

Air Cleaner Test Report

Applicant	:	RHT Industries Limited
Address	:	Block B, 2/F, Goodwill Industrial Building, No. 36-44 Pak Tin Par
		Street, Tsuen Wan, New Territories, Hong Kong
Application Number	:	KJ191002-12
Report Number	:	REPAP19113201
Report Issue Date	:	29 Nov 2019
Total Page	:	9 Pages (including this page)

This document is issued by the Company under its General Conditions of Service printed overleaf. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any older of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30days only. This document cannot be reproduced except in full, without prior approval of the Company.

Acron International Technology Limited

IAQ Contractor, IAQ Control Facilities Supplier, IAQ Consultant Subsidiary company of the Hong Kong University of Science and Technology Under the Entrepreneurship Program

TABLE OF CONTENT

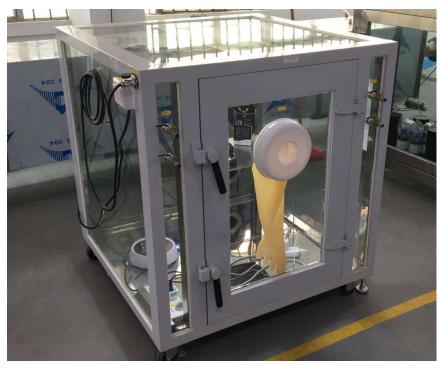
1.	Sample Description	3	
2.	Detail Description of the sample	4 - 5	
3.	Testing Environment	6	
4.	Testing Method of Removal Efficiency	7	
5.	Result of Removal Efficiency	8 - 9	

1. Sample Description

Product	:	Air Cleaner
Brand Name	:	b-MOLA
Model No.	:	MOLA150
No. of Sample Received	:	1
Test Date	:	29 Nov 2019 – 29 Nov 2019
Test Item(s)	:	Pollutants Removal Efficiency
Test Requested	:	Benzene
Test Reference(s)	:	In-house method SOP200 (for VOC removal rate)
Test Equipment	:	Honeywell instrument ppbRAE 3000
Equipment no.	:	E002 - 002
Test Result	:	See the attached sheets
Remark	:	Client claimed that model MOLA150 same as IA50/BM150 in
		terms of power, parts, components and structures. Only
		different is the selling platform.

2. Detail Description of the sample

b-MOLA/MOLA150



NCCO Reactor (NA213020300) and Activated Carbon HEPA

3. Testing Environment

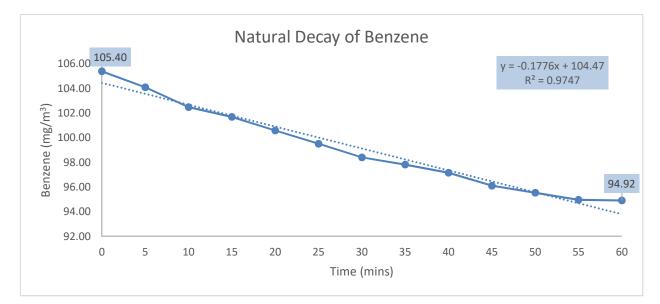
Temperature	:	23.1 °C
Relative Humidity	:	39 %
Testing Chamber	:	1m ³ Testing Chamber
Size $(W \times H \times D)$ mm	:	$1000 \times 1000 \times 1000$

1m³ Testing Chamber

4. Testing Method of Removal Efficiency

In a $1m^3$ chamber, chemical was injected into the chamber by a syringe and evaporated by a hot plate. Internal circulation was turned on throughout the test to ensure the uniformity of chemical concentration inside the chamber. Initial concentration (C₀) of the chemical was recorded before switching on the air cleaner with a range of 100 (±10) mg/m³. Then, the air cleaner is switched on for 60 minutes and the chemical concentration was recorded as C₆₀, the final concentration of chemical.

The test was repeated without the air cleaner to determine the natural decay of the chemical at the test chamber. Chemical was injected into the chamber by a syringe and evaporated by a hot plate with an initial concentration (C_{N0}). The final concentration (C_{N60}) was determined 60 minutes later


New filters and HEPA have been used for each chemical test.

5. Results of Removal Efficiency

Brand/ Model No.	Operation Mode	Test Chemical	Volume of use
			(mL)
B-MOLA/MOLA150	SS	Benzene	0.20

Initial Concentration	Natural Decay, kn	Total Decay, ke	Removal Efficiency	
mg/m ³	(min ⁻¹)	(min ⁻¹)	(%)	
111.50	0.002	0.058	>99	

Figure a. Natural Decay of Benzene

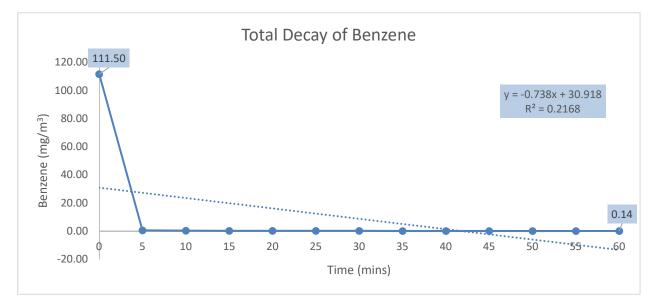


Figure b. Total Decay of Benzene

Calculation:

$$A_{1} = \frac{C_{0} - C_{60}}{C_{0}}$$

$$A_{2} = \frac{\frac{C_{N0} - C_{N60}}{C_{N0}}}{C_{N0}}$$
Removal Efficiency =
$$\frac{C_{0}(1 - A_{2}) - C_{60}}{C_{0}(1 - A_{2})}$$

$$A_{1}: \text{ Removal rate} \qquad (\%)$$

$$A_{2}: \text{ Natural decay rate} \qquad (\%)$$

$$C: \text{ Concentration of testing subject} \qquad (mg/m^{3})$$

End of Report