

## MEASURING A RECTANGLE

Measure length and width of the square or rectangular area in metres.

To calculate the amount of turf required, multiply length $x$ width

## Example:

length 5m; width 16m
$16 \mathrm{~m} \times 5 \mathrm{M}=80 \mathrm{~m}^{2}$

It is easy to measure your lawn when it is an easy shape like a rectangle!

## But what about it is more difficult like a circle or a triangle?



MEASURING A CIRCLE

Measure diameter of the circular area in metres.

To calculate the amount of turf required, multiply diameter $x$ 0.80

Then by diameter again

## Example:

diameter 14.5m
$14.5 \mathrm{~m} \times 0.80=11.6$
$11.6 \mathrm{M} \times 14.5 \mathrm{M}=168.2 \mathrm{M}^{2}$


Width

MEASURING A OVAL
Measure length and width of the oval area in metres.

To calculate the amount of turf required, multiply length $\times 0.80$

Then by width

## Example:

length 26m; width 14m
$26 \mathrm{~m} \times 0.80 \times 14 \mathrm{~m}=291.2 \mathrm{~m}^{2}$


## MEASURING A TRIANGLE

Measure base and height of the triangular area in metres.

To calculate the amount of turf required, multiply base $\times 0.50$

Then by height

Example: base 23 m ; height 18 m
$23 \mathrm{M} \times 0.50 \times 18 \mathrm{~m}=207 \mathrm{M}^{2}$

## MEASURING UNUSUAL SHAPES

Measure metres by firstly dividing area into sections of regular shapes i.e.: circle, square and triangle. To calculate the required amount of Turf in square metres, apply the formulas for each shape and then add together to form total area.


## MEASURING DIFFERENT WIDTHS

Measure length by measuring longest axis of length.

Every two metres along the length line measure the width of the area at right angles to the length line.

Total all widths, divide by number of width section to get average and multiply by length.

## Example:

Length 13.5 m ; width $1=3 \mathrm{~m}$; width $2=2.5 \mathrm{M}$; width $3=4 \mathrm{M}$; width $4=4 \mathrm{M}$; width $5=3.5 \mathrm{M}$; width $6=1.8 \mathrm{M}$
$3 M+2.5 M+4 M+4 M+3.5 M+$ $1.8 \mathrm{M}=18.8 \mathrm{M}$
18.8m/6 (total widths measured) $=3.13 \mathrm{M}$
$3.13 \mathrm{M} \times 13.5=42.25 \mathrm{M}^{2}$

