Takt time considerations for customer satisfaction

Dr. Steve Kramer – Nova Southeastern University 2021-22 Chair Southeast Florida Section 1510 ASQ North Jersey Section – September 21, 2022

Learning Objectives

- In this session you will:
 - Learn the history of Takt
 - Learn the potential weaknesses
 - Learn a strategy to modify Takt to be able to leverage it more generally

Takt – the term

- Latin "tactus"
- German "Takt"
 - Regularity with which something gets done
 - Time between two Takt impulses is Takttime
 - Unit of time within which a product must be produced to match time between demands

Takt – History

 Production management tool German aircraft industry (1930s): precise interval of time; meter: *Taktverfahren Takt = cycle verfahren = process*

Takt – History

 Mitsubishi military aircraft arm learned from Junkers engineer's (1942) pulse line (fixed intervals).

G4M Betty bombers assembly line 1945

Takt – History at Toyota

- JIT implemented at Toyota's Koromo Plant (completed 1938).
 - Vertically integrated: casting, forging, machining, mechanical assembly, stamping, body assy, painting, final assembly
 - all connected in a line with conveyors (Kiichiro Toyoda).

Takt – History at Toyota

- JIT at Koromo
 - produce the needed quantity of required parts each day.
 - suspended in 1939 due to wartime rationing. Koromo bombed.
- Korean War in 1950: need for trucks
 - Restoration included automatic delivery equipment using plate cams (*observed at Ford*) by Taiichi Ono

Takt – Adopted at Toyota

 1950s Takt integrated flow principle and JIT: typically reviewed production forecast every month, tweaked every

10 days

Takt – Adopted at Toyota

- Takt = available time / demand
 - Production plan (demand) solidified 10 days out (eliminated variability)
 - Available time could be scheduled to meet production plan

Takt generally

- Only concerned with output rate to satisfy demand
 - Output assumes 100% efficiency
 - Demand assumes fixed pace (no variability)
- Demand variability within Takt window
 Yields congestion (?)

Takt and demand variability

- We illustrate with queuing approximation:
 - C_x = coefficient of variation for r.v. *X*

 $= \frac{\text{Standard deviation of } X}{\text{Mean of } X}$

 $C_{\chi}^{2} =$ squared coefficient of variation (scv) = $(C_{\chi})^{2} = \frac{\text{Variance}}{\text{Mean}^{2}}$

Inputs:

Parameter	Notation
Number of servers	С
Mean arrival rate	λ
Mean service rate	μ
Interarrival time distribution squared coefficient of variation	C_a^2
Service time distribution squared coefficient of variation	C_s^2

	Parameter	Notation	Formula
Outputs:	Average system utilization	ρ	$\frac{\lambda}{c\mu}$
	Average items waiting for service (backlog)	L_q	$\frac{\rho^{\sqrt{2(c+1)}}}{1-\rho} \cdot \frac{C_a^2 + C_s^2}{2}$
	Average wait time preceding service (congestion time)	W_q	$\frac{L_q}{\lambda}$

Let's assume best case with no service time variability ($C_s^2=0$) and a single server.

Average time spent waiting for service:

$$W_q = \frac{\rho^{\sqrt{2(c+1)}}}{\lambda(1-\rho)} \cdot \frac{C_a^2 + C_s^2}{2} = \frac{\rho^2}{\lambda(1-\rho)} \cdot \frac{C_a^2}{2}$$

Wq (λ = 1, constant service times)

At 85% utilization, expect to be delayed (wait) 2.4 cycles if Poisson arrivals

- Un-regulated (random) demand
 - Poisson arrivals so time between arrivals is exponential (n=10,000)
 - -CV = SCV = 1.0 since mean = stdev

Typical arrival process with unregulated, random arrivals.

item	Time between	Arrival time	Service start	Service Duration	Service end time	Sojourn time	Completions upon arrival	Number in system upon	Number in queue upon
1		0 1 2	0.12	05	0.62	0.50	0		
1	0.12	0.12	0.12	0.5	1 1 2	0.50	0	1	0
2	0.15	0.27	0.02	0.5	1.12	0.85	0	1 2	0
3	0.31	0.58	1.12	0.5	1.62	1.04	0	2	1
4	3.87	4.44	4.44	0.5	4.94	0.50	3	0	0
5	4.60	9.05	9.05	0.5	9.55	0.50	4	0	0
6	0.59	9.64	9.64	0.5	10.14	0.50	5	0	0
7	0.63	10.27	10.27	0.5	10.77	0.50	6	0	0
8	1.57	11.84	11.84	0.5	12.34	0.50	7	0	0
9994	0.11	9915.05	9916.64	0.5	9917.14	2.09	9989	4	3
9995	3.16	9918.21	9918.21	0.5	9918.71	0.50	9994	0	0
9996	1.30	9919.51	9919.51	0.5	9920.01	0.50	9995	0	0
9997	0.38	9919.88	9920.01	0.5	9920.51	0.62	9995	1	0
9998	1.01	9920.89	9920.89	0.5	9921.39	0.50	9997	0	0
9999	0.99	9921.88	9921.88	0.5	9922.38	0.50	9998	0	0
10000	0.79	9922.67	9922.67	0.5	9923.17	0.50	9999	0	0

Assuming SCV(service = 0)

Approx Lq	Lq	Approx /Lq	q(max)	Util	P(Wq>0.5)	P(Wq>1)	P(Wq>2)	P(Wq>4)	P(Wq>10)
0.25	0.27	94%	6	0.5	18.3%	5.7%	0.5%	0.0%	0.0%
0.45	0.49	91%	9	0.6	35.5%	16.4%	3.8%	0.2%	0.0%
0.82	0.91	89%	12	0.7	51.9%	32.5%	13.3%	2.6%	0.0%
1.60	1.82	88%	17	0.8	68.1%	51.4%	30.5%	13.2%	0.8%
2.41	2.70	89%	23	0.85	77.0%	64.0%	44.6%	22.2%	4.0%
4.05	4.32	94%	28	0.9	85.3%	76.1%	61.3%	39.3%	11.2%

Assuming SCV(service = 0)

Pick your capacity (utilization) based on risk tolerance (SLA)

Wait times as a function of service times

Assuming exponential interarrival time distribution

- Arrivals prior to available server are "wasted"
 - No capacity to work on early work
 - Must store it
 - Adds to customer lead time
- Arrivals after expected starve the line
 - Excess capacity puts server(s) idle
 - Minimizes lead time

- Congestion is seen by first process step
 - "Regulator," significantly reducing arrival variability to subsequent steps based on C_s^2 (service time variability)
 - Subsequent congestion can be avoided even when coupled with high service utilization if downstream service variability is minimized

Takt and congestion – *Real* Example

- Maintenance and Repair (MRO)
 - SLA independent of capacity
 - Demand (arrivals) occur randomly (not scheduled)
 - Service grouped into families with cells, line balanced based on work scope (all the normal lean approaches)

- Maintenance and Repair (MRO)
 - Very difficult to guarantee SLA with high arrival variability
 - One thing left is capacity planning, but what level?

Asymmetric arrival pattern evident

At SCV(arrival) = 0.630

Part Family Cell A SCV(arrival) = 0.63 SCV(service) = 0.00

Using empirical SCV, pick utilization to satisfy SLA: Lq<2? 88% planned load

Strategy to work with Takt

- Nothing wrong with Takt
- Just need to account for variability
 - Arrival in particular (little control) to FIRST process step
 - Include service variability as normal

Take-aways

- Through this session, you should have:
 - Learned the history of Takt
 - Learned the potential weaknesses
 - Learned a strategy to modify Takt to be able to leverage it more generally

Questions?

Steve Kramer– Phone: (954) 288-4782 – Email: skramer@memberleader.asq.org

