Centering Clamping Elements• with clamping balls, operation from the bottom 23340.0312

Product Description

To be used for accurate centering and clamping in blind holes of workpieces with locating hole. Exact self-centering with a precision of $\pm 0,025$ mm. The clamping balls frictionally center and hold workpieces with raw or pre-machined surfaces down to the bearing points. Large adjustment stroke and a small building height are a feature of this center clamping element. **Mounting from either top or bottom**.

Material

Body

· Tool steel, hardened, blackened

Spring

Stainless steel

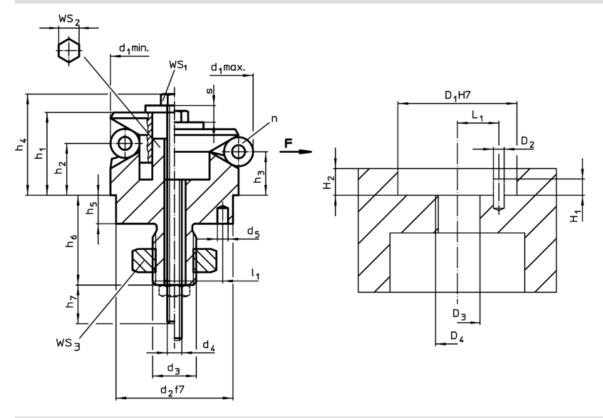
Clamping balls

Stainless steel 1.4112, hardened and ground

Assembly

Assembly instruction for mounting from the top: Take-off clamping plate and screw. Fasten body by means of threaded pin via WS_2 .

Operation


Operation from bottom manually or automatically with either pneumatic or hydraulic actuation.

More information

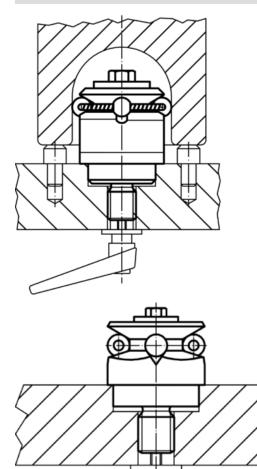
Further products

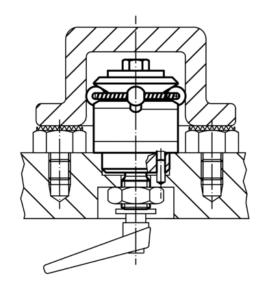
 Centering Clamping Elements, with clamping segments, operation from the bottom

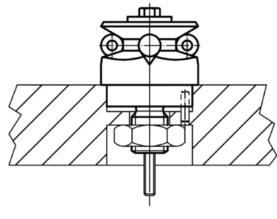
Drawing

Erwin Halder KG

Order information


	Dimensions Num															Stroke	ws o			ClampincTightening Location			Art. No.
	of I															s				force	torque	hole	
d ₁	d ₁	d ₂	d ₃	d ₄	d ₅	h ₁	h ₂	h ₃	h ₄	h ₅	h ₆	h ₇	l ₁	Ball	n		ws₁	WS ₂	WS ₃	F	max.	DDDDHH ₂ L ₁	
min	max.	f7			+0,3				-2		+1	~	±0,1	Ø						max.		H7 +0±0,	
	[mm]															[mm]		[mm]		[kN]	[Nm]	[mm] [g	
11,7	14,2	10	M5	МЗ	1,5	9,9	3,9	3,2	12,7	3,5	11	10	3,5	2,5	3	1,3	5,5	4	8	0,5	2	101,5551/528,51,512	23340.0312




www.halder.com Page 1 of 2

Published on: 22.11.2018

Application example

Erwin Halder KG

www.halder.com