Grade 3	*Resources that are introduced at the indicated time and used throughout the year.	T-shirt Factory: Place Value, Addition and Subtraction	Minilessons for Extending Addition and Subtraction: A Yearlong Resources		Minilessons for Early Multiplication and Division: A Yearlong Resource	The Big Dinner: Multiplication and the Ratio Table	Muffles Truffles: Multiplication and Division with the Array	Tabletops, Floors and Fields: Area, Perimeter and Partitioning	Building Benches and Measuring Tools: Introduction to Fractions	$\begin{array}{\|c\|} \hline \text { All About Sharks: } \\ \text { Data } \\ \text { Representation } \\ \text { and Analysis } \\ \hline \end{array}$	Elapsed Time, Weight, and Liquid Volume
3.0 A	Operations and Algebraic Thinking										
3.OA.A	Represent and solve problems involving multiplication and division.										
3.OA.A. 1				\times	\times	\times	\times		\times		x
3.0A.A. 2	Interpret whole-number quotients of whole numbers, .g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div$ 8.			\times	x		x		x		\times
3.0А.A. 3				\times	\times	\times	\times	\times	\times		\times
3.0A.A.4 4				\times	\times	\times	\times	\times	\times		\times
3 3.OA.B	Understand properties of multiplication and the relationship between multiplication and division										
3.0A.B.5				*	x	\times	x	\times	x		x
3.0А. B .6	Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .			\times	x	\times			\times		\times
$\frac{\text { 3.OA.C }}{\text { 3.0A.C. }}$				*	x	x	x	\times	x		x
3.0A.D	Solve problems involving the four operations, and identify and explain patterns in arithmetic.										
3.0A.D.8		x	x			x	\times	\times	×		\times
3.0A.0.9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	x	x	\times	x		\times				
3.NBT	Numbers and Operations in Base Ten										
3.NBT.A	Use place value understanding and properties of operations to perform multidigit arithmetic. (A range of algorithms may be used)										
3.NBT.A. 1	Use place value understanding to round whole numbers to the nearest 10 or 100.	\times	x	\times	x	x	\times	\times	\times		\times
3.NBT.A. 2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of and subtraction and subtraction	x	x								
3.NET.A. 3	Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$) using strategie based on place value and properties of operations. operation	\times		\times	\times		\times	\times			

Grade 3	*Resources that are introduced at the indicated time and used throughout the year.	T-shirt Factory: Place Value, Addition and Subtraction	Minilessons for Extending Addition and Subtraction: A Yearlong Resources	Groceries, Stamps and Measuring Strips: Early Multiplication	Minilessons for Early Multiplication and Division: A Yearlong Resource	The Big Dinner: Multiplication and the Ratio Table	Muffles Truffles: Multiplication and Division with the Array	Tabletops, Floors and Fields: Area, Perimeter and Area, Perimeter and Partitioning	Building Benches and Measuring Tools: Introduction to Fractions	All About Sharks: Representation and Analysis	Elapsed Time, Weight, and Liquid Volume
3.NF	Number and Operations-Fractions (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .)										
3.NF.A	Develop understanding of fractions as numbers.										
3.NF.A. 1	Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$. parts of size $1 / b$.								\times	x	x
3.NFA. 2	Understand a fraction as a number on the number line; represent fractions on a number line diagram.								x	x	
3.N.A.2.a									\times	x	\times
3.N.F.A.2.b									x	\times	x
3.NF.A. 3	Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.										
3.NF.A.3.a	Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.								\times	\times	x
3.N.F. 3.6	Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.								\times	\times	\times
									\times	x	x
3.N.F.A.3.d	Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.								x	x	x
3.MD	Measurement and Data										
3.MD.A	Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.										
3.MD.A. 1											x
3.MD.A. 2						\times					\times
										\times	
3.MO.B.4									x	x	
3.MD.C	Geometric measurement: understand concepts of area and relate area to multiplication and to addition.										
3.M.C.5	Recogivie erea as an antribute of plane figues and understand concepts of area measurement.				\times		x	\times			
3.MD.C.5.a	A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.				\times		\times	\times			

Grade 3	*Resources that are introduced at the indicated time and used throughout the year.	T-shirt Factory: Place Value, Addition and Subtraction	Minilessons for Extending Addition and Subtraction: A Yearlong Resources	Stamps and Measuring Strips: Early Multiplication	Minilessons for Early Multiplication and Division: A Yearlong Resource	The Big Dinner: Multiplication and the Ratio Table	$\begin{gathered} \text { Muffles Truffles: } \\ \text { Multiplication and } \\ \text { Division with the Array } \end{gathered}$	Tabletops, Floors and Fields: Area, Perimeter and Partitioning	Building Benches and Measuring Tools: Introduction to Fractions	$\begin{array}{\|c} \hline \text { All About Sharks: } \\ \text { Data } \\ \text { Representation } \\ \text { and Analysis } \\ \hline \end{array}$	Elapsed Time, Weight, and Liquid Volume
3.MD.CS.b	A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.				\times		\times	\times			
3.Mo.C. 6	Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).				x		x	x			
3.MD.C. 7	Relate area to the operations of multiplication and addition.				\times		\times	\times			
3.M0.C.7.a	Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the sam as would be found by multiplying the side lengths.				x		\times	\times			
3.MD.C.7.b					\times		\times	\times			
3.M0.C.7.c					\times		\times	\times			
3.MD.C.7.d					\times		x	\times			
3.MD.D	Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.										
3.MO.0.8	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and perimeters.						x	*			
3.6	Geometry										
3.6.A	Reason with shapes and their atributes.										
3.6.A.1	Understand that shapes in different categories attributes (e.g., having four sides), and that the attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw these subcategories.							x			
3.6.A.2								x			

