## GLOSSARY OF CANDLE MAKING TERMS

$\left.\begin{array}{|l|l|}\hline \text { Aftersmoke (Afterglow) } & \begin{array}{l}\text { When the wick continues to smoke or glow after you have } \\ \text { blown out the flame }\end{array} \\ \hline \text { Bridging } & \begin{array}{l}\text { The term used when a burning wick curls to such an extent } \\ \text { that the tip of the wick makes contact with the surface of the } \\ \text { melt pool }\end{array} \\ \hline \text { Burn Test } & \begin{array}{l}\text { Informal term for process used to assess the burning } \\ \text { performance of a candle }\end{array} \\ \hline \text { Burn Test Cycle } & \begin{array}{l}\text { The total time of a burning period and the pause after the } \\ \text { burning period. The process of burning a full candle from } \\ \text { start to finish consists of a series of burn test cycles }\end{array} \\ \hline \text { Burning Period } & \begin{array}{l}\text { The length of time between lighting a candle and extinguishing } \\ \text { the flame }\end{array} \\ \hline \text { Cavity } & \begin{array}{l}\text { A gap or void that is formed inside or on the surface of a candle } \\ \text { as the wax contracts during the cooling and curing process. } \\ \text { Also known as a sink hole }\end{array} \\ \hline \text { Cold Throw } & \begin{array}{l}\text { The fragrance emitted from a fragranced container candle } \\ \text { before the candle is lit }\end{array} \\ \hline \text { CLP } & \begin{array}{l}\text { General term for the label on the bottom of a candle or diffuser. } \\ \text { The CLP label displays the pictograms, signal words and } \\ \text { standard statements for hazards, storage etc. The label is } \\ \text { a legal requirement under the Classification, Labelling and } \\ \text { Packaging (CLP) Regulation ((EC) No 1272/2008) }\end{array} \\ \hline \text { Clubbing } & \begin{array}{l}\text { Build-up of carbon deposits on the candle wick, caused by } \\ \text { incomplete combustion }\end{array} \\ \hline \text { Crystallisation } & \begin{array}{l}\text { The process where a poured candle mixture changes from a } \\ \text { liquid to a solid mass which then "cures" to a stable form. See } \\ \text { also curing time }\end{array} \\ \hline \text { Curing Time } & \begin{array}{l}\text { The period of time between pouring the candle and the candle } \\ \text { reaching a state where it can be lit to give optimum perfor- } \\ \text { mance. The curing time will differ for each wax/fragrance oil } \\ \text { mixture. See also crystallisation }\end{array} \\ \hline \text { Essential Oil } & \begin{array}{l}\text { A candle pouring technique in which a container candle is } \\ \text { poured in two stages. Typically, the first pour will fill } 70-90 \% \\ \text { of the candle. fifter cooling, when the wax has contracted, the } \\ \text { second pour fills the candle to the desired level }\end{array} \\ \hline \text { An oil obtained by distillation of plant extracts, intended to } \\ \text { capture the characteristic fragrance or "essence" of the plant. } \\ \text { Essential oils are often marketed as blends of different oils }\end{array}\right\}$
$\left.\begin{array}{|l|l|}\hline \text { Flame Height } & \begin{array}{l}\text { The distance between the base of the flame and the top of } \\ \text { the flame }\end{array} \\ \hline \text { Flash Point } & \begin{array}{l}\text { The flash point of a liquid (e.g., a fragrance oil) is the } \\ \text { temperature at which the liquid gives off enough vapour } \\ \text { that could cause it to ignite (albeit briefly) if exposed to a } \\ \text { source of ignition }\end{array} \\ \hline \text { Fire Safety Test } & \begin{array}{l}\text { An informal term used for the series of tests and measurements } \\ \text { performed on a candle to ensure that it meets the requirements } \\ \text { of BS EN 15493:2019 (Candles - Specification for Fire Safety) }\end{array} \\ \hline \text { Fragrance Oil } & \begin{array}{l}\text { The concentrated liquid fragrance that is added to scented } \\ \text { container candles, wax melts and diffusers. See also } \\ \text { essential oil }\end{array} \\ \hline \text { Fragrance Content } & \begin{array}{l}\text { The proportion of oil in the candle mixture. A fragrance content } \\ \text { of 10\% means that a 100g candle contains 90g of wax and } 10 g \\ \text { of oil }\end{array} \\ \hline \text { Fragrance Load } & \begin{array}{l}\text { The ratio of oil to wax. A fragrance load of 10\% means that you } \\ \text { add 10\% of the wax mass as oil. So, to 100g of wax, you would } \\ \text { add 10g of oil. Fragrance Load does not refer to the percentage } \\ \text { of oil in the candle as a whole }\end{array} \\ \hline \text { Frosting } & \begin{array}{l}\text { The "frosting" often referred to in candle-making is an example } \\ \text { of "polymorphism", where the solid mass of wax and fragrance } \\ \text { oil changes into a different crystal form over time, causing a } \\ \text { frost-like effect on the surface of the candle }\end{array} \\ \hline \text { Fump Lines Melt Pool (FMP) } & \begin{array}{l}\text { When the melt pool in a container candle covers the entire } \\ \text { surface of the candle }\end{array} \\ \hline \text { Glass Adhesion } & \begin{array}{l}\text { A term used to describe how well a particular wax/fragrance } \\ \text { mixture adheres to a candle glass. As wax cools, it contracts } \\ \text { and pulls away from the glass leaving visible gaps on the inside } \\ \text { of the glass. Plant waxes generally have better glass adhesion } \\ \text { than mineral waxes }\end{array} \\ \hline \text { Hang-up Throw } & \begin{array}{l}\text { The term used to describe the coating of wax left on the inner } \\ \text { wall of a container candle as the candle burns down. See also } \\ \text { tunneling }\end{array} \\ \hline \text { IFRA } & \begin{array}{l}\text { The fragrance emitted from a fragranced container candle } \\ \text { when the candle is burning }\end{array} \\ \text { Also known as jump marks, these are a series of horizontal lines } \\ \text { higher-melting on the inside of a clear candle glass when } \\ \text { to pour a candle without preally minerat wax) have been used } \\ \text { formed as the liquid wax solidifies on the candle glass. They are surface of the } \\ \text { glass }\end{array}\right\}$


| Underwicked | When the wick in a candle causes a burn rate that is lower <br> than expected or desired, the candle is said to be underwicked. <br> See also overwicked |
| :--- | :--- |
| Wick | The part of a candle that is lit, creating a flame that melts more <br> wax. The liquid wax is then drawn back into the wick via capillary <br> action to fuel the flame and continue the burning process |
| Wick Claw | A tool used to ensure that the candle wick is positioned in <br> the centre of the candle. |
| Wick Posture | The shape adopted by the candle wick during the burning <br> process. Good wick posture is required to keep the flame at a <br> suitable height. |
| Wick Wax | The wax that is used to coat the candle wick. |
| Wick Yield | A measure of the thickness of a candle wick. The units used are <br> grams per metre (g/m) or metres per kilogram (m/kg). These <br> values refer to the unwaxed wick. For example, a wick with a <br> yield value of 1.50 g/m means that a 1 metre length of raw wick <br> weighs 1.50 grams. The m/kg system is basically an "invert- <br> ed" version of the above. A wick with a yield value of $665 m /$ <br> kg means that 1 kg of raw wick will stretch to a length of 665 <br> metres. |

