
Seeker(TM) 1.0.0 User’s Manual

InsideOpt(TM)

October 2023

1

Contents

1 Introduction 4

2 Installing Seeker(TM) 4

3 First Examples 4
3.1 Designing a Material-Efficient Can 4

3.1.1 Can Design in C++ . 5
3.1.2 Can Design in Python . 6

3.2 Constrained Facility Location . 7
3.2.1 Facility Location in C++ 7
3.2.2 Facility Location in Python 9

4 Basic Functions and Operators 12
4.1 Environment Functions and Operators 12

4.1.1 Environment Creation and Termination 12
4.1.2 Creating Decision Variables 12
4.1.3 Optimization Functions 13
4.1.4 Constraint Definition . 14
4.1.5 Unary Operators . 14
4.1.6 Binary Operators . 15
4.1.7 Index Operators . 16
4.1.8 Choice Operator . 16
4.1.9 Aggregators . 16

4.2 Term Operators . 18
4.2.1 Unary Operators . 18
4.2.2 Binary Operators . 18
4.2.3 Status Check . 20

5 Models for Classical Optimization Problems 21
5.1 Bin Packing . 21

5.1.1 C++ . 21
5.1.2 Python . 22

5.2 Continuous Optimization . 22
5.2.1 C++ . 23
5.2.2 Python . 23

5.3 Graph Coloring . 24
5.3.1 C++ . 24
5.3.2 Python . 25

6 Advanced Modeling Concepts 26
6.1 Partitionings and Packings . 26

6.1.1 Bin Packing - Continued 27
6.1.2 Discrete Capacitated Facility Location - Continued 28

6.2 Efficient Boolean Indicators . 30

2

6.2.1 Switch Conditions . 30
6.2.2 Interval Conditions . 34

6.3 Permutations and Convex Combinations 35
6.3.1 Permutations . 35
6.3.2 Convex Combinations . 36

6.4 Sortings and Quantiles . 36
6.4.1 Sortings . 36
6.4.2 Quantiles . 38

6.5 Logic Combinations of Constraints 38
6.5.1 Constraint Generation . 38
6.5.2 2D Rectangle Packing in Python 39

6.6 User-Defined Terms . 40
6.6.1 Creating New Terms and Functions 40
6.6.2 Adding User Terms to the Model 41
6.6.3 A Continuous Optimization Example 42

7 Multi-Objective Optimization 43

8 Nested Linear Optimization 45
8.1 Linear Programming Terms . 45
8.2 Linear Constraints Doubling in Seeker(TM) 46
8.3 Non-Linear Optimization With Nested LP 46

9 Stochastic Optimization 48
9.1 Environment Creation and Stochastic Parameters 48
9.2 Creating Stochastic Data Terms 48
9.3 User-Defined Distributions . 49
9.4 Solution-Dependent Distributions 50
9.5 Aggregation . 51
9.6 Constraints . 52

10 Stochastic Optimization Examples 53
10.1 Monty Hall Problem . 53
10.2 Betting . 53
10.3 Integrated Pricing and Production Planning 54

11 Parameters and Tuning 56
11.1 Automatic Tuning . 56
11.2 Manual Tinkering . 56

12 Parallel Optimization 58
12.1 Prerequisites . 58
12.2 Preparing Your Program . 58
12.3 Adding More Parallel Processes and Crash Recovery 59
12.4 Parallel Coordination Parameters 59

13 Progress Reports and Search Statistics 60

3

1 Introduction

The Seeker(TM) Library consists of two main classes, Env and Term, plus some
few helper classes. This manual first introduces the main classes that are used
to formulate and solve optimization problems. Later, we will cover the addi-
tional classes that allow us to formulate specific variables, such as set partitions,
packings, permutations, quantiles, and sortings.

2 Installing Seeker(TM)

To install Seeker(TM) on your machine, plus run

pip install insideopt-seeker

Next, please run

python -c ’import seeker as skr; skr.create hardware signature()’

This creates a file ’client machine.sio’ with your hardware signature.
Finally, to obtain a license, send email to ’info@insideopt.com’ with the attached
’client machine.sio.’

3 First Examples

3.1 Designing a Material-Efficient Can

Problem: Assume we are to design a cylindrical soup can with a given volume
V that minimizes the material costs, which are determined by the surface of the
can. The two variables we need to determine are the diameter D of the cylinder
bottom, and the height H of the cylinder. Since the volume is given, as soon as
the diameter is chosen, we already know what the height must be to obtain the
desired volume:

V =
πHD2

4
or H =

4V

πD2
.

The surface S of the can is given by

S =
πD2

2
+ πDH

Substituting H, we get

S =
πD2

2
+

4V

D

Our problem can therefore be stated as

Minimize S = πD2

2 + 4V
D such that D ≥ 0.

4

3.1.1 Can Design in C++

To model this problem in Seeker(TM), we must first create our environment. All
objects, variables and expressions that we will create later will be registered to
our environment. The environment will also provide us with functions to create
complex terms, constraints, and our optimization objective. Every Seeker(TM)

application therefore starts with the creation of an environment object env of
type Seeker::Env: ”Env env(”license.sio”);” (Line 12). Note that you must
specify the path and name to a valid license file to use the Seeker(TM).

Next, we need to declare a decision variable, the diameter D of our can.
We use the environment function ”Seeker::Term Seeker::Env::continuous(double
lowerBound, double upperBound)” to create the corresponding term: ”Term
diameter=env.continuous(1e-6,1e6);” (Line 15).

Based on the math we did above, we next compute the surface of the can
based on the diameter: ”Term surface=pi*env.sqr(diameter)/2+4*volume/dia-
meter;” (Line 16). Note that we use the environment function ”Term sqr(Term
x)” to square the value of diameter.

Our last step is to call the environment function ”void Seeker::Env::minimize(-
Term obj, double timeLimit, double loweBound),” handing over the ”surface”
Term as our minimization target: ”env.minimize(surface,tl,bound);” (Line 20).

To read out the values of any ”Seeker::Term” that was created along the
way, we use the function ”double Seeker::Term::get value(void)” (Line 22).

Finally, we clean up our environment by calling the function ”void Seeker::-
Env::end(void)” (Line 28) which frees the memory of the objects associated with
the environment.

1 #inc lude <math . h>
2 #inc lude <iostream>
3 #inc lude <env . hpp>
4 #inc lude <term . hpp>
5

6 us ing namespace std ;
7 us ing namespace Seeker ;
8

9 i n t main (i n t argc , char ∗∗ argv) {
10 double volume=ato f (argv [1]) ;
11 // Create environment
12 Env env (” l i c e n s e . s i o ”) ;
13 double p i=M PI ;
14 // Def ine Diameter v a r i a b l e and ob j e c t i v e term
15 Term diameter=env . cont inuous (1 e−6,1 e6) ;
16 Term su r f a c e=pi ∗env . sqr (diameter) /2+4∗volume/diameter ;
17 // t ime l im i t 10 seconds , s u r f a c e lower bound i s 0
18 double t l =0.01 , bound=0;
19 // minimize su r f a c e
20 env . minimize (sur face , t l , bound) ;
21 // read f i n a l va lue s
22 double optS=su r f a c e . g e t va lu e () , optD=diameter . g e t va lu e () ;
23 double optH=4∗volume /(p i ∗optD∗optD) ;
24 cout << ”Optimal Diameter = ” << optD << endl
25 << ”Optimal Height = ” << optH << endl
26 << ”Optimal Sur face = ” << optS << endl ;

5

27 // Terminate environment
28 env . end () ;
29 }

3.1.2 Can Design in Python

In Python 3, we also first create our environment, to which all objects, variables
and expressions will be registered to. After importing the library in Line 1, we
declare ”env = skr.Env(”license.sio”)” (Line 4). Note that you have to provide
the path and name to a valid license file to use the Seeker(TM) library.

Next, we declare a decision variable, the diameter D of our can. We use
the environment function ”Seeker::Term Seeker::Env::continuous(double lower-
Bound, double upperBound)” to create the corresponding term: ”diameter=-
env.continuous(1e-6,1e6);” (Line 7).

Based on the math we did above, we next compute the surface of the can
based on the diameter: ”surface=pi*env.sqr(diameter)/2+4*volume/diameter;”
(Line 8). Note that we use the environment function ”Term sqr(Term x)” to
square the value of diameter.

Our last step is to call the environment function ”void Seeker::Env::minimize(-
Term obj, double timeLimit, double loweBound),” handing over the ”surface”
Term as our minimization target: ”env.minimize(surface,tl,bound);” (Line 14).

To read out the values of any ”Seeker::Term” that was created along the
way, we use the function ”double Seeker::Term::get value(void)” (Lines 17/18).

Finally, we clean up our environment by calling the function ”void Seeker::-
Env::end(void)” (Line 25) which frees the memory of the objects associated with
the environment.

1 import s e eke r as skr
2 import math
3 de f main (volume) :
4 env = skr . Env(” l i c e n s e . s i o ”)
5 pi = math . p i
6 #Def ine Diameter v a r i a b l e and ob j e c t i v e term
7 diameter = env . cont inuous (1 e−6, 1 e6)
8 s u r f a c e = (p i /2) ∗env . sqr (diameter)+(4∗volume) / diameter
9 #t ime l im i t 10 seconds , s u r f a c e lower bound i s 0

10 t l = 0 .01
11 bound = 0
12 #minimize su r f a c e
13 pr in t (” s t a r t minimizat ion ”)
14 env . minimize (sur face , t l , bound)
15 pr in t (”done with minimizat ion ”)
16 #read f i n a l va lue s
17 optS = su r f a c e . g e t va lu e ()
18 optD = diameter . g e t va lu e ()
19 optH = 4∗volume /(p i ∗optD∗optD)
20 pr in t (”Optimal Diameter =” , optD)
21 pr in t (”Optimal Height =” , optH)
22 pr in t (”Optimal Sur face =” , optS)
23 pr in t (”Volume i s =” , p i ∗optD∗optD∗optH/4)
24 #Terminate environment
25 env . end () ;

6

3.2 Constrained Facility Location

Optimizing the can is particularly easy to model since we managed to formulate
the problem without any side constraints. That is to say, any value in the range
we specified when declaring the diameter variable D is legitimate.

In most applications, we have more than one decision variable, and not all
combinations of values in their respective range can be realized in practice.
Consider the example of discrete capacitated facility location (DCFL): Assume
we are given l locations, where new facilities can be opened to serve c customers.
In this discrete variant of the problem, each customer must be assigned to
exactly one (open) facility, where it creates a facility-independent service load
(custDemandi ∈ R+ for 0 ≤ i < c), whereby each facility offers only a limited
capacity for serving customers (locCapacityj ∈ R+ for 0 ≤ j < l).

Opening a facility at a given location incurs a location-specific cost (locCostj ∈
R+ for 0 ≤ j < l). Moreover, the cost of serving a customer incurs a cost that
depends on both the customer and the facility location (servCostji ∈ R+ for
0 ≤ j < l and 0 ≤ i < c).

To formulate this problem, we will need Seeker(TM) to enforce the capacity
constraints. In the C++ and Python programs below, we show one way how
this problem can be formulated.1

3.2.1 Facility Location in C++

First, we define decision variables custAllocationi ∈ {0, . . . , l − 1} for 0 ≤ i < c
which determine from which location each customer will be served (Line 33).
We use categorical variables as there is no meaningful ordering of the locations.

To infer the total load that this allocation generates at each location, we
next define a matrix locCustEffortji for 0 ≤ j < l and 0 ≤ i < c, where
locCustEffortji = custDemandi if, and only if, custAllocationi == j, and 0 oth-
erwise (Lines 40/41). For this purpose, we use the environment function ”Term
Seeker::Env::if (Term condTerm, Term thenTerm, Term elseTerm)” which re-
turns the value of the ”thenTerm” if the condition evaluates to true (whereby,
here and in general, any value evaluates to true if and only if it is not equal
zero), and the value of the ”elseTerm” otherwise.

Based on this matrix, we now need to compute the total load at each location.
To this end, we simply need to sum up the values in the rows of the matrix.
Now, technically we could loop over the Terms to sum and use the ”Term
Term::operator+(const Term&, const Term&).” This is, however, an inefficient
way to formulate the model, and should be avoided.

The sum of terms, much like other operators such as minimum, maximum,
and, or, product, or statistical measures like variance, standard deviation, or
various norms, are aggregates over some, usually more than two, operands. For
these, the vector of operands is handed over in one call, for example to ”Term
Seeker::Env::sum(vector<Term> operands)” (Line 46).

1Please note that the models we present are not optimized for performance but used to
illustrate the features of the solver.

7

Equipped with the total service demands at each location, we can now formu-
late the capacity constraints. For this purpose, we use the environment function
”void Seeeker::Env::enforce leq(Term left, Term right)” (Line 48). This func-
tion tells the environment, that any feasible solution is expected to obey the
constraint ”left ≤ right.”

The rest of the model is then straight forward with the concepts we just
introduced.

1 #inc lude <math . h>
2 #inc lude <iostream>
3 #inc lude <s t r i ng>
4 #inc lude <vector>
5 #inc lude <env . hpp>
6 #inc lude <term . hpp>
7

8 us ing namespace std ;
9 us ing namespace Seeker ;

10

11 extern void r eadF i l e (s t r i n g fi leName , i n t& l , i n t& c ,
12 vector<double>& locCost ,
13 vector<double>& locCapacity ,
14 vector<vector<double> >& servCost ,
15 vector<double>& custDemand) ;
16

17 i n t main (i n t argc , char ∗∗ argv) {
18 // gather i n s t ance data
19 s t r i n g i npu tF i l e (argv [1]) ;
20 // l=numberOfLocations , c=numberOfCustomers
21 i n t l , c ;
22 vector<double> l ocCost ;
23 vector<vector<double> > servCost ;
24 vector<double> custDemand ;
25 vector<double> l ocCapac i ty ;
26 r e adF i l e (inputF i l e , l , c , locCost , locCapacity , servCost , custDemand) ;
27

28 // Create environment
29 Env env (” l i c e n s e . s i o ”) ;
30 // c r e a t e customer a l l o c a t i o n v a r i a b l e s
31 vector<Term> cu s tA l l o c a t i on ;
32 f o r (i n t i =0; i<c ; i++)
33 cu s tA l l o c a t i on . push back (env . c a t e g o r i c a l (0 , l −1)) ;
34

35 // f o r each l o c a t i o n / customer pair , compute the
36 // corre spond ing e f f o r t , based on a l l o c a t i o n
37 vector<vector<Term> > l o cCus tE f f o r t (l) ;
38 f o r (i n t j =0; j<l ; j++)
39 f o r (i n t i =0; i<c ; i++)
40 l o cCus tE f f o r t [j] . push back (env . i f (cu s tA l l o c a t i on [i]==j ,
41 custDemand [i] , 0)) ;
42

43 // compute the load per l o c a t i o n
44 vector<Term> locLoad ;
45 f o r (i n t j =0; j<l ; j++) {
46 locLoad . push back (env . sum(l o cCus tE f f o r t [j])) ;
47 // en f o r c e the load per l o c a t i o n does not exceed i t capac i ty
48 env . e n f o r c e l e q (locLoad [j] , l ocCapac i ty [j]) ;

8

49 }
50

51 // compute c o s t s f o r opening the l o c a t i o n s that are being used
52 vector<Term> l o cU t i l i z a t i o nCo s t ;
53 f o r (i n t j =0; j<l ; j++)
54 l o cU t i l i z a t i o nCo s t . push back (env . i f (locLoad [j]>0 ,
55 l ocCost [j] , 0)) ;
56 Term lo ca t i onCos t s=env . sum(l o cU t i l i z a t i o nCo s t) ;
57

58 // compute the assignment−s p e c i f i c c o s t s
59 vector<vector<Term> > l ocCustServCosts (l) ;
60 f o r (i n t j =0; j<l ; j++)
61 f o r (i n t i =0; i<c ; i++)
62 l ocCustServCosts [j] . push back (env . i f (cu s tA l l o c a t i on [i]==j ,
63 servCost [j] [i] , 0)) ;
64 vector<Term> l o cServCost s ;
65 f o r (i n t j =0; j<l ; j++)
66 l o cServCost s . push back (env . sum(locCustServCosts [j])) ;
67 Term ass ignmentCosts=env . sum(locServCost s) ;
68

69 // t ime l im i t i s 10 seconds , lower bound on co s t s i s 0
70 double t l =10, bound=0;
71

72 // d e f i n e ob j e c t i v e term
73 Term to ta lCo s t s=lo ca t i onCos t s+ass ignmentCosts ;
74 // minimize
75 env . minimize (to ta lCos t s , t l , bound) ;
76

77 // read f i n a l co s t va lue
78 cout << ”Optimal Costs = ” << t o t a lCo s t s . g e t va lu e () << endl ;
79

80 //Terminate environment
81 env . end () ;
82 }

3.2.2 Facility Location in Python

First, we define decision variables custAllocationi ∈ {0, . . . , l − 1} for 0 ≤ i < c
which determine from which location each customer will be served (Line 15).
We use categorical variables as there is no meaningful ordering of the locations.

To infer the total load that this allocation generates at each location, we
next define a matrix locCustEffortji for 0 ≤ j < l and 0 ≤ i < c, where
locCustEffortji = custDemandi if, and only if, custAllocationi == j, and 0
otherwise (Line 23). For this purpose, we use the environment function ”Term
Seeker::Env::if (Term condTerm, Term thenTerm, Term elseTerm)” which re-
turns the value of the ”thenTerm” if the condition evaluates to true (whereby,
here and in general, any value evaluates to true if and only of it is not equal
zero), and the value of the ”elseTerm” otherwise.

Based on this matrix, we now need to compute the total load at each location.
To this end, we simply need to sum up the values in the rows of the matrix.
The sum of terms, much like other operators such as minimum, maximum,
and, or, product, or statistical measures like variance, standard deviation, or

9

various norms, are aggregates over some, usually more than two, operands. For
these, the vector of operands is handed over in one call, for example to ”Term
Seeker::Env::sum(vector<Term> operands)” (Line 29).

Equipped with the total service demands at each location, we can now formu-
late the capacity constraints. For this purpose, we use the environment function
”void Seeeker::Env::enforce leq(Term left, Term right)” (Line 31). This func-
tion tells the environment, that any feasible solution is expected to obey the
constraint ”left ≤ right.” The remaining model follows.

1 import s e eke r as skr
2

3 de f r e ad in s t anc e (f i leName , env) :
4 #read in s t ance from f i l e and return numberOfLocations ,

numberOfClients , l o ca t i onCos t s , s e rv i c eCos t s , customerDemand ,
and locat ionCapac i ty , whereby ar rays o f Terms are returned (
us ing env . convert (. . .))

5 r e turn #. . .
6

7 de f main (f i leName) :
8 # Create environment
9 env = skr . Env(” l i c e n s e . s i o ”)

10 l , c , locCost , servCost , custDemand , locCapac i ty =
read in s t anc e (f i leName , env)

11

12 # crea t e customer a l l o c a t i o n v a r i a b l e s
13 cu s tA l l o c a t i on = [env . c a t e g o r i c a l (0 , l − 1) f o r in range (c)]
14

15 # fo r each l o c a t i o n / customer pair , compute the
16 # correspond ing e f f o r t , based on a l l o c a t i o n
17 l o cCus tE f f o r t = [[env . i f (cu s tA l l o c a t i on [i] == j ,
18 custDemand [i] , 0)
19 f o r i in range (c)] f o r j in range (l)]
20

21 # compute the load per l o c a t i o n
22 locLoad = [env . sum(l o cCus tE f f o r t [j]) f o r j in range (l)]
23 f o r j in range (l) :
24 env . e n f o r c e l e q (locLoad [j] , l ocCapac i ty [j])
25

26 # compute c o s t s f o r opening the l o c a t i o n s that are being used
27 l o cU t i l i z a t i o nCo s t = [env . i f (locLoad [j] > 0 , locCost [j] , 0)
28 f o r j in range (l)]
29 l o c a t i onCos t s = env . sum(l o cU t i l i z a t i o nCo s t)
30

31 # compute the assignment−s p e c i f i c c o s t s
32 l ocCustServCosts = [[env . i f (cu s tA l l o c a t i on [i] == j ,
33 servCost [j] [i] , 0)
34 f o r i in range (c)] f o r j in range (l)]
35 l o cServCost s = [env . sum(locCustServCosts [j]) f o r j in range (l)]
36 ass ignmentCosts = env . sum(locServCost s)
37

38 # t ime l im i t i s 10 seconds , lower bound on co s t s i s 0
39 t l = 10
40 bound = 0
41

42 # de f i n e ob j e c t i v e term and minimize
43 t o t a lCo s t s = lo ca t i onCos t s + ass ignmentCosts

10

44 env . minimize (to ta lCos t s , t l , bound)
45

46 # read f i n a l co s t va lue
47 pr in t (”Optimal Costs =” , t o t a lCo s t s . g e t va lu e ())
48

49 # Terminate environment
50 env . end ()

11

4 Basic Functions and Operators

4.1 Environment Functions and Operators

Having introduced two examples, we now provide a more comprehensive overview
of environment functions that are available for modeling optimization problems.
In C++, all of the following are part of the Seeker::Env namespace.

4.1.1 Environment Creation and Termination

• Env(string): Constructor. Creates the Seeker(TM) environment, pro-
vided a valid license file name is given.

• void end(void): Must be called before terminating the environment to
avoid memory leaks.

• ∼Env(void): Destructor. Terminates the Seeker(TM) environment.

4.1.2 Creating Decision Variables

• Term continuous(double l, double h): Creates a variable that can
take any continuous floating point value within the interval [l, h]. At the
beginning of the optimization, the variable is initialized with an unspeci-
fied value in the same interval.

• Term continuous(double l, double h, double v): Creates a variable
that can take any continuous floating point value within the interval [l, h].
At the beginning of the optimization, the variable is initialized with value
v.

• Term ordinal(double l, double h): Creates a variable that can take
any integer value within the interval [l, h]. At the beginning of the op-
timization, the variable is initialized with an unspecified integer value in
the same interval.

• Term ordinal(double l, double h, double v): Creates a variable that
can take any integer value within the interval [l, h]. At the beginning of
the optimization, the variable is initialized with value round(v), where
the function round returns the nearest integer value within the allowed
interval.

• Term categorical(double l, double h): Creates a variable that can
take any integer value within the interval [l, h]. At the beginning of the
optimization, the variable is initialized with an unspecified value in the
same interval. The difference to the same ”Ordinal” variable is how the
variable is handled within the optimization.

• Term categorical(double l, double h, double v): Creates a variable
that can take any integer value within the interval [l, h]. At the beginning

12

of the optimization, the variable is initialized with value round(v), where
the function round returns the nearest integer value within the allowed
interval. The difference to the same ”Ordinal” variable is how the variable
is handled within the optimization.

• Term categorical(double l, double h, vector<int> allowed): Cre-
ates a variable that can take any integer value within the interval [l, h] that
is listed in ”allowed”. At the beginning of the optimization, the variable
is initialized with an unspecified value in ”allowed”.

• Term categorical(double l, double h, vector<int> allowed, dou-
ble v): Creates a variable that can take any integer value within the
interval [l, h] that is listed in ”allowed”. At the beginning of the optimiza-
tion, the variable is initialized with value round(v), where the function
round returns the nearest integer value within the allowed interval. This
value is required to be listed in ”allowed.”

4.1.3 Optimization Functions

• double minimize(Term obj, double time, double bound=-1e20):
Minimizes the target term ”obj” for ”time” seconds. The minimization
terminates early if the value of ”obj” drops to or below ”bound.” If no
bound is specified the optimization runs until the time limit.

• double maximize(Term obj, double time, double bound=1e20):
Maximizes the target term ”obj” for ”time” seconds. The maximization
terminates early if the value of ”obj” increases to or above ”bound.” If no
bound is specified the optimization runs until the time limit.

Note: To avoid numerical problems, the user is advised to make
sure that the objective to be optimized runs somewhere in [-1e08,
1e08]. If your optimization target can take larger absolute values,
please consider dividing the term to be optimized by 1e03 or more,
if needed. Similarly, if your objective operates on a very small scale,
consider multiplying it with 1e3 or more.

After the optimization, the user can check the status of the optimization run
using the following environment function:

• StatusType Env::get status(void)

This function returns the status of the last run, which can be either

• ’unoptimized’: The status request was conducted before Seeker(TM) was
called to minimize or maximize the objective.

• ’malformed’: Seeker(TM) encountered a problem in that the term to be
optimized or a constraint of the problem could not be evaluated. This
happens, for example, when dividing by 0.

13

• ’infeasibleProblem’: The problem has no feasible solution and Seeker(TM)

found a proof that the problem is infeasible.

• ’infeasibleSolution’: Seeker(TM) was not able to find a feasible solution
in the time allowed, but also was not able to prove that the problem has
no feasible solutions.

• ’timeout’: Seeker(TM) ran out of time, but found a feasible solution that
does not meet the optimization bound. Please note that the latter may
exist, but Seeker(TM) was simply not able to find it.

• ’bounded’: Seeker(TM) found a feasible solution that meets or exceeds
the optimization bound and consequent;y stopped the optimization before
the allotted time ran out.

• ’optimal’: Seeker(TM) found a feasible solution that is provably optimal
for the problem.

4.1.4 Constraint Definition

• void enforce leq(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l ≤ r.

• void enforce lt(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l < r.

• void enforce geq(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l ≥ r.

• void enforce gt(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l > r.

• void enforce eq(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that r = l.

• void enforce neq(Term l, Term r): Enforces that the Seeker(TM)

solver will only consider assignments to the decision variables for which
for the values of the terms l and r it holds that r ̸= l.

4.1.5 Unary Operators

• Term abs(Term a): Returns the value of a if a ≥ 0 and −a otherwise.

• Term sqr(Term a): Returns a2.

14

• Term sqrt(Term a): Returns
√
a if a ≥ 0. Returns ”undefined” other-

wise.

• Term exp(Term a): Returns ea, where e is the Euler number.

• Term log(Term a): Returns the natural logarithm, log(a) if a > 0.
Returns ”undefined” otherwise.

• Term min 0(Term a): Returns the value of a if a < 0, and 0 otherwise.

• Term max 0(Term a): Returns the value of a if a > 0, and 0 otherwise.

• Term sin(Term a): Returns the sine of a in radians: sin(a).

• Term cos(Term a): Returns the cosine of a in radiance: cos(a).

• Term ceil(Term a): Returns the smallest possible integer value which
is greater than or equal to the value of a.

• Term floor(Term a): Returns the largest possible integer value which
is less than or equal to the value of a.

• Term round(Term a): Returns the integral value that is nearest to the
value of a, with halfway cases rounded away from zero.

• Term trunc(Term a): Rounds the value of a towards zero and returns
the nearest integral value that is not larger in magnitude than a.

4.1.6 Binary Operators

• Term abs(Term a, Term b): Returns |a− b|.

• Term eucl(Term a, Term b): Returns (a− b)2.

• Term power round exp(Term a, Term b): Returns ab̄ if a ̸= 0, where
b̄ = round(b). Returns 1 if a = b̄ = 0, and 0 if a = 0 and b̄ ̸= 0.

• Term power(Term a, Term b): Returns ab if a > 0, and ”undefined”
if a < 0. Returns 1 if a = b = 0, and 0 if a = 0 and b ̸= 0.

• Term round div(Term a, Term b): If b̄ ̸= 0, the operator returns the
nearest integer that is not larger in magnitude than ā/b̄ (rounding towards
zero), whereby b̄ = round(b). Returns ”undefined” if b̄ = 0.

• Term div(Term a, Term b): If b ̸= 0, the operator returns the nearest
integer that is not larger in magnitude than a/b (rounding towards zero).
Returns ”undefined” if b = 0.

• Term round mod(Term a, Term b): If b̄ ̸= 0, the operator returns
ā − (ā div b̄) ∗ b̄, whereby x̄ = round(x). If b̄ = 0, the operator returns
”undefined.”

• Term mod(Term a, Term b): Undefined, use ”Term Term::operator%(Term
a, Term b)” (see Section 4.2.2).

15

4.1.7 Index Operators

To use indexing, you must first transform your vector, matrix, or, more generally
speaking, your tensor, into a Seeker::Tensor object. To do so, please use the
environment function ’tensor’.

• Seeker::Tensor tensor(const vector<Term>& terms): The function
returns a Seeker::Tensor object which you can only use for one purpose,
and that is within an indexing term. To construct a Seeker::Tensor from
constant data (e.g., a matrix of bools), please use the function Env::convert
(see Section 4.1.9) to create a corresponding matrix of Seeker::Terms.

Seeker(TM)provides similar functions for vectors of vectors and vectors of vec-
tors of vectors, to create tensors with up to six dimensions. After creating a
Seeker::Tensor object, we can now index it:

• Term index(vector<Seeker::Term>& index, const Seeker::Tensor&
tensor): For any integer vector values that ”index” takes, whereby each
component of the vector is in the set {0, . . . ,D − 1}, where D is the size
of the corresponding tensor dimension, the operator returns the value of
”tensor(index).” The return value is ”undefined” if the value of ”index”
does not fall into this set. C++-users must make sure that the referenced
Seeker::Tensor object persists until the environment is terminated.

Note: Please check carefully that the index vector only takes fea-
sible values that fit the dimensions of the tensor provided. Seeker(TM)

will exit if this is not the case and the result of this term is material
for the objective or the constraint status.

4.1.8 Choice Operator

• Term if (Term condTerm, Term thenTerm, Term elseTerm):
Returns the value of ”thenTerm” if ”condTerm” evaluates to non-Zero,
and the value of ”elseTerm” otherwise.

4.1.9 Aggregators

As mentioned in our description above, we refer to operators that take an arbi-
trary number of terms as input as ”aggregators.” While, for reasons of conve-
nience, for many of these aggregators we also provide the corresponding binary
operators (see Section 4.2.2), for reasons of efficiency when optimizing the mod-
els we highly recommend users to formulate their models using the functions
listed in this section.

• Term sum(vector<Term> terms): Returns the sum of the values in
”terms.”

• Term prod(vector<Term> terms): Returns the product of the values
in ”terms.”

16

• Term max(vector<Term> terms): Returns the maximum of the val-
ues in ”terms.”

• Term min(vector<Term> terms): Returns the minimum of the values
in ”terms.”

• Term argmax(vector<Term> terms): Returns the position {0, 1, . . . ,
n−1} of a term in the given vector of n terms which takes a value lower or
equal to all other terms. If more than one term determines the maximum
the position returned may correspond to any one of them.

• Term argmin(vector<Term> terms): Returns the position {0, 1, . . . ,
n−1} of a term in the given vector of n terms which takes a value lower or
equal to all other terms. If more than one term determines the minimum
the position returned may correspond to any one of them.

• Term and (vector<Term> terms): Returns 0 if any of the values
in ”terms” evaluates to 0, and 1 otherwise.

• Term or (vector<Term> terms): Returns 1 if any of the values in
”terms” does not evaluate to 0, and 0 otherwise.

• Term mean(vector<Term> terms): Returns the sum of the values
in ”terms” divided by their number.

• Term variance(vector<Term> terms): Returns the variance of the
values in ”terms.” Note that this operator returns the (biased) value of

the canonical definition of the variance, i.e.,
∑

i(terms[i]−µ)2

n , whereby µ is
the mean of the values in ”terms.”

• Term standard deviation(vector<Term> terms): Returns the square
root of the variance of the values in ”terms.”

• Term norm1(vector<Term> terms): Returns the sum of absolute
values in ”terms.”

• Term norm2(vector<Term> terms): Returns the square root of the
sum of square values in ”terms.”

• Term geometric mean(vector<Term> terms): Returns the nth root
of the product of the n terms in ”terms.” It is the user’s responsibility to
make sure the values of the terms aggregated are all non-negative.

• Term rmsv(vector<Term> terms): Returns the square root of the
mean of the squared values in ”terms.”

• Term average absolute value(vector<Term> terms): Returns the
mean of the absolute values in ”terms.”

17

At times, it can be convenient to use constant data as part of aggregators
and within other operators and functions. Then, you need to convert the data to
use it in aggregators, and also to create indexable tensors. Seeker(TM) provides
functions that turn individual data points, vectors, matrices, and tensors of up
to six dimensions, into the corresponding structures of terms. For example,
Seeker(TM)provides:

• template <class T>
Term convert(T data): Turns a Boolean, integer, long integer, float, or
double into a Term.

• template <class T>
vector<Term> convert(vector<T> data): Turns a vector of Booleans,
integers, long integers, floats, or doubles into a vector of Terms.

• template <class T>
vector<vector<Term> > convert(vector <vector<T> > data):
Turns a matrix of Booleans, integers, long integers, floats, or doubles into
a matrix of Terms.

4.2 Term Operators

Apart from the above environment functions, we can also build new terms using
term operators.

4.2.1 Unary Operators

• Term Term::operator-(void): Returns the negative of the value of the
given term.

• Term Term::operator!(void): Returns 1 if the original term evaluates
to 0, and 0 otherwise. In Python, you need to useTerm Term::not (void).
For example: a = env.categorical(0,1). b = a.not (). b = not a is not al-
lowed.

4.2.2 Binary Operators

Arithmetic Operators:

• Term operator+(const Term& a, const Term& b): Returns a+ b.

• Term operator-(const Term& a, const Term& b): Returns a− b.

• Term operator/(const Term& a, const Term& b): Returns a/b
if b evaluates to a value now equal 0. Otherwise, the return value is
”undefined.”

• Term operator*(const Term& a, const Term& b): Returns a ∗ b.

18

• Term operator%(const Term& a, const Term& b): If b ̸= 0, the
operator returns a−(a div b)∗b. If b = 0, the operator returns ”undefined.”

• Term operatorˆ(const Term& a, const Term& b): Returns ab if
a > 0, and ”undefined” if a < 0. If a = 0, the operator returns 1 if b = 0,
0 if b > 0, and ”undefined” if b < 0.

Logic Operators: Please note that the following binary logic operators
return a new Boolean term that takes values 1 (for true) or 0 (for false). To
construct a constraint, please use environment functions, such as ”Env::leq” for
a lower or equal constraint, and ”Env::enforce” to add the constraint to the
model.

• Term operator==(const Term& a, const Term& b): Returns 1 if
a = b and 0 otherwise.

• Term operator!=(const Term& a, const Term& b): Returns 0 if
a = b and 1 otherwise.

• Term operator<=(const Term& a, const Term& b): Returns 1
if a ≤ b, and 0 otherwise. Do not confuse this with the corresponding
constraint from Section 4.1.4.

• Term operator>=(const Term& a, const Term& b): Returns 1
if a ≥ b, and 0 otherwise. Do not confuse this with the corresponding
constraint from Section 4.1.4.

• Term operator<(const Term& a, const Term& b): Returns 1 if a <
b, and 0 otherwise. Do not confuse this with the corresponding constraint
from Section 4.1.4.

• Term operator>(const Term& a, const Term& b): Returns 1 if a >
b, and 0 otherwise. Do not confuse this with the corresponding constraint
from Section 4.1.4.

The following operators are for C++ only. In Python, please use the ex-
plicit functions ’Env::or ’ and ’Env::and ’. Please do not use the corresponding
Python operators ” or ” and ” and ” as their behavior is undefined.

• Term operator||(const Term& a, const Term& b): Returns 0 if
a = b = 0, and 1 otherwise.

• Term operator&&(const Term& a, const Term& b): Returns 0 if
a = 0 of b = 0, and 1 otherwise.

19

4.2.3 Status Check

A term may take undefined values, for example after division by zero, indexing
a vector outside its dimension, etc. This is not uncommon and poses no issue as
long as the undefined value does not need to be used to evaluate the objective
function value or the status of a constraint. When assessing the value of a term,
it is therefore good practice to check if its status is okay.

• bool Term::status ok(void)

20

5 Models for Classical Optimization Problems

Using the above functions, we now demonstrate the usage of Seeker(TM) for
some classical optimization problems. Note that the models presented here
are usually not the most efficient, but serve the purpose of demonstrating how
models can be formulated and solved using the Seeker(TM) library.

5.1 Bin Packing

Given a set of n ∈ N items with weights w0, . . . , wn−1 ∈ R+, a number m ∈ N
of available bins, and a bin capacity C ∈ R+, we are to assign each item to
a bin such that 1. the total weight of items assigned to a bin does not exceed
the capacity, and 2. the number of bins which are assigned at least one item is
minimized.

Using Seeker(TM), we can formulate this problem as follows.

5.1.1 C++

1 #inc lude ”env . hpp”
2 #inc lude ”term . hpp”
3 #inc lude <iostream>
4 #inc lude <vector>
5

6 us ing namespace Seeker ;
7 us ing namespace std ;
8

9 extern void r e ad in s t anc e (i n t& m, vector<double>& w, double& C) ;
10

11 i n t main (void) {
12 i n t m; vector<double> w; double C;
13 r eadIns tance (m,w,C) ;
14 i n t n=w. s i z e () ;
15

16 Env env (” l i c e n s e . s i o ”) ;
17 // c r e a t e Dec i s i on Var iab l e s
18 vector<Term> ass ignment ;
19 vector<Term> weight ;
20 f o r (i n t i =0; i<n ; i++) {
21 ass ignment . push back (env . c a t e g o r i c a l (0 ,m−1)) ;
22 weight . push back (Term(env ,w[i])) ;
23 }
24 // Compute Bin Weights and Bin Usage
25 vector<vector<Term> > weightMatrix (m) ;
26 vector<Term> binWeight , binUsed ;
27 f o r (i n t b=0; b<m; b++) {
28 f o r (i n t i =0; i<n ; i++)
29 weightMatrix [b] . push back (env . i f (ass ignment [i]==b ,
30 weight [i] , 0)) ;
31 binWeight . push back (env . sum(weightMatrix [b])) ;
32 // Add Capacity Constra int
33 env . en f o r c e \ l e q (binWeight [b] ,C) ;
34 binUsed . push back (env . i f (binWeight [b]>0 ,1 ,0)) ;
35 }

21

36 // Minimize number o f b ins used f o r 100 seconds
37 // lower bound i s 1
38 Term numberUsed=env . sum(binUsed) ;
39 env . minimize (numberUsed , 100 , 1) ;
40 // Report the s o l u t i o n
41 f o r (i n t b=0; b<m; b++)
42 cout << ”Bin ” << b << ” : ” << binWeight [b] . g e t va lu e ()
43 << endl ;
44 cout << ”Bins used = ” << numberUsed . g e t va lu e () << endl ;
45 env . end () ;
46 r e turn 0 ;
47 }

5.1.2 Python

1 import s e eke r as skr
2

3 de f main (f i leName) :
4 maxBins , weights , capac i ty = read in s t anc e (f i leName)
5 env = skr . Env(” l i c e n s e . s i o ”)
6 # crea t e Dec i s i on Var i ab l e s
7 ass ignment = [env . c a t e g o r i c a l (0 , maxBins − 1)
8 f o r in range (l en (weights))]
9 # Compute Bin Weights and Bin Usage

10 weightMatrix = [[env . i f (ass ignment [i] == b , weights [i] , 0)
11 f o r i in range (l en (weights))]
12 f o r b in range (maxBins)]
13 binWeight = [env . sum(weightMatrix [b]) f o r b in range (maxBins)]
14 binUsed = [binWeight [b] > 0 f o r b in range (maxBins)]
15 f o r b in range (maxBins) :
16 # Add Capacity Constra int
17 env . e n f o r c e l e q (binWeight [b] , capac i ty)
18

19 # Minimize number o f b ins used f o r 100 seconds
20 # lower bound i s 1
21 numberUsed = env . sum(binUsed)
22 env . minimize (numberUsed , 100 , 1)
23 # Report the s o l u t i o n
24 f o r b in range (maxBins) :
25 pr in t (”Bin” , b , ” : ” , binWeight [b] . g e t va lu e ())
26 pr in t (”Bins used =” , numberUsed . g e t va lu e ())
27 env . end ()

5.2 Continuous Optimization

Given a number n, we are to minimize the Schwefel function in n dimensions,
which is given by the formula:

418.9828872724339n−
n−1∑
i=0

xi sin(
√
|xi|),

whereby −500 ≤ xi ≤ 500 ∀ 0 ≤ i < n.

22

5.2.1 C++

1 #inc lude ”env . hpp”
2 #inc lude ”term . hpp”
3 #inc lude <iostream>
4 #inc lude <vector>
5

6 us ing namespace Seeker ;
7 us ing namespace std ;
8

9 i n t main (i n t argc , char ∗∗ argv) {
10 i n t n=a t o i (argv [1]) ;
11 Env env (” l i c e n s e . s i o ”) ;
12 // Create the model
13 Term A=env . convert (n∗418.9828872724339) ;
14 vector<Term> summands(n) ;
15 vector<Term> va r i a b l e s (n) ;
16 f o r (i n t i =0; i<n ; i++) {
17 va r i a b l e s [i]=env . cont inuous (−500 ,500) ;
18 summands [i]= va r i a b l e s [i]∗ env . s i n (env . s q r t (
19 env . abs (v a r i a b l e s [i]))) ;
20 }
21 Term obj=A−env . sum(summands) ;
22 // Minimize the ob j e c t i v e f o r 50 seconds with lower bound 0
23 env . minimize (obj , 5 0 , 0) ;
24 // Report the s o l u t i o n
25 cout << ”Optimum i s ” << obj . g e t va lu e () << endl ;
26 f o r (i n t i =0; i<minimum(n , 1 0) ; i++)
27 cout << va r i a b l e s [i] . g e t va lu e () << ” ” ;
28 cout << endl ;
29 env . end () ;
30 }

5.2.2 Python

1 import s e eke r as skr
2 import math
3 import random as rd
4

5 de f main (n , t imeLimit) :
6 env = skr . Env(”my l i c ense . s i o ”)
7 A = env . convert (n ∗ 418.9828872724339)
8 va r i a b l e s = [env . cont inuous (−500
9 , 500

10 , rd . rand int (−50000 , 50000) ∗ 0 . 01)
11 f o r i in range (n)]
12 summands = [v a r i a b l e s [i]
13 ∗ env . s i n (env . s q r t (env . abs (v a r i a b l e s [i])))
14 f o r i in range (n)]
15 obj = A − env . sum(summands)
16 env . minimize (obj , timeLimit , 0)
17 pr in t (”Optimum i s ” , obj . g e t va lu e ())
18 pr in t (”Number o f func t i on eva l u a t i o s ” ,
19 env . ge t number eva luat ions ())
20 env . end ()

23

5.3 Graph Coloring

Graph coloring is another classical optimization problem. We are given n items
(”nodes”), each associated with a list of items that are incompatible with the
given item (”arcs”). The objective is to minimize the number of sets such that
each item is assigned to a set, and all items in the same set are compatible.

5.3.1 C++

1 #inc lude ”env . hpp”
2 #inc lude ”term . hpp”
3 #inc lude <vector>
4 #inc lude <math . h>
5 #inc lude <iostream>
6

7 us ing namespace std ;
8 us ing namespace Seeker ;
9

10 extern void readIns tance (char ∗ f i leName ,
11 vector<vector<int> >& adjacency) ;
12

13 i n t main (i n t argc , char ∗∗ argv)
14 {
15 vector<vector<int> > adjacency ;
16 r eadIns tance (argv [1] , adjacency) ;
17 // Model the problem
18 Env env (” l i c e n s e . s i o ”) ;
19 i n t n=adjacency . s i z e () ;
20 vector<Term> c o l o r ;
21 f o r (i n t i =0; i<n ; i++)
22 c o l o r . push back (env . c a t e g o r i c a l (0 , n−1)) ;
23 f o r (i n t i =0; i<n ; i++)
24 f o r (i n t h=0; h<(i n t) adjacency [i] . s i z e () ; h++) {
25 i n t j=adjacency [i] [h] ;
26 // Enforce c ompa t i b i l i t y c on s t r a i n t s
27 env . en f o r c e neq (c o l o r [i] , c o l o r [j]) ;
28 }
29 Term obj=env .max(c o l o r) ;
30 // Minimize ob j e c t i v e f o r 100 seconds with lower bound 1
31 env . minimize (obj , 1 00 , 1) ;
32 cout << ”Found a s o l u t i o n with ” << obj . g e t va lu e ()
33 << ” c o l o r s \n” ;
34 env . end () ;
35 }

24

5.3.2 Python

1 import s e eke r as skr
2 import random as rd
3

4 de f main (n , t imeLimit) :
5 adjacency = readIns tance (n)
6 #Model the problem
7 env = skr . Env(” l i c e n s e . s i o ”)
8 c o l o r = [env . c a t e g o r i c a l (0 , n−1) f o r in range (n)]
9 f o r i in range (n) :

10 f o r j in adjacency [i] :
11 #Enforce c ompa t i b i l i t y c on s t r a i n t s
12 env . en f o r c e neq (c o l o r [i] , c o l o r [j])
13 obj = env .max(c o l o r)
14 #Minimize ob j e c t i v e f o r t imeLimit seconds with lower bound 1
15 env . minimize (obj , timeLimit , 1)
16 pr in t (”Found a s o l u t i o n with” , i n t (obj . g e t va lu e ()) , ” c o l o r s ”)
17 env . end ()

25

6 Advanced Modeling Concepts

We now cover a number of concepts that help model more complex problems as
well as improve the efficiency with which models can be solved.

6.1 Partitionings and Packings

Many real world problems require the decision how to distribute a set of n items
into m sets. A partitioning requires the solver to assign each item to exactly
one set. A packing enforces that items are assigned to no more than one set,
but items may also remain left out and not assigned to any set.

To create the respective structures, Seeker(TM) provides two functions:

• Partition partition(int numberOfPartitions, int numberOfItems):
Creates a partitioning that distributes items numbered from 0 to num-
berOfItems-1 into numberOfPartitions partitions.

• Partition packing(int numberOfSets, int numberOfItems):Creates
a packing that distributes items numbered from 0 to numberOfItems-1 over
numberOfSets sets, whereby some items may not be assigned to any set.

Partitionings and Packings can be used in two different ways. First, a
Boolean term can be created for each item and index of the respective collection
of partitions or sets, whereby these are enumerated from 0 to numberOfSets-1.

• Term boolean(Partition part, int item, int index): Returns a term
that is true if and only if item item is assigned to the set/partition with
index index.

An even more convenient way of using partitionings and packings is within
the aggregators listed in Section 4.1.9. For each aggregator agg, there exists a
corresponding agg if which, given a vector of terms, a packing/partition, and
an index, only aggregates those terms whose index in the vector corresponds
to the item number in the respective partition/set with the given index. For
example:

• Term sum if(vector<Term> terms, Partition part, int i): Returns
the sum over all terms in terms whose index in the vector corresponds to
the items in partition i in the partitioning part.

Note that, for more evolved aggregators such as the mean, variance, standard
deviation, etc., the resulting term automatically computes the corresponding
statistic over the ground set of terms that only correspond to items in the
respective partition/set. In case of the mean, e.g., the resulting term divides
the sum of all terms that fall into the partition/set by the number of items in
that partition/set.

26

6.1.1 Bin Packing - Continued

The bin packing example from Section 5.1 can be modeled, both more conve-
niently and more efficiently, using a partitioning.

Bin Packing with Partitions in C++:

1 #inc lude ”env . hpp”
2 #inc lude <vector>
3 #inc lude <math . h>
4 #inc lude <iostream>
5

6 us ing namespace std ;
7 us ing namespace Seeker ;
8

9 void binPack (i n t numberOfItems , i n t numberOfBins ,
10 i n t binCapacity , i n t ∗ items , double t ime l im i t) {
11 // bu i ld in s t anc e
12 double tota lWeight=0;
13 f o r (i n t i =0; i<numberOfItems ; i++)
14 tota lWeight+=items [i] ;
15 i n t lowerBound=c e i l (tota lWeight / binCapacity) ;
16 // c r e a t e model
17 Env env (”my l i c ense . s i o ”) ;
18 vector<Term> itemsData=env . convert (i tems) ;
19 Par t i t i on part=env . p a r t i t i o n (numberOfBins , numberOfItems) ;
20 vector<Term> b inS i z e (numberOfBins) ;
21 vector<Term> binUsed ;
22 f o r (i n t s=0; s<numberOfBins ; s++) {
23 b inS i z e [s]=env . sum i f (itemsData , part , s) ;
24 env . e n f o r c e l e q (b inS i z e [s] , b inCapacity) ;
25 binUsed . push back (env . i f (b in Ident [s] , 1 , 0)) ;
26 }
27 Term obj=env . sum(binUsed) ;
28 cout << ” Ca l l i ng Minimizat ion !\n” ;
29 //minimize f o r t l seconds
30 env . minimize (obj , t ime l imi t , 1 owerBound) ;
31 // read out s o l u t i o n
32 bool f e a s i b l e=true ;
33 f o r (i n t s=0; s<numberOfBins ; s++)
34 i f (b inS i z e [s] . g e t va lu e ()>binCapacity) f e a s i b l e=f a l s e ;
35 i f (f e a s i b l e) cout << ”Number o f Bins used = ”
36 << obj . g e t va lu e () << endl ;
37 e l s e cout << ”No f e a s i b l e s o l u t i o n found\n” ;
38 env . end () ;
39 }

Bin Packing with Partitions in Python:

1 import s e eke r as skr
2 import math
3 import numpy as np
4

5 de f b in pack (numberOfItems , numberOfBins ,
6 binCapacity , items , t ime l im i t) :
7 #bui ld in s t ance
8 tota lWeight = np . sum(items)
9 lowerBound = math . c e i l (tota lWeight / binCapacity)

27

10 #crea t e model
11 env = skr . Env(” l i c e n s e . s i o ”)
12 itemsData = env . convert (i tems)
13 part = env . p a r t i t i o n (numberOfBins , numberOfItems)
14 b inS i z e = [env . sum i f (itemsData , part , s)
15 f o r s in range (numberOfBins)]
16 binUsed = [b inS i z e [s]>0 f o r s in range (numberOfBins)]
17 f o r s in range (numberOfBins) :
18 env . e n f o r c e l e q (b inS i z e [s] , b inCapacity)
19 obj = env . sum(binUsed)
20 pr in t (” Ca l l i ng Minimizat ion ! ”)
21 #minimize f o r t l seconds with lower bound
22 env . minimize (obj , t ime l imi t , lowerBound)
23 #read out s o l u t i o n
24 f e a s i b l e = True
25 f o r s in range (numberOfBins) :
26 i f (b inS i z e [s] . g e t va lu e () > binCapacity) : f e a s i b l e = False
27 i f (f e a s i b l e) :
28 pr in t (”Number o f Bins used =” , obj . g e t va lu e ())
29 e l s e :
30 pr in t (”No f e a s i b l e s o l u t i o n found”)
31 env . end ()

6.1.2 Discrete Capacitated Facility Location - Continued

Using partitionings, we can reformulate the discrete capacitated facility location
problem from Section 3.2. The reformulation is both more compact and can be
solved more efficiently.

Discrete Capacitated Facility Location with Partitions in C++:

1 #inc lude <math . h>
2 #inc lude <iostream>
3 #inc lude <s t r i ng>
4 #inc lude <vector>
5 #inc lude <env . hpp>
6 #inc lude <term . hpp>
7

8 us ing namespace std ;
9 us ing namespace Seeker ;

10

11 extern void r eadF i l e (s t r i n g fi leName , i n t& l , i n t& c ,
12 vector<double>& locCost ,
13 vector<double>& locCapacity ,
14 vector<vector<double> >& servCost ,
15 vector<double>& custDemand) ;
16

17 i n t main (i n t argc , char ∗∗ argv) {
18 // gather i n s t ance data
19 s t r i n g i npu tF i l e (argv [1]) ;
20 // l=numberOfLocations , c=numberOfCustomers
21 i n t l , c ;
22 vector<double> l ocCost ;
23 vector<vector<double> > servCost ;
24 vector<double> custDemand ;
25 vector<double> l ocCapac i ty ;

28

26 r e adF i l e (inputF i l e , l , c , locCost , locCapacity , servCost , custDemand) ;
27

28 // Create environment
29 Env env (”my l i c ense . s i o ”) ;
30 // c r e a t e customer p a r t i t i o n
31 Par t i t i on part=env . p a r t i t i o n (l , c) ;
32 vector<Term> custDemandTerms ;
33 f o r (i n t i =0; i<c ; i++)
34 custDemandTerms . push back (Term(env , custDemand [i])) ;
35 vector<vector<Term> > servCostTerms (l) ;
36 f o r (i n t j =0; j<l ; j++)
37 f o r (i n t i =0; i<c ; i++)
38 servCostTerms [j] . push back (Term(env , servCost [j] [i])) ;
39 // compute the r e s u l t i n g load per l o c a t i o n
40 vector<Term> locLoad ;
41 f o r (i n t j =0; j<l ; j++) {
42 locLoad . push back (env . sum i f (custDemandTerms , part , j)) ;
43 // en f o r c e the load per l o c a t i o n doesnt exceed i t s capac i ty
44 env . e n f o r c e l e q (locLoad [j] , l ocCapac i ty [j]) ;
45 }
46 // compute c o s t s o f opening the l o c a t i o n s that are being used
47 vector<Term> l o cU t i l i z a t i o nCo s t ;
48 f o r (i n t j =0; j<l ; j++)
49 l o cU t i l i z a t i o nCo s t . push back (env . i f (locLoad [j]>0 ,
50 l ocCost [j] , 0)) ;
51 Term lo ca t i onCos t s=env . sum(l o cU t i l i z a t i o nCo s t) ;
52 //compute the co s t o f s e r v i c i n g the customers
53 // at r e s p e c t i v e l o c a t i o n s
54 vector<Term> l o cServCost s ;
55 f o r (i n t j =0; j<l ; j++)
56 l o cServCost s . push back (env . sum i f (servCostTerms [j] , part , j)) ;
57 Term ass ignmentCosts=env . sum(locServCost s) ;
58 // a s s i gn lower bound on co s t s to 0
59 double t l=a t o i (argv [2]) , bound=0;
60 // d e f i n e ob j e c t i v e term
61 Term to ta lCo s t s=lo ca t i onCos t s+ass ignmentCosts ;
62 // minimize
63 env . minimize (to ta lCos t s , t l , bound) ;
64 // read f i n a l co s t va lue
65 cout << ”Optimized Costs = ” << t o t a lCo s t s . g e t va lu e () << endl ;
66 env . end () ;
67 r e turn 0 ;
68 }

Discrete Capacitated Facility Location with Partitions in Python:

1 de f c f l (i n s t anc e) :
2 # gather in s tanc data
3 l , c , locCost , locCapacity , servCost , custDemand =\
4 r eadIns tance (i n s t ance)
5

6 # Create environment
7 env = skr . Env(” l i c e n s e . s i o ”)
8 # crea t e customer p a r t i t i o n
9 part = env . p a r t i t i o n (l , c)

10 custDemandTerms = env . convert (custDemand)
11 servCostTerms = env . convert (servCost)
12 # compute the r e s u l t i n g load per l o c a t i o n

29

13 locLoad = [env . sum i f (custDemandTerms , part , j)
14 f o r j in range (l)]
15 f o r j in range (l) :
16 # en fo r c e the load per l o c a t i o n doesnt exceed i t s capac i ty
17 env . e n f o r c e l e q (locLoad [j] , l ocCapac i ty [j])
18 # compute c o s t s o f opening the l o c a t i o n s that are being used
19 l o cU t i l i z a t i o nCo s t = [(locLoad [j] > 0) ∗ l ocCost [j]
20 f o r j in range (l)]
21 l o c a t i onCos t s = env . sum(l o cU t i l i z a t i o nCo s t)
22 # compute the co s t o f s e r v i c i n g the customers
23 # at r e s p e c t i v e l o c a t i o n s
24 l o cServCost s = [env . sum i f (servCostTerms [j] , part , j)
25 f o r j in range (l)]
26 ass ignmentCosts = env . sum(locServCost s)
27 # de f i n e ob j e c t i v e term
28 t o t a lCo s t s = lo ca t i onCos t s + ass ignmentCosts
29 # minimize with lower bound 0
30 env . minimize (to ta lCos t s , timeLimit , 0)
31 # read f i n a l co s t va lue
32 pr in t (”Optimized Costs =” , t o t a lCo s t s . g e t va lu e ())
33 env . end ()

6.2 Efficient Boolean Indicators

A crucial modeling tool are efficient Boolean indicators. It is often convenient to
make a term dependent of the value of another. We can achieve this, semanti-
cally correctly, by using if-conditions. Using the Boolean indicators presented in
this section, we can greatly improve computational efficiency, though. The trick
here consists in exploiting that a term having one value obviously cannot also be
equal to another value. The Seeker(TM) Solver does this automatically when the
model uses the concepts Seeker::SwitchCondition and Seeker::IntervalCondition.

6.2.1 Switch Conditions

The SwitchCondition class allows to define aggregators or derive Boolean val-
ues from a conditioned Term. Seeker::Env provides two functions for creating
SwitchCondition objects:

• SwitchCondition Env::switch condition(Term cond, vector<Term>
matches): Returns a SwitchCondition object for the Term ’cond’ for
matching one or more terms provided in the vector ’matches.’

• SwitchCondition Env::switch condition(Term cond, int n): Re-
turns a SwitchCondition object for the Term ’cond’ for matching the values
0 to n-1.

The SwitchCondition object created can be used in two ways. The first is
to create an (efficient) Boolean term:

• Term Env::boolean(SwitchCondition c, int caseIndex): Returns
a term that is true if, and only if, the conditional term underlying the

30

SwitchCondition ’c’ matches the value of the caseIndex’th matching term,
whereby ’caseIndex’ must take a value between 0 and matches.size()-1 or 0
and n-1, depending on which function was used to create SwitchCondition
’c’. In case one or more of the terms involved take floating point values,
their values are considered identical if, and only if, their difference in value
is at most 1e-7.

Consider this excerpt of a larger Seeker(TM) model:

1 // . . .
2 Term a = env . o rd i na l (0 , 3) ;
3 Term b = env . o rd i na l (0 , 3) ;
4 Term c = env . c a t e g o r i c a l (0 , 2) ;
5 vector<Term> matches (5) ;
6 matches [0] = a+b ;
7 matches [1] = 2∗a+b ;
8 matches [2] = a+2∗b ;
9 matches [3] = a−b ;

10 matches [4] = env . abs (matches [3]) ;
11 SwitchCondit ion switch = env . sw i t ch cond i t i on (c , matches) ;
12 vector<Term> boo l s (5) ;
13 f o r (i n t i =0; i <5; i++) {
14 boo l s [i] = env . boolean (switch , i) ;
15 }
16 // . . .

We notice a number of things.

1. The conditional variable ’c’ can only take 3 different values, yet when cre-
ating the SwitchCondition object, we provide 5 potential matches. There
can be fewer, equal, or more potentially matching terms when creating the
switch condition than the underlying conditional term can take values.

2. We notice that the matching terms can take values outside of the range of
the conditional term ’c.’ For example, when a=b=3, matches[0]=6 which
is outside of the range of ’c.’

3. Several matching terms may have the same value, depending on the choice
of decision variable assignment. For example, when a=b=0, all five match-
ing terms have value 0.

All of the above is allowed. However, the user must ensure that, when
creating the Boolean derivatives, the case index is between 0 and 4 (0 and the
number of matches minus 1 in general).

Let us consider some settings for the variables a, b, and c and see the re-
sulting values in the bools vector. The easiest way to think about the ’bools’
vector is this:

bools = [c == a+ b, c == 2 ∗ a+ b, c == a+ 2 ∗ b, c == a− b, c == |a− b|]

a = b = c = 0 → bools = [1, 1, 1, 1, 1]

31

a = b = 0, c = 2 → bools = [0, 0, 0, 0, 0]

a = 0, b = 1, c = 1 → bools = [1, 1, 0, 0, 1]

a = 2, b = 1, c = 1 → bools = [0, 0, 0, 1, 1]

a = 1, b = 1, c = 3 → bools = [0, 1, 1, 0, 0]

Using the second method for obtaining a switch condition is simply a short-
hand for specifying matching terms as below:

1 // . . .
2 vector<int> va lue s (n) ;
3 f o r (i n t i =0; i<n ; i++) va lue s [i]= i ;
4 vector<Term> matches=env . convert (va lue s) ;
5 // . . .

The second way to use switch conditions is in combination with aggregators.
Every Seeker(TM) aggregator ’agg’ comes with a method ’agg if’ which takes,
on top of the terms to be aggregated, a vector of switch conditions and a vector
of case indices.

For example:

• Term sum if(vector<Term> terms, vector<SwitchCondition> con-
ditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the sum of
the terms ’terms’ for which their corresponding switch condition matches
the corresponding case.

For the case when all switch conditions are to match the same case (note:
this may still be a different matching value for each condition!), there is a more
convenient aggregation method:

• Term sum if(vector<Term> terms, vector<SwitchCondition> con-
ditions, int caseIndex): Returns the sum of those terms in ’terms’ for
which the corresponding SwitchCondition object matches its caseIndex’th
case.

Bin Packing with Switch Conditions in C++:

1 #inc lude ”env . hpp”
2 #inc lude <vector>
3 #inc lude <math . h>
4 #inc lude <iostream>
5

6 us ing namespace std ;
7 us ing namespace Seeker ;
8

9 void binPack (i n t numberOfItems , i n t numberOfBins ,
10 i n t binCapacity , i n t ∗ items , double t ime l im i t) {
11 // bu i ld in s t anc e
12 double tota lWeight=0;

32

13 f o r (i n t i =0; i<numberOfItems ; i++)
14 tota lWeight+=items [i] ;
15 i n t lowerBound=c e i l (tota lWeight / binCapacity) ;
16 // c r e a t e model
17 Env env (”my l i c ense . s i o ”) ;
18 vector<Term> itemsData=env . convert (i tems) ;
19 vector<Term> ass ignment (numberOfItems) ;
20 vector<SwitchCondition> cond i t i on s (numberOfItems) ;
21 f o r (i n t i =0; i<numberOfItems ; i++) {
22 ass ignment [i] = env . c a t e g o r i c a l (0 , numberOfBins−1) ;
23 cond i t i on s [i] = env . sw i t ch cond i t i on (ass ignment [i] ,
24 numberOfBins) ;
25 }
26 vector<Term> b inS i z e (numberOfBins) ;
27 vector<Term> binUsed ;
28 f o r (i n t s=0; s<numberOfBins ; s++) {
29 b inS i z e [s]=env . sum i f (itemsData , cond i t i ons , s) ;
30 env . e n f o r c e l e q (b inS i z e [s] , b inCapacity) ;
31 binUsed . push back (env . i f (b in Ident [s] , 1 , 0)) ;
32 }
33 Term obj=env . sum(binUsed) ;
34 cout << ” Ca l l i ng Minimizat ion !\n” ;
35 //minimize f o r t l seconds
36 env . minimize (obj , t ime l imi t , 1 owerBound) ;
37 // read out s o l u t i o n
38 bool f e a s i b l e=true ;
39 f o r (i n t s=0; s<numberOfBins ; s++)
40 i f (b inS i z e [s] . g e t va lu e ()>binCapacity) f e a s i b l e=f a l s e ;
41 i f (f e a s i b l e) cout << ”Number o f Bins used = ”
42 << obj . g e t va lu e () << endl ;
43 e l s e cout << ”No f e a s i b l e s o l u t i o n found\n” ;
44 env . end () ;
45 }

Bin Packing with Switch Conditions in Python:

1 import s e eke r as skr
2 import math
3 import numpy as np
4

5 de f b in pack (numberOfItems , numberOfBins ,
6 binCapacity , items , t ime l im i t) :
7 #bui ld in s t ance
8 tota lWeight = np . sum(items)
9 lowerBound = math . c e i l (tota lWeight / binCapacity)

10 #crea t e model
11 env = skr . Env(”my l i c ense . s i o ”)
12 itemsData = env . convert (i tems)
13 ass ignment = [env . c a t e g o r i c a l (0 , numberOfBins−1)
14 f o r in range (numberOfItems)]
15 cond i t i on s = [env . sw i t ch cond i t i on (ass ignment [i] , numberOfBins)
16 f o r i in range (numberOfItems)]
17 b inS i z e = []
18 binUsed = []
19 f o r s in range (numberOfBins) :
20 b inS i z e . append (env . sum i f (itemsData , cond i t i ons , s))
21 env . e n f o r c e l e q (b inS i z e [s] , b inCapacity)
22 binUsed . append (env . i f (b inS i z e [s]>0 , 1 , 0))

33

23 obj = env . sum(binUsed)
24 pr in t (” Ca l l i ng Minimizat ion ! ”)
25 #minimize f o r t l seconds with lower bound
26 env . minimize (obj , t ime l imi t , lowerBound)
27 #read out s o l u t i o n
28 f e a s i b l e = True
29 f o r s in range (numberOfBins) :
30 i f (b inS i z e [s] . g e t va lu e () > binCapacity) : f e a s i b l e = False
31 i f (f e a s i b l e) :
32 pr in t (”Number o f Bins used =” , obj . g e t va lu e ())
33 e l s e :
34 pr in t (”No f e a s i b l e s o l u t i o n found”)
35 env . end () ;

6.2.2 Interval Conditions

For many applications, it can be useful to check if a given term falls into one
or more given intervals. Based on our discussion of switch conditions above,
interval conditions are simply the analogous concept for ”falls into the interval”
instead of ”is equal to the term.”

• IntervalCondition Env::interval condition(Term cond): Returns
an IntervalCondition object for the Term ’cond.’

The IntervalCondition object created can be used in two ways. The first is
to create an (efficient) Boolean term:

• Term Env::boolean(IntervalCondition c, double low, double high):
Returns a term that is true if, and only if, the conditional term underlying
the IntervalCondition ’c’ is in [low,high].

Let us consider a short excerpt of a model using interval conditions.

1 // . . .
2 vector<double> lows = {−0.1 , 0 . 2 , −0.4} ;
3 vector<double> highs = {0 . 4 , 0 . 3 , 0 . 6 } ;
4 Term x = env . cont inuous (0 , math . p i) ;
5 Term switch = env . i n t e r v a l c o nd i t i o n (env . cos (x)) ;
6 vector<Term> boo l s (3) ;
7 f o r (i n t i =0; i <3; i++) {
8 boo l s [i] = env . boolean (switch , lows [i] , h ighs [i]) ;
9 }

10 // . . .

This code snippet defines a vector of Booleans terms:

bools = [cos(x) ∈ [−0.1, 0.4], cos(x) ∈ [0.2, 0.3], cos(x) ∈ [−0.4, 0.6]]

Once more, we gain efficiency provided that the condition term (in our case,
cos(x)) has to be checked against membership in several fixed-size intervals.

The second way of using interval conditions is by using them in ’agg if’
definitions of aggregation terms. For example:

34

• Term sum if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the sum of the terms ’terms’ for which their corresponding interval condi-
tion term falls into the corresponding interval [lows[i], highs[i]].

For the case when all interval conditions are to fall into the same interval
(note: we will only gain any efficiency in this case provided that there are other
aggregators using the same interval conditions but different intervals), there is
a more convenient aggregation method:

• Term sum if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the sum of those terms
in ’terms’ for which the corresponding interval condition term falls into
[low, high].

Consider the excerpt of a machine scheduling model where we need to enforce
that no more than a given load is executed on a machine at the same time.

1 // . . .
2 vector<Term> l oads = env . convert (taskLoads) ;
3 vector<Term> t a skS ta r t (numTasks) ;
4 vector<In te rva lCond i t i on> taskConds (numTasks) ;
5 f o r (i n t i =0; i<numTasks ; i++) {
6 a s s e r t (maxTime>=durat ion [i]) ;
7 t a skS ta r t [i] = env . o rd i na l (0 , maxTime − durat ion [i] + 1) ;
8 taskConds [i] = env . i n t e r v a l c o nd i t i o n (ta skS ta r t [i]) ;
9 }

10 f o r (i n t t=0; t<=maxTime ; t++) {
11 vector<double> lows (numTasks) ;
12 vec to r (double> highs (numTasks) ;
13 f o r (i n t i =0; i<numTasks ; i++) {
14 lows [i] = t − durat ion [i] + 1 ;
15 highs [i] = t ;
16 }
17 Term load = env . sum i f (loads , taskConds , lows , h ighs) ;
18 env . e n f o r c e l e q (load , maxLoad) ;
19 }
20 // . . .

6.3 Permutations and Convex Combinations

Apart from categorical, ordinal, and continuous variables, Seeker(TM) also pro-
vides permutations and convex combinations.

6.3.1 Permutations

The environment method

• Permutation Env::permutation(int n)

creates a Permutation object from which two different sets of ordinal decision
variables, which each form a permutation, can be derived using the functions

35

• vector<Term> Permutation::get permutation(void): returns the
values of n integer variables in [0, . . . , n−1] which are all different, thereby
forming a permutation.

• vector<Term> Permutation::get permutation inverse(void): re-
turns the values of n integer variables in [0, . . . , n−1] which are all different,
thereby forming a permutation, which is the inverse of the permutation
provided by the first function.

The vector returned by the second function is often very helpful when the
new position of an element under the first permutation needs to be found quickly.
A classical example for using permutations is in the context of the travelling
salesperson problem.

1 // . . .
2 vector<vector<Term> > di s tanceMatr ix = env . convert (d i s tanceMatr ix) ;
3 Tensor d i s t ance = env . t en so r (d i s tanceMatr ix) ;
4 Permutation tourObject = env . permutation (n) ;
5 vector<Term> tour = tourObject . get permutat ion () ;
6 vector<Term> l e gD i s tance (n) ;
7 f o r (i n t i =0; i<n ; i++)
8 l e gD i s tance [i] = env . index ([tour [i] , tour [(i +1) % n]]
9 , d i s t anc e) ;

10 Term tourLength = env . sum(l e gD i s t anc e s) ;
11 env . minimize (tourLength , 60 , 0) ;
12 // . . .

6.3.2 Convex Combinations

Using the environment method

• vector<Term> Env::convex combination(int n)

we can easily create a set of n non-negative continuous decision variables which
always sum to 1 (which implies that each variable lives in the interval [0, 1]).
This construct is more computationally efficient than creating n non-negative
continuous variables and adding a constraint that their sum must equal 1.

6.4 Sortings and Quantiles

Another powerful concept that Seeker(TM) provides are sortings and quantiles
which can be used to formulate highly complex problems with great simplicity.

6.4.1 Sortings

Seeker(TM) provides three different types of sortings, for terms whose values are
rounded to the nearest integers first, for floating point valued terms, and partial
sortings in case only the top k or bottom k values need to be computed in order.
The environment functions for creating the corresponding Sorting objects are:

36

• Sorting Env::int sorting(vector<Terms> terms): returns a Sorting
object which will first round all values of the terms in the vector ’terms’.

• Sorting Env::float sorting(vector<Terms> terms): returns a Sort-
ing object which will sort the terms from smallest to largest.

• Sorting Env::partial sorting(vector<Term> terms, int k, bool
maximize): returns a Sorting object which will sort the top (if ’max-
imize’ is true, otherwise: bottom) k values of the terms in the vector
’terms.’ The order returned is from largest to smallest when ’maximize’
is true, and from smallest to largest otherwise.

The Sorting object returned by the function can be used to obtain three
different vectors of terms:

• vector<Term> Sorting::get(void): returns the vector of values sorted
from smallest to largest, unless if the Sorting instance was created us-
ing the ’partial sorting’ environment method with the parameter ’maxi-
mize=true.’

• vector<Term> Sorting::get permutation(void): returns the vector
of positions in {0, 1, . . . , n−1} in the original vector ’terms’ that was used
to create the Sorting object.

• vector<Term> Sorting::get permutation inverse(void): returns
the vector of positions in {0, 1, . . . , n−1} in the sorted list with respect to
the original terms in the vector ’term’ that was used to create the Sorting
object

The following code excerpt illustrates use and semantic invariants.

1 // . . .
2 i n t n = inputNumbers . s i z e () ;
3 vector<Term> numbers = env . convert (inputNumbers) ;
4 Sor t ing s o r t e r = env . f l o a t s o r t i n g (numbers) ;
5 vector<Term> s o r t = s o r t e r . get () ;
6 vector<Term> o r i g i n a l P o s i t i o n = s o r t e r . get permutat ion () ;
7 vector<Term> rank = s o r t e r . g e t pe rmuta t i on inve r s e () ;
8

9 cout << ”Min : ” << s o r t [0] . g e t va lu e () << endl ;
10 cout << ”Max: ” << s o r t [n−1] . g e t va lu e () << endl ;
11 cout << ”ArgMin : ” << o r i g i n a l P o s i t i o n [0] . g e t va lu e () << endl ;
12 cout << ”ArgMax : ” << o r i g i n a l P o s i t i o n [n−1] . g e t va lu e () << endl ;
13 cout << ”The th i rd number in the o r i g i n a l l i s t i s the ”
14 << rank [2] . g e t va lu e () << ” th sma l l e s t number o v e r a l l . ”
15 // . . .

Finally, please note that the vectors returned by a Sorting object that was
created using the ’partial sorting’ environment function all have the same length
as the original input vector ’terms.’ The original values will be sorted up to the
’k’th smallest (or largest, if ’maximize’=true), all other values, positions, and
ranks will be arbitrary and may not reflect the original ordering.

37

6.4.2 Quantiles

Quantiles are the natural counterpart to sortings, but can be more efficient
provided that we only need to keep track of one or very few values, such as, for
example, the median, or the 25% quantile of a list of terms. When you need to
track a lot of these values, using sortings may be more computationally efficient.

Seeker(TM) provides four different functions for tracking quantiles:

• vector<Term> Env::ith smallest value(Term i, vector<Term>
terms): Returns a vector with two terms. The first holds the value of
the i’th smallest value in the list. The second gives the position of the
i’th smallest value in the list. Note that the term ’i’ may vary but must
always evaluate to an integer number in {0, 1, . . ., n − 1} when n is the
length of the vector ’terms.’ If the value for ’i’ is fixed, you may also use

• vector<Term> Env::ith smallest value(int i, vector<Term>
terms): As above, but with a constant index ’i’.

The use of the functions ’ith largest value’ follows analogously.

6.5 Logic Combinations of Constraints

In Section 4.1.4, we previously introduced ways to create and directly enforce
constraints. Alternatively, you can also first create constraints, create logical
combinations of constraints, and then enforce these.

Note: The creation of a constraint has no effect on the model. To
be considered by Seeker(TM), the constraint must be posted to the
model fist by using ”Env::enforce”!

6.5.1 Constraint Generation

Seeker(TM) provides the following methods for creating constraints:

• Constraint Env::leq(Term l, Term r): Creates a constraint that is
true if, and only if, for the values of the terms l and r it holds that l ≤ r.

• Constraint Env::lt(Term l, Term r): Creates a constraint that is true
if, and only if, for the values of the terms l and r it holds that l < r.

• Constraint Env::geq(Term l, Term r): Creates a constraint that is
true if, and only if, for the values of the terms l and r it holds that l ≥ r.

• Constraint Env::gt(Term l, Term r): Creates a constraint that is true
if, and only if, for the values of the terms l and r it holds that l > r.

• Constraint Env::eq(Term l, Term r): Creates a constraint that is true
if, and only if, for the values of the terms l and r it holds that l = r.

• Constraint Env::neq(Term l, Term r): Creates a constraint that is
true if, and only if, for the values of the terms l and r it holds that l ̸= r.

38

Seeker(TM) provides the following functions for the creation of logic combi-
nations of constraints:

• Constraint Env::and (vector<Constraint> constraints): Creates a
constraint that is true if, and only if, all constraints in ”constraints” are
true.

• Constraint Env::or (vector<Constraint> constraints): Creates a
constraint that is true if, and only if, at least one constraint in ”con-
straints” is true.

Finally, to post a constraint to the environment, use

• void Env::enforce(Constraint constraint): After calling this func-
tion, Seeker(TM) will consider assignments of values to decision variables
feasible only of the constraint ”constraint” evaluates to ”true” under the
assignment.

6.5.2 2D Rectangle Packing in Python

We demonstrate the use of logic combinations of constraints using the exam-
ple of 2-dimensional packing of rectangles. Note how the constraints that no
two rectangles overlap is realized by creating disjunctions of lower-or-equal con-
straints.

1 import s e eke r as skr
2 import numpy as np
3

4 numberSquares = 20
5 np . random . seed (13)
6 widths = [np . random . rand () / 2 f o r in range (numberSquares)]
7 he i gh t s = [np . random . rand () / 2 f o r in range (numberSquares)]
8

9 env = skr . Env(” l i c e n s e . s i o ”)
10 x = [env . cont inuous (0 , numberSquares)
11 f o r in range (numberSquares)]
12 y = [env . cont inuous (0 , numberSquares)
13 f o r in range (numberSquares)]
14 r o t a t e = [env . c a t e g o r i c a l (0 , 1) f o r in range (numberSquares)]
15 w = env . convert (widths)
16 h = env . convert (he i gh t s)
17 trueW = [env . i f (r o t a t e [i] , h [i] , w[i])
18 f o r i in range (numberSquares)]
19 trueH = [env . i f (r o t a t e [i] , w[i] , h [i])
20 f o r i in range (numberSquares)]
21 r i gh tx = [x [i] + trueW [i] f o r i in range (numberSquares)]
22 top = [y [i] + trueH [i] f o r i in range (numberSquares)]
23 minWidth = env . min (x)
24 maxWidth = env .max(r i gh tx)
25 minHeight = env . min (y)
26 maxHeight = env .max(top)
27 areaWidth = maxWidth − minWidth
28 areaHeight = maxHeight − minHeight
29 to ta lArea = areaWidth ∗ areaHeight

39

30 f o r i in range (numberSquares − 1) :
31 f o r j in range (i + 1 , numberSquares) :
32 above = env . geq (y [i] , top [j])
33 below = env . l eq (top [i] , y [j])
34 l e f t = env . l eq (r i gh tx [i] , x [j])
35 r i g h t = env . geq (x [i] , r i gh tx [j])
36 no over lap = env . o r ([above , l e f t , r i ght , below])
37 env . en f o r c e (no over lap)
38

39 env . minimize (tota lArea , 60)
40 pr in t (”Total Area” , to ta lArea . g e t va lu e ())
41 env . end ()

6.6 User-Defined Terms

Sometimes, rather than modelling all effects that the decisions to be optimized
would have using Seeker(TM)-provided terms, it can sometimes be more conve-
nient to define your own terms.

6.6.1 Creating New Terms and Functions

To create a new term or a new function, we first need to create a class that
will be derived from a Seeker(TM) base class and which will overload certain
functions that Seeker(TM) needs so that it can perform its optimization.

To create new term, i.e., a function that takes a number of values as input and
outputs a single new value, we will derive from the base class ”UserEvalTerm.”

1 c l a s s UserEvalTerm
2 {
3 pub l i c :
4 UserEvalTerm (void) {}
5 v i r t u a l double eva luate (std : : vector<double> va lue s) = 0 ;
6 v i r t u a l double i n c e va l u a t e (std : : vector<int> va lue Ind i c e s ,
7 std : : vector<double> oldValues ,
8 std : : vector<double> va lue s) ;
9 v i r t u a l bool incrementa l (void) const = 0 ;

10 } ;

As can be seen from this declaration, when deriving a new class from ”UserEval-
Term,” the user must overload the functions ”evaluate” and ”incremental.” In
”evaluate,” the user implements the desired function. As input, the inputs
to the function are given in a vector. The function then returns the desired
output. The implementation of ”incremental” consists simply in returning
’true’ or ’false.’ This functions informs Seeker(TM) on whether the function
”inc evaluate” was also overloaded by the user. If ”incremental” simply returns
”false,” then nothing else is required.

If ”incremental” returns true, then ”inc evaluate” should also implement the
function, but it receives the inputs slightly differently. Namely, Seeker(TM) tells
”inc evaluate” the indices of all inputs that have changed when compared to the
last call to this function from the same user-defined term. For each of these

40

changed inputs, Seeker(TM) then provides the old and the new values. This
allows the user to implement a faster, incremental version of their function.

Note: When having ”incremental” return ’true’ and implement-
ing ”inc evaluate,” each user-defined term that is created should be
provided with its own class object!

Sometimes, we want our self-defined functions to return an entire vector of
values instead of just one. For this case, Seeker(TM) provides the base class
”UserEvalVector.”

1 typede f std : : pa ir<std : : vector<int >, s td : : vector<double> > IncPa i r ;
2 c l a s s UserEvalVector
3 {
4 pub l i c :
5 UserEvalVector (void) {}
6 v i r t u a l std : : vector<double> recompute (std : : vector<double> va lue s)

= 0 ;
7 v i r t u a l IncPa i r inc recompute (std : : vector<int> va lue Ind i c e s ,
8 std : : vector<double> oldValues ,
9 std : : vector<double> va lue s) ;

10 v i r t u a l bool incrementa l (void) const = 0 ;
11 } ;

The use of this base class works exactly analogously to ”UserEvalTerm,”
with the only difference that ”inc recompute” returns a pair of two vectors,
the first providing the indices (numbered starting at 0) of outputs that have
changed, and the second vector reflecting the corresponding new output values.

6.6.2 Adding User Terms to the Model

After deriving a new class from ”UserEvalTerm” or ”UserEvalVector,” we can
now define personalized terms and functions for our Seeker(TM) model. Seeker(TM)

provides the following two functions to define your own terms or functions:

• Term Env::user defined term(std::vector<Term> terms, UserEval-
Term& userEval): Creates a user-defined term. The values of the
terms in ”terms” will be provided to the overloaded function ”double
UserEvalTerm::evaluate(vector<double>)” which implements the user-de-
fined function.

• vector<Term> Env::user defined term(std::vector<Term> terms,
UserEvalVector& userEval, int numberOfTargets): Creates a user-
defined vector function. The values of the terms in ”terms” will be pro-
vided to the overloaded function ”vector<double> UserEvalVector::evalu-
ate(vector<double>)” which returns a vector of size ”numberOfTargets”
and implements the user-defined function.

Note: When creating the objects of the overloaded classes UserEval-
Term and UserEvalVector, care must be taken that these objects per-
sist until the Seeker(TM) environment is ended. Otherwise, Seeker(TM)

will make calls to these objects which may result in runtime failures.

41

6.6.3 A Continuous Optimization Example

Given n ∈ N, we will maximize the following, challenging function over n + 1
continuous variables x0, . . . , xn ∈ [0, 1]:

f(x) =

n−1∑
i=0

xi cos((xi − xi+1)
2 − i+ 1

n+ 1
)− xi+1 arccos(|xi − xi+1| −

i+ 1

n+ 1
).

1 import s e eke r as skr
2 from math import cos , acos , f abs
3 from numpy import random
4

5 c l a s s MyTerm(skr . UserEvalTerm) :
6 de f i n i t (s e l f , alpha) :
7 skr . UserEvalTerm . i n i t (s e l f)
8 s e l f . alpha = alpha
9 de f incrementa l (s e l f) :

10 r e turn Fa l se
11 de f eva luate (s e l f , va lue) :
12 x1 = value [0]
13 x2 = value [1]
14 d i f f = fabs (x1 − x2)
15 r e turn x1 ∗ cos (d i f f ∗ d i f f − s e l f . alpha)
16 − x2 ∗ acos (d i f f − s e l f . alpha)
17

18 n = 30
19 alpha = [(i + 1) / (n + 1) f o r i in range (n)]
20 env = skr . Env(” l i c e n s e . s i o ”)
21 x = [env . cont inuous (0 , 1) f o r in range (n + 1)]
22 summands = [env . u s e r de f i n ed t e rm ([x [i] , x [i + 1]] ,
23 MyTerm(alpha [i]))
24 f o r i in range (n)]
25 obj = env . sum(summands)
26 env . s e t r e p o r t (5)
27 env . s e t e x p l o r a t i o n s i z e (0 . 2 , 0 . 7)
28 env . s e t r e s t a r t l i k e l i h o o d (0 . 0 1)
29 env . maximize (obj , 60)
30 pr in t (”X” , [x [i] . g e t va lu e () f o r i in range (n)])
31 pr in t (”Obj” , obj . g e t va lu e () , f l u s h=True)
32 env . end ()

42

7 Multi-Objective Optimization

Seeker(TM) offers an optimization mode for true, non-hierarchical multi-objective
optimization. In the literature, this often results in providing a Pareto frontier of
(near) non-dominated solutions that the user can then mine further. However,
this is typically not what is needed in deployed applications. Instead, a sin-
gle solution from the frontier needs to be provided which achieves a reasonable
trade-off between all key performance metrics which all have equal priority.

To provide such an important practical functionality, there is obviously a
need for the user to provide additional information which allows Seeker(TM) to
judge when trading a loss in one objective is worth accepting in return for a gain
in another. Seeker(TM) therefore requires the user to provide two thresholds for
each objective.

The first threshold tells Seeker(TM) when the respective objective function
has reached a ”fair” performance. The solver will first strive to get all objectives
to achieve this level of performance by maximizing the number of objectives that
reach fair performance. That is to say, unless the solver can find a solution that
gets all objectives into fair range, it will try to get as many of them to do
at least fairly at the cost of leaving the other objectives in a very poor state.
Therefore, the fair values should be chosen such that achieving joint ’fair’-ness
for all objectives is an attainable goal.

The second threshold tells Seeker(TM) when the respective objective has
reached ”excellent” performance. From here on out, an increase in performance
is still desirable, but a further increase results in diminished additional benefits
for the use case.

The range between the fair and the excellent threshold inform Seeker(TM)

about the relative value of achieving one unit of better performance for each
objective. The greater the range between fair and excellent, the less value there
is to one unit of improvement. At the same time, Seeker(TM) will consider it of
greater importance to achieve performance solidly within the fair to excellent
range for all objectives than to get one of them to reach excellence.

The multi-objective optimization function then basically works in the same
manner as the ’minimize’ and ’maximize’ functions from Section 4.1.3.

• double multi objective(vector<Term> objectives, vector<double>
fair, vector<double> excellent, vector<bool> directionMax, dou-
ble time): Optimizes the target terms ”objectives” for ”time” seconds.
The direction of the optimization of the respective objective is maximiza-
tion if, and only if, the corresponding entry in ”directionMax” is true. For
each objective, the respective values in ”fair” and ”excellent” must not be
equal and be in the correct order. For an objective to be maximized, that
value in ”excellent” is expected to be strictly greater than that in ”fair.”
For minimization, Seeker(TM) analogously expects the value in ”excellent”
to be strictly lower than that the ”fair” value.

43

The use of multi-objective optimization is illustrated by the following exam-
ple.

1 import s e eke r as skr
2 env = skr . Env(” l i c e n s e . s i o ”)
3 x = env . cont inuous (0 , 2 , 2)
4 y = env . cont inuous (0 , 3 , 1)
5 env . e n f o r c e l e q (2∗x+y , 5)
6 env . e n f o r c e l e q (y−x , 1)
7 ob j s = [env . s q r t (env . sqr (x)+env . sqr (y)) , −0.03∗x−0.01y]
8 f a i r = [1 . 5 , −0.05]
9 e x c e l l e n t = [3 , −0.08]

10 direct ionMax = [True , Fa l se]
11 env . mu l t i o b j e c t i v e (objs , f a i r , e x c e l l e n t , directionMax , 1)
12 pr in t (” ob j s ” , [o . g e t va lu e () f o r o in ob j s])
13 pr in t (”X” , x . g e t va lu e () , ” Y” , y . g e t va lu e ())
14 env . end ()

44

8 Nested Linear Optimization

Frequently, optimization problems become computationally tractable after some
decisions have been taken. Think, e.g., of a network design problem where we
first decide on what nodes to open, and the we need to route some minimum-cost
flow. In that case, it can be more efficient to use a nested linear optimization
term to set the remaining variables.

8.1 Linear Programming Terms

Seeker(TM) provides an integrated linear programming solver that can be used
to solve nested linear programming problems. The corresponding function is:

• LP Env::lp(vector<Term> objTerms, vector<Term> varBounds,
vector<Term> rowBounds, vector<vector<Term>> matrix, bool
maximize): Given a vector with n terms that specify the objective func-
tion, a vector with 2n variable bounds, whereby two consecutive values
specify first the lower bound and then the upper bound on each variable,
a vector with 2m row bounds, where again the even entries give the lower,
and the odd entries specify the upper bounds for the linear constraints, a
matrix that consists of m times n entries (i.e., in row-wise representation),
and a Boolean flag indicating whether the linear solver is to maximize or
minimize the objective, Seeker(TM) returns an LP object from which var-
ious terms can be derived.

Note that the function above takes vectors of Terms as input, which allows
the user to make the objective, the bounds, and even the constraint matrix
dependent on decisions to be optimized. The LP class provides the following
functions:

• Term LP::get solution status(void): This function should always be
called. It returns a term that reflects the value of the optimization. The
term is 1 in case the LP could be solved to optimality. The value is 0 if
the LP has no feasible solution. The value is 2 if the LP is unbounded.
The value is -1 in case the solver had a problem.

• Term LP::get objective(void): In case the status returned above is 1,
the term returned by this function reflects the optimal objective function
value.

• vector<Term> LP::get solution(void): In case the status returned
above is 1, the vector of terms returned by this function give the values of
an optimal solution.

• vector<Term> LP::get row sums(void): In case the status returned
above is 1, the vector of terms returned by this function equal the product
Ax, where A is the current matrix of the LP, and x is the optimal solution.

45

• Term LP::get dual status(void): This function should always be used
before any of the functions below are utilized. It returns a term that
reflects the status of the dual solution. Particularly, the term returned is
true if, and only if, the LP solver was able to find a valid dual solution.

• vector<Term> LP::get row duals(void): In case the dual status re-
turned above is true, the vector of terms returned by this function give
the row duals.

• vector<Term> LP::get column duals(void): In case the dual status
returned above is true, the vector of terms returned by this function give
the column duals.

8.2 Linear Constraints Doubling in Seeker(TM)

Unless the linear program is always soluble with an optimal solution, it will
be important to inform Seeker(TM) when this is not the case. Typically, this
means to forbid that the LP status if anything but 1. However, just posting
this constraint to Seeker(TM) does not inform the solver when it is getting closer
to setting the other variables in the model in such a way that the LP becomes
more feasible. To give the solver this kind of gradient-like information, it is
strongly suggested to post constraints Lr ≤ Ax ≤ Ur as well as Lv ≤ x ≤
Uv to Seeker(TM) directly, where Lr, Ur represent the row bounds, and Lv, Uv

represent the variable bounds.

8.3 Non-Linear Optimization With Nested LP

Consider the following problem: Maximize α + y such that

α

2
+

α

β
+ β ≤ 5

−αx+ y ≤ 1

α

2− β

3
x+ y ≤ 4

with α, β ∈ [1, 5] and x, y ∈ [0, 5].
We note that, once α and β are set, the remaining problem is a simple linear

program. We can therefore formulate this problem as follows:

46

1 import s e eke r as skr
2 env = skr . Env(” l i c e n s e . s i o ”)
3 alpha = env . cont inuous (1 , 5)
4 beta = env . cont inuous (1 , 5)
5 lpObj = env . convert ([0 , 1])
6 lpVarBounds = env . convert ([0 , 5 , 0 , 5])
7 noBound = env . convert (−1e5)
8 lpRowBounds = [noBound , 1 / alpha , noBound , env . convert (4)]
9 lpMatrix = [[− alpha , env . convert (1)] ,

10 [2 − beta / 3 , env . convert (1)]]
11 lp = env . lp (lpObj , lpVarBounds , lpRowBounds , lpMatrix , True)
12 env . en f o r c e eq (lp . g e t s o l u t i o n s t a t u s () , 1)
13 obj = lp . g e t o b j e c t i v e () + alpha
14 env . e n f o r c e l e q (alpha / 2 + alpha / beta + beta , 5)
15 env . maximize (obj , 1)
16 pr in t (”Alpha” , alpha . g e t va lu e () , ” Beta” , beta . g e t va lu e ())
17 l pSo l u t i on = lp . g e t s o l u t i o n ()
18 pr in t (”LP So lu t i on ” , [v . g e t va lu e () f o r v in l pSo lu t i on])
19 pr in t (” P r o f i t ” , obj . g e t va lu e ())
20 pr in t (env . ge t number eva luat ions ())
21 env . end ()

In this example, and in general, please note that the linear program can
and will be called with all kinds of settings to α and β, including infeasible
settings that violate the Seeker(TM) constraints on these variables.

47

9 Stochastic Optimization

One of the hallmarks of Seeker(TM) is its ability to optimize decisions given
uncertain data.

9.1 Environment Creation and Stochastic Parameters

To use the stochastic version of Seeker(TM), simply set the Boolean flag when
creating the environment:

• Env::Env(string license, bool stochastic): Constructor. Creates the
Seeker(TM) environment, provided a valid license file name is given. When
”stochastic” is ”true,” an environment is created that handles stochastic
data in models as well.

There are two parameters that govern the resolution and evaluation speed
of stochastic models. To set them, use the following function:

• Env::set stochastic parameters(int resolution, double speed): Even
though this is not exactly how Seeker(TM) works, you may think of the
”resolution” parameter as the number of stochastic ”scenarios,” whereby
all ”scenarios” are considered equally likely. This parameter thereby de-
termines the smallest event probability that Seeker(TM) will be able to
consider, hence the name ”resolution.” The second parameter ”speed”
has to be set in the interval [0, 1] and affects the speed and accuracy
with which Seeker(TM) attempts to assess the model. Generally speaking,
Seeker(TM) will need more time per evaluation if the speed is set closer to
0 and less time when set closer to 1 (at the cost of larger approximation
errors).

9.2 Creating Stochastic Data Terms

To add stochastic data to your model, Seeker(TM) provides the following func-
tions:

• Term Env::continuous uniform(double low, double high): Returns
a data point that takes a uniformly random value in the interval [low, high].

• Term Env::discrete uniform(double low, double high): Returns a
data point that takes a uniformly random integer value in the interval
[low, high].

• Term Env::continuous exponential(double lambda, double low,
double high): Returns a data point that takes a non-negative value
sampled according to the exponential probability distribution with density
f(x) = λe−λx for x ≥ 0 and f(x) = 0, otherwise. The parameter ”lambda”
must be positive. If the value sampled by the distribution falls out of the
specified range [low, high], then the value returned will equal the closest
number within that interval.

48

• Term Env::discrete exponential(double lambda, double low, dou-
ble high): Returns a data point that takes a non-negative integer value
sampled according to the exponential probability distribution with den-
sity f(x) = λe−λx for x ≥ 0 and f(x) = 0, otherwise. The parameter
”lambda” must be positive. The value sampled by the distribution is first
rounded down and then, should it fall out of the specified range [low, high],
then the value returned will equal the closest integer number within that
interval. Note: Since Seeker(TM) always rounds down the sampled con-
tinuous values, this function can also be understood as creating a random
Term that follows the geometric distribution.

• Term Env::bernoulli(double prob): Creates a stochastic Term with
that takes random value 1 with probability ”prob” and 0, otherwise.

• Term Env::categorical distribution(vector<double> weights, vec-
tor<double> values): Creates a Term that takes a random value in
”values” according to the normalized distribution of the non-negative
weights in the vector ”weights.”

• Term Env::binomial(double p, long n): Creates a random Term that
takes random integer values in the interval [0, n] according to the binomial
distribution with density f(k) =

(
n
k

)
pk(1− p)n−k.

• Term Env::poisson(double lamba, double high): Creates a Term
that takes random non-negative integer values according to the Poisson

distribution with density f(k) = λke−λ

k! . If the value sampled by the
distribution is greater than ”high”, then the value returned will equal the
largest integer lower or equal ”high.”

• Term Env::normal(double mu, double sigma, double low, double
high): Creates a Term that takes random values according to the Normal

distribution with density f(k) = 1√
2π

e−
1
2 (

x−µ
σ)

2

. If the value sampled by

the distribution falls out of the specified range [low, high], then the value
returned will equal the closest number within that interval.

• Term Env::gamma(double shape, double scale, double high):
Creates a Term that takes random values according to the Gamma distri-
bution with density f(k) = 1

Γ(k)Θk x
k−1e−

x
Θ , whereby k > 0 is the shape

parameter and Θ > 0 is the scale parameter. If the value sampled by the
distribution is greater than ”high”, then the value returned will equal the
largest integer lower or equal ”high.”

9.3 User-Defined Distributions

The above functions generate some of the most commonly used random Terms.
However, there are times when our model depends on data that we observe in
the world which appears to be generated from a different distribution. In this

49

case, we may wish to use the historic data directly, or derive a statistical model
from this data, which allows us to sample from the inferred distribution.

Moreover, we often face a situation where multiple stochastic data points
needed for our optimization model are not independent but somewhat corre-
lated. In this case, we want Seeker(TM) to consider ”scenarios” where the values
for these respective data points are drawn from a joint distribution, rather than
independently from one another.

As these needs arise, Seeker(TM) provides the following two functions.

• Term Env::user distribution(UserDistribution& ud): Returns a
stochastic Term that takes random values according to the user-defined
distribution ”ud.” The user needs to create a class that derives from
UserDistribution and overload a single function vector<double> sam-
ple n(int n) which will return n samples from the distribution. The max-
imum number n that Seeker(TM) will ask for is given by the parameter
”resolution” (see Section 9.1).

• vector<Term> Env::user vector distribution(UserVectorDistribu-
tion& ud): Returns a vector of stochastic Terms that take random values
according to the joint user-defined distribution ”ud.” The user needs to
create a class that derives from UserVectorDistribution and overload a
single function vector<vector<double>> sample n(int n) which will re-
turn n samples from the joint distribution. The maximum number n that
Seeker(TM) will ask for is given by the parameter ”resolution” (see Sec-
tion 9.1).

9.4 Solution-Dependent Distributions

For some real-world problems, the stochasticity of some data Terms may depend
on the very decisions that we are aiming to optimize. Consider the example
where the demand for a product stochastically depends on the price we set
for this product, which is one of the decision variables in the model. Rather
than using a deterministic function for deriving the demand from the price,
Seeker(TM) allows the user to express that the demand is, in fact, an estimate
that comes with uncertainty. Seeker(TM) provides the following two functions:

• Term Env::user defined stochastic term(vector<Term> features,
UserStochTerm& ust): Returns a stochastic Term that takes random
values according to the user-defined distribution ”ust” which depends on
the current values of the deterministic terms in ”features.” Note: The
terms in ”features” cannot themselves be stochastic terms.

The user needs to create a class that derives from UserStochTerm and
overload a single function vector<double> sample n(vector<double> fea-
tures, int n) which will return n samples from the posterior distribution
given the feature values. The maximum number n that Seeker(TM) will
ask for is given by the parameter ”resolution” (see Section 9.1).

50

• vector<Term> Env::user defined stochastic vector(vector<Term>
features, UserStochVector& usv, int numberTargets): Returns a
vector of ”numberTargets” stochastic Terms that take random values ac-
cording to the joint user-defined distribution ”usv” which depends on the
current values of the deterministic terms in ”features.” Note: The terms
in ”features” cannot themselves be stochastic terms.

The user needs to create a class that derives from UserStochVector and
overload a single function vector<vector<double>> sample n(vector<dou-
ble> features, int n) which will return n vector samples from the joint
posterior distribution given the feature values. The maximum number n
that Seeker(TM) will ask for is given by the parameter ”resolution” (see
Section 9.1).

9.5 Aggregation

Terms generated by any of the functions above are stochastic. This means
that, within Seeker(TM), they do not have one deterministic value. You can
use these terms to derive new terms, for example by using term operators or
term aggregators. It does not matter whether the terms that a stochastic term
is combined with are themselves stochastic or not. However, the result of the
combination will always be a non-deterministic, stochastic term.

Now, terms that appear as part of the objective function are required to be
deterministic. This means that we will require methods to turn a stochastic
term into a deterministic term. This is achieved by aggregation. The most
common way of aggregating is by considering the expected value of a stochastic
term, but there are many more. In the following, we list the aggregators that
Seeker(TM) provides:

• Term Env::aggregate mean(Term source): Returns the estimated
arithmetic mean value of the stochastic term ”source.”

• Term Env::aggregate geometric mean(Term source): Returns the
estimated geometric mean of the stochastic term ”source.”

• Term Env::aggregate variance(Term source): Returns the estimated
variance of the stochastic term ”source.”

• Term Env::aggregate aav(Term source): Returns the estimated mean
of the absolute values of the stochastic term ”source.”

• Term Env::aggregate rmsv(Term source): Returns the root of the
estimated mean of the square values of the stochastic term ”source.”

• Term Env::aggregate stdev(Term source): Returns the estimated
standard deviation of the stochastic term ”source.”

• Term Env::aggregate quantile(Term source, double ratio, bool
maximize): Returns the estimated ”ratio”-quantile of the stochastic term

51

”source.” For example, if ”ratio” = 0.75, then the term returned by this
function would provide an estimate of the 75% quantile of the distribution
of ”source.” If ”maximize” is false, we would expect 75% of values of
”source” to be smaller than this quantile. If ”maximize” is true, we would
expect 75% of values of ”source” to be larger than this quantile.

• Term Env::aggregate relative frequency geq(Term source, Term
threshold): Returns the estimated probability mass of the stochastic
”source” term taking a value that is greater or equal than the deterministic
term ”threshold.”

• Term Env::aggregate relative frequency leq(Term source, Term
threshold): Returns the estimated probability mass of the stochastic
”source” term taking a value that is lower or equal than the deterministic
term ”threshold.”

• Term Env::aggregate relative frequency eq(Term source, Term
threshold): Returns the estimated probability mass of the stochastic
”source” term taking a value that equals that of the deterministic term
”threshold.”

• Term Env::aggregate min(Term source): Returns the estimated min-
imum value of the stochastic term ”source.”

• Term Env::aggregate max(Term source): Returns the estimated max-
imum value of the stochastic term ”source.”

• Term Env::aggregate or(Term source): Returns a term that is true
if and only if the stochastic term ”source” is estimated to assume non-zero
values.

• Term Env::aggregate and(Term source): Returns a term that is true
if and only if the stochastic term ”source” is estimated to assume only
non-zero values.

9.6 Constraints

You can absolutely define constraints over stochastic terms. However, if you
enforce a constraint over one or more stochastic terms, you require that the
solver search for a solution that satisfies this constraint for all scenarios. You
may therefore want to aggregate terms before using them in constraints.

52

10 Stochastic Optimization Examples

We demonstrate the use of the stochastic modelling capabilities of Seeker(TM)

by means of a couple of examples.

10.1 Monty Hall Problem

In the famous Monty Hall problem, a candidate in a game show is asked to pick
one of three possible doors. Behind one of them is a car, behind the other two
a goat. After picking a door, one door with a goat is opened, and the candidate
is offered to switch the door. Should they switch or not?

1 import s e eke r as skr
2 env = skr . Env(l i c e n s e=” l i c e n s e . s i o ” , s t o c h a s t i c=True)
3 car = env . d i s c r e t e un i f o rm (1 , 3)
4 guess = env . d i s c r e t e un i f o rm (1 , 3)
5 switch = env . c a t e g o r i c a l (0 , 1)
6 cor rec tGuess = car == guess
7 win = correc tGuess ∗ switch . not () + correc tGuess . not () ∗ switch
8 winRate = env . aggregate mean (win)
9 env . maximize (winRate , 0 . 1)

10 pr in t (”Win Rate” , winRate . g e t va lu e ())
11 pr in t (”Switch Dec i s i on ” , switch . g e t va lu e ())
12 env . end ()

10.2 Betting

Working in a store, clients arrive according to a Poisson process with λ = 5.
You bet with your co-worker that you can call out when the last client walks
into the store before the store closes. If you win, you get $10 from them, if you
lose, you give the same to them.

Your strategy is to pick a length of time before the store closes. You will
call out the first client who enters the store after that time as the last client.
How long should the time interval be, and what is your chance to win?

1 import s e eke r as skr
2 env = skr . Env(l i c e n s e=” l i c e n s e . s i o ” , s t o c h a s t i c=True)
3 env . s e t s t o c h a s t i c p a r ame t e r s (100 , 0)
4 s t o r eC lo su r e = 100
5 l ength = env . o rd i na l (0 , 100)
6 lambd = 5
7 c l i e n t s = 50
8 occurences = [env . po i s son (lambd , s t o r eC lo su r e+1)
9 f o r in range (c l i e n t s)]

10 a r r i v a l s = [env . sum(occurences [: i]) f o r i in range (1 , c l i e n t s +1)]
11 i n t e r v a lA r r i v a l = [(a r r i v a l s [i]<=sto r eC lo su r e) ∗
12 (a r r i v a l s [i]>=storeClosure−l ength)
13 f o r i in range (c l i e n t s)]
14 number Inte rva lArr iva l s = env . sum(i n t e r v a lA r r i v a l)
15 win = number Inte rva lArr iva l s==1
16 winRate = env . aggregate mean (win)
17 env . maximize (winRate , 1)
18 pr in t (”Win Rate” , winRate . g e t va lu e ())

53

19 pr in t (”Length” , l ength . g e t va lu e ())
20 env . end ()

10.3 Integrated Pricing and Production Planning

We present the example of a small bakery that sells buns, pastries, and cake
slices. We need to set the prices for each of the three products, as well as the
quantities we produce of each. The only production constraint we are facing in
this simple example is that we can only invest a certain amount of money to
produce our goods.

The price-sensitivity is learnt from data. A Gaussian Process Regressor is
trained to provide a posterior distribution of demands for a given set of prices.
Note that this regressor takes in all prices and then predicts all demands. This
allows learning from the data how sales of different products affect each other,
for example because some products are typically only bought in conjunction with
certain staple products, or because some products cannibalize their respective
demands.

The program below illustrates how to set up Seeker(TM) for such a scenario.

1

2 import s e eke r as skr
3 from seeke r import Env
4 from seeke r import UserStochVector
5

6 de f c r e a t e gp r (f i l ename) :
7 [. . .]
8

9 c l a s s Pred i c t (UserStochVector) :
10 de f i n i t (s e l f , f i l ename) :
11 skr . UserStochVector . i n i t (s e l f)
12 s e l f . gpr , s e l f .mu, s e l f . sigma = c r ea t e gp r (f i l ename)
13 de f sample n (s e l f , f e a tu r e s , n) :
14 pre = s e l f . gpr . sample y ([(f e a t u r e s − s e l f .mu)
15 / s e l f . sigma] , n samples=n)
16 r e turn np . t ranspose (pre [0]) . astype (f l o a t)
17

18 de f main () :
19 # ins tanc e data
20 number of products = 3
21 produc t co s t s = [0 . 1 1 , 0 . 33 , 0 . 2 4]
22 max price = [120 , 200 , 200]
23 max qua = [5000 , 2000 , 600]
24 product ion budget = 600
25

26 # prep data f o r modeling
27 pr in t (”Learning pr i ce−demand model . . . ”)
28 f i l ename = ’myTrainingData . csv ’
29 model = Pred i c t (f i l ename)
30

31 # Seeker model
32 env = Env(’ l i c e n s e . s i o ’ , s t o c h a s t i c=True)
33 env . s e t s t o c h a s t i c p a r ame t e r s (i n t (1 e4) , 0 . 8)
34

54

35 p r i c e s = [env . o rd i na l (0 , max price [i]) ∗ 0 .01
36 f o r i in range (number of products)]
37 quants = [env . o rd i na l (0 , max qua [i])
38 f o r i in range (number of products)]
39

40 # con s t r a i n t s
41 produc t i on co s t s = [quants [i] ∗ produc t co s t s [i]
42 f o r i in range (number of products)]
43 t o t a l p r o du c t i o n c o s t s = env . sum(p roduc t i on co s t s)
44 env . e n f o r c e l e q (t o t a l p r odu c t i o n c o s t s , product ion budget)
45

46 # ob j e c t i v e
47 predicted demands = env . u s e r d e f i n e d s t o c h a s t i c v e c t o r (
48 pr i c e s ,
49 model ,
50 number of products)
51 product demands = [env . round (env . max 0 (pd))
52 f o r pd in predicted demands]
53 s a l e s = [env . min ([quants [i] , product demands [i]])
54 f o r i in range (number of products)]
55 p r o f i t = [s a l e s [i] ∗ p r i c e s [i] − produc t i on co s t s [i]
56 f o r i in range (number of products)]
57 t o t a l p r o f i t = env . sum(p r o f i t)
58 e x p t o t a l p r o f i t = env . aggregate mean (t o t a l p r o f i t)
59

60 # Seeker opt imiza t i on
61 e xp s a l e s = [env . aggregate mean (s) f o r s in s a l e s]
62 e xp p r o f i t = [env . aggregate mean (p) f o r p in p r o f i t]
63 env . s e t r e p o r t (5 , e x p p r o f i t + exp sa l e s ,
64 [”Buns P r o f i t ” , ” Pst r s P r o f i t ”
65 , ”Cakes P r o f i t ” , ”Buns Sa l e s ”
66 , ” Pst r s Sa l e s ” , ”Cakes Sa l e s ”])
67 env . s e t e x p l o r a t i o n s i z e (0 . 2 , 0 . 7)
68 env . s e t r e s t a r t l i k e l i h o o d (0 . 0 07)
69 t imeout = 120
70 pr in t (”Optimizing with Ins ideOpt Seeker f o r ”
71 , timeout , ” seconds . . . ”)
72 env . maximize (e x p t o t a l p r o f i t , t imeout)
73 pr in t (” Pr i c e s ” , [p . g e t va lu e () f o r p in p r i c e s])
74 pr in t (”Quants” , [q . g e t va lu e () f o r q in quants])
75 pr in t (”Production Costs ” , t o t a l p r o du c t i o n c o s t s . g e t va lu e ())
76 pr in t (”Expected P r o f i t ” , e x p t o t a l p r o f i t . g e t va lu e ())
77 pr in t (env . ge t number eva luat ions ())
78 env . end ()

55

11 Parameters and Tuning

11.1 Automatic Tuning

Seeker(TM) is not a one-size-fits-all solver. In fact, Seeker(TM) implements a
massive suite of different search and optimization strategies. By using automatic
tuning, this allows you to tailor Seeker(TM) specifically for your application.

The actual tuning process is beyond the scope of this user’s manual, but we
list the function with which the automatic tuner can set the parameters:

• void Env::set parameters(vector<double> pa): The function sets
the internal parameters of Seeker(TM). As input, the function expects a
vector of 191 doubles, whereby the first 180 are expected to take integer
values in [−1000, 1000] and the final 11 parameters to take integer values
in [1, 100].

The above function should be used in combination with an automatic tuner
after the model development process is completed and before the model is de-
ployed.

11.2 Manual Tinkering

During the modeling process, it can be helpful to tinker with some interpretable
parameters manually. This does not replace the automatic tuning, though, and
care must be taken that the calls to manual parameter setting functions do not
interfere with the parameters that were found by a tuner. Please make sure to
comment out or delete calls to the functions below if you previously called the
function above.

That being said, the following functions allow you to manipulate the Seeker(TM)

search process.

• void Env::set local improvement size(double s): Sets the relative
size of the neighborhood considered when trying to improve a solution lo-
cally. The input parameter s is expected to be in [0, 1]. The neighborhood
is comparably larger, and local improvements are comparably more costly,
when s is closer to 1.

• void Env::set global improvement size(double s): Sets the relative
size of the neighborhood considered when trying to improve a solution by
means of recombination. The input parameter s is expected to be in [0, 1].
The neighborhood is comparably larger, and recombination improvements
are comparably more costly, when s is closer to 1.

• void Env::set exploration size(double s, double t): Sets the relative
size of the neighborhood considered when trying to explore the larger
search space. The input parameters s < t are expected to be in [0, 1].
The neighborhood can be comparably larger, and exploration excursions
can be comparatively more elaborate, when t is closer to 1. Analogously,

56

the neighborhood may be comparably smaller, and exploration excursions
will then focus more closely in the neighborhood of the current solution,
when s is closer to 0.

• void Env::set restart likelihood(double prob): Sets the probability
”prob” in [0, 1] which affects the frequency with which the search starts
from a new exploration point. This value can have dramatic effects on
search performance and should be changed with care. A value of 0.01
would be considered high for this parameter.

57

12 Parallel Optimization

In many cases, it will be convenient to run the solver in a distributed setting,
where multiple programs churn on the same problem instance. Seeker(TM) makes
it extremely easy for you to start as many of your programs using the library
at the same time and have them work together. The only requirement is that
all programs have access to the same file system.2

12.1 Prerequisites

First, you need to prepare your scrap folder. Say your path to your scrap folder
is /tmp/seeker/.

• Execute this command:

python -c ’import seeker; seeker.seeker.configure distributed run directory()’

This creates some subfolders under /tmp/seeker (you can change this path
too any other directory as well) that are needed to run seeker in parallel.
It also sets the environment variable $SeekerPath to /tmp/seeker (or the
folder you chose).

• The above command will also remind you to ’source’ your .bashrc or .zshrc,
and to give permission to execute the program /tmp/seeker/bin/coll on
your machine. This program will handle the distributed communication
between your Seeker(TM) processes.

12.2 Preparing Your Program

• Change the constructor call to your environment by adding two integer
numbers: Env::Env(string license, int processID, int runID) or
Env::Env(string license, int processID, int runID, bool stochas-
tic).

• The processID numbers range from 0 to however many parallel runs your
license allows. Use 0 for your first parallel process, 1 for your second, 2
for your third, and so on. Note: It is important to start at 0 and
count up the processIDs for this process to work properly.

• The runID is a unique non-negative integer value that identifies the par-
ticular problem instance your program is tackling. Use the same runID
for all program that you want to churn on the same problem instance.
If you solve different instances using the same runID, your runs will exit
without solving the problems.

2In case you run a slow system that backs up your data, you may want to use a path to a
fast, non-backed up folder as the parallel programs will read and write frequently.

58

12.3 Adding More Parallel Processes and Crash Recovery

You can add more compute power at any time during the optimization process,
and even after, for example, should your hardware have crashed and you want
to resume the optimization where it left off.

• When adding more compute power while the other processes are running,
simply keep increasing the processID numbers with which your program
calls the environment.

• After a hardware crash, restart your processes with processIDs starting at
1, making sure not to create a new process that uses the same processID as
another process that is still running. Your optimization will then continue
where it left off before the hardware failure.

Note: Be sure not to use processID = 0 when continuing a prior
run. As soon as one of your processes calls the environment constructor
with processID 0, the slate will be cleaned and your entire parallel opti-
mization will restart from scratch! Moreover, the process with processID
1 handles the corrdination of all processes, so please ensure that exactly
ony process with processID = 1 is always running.

12.4 Parallel Coordination Parameters

When starting a process that is part of a parallel/distributed run, Seeker(TM)

allows specifying how tightly coupled this process will run together with the
other processes. The following function enables setting two parameters that
govern the coordination:

• void Env::set parallel coordination parameters(double interval,
double initialWait): Sets the time interval ”interval” seconds in which
a process will coordinate its work with the other processes, as well as the
time ”initialWait (also in seconds) that the process should wait initially
or after an internal restart before coordinating.

59

13 Progress Reports and Search Statistics

We conclude this overview of Seeker(TM) with a list of functions that can help
analysing Seeker(TM)’s search behavior based on the model provided.

• void Env::set report(double interval): Reports the status of the
search ever ”interval” seconds. The reporting time may deviate for prob-
lems where evaluating the model takes a comparably long time.

• void Env::set report(double interval, vector<Term> reports, vec-
tor<string>): The same as above, but in this case Seeker(TM) also re-
ports the current value of all terms listed in ”reports.” To make the output
more readable or parseable, the user is asked to provide a vector of equal
length with corresponding identifiers for the reports.

• long Env::get number evaluations(void): Returns the number of ob-
jective function evaluations that Seeker(TM) conducted from creation to
the call of this routine. This can help understand how complex the eval-
uation of the model is.

60

