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Abstract: We evaluate the effectiveness of applying the Framework for Au-

togenerated Signature Technology (FAST) signature extraction method to

the detection of small nucleic acid sequences of concern in samples submit-

ted for synthesis. This approach (FAST-NA) aims to address shortcomings

in existing methods for detecting sequences of concern that are either mali-

ciously or inadvertently included in nucleic acid synthesis orders. In particu-

lar, FAST-NA comparison of threat and contrasting data should reduce false

positives without increasing false negatives by focusing detection on only

those sequence fragments that are actually diagnostic of threat, rather than

irrelevant portions shared with other organisms.

Our results indicate that the FAST malware screening technology can be

effectively adapted for screening of viral nucleic acid sequences. It appears

likely that FAST-NA can use publicly curated data to identify short se-

quences diagnostic of viral threat potential in a nucleic acid sequence, sig-

nificantly reducing false positives in screening for viral threats without intro-

ducing false negatives. FAST-NA also appears extensible beyond the viral

domain for screening against bacterial and eukaryotic threats as well. Fi-

nally, FAST-NA should be able support an effective CONOPS for biosecu-

rity screening with a reasonable resource budget.

Given the potential for significant improvement over the current state of the

art in nucleic acid synthesis screening, in the interest of national secu-

rity, we thus recommend funding further development of FAST-

NA in support of transition into widespread industrial usage.

Disclaimer: The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressly or implied, of the Intelligence Advanced Research Projects Activity or the
U.S. Government.
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1 Task Objectives

The project “Applicability of Malware Signature Extraction to Nucleic Acid

Screening” aimed to evaluate the effectiveness of applying the Framework for

Autogenerated Signature Technology (FAST) signature extraction method [1,

2], developed by BBN for the detection of malware in network traffic, to the

detection of small nucleic acid sequences of concern in samples submitted

for synthesis. Detection of small sequences provides the advantages that a)

small segments of pathogenic DNA inserted into otherwise benign sequences

are more likely to be detected, b) sequence variations are less likely to lead

to missed detection, and c) artificially engineered sequences of concern may

be detected by their similarity to small natural segments of pathogenic DNA

required to achieve the pathogenic functionality. Specifically, we aimed to

evaluate: 1) efficacy and scalability of these techniques for viral pathogens,

and 2) the likely potential for applicability to other classes of pathogens and

toxins.

The concept of operations for the application of FAST to nucleic acid screen-

ing (which we refer to as FAST-NA), is shown in Figure 1 and consists of

the following steps: (1) Blacklist and whitelist data is integrated with pub-

lic bioinformatic resources to obtain large volumes of target and contrasting

sequence data; (2) Sequences are compared to generate diagnostic signatures

for threats; (3) Signatures are matched against sequence orders to find possi-

ble areas of concern; and (4) Matches are collated and assessed to determine

Sequence,
Taxa

Sequence
Orders

Public
Bioinformatic

Resources

Supervised
Curation

Signature
Generator

Signature
Matcher

Threat
Assessment

Matches

Level of concern
& justification

Target &
contrasting
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Practitioners
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2. 

3. 

4. 

1. 

Figure 1. FAST-NA signature-based screening CONOPs.
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threat level, justifying judgments using the metadata associated with match-

ing signatures.

If successful, the FAST-NA application of this method to nucleic acid screen-

ing will address shortcomings in existing methods for detecting sequences of

concern that are either maliciously or inadvertently included in nucleic acid

synthesis orders. Comparison of threat and contrasting data should reduce

false positives (compared to the current rate of ∼2%) without increasing

false negatives, by focusing detection on only those sequence fragments that

are actually diagnostic of threat, rather than irrelevant portions shared with

other organisms.

The tasks executed in pursuit of this objective were:

1. Adapt FAST for sequence screening, including handling sequence data

at large scale, organizing curated datasets, and providing appropriate

software interfaces and experimental testbeds.

2. Evaluation of efficacy and scalability of FAST-NA for viral screening and

comparison against current methods, including determining applicable

taxa, scalability of threat and contrasting data, false positive and false

negative rates vs. signature size and training corpus size, and computa-

tional cost of training and execution.

3. Evaluation of potential for generalization of FAST-NA to detection of

threats from taxa other than viruses.

This report summarizes all progress against these tasks during the execution

of this project.
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2 Technical Problems

Through this investigation, we aimed to answer five core questions regard-

ing the applicability of FAST malware signature extraction to nucleic acid

screening:

• Are there short diagnostic DNA sequences that can distinguish threats

and non-threats?

• Can the FAST-NA approach identify such diagnostic sequences reliably?

• Can effective training data be reasonably curated from available data

sources?

• How confident can we be in the results of FAST-NA screening?

• Can FAST-NA support a realistic CONOPS with a reasonable resource

budget?

In support of this investigation, we organized our technical effort around

four main strands of work:

• adaptation of the FAST software in a new biology-focused FAST-NA im-

plementation (Section 3.1),

• curation of training and test data from public data sources and IDT pro-

prietary data sources (Section 3.2),

• construction and operation of an experimental pipeline for evaluation of

FAST-NA (Section 3.3), and

• analysis of experimental results to answer core questions (Section 4).

To maximize efficiency and maintain integration across these thrusts, we

made use of agile software engineering tools and methods, notably the Git-

Lab repository manager and GitFlow development workflow. This combina-

tion provides source code control and test data management based on git,

issue tracking for management of development progress, code review in sup-

port of effective development, and continuous integration and regression test-

ing to ensure continuous functionality.
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3 General Methodology

In this section, we discuss the methods taken for development of the new

FAST-NA screening software, curation of training and test data, and devel-

opment of our experimental pipeline.

3.1 Development of FAST-NA

The Framework for Auto-Generated Signature Technology (FAST) [1, 2]

approach was originally designed for detection of malware in network traf-

fic. Its use begins with network traffic of concern being forwarded by an

anomaly detector (a separate network screening system). At the same time,

contrasting benign network traffic is also accumulated from the network of

interest. The Automatic Signature Generator (ASG) compares the two to

find unique segments in the traffic of concern, which are then exported as

signatures formatted for the SNORT network traffic filter.

3.1.1 Mathematical Properties of FAST

The efficacy of the FAST signature generation approach is primarily regu-

lated by the nature and volume of contrasting data and the length of sig-

natures. The effect of both signature length and contrasting data can be

predicted from the tendency of network traffic to be semi-structured, com-

prised of a mix of highly structured information (e.g., packet headers or

HTML protocol) and effectively random data (e.g., compressed or encrypted

information). This results in a power-law distribution in the frequency of

occurrence of sub-sequences. As nucleic acid sequences evince similar semi-

structured patterns and appear to follow similar power-law distributions

(e.g., [3, 4, 5]), it is reasonable to predict that the efficacy of nucleic acid

screening will follow similar principles.

With respect to contrasting data, as the size n of the contrasting data set

increases, the distribution assumption predicts that the rate of false posi-

tives should decrease following a power-law. As a baseline, one might expect

a 1/n decrease, but in practice the slope may vary. If the volume of con-

trasting data is too high, however, random information may begin to remove

critical signature information, causing the rate of false negatives to rise.

Signature length similarly needs to be neither too short nor too long. If sig-

natures are too short, then random traffic will tend to contain many false

positives, which cannot be removed without also creating many false neg-
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Technique Shortcomings
Embed DNA sequences in TCP/IP packets Limits size of sample and doesn’t allow for 

carrying metadata. Requires fictional TCP 
port information, protocols, etc.

Use STIX files for describing attacks STIX is a cyber security based standard not 
designed for carrying biological 
information

Use pcap files for collecting benign traffic Requires assembling contrasting DNA 
sequences into packets and adding 
fictitious time and other information

Use SNORT as matcher Poor at carrying labeling and metadata 
information for matches, size limitations

Signature analysis Primitive in FAST, performed mostly by 
hand

Table 1. Limits of FAST for nucleic acid screening addressed in developing FAST-NA

atives. If signatures are too long, however, then they will tend to contain

irrelevant “flanking” information alongside the true sequence of concern,

meaning the signature will only match in the exact same context and in-

creasing the chance of false negatives.

3.1.2 Adaptation for Nucleic Acid Screening

In preliminary work for this project, the FAST software was used for a proof-

of-concept distinguishing 1918 influenza from other strains by literally putting

DNA sequences into network packets. There are a number of limitations to

this approach, however, that make this inappropriate for general use for nu-

cleic acid screening, as detailed in Table 1. Accordingly, we have developed

FAST-NA, a new collection of tools based on the original FAST software but

adapted for DNA screening.

FAST-NA is implemented in C++, using the original speed optimizations

from FAST and adding more as needed. Rather than STIX and pcap files

capturing network traffic, FAST-NA takes FASTA sequence files as its in-

put. Biological metadata is associated with each signature and match: se-

quence offsets and (when available), sequence accession number and taxon

ID. SNORT is replaced with a custom matcher for nucleic acid sequences,

and new tools have been created for signature evaluation.

Our implementation of FAST-NA comprises six applications, linked together

in the architecture shown in Figure 2. First, the makebloom application di-

gests FASTA files of contrasting data into a Bloom filter [6] used for pruning
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cylinders are data collections, and wavy-bottom boxes are configuation files.
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Figure 3. Example of output from sig-diagrammer tool.

potential signatures, and Bloom filters from multiple contrasting data sets

can be joined using mergebloom. Automated signature generation is per-

formed using the asg tool on samples of concern presented as FASTA files

and a Bloom filter of contrasting samples. These signatures can be inspected

using the sig-diagrammer tool, which provides information about signa-

ture coverage of samples of concern as well as origin of signatures in multiple

samples—sample output from this tool is illustrated in Figure 3. Signatures

are applied for threat detection using the matcher tool, which finds occur-

rences of signatures in unknown samples presented as FASTA files. Finally,

the sig-perf tool evaluates matches to decide whether a sequence is a

threat—though currently this is a trivial implementation where any match

is considered a threat.

3.2 Curation of Training and Test Data

Our initial subject of evaluation was the applicability of these methods to

detection of viral threats. As such, we have curated the collection of all vi-

ral threats currently screened for in IDT’s biosecurity system into a collec-

tion of 14 threat sequence training sets, comprising approximately 334 thou-

sand threat nucleic acid sequences and 1.1 million contrasting nucleic acid

sequences. Collectively, these threat collections cover approximately half of

all threat taxa currently screened for by IDT, though only ∼4% of all threat

nucleotide records. The threat collections are assembled from public records

retrieved from NCBI’s GenBank using its E-Utilities web interface. These

records also contain taxonomic information: NCBI’s Taxonomy Database is

organized by taxonomic rank (Kingdom to Species), and we find that the vi-

ral threat taxa form 14 clusters at the Order/Family level (Figure 4), from

which we take all sequences from non-threat taxa as contrasting data (Ta-
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NCBI’s Top 
Level

Buckets

Archaea, Bacteria, Eukaryota, Viroids, Viruses, Other, Unclassified

Domain Kingdom Phylum Class Order Family Genus Species

Clusters

Figure 4. Viral threat taxa form 14 clusters at the Order or Family level.

TaxonId Order/Family TaxonId Order/Family
Influenza A 3/2/2018 11308 Orthomyxoviridae
Encephalitis 3/9/2018 11050 Flaviviridae
Ebola_Rabies 4/2/2018 11157 Mononegavirales
SARS 4/2/2018 11118 Coronaviridae
SmallPox 4/2/2018 10240 Poxviridae
Herpes 4/2/2018 10292 Herpesviridae
Hanta_Congo 4/2/2018 1980410 Bunyavirales
Foot_Mouth 4/2/2018 464095 Picornavirales
AfricanHorse_Bluetongue 4/2/2018 10880 Reoviridae
HorseEncephalitis 4/2/2018 11018 Togaviridae
AfricanSwine 4/2/2018 137992 Asfarviridae 1477405 Faustovirus
SandyHemorrhagic 4/2/2018 11617 Arenaviridae
BananaBunchy 4/2/2018 251095 Nanoviridae
Potato 4/2/2018 675063 Tymovirales

Common Name
Constrast Alternate

As of 

Table 2. Contrasting taxa for each threat cluster

ble 2), AfricanSwine being the exception as its Family level is also in the

threat list. Figure 5 shows the distribution of threats with regards to the

overall taxonomy and distribution of viral sequence information in GenBank,

and Figure 6 shows the total amount of sequences and base pairs for each

training cluster. Note that since threats are not hand-curated, there are a

number of curation problems that can be encountered, particularly around

misclassification of sequences, some of which are discussed in our technical

results below.

In addition, we have curated a collection of de-identified customer-related

sequence segments, to provide a more realistic distribution of sequences for

CONOPS evaluation. These are sequences run through IDT’s biosecurity

screening during the period of July 2017 to March 2018. They comprise

a collection of 69,835 “no hit” sequences that were automatically cleared

by IDT, 15,879 “false positive” sequences (4,521 of which matched viral

threats), and 1753 “true positive” sequences that had to be cleared manu-

ally (629 of which matched viral threats).

Beyond viral nucleic acid sequences, we have also curated collections of pro-

tein sequences, organized into the same taxonomic divisions. For evaluation

of the generalizability of FAST-NA beyond viruses, to include bacterial and

eukaryotic threats as well, we have further curated collections of threat and

contrasting sequences, both nucleic acid and protein, for taxonomic groups

in these threats as well. Figure 3 summarizes the division and size of threat
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Encephalitis 49.8%
Foot_Mouth 18.6%

SARS 4.4%
HorseEncephalitis 1.8%

Potato 1.7%

82.7% Influenza A
13.2% Ebola & Rabies
3.5% Hanta & Congo
0.4% SandyHemorrhagic

5.9% BananaBunchy

87.6% AfricanHorse & Bluetongue

34.5% Herpes
5.5% Small Pox
2.3% African Swine

dsDNA, no RNA Stage

Viruses
2.7 million records

51.7%
ssRNA Viruses

Figure 5. Distribution of viral threat information with respect to total NCBI viral
sequence information. Values are based on total number of nucleotide records; for

each cluster this includes both threat and contrasting.
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Table 3. Scale of threat taxa, including bacterial and eukaryotic threats and both
nucleic acid and protein sequences.

taxa across all of these classes. In particular, note that the scale of cellular

threat data is much much larger than for viral threat data.

3.3 Experimental Pipeline

In order to evaluate FAST-NA against the curated training and test data,

we have set up an automated experimental pipeline. This pipeline is de-

signed to produce reproducible and deterministic results, be configurable

to support many experiments, run unattended, make good use of compute

cycles, and record all information necessary to support useful results and

analysis.

One instance of our current experimental pipeline is set up primarily for k-

fold cross-validation experiments, following the architecture in Figure 7. The

pipeline is designed to run a batch of experiments, iterating over a direc-

tory of experiment configuration files. These configuration files are simple

and can be programmatically created, so experiments with many conditions

and combinations can be scripted relatively simply. The experiment pipeline

runs as a series of small programs (either FAST or FAST-NA applications),

each of which takes files as inputs and emits files as outputs. This makes

debugging and manual inspection of intermediate states simple, since indi-

vidual steps can readily be run again on the same inputs. Debugging output

is captured in log files, and data is gathered after each k-fold run and for the
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Repeat
K times

Figure 7. Architecture of k-fold cross-validation in experimental pipeline.

experiment as a whole. In particular, the key information that is captured

is:

• Counts of threat and contrast sequences

• Counts of threat and contrast alerts

• Counts of signatures generated

• FASTA file of potential false negatives (non-alerted threat sequences)

• FASTA file of potential false positives (alerted contrast sequences)

A second instance of our experimental pipeline, set up for cross-taxa testing

and CONOPS evaluation, is identical except that the threat and contrasting

sequences are not split into training and test subsets. Instead, the full collec-

tion of threat and contrasting sequences is used for creating signatures, and

these are then matched against one or more separately provided collections

of test sequences.

Testing for protein-based signatures uses a third variant of this pipeline,

mostly identical to the cross-taxa testing pipeline except for two modifica-

tions: 1) except the training data is amino acid sequences, 2) nucleic acid
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FAST-NA IDT Expert Interpretation
Threat Threat ~ Baseline
Threat Non-threat Threat Improvement
Threat Non-threat Non-threat False positive
Non-threat Non-threat ~ Acceptable
Non-threat Threat Threat False negative
Non-threat Threat Non-threat Improvement

Table 4. Expected interpretation of FAST-NA results based on comparison with IDT’s
current biosecurity screening system and human expert judgement.

sequences are converted into amino acid sequences (in all possible reading

frames) to be run in the matcher, and 3) there is no need for cross-validation

with this pipeline since protein training data and nucleic-acid test data do

not overlap.

Finally, unified protein and nucleic acid screening is done by fusing the re-

sults of protein-based screening and nucleic acid screening—at present, sim-

ply by taking the union of sequence alerts from both sources.

Results from any of these pipelines are evaluated against the current state

of the art by comparison of each potential false negative with IDT’s current

biosecurity screening system: Table 4 shows the expected interpretation of

FAST-NA results based on comparison with the IDT system and/or expert

judgement. In particular, we have focused on the potential false negatives,

i.e., any threat sequences for which no alert was raised by FAST-NA, as any

case in which FAST-NA misses a true threat detected by the current system

is of major concern for the value of this approach. IDT thus runs the collec-

tion of potential false negatives through its screening system to determine

whether it is a judged a threat (omitting potential matches against the test

data itself), and evaluating each into one of three categories: “threat”, “non-

threat”, or “too short” for those sequences that FAST-NA can be applied to

but IDT’s current biosecurity system cannot. We thus compute a final num-

ber of false negatives for each test as the number of non-alerted threat se-

quences that are judged as threats by IDT’s current biosecurity system. For

well-tuned usage of FAST-NA, the number of such false negatives generally

ranges from low to zero, as will be seen in the next section, so the need for

involvement of human experts in quantitative evaluation of test results has

been only with regards to a relatively small number of specific sequences.
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4 Technical Results

Here we report on results from applying FAST-NA to the collection of cu-

rated training and testing data using our experimental pipeline, as well as

comparison with IDT customer-related sequences and CONOPS evaluation.

We begin with an assessment of the ability of FAST-NA to identify diag-

nostic sequences from publicly available data and how its performance can

be assessed and modulated by parameter adjustment. We then evaluate the

operation of FAST-NA at scale, across the entire current collection of viral

threats, and finally its ability to support a realistic CONOPS with a reason-

able resource budget.

4.1 Identification of Diagnostic Sequences from Publicly
Curated Data

For an initial assessment of the potential of FAST-NA, we considered a “smoke

test” in which the method is used without any tuning of either signature size

or contrasting data volume. The goal of this “blind” assessment is to deter-

mine whether FAST-NA results are within a reasonable distance of our tar-

get rates of <1% false positives and no false negatives. If both of these are

generally close, then it is reasonable to expect that the desired performance

may be able to be achieved by tuning signature length and contrasting data;

if they are generally far, then it may be much more difficult.

Accordingly, we conducted 10-fold cross-validation for each cluster, using

all available contrasting data for the cluster and signatures 14 base pairs

(bp) long, this being the value used in our preliminary work with 1918 in-

fluenza. The rates of false positives and false negatives for all 14 clusters are

shown in Figure 8. As desired, false negatives are generally zero. Only two

datasets have any false negatives at all, and both of these are at quite a low

rate. This indicates that it is reasonable to expect that it generally will be

possible for FAST-NA to achieve zero false negatives for viral taxa with ap-

propriate tuning.

False positives are somewhat higher, mostly ranging between 1-10%. Criti-

cally, however, the rate of false positives is strongly correlated with the num-

ber of contrasting sequences, as shown in Figure 9. This is the behavior that

is expected for FAST-NA and indicates that we may reasonably expect false

positives to be tunable to radically decreased rates with either increased sig-

nature length or increased amounts of contrasting data.
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Figure 8. False positives and false negatives for FAST-NA applied to all clusters with
14bp signatures and all contrasting sequences.

102 104 106

Number of Contrasting Sequences

10-2

10-1

100

Fa
ls

e 
Po

si
tiv

e 
R

at
e

False Positives
Power law fit

Figure 9. False positives are power-law correlated with contrasting data size across all
threat clusters.
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We evaluated the potential for tuning in detail with parameter surveys for

several viral taxa. For taxa to survey, we selected the sars and banana-bunchy

clusters in their entirety, plus sub-taxa of approximately 2000 sequences each

from the clusters influenza-a (H5N6 influenza), encephalitis (classical swine

fever virus), and ebola-rabies (ebolavirus). For each taxon, we conducted 10-

fold cross-validation at all combinations of signature length ranging from 10

to 36 base pairs in steps of 2 (i.e., 10, 12, 14, ...) and fractions of training

data ranging from 1% to 100% logarithmically at 5 steps/decade (i.e., 0.01,

0.015, 0.02, 0.04, 0.06, 0.1, 0.15, 0.2, 0.4, 0.6, and 1.0).1

Results of these surveys are shown in Figure 10. We find that the rate of

false negatives remains consistently zero for all of these except for the en-

cephalitis taxon, which is still consistently zero for most parameter values.

The rate of false positives, on the other hand, responds strongly to both

signature length and volume of contrasting data. The response is gener-

ally stronger for contrasting data, which helps to eliminate shared sequence

structure at any length, while the benefit of increasing signature length tends

to decrease in benefit after around 20 bp. Critically, note that for every taxa

we can achieve a false positive rate of less than 1% (often far less) without

introducing any false negatives.

Figure 11 shows the number of signatures generated for each condition of

the surveys in Figure 10. For most conditions, we find that the primary

determinant in number of signatures is the length of the signatures. The

amount of contrasting data does affect the number of signatures, but gen-

erally quite weakly except for the shortest signatures. Those shortest signa-

tures, 10 bp or 12 bp long, trend to a power-law decrease in signature count,

consistent with the hypothesis that such signatures are too short and will

experience a progressive loss of significant sequence information to random

matches. Interestingly, this indicates that most (but not all) of the benefit of

comparing threat and contrasting data appears to be obtained very quickly

through the use of even a small amount of contrasting data. In other words,

it is very easy for FAST-NA to pick out the highly conserved sequences most

likely to cause false positive hits. Complementarily, this also suggests that

one path to further improvements might be through the use of more sophis-

ticated and biology-focused representations of conserved sequence informa-

tion.

1For H5N6 influenza, the minimum fraction was set to 0.1 due to constraints in our
experimental system at the time that this test was run.
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Figure 10. Parameter surveys for five viral threat taxa: (a) H5N6 influenza, (b)
classical swine fever virus (an encephalitis), (c) ebolavirus, (d) SARS-related

coronavirus, and (e) banana-bunchy. Color indicates signature length, shading in hue
from n=10 (orange) to n=36 (red).
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Figure 11. Number of signatures generated in parameter surveys for five viral threat
taxa: (a) H5N6 influenza, (b) classical swine fever virus (an encephalitis), (c)

ebolavirus, (d) SARS-related coronavirus, and (e) banana-bunchy. Color indicates
signature length, shading in hue from n=10 (orange) to n=36 (red).
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4.2 Assessment and Modulation of FAST-NA Performance

In order to confidently deploy FAST-NA in place of existing systems, we

need to know not only that it is working, but also why it is working. Some

of this we can infer from the expected scaling behaviors of FAST-NA, as dis-

cussed in the previous section, and as further developed below through anal-

yses in this section. Complementarily, it is also valuable to identify failure

modes and their causes, in order to be able to diagnose and correct potential

misbehaviors.

4.2.1 Failure Modes of FAST-NA

From experimentation with FAST-NA to date, we have identified five failure

modes, each with a characteristic diagnostic behavior and a recommended

means of correction:

• Short sequence pollution: Questionable curation decisions cause some

taxa in NCBI GenBank to contain large numbers of extremely short se-

quences, such as lists of primers. These cannot and should not be reli-

ably matched, and can be addressed simply by excluding extremely short

sequences from training and testing. For example, the encephalitis threat

cluster contains many thousands of 14 bp sequences, mostly from a single

exhaustive list in a particular patent filing. Figure 12(a) shows an exam-

ple of the effect of ignoring sequences of <50 bp from the encephalitis

test set; we have applied this filtering for all of the results presented in

the prior section.

• Contrasting sequences too closely related: If contrasting sequences

are too closely related to the threat taxa, then false positives cannot be

reduced without simultaneously increasing false negatives. For example,

the Influenza A taxa includes many extremely closely related sub-taxa,

some of which are categorized as threats and others as non-threats. This

failure mode can be recognized from a consistent power-law increase in

false negatives vs. contrasting data, as shown in Figure 12(b). It can be

addressed by designating the most closely related taxa in the contrasting

data as “neutral,” for which either threat or non-threat judgements are

reasonable (e.g., there is no particular reason to assume H7N5 influenza

is a non-threat, even though it has not been specifically designated as a

threat like H1N1 influenza). We have done this with both the influenza-a

and sars clusters in producing the results in Figure 10.

• Signatures too short: When signatures are too short, either false pos-

itive rates or false negative rates will be too high (or even both too high
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Figure 12. Examples of FAST-NA failure modes: (a) Training on encephalitis with
very short sequences (stars) has much greater false negatives (red) than eliminating
very short sequences (circles), while false positives (blue) are essentially unaffected.
(b) False negatives rise sharply as false positives fall when contrasting data is too

close, as in this example of H5N6 influenza contrasted against all non-threat
orthomyxoviridae including non-threat strains of influenza A. Color indicates signature
length, sharing in hue from n=10 (orange) to n=36 (red). (c) Too much contrasting
data can eliminate useful signatures, causing false negatives to rise sharply, as in this

example with encephalitis.
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at once). This failure mode can be diagnosed by raising the signature

length incrementally: if there are marked improvements in performance,

then it is likely that signature length was too short; if not, then signa-

ture length is not the problem. The parameter surveys in Figure 10 all

demonstrate this relation.

• Too much contrasting data: When there is too much contrasting

data, it may produce false negatives due to random sequences eliminat-

ing critical signatures. When this failure mode pertains, reducing con-

trasting data will reduce the number of false negatives to zero faster than

false positives rise. An example of this failure mode is shown for the en-

cephalitis cluster in Figure 12(c).

• Too little contrasting data: When there is too little contrasting data,

false positives will tend to be too high, but there will be no false nega-

tives. This failure mode can be diagnosed by adjusting the amount of

contrasting data, which should result in a power-law decrease of false

positives while false negatives remain zero. The parameter surveys in

Figure 10 all demonstrate this relation.

4.2.2 Estimation of Appropriate Signature Length

As signature length is a critical parameter for FAST-NA without an obvious

default value, we analyzed the mathematical relationship between signature

length and false positive rate, in order to be able to predict values for signa-

ture length that are likely to provide good performance.

As seen in our results above, signature length matters for FAST-NA in two

ways. First, false negatives can be produced when signatures are eliminated

by effectively random sequences when they collide with signatures. Second,

false positives can be produced when signatures match against an effectively

random sequence.

For analysis of both of these cases, we consider a conservative approximation

estimating the probability of a match between two random sequences:

prandom hit =
sequence size

4signature length

In other words, the likelihood of a hit is approximately the number of oppor-

tunities for a signature to hit a sequence divided by the number of possible

signatures (an approximation valid when numerator is significantly smaller

than the denominator). The actual probability of match will, of course, be
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Figure 13. Conservative estimation of random signature match rate for (a) pruning
signatures with contrasting data, (b) matching a single 103 bp gene, (c) matching a

105 bp viral genome, or (d) matching a 108 bp eukaryotic chromosome.

different, as sequences are not random, signatures and match opportunities

overlap, and edges are not accounted for, but this conservative estimate pro-

vides a good baseline to work from for recommending a reasonable initial

value for signature length.

Applying this relation to the potential for false negatives, one obtains:

plost signature = min(1,
contrasting bp

4signature length
)

Representative values for the likelihood of losing a critical signature to ran-

dom pruning is shown in Figure 13(a). considering signatures from 10 to 30

bp and a volume of contrasting data from 105 to 1010 bp. From this, one can



BBN FAST-NA Final Report 22

see that although signatures in the 10-16 bp range are expected to be badly

ablated by even relatively small amounts of contrasting data, the likelihood

of randomly losing signatures drops so sharply with increasing length that

with these volumes of contrasting data, by the time signatures are 18 to 27

bp, not even one in a million signatures should be expected to be randomly

lost.

Complementarily, the same relation may be applied to estimate the false

positive rate:

pfalse positive = 1 − ((1 − prandom hit)
sequence length)

In other words, the chance of getting a false positive is the complement of

the chance that every chance of a random hit on a sub-sequence will fail.

Figures 13(b)-(d) show these probabilities for various signature lengths and

threat signature counts against representative sizes for the sequence of a typ-

ical gene (103 bp), large virus (105 bp), or eukaryotic chromosome (108 bp),

respectively. As with the likelihood of random signature loss, very short sig-

natures are expected to have an unacceptably high likelihood of false posi-

tives, but even moderately longer signatures can set the probability of ran-

dom hits to be very low indeed. For example, even with very large numbers

of signatures, large viruses have a random hit rate of less than 1 in 1000

with only 28 bp signatures.

Considering both false positives and false negatives, we may thus conserva-

tively estimate an appropriate signature length as the maximum signature

length required to achieve the desired performance for either false positives

or false negatives. In the case of this investigation, we chose to consider false

negatives less than 10−6 with 1010 bp of contrasting data, giving a length

of 27 bp, and false positives less than 10−3 with 109 signatures on a 105 bp

virus, giving a length of 28 bp. The initial signature length for developing

signatures for each viral taxa was thus selected to be 28 bp.

The same system of estimation may be applied to potential amino acid sig-

natures as well, with one modification: since amino acids have an alphabet

of 20 options for amino acids as opposed to 4 options for nucleic acids, the

equations need to be re-written with 20 instead of 4. The consequence is

that amino acid signatures can be expected to have a dramatically reduced

rate of random matches, as illustrated in Figure 14: in general, an amino

acid signature will have the same probability of random matches as a nucleic

acid signature a little over twice as long. Ultimately, however, since amino

acids are defined using codons of 3 nucleic acids per amino acid, this means
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Figure 14. Random signature match estimates can be applied to amino-acid
signatures as well, finding shorter lengths are required due to the larger alphabet, as
in this example for matching amino acid signatures at the 108 bp chromosome scale.

that amino acid signatures should generally be expected to be effective when

matching against slightly longer regions of nucleic acids than purely nucleic

acid signatures.

4.2.3 Systematic Tuning of Parameters

From these investigations of failure modes and random hits vs. signature

length, we have developed an initial approach to systematic tuning of pa-

rameters for a viral taxa:

1. Train using 10-fold cross-validation with the computed conservative sig-

nature length (28 bp) and 100% of contrasting sequence data.

2. If there are any false negatives, then modulate signature length and per-

cent contrasting data (independently) to diagnose the likely cause. The

specific values that we chose for this implementation were signature length

at 22 bp to 27 bp and contrasting data on a logarithmic scale: 10%, 15%,

25%, 40%, and 60%, for a total of 11 additional training runs.

3. From the results of these two modulations, we obtain one of three cases:

(a) Modulation identifies a functional length or contrasting fraction.

(b) Modulation identifies that contrasting sequences are too closely re-

lated, implying the need to designate “neutral” taxa. Once these are

identified, start over again with 28 bp signatures and 100% contrast-

ing data (less the neutral taxa).
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Figure 15. Example of landscape evaluation for protein-based signatures with the
smallpox threat cluster, showing tunable response to signature length and contrasting

data percentage.

(c) Otherwise, the problem likely cannot be resolved by tuning, and

hand-inspection of failures is required for diagnosis.

Note that high false positives (>1%) are not addressed by this tuning pro-

cedure. The modulation of fraction of contrasting data may, in fact, indi-

cate that additional contrasting data is needed, per the diagnosis suggested

above. In such cases, we experimented with the possibility adding extra

contrasting data (necessarily from less related taxa) as a mechanism for ad-

dressing high false positives. Our initial experimentation with this approach,

however, showed little or no benefit (consistent with our results on random

signature matches), and we have thus excluded it for now from our recom-

mended tuning approach.

We have also validated that this approach can work for the tuning of protein-

based signatures. Evaluation of the tuning landscape of protein-based signa-

tures for select taxa shows a similar tunable response to signature length

and contrasting data percentage, indicating that the same systematic tun-

ing approach should be expected to be effective for protein-based signatures.

Figure 15 shows an illustrative example with the smallpox threat cluster.

4.3 Full-Scale Viral Application of FAST-NA

To evaluate the potential of FAST-NA for application to viral screening

at full scale, we have applied it to create signatures to screen for all viral

threats currently screened for in IDT’s biosecurity system. We then evalu-

ated the efficacy of these signatures both for detecting threat sequence frag-

ments of at least 50 bp and also for detecting very short sequences excluded

from training data.

4.3.1 Signature Development for All Viral Threats
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Figure 16. Results of 10-fold cross-validation with tuned parameters for all viral
threats.

For each of the 14 threat clusters, we applied the systematic tuning proce-

dure presented in Section 4.2.3. The majority of threat clusters (8 of 14)

produced no false negatives on the first pass with 28 bp signatures and 100%

contrasting sequence data. Of the six that did not, the tuning procedure

produced final results with the following adjustments:

• african-horse: 26 bp signatures

• ebola-rabies: 15% of contrasting sequences

• encephalitis: 15% of contrasting sequences

• hanta-congo: 25 bp signatures

• horse-encephalitis: 24bp signatures + neutral taxa

• influenza-a: neutral taxa

Figure 16 shows the results of 10-fold cross-validation testing with the final

tuned parameters for each of the clusters of viral threats. Overall, the rate
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of false positives is acceptably low: 9 of the 14 threat clusters have under

1% false positives, and the mean rate of false positives, weighted by test se-

quence count, is only 0.72%.

Out of 163,130 threat sequences, there were 13 false negatives in three taxa,

each of which we analyzed individually. We find that these false negatives

break down into three cases:

• Five sequences (1H1K J, 1H1K K, 1H1K L, 1H1K M, and 1H1K N) are

meaningless BLAST matches between a likely spurious sequence of 200+

A or 200+ T bases, matching against a long unspecified (“N”) sequence

representing an unknown portion of a rice fungus genome. Here we judge

these to be clear false alarms and FAST-NA correct to not trigger on

these sequences.

• Two sequences (KF022090.1 and KF022091.1) are reverse-complement

matches that would likely be caught if we were generating signatures for

reverse-complement sequences as well as original sequences.

• Six sequences (HQ719213.1, AF004437.1, AF004436.1, EU303181.1, KJ624719.1,

and AF196534.1) are matches with poor alignment in nucleic acid se-

quence, but long matching amino-acid sequences that would likely be

caught if we were generating signatures for encoded amino acids as well

as nucleic acids.

As expected, we thus find that FAST-NA is highly effective for screening

against threats, but may be unable to detect some mutated, codon-optimized,

or reverse-complement threats until reverse-complement and amino-acid sig-

natures are added.

4.3.2 Time and Signature Scale for All Viral Threats

The total time to develop all signatures was acceptably short. The first pass

took approximately two days to complete, followed by an additional six days

of tuning and adjustment for the five threat clusters that did not produce

acceptable results on the first pass, for a total of approximately eight days to

produce signatures with acceptable performance for detection of all current

viral threats.

Figure 17 shows the number of signatures produced from each cluster, as

well as the fraction of sequence data used in signatures, computed in approx-

imation by dividing number signatures by total base-pairs of threat data.
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Figure 17. (a) Number of signatures per cluster for full-scale viral threat detection,
and (b) fraction of sequence used in signatures.

Most taxa fall into a band of approximately 5% to 20% of sequence used

in signatures, and thus have total counts that correlate with the amount

of threat data provided. The only exceptions are the potato and sandy-

hemorrhagic clusters. While this might indicate that both of these clusters

have insufficient contrasting data, their outcomes are quite different: the

potato cluster appears to be part of a highly diverse and poorly explored

taxa of mostly plant-affecting viruses, and thus to be so taxonomically dis-

tinct as to have little difficulty with false positives. The sandy-hemorrhagic

cluster, on the other hand, does suffer in performance, finding many false

positives. Indeed, overall there appears to be no strong correlation between

fraction of sequence in signatures and false positive rate.

Looking more deeply into the nature of the signatures extracted from threat

files by FAST-NA, we analyzed the relationship between signatures for a va-

riety of threat clusters. Figure 18 shows the degree to which signatures are

shared between different threat sequences for six threat clusters: african-

swine, banana-bunchy, foot-mouth, herpes, influenza-a, and sars. For each

signature, we compute the number of threat sequences in which an instance

of the signature appears, then visualize the distribution of instance counts

by sorting by rank (most common first) and plotting rank versus count. We

find that every distribution begins with a significant collection of widely

shared signature instances, which we believe likely correspond to highly

conserved aspects of the threats in the threat cluster. The curve does not

maintain a consistent slope, however, but undergoes numerous bends that

likely correlate with some mixture of both meaningful structure (e.g., dif-
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Figure 18. Distribution of number of threat sequences sharing each signature for
selected threat clusters.

ferent taxonomic clusters) and non-informative happenstance (e.g., the de-

gree of sequencing that investigators happen to have done regarding par-

ticular subjects). At the lower end of the curve, most signatures appear in

only one or two threat sequences. The diagnostic value of such signatures

is dubious, as for the most part they appear much more likely to capture

non-significant variations rather than any conserved quantity regarding a

sequence of concern—as well as possible curation errors. An important ques-

tion for future investigation is whether false-positive rates can be reduced

without affecting false negative rates by removal of low-replication signa-

tures.

Figure 19 plots another key statistic over signatures: the number of signa-

tures from a sequence that overlap with the first base of each signature.

This computation includes the signature itself, so for 28 bp signatures the

values plotted range from 1 to 28. Here, the critical thing to observe is that

in the case of every collection analyzed, the frequency of signatures with

maximum overlap is much higher than any other length of overlap—in fact,

by nearly two orders of magnitude. What this implies is that most signa-

tures are part of long segments of a threat sequence, rather than isolated
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Figure 19. Distribution of overlap between signatures for selected threat clusters.

fragments, which in turn implies that the results we have obtained are likely

to be relatively tolerant of changes in signature length.

Finally, we performed an in-depth spot-check on the biological information

associated with signatures by performing sequence-level analysis of signature

coverage on selected viral genomes. Figure 20 shows an example of these re-

sults, in particular for a specific instances of the Ebola virus. Signature cov-

erage for Ebola focus heavily on the NP gene, which encodes viral replica-

tion, and the GP genes, which is involved with cell docking and penetration,

both of which tend to be heavily implicated in the danger of a pathogen.

Other areas of interest seem to be the sequence caps (important for viral ini-

tiation and stability), while most other locations have scattered signatures

likely representing small non-significant mutations differentiating this virus

from its non-pathogenic relatives. These and similar spot-check results give

further evidence that FAST-NA appears to be preferentially selecting mean-

ingfully diagnostic features of pathogens.

4.3.3 Cross-Taxa False Positives and Threat Misidentification
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Figure 20. Signature coverage appears biologically correlated, as in this example of
Ebola virus, which shows signature coverage (red) focused most heavily on the genes

for replication and cell docking.

We next evaluated the interaction of signatures across taxa, applying signa-

tures generated from the entire training set for each cluster (nothing held

back for cross-validation) to the threat and contrasting sets of each cluster.

The ideal match rate across clusters should be zero: every match of a non-

threat from any cluster is a false positive, and every match of a threat from

a different cluster is a mis-identification of a threat.

Figure 21(a) shows the rate at which threats are identified as belonging to

a particular cluster by the signatures for a cluster, i.e., testing signatures

against threat sequences. As indicated by the previous section, the diagonal

shows that the rate of false negatives is negligible. Off the diagonal axis, the

rates are in general low, with a weighted mean of 0.35% mis-identifications.

Similarly, Figure 21(b) shows the rate of false positives across taxa, i.e., test-

ing signatures against contrasting sequences. Here again, off the diagonal

axis the rates are similarly low, with a weighted mean of 0.45% false posi-

tives.

The distribution of mis-identifications and false positives, however, is quite

uneven, with a relatively small fraction of interactions accounting for a large

percentage of errors. For mis-identifications, errors are highest for sequences

from horse-encephalitis, sandy-hemorrhagic, sars, and smallpox, and for sig-

natures from encephalitis and horse-encephalitis. We might expect the rates

of mis-identification to be highest within related taxa, e.g., for it to be eas-
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(a) Threat Identification

(b) False Positives

Figure 21. Rate of (a) threat identification, i.e., testing signatures against threat
sequences across all viral clusters, and (b) false positives, i.e., testing signatures

against contrasting sequences across all viral clusters. The X-axis shows the cluster of
test sequences, while the Y-axis shows the cluster of origin for signatures.
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Figure 22. (a) No significant correlation is observed between signature count and
false positive rate, but (b) errors go down with increased contrasting sequence data.

ier to mis-identify a dsDNA viruses as another dsDNA virus, rather than

to mis-identify a dsDNA virus as an ssRNA virus. There is no evidence for

such a relationship, however: there are 11 sequence/signature pairs with a

mis-identification rate of higher than 2%, and of these six are in the same

taxonomic grouping per Figure 5 and one in the same top-level grouping

(horse-encephalitis and sandy-hemorrhagic both being ssRNA viruses). The

remaining five all involve smallpox, either as signature or test sequence.

For false positives, results are similarly uneven and without obvious pattern.

Errors are highest for sequences from banana-bunchy and herpes and for

signatures from ebola-rabies, horse-encephalitis, and smallpox. Here there

are 12 sequence/signature pairs with a false positive rate of higher than 2%,

every one of which involves sequences from either banana-bunchy (five) or

herpes (seven). There is no clear relationship with taxonomic closeness here

either, but all of the clusters with higher than 2% false positive for banana-

bunchy also have higher than 2% false positive for herpes.

Digging deeper into the sources of false positives and misidentifications, we

might suspect that having more signatures would lead to more errors, sim-

ply due to the increased number of opportunities for error. In fact, however,

Figure 22(a) shows that we find no such correlation. This is consistent with

the fact that false positive and misidentification rates are well above the pre-

dicted baseline for random hits, suggesting that false positives are indeed

due to some sort of related structural properties between sequences.
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There does, however, appear to be a correlation between the number of closely

related contrasting sequences available for training and the rate of false pos-

itives and misidentifications, as shown in Figure 22(b). This suggests that

error rates could be further reduced if additional contrasting sequence data

can be obtained, either through identification of taxa likely to have enough

relationship to provide useful contrast or through the growth of sequence

collections over time.

In fact, however, deep inspection of signatures and signature sources deter-

mined that the vast majority of false positives stemmed from three sources:

• A small number of artificial hybrid sequences that cross taxonomic bound-

aries, thus confusing threat taxa. For example, consider the high rate of

threat mis-identification in which horse-encephalitis cluster threat se-

quences are identified as belonging to the encephalitis cluster. Of those,

99.5% are caused by a set of six engineered sequences from a single re-

search project that hybridized an encephalitis sequence with VEEV,

which belongs to the horse-encephalitis cluster.

• Signatures with long sequences of unknown (“N”) nucleotides. Since

gaps in knowledge have no information content and no taxonomic cor-

relation, these effectively shorten the signature length, resulting in more

non-diagnostic matches.

• Signatures with long poly-A or poly-T sequences. Long poly-A sequences

are a frequently used signal in mRNA processing, and long poly-T se-

quences are their necessary complement, so such sequences are also not

expected to contain any significant diagnostic content. As with long se-

quences of unknown nucleotides, long poly-A and poly-T sequences effec-

tively shorten signature length, resulting in more non-diagnostic matches.

Accordingly, we enhanced FAST-NA to add the ability to filter out signa-

tures with more than a certain number of repeated N, A, or T nucleotides

in sequence, as well as the ability to omit a list of specific threat sequences

from training.

4.3.4 Detection of Threats in Very Short Sequences

Although we have tuned the full-scale viral signatures to detect sequences of

at least 50 bp, training only on signatures of that length or more, it is worth

asking whether these signatures can also effectively detect shorter sequences.

Across all of the clusters of viral threat and contrasting sequence data, there
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Figure 23. Distribution of lengths for short (< 50 bp) sequences in viral threat and
contrasting sequence data.

are a total of 17,962 threat sequences and 23,218 contrasting sequences ex-

cluded for being less than 50bp in length. Figure 23 shows the distribution

of lengths across these sequences.

The bulk of these sequences are, in fact, shorter than the length of our sig-

natures, and thus by definition cannot be detected by these signatures. For

all sequences at least 28 bp in length, however, we find the rate of detec-

tion to be remarkably high. In total, 52.9% of all threats are identified cor-

rectly, with only 1.0% misclassifications. Interestingly, false positive rates are

higher as well for these extremely short sequences at a rate of 8.9%.

While this is a much lower efficacy than for the longer sequences that we

have tuned FAST-NA to detect, these results are still good enough that it

may be worth further investigation of whether FAST-NA can be applied to

at least reduce the potential threat from very short sequences.

4.3.5 Enhancing Threat Detection

Per the analyses above, we enhanced FAST-NA with the addition of reverse

complement screening and false-positive reduction techniques. Reverse com-

plement screening was implemented by training against both forward and

reverse complement contrasting sequences, then screening using both the

forward and reverse complement instances of a sequence. False positive re-
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(a) Threat Identification

(b) False Positives

Figure 24. Nucleic acid screening with reverse complement and false-positive
reduction: rate of (a) threat identification, i.e., testing signatures against threat
sequences across all viral clusters, and (b) false positives, i.e., testing signatures

against contrasting sequences across all viral clusters. The X-axis shows the cluster of
test sequences, while the Y-axis shows the cluster of origin for signatures.
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duction was conducted by addressing the three primary sources of false pos-

itives identified above. Analysis of false positive sources identified 16 “sub-

mission clusters” (that is, sets of sequences with closely related identifiers,

typically all submitted as part of a single publication) that contained at

least one problematic hybrid sequence. Removing these clusters from train-

ing removed a total of 75 out of 163101 sequences, or less than 0.05%, a neg-

ligible fraction. In addition, we removed all signatures with any unknown

(“N”) nucleotide and any containing a sequence of 15 or more consecutive

A or T bases. Figure 24 shows the improvement in performance brought by

the combination of false positive reduction and reverse complement screen-

ing: threat mis-identifications drop to a cumulative 0.06% across all taxa

(weighted mean: 0.005%), while false positives drop to a cumulative 0.62%

(weighted mean: 0.03%).

Similarly, we also enhanced FAST-NA for protein-based screening against

amino acid sequences. Since most pathogenic mechanisms of action involve

proteins, it is typically not the genetic sequence per se but the protein se-

quence that it can be translated into that is actually of concern. Since 64

three-nucleic-acid codons map onto only 20 amino acids, the same protein

sequence can be encoded in many different ways. This means that match-

ing in amino acid space rather than nucleic acid space is useful for avoiding

mismatches caused by neutral mutations or codon optimization.

Thus, in order to screen against nucleic acid sequences with FAST-NA, sig-

nature generation is done against collections of protein sequences rather

than nucleic acid sequences. Screening is then preceded by a translation

stage in which a sequence is translated into amino acids following all three

potential codon frames, and an alert is raised if a signature matches any

of the three potential translations. Figure 25 shows the results for protein-

based screening of nucleic acid sequences. Overall, the rate of false negatives

is low but well above zero (though expected to be covered by nucleic acid

screening), while the rate of mis-identifications and false positives remains

extremely low (respectively 0.10% and 0.45% cumulative across all taxa).

Results can be further improved by combining the results of nucleic acid

screening and protein-based screening. Preliminary results indicate that

unified screening is indeed likely to be effective at removing false negatives:

of the biologically meaningful false negatives reported in Section 4.3.1, ev-

ery single one is caught by either reverse-complement nucleic acid screening

(KF022090.1, KF022091.1, HQ719213.1, KJ624719.1, EU303181.1), protein-

based screening (AF004437.1, AF004436.1) or both (AF196534.1). Further-

more, the baseline rates of false positives are quite low for both nucleic acid
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(a) Threat Identification

(b) False Positives

Figure 25. Protein screening rate of (a) threat identification, i.e., testing signatures
against threat sequences across all viral clusters, and (b) false positives, i.e., testing
signatures against contrasting sequences across all viral clusters. The X-axis shows

the cluster of test sequences, while the Y-axis shows the cluster of origin for
signatures.
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Figure 26. Results of subset testing for a single small taxon of threat and contrast
samples for a variety of eukaryotic (“abrin” through “snail”) and bacterial

(“argt-potato-ring-rot” through “typhus-spotted-fever”) threat clusters. Results are
highly variable, but indicate likely applicability of FAST-NA to these cellular threats as

well.

and protein-based screening and there is significant overlap between the two

in the set of false positives that raise alerts, so the increase in false positives

from unified screening remains manageable.

4.4 Generalization to Bacterial and Eukaryotic Threats

In addition to the in-depth application analysis of FAST-NA with respect

to viral threats reported above, we also conducted preliminary analysis of

the applicability of these techniques to threats from bacterial and eukary-

otic taxa. Figure 26 shows the results of a preliminary small-scale test in 12

eukaryotic threat clusters and 10 bacterial threat clusters. For each threat

cluster, a single taxon of threats were selected (the closest available to 100

sequences in size) and a single taxon of contrast (the closest available to

1000 sequences in size). While there is a high variability in the results ob-

tained, our analysis shows these initial results to be highly promising in the

likelihood that FAST-NA can be effectively applied to cellular threats as

well as viral threats.
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False positives ranged from less than 0.1% to 23%, with a mean of 5.2%.

These numbers are similar to initial tests with viral taxa. Accordingly, with

use of full scale contrasting data and tuning, it appears likely that false pos-

itives for cellular threats should be able to be similarly reduced to very low

ultimate rates.

False negatives have an even higher variability. Four threat clusters have

zero false negatives, while three other clusters have more than 50% false neg-

atives. Examination of the reasons for these misses, however, reveal that

they appear to primarily be due to the number of samples being less than

the number of independently reported genes for these organisms. Unlike

viruses, which uniformly have a very small number of coding sequences, cel-

lular threats typically have anywhere from hundreds to tens of thousands.

These are often reported individually, rather than in entire genomes, and

thus the small threat sequence sample size used in this preliminary experi-

ment was too small for a reliable evaluation of false negatives: for many or-

ganisms, there was simply not enough chance of a gene showing up in both

the training and test sets. When genes did show up in both, however, they

appeared to be caught effectively, as we would expect based on the results of

applying FAST-NA to viral threats. Our preliminary assessment is thus that

FAST-NA is likely to generalize beyond viral threats such that it can also

apply effectively to bacterial and eukaryotic threats.

4.5 Realism of CONOPS and Resource Requirements

To further evaluate the realism of the proposed application of FAST-NA

to detection of viral sequences, we evaluated the performance of FAST-NA

against customer-related data supplied by IDT, and also evaluated the scal-

ing of resource requirements in operation of the current key components of

the FAST-NA pipeline.

4.5.1 Evaluation Against Realistic Sequence Distribution

Nucleic acid synthesis orders are likely to be distributed differently across

taxa than the public sequence databases on which we trained FAST-NA, so

in order to evaluate the performance of FAST-NA in a more realistic envi-

ronment, we applied the signatures generated from the full-scale viral threat

detection test to the collection of customer-related sequence data supplied

by IDT.

This data is segmented into five collections: one in which the IDT system

detected nothing suspicious, and four “threat” collections where the threat
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Figure 27. Results of applying full-scale viral threat signatures to IDT
customer-related sequences. Color indicates rate of detection, grey square indicates

IDT data set had no matches to be tested.
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was either viral or non-viral and where it either required human judgement

to resolve or did not (labelled “manual” and “false-pos” respectively). Of

these five collections, we would thus desire FAST-NA to have a 100% match

rate on the virus-manual collection, and a 0% match rate on all of the oth-

ers.

Figure 27 shows the results of comparison with the current FAST-NA sys-

tem. The no-hit collection has an overall false positive rate of 1.7%, while

the non-viral manual and false-positive collections have misidentification

rates of 2.7% and 4.2%. The rate of hits in the IDT false-positive collection

was higher, at 20.7% of the number of IDT detections, and the rate of suc-

cessful threat detection was 75.9% of IDT threat calls.

Critically, hand inspection of a selection of missed detections found every

such instance to either have reverse-complement matches or else to have a

poor nucleotide match but long amino-acid sequence matches. We thus con-

clude that, as with the false negatives found during tuning of the full-scale

viral signature set, false negatives on IDT customer-related data should be

expected to resolve with the inclusion of reverse-complement and amino-acid

signatures into FAST-NA.

We thus conclude that the FAST-NA is likely to be effective for screening of

synthesis orders, once upgraded to avoid the current false negatives. While

the false positive rates on synthesis order data are higher than the ideal

rates, these may be able to be lowered through additional tuning as dis-

cussed above. Furthermore, FAST-NA can also markedly improve current

CONOPS by being coupled with current screening techniques to serve as

a lightweight first-pass filter, such that more costly BLAST-based inspec-

tions are performed only on the small fraction of sequences where FAST-NA

matches a signature.

4.5.2 Scaling of Resource Requirements

While viral threats comprise approximately half of the current threat taxa,

bacterial and eukaryotic threats have both larger sequences and more se-

quences. Application of FAST-NA to these threats will thus require scaling

up by approximately two orders of magnitude. With regards to this chal-

lenge of scaling, three resources are likely to be limiting factors in the de-

ployment and scaling of FAST-NA: working memory (RAM), disk space, and

execution time.
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Figure 28. Time scaling for FAST-NA components.

Space: RAM and disk Space requirements—both RAM and disk—

are currently dominated by the Bloom filters used for signature generation.

With current settings, these are approximately 2 GB per filter, but no more

than two ever need to be loaded into memory at the same time. They are

also highly compressible: we have observed reductions of approximately 40-

fold under standard compression, meaning that even storing many Bloom

filters on disk is likely to be quite manageable.

When scaling up operations, signatures may come to surpass Bloom filters

for space requirements, entering a range of 109 or 1010 signatures in total.

Currently, the largest signature collection, ebola-rabies with 6.2 million sig-

natures, requires 916 MB of storage space, i.e., approximately 150 bytes per

signature. The space requirements are expected to scale proportional to the

number of signatures, so as with Bloom filters, operations at scale will re-

quire care in space management, but these scales are still well within reach

of current systems, particularly since signatures can readily be split into

multiple smaller collections that can each be applied independently.

We do note, however, that the current pipeline implementation is not thor-

oughly optimized for scaling, and thus some aspects are likely to be prob-

lematic until scale-aware choices are made for every aspect of the pipeline.

We have already observed this in one instance, in which the matcher ran

out of memory while executing the full-scale ebola-rabies signature system

against its own sequences on a machine with far more memory available

than should have been needed, likely due to inefficiency in the JSON-parsing

library currently being used. There are no anticipated barriers to addressing

such issues, however, which are routine for contemporary big data systems.
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Execution Time In order to evaluate time requirements, we recorded

the times required to execute each step of the experimental pipeline for the

cross-taxa and IDT customer-related data experiments reported above, exe-

cuting on a machine with 240 GB of memory. The components of FAST-NA

that dominate time requirements are, as expected, generation of contrasting

data Bloom filters with the makebloom component, generation of signa-

tures with the ASG component, and matching signatures with the matcher

component.

All three of these are expected to have a linear time scaling. Both makebloom

and ASG are expected to execute linearly in the number of sequences, as

each component applies each signature independently against a fixed-size

data structure. The matcher is expected to be linear in the base-pairs of

information to be matched against and also in the number of signatures to

be loaded into memory to prepare the matcher. Figure 28 shows the ob-

served execution times for each component against the expected linear scal-

ing parameter(s). As can be seen, in all cases the observed times fit well

with the expected scaling and moreover the proportionality constants are

within a reasonable range to be scaled up two orders of magnitude, particu-

larly with the aid of additional parallelization.

4.6 Opportunities for Generalization of FAST-NA

We have demonstrated the efficacy of applying FAST-NA to both the DNA

and protein sequences of viral threats, as well as demonstrating the likely

potential for generalization of FAST-NA to apply to non-viral threats.

There are also a number of potential opportunities for improvement of per-

formance by including more biological knowledge or more sophisticated pro-

cessing into the implementation of FAST-NA, including:

• automatic assistance for contrasting sample selection,

• multi-length signatures,

• signature generation from clustered consensus threat sequences, removing

high-variability non-diagnostic regions,

• pre-screening signatures for detection utility,

• multi-segment signatures, and

• non-binary detection values.
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4.7 Recommendations for Control of Information Related to
FAST-NA Technology

As the FAST-NA technology is intended for defense against potential con-

struction of dangerous biological agents, it is worth considering if access to

this technology should be restricted. On the one hand, freely disseminat-

ing information may make it easier for bad actors to learn about potential

threats or to attempt to evade detection by FAST-NA. On the other hand,

the technology is more effective the more widely it is deployed, and may be

made yet more effective by having more good actors readily able to innovate

to improve the technology and its opportunities for deployment.

As a starting point, we consider an analogy to the computer security world

in which the FAST technology was originally developed. There, signature

matchers like SNORT and signature construction software like FAST are

free and open source, as are older sets of signatures, while information re-

strictions are applied only to early access to emerging threats. In short, the

value is not in the methodology, but in the careful collection and curation

of particular signatures. We find this to be in general the case of FAST-NA

as well: the software and methodology are relatively simple to derive from

existing open source artifacts, while the primary costs are instead found in

curation and training. It is also important to note that the signatures of

FAST-NA are sensitive to the particulars of curation and training, and even

a single relevant signature unknown to a bad actor can spoil an evasion at-

tempt.

It is also important to consider the types of actors that FAST-NA is in-

tended to defend against. High-capability actors with bad intentions, such

as nation-states and large private organizations, will in general not be af-

fected by FAST-NA since such actors will generally be able to readily create

their own de novo nucleic acid synthesis capabilities. The target is instead

to defend against carelessness and accidents (“bio-error”) by well-intentioned

actors and against low-capability bad actors, such as individuals or terrorist

organizations, who will generally need to depend on external organizations

as their source of nucleic acids. It is thus advantageous to have FAST-NA

readily disseminated internationally to all of the companies and similar orga-

nizations that can serve as sources of nucleic acids.

Following these principles, we thus recommend the following with regards

to dissemination of the elements of FAST-NA. The following information

should be disseminated freely and openly:
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• The FAST-NA algorithm and methodology, including refinements such as

the decision to exclude signatures with poly-A/T, N, and certain individ-

ual accession IDs.

• Performance data and results

• The software implementation of FAST-NA and associated workflow tool-

ing

• Tuning information for viral taxa.

• Illustrative examples of threat signatures.

The following information should be distributed in aggregate form, but full

details withheld except from qualified organizations such as members of the

IGSC and government agencies:

• Tuning information for cellular taxa.

• List of threat and contrasting sequence accession IDs

• List of omitted accession IDs

The following information should be restricted to qualified organizations

such as members of the IGSC:

• Large-scale collections of threat signatures.

Note that the last may be adjusted if a way can be developed to distribute

signature information without danger of simple reverse engineering.
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5 Summary and Discussion

5.1 Progress Against Waypoints

Our progress against key waypoints for this project is as follows:

• Curation of training and testing data: complete

• Construction of prototype FAST-NA software: complete

• Setup of experimental pipeline: complete

• Evaluation of FAST-NA potential for screening viral threat taxa: com-

plete

• Evaluation of FAST-NA potential to generalization to other taxa: com-

plete

5.2 Important Findings and Conclusions

Our findings in this report are as follows:

• FAST malware screening technology can be effectively adapted for screen-

ing of viral nucleic acid sequences.

• FAST-NA can use publicly curated data to identify short sequences diag-

nostic of viral threat potential in a nucleic acid sequence.

• FAST-NA can significantly reduce false positives in screening for viral

threats, without introducing false negatives.

• FAST-NA can likely be extended to apply with similar efficacy to bacte-

rial and eukaryotic threats.

• FAST-NA can support an effective CONOPS for biosecurity screening

with a reasonable resource budget.

5.3 Special Comments

None.
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5.4 Implications for Further Research

Our results indicate that FAST-NA can enable a significant improvement

over the current state of the art in nucleic acid synthesis screening for vi-

ral threats, and likely to bacterial and eukaryotic threats as well. In the

interest of national security, we thus recommend funding further

development of FAST-NA in support of transition into widespread

industrial usage.

Specifically, we recommend investment in transition of FAST-NA for de-

ployment to screen for viral threats in commercial and government envi-

ronments, likely in some sort of cooperation with organizations such as the

International Gene Synthesis Consortium (IGSC). We further recommend

development of FAST-NA for detection of bacterial and eukaryotic threats.

Such efforts will involve addressing biological differences between taxa, such

as the decreased density of pathogen-specific sequences in cellular genomes,

as well as differences in the curation of these taxa. There will also need to

be adjustments in the operation of FAST-NA to handle the increased scale

of data involved.

Finally, we note that there are likely to be other applications of interest for

FAST-NA as well, particularly from a biosecurity perspective, and recom-

mend further investigation of such possibilities.

5.5 Commercial/Proprietary/Third-Party Material in
Deliverables

None.
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