Centering Clamping Elements• with clamping balls 23340.0270

Product Description

To be used for accurate centering and clamping of workpieces with locating hole on which light spherical marks are acceptable. Exact self-centering with a precision of ±0,025 mm. The clamping balls frictionally center and hold workpieces with raw or pre-machined surfaces down to the bearing points. Large adjustment stroke and a small building height are a feature of this center clamping element.

Mounting from either top or bottom.

Material

Body

· Tool steel, hardened, blackened

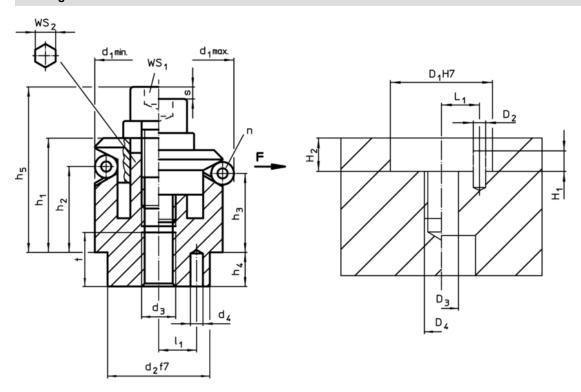
Spring

· Stainless steel

Clamping balls

· Stainless steel 1.4112, hardened and ground

Assembly


Assembly instruction for mounting from the top: Take-off clamping plate and screw. Fasten body by means of threaded pin via WS₂.

More information

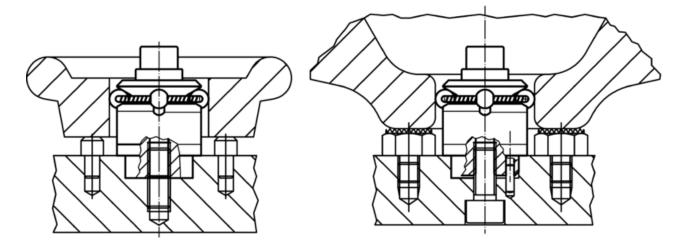
Further products

· Centering Clamping Elements, with clamping segments

Drawing

Erwin Halder KG

Order information


	Dimensions											Number	Stroke	ws		Clamping	Location hole						I	Art. No.			
d₁	d₁	d ₂	d ₃	d ₄	h₁	h ₂	h ₃	h ₄	h ₅	l ₁	Ball	t	of balls	s	WS ₁	WS ₂	force	torque	D ₁ C)2 [)3	D_4	H₁	H ₂	L ₁		
min.	max.	f7		+0,3	-1				-2	±0,1	ø		n				F	max.	H7					+0,5	±0,1		
																	max.										
	[mm]												[mm]	[m	m]	[kN]	[Nm]	[mm]				[g]					
70,5	86,5	60	M12	5	46,1	28,3	23,7	10	63,1	17	16	15	6	9,2	10	12	10	141	60	5 1	12	M12	6,5	10	17	1271	23340.0270

www.halder.com Page 1 of 2

Published on: 30.11.2018

Application example

Page 2 of 2 Published on: 30.11.2018

www.halder.com