 fseek(s_NvFile, 0, SEEK_END);

71 fileSize = ftell(s_NvFile);

72 switch(leaveAt)

73 {

74 case SEEK_SET:

75 filePos = 0;

76 case SEEK_CUR:

77 fseek(s_NvFile, filePos, SEEK_SET);

78 break;

79 case SEEK_END:

80 break;

81 default:

82 assert(FALSE);

83 break;

84 }

85 return fileSize;

86 }

87 #endif

C.6.2.3. _plat__NvErrors()

This function is used by the simulator to set the error flags in the NV subsystem to simulate an error in the

NV loading process

Trusted Platform Module Library Part 4: Supporting Routines

Page 930 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

88 LIB_EXPORT void

89 _plat__NvErrors(

90 int recoverable,

91 int unrecoverable

92)

93 {

94 s_NV_unrecoverable = unrecoverable;

95 s_NV_recoverable = recoverable;

96 }

C.6.2.4. _plat__NVEnable()

Enable NV memory.

This version just pulls in data from a file. In a real TPM, with NV on chip, this function would verify the

integrity of the saved context. If the NV memory was not on chip but was in something like RPMB, the NV

state would be read in, decrypted and integrity checked.

The recovery from an integrity failure depends on where the error occurred. It it was in the state that is

discarded by TPM Reset, then the error is recoverable if the TPM is reset. Otherwise, the TPM must go

into failure mode.

Return Value Meaning

0 if success

0 if receive recoverable error

<0 if unrecoverable error

97 LIB_EXPORT int

98 _plat__NVEnable(

99 void *platParameter // IN: platform specific parameters

100)

101 {

102 NOT_REFERENCED(platParameter); // to keep compiler quiet

103 //

104 // Start assuming everything is OK

105 s_NV_unrecoverable = FALSE;

106 s_NV_recoverable = FALSE;

107 #if FILE_BACKED_NV

108 if(s_NvFile != NULL)

109 return 0;

110 // Initialize all the bytes in the ram copy of the NV

111 _plat__NvMemoryClear(0, NV_MEMORY_SIZE);

112

113 // If the file exists

114 if(NvFileOpen("r+b") >= 0)

115 {

116 long fileSize = NvFileSize(SEEK_SET); // get the file size and leave the

117 // file pointer at the start

118 //

119 // If the size is right, read the data

120 if (NV_MEMORY_SIZE == fileSize)

121 {

122 s_NeedsManufacture =

123 fread(s_NV, 1, NV_MEMORY_SIZE, s_NvFile) != NV_MEMORY_SIZE;

124 }

125 else

126 {

127 NvFileCommit(); // for any other size, initialize it

128 s_NeedsManufacture = TRUE;

129 }

130 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 931

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

131 // If NVChip file does not exist, try to create it for read/write.

132 else if(NvFileOpen("w+b") >= 0)

133 {

134 NvFileCommit(); // Initialize the file

135 s_NeedsManufacture = TRUE;

136 }

137 assert(NULL != s_NvFile); // Just in case we are broken for some reason.

138 #endif

139 // NV contents have been initialized and the error checks have been performed. For

140 // simulation purposes, use the signaling interface to indicate if an error is

141 // to be simulated and the type of the error.

142 if(s_NV_unrecoverable)

143 return -1;

144 return s_NV_recoverable;

145 }

C.6.2.5. _plat__NVDisable()

Disable NV memory

146 LIB_EXPORT void

147 _plat__NVDisable(

148 int delete // IN: If TRUE, delete the NV contents.

149)

150 {

151 #if FILE_BACKED_NV

152 if(NULL != s_NvFile)

153 {

154 fclose(s_NvFile); // Close NV file

155 // Alternative to deleting the file is to set its size to 0. This will not

156 // match the NV size so the TPM will need to be remanufactured.

157 if(delete)

158 {

159 // Open for writing at the start. Sets the size to zero.

160 if(NvFileOpen("w") >= 0)

161 {

162 fflush(s_NvFile);

163 fclose(s_NvFile);

164 }

165 }

166 }

167 s_NvFile = NULL; // Set file handle to NULL

168 #endif

169 return;

170 }

C.6.2.6. _plat__IsNvAvailable()

Check if NV is available

Return Value Meaning

0 NV is available

1 NV is not available due to write failure

2 NV is not available due to rate limit

171 LIB_EXPORT int

172 _plat__IsNvAvailable(

173 void

174)

175 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 932 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

176 int retVal = 0;

177 // NV is not available if the TPM is in failure mode

178 if(!s_NvIsAvailable)

179 retVal = 1;

180 #if FILE_BACKED_NV

181 else

182 retVal = (s_NvFile == NULL);

183 #endif

184 return retVal;

185 }

C.6.2.7. _plat__NvMemoryRead()

Function: Read a chunk of NV memory

186 LIB_EXPORT void

187 _plat__NvMemoryRead(

188 unsigned int startOffset, // IN: read start

189 unsigned int size, // IN: size of bytes to read

190 void *data // OUT: data buffer

191)

192 {

193 assert(startOffset + size <= NV_MEMORY_SIZE);

194 memcpy(data, &s_NV[startOffset], size); // Copy data from RAM

195 return;

196 }

C.6.2.8. _plat__NvIsDifferent()

This function checks to see if the NV is different from the test value. This is so that NV will not be written if

it has not changed.

Return Value Meaning

TRUE(1) the NV location is different from the test value

FALSE(0) the NV location is the same as the test value

197 LIB_EXPORT int

198 _plat__NvIsDifferent(

199 unsigned int startOffset, // IN: read start

200 unsigned int size, // IN: size of bytes to read

201 void *data // IN: data buffer

202)

203 {

204 return (memcmp(&s_NV[startOffset], data, size) != 0);

205 }

C.6.2.9. _plat__NvMemoryWrite()

This function is used to update NV memory. The write is to a memory copy of NV. At the end of the

current command, any changes are written to the actual NV memory.

NOTE: A useful optimization would be for this code to compare the current contents of NV with the local copy and note
the blocks that have changed. Then only write those blocks when _plat__NvCommit() is called.

206 LIB_EXPORT int

207 _plat__NvMemoryWrite(

208 unsigned int startOffset, // IN: write start

209 unsigned int size, // IN: size of bytes to write

210 void *data // OUT: data buffer

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 933

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

211)

212 {

213 if(startOffset + size <= NV_MEMORY_SIZE)

214 {

215 memcpy(&s_NV[startOffset], data, size); // Copy the data to the NV image

216 return TRUE;

217 }

218 return FALSE;

219 }

C.6.2.10. _plat__NvMemoryClear()

Function is used to set a range of NV memory bytes to an implementation-dependent value. The value

represents the erase state of the memory.

220 LIB_EXPORT void

221 _plat__NvMemoryClear(

222 unsigned int start, // IN: clear start

223 unsigned int size // IN: number of bytes to clear

224)

225 {

226 assert(start + size <= NV_MEMORY_SIZE);

227 // In this implementation, assume that the erase value for NV is all 1s

228 memset(&s_NV[start], 0xff, size);

229 }

C.6.2.11. _plat__NvMemoryMove()

Function: Move a chunk of NV memory from source to destination This function should ensure that if

there overlap, the original data is copied before it is written

230 LIB_EXPORT void

231 _plat__NvMemoryMove(

232 unsigned int sourceOffset, // IN: source offset

233 unsigned int destOffset, // IN: destination offset

234 unsigned int size // IN: size of data being moved

235)

236 {

237 assert(sourceOffset + size <= NV_MEMORY_SIZE);

238 assert(destOffset + size <= NV_MEMORY_SIZE);

239 memmove(&s_NV[destOffset], &s_NV[sourceOffset], size); // Move data in RAM

240 return;

241 }

C.6.2.12. _plat__NvCommit()

This function writes the local copy of NV to NV for permanent store. It will write NV_MEMORY_SIZE

bytes to NV. If a file is use, the entire file is written.

Return Value Meaning

0 NV write success

non-0 NV write fail

242 LIB_EXPORT int

243 _plat__NvCommit(

244 void

245)

246 {

247 #if FILE_BACKED_NV

Trusted Platform Module Library Part 4: Supporting Routines

Page 934 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

248 return (NvFileCommit() ? 0 : 1);

249 #else

250 return 0;

251 #endif

252 }

C.6.2.13. _plat__SetNvAvail()

Set the current NV state to available. This function is for testing purpose only. It is not part of the platform

NV logic

253 LIB_EXPORT void

254 _plat__SetNvAvail(

255 void

256)

257 {

258 s_NvIsAvailable = TRUE;

259 return;

260 }

C.6.2.14. _plat__ClearNvAvail()

Set the current NV state to unavailable. This function is for testing purpose only. It is not part of the

platform NV logic

261 LIB_EXPORT void

262 _plat__ClearNvAvail(

263 void

264)

265 {

266 s_NvIsAvailable = FALSE;

267 return;

268 }

C.6.2.15. _plat__NVNeedsManufacture()

This function is used by the simulator to determine when the TPM's NV state needs to be manufactured.

269 LIB_EXPORT int

270 _plat__NVNeedsManufacture(

271 void

272)

273 {

274 #if FILE_BACKED_NV

275 return s_NeedsManufacture;

276 #else

277 return FALSE;

278 #endif

279 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 935

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.7 PowerPlat.c

C.7.1. Includes and Function Prototypes

1 #include "Platform.h"

2 #include "_TPM_Init_fp.h"

C.7.2. Functions

C.7.2.1. _plat__Signal_PowerOn()

Signal platform power on

3 LIB_EXPORT int

4 _plat__Signal_PowerOn(

5 void

6)

7 {

8 // Reset the timer

9 _plat__TimerReset();

10

11 // Need to indicate that we lost power

12 s_powerLost = TRUE;

13

14 return 0;

15 }

C.7.2.2. _plat__WasPowerLost()

Test whether power was lost before a _TPM_Init().

This function will clear the hardware indication of power loss before return. This means that there can

only be one spot in the TPM code where this value gets read. This method is used here as it is the most

difficult to manage in the TPM code and, if the hardware actually works this way, it is hard to make it look

like anything else. So, the burden is placed on the TPM code rather than the platform code

Return Value Meaning

TRUE(1) power was lost

FALSE(0) power was not lost

16 LIB_EXPORT int

17 _plat__WasPowerLost(

18 void

19)

20 {

21 int retVal = s_powerLost;

22 s_powerLost = FALSE;

23 return retVal;

24 }

C.7.2.3. _plat_Signal_Reset()

This a TPM reset without a power loss.

25 LIB_EXPORT int

26 _plat__Signal_Reset(

Trusted Platform Module Library Part 4: Supporting Routines

Page 936 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

27 void

28)

29 {

30 // Initialize locality

31 s_locality = 0;

32

33 // Command cancel

34 s_isCanceled = FALSE;

35

36 _TPM_Init();

37

38 // if we are doing reset but did not have a power failure, then we should

39 // not need to reload NV ...

40

41 return 0;

42 }

C.7.2.4. _plat__Signal_PowerOff()

Signal platform power off

43 LIB_EXPORT void

44 _plat__Signal_PowerOff(

45 void

46)

47 {

48 // Prepare NV memory for power off

49 _plat__NVDisable(0);

50

51 // Disable tick ACT tick processing

52 _plat__ACT_EnableTicks(FALSE);

53

54 return;

55 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 937

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.8 PlatformData.h

This file contains the instance data for the Platform module. It is collected in this file so that the state of

the module is easier to manage.

1 #ifndef _PLATFORM_DATA_H_

2 #define _PLATFORM_DATA_H_

3 #ifdef _PLATFORM_DATA_C_

4 #define EXTERN

5 #else

6 #define EXTERN extern

7 #endif

From Cancel.c Cancel flag. It is initialized as FALSE, which indicate the command is not being canceled

8 EXTERN int s_isCanceled;

9

10 #ifndef HARDWARE_CLOCK

11 typedef uint64_t clock64_t;

12 // This is the value returned the last time that the system clock was read. This

13 // is only relevant for a simulator or virtual TPM.

14 EXTERN clock64_t s_realTimePrevious;

15

16 // These values are used to try to synthesize a long lived version of clock().

17 EXTERN clock64_t s_lastSystemTime;

18 EXTERN clock64_t s_lastReportedTime;

19

20 // This is the rate adjusted value that is the equivalent of what would be read from

21 // a hardware register that produced rate adjusted time.

22 EXTERN clock64_t s_tpmTime;

23 #endif // HARDWARE_CLOCK

24

25 // This value indicates that the timer was reset

26 EXTERN int s_timerReset;

27 // This value indicates that the timer was stopped. It causes a clock discontinuity.

28 EXTERN int s_timerStopped;

29

30 // This variable records the time when _plat__TimerReset is called. This mechanism

31 // allow us to subtract the time when TPM is power off from the total

32 // time reported by clock() function

33 EXTERN uint64_t s_initClock;

34

35 // This variable records the timer adjustment factor.

36 EXTERN unsigned int s_adjustRate;

37

38 // For LocalityPlat.c

39 // Locality of current command

40 EXTERN unsigned char s_locality;

41

42 // For NVMem.c

43 // Choose if the NV memory should be backed by RAM or by file.

44 // If this macro is defined, then a file is used as NV. If it is not defined,

45 // then RAM is used to back NV memory. Comment out to use RAM.

46

47 #if (!defined VTPM) || ((VTPM != NO) && (VTPM != YES))

48 # undef VTPM

49 # define VTPM YES // Default: Either YES or NO

50 #endif

For a simulation, use a file to back up the NV

51 #if (!defined FILE_BACKED_NV) || ((FILE_BACKED_NV != NO) && (FILE_BACKED_NV != YES))

52 # undef FILE_BACKED_NV

Trusted Platform Module Library Part 4: Supporting Routines

Page 938 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

53 # define FILE_BACKED_NV (VTPM && YES) // Default: Either YES or NO

54 #endif

55 #if SIMULATION

56 # undef FILE_BACKED_NV

57 # define FILE_BACKED_NV YES

58 #endif // SIMULATION

59 EXTERN unsigned char s_NV[NV_MEMORY_SIZE];

60 EXTERN int s_NvIsAvailable;

61 EXTERN int s_NV_unrecoverable;

62 EXTERN int s_NV_recoverable;

63

64 // For PPPlat.c

65 // Physical presence. It is initialized to FALSE

66 EXTERN int s_physicalPresence;

67

68 // From Power

69 EXTERN int s_powerLost;

70

71 // For Entropy.c

72 EXTERN uint32_t lastEntropy;

73

74 #define DEFINE_ACT(N) EXTERN ACT_DATA ACT_##N;

75 FOR_EACH_ACT(DEFINE_ACT)

76 EXTERN int actTicksAllowed;

77

78 #endif // _PLATFORM_DATA_H_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 939

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.9 PlatformData.c

C.9.1. Description

This file will instance the TPM variables that are not stack allocated. The descriptions for these variables

are in Global.h for this project.

C.9.2. Includes

1 #define _PLATFORM_DATA_C_

2 #include "Platform.h"

Trusted Platform Module Library Part 4: Supporting Routines

Page 940 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.10 PPPlat.c

C.10.1. Description

This module simulates the physical presence interface pins on the TPM.

C.10.2. Includes

1 #include "Platform.h"

C.10.3. Functions

C.10.3.1. _plat__PhysicalPresenceAsserted()

Check if physical presence is signaled

Return Value Meaning

TRUE(1) if physical presence is signaled

FALSE(0) if physical presence is not signaled

2 LIB_EXPORT int

3 _plat__PhysicalPresenceAsserted(

4 void

5)

6 {

7 // Do not know how to check physical presence without real hardware.

8 // so always return TRUE;

9 return s_physicalPresence;

10 }

C.10.3.2. _plat__Signal_PhysicalPresenceOn()

Signal physical presence on

11 LIB_EXPORT void

12 _plat__Signal_PhysicalPresenceOn(

13 void

14)

15 {

16 s_physicalPresence = TRUE;

17 return;

18 }

C.10.3.3. _plat__Signal_PhysicalPresenceOff()

Signal physical presence off

19 LIB_EXPORT void

20 _plat__Signal_PhysicalPresenceOff(

21 void

22)

23 {

24 s_physicalPresence = FALSE;

25 return;

26 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 941

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.11 RunCommand.c

C.11.1. Introduction

This module provides the platform specific entry and fail processing. The _plat__RunCommand() function

is used to call to ExecuteCommand() in the TPM code. This function does whatever processing is

necessary to set up the platform in anticipation of the call to the TPM including settup for error

processing.

The _plat__Fail() function is called when there is a failure in the TPM. The TPM code will have set the

flag to indicate that the TPM is in failure mode. This call will then recursively call ExecuteCommand() in

order to build the failure mode response. When ExecuteCommand() returns to _plat__Fail(), the platform

will do some platform specif operation to return to the environment in which the TPM is executing. For a

simulator, setjmp/longjmp is used. For an OS, a system exit to the OS would be appropriate.

C.11.2. Includes and locals

1 #include "Platform.h"

2 #include <setjmp.h>

3 #include "ExecCommand_fp.h"

4 jmp_buf s_jumpBuffer;

5

6 //** Functions

7

8 //***_plat__RunCommand()

9 // This version of RunCommand will set up a jum_buf and call ExecuteCommand(). If

10 // the command executes without failing, it will return and RunCommand will return.

11 // If there is a failure in the command, then _plat__Fail() is called and it will

12 // longjump back to RunCommand which will call ExecuteCommand again. However, this

13 // time, the TPM will be in failure mode so ExecuteCommand will simply build

14 // a failure response and return.

15 LIB_EXPORT void

16 _plat__RunCommand(

17 uint32_t requestSize, // IN: command buffer size

18 unsigned char *request, // IN: command buffer

19 uint32_t *responseSize, // IN/OUT: response buffer size

20 unsigned char **response // IN/OUT: response buffer

21)

22 {

23 setjmp(s_jumpBuffer);

24 ExecuteCommand(requestSize, request, responseSize, response);

25 }

C.11.2.1. _plat__Fail()

This is the platform depended failure exit for the TPM.

26 LIB_EXPORT NORETURN void

27 _plat__Fail(

28 void

29)

30 {

31 longjmp(&s_jumpBuffer[0], 1);

32 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 942 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.12 Unique.c

C.12.1. Introduction

In some implementations of the TPM, the hardware can provide a secret value to the TPM. This secret

value is statistically unique to the instance of the TPM. Typical uses of this value are to provide

personalization to the random number generation and as a shared secret between the TPM and the

manufacturer.

C.12.2. Includes

1 #include "Platform.h"

2 const char notReallyUnique[] =

3 "This is not really a unique value. A real unique value should"

4 " be generated by the platform.";

5

6 //** _plat__GetUnique()

7 // This function is used to access the platform-specific unique value.

8 // This function places the unique value in the provided buffer ('b')

9 // and returns the number of bytes transferred. The function will not

10 // copy more data than 'bSize'.

11 // NOTE: If a platform unique value has unequal distribution of uniqueness

12 // and 'bSize' is smaller than the size of the unique value, the 'bSize'

13 // portion with the most uniqueness should be returned.

14 LIB_EXPORT uint32_t

15 _plat__GetUnique(

16 uint32_t which, // authorities (0) or details

17 uint32_t bSize, // size of the buffer

18 unsigned char *b // output buffer

19)

20 {

21 const char *from = notReallyUnique;

22 uint32_t retVal = 0;

23

24 if(which == 0) // the authorities value

25 {

26 for(retVal = 0;

27 *from != 0 && retVal < bSize;

28 retVal++)

29 {

30 *b++ = *from++;

31 }

32 }

33 else

34 {

35 #define uSize sizeof(notReallyUnique)

36 b = &b[((bSize < uSize) ? bSize : uSize) - 1];

37 for(retVal = 0;

38 *from != 0 && retVal < bSize;

39 retVal++)

40 {

41 *b-- = *from++;

42 }

43 }

44 return retVal;

45 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 943

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.13 DebugHelpers.c

C.13.1. Description

This file contains the NV read and write access methods. This implementation uses RAM/file and does

not manage the RAM/file as NV blocks. The implementation may become more sophisticated over time.

C.13.2. Includes and Local

1 #include <stdio.h>

2 #include <time.h>

3 #include "Platform.h"

4 #if CERTIFYX509_DEBUG

5 FILE *fDebug = NULL;

6 const char *debugFileName = "DebugFile.txt";

7

8 static FILE *

9 fileOpen(

10 const char *fn,

11 const char *mode

12)

13 {

14 FILE *f;

15 # if defined _MSC_VER

16 if(fopen_s(&f, fn, mode) != 0)

17 f = NULL;

18 # else

19 f = fopen(fn, "w");

20 # endif

21 return f;

22 }

C.13.2.1. DebugFileOpen()

This function opens the file used to hold the debug data.

Return Value Meaning

0 success

0 error

23 int

24 DebugFileOpen(

25 void

26)

27 {

28 time_t t = time(NULL);

29 //

30 // Get current date and time.

31 # if defined _MSC_VER

32 char timeString[100];

33 ctime_s(timeString, (size_t)sizeof(timeString), &t);

34 # else

35 char *timeString;

36 timeString = ctime(&t);

37 # endif

38 // Try to open the debug file

39 fDebug = fileOpen(debugFileName, "w");

40 if(fDebug)

41 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 944 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

42 fprintf(fDebug, "%s\n", timeString);

43 fclose(fDebug);

44 return 0;

45 }

46 return -1;

47 }

C.13.2.2. DebugFileClose()

48 void

49 DebugFileClose(

50 void

51)

52 {

53 if(fDebug)

54 fclose(fDebug);

55 }

C.13.2.3. DebugDumpBuffer()

56 void

57 DebugDumpBuffer(

58 int size,

59 unsigned char *buf,

60 const char *identifier

61)

62 {

63 int i;

64 //

65 FILE *f = fileOpen(debugFileName, "a");

66 if(!f)

67 return;

68 if(identifier)

69 fprintf(fDebug, "%s\n", identifier);

70 if(buf)

71 {

72 for(i = 0; i < size; i++)

73 {

74 if(((i % 16) == 0) && (i))

75 fprintf(fDebug, "\n");

76 fprintf(fDebug, " %02X", buf[i]);

77 }

78 if((size % 16) != 0)

79 fprintf(fDebug, "\n");

80 }

81 fclose(f);

82 }

83 #endif // CERTIFYX509_DEBUG

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 945

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.14 Platform.h

1 #ifndef _PLATFORM_H_

2 #define _PLATFORM_H_

3 #include "TpmBuildSwitches.h"

4 #include "BaseTypes.h"

5 #include "TPMB.h"

6 #include "MinMax.h"

7 #include "TpmProfile.h"

8 #include "PlatformACT.h"

9 #include "PlatformClock.h"

10 #include "PlatformData.h"

11 #include "Platform_fp.h"

12 #endif // _PLATFORM_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 946 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.15 PlatformACT.h

This file contains the definitions for the ACT macros and data types used in the ACT implementation.

1 #ifndef _PLATFORM_ACT_H_

2 #define _PLATFORM_ACT_H_

3 typedef struct ACT_DATA

4 {

5 uint32_t remaining;

6 uint32_t newValue;

7 uint8_t signaled;

8 uint8_t pending;

9 uint8_t number;

10 } ACT_DATA, *P_ACT_DATA;

11 #if !(defined RH_ACT_0) || (RH_ACT_0 != YES)

12 # undef RH_ACT_0

13 # define RH_ACT_0 NO

14 # define IF_ACT_0_IMPLEMENTED(op)

15 #else

16 # define IF_ACT_0_IMPLEMENTED(op) op(0)

17 #endif

18 #if !(defined RH_ACT_1) || (RH_ACT_1 != YES)

19 # undef RH_ACT_1

20 # define RH_ACT_1 NO

21 # define IF_ACT_1_IMPLEMENTED(op)

22 #else

23 # define IF_ACT_1_IMPLEMENTED(op) op(1)

24 #endif

25 #if !(defined RH_ACT_2) || (RH_ACT_2 != YES)

26 # undef RH_ACT_2

27 # define RH_ACT_2 NO

28 # define IF_ACT_2_IMPLEMENTED(op)

29 #else

30 # define IF_ACT_2_IMPLEMENTED(op) op(2)

31 #endif

32 #if !(defined RH_ACT_3) || (RH_ACT_3 != YES)

33 # undef RH_ACT_3

34 # define RH_ACT_3 NO

35 # define IF_ACT_3_IMPLEMENTED(op)

36 #else

37 # define IF_ACT_3_IMPLEMENTED(op) op(3)

38 #endif

39 #if !(defined RH_ACT_4) || (RH_ACT_4 != YES)

40 # undef RH_ACT_4

41 # define RH_ACT_4 NO

42 # define IF_ACT_4_IMPLEMENTED(op)

43 #else

44 # define IF_ACT_4_IMPLEMENTED(op) op(4)

45 #endif

46 #if !(defined RH_ACT_5) || (RH_ACT_5 != YES)

47 # undef RH_ACT_5

48 # define RH_ACT_5 NO

49 # define IF_ACT_5_IMPLEMENTED(op)

50 #else

51 # define IF_ACT_5_IMPLEMENTED(op) op(5)

52 #endif

53 #if !(defined RH_ACT_6) || (RH_ACT_6 != YES)

54 # undef RH_ACT_6

55 # define RH_ACT_6 NO

56 # define IF_ACT_6_IMPLEMENTED(op)

57 #else

58 # define IF_ACT_6_IMPLEMENTED(op) op(6)

59 #endif

60 #if !(defined RH_ACT_7) || (RH_ACT_7 != YES)

61 # undef RH_ACT_7

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 947

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

62 # define RH_ACT_7 NO

63 # define IF_ACT_7_IMPLEMENTED(op)

64 #else

65 # define IF_ACT_7_IMPLEMENTED(op) op(7)

66 #endif

67 #if !(defined RH_ACT_8) || (RH_ACT_8 != YES)

68 # undef RH_ACT_8

69 # define RH_ACT_8 NO

70 # define IF_ACT_8_IMPLEMENTED(op)

71 #else

72 # define IF_ACT_8_IMPLEMENTED(op) op(8)

73 #endif

74 #if !(defined RH_ACT_9) || (RH_ACT_9 != YES)

75 # undef RH_ACT_9

76 # define RH_ACT_9 NO

77 # define IF_ACT_9_IMPLEMENTED(op)

78 #else

79 # define IF_ACT_9_IMPLEMENTED(op) op(9)

80 #endif

81 #if !(defined RH_ACT_A) || (RH_ACT_A != YES)

82 # undef RH_ACT_A

83 # define RH_ACT_A NO

84 # define IF_ACT_A_IMPLEMENTED(op)

85 #else

86 # define IF_ACT_A_IMPLEMENTED(op) op(A)

87 #endif

88 #if !(defined RH_ACT_B) || (RH_ACT_B != YES)

89 # undef RH_ACT_B

90 # define RH_ACT_B NO

91 # define IF_ACT_B_IMPLEMENTED(op)

92 #else

93 # define IF_ACT_B_IMPLEMENTED(op) op(B)

94 #endif

95 #if !(defined RH_ACT_C) || (RH_ACT_C != YES)

96 # undef RH_ACT_C

97 # define RH_ACT_C NO

98 # define IF_ACT_C_IMPLEMENTED(op)

99 #else

100 # define IF_ACT_C_IMPLEMENTED(op) op(C)

101 #endif

102 #if !(defined RH_ACT_D) || (RH_ACT_D != YES)

103 # undef RH_ACT_D

104 # define RH_ACT_D NO

105 # define IF_ACT_D_IMPLEMENTED(op)

106 #else

107 # define IF_ACT_D_IMPLEMENTED(op) op(D)

108 #endif

109 #if !(defined RH_ACT_E) || (RH_ACT_E != YES)

110 # undef RH_ACT_E

111 # define RH_ACT_E NO

112 # define IF_ACT_E_IMPLEMENTED(op)

113 #else

114 # define IF_ACT_E_IMPLEMENTED(op) op(E)

115 #endif

116 #if !(defined RH_ACT_F) || (RH_ACT_F != YES)

117 # undef RH_ACT_F

118 # define RH_ACT_F NO

119 # define IF_ACT_F_IMPLEMENTED(op)

120 #else

121 # define IF_ACT_F_IMPLEMENTED(op) op(F)

122 #endif

123 #define FOR_EACH_ACT(op) \

124 IF_ACT_0_IMPLEMENTED(op) \

125 IF_ACT_1_IMPLEMENTED(op) \

126 IF_ACT_2_IMPLEMENTED(op) \

127 IF_ACT_3_IMPLEMENTED(op) \

Trusted Platform Module Library Part 4: Supporting Routines

Page 948 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

128 IF_ACT_4_IMPLEMENTED(op) \

129 IF_ACT_5_IMPLEMENTED(op) \

130 IF_ACT_6_IMPLEMENTED(op) \

131 IF_ACT_7_IMPLEMENTED(op) \

132 IF_ACT_8_IMPLEMENTED(op) \

133 IF_ACT_9_IMPLEMENTED(op) \

134 IF_ACT_A_IMPLEMENTED(op) \

135 IF_ACT_B_IMPLEMENTED(op) \

136 IF_ACT_C_IMPLEMENTED(op) \

137 IF_ACT_D_IMPLEMENTED(op) \

138 IF_ACT_E_IMPLEMENTED(op) \

139 IF_ACT_F_IMPLEMENTED(op)

140 #endif // _PLATFORM_ACT_H_

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 949

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.16 PlatformACT.c

C.16.1. Includes

1 #include "Platform.h"

C.16.2. Functions

C.16.2.1. ActSignal()

Function called when there is an ACT event to signal or unsignal

2 static void

3 ActSignal(

4 P_ACT_DATA actData,

5 int on

6)

7 {

8 if(actData == NULL)

9 return;

10 // If this is to turn a signal on, don't do anything if it is already on. If this

11 // is to turn the signal off, do it anyway because this might be for

12 // initialization.

13 if(on && (actData->signaled == TRUE))

14 return;

15 actData->signaled = (uint8_t)on;

16

17 // If there is an action, then replace the "Do something" with the correct action.

18 // It should test 'on' to see if it is turning the signal on or off.

19 switch(actData->number)

20 {

21 #if RH_ACT_0

22 case 0: // Do something

23 return;

24 #endif

25 #if RH_ACT_1

26 case 1: // Do something

27 return;

28 #endif

29 #if RH_ACT_2

30 case 2: // Do something

31 return;

32 #endif

33 #if RH_ACT_3

34 case 3: // Do something

35 return;

36 #endif

37 #if RH_ACT_4

38 case 4: // Do something

39 return;

40 #endif

41 #if RH_ACT_5

42 case 5: // Do something

43 return;

44 #endif

45 #if RH_ACT_6

46 case 6: // Do something

47 return;

48 #endif

49 #if RH_ACT_7

50 case 7: // Do something

51 return;

Trusted Platform Module Library Part 4: Supporting Routines

Page 950 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 #endif

53 #if RH_ACT_8

54 case 8: // Do something

55 return;

56 #endif

57 #if RH_ACT_9

58 case 9: // Do something

59 return;

60 #endif

61 #if RH_ACT_A

62 case 0xA: // Do something

63 return;

64 #endif

65 #if RH_ACT_B

66 case 0xB:

67 // Do something

68 return;

69 #endif

70 #if RH_ACT_C

71 case 0xC: // Do something

72 return;

73 #endif

74 #if RH_ACT_D

75 case 0xD: // Do something

76 return;

77 #endif

78 #if RH_ACT_E

79 case 0xE: // Do something

80 return;

81 #endif

82 #if RH_ACT_F

83 case 0xF: // Do something

84 return;

85 #endif

86 default:

87 return;

88 }

89 }

C.16.2.2. ActGetDataPointer()

90 static P_ACT_DATA

91 ActGetDataPointer(

92 uint32_t act

93)

94 {

95

96 #define RETURN_ACT_POINTER(N) if(0x##N == act) return &ACT_##N;

97

98 FOR_EACH_ACT(RETURN_ACT_POINTER)

99

100 return (P_ACT_DATA)NULL;

101 }

C.16.2.3. _plat__ACT_GetImplemented()

This function tests to see if an ACT is implemented. It is a belt and suspenders function because the TPM

should not be calling to to manipulate an ACT that is not implemented. However, this could help the

simulator code which doesn't necessarily know if an ACT is implemented or not.

102 LIB_EXPORT int

103 _plat__ACT_GetImplemented(

104 uint32_t act

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 951

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

105)

106 {

107 return (ActGetDataPointer(act) != NULL);

108 }

C.16.2.4. _plat__ACT_GetRemaining()

This function returns the remaining time. If an update is pending, newValue is returned. Otherwise, the

current counter value is returned. Note that since the timers keep running, the returned value can get

stale immediately. The actual count value will be no greater than the returned value.

109 LIB_EXPORT uint32_t

110 _plat__ACT_GetRemaining(

111 uint32_t act //IN: the ACT selector

112)

113 {

114 P_ACT_DATA actData = ActGetDataPointer(act);

115 uint32_t remain;

116 //

117 if(actData == NULL)

118 return 0;

119 remain = actData->remaining;

120 if(actData->pending)

121 remain = actData->newValue;

122 return remain;

123 }

C.16.2.5. _plat__ACT_GetSignaled()

124 LIB_EXPORT int

125 _plat__ACT_GetSignaled(

126 uint32_t act //IN: number of ACT to check

127)

128 {

129 P_ACT_DATA actData = ActGetDataPointer(act);

130 //

131 if(actData == NULL)

132 return 0;

133 return (int)actData->signaled;

134 }

C.16.2.6. _plat__ACT_SetSignaled()

135 LIB_EXPORT void

136 _plat__ACT_SetSignaled(

137 uint32_t act,

138 int on

139)

140 {

141 ActSignal(ActGetDataPointer(act), on);

142 }

C.16.2.7. _plat__ACT_GetPending()

143 LIB_EXPORT int

144 _plat__ACT_GetPending(

145 uint32_t act //IN: number of ACT to check

146)

147 {

148 P_ACT_DATA actData = ActGetDataPointer(act);

Trusted Platform Module Library Part 4: Supporting Routines

Page 952 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

149 //

150 if(actData == NULL)

151 return 0;

152 return (int)actData->pending;

153 }

C.16.2.8. _plat__ACT_UpdateCounter()

This function is used to write the newValue for the counter. If an update is pending, then no update

occurs and the function returns FALSE. If setSignaled is TRUE, then the ACT signaled state is SET and if

newValue is 0, nothing is posted.

154 LIB_EXPORT int

155 _plat__ACT_UpdateCounter(

156 uint32_t act, // IN: ACT to update

157 uint32_t newValue // IN: the value to post

158)

159 {

160 P_ACT_DATA actData = ActGetDataPointer(act);

161 //

162 if(actData == NULL)

163 // actData doesn't exist but pretend update is pending rather than indicate

164 // that a retry is necessary.

165 return TRUE;

166 // if an update is pending then return FALSE so that there will be a retry

167 if(actData->pending != 0)

168 return FALSE;

169 actData->newValue = newValue;

170 actData->pending = TRUE;

171

172 return TRUE;

173 }

C.16.2.9. _plat__ACT_EnableTicks()

This enables and disables the processing of the once-per-second ticks. This should be turned off (enable

= FALSE) by _TPM_Init() and turned on (enable = TRUE) by TPM2_Startup() after all the initializations

have completed.

174 LIB_EXPORT void

175 _plat__ACT_EnableTicks(

176 int enable

177)

178 {

179 actTicksAllowed = enable;

180 }

C.16.2.10. ActDecrement()

If newValue is non-zero it is copied to remaining and then newValue is set to zero. Then remaining is

decremented by one if it is not already zero. If the value is decremented to zero, then the associated

event is signaled. If setting remaining causes it to be greater than 1, then the signal associated with the

ACT is turned off.

181 static void

182 ActDecrement(

183 P_ACT_DATA actData

184)

185 {

186 // Check to see if there is an update pending

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 953

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

187 if(actData->pending)

188 {

189 // If this update will cause the count to go from non-zero to zero, set

190 // the newValue to 1 so that it will timeout when decremented below.

191 if((actData->newValue == 0) && (actData->remaining != 0))

192 actData->newValue = 1;

193 actData->remaining = actData->newValue;

194

195 // Update processed

196 actData->pending = 0;

197 }

198 // no update so countdown if the count is non-zero but not max

199 if((actData->remaining != 0) && (actData->remaining != UINT32_MAX))

200 {

201 // If this countdown causes the count to go to zero, then turn the signal for

202 // the ACT on.

203 if((actData->remaining -= 1) == 0)

204 ActSignal(actData, TRUE);

205 }

206 // If the current value of the counter is non-zero, then the signal should be

207 // off.

208 if(actData->signaled && (actData->remaining > 0))

209 ActSignal(actData, FALSE);

210 }

C.16.2.11. _plat__ACT_Tick()

This processes the once-per-second clock tick from the hardware. This is set up for the simulator to use

the control interface to send ticks to the TPM. These ticks do not have to be on a per second basis. They

can be as slow or as fast as desired so that the simulation can be tested.

211 LIB_EXPORT void

212 _plat__ACT_Tick(

213 void

214)

215 {

216 // Ticks processing is turned off at certain times just to make sure that nothing

217 // strange is happening before pointers and things are

218 if(actTicksAllowed)

219 {

220 // Handle the update for each counter.

221 #define DECREMENT_COUNT(N) ActDecrement(&ACT_##N);

222

223 FOR_EACH_ACT(DECREMENT_COUNT)

224 }

225 }

C.16.2.12. ActZero()

This function initializes a single ACT

226 static void

227 ActZero(

228 uint32_t act,

229 P_ACT_DATA actData

230)

231 {

232 actData->remaining = 0;

233 actData->newValue = 0;

234 actData->pending = 0;

235 actData->number = (uint8_t)act;

236 ActSignal(actData, FALSE);

Trusted Platform Module Library Part 4: Supporting Routines

Page 954 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

237 }

C.16.2.13. _plat__ACT_Initialize()

This function initializes the ACT hardware and data structures

238 LIB_EXPORT int

239 _plat__ACT_Initialize(

240 void

241)

242 {

243 actTicksAllowed = 0;

244 #define ZERO_ACT(N) ActZero(0x##N, &ACT_##N);

245 FOR_EACH_ACT(ZERO_ACT)

246

247 return TRUE;

248 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 955

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.17 PlatformClock.h

This file contains the instance data for the Platform module. It is collected in this file so that the state of

the module is easier to manage.

1 #ifndef _PLATFORM_CLOCK_H_

2 #define _PLATFORM_CLOCK_H_

3 #ifdef _MSC_VER

4 #include <sys/types.h>

5 #include <sys/timeb.h>

6 #else

7 #include <sys/time.h>

8 #include <time.h>

9 #endif

CLOCK_NOMINAL is the number of hardware ticks per mS. A value of 300000 means that the nominal

clock rate used to drive the hardware clock is 30 MHz. The adjustment rates are used to determine the

conversion of the hardware ticks to internal hardware clock value. In practice, we would expect that there

woudl be a hardware register will accumulated mS. It would be incremented by the output of a pre-scaler.

The pre-scaler would divide the ticks from the clock by some value that would compensate for the

difference between clock time and real time. The code in Clock does the emulation of this function.

10 #define CLOCK_NOMINAL 30000

A 1% change in rate is 300 counts

11 #define CLOCK_ADJUST_COARSE 300

A 0.1% change in rate is 30 counts

12 #define CLOCK_ADJUST_MEDIUM 30

A minimum change in rate is 1 count

13 #define CLOCK_ADJUST_FINE 1

The clock tolerance is +/-15% (4500 counts) Allow some guard band (16.7%)

14 #define CLOCK_ADJUST_LIMIT 5000

15 #endif // _PLATFORM_CLOCK_H_

Trusted Platform Module Library Part 4: Supporting Routines

Page 956 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex D
(informative)

Remote Procedure Interface

D.1 Introduction

These files provide an RPC interface for a TPM simulation.

The simulation uses two ports: a command port and a hardware simulation port. Only TPM commands

defined in TPM 2.0 Part 3 are sent to the TPM on the command port. The hardware simulation port is

used to simulate hardware events such as power on/off and locality; and indications such as

_TPM_HashStart.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 957

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.2 TpmTcpProtocol.h

D.2.1. Introduction

TPM commands are communicated as BYTE streams on a TCP connection. The TPM command protocol

is enveloped with the interface protocol described in this file. The command is indicated by a UINT32 with

one of the values below. Most commands take no parameters return no TPM errors. In these cases the

TPM interface protocol acknowledges that command processing is completed by returning a UINT32=0.

The command TPM_SIGNAL_HASH_DATA takes a UINT32-prepended variable length BYTE array and

the interface protocol acknowledges command completion with a UINT32=0. Most TPM commands are

enveloped using the TPM_SEND_COMMAND interface command. The parameters are as indicated

below. The interface layer also appends a UIN32=0 to the TPM response for regularity.

D.2.2. Typedefs and Defines

1 #ifndef TCP_TPM_PROTOCOL_H

2 #define TCP_TPM_PROTOCOL_H

D.2.3. TPM Commands

All commands acknowledge processing by returning a UINT32 == 0 except where noted

3 #define TPM_SIGNAL_POWER_ON 1

4 #define TPM_SIGNAL_POWER_OFF 2

5 #define TPM_SIGNAL_PHYS_PRES_ON 3

6 #define TPM_SIGNAL_PHYS_PRES_OFF 4

7 #define TPM_SIGNAL_HASH_START 5

8 #define TPM_SIGNAL_HASH_DATA 6

9 // {UINT32 BufferSize, BYTE[BufferSize] Buffer}

10 #define TPM_SIGNAL_HASH_END 7

11 #define TPM_SEND_COMMAND 8

12 // {BYTE Locality, UINT32 InBufferSize, BYTE[InBufferSize] InBuffer} ->

13 // {UINT32 OutBufferSize, BYTE[OutBufferSize] OutBuffer}

14 #define TPM_SIGNAL_CANCEL_ON 9

15 #define TPM_SIGNAL_CANCEL_OFF 10

16 #define TPM_SIGNAL_NV_ON 11

17 #define TPM_SIGNAL_NV_OFF 12

18 #define TPM_SIGNAL_KEY_CACHE_ON 13

19 #define TPM_SIGNAL_KEY_CACHE_OFF 14

20 #define TPM_REMOTE_HANDSHAKE 15

21 #define TPM_SET_ALTERNATIVE_RESULT 16

22 #define TPM_SIGNAL_RESET 17

23 #define TPM_SIGNAL_RESTART 18

24 #define TPM_SESSION_END 20

25 #define TPM_STOP 21

26 #define TPM_GET_COMMAND_RESPONSE_SIZES 25

27 #define TPM_ACT_GET_SIGNALED 26

28 #define TPM_TEST_FAILURE_MODE 30

D.2.4. Enumerations and Structures

29 enum TpmEndPointInfo

30 {

31 tpmPlatformAvailable = 0x01,

32 tpmUsesTbs = 0x02,

33 tpmInRawMode = 0x04,

34 tpmSupportsPP = 0x08

35 };

36 #ifdef _MSC_VER

Trusted Platform Module Library Part 4: Supporting Routines

Page 958 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

37 # pragma warning(push, 3)

38 #endif

Existing RPC interface type definitions retained so that the implementation can be re-used

39 typedef struct in_buffer

40 {

41 unsigned long BufferSize;

42 unsigned char *Buffer;

43 } _IN_BUFFER;

44 typedef unsigned char *_OUTPUT_BUFFER;

45 typedef struct out_buffer

46 {

47 uint32_t BufferSize;

48 _OUTPUT_BUFFER Buffer;

49 } _OUT_BUFFER;

50 #ifdef _MSC_VER

51 # pragma warning(pop)

52 #endif

53 #ifndef WIN32

54 typedef unsigned long DWORD;

55 typedef void *LPVOID;

56 #endif

57 #endif

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 959

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.3 TcpServer.c

D.3.1. Description

This file contains the socket interface to a TPM simulator.

D.3.2. Includes, Locals, Defines and Function Prototypes

1 #include "TpmBuildSwitches.h"

2 #include <stdio.h>

3 #ifdef _MSC_VER

4 # pragma warning(push, 3)

5 # include <windows.h>

6 # include <winsock.h>

7 # pragma warning(pop)

8 typedef int socklen_t;

9 #elif defined(__unix__)

10 # include <string.h>

11 # include <unistd.h>

12 # include <errno.h>

13 # include <stdint.h>

14 # include <netinet/in.h>

15 # include <sys/socket.h>

16 # include <pthread.h>

17 # define ZeroMemory(ptr, sz) (memset((ptr), 0, (sz)))

18 # define closesocket(x) close(x)

19 # define INVALID_SOCKET (-1)

20 # define SOCKET_ERROR (-1)

21 # define WSAGetLastError() (errno)

22 # define INT_PTR intptr_t

23 typedef int SOCKET;

24 #else

25 # error "Unsupported platform."

26 #endif

27 #ifndef TRUE

28 # define TRUE 1

29 #endif

30 #ifndef FALSE

31 # define FALSE 0

32 #endif

33 #include <string.h>

34 #include <stdlib.h>

35 #include <stdint.h>

36 #include "TpmTcpProtocol.h"

37 #include "Manufacture_fp.h"

38 #include "TpmProfile.h"

39 #include "Simulator_fp.h"

40 #include "Platform_fp.h"

41 typedef int BOOL;

To access key cache control in TPM

42 void RsaKeyCacheControl(int state);

43 #ifndef __IGNORE_STATE__

44 static uint32_t ServerVersion = 1;

45

46 #define MAX_BUFFER 1048576

47 char InputBuffer[MAX_BUFFER]; //The input data buffer for the simulator.

48 char OutputBuffer[MAX_BUFFER]; //The output data buffer for the simulator.

49

50 struct

51 {

Trusted Platform Module Library Part 4: Supporting Routines

Page 960 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 uint32_t largestCommandSize;

53 uint32_t largestCommand;

54 uint32_t largestResponseSize;

55 uint32_t largestResponse;

56 } CommandResponseSizes = {0};

57

58 #endif // __IGNORE_STATE___

59

60 //** Functions

61

62 //*** CreateSocket()

63 // This function creates a socket listening on 'PortNumber'.

64 static int

65 CreateSocket(

66 int PortNumber,

67 SOCKET *listenSocket

68)

69 {

70 struct sockaddr_in MyAddress;

71 int res;

72 //

73 // Initialize Winsock

74 #ifdef _MSC_VER

75 WSADATA wsaData;

76 res = WSAStartup(MAKEWORD(2, 2), &wsaData);

77 if(res != 0)

78 {

79 printf("WSAStartup failed with error: %d\n", res);

80 return -1;

81 }

82 #endif

83 // create listening socket

84 *listenSocket = socket(PF_INET, SOCK_STREAM, 0);

85 if(INVALID_SOCKET == *listenSocket)

86 {

87 printf("Cannot create server listen socket. Error is 0x%x\n",

88 WSAGetLastError());

89 return -1;

90 }

91 // bind the listening socket to the specified port

92 ZeroMemory(&MyAddress, sizeof(MyAddress));

93 MyAddress.sin_port = htons((short)PortNumber);

94 MyAddress.sin_family = AF_INET;

95

96 res = bind(*listenSocket, (struct sockaddr*) &MyAddress, sizeof(MyAddress));

97 if(res == SOCKET_ERROR)

98 {

99 printf("Bind error. Error is 0x%x\n", WSAGetLastError());

100 return -1;

101 }

102 // listen/wait for server connections

103 res = listen(*listenSocket, 3);

104 if(res == SOCKET_ERROR)

105 {

106 printf("Listen error. Error is 0x%x\n", WSAGetLastError());

107 return -1;

108 }

109 return 0;

110 }

D.3.2.1. PlatformServer()

This function processes incoming platform requests.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 961

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

111 BOOL

112 PlatformServer(

113 SOCKET s

114)

115 {

116 BOOL OK = TRUE;

117 uint32_t Command;

118 //

119 for(;;)

120 {

121 OK = ReadBytes(s, (char*)&Command, 4);

122 // client disconnected (or other error). We stop processing this client

123 // and return to our caller who can stop the server or listen for another

124 // connection.

125 if(!OK)

126 return TRUE;

127 Command = ntohl(Command);

128 switch(Command)

129 {

130 case TPM_SIGNAL_POWER_ON:

131 _rpc__Signal_PowerOn(FALSE);

132 break;

133 case TPM_SIGNAL_POWER_OFF:

134 _rpc__Signal_PowerOff();

135 break;

136 case TPM_SIGNAL_RESET:

137 _rpc__Signal_PowerOn(TRUE);

138 break;

139 case TPM_SIGNAL_RESTART:

140 _rpc__Signal_Restart();

141 break;

142 case TPM_SIGNAL_PHYS_PRES_ON:

143 _rpc__Signal_PhysicalPresenceOn();

144 break;

145 case TPM_SIGNAL_PHYS_PRES_OFF:

146 _rpc__Signal_PhysicalPresenceOff();

147 break;

148 case TPM_SIGNAL_CANCEL_ON:

149 _rpc__Signal_CancelOn();

150 break;

151 case TPM_SIGNAL_CANCEL_OFF:

152 _rpc__Signal_CancelOff();

153 break;

154 case TPM_SIGNAL_NV_ON:

155 _rpc__Signal_NvOn();

156 break;

157 case TPM_SIGNAL_NV_OFF:

158 _rpc__Signal_NvOff();

159 break;

160 case TPM_SIGNAL_KEY_CACHE_ON:

161 _rpc__RsaKeyCacheControl(TRUE);

162 break;

163 case TPM_SIGNAL_KEY_CACHE_OFF:

164 _rpc__RsaKeyCacheControl(FALSE);

165 break;

166 case TPM_SESSION_END:

167 // Client signaled end-of-session

168 TpmEndSimulation();

169 return TRUE;

170 case TPM_STOP:

171 // Client requested the simulator to exit

172 return FALSE;

173 case TPM_TEST_FAILURE_MODE:

174 _rpc__ForceFailureMode();

175 break;

176 case TPM_GET_COMMAND_RESPONSE_SIZES:

Trusted Platform Module Library Part 4: Supporting Routines

Page 962 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

177 OK = WriteVarBytes(s, (char *)&CommandResponseSizes,

178 sizeof(CommandResponseSizes));

179 memset(&CommandResponseSizes, 0, sizeof(CommandResponseSizes));

180 if(!OK)

181 return TRUE;

182 break;

183 case TPM_ACT_GET_SIGNALED:

184 {

185 UINT32 actHandle;

186 OK = ReadUINT32(s, &actHandle);

187 WriteUINT32(s, _rpc__ACT_GetSignaled(actHandle));

188 break;

189 }

190 default:

191 printf("Unrecognized platform interface command %d\n",

192 (int)Command);

193 WriteUINT32(s, 1);

194 return TRUE;

195 }

196 WriteUINT32(s, 0);

197 }

198 }

D.3.2.2. PlatformSvcRoutine()

This function is called to set up the socket interfaces to listen for commands.

199 DWORD WINAPI

200 PlatformSvcRoutine(

201 LPVOID port

202)

203 {

204 int PortNumber = (int)(INT_PTR)port;

205 SOCKET listenSocket, serverSocket;

206 struct sockaddr_in HerAddress;

207 int res;

208 socklen_t length;

209 BOOL continueServing;

210 //

211 res = CreateSocket(PortNumber, &listenSocket);

212 if(res != 0)

213 {

214 printf("Create platform service socket fail\n");

215 return res;

216 }

217 // Loop accepting connections one-by-one until we are killed or asked to stop

218 // Note the platform service is single-threaded so we don't listen for a new

219 // connection until the prior connection drops.

220 do

221 {

222 printf("Platform server listening on port %d\n", PortNumber);

223

224 // blocking accept

225 length = sizeof(HerAddress);

226 serverSocket = accept(listenSocket,

227 (struct sockaddr*) &HerAddress,

228 &length);

229 if(serverSocket == INVALID_SOCKET)

230 {

231 printf("Accept error. Error is 0x%x\n", WSAGetLastError());

232 return (DWORD)-1;

233 }

234 printf("Client accepted\n");

235

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 963

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

236 // normal behavior on client disconnection is to wait for a new client

237 // to connect

238 continueServing = PlatformServer(serverSocket);

239 closesocket(serverSocket);

240 } while(continueServing);

241

242 return 0;

243 }

D.3.2.3. PlatformSignalService()

This function starts a new thread waiting for platform signals. Platform signals are processed one at a

time in the order in which they are received.

244 int

245 PlatformSignalService(

246 int PortNumber

247)

248 {

249 #if defined(_MSC_VER)

250 HANDLE hPlatformSvc;

251 int ThreadId;

252 int port = PortNumber;

253 //

254 // Create service thread for platform signals

255 hPlatformSvc = CreateThread(NULL, 0,

256 (LPTHREAD_START_ROUTINE)PlatformSvcRoutine,

257 (LPVOID)(INT_PTR)port, 0, (LPDWORD)&ThreadId);

258 if(hPlatformSvc == NULL)

259 {

260 printf("Thread Creation failed\n");

261 return -1;

262 }

263 return 0;

264 #else

265 pthread_t thread_id;

266 int ret;

267 int port = PortNumber;

268

269 ret = pthread_create(&thread_id, NULL, (void*)PlatformSvcRoutine,

270 (LPVOID)(INT_PTR)port);

271 if (ret == -1)

272 {

273 printf("pthread_create failed: %s", strerror(ret));

274 }

275 return ret;

276 #endif // _MSC_VER

277 }

D.3.2.4. RegularCommandService()

This function services regular commands.

278 int

279 RegularCommandService(

280 int PortNumber

281)

282 {

283 SOCKET listenSocket;

284 SOCKET serverSocket;

285 struct sockaddr_in HerAddress;

286 int res;

287 socklen_t length;

Trusted Platform Module Library Part 4: Supporting Routines

Page 964 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

288 BOOL continueServing;

289 //

290 res = CreateSocket(PortNumber, &listenSocket);

291 if(res != 0)

292 {

293 printf("Create platform service socket fail\n");

294 return res;

295 }

296 // Loop accepting connections one-by-one until we are killed or asked to stop

297 // Note the TPM command service is single-threaded so we don't listen for

298 // a new connection until the prior connection drops.

299 do

300 {

301 printf("TPM command server listening on port %d\n", PortNumber);

302

303 // blocking accept

304 length = sizeof(HerAddress);

305 serverSocket = accept(listenSocket,

306 (struct sockaddr*) &HerAddress,

307 &length);

308 if(serverSocket == INVALID_SOCKET)

309 {

310 printf("Accept error. Error is 0x%x\n", WSAGetLastError());

311 return -1;

312 }

313 printf("Client accepted\n");

314

315 // normal behavior on client disconnection is to wait for a new client

316 // to connect

317 continueServing = TpmServer(serverSocket);

318 closesocket(serverSocket);

319 } while(continueServing);

320 return 0;

321 }

322 #if RH_ACT_0

D.3.2.5. SimulatorTimeServiceRoutine()

This function is called to service the time ticks.

323 static DWORD WINAPI

324 SimulatorTimeServiceRoutine(

325 LPVOID notUsed

326)

327 {

328 // All time is in ms

329 const INT64 tick = 1000;

330 UINT64 prevTime = _plat__RealTime();

331 INT64 timeout = tick;

332

333 (void)notUsed;

334

335 while (TRUE)

336 {

337 UINT64 curTime;

338

339 #if defined(_MSC_VER)

340 Sleep((DWORD)timeout);

341 #else

342 struct timespec req = {timeout / 1000, (timeout % 1000) * 1000}

343 rem;

344 nanosleep(&req, &rem);

345 #endif // _MSC_VER

346 curTime = _plat__RealTime();

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 965

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

347

348 // May need to issue several ticks if the Sleep() took longer than asked,

349 // or no ticks at all, it Sleep() was interrupted prematurely.

350 while (prevTime < curTime - tick / 2)

351 {

352 //printf("%05lld | %05lld\n",

353 // prevTime % 100000, (curTime - tick / 2) % 100000);

354 _plat__ACT_Tick();

355 prevTime += (UINT64)tick;

356 }

357 // Adjust the next timeout to keep the average interval of one second

358 timeout = tick + (prevTime - curTime);

359 //prevTime = curTime;

360 //printf("%04lld | c:%05lld | p:%05llu\n",

361 // timeout, curTime % 100000, prevTime);

362 }

363 return 0;

364 }

D.3.2.6. ActTimeService()

This function starts a new thread waiting to wait for time ticks.

Return Value Meaning

==0 success

!=0 failure

365 static int

366 ActTimeService(

367 void

368)

369 {

370 static BOOL running = FALSE;

371 int ret = 0;

372 if(!running)

373 {

374 #if defined(_MSC_VER)

375 HANDLE hThr;

376 int ThreadId;

377 //

378 printf("Starting ACT thread...\n");

379 // Don't allow ticks to be processed before TPM is manufactured.

380 _plat__ACT_EnableTicks(FALSE);

381

382 // Create service thread for ACT internal timer

383 hThr = CreateThread(NULL, 0,

384 (LPTHREAD_START_ROUTINE)SimulatorTimeServiceRoutine,

385 (LPVOID)(INT_PTR)NULL, 0, (LPDWORD)&ThreadId);

386 if(hThr != NULL)

387 CloseHandle(hThr);

388 else

389 ret = -1;

390 #else

391 pthread_t thread_id;

392 //

393 ret = pthread_create(&thread_id, NULL, (void*)PlatformSvcRoutine,

394 (LPVOID)(INT_PTR)NULL);

395 #endif // _MSC_VER

396

397 if(ret != 0)

398 printf("ACT thread Creation failed\n");

399 else

Trusted Platform Module Library Part 4: Supporting Routines

Page 966 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

400 running = TRUE;

401 }

402 return ret;

403 }

404 #endif // RH_ACT_0

D.3.2.7. StartTcpServer()

This is the main entry-point to the TCP server. The server listens on port specified.

Note that there is no way to specify the network interface in this implementation.

405 int

406 StartTcpServer(

407 int PortNumber

408)

409 {

410 int res;

411 //

412 #if RH_ACT_0 || 1

413 // Start the Time Service routine

414 res = ActTimeService();

415 if(res != 0)

416 {

417 printf("TimeService failed\n");

418 return res;

419 }

420 #endif

421

422 // Start Platform Signal Processing Service

423 res = PlatformSignalService(PortNumber + 1);

424 if(res != 0)

425 {

426 printf("PlatformSignalService failed\n");

427 return res;

428 }

429 // Start Regular/DRTM TPM command service

430 res = RegularCommandService(PortNumber);

431 if(res != 0)

432 {

433 printf("RegularCommandService failed\n");

434 return res;

435 }

436 return 0;

437 }

D.3.2.8. ReadBytes()

This function reads the indicated number of bytes (NumBytes) into buffer from the indicated socket.

438 BOOL

439 ReadBytes(

440 SOCKET s,

441 char *buffer,

442 int NumBytes

443)

444 {

445 int res;

446 int numGot = 0;

447 //

448 while(numGot < NumBytes)

449 {

450 res = recv(s, buffer + numGot, NumBytes - numGot, 0);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 967

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

451 if(res == -1)

452 {

453 printf("Receive error. Error is 0x%x\n", WSAGetLastError());

454 return FALSE;

455 }

456 if(res == 0)

457 {

458 return FALSE;

459 }

460 numGot += res;

461 }

462 return TRUE;

463 }

D.3.2.9. WriteBytes()

This function will send the indicated number of bytes (NumBytes) to the indicated socket

464 BOOL

465 WriteBytes(

466 SOCKET s,

467 char *buffer,

468 int NumBytes

469)

470 {

471 int res;

472 int numSent = 0;

473 //

474 while(numSent < NumBytes)

475 {

476 res = send(s, buffer + numSent, NumBytes - numSent, 0);

477 if(res == -1)

478 {

479 if(WSAGetLastError() == 0x2745)

480 {

481 printf("Client disconnected\n");

482 }

483 else

484 {

485 printf("Send error. Error is 0x%x\n", WSAGetLastError());

486 }

487 return FALSE;

488 }

489 numSent += res;

490 }

491 return TRUE;

492 }

D.3.2.10. WriteUINT32()

Send 4 byte integer

493 BOOL

494 WriteUINT32(

495 SOCKET s,

496 uint32_t val

497)

498 {

499 UINT32 netVal = htonl(val);

500 //

501 return WriteBytes(s, (char*)&netVal, 4);

502 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 968 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

D.3.2.11. ReadUINT32()

Function to read 4 byte integer from socket.

503 BOOL

504 ReadUINT32(

505 SOCKET s,

506 UINT32 *val

507)

508 {

509 UINT32 netVal;

510 //

511 if (!ReadBytes(s, (char*)&netVal, 4))

512 return FALSE;

513 *val = ntohl(netVal);

514 return TRUE;

515 }

D.3.2.12. ReadVarBytes()

Get a UINT32-length-prepended binary array. Note that the 4-byte length is in network byte order (big-

endian).

516 BOOL

517 ReadVarBytes(

518 SOCKET s,

519 char *buffer,

520 uint32_t *BytesReceived,

521 int MaxLen

522)

523 {

524 int length;

525 BOOL res;

526 //

527 res = ReadBytes(s, (char*)&length, 4);

528 if(!res) return res;

529 length = ntohl(length);

530 *BytesReceived = length;

531 if(length > MaxLen)

532 {

533 printf("Buffer too big. Client says %d\n", length);

534 return FALSE;

535 }

536 if(length == 0) return TRUE;

537 res = ReadBytes(s, buffer, length);

538 if(!res) return res;

539 return TRUE;

540 }

D.3.2.13. WriteVarBytes()

Send a UINT32-length-prepended binary array. Note that the 4-byte length is in network byte order (big-

endian).

541 BOOL

542 WriteVarBytes(

543 SOCKET s,

544 char *buffer,

545 int BytesToSend

546)

547 {

548 uint32_t netLength = htonl(BytesToSend);

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 969

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

549 BOOL res;

550 //

551 res = WriteBytes(s, (char*)&netLength, 4);

552 if(!res)

553 return res;

554 res = WriteBytes(s, buffer, BytesToSend);

555 if(!res)

556 return res;

557 return TRUE;

558 }

D.3.2.14. TpmServer()

Processing incoming TPM command requests using the protocol / interface defined above.

559 BOOL

560 TpmServer(

561 SOCKET s

562)

563 {

564 uint32_t length;

565 uint32_t Command;

566 BYTE locality;

567 BOOL OK;

568 int result;

569 int clientVersion;

570 _IN_BUFFER InBuffer;

571 _OUT_BUFFER OutBuffer;

572 //

573 for(;;)

574 {

575 OK = ReadBytes(s, (char*)&Command, 4);

576 // client disconnected (or other error). We stop processing this client

577 // and return to our caller who can stop the server or listen for another

578 // connection.

579 if(!OK)

580 return TRUE;

581 Command = ntohl(Command);

582 switch(Command)

583 {

584 case TPM_SIGNAL_HASH_START:

585 _rpc__Signal_Hash_Start();

586 break;

587 case TPM_SIGNAL_HASH_END:

588 _rpc__Signal_HashEnd();

589 break;

590 case TPM_SIGNAL_HASH_DATA:

591 OK = ReadVarBytes(s, InputBuffer, &length, MAX_BUFFER);

592 if(!OK) return TRUE;

593 InBuffer.Buffer = (BYTE*)InputBuffer;

594 InBuffer.BufferSize = length;

595 _rpc__Signal_Hash_Data(InBuffer);

596 break;

597 case TPM_SEND_COMMAND:

598 OK = ReadBytes(s, (char*)&locality, 1);

599 if(!OK)

600 return TRUE;

601 OK = ReadVarBytes(s, InputBuffer, &length, MAX_BUFFER);

602 if(!OK)

603 return TRUE;

604 InBuffer.Buffer = (BYTE*)InputBuffer;

605 InBuffer.BufferSize = length;

606 OutBuffer.BufferSize = MAX_BUFFER;

607 OutBuffer.Buffer = (_OUTPUT_BUFFER)OutputBuffer;

Trusted Platform Module Library Part 4: Supporting Routines

Page 970 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

608 // record the number of bytes in the command if it is the largest

609 // we have seen so far.

610 if(InBuffer.BufferSize > CommandResponseSizes.largestCommandSize)

611 {

612 CommandResponseSizes.largestCommandSize = InBuffer.BufferSize;

613 memcpy(&CommandResponseSizes.largestCommand,

614 &InputBuffer[6], sizeof(UINT32));

615 }

616 _rpc__Send_Command(locality, InBuffer, &OutBuffer);

617 // record the number of bytes in the response if it is the largest

618 // we have seen so far.

619 if(OutBuffer.BufferSize > CommandResponseSizes.largestResponseSize)

620 {

621 CommandResponseSizes.largestResponseSize

622 = OutBuffer.BufferSize;

623 memcpy(&CommandResponseSizes.largestResponse,

624 &OutputBuffer[6], sizeof(UINT32));

625 }

626 OK = WriteVarBytes(s,

627 (char*)OutBuffer.Buffer,

628 OutBuffer.BufferSize);

629 if(!OK)

630 return TRUE;

631 break;

632 case TPM_REMOTE_HANDSHAKE:

633 OK = ReadBytes(s, (char*)&clientVersion, 4);

634 if(!OK)

635 return TRUE;

636 if(clientVersion == 0)

637 {

638 printf("Unsupported client version (0).\n");

639 return TRUE;

640 }

641 OK &= WriteUINT32(s, ServerVersion);

642 OK &= WriteUINT32(s, tpmInRawMode

643 | tpmPlatformAvailable | tpmSupportsPP);

644 break;

645 case TPM_SET_ALTERNATIVE_RESULT:

646 OK = ReadBytes(s, (char*)&result, 4);

647 if(!OK)

648 return TRUE;

649 // Alternative result is not applicable to the simulator.

650 break;

651 case TPM_SESSION_END:

652 // Client signaled end-of-session

653 return TRUE;

654 case TPM_STOP:

655 // Client requested the simulator to exit

656 return FALSE;

657 default:

658 printf("Unrecognized TPM interface command %d\n", (int)Command);

659 return TRUE;

660 }

661 OK = WriteUINT32(s, 0);

662 if(!OK)

663 return TRUE;

664 }

665 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 971

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.4 TPMCmdp.c

D.4.1. Description

This file contains the functions that process the commands received on the control port or the command

port of the simulator. The control port is used to allow simulation of hardware events (such as,

_TPM_Hash_Start()) to test the simulated TPM's reaction to those events. This improves code coverage

of the testing.

D.4.2. Includes and Data Definitions

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <setjmp.h>

4 #include "TpmBuildSwitches.h"

5 #ifdef _MSC_VER

6 # pragma warning(push, 3)

7 # include <windows.h>

8 # include <winsock.h>

9 # pragma warning(pop)

10 #elif defined(__unix__)

11 typedef int SOCKET;

12 #else

13 # error "Unsupported platform."

14 #endif

15 #ifndef TRUE

16 # define TRUE 1

17 #endif

18 #ifndef FALSE

19 # define FALSE 0

20 #endif

21 #include "Platform_fp.h"

22 #include "ExecCommand_fp.h"

23 #include "Manufacture_fp.h"

24 #include "_TPM_Init_fp.h"

25 #include "_TPM_Hash_Start_fp.h"

26 #include "_TPM_Hash_Data_fp.h"

27 #include "_TPM_Hash_End_fp.h"

28 #include "TpmFail_fp.h"

29 #include "TpmTcpProtocol.h"

30 #include "Simulator_fp.h"

31 static BOOL s_isPowerOn = FALSE;

32

33 //** Functions

34

35 //*** Signal_PowerOn()

36 // This function processes a power-on indication. Among other things, it

37 // calls the _TPM_Init() handler.

38 void

39 _rpc__Signal_PowerOn(

40 BOOL isReset

41)

42 {

43 // if power is on and this is not a call to do TPM reset then return

44 if(s_isPowerOn && !isReset)

45 return;

46 // If this is a reset but power is not on, then return

47 if(isReset && !s_isPowerOn)

48 return;

49 // Unless this is just a reset, pass power on signal to platform

50 if(!isReset)

51 _plat__Signal_PowerOn();

Trusted Platform Module Library Part 4: Supporting Routines

Page 972 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 // Power on and reset both lead to _TPM_Init()

53 _plat__Signal_Reset();

54

55 // Set state as power on

56 s_isPowerOn = TRUE;

57 }

D.4.2.1. Signal_Restart()

This function processes the clock restart indication. All it does is call the platform function.

58 void

59 _rpc__Signal_Restart(

60 void

61)

62 {

63 _plat__TimerRestart();

64 }

D.4.2.2. Signal_PowerOff()

This function processes the power off indication. Its primary function is to set a flag indicating that the

next power on indication should cause _TPM_Init() to be called.

65 void

66 _rpc__Signal_PowerOff(

67 void

68)

69 {

70 if(s_isPowerOn)

71 // Pass power off signal to platform

72 _plat__Signal_PowerOff();

73 // This could be redundant, but...

74 s_isPowerOn = FALSE;

75

76 return;

77 }

D.4.2.3. _rpc__ForceFailureMode()

This function is used to debug the Failure Mode logic of the TPM. It will set a flag in the TPM code such

that the next call to TPM2_SelfTest() will result in a failure, putting the TPM into Failure Mode.

78 void

79 _rpc__ForceFailureMode(

80 void

81)

82 {

83 SetForceFailureMode();

84 return;

85 }

D.4.2.4. _rpc__Signal_PhysicalPresenceOn()

This function is called to simulate activation of the physical presence pin.

86 void

87 _rpc__Signal_PhysicalPresenceOn(

88 void

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 973

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

89)

90 {

91 // If TPM power is on

92 if(s_isPowerOn)

93 // Pass physical presence on to platform

94 _plat__Signal_PhysicalPresenceOn();

95 return;

96 }

D.4.2.5. _rpc__Signal_PhysicalPresenceOff()

This function is called to simulate deactivation of the physical presence pin.

97 void

98 _rpc__Signal_PhysicalPresenceOff(

99 void

100)

101 {

102 // If TPM is power on

103 if(s_isPowerOn)

104 // Pass physical presence off to platform

105 _plat__Signal_PhysicalPresenceOff();

106 return;

107 }

D.4.2.6. _rpc__Signal_Hash_Start()

This function is called to simulate a _TPM_Hash_Start() event. It will call

108 void

109 _rpc__Signal_Hash_Start(

110 void

111)

112 {

113 // If TPM power is on

114 if(s_isPowerOn)

115 // Pass _TPM_Hash_Start signal to TPM

116 _TPM_Hash_Start();

117 return;

118 }

D.4.2.7. _rpc__Signal_Hash_Data()

This function is called to simulate a _TPM_Hash_Data() event.

119 void

120 _rpc__Signal_Hash_Data(

121 _IN_BUFFER input

122)

123 {

124 // If TPM power is on

125 if(s_isPowerOn)

126 // Pass _TPM_Hash_Data signal to TPM

127 _TPM_Hash_Data(input.BufferSize, input.Buffer);

128 return;

129 }

D.4.2.8. _rpc__Signal_HashEnd()

This function is called to simulate a _TPM_Hash_End() event.

Trusted Platform Module Library Part 4: Supporting Routines

Page 974 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

130 void

131 _rpc__Signal_HashEnd(

132 void

133)

134 {

135 // If TPM power is on

136 if(s_isPowerOn)

137 // Pass _TPM_HashEnd signal to TPM

138 _TPM_Hash_End();

139 return;

140 }

D.4.2.9. _rpc__Send_Command()

This is the interface to the TPM code.

141 void

142 _rpc__Send_Command(

143 unsigned char locality,

144 _IN_BUFFER request,

145 _OUT_BUFFER *response

146)

147 {

148 // If TPM is power off, reject any commands.

149 if(!s_isPowerOn)

150 {

151 response->BufferSize = 0;

152 return;

153 }

154 // Set the locality of the command so that it doesn't change during the command

155 _plat__LocalitySet(locality);

156 // Do implementation-specific command dispatch

157 _plat__RunCommand(request.BufferSize, request.Buffer,

158 &response->BufferSize, &response->Buffer);

159 return;

160 }

D.4.2.10. _rpc__Signal_CancelOn()

This function is used to turn on the indication to cancel a command in process. An executing command is

not interrupted. The command code may periodically check this indication to see if it should abort the

current command processing and returned TPM_RC_CANCELLED.

161 void

162 _rpc__Signal_CancelOn(

163 void

164)

165 {

166 // If TPM power is on

167 if(s_isPowerOn)

168 // Set the platform canceling flag.

169 _plat__SetCancel();

170 return;

171 }

D.4.2.11. _rpc__Signal_CancelOff()

This function is used to turn off the indication to cancel a command in process.

172 void

173 _rpc__Signal_CancelOff(

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 975

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

174 void

175)

176 {

177 // If TPM power is on

178 if(s_isPowerOn)

179 // Set the platform canceling flag.

180 _plat__ClearCancel();

181 return;

182 }

D.4.2.12. _rpc__Signal_NvOn()

In a system where the NV memory used by the TPM is not within the TPM, the NV may not always be

available. This function turns on the indicator that indicates that NV is available.

183 void

184 _rpc__Signal_NvOn(

185 void

186)

187 {

188 // If TPM power is on

189 if(s_isPowerOn)

190 // Make the NV available

191 _plat__SetNvAvail();

192 return;

193 }

D.4.2.13. _rpc__Signal_NvOff()

This function is used to set the indication that NV memory is no longer available.

194 void

195 _rpc__Signal_NvOff(

196 void

197)

198 {

199 // If TPM power is on

200 if(s_isPowerOn)

201 // Make NV not available

202 _plat__ClearNvAvail();

203 return;

204 }

205 void RsaKeyCacheControl(int state);

D.4.2.14. _rpc__RsaKeyCacheControl()

This function is used to enable/disable the use of the RSA key cache during simulation.

206 void

207 _rpc__RsaKeyCacheControl(

208 int state

209)

210 {

211 #if USE_RSA_KEY_CACHE

212 RsaKeyCacheControl(state);

213 #else

214 NOT_REFERENCED(state);

215 #endif

216 return;

217 }

218 #define TPM_RH_ACT_0 0x40000110

Trusted Platform Module Library Part 4: Supporting Routines

Page 976 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

D.4.2.15. _rpc__ACT_GetSignaled()

This function is used to count the ACT second tick.

219 BOOL

220 _rpc__ACT_GetSignaled(

221 UINT32 actHandle

222)

223 {

224 // If TPM power is on

225 if (s_isPowerOn)

226 // Query the platform

227 return _plat__ACT_GetSignaled(actHandle - TPM_RH_ACT_0);

228 return FALSE;

229 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 977

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.5 TPMCmds.c

D.5.1. Description

This file contains the entry point for the simulator.

D.5.2. Includes, Defines, Data Definitions, and Function Prototypes

1 #include "TpmBuildSwitches.h"

2 #include <stdlib.h>

3 #include <stdio.h>

4 #include <stdint.h>

5 #include <ctype.h>

6 #include <string.h>

7 #ifdef _MSC_VER

8 # pragma warning(push, 3)

9 # include <windows.h>

10 # include <winsock.h>

11 # pragma warning(pop)

12 #elif defined(__unix__)

13 # define _strcmpi strcasecmp

14 typedef int SOCKET;

15 #else

16 # error "Unsupported platform."

17 #endif

18 #ifndef TRUE

19 # define TRUE 1

20 #endif

21 #ifndef FALSE

22 # define FALSE 0

23 #endif

24 #include "TpmTcpProtocol.h"

25 #include "Manufacture_fp.h"

26 #include "Platform_fp.h"

27 #include "Simulator_fp.h"

28 #define PURPOSE \

29 "TPM 2.0 Reference Simulator.\n" \

30 "Copyright (c) Microsoft Corporation. All rights reserved."

31 #define DEFAULT_TPM_PORT 2321

Information about command line arguments (does not include program name)

32 static uint32_t s_ArgsMask = 0; // Bit mask of unmatched command line args

33 static int s_Argc = 0;

34 static const char **s_Argv = NULL;

35

36 //** Functions

37

38 #if DEBUG

39 //*** Assert()

40 // This function implements a run-time assertion.

41 // Computation of its parameters must not result in any side effects, as these

42 // computations will be stripped from the release builds.

43 static void Assert (BOOL cond, const char* msg)

44 {

45 if (cond)

46 return;

47 fputs(msg, stderr);

48 exit(2);

49 }

50 #else

51 #define Assert(cond, msg)

Trusted Platform Module Library Part 4: Supporting Routines

Page 978 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

52 #endif

D.5.2.1. Usage()

This function prints the proper calling sequence for the simulator.

53 static void

54 Usage(

55 const char *programName

56)

57 {

58 fprintf(stderr, "%s\n\n", PURPOSE);

59 fprintf(stderr, "Usage: %s [PortNum] [opts]\n\n"

60 "Starts the TPM server listening on TCP port PortNum (by default %d).\n\n"

61 "An option can be in the short form (one letter preceded with '-' or '/')\n"

62 "or in the full form (preceded with '--' or no option marker at all).\n"

63 "Possible options are:\n"

64 " -h (--help) or ? - print this message\n"

65 " -m (--manufacture) - forces NV state of the TPM simulator to be "

66 "(re)manufactured\n",

67 programName, DEFAULT_TPM_PORT);

68 exit(1);

69 }

D.5.2.2. CmdLineParser_Init()

This function initializes command line option parser.

70 static BOOL

71 CmdLineParser_Init(

72 int argc,

73 char *argv[],

74 int maxOpts

75)

76 {

77 if (argc == 1)

78 return FALSE;

79

80 if (maxOpts && (argc - 1) > maxOpts)

81 {

82 fprintf(stderr, "No more than %d options can be specified\n\n", maxOpts);

83 Usage(argv[0]);

84 }

85

86 s_Argc = argc - 1;

87 s_Argv = (const char**)(argv + 1);

88 s_ArgsMask = (1 << s_Argc) - 1;

89 return TRUE;

90 }

D.5.2.3. CmdLineParser_More()

Returns true if there are unparsed options still.

91 static BOOL

92 CmdLineParser_More(

93 void

94)

95 {

96 return s_ArgsMask != 0;

97 }

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 979

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.5.2.4. CmdLineParser_IsOpt()

This function determines if the given command line parameter represents a valid option.

98 static BOOL

99 CmdLineParser_IsOpt(

100 const char* opt, // Command line parameter to check

101 const char* optFull, // Expected full name

102 const char* optShort, // Expected short (single letter) name

103 BOOL dashed // The parameter is preceded by a single dash

104)

105 {

106 return 0 == strcmp(opt, optFull)

107 || (optShort && opt[0] == optShort[0] && opt[1] == 0)

108 || (dashed && opt[0] == '-' && 0 == strcmp(opt + 1, optFull));

109 }

D.5.2.5. CmdLineParser_IsOptPresent()

This function determines if the given command line parameter represents a valid option.

110 static BOOL

111 CmdLineParser_IsOptPresent(

112 const char* optFull,

113 const char* optShort

114)

115 {

116 int i;

117 int curArgBit;

118 Assert(s_Argv != NULL,

119 "InitCmdLineOptParser(argc, argv) has not been invoked\n");

120 Assert(optFull && optFull[0],

121 "Full form of a command line option must be present.\n"

122 "If only a short (single letter) form is supported, it must be"

123 "specified as the full one.\n");

124 Assert(!optShort || (optShort[0] && !optShort[1]),

125 "If a short form of an option is specified, it must consist "

126 "of a single letter only.\n");

127

128 if (!CmdLineParser_More())

129 return FALSE;

130

131 for (i = 0, curArgBit = 1; i < s_Argc; ++i, curArgBit <<= 1)

132 {

133 const char* opt = s_Argv[i];

134 if ((s_ArgsMask & curArgBit) && opt

135 && (0 == strcmp(opt, optFull)

136 || ((opt[0] == '/' || opt[0] == '-')

137 && CmdLineParser_IsOpt(opt + 1, optFull, optShort,

138 opt[0] == '-'))))

139 {

140 s_ArgsMask ^= curArgBit;

141 return TRUE;

142 }

143 }

144 return FALSE;

145 }

D.5.2.6. CmdLineParser_IsOptPresent()

This function notifies the parser that no more options are needed.

Trusted Platform Module Library Part 4: Supporting Routines

Page 980 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

146 static void

147 CmdLineParser_Done(

148 const char *programName

149)

150 {

151 char delim = ':';

152 int i;

153 int curArgBit;

154

155 if (!CmdLineParser_More())

156 return;

157

158 fprintf(stderr, "Command line contains unknown option%s",

159 s_ArgsMask & (s_ArgsMask - 1) ? "s" : "");

160 for (i = 0, curArgBit = 1; i < s_Argc; ++i, curArgBit <<= 1)

161 {

162 if (s_ArgsMask & curArgBit)

163 {

164 fprintf(stderr, "%c %s", delim, s_Argv[i]);

165 delim = ',';

166 }

167 }

168 fprintf(stderr, "\n\n");

169 Usage(programName);

170 }

D.5.2.7. main()

This is the main entry point for the simulator. It registers the interface and starts listening for clients

171 int

172 main(

173 int argc,

174 char *argv[]

175)

176 {

177 BOOL manufacture = FALSE;

178 int PortNum = DEFAULT_TPM_PORT;

179

180 // Parse command line options

181

182 if (CmdLineParser_Init(argc, argv, 2))

183 {

184 if (CmdLineParser_IsOptPresent("?", "?")

185 || CmdLineParser_IsOptPresent("help", "h"))

186 {

187 Usage(argv[0]);

188 }

189 if (CmdLineParser_IsOptPresent("manufacture", "m"))

190 {

191 manufacture = TRUE;

192 }

193 if (CmdLineParser_More())

194 {

195 int i;

196 for (i = 0; i < s_Argc; ++i)

197 {

198 char *nptr = NULL;

199 int portNum = (int)strtol(s_Argv[i], &nptr, 0);

200 if (s_Argv[i] != nptr)

201 {

202 // A numeric option is found

203 if(!*nptr && portNum > 0 && portNum < 65535)

204 {

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 981

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

205 PortNum = portNum;

206 s_ArgsMask ^= 1 << i;

207 break;

208 }

209 fprintf(stderr, "Invalid numeric option %s\n\n", s_Argv[i]);

210 Usage(argv[0]);

211 }

212 }

213 }

214 CmdLineParser_Done(argv[0]);

215 }

216 printf("LIBRARY_COMPATIBILITY_CHECK is %s\n",

217 (LIBRARY_COMPATIBILITY_CHECK ? "ON" : "OFF"));

218 // Enable NV memory

219 _plat__NVEnable(NULL);

220

221 if (manufacture || _plat__NVNeedsManufacture())

222 {

223 printf("Manufacturing NV state...\n");

224 if(TPM_Manufacture(1) != 0)

225 {

226 // if the manufacture didn't work, then make sure that the NV file doesn't

227 // survive. This prevents manufacturing failures from being ignored the

228 // next time the code is run.

229 _plat__NVDisable(1);

230 exit(1);

231 }

232 // Coverage test - repeated manufacturing attempt

233 if(TPM_Manufacture(0) != 1)

234 {

235 exit(2);

236 }

237 // Coverage test - re-manufacturing

238 TPM_TearDown();

239 if(TPM_Manufacture(1) != 0)

240 {

241 exit(3);

242 }

243 }

244 // Disable NV memory

245 _plat__NVDisable(0);

246

247 StartTcpServer(PortNum);

248 return EXIT_SUCCESS;

249 }

TCG

Trusted Platform Module Library

Part 4: Supporting Routines

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Published

Contact: admin@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2006-2020

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 4: Supporting Routines

Page ii TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

CONTENTS

1 Scope ... 1

2 Terms and definitions ... 1

3 Symbols and abbreviated terms .. 1

4 Automation ... 1

4.1 Configuration Parser ... 1
4.2 Structure Parser .. 2

4.2.1 Introduction .. 2
4.2.2 Unmarshaling Code Prototype .. 2

4.2.3 Marshaling Code Function Prototypes .. 3

4.3 Part 3 Parsing ... 5
4.4 Function Prototypes .. 5
4.5 Portability .. 5

5 Header Files ... 7

5.1 Introduction ... 7
5.2 BaseTypes.h ... 7
5.3 Capabilities.h .. 8
5.4 CommandAttributeData.h .. 9
5.5 CommandAttributes.h .. 10
5.6 CommandDispatchData.h .. 11
5.7 Commands.h ... 12
5.8 CompilerDependencies.h .. 13
5.9 Global.h .. 14
5.10 GpMacros.h ... 15
5.11 InternalRoutines.h ... 16
5.12 LibSupport.h .. 17
5.13 MinMax.h .. 17
5.14 NV.h .. 18
5.15 TPMB.h ... 19
5.16 Tpm.h .. 20
5.17 TpmBuildSwitches.h .. 21
5.18 TpmError.h .. 22
5.19 TpmTypes.h .. 23
5.20 VendorString.h .. 24
5.21 swap.h .. 25
5.22 ACT.h .. 26

6 Main ... 27

6.1 Introduction ... 27
6.2 ExecCommand.c ... 27
6.3 CommandDispatcher.c .. 28

6.3.1 Introduction .. 28

Trusted Platform Module Library Part 4: Supporting Routines

Page iv TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.4 SessionProcess.c .. 29

7 Command Support Functions .. 30

7.1 Introduction ... 30
7.2 Attestation Command Support (Attest_spt.c) ... 30
7.3 Context Management Command Support (Context_spt.c) .. 31
7.4 Policy Command Support (Policy_spt.c) .. 32
7.5 NV Command Support (NV_spt.c) ... 33
7.6 Object Command Support (Object_spt.c) ... 34
7.7 Encrypt Decrypt Support (EncryptDecrypt_spt.c) ... 35
7.8 ACT Support (ACT_spt.c) .. 36

8 Subsystem.. 37

8.1 CommandAudit.c ... 37
8.2 DA.c .. 38
8.3 Hierarchy.c .. 39
8.4 NvDynamic.c ... 40
8.5 NvReserved.c .. 41
8.6 Object.c... 42
8.7 PCR.c ... 43
8.8 PP.c .. 44
8.9 Session.c .. 45
8.10 Time.c ... 46

9 Support .. 47

9.1 AlgorithmCap.c .. 47
9.2 Bits.c ... 48
9.3 CommandCodeAttributes.c .. 49
9.4 Entity.c .. 50
9.5 Global.c... 51
9.6 Handle.c .. 52
9.7 IoBuffers.c ... 53
9.8 Locality.c ... 54
9.9 Manufacture.c ... 55
9.10 Marshal.c .. 56

9.10.1 Introduction .. 56
9.10.2 Unmarshal and Marshal a Value ... 56
9.10.3 Unmarshal and Marshal a Union ... 57
9.10.4 Unmarshal and Marshal a Structure .. 59
9.10.5 Unmarshal and Marshal an Array ... 60
9.10.6 TPM2B Handling .. 62
9.10.7 Table Marshal Headers .. 62

9.10.8 Table Marshal Source .. 63

9.11 MathOnByteBuffers.c .. 64
9.12 Memory.c .. 65
9.13 Power.c ... 66
9.14 PropertyCap.c ... 67
9.15 Response.c ... 68
9.16 ResponseCodeProcessing.c .. 69
9.17 TpmFail.c .. 70

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10 Cryptographic Functions ... 71

10.1 Headers .. 71

10.1.1 BnValues.h ... 71
10.1.2 CryptEcc.h ... 72
10.1.3 CryptHash.h ... 73
10.1.4 CryptRand.h ... 74
10.1.5 CryptRsa.h ... 75
10.1.6 CryptTest.h .. 76
10.1.7 HashTestData.h ... 77
10.1.8 KdfTestData.h .. 78
10.1.9 RsaTestData.h ... 79
10.1.10 SelfTest.h ... 79
10.1.11 SupportLibraryFunctionPrototypes_fp.h .. 79
10.1.12 SymmetricTestData.h ... 80
10.1.13 SymmetricTest.h .. 81
10.1.14 EccTestData.h .. 82
10.1.15 CryptSym.h .. 83
10.1.16 OIDs.h .. 84
10.1.17 PRNG_TestVectors.h ... 84
10.1.18 TpmAsn1.h ... 84
10.1.19 X509.h ... 84
10.1.20 TpmAlgorithmDefines.h .. 84

10.2 Source .. 85

10.2.1 AlgorithmTests.c .. 85
10.2.2 BnConvert.c ... 86
10.2.3 BnMath.c .. 87
10.2.4 BnMemory.c ... 88
10.2.5 CryptCmac.c .. 89
10.2.6 CryptUtil.c .. 90
10.2.7 CryptSelfTest.c... 91
10.2.8 CryptEccData.c .. 92
10.2.9 CryptDes.c ... 93
10.2.10 CryptEccKeyExchange.c .. 94
10.2.11 CryptEccMain.c .. 95
10.2.12 CryptEccSignature.c ... 96
10.2.13 CryptHash.c ... 97
10.2.14 CryptPrime.c .. 98
10.2.15 CryptPrimeSieve.c .. 99
10.2.16 CryptRand.c ... 100
10.2.17 CryptRsa.c ... 101
10.2.18 CryptSmac.c ... 102
10.2.19 CryptSym.c... 103
10.2.20 PrimeData.c ... 104
10.2.21 RsaKeyCache.c .. 105
10.2.22 Ticket.c .. 106
10.2.23 TpmAsn1.c ... 107
10.2.24 X509_ECC.c ... 108
10.2.25 X509_RSA.c ... 109
10.2.26 X509_spt.c ... 110
10.2.27 AC_spt.c .. 111

Annex A (informative) Implementation Dependent .. 112

A.1 Introduction ... 112
A.2 TpmProfile.h .. 112
A.3 TpmSizeChecks.c.. 112

Annex B (informative) Library-Specific .. 113

Trusted Platform Module Library Part 4: Supporting Routines

Page vi TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.1 Introduction ... 113
B.2 OpenSSL-Specific Files ... 114

B.2.1. Introduction .. 114
B.2.2. Header Files ... 114

B.2.3. Source Files ... 117

Annex C (informative) Simulation Environment ... 120

C.1 Introduction ... 120
C.2 Cancel.c .. 120
C.3 Clock.c .. 121
C.4 Entropy.c ... 122
C.5 LocalityPlat.c ... 123
C.6 NVMem.c .. 124
C.7 PowerPlat.c ... 125
C.8 PlatformData.h .. 126
C.9 PlatformData.c .. 127
C.10 PPPlat.c .. 128
C.11 RunCommand.c ... 129
C.12 Unique.c .. 130
C.13 DebugHelpers.c... 131
C.14 Platform.h ... 132
C.15 PlatformACT.h ... 133
C.16 PlatformACT.c ... 134
C.17 PlatformClock.h ... 135

Annex D (informative) Remote Procedure Interface .. 136

D.1 Introduction ... 136
D.2 TpmTcpProtocol.h ... 137
D.3 TcpServer.c ... 138
D.4 TPMCmdp.c .. 139
D.5 TPMCmds.c... 140

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

 Trusted Platform Module Library
Part 4: Supporting Routines

1 Scope

This part contains C code that describes the algorithms and methods used by the command code in TPM

2.0 Part 3. The code in this document augments TPM 2.0 Part 2 and TPM 2.0 Part 3 to provide a

complete description of a TPM, including the supporting framework for the code that performs the

command actions.

Any TPM 2.0 Part 4 code may be replaced by code that provides similar results when interfacing to the

action code in TPM 2.0 Part 3. The behavior of code in this document that is not included in an annex is

normative, as observed at the interfaces with TPM 2.0 Part 3 code. Code in an annex is provided for

completeness, that is, to allow a full implementation of the specification from the provided code.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,

firmware update), it is not possible to provide a compliant implementation. In those cases, any

implementation provided by the vendor that meets the general description of the function provided in TPM

2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this

specification require that a TPM meet any particular level of conformance.

2 Terms and definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

4 Automation

TPM 2.0 Part 2 and 3 are constructed so that they can be processed by an automated parser. For

example, TPM 2.0 Part 2 can be processed to generate header file contents such as structures, typedefs,

and enums. TPM 2.0 Part 3 can be processed to generate command and response marshaling and

unmarshaling code.

The automated processor is not provided by the TCG. It was used to generate the Microsoft Visual Studio

TPM simulator files. These files are not specification reference code, but rather design examples.

The automation produces TPM_Types.h, a header representing TPM 2.0 Part 2. It also produces, for

each major clause of Part 4, a header of the form _fp.h with the function prototypes.

EXAMPLE The header file for SessionProcess.c is SessionProcess_fp.h.

4.1 Configuration Parser

The TPM configuration is largely defined by TpmProfiles.h. This file may be edited in order to change the

algorithms and commands supported by a TPM implementation.

A parser exists to process a Word document that defines the TPM configuration. This parser is used to

create TpmProfiles.h.

Trusted Platform Module Library Part 4: Supporting Routines

Page 2 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

4.2 Structure Parser

4.2.1 Introduction

The program that processes the tables in TPM 2.0 Part 2 is called "The TPM 2.0 Part 2 Structure Parser."

NOTE A Perl script was used to parse the tables in TPM 2.0 Part 2 to produce the header files and unmarshaling code
in for the reference implementation.

The TPM 2.0 Part 2 Structure Parser takes as input the files produced by the TPM 2.0 Part 2

Configuration Parser and the same TPM 2.0 Part 2 specification that was used as input to the TPM 2.0

Part 2 Configuration Parser. The TPM 2.0 Part 2 Structure Parser will generate all of the C structure

constant definitions that are required by the TPM interface. Additionally, the parser will generate

unmarshaling code for all structures passed to the TPM, and marshaling code for structures passed from

the TPM.

The unmarshaling code produced by the parser uses the prototypes defined below. The unmarshaling

code will perform validations of the data to ensure that it is compliant with the limitations on the data

imposed by the structure definition and use the response code provided in the table if not.

EXAMPLE: The definition for a TPMI_RH_PROVISION indicates that the primitive data type is a TPM_HANDLE and the
only allowed values are TPM_RH_OWNER and TPM_RH_PLATFORM. The definition also indicates that the
TPM shall indicate TPM_RC_HANDLE if the input value is not none of these values. The unmarshaling code
will validate that the input value has one of those allowed values and return TPM_RC_HANDLE if not.

The sections below describe the function prototypes for the marshaling and unmarshaling code that is

automatically generated by the TPM 2.0 Part 2 Structure Parser. These prototypes are described here as

the unmarshaling and marshaling of various types occurs in places other than when the command is

being parsed or the response is being built. The prototypes and the description of the interface are

intended to aid in the comprehension of the code that uses these auto-generated routines.

4.2.2 Unmarshaling Code Prototype

4.2.2.1 Simple Types and Structures

The general form for the unmarshaling code for a simple type or a structure is:

TPM_RC TYPE_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size);

Where:

TYPE name of the data type or structure

*target location in the TPM memory into which the data from **buffer is placed

**buffer location in input buffer containing the most significant octet (MSO) of

*target

*size number of octets remaining in **buffer

When the data is successfully unmarshaled, the called routine will return TPM_RC_SUCCESS.

Otherwise, it will return a Format-One response code (see TPM 2.0 Part 2).

If the data is successfully unmarshaled, *buffer is advanced point to the first octet of the next parameter

in the input buffer and size is reduced by the number of octets removed from the buffer.

When the data type is a simple type, the parser will generate code that will unmarshal the underlying type

and then perform checks on the type as indicated by the type definition.

When the data type is a structure, the parser will generate code that unmarshals each of the structure

elements in turn and performs any additional parameter checks as indicated by the data type.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.2.2.2 Union Types

When a union is defined, an extra parameter is defined for the unmarshaling code. This parameter is the

selector for the type. The unmarshaling code for the union will unmarshal the type indicated by the

selector.

The function prototype for a union has the form:

TPM_RC TYPE_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size, UINT32 selector);

where:

TYPE name of the union type or structure

*target location in the TPM memory into which the data from **buffer is placed

**buffer location in input buffer containing the most significant octet (MSO) of

*target

*size number of octets remaining in **buffer

selector union selector that determines what will be unmarshaled into *target

4.2.2.3 Null Types

In some cases, the structure definition allows an optional “null” value. The “null” value allows the use of

the same C type for the entity even though it does not always have the same members.

For example, the TPMI_ALG_HASH data type is used in many places. In some cases, TPM_ALG_NULL

is permitted and in some cases it is not. If two different data types had to be defined, the interfaces and

code would become more complex because of the number of cast operations that would be necessary.

Rather than encumber the code, the “null” value is defined and the unmarshaling code is given a flag to

indicate if this instance of the type accepts the “null” parameter or not. When the data type has a “null”

value, the function prototype is

TPM_RC TYPE_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size, BOOL flag);

The parser detects when the type allows a “null” value and will always include flag in any call to

unmarshal that type. flag TRUE indicates that null is accepted.

4.2.2.4 Arrays

Any data type may be included in an array. The function prototype use to unmarshal an array for a TYPE is

TPM_RC TYPE_Array_Unmarshal(TYPE *target, BYTE **buffer, INT32 *size,INT32 count);

The generated code for an array uses a count-limited loop within which it calls the unmarshaling code for

TYPE.

4.2.3 Marshaling Code Function Prototypes

4.2.3.1 Simple Types and Structures

The general form for the marshaling code for a simple type or a structure is:

 UINT16 TYPE_Marshal(TYPE *source, BYTE **buffer, INT32 *size);

Where:

Trusted Platform Module Library Part 4: Supporting Routines

Page 4 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

TYPE name of the data type or structure

*source location in the TPM memory containing the value that is to be marshaled

in to the designated buffer

**buffer location in the output buffer where the first octet of the TYPE is to be

placed

*size number of octets remaining in **buffer.

If buffer is a NULL pointer, then no data is marshaled, but the routine will compute and return the size

of the memory required to marshal the indicated type. *size is not changed.

If buffer is not a NULL pointer, data is marshaled, *buffer is advanced to point to the first octet of the

next location in the output buffer, and the called routine will return the number of octets marshaled into
**buffer. This occurs even if size is a NULL pointer. If size is a not NULL pointer *size is reduced by

the number of octets placed in the buffer.

When the data type is a simple type, the parser will generate code that will marshal the underlying type.

The presumption is that the TPM internal structures are consistent and correct so the marshaling code

does not validate that the data placed in the buffer has a permissible value. The presumption is also that
the size is sufficient for the source being marshaled.

When the data type is a structure, the parser will generate code that marshals each of the structure

elements in turn.

4.2.3.2 Union Types

An extra parameter is defined for the marshaling function of a union. This parameter is the selector for the

type. The marshaling code for the union will marshal the type indicated by the selector.

The function prototype for a union has the form:

UINT16 TYPE_Marshal(TYPE *source, BYTE **buffer, INT32 *size, UINT32 selector);

The parameters have a similar meaning as those in 4.2.2.2 but the data movement is from source to

buffer.

4.2.3.3 Arrays

Any type may be included in an array. The function prototype use to unmarshal an array is:

UINT16 TYPE_Array_Marshal(TYPE *source, BYTE **buffer, INT32 *size, INT32 count);

4.2.3.4 The generated code for an array uses a count-limited loop within which it calls

the marshaling code for TYPE.Table-driven Marshaling

The most recent versions of the TPM code includes the option to use table-driven marshaling rather that

the procedural marshaling described in previous clauses in 4.2.2. The structure and processing of this

code is complex and is provided in the code.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

4.3 Part 3 Parsing

The Command / Response tables in Part 3 of this specification are processed by scripts to produce the

command-specific data structures used by functions in this TPM 2.0 Part 4. They are:

• CommandAttributeData.h -- This file contains the command attributes reported by
TPM2_GetCapability.

• CommandAttributes.h – This file contains the definition of command attributes that are extracted by
the parsing code. The file mainly exists to ensure that the parsing code and the function code are
using the same attributes.

• CommandDispatchData.h – This file contains the data definitions for the table driven version of the
command dispatcher.

Part 3 parsing also produces special function prototype files as described in 4.4.

4.4 Function Prototypes

For functions that have entry definitions not defined by Part 3 tables. a script is used to extracts function

prototypes from the code. For each .c file that is not in Part 3, a file with the same name is created with a

suffix of _fp.h. For example, the function prototypes for Create.c will be placed in a file called Create_fp.h.

The _fp.h is added because some files have two types of associated headers: the one containing the

function prototypes for the file and another containing definitions that are specific to that file.

In some cases, a function will be replaced by a macro. The macro is defined in the .c file and extracted by

the function prototype processor. A special comment tag (“//%”) is used to indicate that the line is to be

included in the function prototype file. If the “//%” tag occurs at the start of the line, it is deleted. If it occurs

later in the line, it is preserved. Removing the “//%/ at the start of the line allows the macro to be placed in

the .c file with the tag as a prefix, and then show up in the _fp.h file as the actual macro. This allows the

code that includes that function prototype code to use the appropriate macro.

For files that that contain the command actions, a special _fp.h file is created from the tables in Part 3.

These files contain:

• the definition of the input and output structure of the function;

• definition of command-specific return code modifiers (parameter identifiers); and

• the function prototype for the command action function.

Create_fp.h (shown below) is prototypical of the command _fp.h files.

[[create_fp_h]]

4.5 Portability

Where reasonable, the code is written to be portable. There are a few known cases where the code is not

portable. Specifically, the handling of bit fields will not always be portable. The bit fields are marshaled

and unmarshaled as a simple element of the underlying type. For example, a TPMA_SESSION is defined

as a bit field in an octet (BYTE). When sent on the interface a TPMA_SESSION will occupy one octet.

When unmarshaled, it is unmarshaled as a UINT8. The ramifications of this are that a TPMA_SESSION

will occupy the 0th octet of the structure in which it is placed regardless of the size of the structure.

Many compilers will pad a bit field to some "natural" size for the processor, often 4 octets, meaning that
sizeof(TPMA_SESSION) would return 4 rather than 1 (the canonical size of a TPMA_SESSION).

For a little endian machine, padding of bit fields should have little consequence since the 0 th octet always

contains the 0th bit of the structure no matter how large the structure. However, for a big endian machine,

the 0th bit will be in the highest numbered octet. When unmarshaling a TPMA_SESSION, the current

Trusted Platform Module Library Part 4: Supporting Routines

Page 6 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

unmarshaling code will place the input octet at the 0th octet of the TPMA_SESSION. Since the 0th octet is

most significant octet, this has the effect of shifting all the session attribute bits left by 24 places.

As a consequence, someone implementing on a big endian machine should do one of two things:

 allocate all structures as packed to a byte boundary (this may not be possible if the processor does

not handle unaligned accesses); or

 modify the code that manipulates bit fields that are not defined as being the alignment size of the

system.

For many RISC processors, option #2 would be the only choice. This is may not be a terribly daunting

task since only two attribute structures are not 32-bits (TPMA_SESSION and TPMA_LOCALITY).

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5 Header Files

5.1 Introduction

The files in this section are used to define values that are used in multiple parts of the specification and

are not confined to a single module.

5.2 BaseTypes.h

[[BaseTypes_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 8 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.3 Capabilities.h

This file contains defines for the number of capability values that will fit into the largest data buffer.

These defines are used in various function in the "support" and the "subsystem" code groups. A module

that supports a type that is returned by a capability will have a function that returns the capabilities of the

type.

EXAMPLE PCR.c contains PCRCapGetHandles() and PCRCapGetProperties().

[[Capabilities_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.4 CommandAttributeData.h

[[CommandAttributeData_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 10 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.5 CommandAttributes.h

[[CommandAttributes_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.6 CommandDispatchData.h

[[CommandDispatchData_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 12 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.7 Commands.h

[[Commands_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.8 CompilerDependencies.h

[[CompilerDependencies_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 14 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.9 Global.h

[[Global_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.10 GpMacros.h

[[GpMacros_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 16 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.11 InternalRoutines.h

[[InternalRoutines_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.12 LibSupport.h

[[LibSupport_h]]

5.13 MinMax.h

[[MinMax_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 18 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.14 NV.h

[[NV_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.15 TPMB.h

[[TPMB_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 20 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.16 Tpm.h

[[Tpm_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.17 TpmBuildSwitches.h

[[TpmBuildSwitches_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 22 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.18 TpmError.h

[[TpmError_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.19 TpmTypes.h

[[TpmTypes_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 24 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.20 VendorString.h

[[VendorString_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

5.21 swap.h

[[swap_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 26 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

5.22 ACT.h

[[ACT_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6 Main

6.1 Introduction

The files in this section are the main processing blocks for the TPM. ExecuteCommand.c contains the

entry point into the TPM code and the parsing of the command header. SessionProcess.c handles the

parsing of the session area and the authorization checks, and CommandDispatch.c does the parameter

unmarshaling and command dispatch.

6.2 ExecCommand.c

[[ExecCommand]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 28 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

6.3 CommandDispatcher.c

6.3.1 Introduction

CommandDispatcher() performs the following operations:

• unmarshals command parameters from the input buffer;

NOTE 1 Unlike other unmarshaling functions, parmBufferStart does not advance. parmBufferSize Is reduced.

• invokes the function that performs the command actions;

• marshals the returned handles, if any; and

• marshals the returned parameters, if any, into the output buffer putting in the parameterSize field if
authorization sessions are present.

NOTE 2 The output buffer is the return from the MemoryGetResponseBuffer() function. It includes the header, handles,
response parameters, and authorization area. respParmSize is the response parameter size, and does not
include the header, handles, or authorization area.

NOTE 3 The reference implementation is permitted to do compare operations over a union as a byte array. Therefore,
the command parameter in structure must be initialized (e.g., zeroed) before unmarshaling so that the compare
operation is valid in cases where some bytes are unused.

[[CommandDispatcher]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

6.4 SessionProcess.c

[[SessionProcess]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 30 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7 Command Support Functions

7.1 Introduction

This clause contains support routines that are called by the command action code in TPM 2.0 Part 3. The

functions are grouped by the command group that is supported by the functions.

7.2 Attestation Command Support (Attest_spt.c)

[[Attest_spt]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.3 Context Management Command Support (Context_spt.c)

[[Context_spt]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 32 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.4 Policy Command Support (Policy_spt.c)

[[Policy_spt]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.5 NV Command Support (NV_spt.c)

[[NV_spt]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 34 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.6 Object Command Support (Object_spt.c)

[[Object_spt]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

7.7 Encrypt Decrypt Support (EncryptDecrypt_spt.c)

[[EncryptDecrypt_spt]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 36 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

7.8 ACT Support (ACT_spt.c)

[[ACT_spt]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8 Subsystem

8.1 CommandAudit.c

[[CommandAudit]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 38 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.2 DA.c

[[DA]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.3 Hierarchy.c

[[Hierarchy]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 40 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.4 NvDynamic.c

[[NVDynamic]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.5 NvReserved.c

[[NVReserved]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 42 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.6 Object.c

[[Object]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.7 PCR.c

[[PCR]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 44 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.8 PP.c

[[PP]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

8.9 Session.c

[[Session]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 46 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

8.10 Time.c

[[Time]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9 Support

9.1 AlgorithmCap.c

[[AlgorithmCap]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 48 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.2 Bits.c

[[Bits]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.3 CommandCodeAttributes.c

[[CommandCodeAttributes]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 50 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.4 Entity.c

[[Entity]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.5 Global.c

[[Global]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 52 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.6 Handle.c

[[Handle]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.7 IoBuffers.c

[[IoBuffers]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 54 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.8 Locality.c

[[Locality]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.9 Manufacture.c

[[Manufacture]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 56 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10 Marshal.c

9.10.1 Introduction

This file contains the marshaling and unmarshaling code.

The marshaling and unmarshaling code and function prototypes are not listed, as the code is repetitive,

long, and not very useful to read. Examples of a few unmarshaling routines are provided. Most of the

others are similar.

Depending on the table header flags, a type will have an unmarshaling routine and a marshaling routine

The table header flags that control the generation of the unmarshaling and marshaling code are delimited

by angle brackets ("<>") in the table header. If no brackets are present, then both unmarshaling and

marshaling code is generated (i.e., generation of both marshaling and unmarshaling code is the default).

9.10.2 Unmarshal and Marshal a Value

In TPM 2.0 Part 2, a TPMI_DI_OBJECT is defined by this table:

Table xxx — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments

{TRANSIENT_FIRST:TRANSIENT_LAST} allowed range for transient objects

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

+TPM_RH_NULL the null handle

#TPM_RC_VALUE

This generates the following unmarshaling code:

1 TPM_RC

2 TPMI_DH_OBJECT_Unmarshal(TPMI_DH_OBJECT *target, BYTE **buffer, INT32 *size,

3 BOOL flag)

4 {
5 TPM_RC result;

6 result = TPM_HANDLE_Unmarshal((TPM_HANDLE *)target, buffer, size);

7 if(result != TPM_RC_SUCCESS)

8 return result;

9 if(*target == TPM_RH_NULL)

10 {

11 if(flag)

12 return TPM_RC_SUCCESS;

13 else

14 return TPM_RC_VALUE;

15 }

16 if(((*target < TRANSIENT_FIRST) || (*target > TRANSIENT_LAST))

17 &&((*target < PERSISTENT_FIRST) || (*target > PERSISTENT_LAST)))

18 return TPM_RC_VALUE;

19 return TPM_RC_SUCCESS;

20 }

and the following marshaling code:

NOTE The marshaling code does not do parameter checking, as the TPM is the source of the marshaling data.

1 UINT16
2 TPMI_DH_OBJECT_Marshal(TPMI_DH_OBJECT *source, BYTE **buffer, INT32 *size)

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

3 {

4 return UINT32_Marshal((UINT32 *)source, buffer, size);

5 }

An additional script is used to do the work that might be done by a linker or globally optimizing compiler. It

searches for functions like TPMI_DH_OBJECT_Marshal() that do nothing but call another function and

replaces the function with a #define.

6 #define TPMI_DH_OBJECT_Marshal(source, buffer, size) \
7 UINT32_Marshal((UINT32 *)source, buffer, size)

When replacing the function with a #define, the #define is placed in marshal_fp.h and the function body is

removed from marshal.c.

9.10.3 Unmarshal and Marshal a Union

In TPM 2.0 Part 2, a TPMU_PUBLIC_PARMS union is defined by:

Table xxx — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>

Parameter Type Selector Description

keyedHash TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH sign | encrypt | neither

symDetail TPMT_SYM_DEF_OBJECT TPM_ALG_SYMCIPHER a symmetric block cipher

rsaDetail TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign

eccDetail TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign

asymDetail TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTE The Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT.sign may be set.

 “+” indicates that both may be set but one shall be set. “|” indicates the optional settings.

From this table, the following unmarshaling code is generated.

1 TPM_RC
2 TPMU_PUBLIC_PARMS_Unmarshal(TPMU_PUBLIC_PARMS *target, BYTE **buffer, INT32 *size,

3 UINT32 selector)

4 {

5 switch(selector) {

6 #if ALG_KEYEDHASH

7 case TPM_ALG_KEYEDHASH:

8 return TPMS_KEYEDHASH_PARMS_Unmarshal(

9 (TPMS_KEYEDHASH_PARMS *)&(target->keyedHash), buffer, size);

10 #endif

11 #if ALG_SYMCIPHER

12 case TPM_ALG_SYMCIPHER:

13 return TPMT_SYM_DEF_OBJECT_Unmarshal(

14 (TPMT_SYM_DEF_OBJECT *)&(target->symDetail), buffer, size, FALSE);

15 #endif

16 #if ALG_RSA

17 case TPM_ALG_RSA:

18 return TPMS_RSA_PARMS_Unmarshal(

19 (TPMS_RSA_PARMS *)&(target->rsaDetail), buffer, size);

20 #endif

21 #if ALG_ECC

22 case TPM_ALG_ECC:

23 return TPMS_ECC_PARMS_Unmarshal(

24 (TPMS_ECC_PARMS *)&(target->eccDetail), buffer, size);

25 #endif

26 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 58 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

27 return TPM_RC_SELECTOR;

28 }

NOTE The #if/#endif directives are added whenever a value is dependent on an algorithm ID so that removing

the algorithm definition will remove the related code.

The marshaling code for the union is:

1 UINT16
2 TPMU_PUBLIC_PARMS_Marshal(TPMU_PUBLIC_PARMS *source, BYTE **buffer, INT32 *size,

3 UINT32 selector)

4 {

5 switch(selector) {

6 #if ALG_KEYEDHASH

7 case TPM_ALG_KEYEDHASH:

8 return TPMS_KEYEDHASH_PARMS_Marshal(

9 (TPMS_KEYEDHASH_PARMS *)&(source->keyedHash), buffer, size);

10 #endif

11 #if ALG_SYMCIPHER

12 case TPM_ALG_SYMCIPHER:

13 return TPMT_SYM_DEF_OBJECT_Marshal(

14 (TPMT_SYM_DEF_OBJECT *)&(source->symDetail), buffer, size);

15 #endif

16 #if ALG_RSA

17 case TPM_ALG_RSA:

18 return TPMS_RSA_PARMS_Marshal(

19 (TPMS_RSA_PARMS *)&(source->rsaDetail), buffer, size);

20 #endif

21 #if ALG_ECC

22 case TPM_ALG_ECC:

23 return TPMS_ECC_PARMS_Marshal(

24 (TPMS_ECC_PARMS *)&(source->eccDetail), buffer, size);

25 #endif

26 }

27 assert(1);

28 return 0;

29 }

For the marshaling and unmarshaling code, a value in the structure containing the union provides the

value used for selector. The example in the next section illustrates this.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.4 Unmarshal and Marshal a Structure

In TPM 2.0 Part 2, the TPMT_PUBLIC structure is defined by:

Table xxx — Definition of TPMT_PUBLIC Structure

Parameter Type Description

type TPMI_ALG_PUBLIC “algorithm” associated with this object

nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object

NOTE The "+" indicates that the instance of a TPMT_PUBLIC may have
a "+" to indicate that the nameAlg may be TPM_ALG_NULL.

objectAttributes TPMA_OBJECT attributes that, along with type, determine the manipulations of this
object

authPolicy TPM2B_DIGEST optional policy for using this key

The policy is computed using the nameAlg of the object.

NOTE shall be the Empty Buffer if no authorization policy is present

[type]parameters TPMU_PUBLIC_PARMS the algorithm or structure details

[type]unique TPMU_PUBLIC_ID the unique identifier of the structure

For an asymmetric key, this would be the public key.

This structure is tagged (the first value indicates the structure type), and that tag is used to determine how

the parameters and unique fields are unmarshaled and marshaled. The use of the type for specifying the

union selector is emphasized below.

The unmarshaling code for the structure in the table above is:

1 TPM_RC
2 TPMT_PUBLIC_Unmarshal(TPMT_PUBLIC *target, BYTE **buffer, INT32 *size, BOOL flag)

3 {

4 TPM_RC result;

5 result = TPMI_ALG_PUBLIC_Unmarshal((TPMI_ALG_PUBLIC *)&(target->type),

6 buffer, size);

7 if(result != TPM_RC_SUCCESS)

8 return result;

9 result = TPMI_ALG_HASH_Unmarshal((TPMI_ALG_HASH *)&(target->nameAlg),

10 buffer, size, flag);

11 if(result != TPM_RC_SUCCESS)

12 return result;

13 result = TPMA_OBJECT_Unmarshal((TPMA_OBJECT *)&(target->objectAttributes),

14 buffer, size);

15 if(result != TPM_RC_SUCCESS)

16 return result;

17 result = TPM2B_DIGEST_Unmarshal((TPM2B_DIGEST *)&(target->authPolicy),

18 buffer, size);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 result = TPMU_PUBLIC_PARMS_Unmarshal((TPMU_PUBLIC_PARMS *)&(target->parameters),

23 buffer, size,);

24 if(result != TPM_RC_SUCCESS)

25 return result;

26

27 result = TPMU_PUBLIC_ID_Unmarshal((TPMU_PUBLIC_ID *)&(target->unique),

28 buffer, size,)

29 if(result != TPM_RC_SUCCESS)

30 return result;

31

32 return TPM_RC_SUCCESS;

33 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 60 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

The marshaling code for the TPMT_PUBLIC structure is:

1 UINT16
2 TPMT_PUBLIC_Marshal(TPMT_PUBLIC *source, BYTE **buffer, INT32 *size)

3 {

4 UINT16 result = 0;

5 result = (UINT16)(result + TPMI_ALG_PUBLIC_Marshal(

6 (TPMI_ALG_PUBLIC *)&(source->type), buffer, size));

7 result = (UINT16)(result + TPMI_ALG_HASH_Marshal(

8 (TPMI_ALG_HASH *)&(source->nameAlg), buffer, size))

9 ;

10 result = (UINT16)(result + TPMA_OBJECT_Marshal(

11 (TPMA_OBJECT *)&(source->objectAttributes), buffer, size));

12

13 result = (UINT16)(result + TPM2B_DIGEST_Marshal(

14 (TPM2B_DIGEST *)&(source->authPolicy), buffer, size));

15

16 result = (UINT16)(result + TPMU_PUBLIC_PARMS_Marshal(

17 (TPMU_PUBLIC_PARMS *)&(source->parameters), buffer, size,

18));

19

20 result = (UINT16)(result + TPMU_PUBLIC_ID_Marshal(

21 (TPMU_PUBLIC_ID *)&(source->unique), buffer, size,

22));

23

24 return result;

25 }

9.10.5 Unmarshal and Marshal an Array

In TPM 2.0 Part 2, the TPML_DIGEST is defined by:

Table xxx — Definition of TPML_DIGEST Structure

Parameter Type Description

count {2:} UINT32 number of digests in the list, minimum is two

digests[count]{:8} TPM2B_DIGEST a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE response code when count is not at least two or is
greater than 8

The digests parameter is an array of up to count structures (TPM2B_DIGESTS). The auto-generated

code to Unmarshal this structure is:

1 TPM_RC
2 TPML_DIGEST_Unmarshal(TPML_DIGEST *target, BYTE **buffer, INT32 *size)

3 {

4 TPM_RC result;

5 result = UINT32_Unmarshal((UINT32 *)&(target->count), buffer, size);

6 if(result != TPM_RC_SUCCESS)

7 return result;

8

9 if((target->count < 2)) // This check is triggered by the {2:} notation

10 // on ‘count’

11 return TPM_RC_SIZE;

12

13 if((target->count) > 8) // This check is triggered by the {:8} notation

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

14 // on ‘digests’.

15 return TPM_RC_SIZE;

16

17 result = TPM2B_DIGEST_Array_Unmarshal((TPM2B_DIGEST *)(target->digests),

18 buffer, size,);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 return TPM_RC_SUCCESS;

23 }

The routine unmarshals a count value and passes that value to a routine that unmarshals an array of

TPM2B_DIGEST values. The unmarshaling code for the array is:

1 TPM_RC
2 TPM2B_DIGEST_Array_Unmarshal(TPM2B_DIGEST *target, BYTE **buffer, INT32 *size,

3 INT32 count)

4 {

5 TPM_RC result;

6 INT32 i;

7 for(i = 0; i < count; i++) {

8 result = TPM2B_DIGEST_Unmarshal(&target[i], buffer, size);

9 if(result != TPM_RC_SUCCESS)

10 return result;

11 }

12 return TPM_RC_SUCCESS;

13 }

14

Marshaling of the TPML_DIGEST uses a similar scheme with a structure specifying the number of

elements in an array and a subsequent call to a routine to marshal an array of that type.

1 UINT16
2 TPML_DIGEST_Marshal(TPML_DIGEST *source, BYTE **buffer, INT32 *size)

3 {

4 UINT16 result = 0;

5 result = (UINT16)(result + UINT32_Marshal((UINT32 *)&(source->count), buffer,

6 size));

7 result = (UINT16)(result + TPM2B_DIGEST_Array_Marshal(

8 (TPM2B_DIGEST *)(source->digests), buffer, size,

9 (INT32)(source->count)));

10

11 return result;

12 }

The marshaling code for the array is:

1 TPM_RC
2 TPM2B_DIGEST_Array_Unmarshal(TPM2B_DIGEST *target, BYTE **buffer, INT32 *size,

3 INT32 count)

4 {

5 TPM_RC result;

6 INT32 i;

7 for(i = 0; i < count; i++) {

8 result = TPM2B_DIGEST_Unmarshal(&target[i], buffer, size);

9 if(result != TPM_RC_SUCCESS)

10 return result;

11 }

12 return TPM_RC_SUCCESS;

13 }

Trusted Platform Module Library Part 4: Supporting Routines

Page 62 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.10.6 TPM2B Handling

A TPM2B structure is handled as a special case. The unmarshaling code is similar to what is shown in

9.10.5 but the unmarshaling/marshaling is to a union element. Each TPM2B is a union of two sized

buffers, one of which is type specific (the ‘t’ element) and the other is a generic value (the ‘b’ element).

This allows each of the TPM2B structures to have some inheritance property with all other TPM2B. The

purpose is to allow functions that have parameters that can be any TPM2B structure while allowing other

functions to be specific about the type of the TPM2B that is used. When the generic structure is allowed,

the input parameter would use the ‘b’ element and when the type-specific structure is required, the ‘t’

element is used.

When marshaling a TPM2B where the second member is a BYTE array, the size parameter indicates the

size of the array. The second member can also be a structure. In this case, the caller does not prefill the

size member. The marshaling code must marshal the structure and then back fill the calculated size.

Table xxx — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 Size of the operand

buffer [size] {:1024} BYTE The operand

1 TPM_RC

2 TPM2B_EVENT_Unmarshal(TPM2B_EVENT *target, BYTE **buffer, INT32 *size)

3 {

4 TPM_RC result;

5 result = UINT16_Unmarshal((UINT16 *)&(target->t.size), buffer, size);

6 if(result != TPM_RC_SUCCESS)

7 return result;

8 // if size equal to 0, the rest of the structure is a zero buffer

9 // so stop processing

10 if(target->t.size == 0)

11 return TPM_RC_SUCCESS;

12 if((target->t.size) > 1024) // This check is triggered by the {:1024}

13 // notation on ‘buffer’

14 return TPM_RC_SIZE;

15 result = BYTE_Array_Unmarshal((BYTE *)(target->t.buffer), buffer, size,

16 (INT32)(target->t.size));

17 if(result != TPM_RC_SUCCESS)

18 return result;

19 return TPM_RC_SUCCESS;

20 }

using these structure definitions:

1 typedef union {

2 struct {

3 UINT16 size;

4 BYTE buffer[1024];

5 } t;

6 TPM2B b;

7 } TPM2B_EVENT;

9.10.7 Table Marshal Headers

9.10.7.1 TableMarshal.h

[[TableMarshal_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.10.7.2 TableMarshalData.h

[[TableMarshalData_h]]

9.10.7.3 TableMarshalDefines.h

[[TableMarshalDefines_h]]

9.10.7.4 TableMarshalTypes.h

[[TableMarshalTypes_h]]

9.10.8 Table Marshal Source

9.10.8.1 TableDrivenMarshal.c

[[TableDrivenMarshal]]

9.10.8.2 TableMarshalData.c

[[TableMarshalData]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 64 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.11 MathOnByteBuffers.c

[[MathOnByteBuffers]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.12 Memory.c

[[Memory]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 66 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.13 Power.c

[[Power]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.14 PropertyCap.c

[[PropertyCap]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 68 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.15 Response.c

[[Response]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

9.16 ResponseCodeProcessing.c

[[ResponseCodeProcessing]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 70 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

9.17 TpmFail.c

[[TpmFail]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10 Cryptographic Functions

10.1 Headers

10.1.1 BnValues.h

[[BnValues_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 72 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.2 CryptEcc.h

[[CryptEcc_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.3 CryptHash.h

[[CryptHash_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 74 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.4 CryptRand.h

[[CryptRand_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.5 CryptRsa.h

[[CryptRsa_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 76 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.6 CryptTest.h

[[CryptTest_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.7 HashTestData.h

[[HashTestData_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 78 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.8 KdfTestData.h

[[KdfTestData_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.9 RsaTestData.h

[[RsaTestData_h]]

10.1.10 SelfTest.h

[[SelfTest_h]]

10.1.11 SupportLibraryFunctionPrototypes_fp.h

[[SupportLibraryFunctionPrototypes_fp_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 80 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.12 SymmetricTestData.h

[[SymmetricTestData_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.13 SymmetricTest.h

[[SymmetricTest_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 82 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.14 EccTestData.h

[[EccTestData_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.1.15 CryptSym.h

[[CryptSym_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 84 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.1.16 OIDs.h

[[OIDs_h]]

10.1.17 PRNG_TestVectors.h

[[PRNG_TestVectors_h]]

10.1.18 TpmAsn1.h

[[TpmAsn1_h]]

10.1.19 X509.h

[[X509_h]]

10.1.20 TpmAlgorithmDefines.h

This file contains the algorithm values from the TCG Algorithm Registry.

[[TpmAlgorithmDefines_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2 Source

10.2.1 AlgorithmTests.c

[[AlgorithmTests]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 86 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.2 BnConvert.c

[[BnConvert]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.3 BnMath.c

[[BnMath]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 88 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.4 BnMemory.c

[[BnMemory]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.5 CryptCmac.c

[[CryptCmac]]

8

Trusted Platform Module Library Part 4: Supporting Routines

Page 90 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.6 CryptUtil.c

[[CryptUtil]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.7 CryptSelfTest.c

[[CryptSelfTest]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 92 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.8 CryptEccData.c

[[CryptEccData]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.9 CryptDes.c

[[CryptDes]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 94 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.10 CryptEccKeyExchange.c

[[CryptEccKeyExchange]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.11 CryptEccMain.c

[[CryptEccMain]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 96 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.12 CryptEccSignature.c

[[CryptEccSignature]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.13 CryptHash.c

[[CryptHash]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 98 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.14 CryptPrime.c

[[CryptPrime]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.15 CryptPrimeSieve.c

[[CryptPrimeSieve]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 100 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.16 CryptRand.c

[[CryptRand]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.17 CryptRsa.c

[[CryptRsa]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 102 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.18 CryptSmac.c

[[CryptSmac]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.19 CryptSym.c

[[CryptSym]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 104 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.20 PrimeData.c

[[PrimeData]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.21 RsaKeyCache.c

[[RsaKeyCache]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 106 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.22 Ticket.c

[[Ticket]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.23 TpmAsn1.c

[[TpmAsn1]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 108 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.24 X509_ECC.c

[[X509_ECC]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.25 X509_RSA.c

[[X509_RSA]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 110 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

10.2.26 X509_spt.c

[[X509_spt]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

10.2.27 AC_spt.c

[[AC_spt]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 112 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex A
(informative)

Implementation Dependent

A.1 Introduction

This header file contains definitions that are used to define a TPM profile. The values are chosen by the

manufacturer. The values here are chosen to represent a full featured TPM so that all of the TPM’s

capabilities can be simulated and tested. This file would change based on the implementation.

The file listed below was generated by an automated tool using three documents as inputs. They are:

 The TCG_Algorithm Registery,

 Part 2 of this specification, and

 A purpose-built document that contains vendor-specific information in tables.

All of the values in this file have #ifdef ‘guards’ so that they may be defined in a command

line.Additionally, TpmBuildSwitches.h allows an additional file to be specified in the compiler command

line and preset any of these values.

A.2 TpmProfile.h

[[TpmProfile_h]]

A.3 TpmSizeChecks.c

[[TpmSizeChecks]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

Annex B
(informative)

Library-Specific

B.1 Introduction

This clause contains the files that are specific to a cryptographic library used by the TPM code.

Three categories are defined for cryptographic functions:

 big number math (asymmetric cryptography),

 symmetric ciphers, and

 hash functions.

The code is structured to make it possible to use different libraries for different categories. For example,

one might choose to use OpenSSL for its math library, but use a different library for hashing and

symmetric cryptography. Since OpenSSL supports all three categories, it might be more typical to

combine libraries of specific functions; that is, one library might only contain block ciphers while another

supports big number math.

Trusted Platform Module Library Part 4: Supporting Routines

Page 114 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2 OpenSSL-Specific Files

B.2.1. Introduction

The following files are specific to a port that uses the OpenSSL library for cryptographic functions.

B.2.2. Header Files

B.2.2.1. TpmToOsslHash.h

[[TpmToOsslHash_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.2.2.2. TpmToOsslMath.h

[[TpmToOsslMath_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 116 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.2.3. TpmToOsslSym.h

[[TpmToOsslSym_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.2.3. Source Files

B.2.3.1. TpmToOsslDesSupport.c

[[TpmToOsslDesSupport]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 118 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

B.2.3.2. TpmToOsslMath.c

[[TpmToOsslMath]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

B.2.3.3. TpmToOsslSupport.c

[[TpmToOsslSupport]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 120 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex C
(informative)

Simulation Environment

C.1 Introduction

These files are used to simulate some of the implementation-dependent hardware of a TPM. These files

are provided to allow creation of a simulation environment for the TPM. These files are not expected to be

part of a hardware TPM implementation.

C.2 Cancel.c

[[Cancel]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.3 Clock.c

[[Clock]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 122 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.4 Entropy.c

[[Entropy]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.5 LocalityPlat.c

[[LocalityPlat]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 124 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.6 NVMem.c

[[NVMem]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.7 PowerPlat.c

[[PowerPlat]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 126 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.8 PlatformData.h

[[PlatformData_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.9 PlatformData.c

[[PlatformData]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 128 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.10 PPPlat.c

[[PPPlat]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.11 RunCommand.c

[[RunCommand]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 130 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.12 Unique.c

[[Unique]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.13 DebugHelpers.c

[[DebugHelpers]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 132 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.14 Platform.h

[[Platform_h]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.15 PlatformACT.h

[[PlatformACT_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 134 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

C.16 PlatformACT.c

[[PlatformACT]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

C.17 PlatformClock.h

[[PlatformClock_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 136 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

Annex D
(informative)

Remote Procedure Interface

D.1 Introduction

These files provide an RPC interface for a TPM simulation.

The simulation uses two ports: a command port and a hardware simulation port. Only TPM commands

defined in TPM 2.0 Part 3 are sent to the TPM on the command port. The hardware simulation port is

used to simulate hardware events such as power on/off and locality; and indications such as

_TPM_HashStart.

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.2 TpmTcpProtocol.h

[[TpmTcpProtocol_h]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 138 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

D.3 TcpServer.c

[[TcpServer]]

Part 4: Supporting Routines Trusted Platform Module Library

Family “2.0” TCG Published Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2020 November 8, 2019

D.4 TPMCmdp.c

[[TPMCmdp]]

Trusted Platform Module Library Part 4: Supporting Routines

Page 140 TCG Published Family “2.0”

November 8, 2019 Copyright © TCG 2006-2020 Level 00 Revision 01.59

D.5 TPMCmds.c

[[TPMCmds]]

