

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 04/05/2024

Tested By: Nicholas Howard

ested By: Nicholas Howarc Scientist Date: 02/14/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

10mg D9/10mg CBD-Green Tea

kca

Sample ID: SA-240207-34 Batch: N03378 Type: Finished Product - Matrix: Edible - Gummy Unit Mass (g): 5.58561	R	Received: 02/12/2024 Completed: 04/05/2024	Client Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA
Heavy Metals b Analyte	by ICP-MS	LOQ (ppm)	Result (ppm)
		LOQ (ppm) 0.02	Result (ppm)
Analyte Arsenic	LOD (ppm)		*** *
Analyte	LOD (ppm) 0.002	0.02	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/05/2024

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 04/04/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

10mg D9/10mg CBD-Green Tea

Sample ID: SA-240207-34598 Batch: N03378 Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 5.58561

Received: 02/12/2024 Completed: 04/05/2024 **Client** Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA

Pesticides by LC-MS/MS

Analyte	LOD	LOQ	Result	Analyte	LOD (mmh)	LOQ	Result
Abamectin	(ppb) 30	(ppb) 100	(ppb) ND	Hexythiazox	(ppb) 30	(ppb) 100	(ppb) ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acequinocyl	30	100	ND	Imidacloprid	30	100	ND
Acetamiprid	30	100	ND	Kresoxim methyl	30	100	ND
Aldicarb	30	100	ND	Malathion	30	100	ND
Azoxystrobin	30	100	ND	Metalaxyl	30	100	ND
Bifenazate	30	100	ND	Methiocarb	30	100	ND
Bifenthrin	30	100	ND	Methomyl	30	100	
Boscalid	30	100	ND	Mevinphos	30	100	ND
Carbaryl	30	100	ND	Myclobutanil	30	100	ND
Carbofuran	30	100	ND	Naled	30	100	ND
Chloranthraniliprole	30	100	ND	Oxamyl	30	100	ND
Chlorfenapyr	30	100	ND	Paclobutrazol	30	100	ND
Chlorpyrifos	30	100	ND	Permethrin	30	100	ND
Clofentezine	30	100	ND	Phosmet	30	100	ND
Coumaphos	30	100	ND	Piperonyl Butoxide	30	100	ND
Cypermethrin	30	100	ND	Propiconazole	30	100	ND
Daminozide	30	100	ND	Propoxur	30	100	ND
Diazinon	30	100	ND	Pyrethrins	30	100	ND
Dichlorvos	30	100	ND	Pyridaben	30	100	ND
Dimethoate	30	100	ND	Spinetoram	30	100	ND
Dimethomorph	30	100	ND	Spinosad	30	100	ND
Ethoprophos	30	100	ND	Spiromesifen	30	100	ND
Etofenprox	30	100	ND	Spirotetramat	30	100	ND
Etoxazole	30	100	ND	Spiroxamine	30	100	ND
Fenhexamid	30	100	ND	Tebuconazole	30	100	ND
Fenoxycarb	30	100	ND	Thiacloprid	30	100	ND
Fenpyroximate	30 <	100	ND	Thiamethoxam	30	100	ND
Fipronil	30	100	ND	Trifloxystrobin	30	100	ND
Flonicamid	30	100	ND				
Fludioxonil	30	100	ND				J

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/05/2024

Tested By: Anthony Mattingly Scientist Date: 03/13/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

10mg D9/10mg CBD-Green Tea

kca

Sample ID: SA-240207-345 Batch: N03378 Type: Finished Product - In Matrix: Edible - Gummy Unit Mass (g): 5.58561		Received: 02/12/2024 Completed: 04/05/202	Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA
Mycotoxins by Lu Analyte	C-MS/MS	LOQ (ppb)	Result (ppb)
BI	1	5	ND
B2	1	5	ND
G1	1	5	ND
G2	1	5	ND
Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/05/2024

Tested By: Anthony Mattingly Scientist

Date: 04/05/2024 Date: 03/13/2024 Date: 03/13/2024 Date: 03/13/2024 Date: 03/13/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 7

10mg D9/10mg CBD-Green Tea

Sample ID: SA-240207-34598 Batch: N03378 Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 5.58561		d: 02/12/2024 ted: 04/05/2024	Client Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA
Microbials by PCR and Pla		Result (CFU/a)	Result (Qualitative)
Microbials by PCR and Pla Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Analyte			Result (Qualitative)
Analyte Total aerobic count	LOD (CFU/g) 10	ND	Result (Qualitative)
Analyte Total aerobic count Total coliforms	LOD (CFU/g) 10 10	ND ND	Result (Qualitative)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/05/2024

Lade Rinuston

Tested By: Jade Pinkston Microbiology Technician Date: 04/05/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

10mg D9/10mg CBD-Green Tea

Sample ID: SA-240207-34598 Batch: N03378 Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 5.58561

Received: 02/12/2024 Completed: 04/05/2024 **Client** Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA

Residual Solvents by HS-GC-MS

	5						
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/05/2024

Tested By: Kelsey Rogers Scientist

Date: 03/13/2024 Date: 03/13/2024 Date: 03/13/2024 Date: 03/13/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 7

10mg D9/10mg CBD-Green Tea

kca

mple ID: SA-240207-34598 tch: N03378 pe: Finished Product - Inges atrix: Edible - Gummy it Mass (g): 5.58561	stible	Received: 02/12/202 Completed: 04/05/2	24 2024	Client Arvida Labs 1291 NW 65th PL Fort Lauderdale, USA	
				X	
atalyst Metals					
	Result	Unit	LOD	100	
nalyte ickel (Ni)	<loq< td=""><td>ppm</td><td>0.0167</td><td>LOQ 0.05</td><td></td></loq<>	ppm	0.0167	LOQ 0.05	
alladium (Pd)	ND	ppm	0.003	0.01	
atinum (Pt)	ND	ppm	0.003	0.01	
nodium (Rh)	ND	ppm	0.003	0.01	
ithenium (Ru)	ND	ppm	0.003	0.01	
Sad					
RAM		MHA OL			

Date: 04/05/2024 Date: