For 2024 Exam

O OSWAAL BOOKS® LEARTTITNE WADE EIMPLE

CBSE

Chapterwise \& Topicwise
SOLVED PAPERS CLASS 12 QUESTION BANK

MATHEMATICS

Get the \#OswaalEdge

\square
100\% Updated for 2023-24
with Latest Syllabus \& Fully Solved Board Papers

Crisp Revision
with Topic wise Revision Notes, Smart Mind Maps \& Mnemonics
with $3000+$ Questions \& Board Marking Scheme Answers
with $1000+$ Concepts \& 50+ Concept Videos
with Art Integration \& Competencybased Questions

COPYRIGHT RESERVED

BY THE PUBLISHERS

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without written permission from the publishers. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions.

PUBLISHED BY

OSWAAL BOOKS \& LEARNING PVT. LTD.

1/11, Sahitya Kunj, M.G. Road, Agra - 282002, (UP) India CB 236DP, United kingdom

0562-2857671

contact@oswaalbooks.com

www.OswaalBooks.com

[^0]
Contents

- Latest CBSE Syllabus
- Sample Question Paper-2022-23 Fully Solved (Issued by Board dated $16^{\text {th }}$ Sep. 2022)
- Solved Paper-2022 Term-II
(Delhi \& Outside Delhi Sets)
(To download Solved paper for Term-I 2021-22 \& Latest Topper's Answers 2020, scan the QR Code given on Page 49)
- Supplement: Latest Typology of Questions Introduced by CBSE for 2023-24 Examination

Unit-I : Relations \& Functions

1. Relations and Functions 1-22
2. Inverse Trigonometric Functions 23-41 - Self Assessment Paper-1 42-43

Unit-II : Algebra

3. Matrices	44-66	
4. Determinants	67-87	
- Self Assessment Paper-2	88-90	
Unit-\|I	: Calculus	
5. Continuity \& Differentiability	91-115	
6. Applications of Derivatives	116-145	
7. Integrals	146-185	
8. Applications of the Integrals	186-207	
9. Differential Equations	208-237	
- Self Assessment Paper-3	238-240	

4. Determinants

- Self Assessment Paper- 2

88-90
5. Continuity \& Differentiability

91-115
6. Applications of Derivatives
7. Integrals

146-185
8. Applications of the Integrals

186-207

- Self Assessment Paper-3 238-240

6-10
$15-30$
$31-49$

50-63

Unit-IV : Vectors \& Three

Dimensional Geometry

10. Vectors	$241-268$
11. Three Dimensional Geometry	$269-290$
\quad Self Assessment Paper-4	$291-293$

Unit-V : Linear Programming

12. Linear Programming 294-314

- Self Assessment Paper-5 315-317

Unit-VI : Probability

13. Probability	$318-348$	
$*$	Self Assessment Paper- 6	$349-350$
\bullet	Practice Paper-1	$351-354$
\bullet	Practice Paper- 2	$355-359$

How to use this Book

Chapter Navigation Tools

What is on your wishlist for this Academic Year?

- Do better than the previous year
- Perfect every concept, every topic, and every question from the very beginning

You said it, we heard it!
Practice means to perform, repeatedly in the face of all obstacles, some act of vision, of faith, of desire. Practice is a means of inviting the perfection desired.
-Martha Graham
As we usher into a brand-new Academic Year 2023-24, Oswaal Books, with its all-new Question Banks, empowers you to perfect your learning, consistently!

These Question Banks have been updated for 2023-24 with utmost care. They are a unique blend of all the CBSE Board Updates, Previous Years' Questions, and specially curated Questions as per the Latest Typologies along with best-in-class Learning Resources.

All these together will charge you with the much-needed confidence to face the boards and emerge champions. But what makes it so Unique?

1. $\mathbf{1 0 0 \%}$ Updated with Latest Syllabus \& Fully Solved Board Papers
2. Crisp Revision with Topic wise Revision Notes \& Smart Mind Maps
3. Extensive Practice with 3000+ Questions \& Board Marking Scheme Answers
4. Concept Clarity with $1000+$ concepts \& $50+$ Concept Videos
5. NEP 2020 Compliance with Art Integration and Competency -Based Questions

For those who are looking to ramp up their preparation and to 'PERFECT' every nuance of concepts studied, these Question Banks are a must in your Boards arsenal. This is the perfect time to start your exciting journey with these Question Banks and fill in learning gaps, throughout the year with utmost ease \& confidence.

This Question Bank would not have been made possible without the valuable contributions of the esteemed members of the Oswaal Editorial Board-Authors, Editors, Subject matter experts, Proofreaders \& DTP operators who worked day and night to bring this incredible book to you. We are also highly grateful to our dear students for all their valuable and impeccable inputs in the making of this one-of-a-kind exam preparation tool.

All the best Students!! Be the perfectionist that you are!
Team Oswaal Books

Syllabus

Latest Syllabus
 MATHEMATICS (Code No. 041)
 CLASS-XII

One Paper

No.	Units	No. of Periods	Marks $: \mathbf{8 0}$
I.	Relations and Functions	30	08
II.	Algebra	50	10
III.	Calculus	80	35
IV.	Vectors and Three - Dimensional Geometry	30	14
V.	Linear Programming	20	05
VI.	Probability	30	08
		240	80
	Internal Assessment		20

Unit I : Relations and Functions

1. Relations and Functions :

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.
2. Inverse Trigonometric Functions

15 Periods
Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit II: Algebra

1. Matrices

25 Periods
Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operation on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Oncommutativity of multiplication of matrices, and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).
2. Determinants

25 Periods
Determinant of a square matrix (up to 3×3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit III : Calculus

1. Continuity and Differentiability :

20 Periods
Continuity and differentiability, chain rule, derivative of inverse trigonometric functions, like $\sin ^{-1} x$, $\cos ^{-1} x$ and $\tan ^{-1} x$, derivative of implicit functions. Concept of exponential and logarithmic functions.

Syllabus

Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.
2. Applications of Derivatives

10 Periods
Applications of derivatives: rate of change of bodies, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as reallife situations).
3. Integrals

20 Periods
Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.
$\int \frac{d x}{x^{2} \pm a^{2}} \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}, \int \frac{d x}{\sqrt{a^{2}-x^{2}}}, \int \frac{d x}{a x^{2}+b x+c}, \int \frac{d x}{\sqrt{a x^{2}+b x+c}}$
$\int \frac{p x+q}{a x^{2}+b x+c} d x, \int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x, \int \sqrt{a^{2} \pm x^{2}} d x, \int \sqrt{x^{2}-a^{2}} d x$
$\int \sqrt{a x^{2}+b x+c} d x$,
Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.
4. Applications of the Integrals

15 Periods
Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only).
5. Differential Equations

15 Periods
Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:
$\frac{d y}{d x}+p y=q$, where p and q are functions of x or constants.
$\frac{d x}{d y}+p x=q$, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

15 Periods
Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

Syllabus

2. Three - dimensional Geometry

15 Periods
Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

30 Periods
Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes' theorem, Random variable and its probability distribution, mean of random variable.

Syllabus

QUESTION PAPER DESIGN

Mathematics (Code No. 041)

Class XII

Time 3 Hours
Max. Marks : 80

S. No.	Typology of Questions	Total Marks	\% Weightage
1.	Remembering : Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers. Understanding : Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas	44	55
2.	Applying : Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	20	25
$\mathbf{3 .}$	Analysing: Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations Evaluating : Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria. Creating : Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	16	20
	$\mathbf{8 0}$	$\mathbf{1 0 0}$	

1. No chapter wise weightage. Care to be taken to cover all the chapters.
2. Suitable internal variations may be made for generating various templates keeping the overall weightage to different form of questions and typology of questions same.
Choice(s) :
There will be no overall choice in the question paper.
However, 33% internal choices will be given in all the sections.

INTERNAL ASSESSMENT	20 MARKS
Periodic Tests (Best 2 out of 3 tests conducted)	10 Marks
Mathematics Activities	10 Marks

Note : For activities NCERT Lab Manual may be referred.

Conduct of Periodic Tests:

Periodic Test is a Pen and Paper assessment which is to be conducted by the respective subject teacher. The format of periodic test must have questions items with a balance mix, such as, very short answer (VSA), short answer (SA) and long answer (LA) to effectively assess the knowledge, understanding,

Syllabus

application, skills, analysis, evaluation and synthesis. Depending on the nature of subject, the subject teacher will have the liberty of incorporating any other types of questions too. The modalities of the PT are as follows:
a) Mode: The periodic test is to be taken in the form of pen-paper test.
b) Schedule: In the entire Academic Year, three Periodic Tests in each subject may be conducted as follows:

Test	Pre Mid-term (PT-I)	Mid-Term (PT-II)	Post Mid-Term (PT-III)
Tentative Month	July-August	November	December-January

This is only a suggestive schedule and schools may conduct periodic tests as per their convenience. The winter bound schools would develop their own schedule with similar time gaps between two consecutive tests.
c) Average of Marks: Once schools complete the conduct of all the three periodic tests, they will convert the weightage of each of the three tests into ten marks each for identifying best two tests. The best two will be taken into consideration and the average of the two shall be taken as the final marks for PT.
d) The school will ensure simple documentation to keep a record of performance as suggested in detail circular no.Acad-05/2017.
e) Sharing of Feedback/Performance: The students' achievement in each test must be shared with the students and their parents to give them an overview of the level of learning that has taken place during different periods. Feedback will help parents formulate interventions (conducive ambience, support materials, motivation and morale-boosting) to further enhance learning. A teacher, while sharing the feedback with student or parent, should be empathetic, non- judgmental and motivating. It is recommended that the teacher share best examples/performances of IA with the class to motivate all learners.

Assessment of Activity Work:

Throughout the year any 10 activities shall be performed by the student from the activities given in the NCERT Laboratory Manual for the respective class (XI or XII) which is available on the link: http:// www.ncert.nic.in/exemplar/labmanuals.htmla record of the same may be kept by the student. An year end test on the activity may be conducted

The weightage are as under:

- The activities performed by the student throughout the year and record keeping :
- Assessment of the activity performed during the year end test: 3 marks
- Viva-voce: 2 marks

Prescribed Books:

1) Mathematics Textbook for Class XI, NCERT Publications
2) Mathematics Part I - Textbook for Class XII, NCERT Publication
3) Mathematics Part II - Textbook for Class XII, NCERT Publication
4) Mathematics Exemplar Problem for Class XI, Published by NCERT
5) Mathematics Exemplar Problem for Class XII, Published by NCERT
6) Mathematics Lab Manual class XI, published by NCERT
7) Mathematics Lab Manual class XII, published by NCERT

Hear it from our Happy Readers!

Priyanka

All concepts have been explained with examples which simplifies the understanding of the concepts and makes practice very easy. It is worth the money.

Siddharth Gupta

Very good book for 12th class preparation. This book contains Previous Years' Questions which is very helpful in exams. It also includes VSAQs, SAQs and one mark questions for exam practice. One must read this book to achieve high percentile in exams.

Priya J.

Amrik Singh Gujral

Fantastic book!

Along with Previous Years Questions \& Board Marking scheme answers this book also includes new typology of questions: MCQs, Assertion-Reason, VSA ,SA , LA \& casebased questions. Fantastic to study!!

[^1]
CHAPTER

RELATIONS AND FUNCTIONS

Types of relations : Reflexive, Symmetric, Transitive and Equivalence relations. One-to-one and onto functions.

In this chapter you will study

- Different types of relations- Reflexive, Symmetric, Transitive and Equivalence relations.
- Different types of functions - Injective, Surjective and Bijective functions.

List of Topics
Topic-1: Relations
Page No. 1
Topic-2: Functions
Page No. 11

Topic-1

Relations

Concepts Covered •Types of relations and their identification \bullet Equivalence class

E
 Revision Notes

1. Definition

A relation R, from a non-empty set A to another non-empty set B is mathematically as an subset of $A \times B$. Equivalently, any subset of $A \times B$ is a relation from A to B.
Thus, R is a relation from A to B

$$
\begin{aligned}
& \Leftrightarrow R \subseteq A \times B \\
& \Leftrightarrow R \subseteq\{(a, b): a \in A, b \in B\}
\end{aligned}
$$

Illustrations:

(a) Let $A=\{1,2,4\}, B=\{4,6\}$. Let $R=\{(1,4)$, (1, 6), $(2,4),(2,6),(4,4)(4,6)\}$. Here $R \subseteq A \times B$ and therefore R is a relation from A to B.
(b) Let $A=\{1,2,3\}, B=\{2,3,5,7\}$, Let $R=\{(2,3)$, $(3,5),(5,7)\}$. Here $R \not \subset A \times B$ and therefore R is not a relation from A to B. Since $(5,7) \in R$ but (5 , 7) $\notin A \times B$.
(c) Let $A=\{-1,1,2\}, B=\{1,4,9,10\}$ let $a \in A$ and $b \in B$ and $a R b$ means $a^{2}=b$ then, $R=\{(-1,1),(1,1),(2,4)\}$.

Note:

- A relation from A to B is also called a relation from A into B.
- $(a, b) \in R$ is also written as $a R b$ (read as a is related to b).
- Let A and B be two non-empty finite sets having p and q elements respectively. Then $n(A \times B)=n(A) \cdot n(B)=p q$. Then total number of subsets of $A \times B=2^{p q}$. Since each subset of $A \times B$ is a relation from A to B, therefore total number of relations from A to B will be $2^{p q}$.

2. Domain \& range of a relation

(a) Domain of a relation: Let R be a relation from A to B. The domain of relation R is the set of all those elements $a \in A$ such that $(a, b) \in R \forall b \in B$.
Thus, Dom. $(R)=\{a \in A:(a, b) \in R \forall b \in B\}$.
$f: X \rightarrow Y$ is one-one if
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
$\forall x_{1}, x_{2} \in X$. Otherwise,
f is many- one,
f is one-one. f

A relation $R: A \rightarrow A$ is
reflexive if $a R a \forall a \in A$

A relation $R: A \rightarrow A$ is symmetric

if $a R b \Rightarrow b R a \forall a, b \in A$$\quad$| Equivalence relation |
| :--- |
| (If a relation has reflexive, symmetric |
| and transitive relations) $e . g$., Let $T=$ |
| the set of all triangles in a plane and |
| $R: T \rightarrow T$ defined by $R=\left\{\left(T_{1}, T_{2}\right)\right\}: T_{1}$ |
| is congruent to $\left.T_{2}\right\}$. Then, R is $, b, c \in A$. |
| equivalence. |

That is, the domain of R is the set of first components of all the ordered pairs which belong to R.
(b) Range of a relation: Let R be a relation from A to B. Therangeofrelation R isthesetofallthoseelements $b \in B$ such that $(a, b) \in R \forall a \in A$.
Thus, Range of $R=\{b \in B:(a, b) \in R \forall a \in A\}$.
That is, the range of R is the set of second components of all the ordered pairs which belong to R.
(c) Co-domain of a relation: Let R be a relation from A to B. Then B iscalledtheco-domain oftherelation R. So we can observe that co-domain of a relation R from A into B is the set B as a whole.
Illustrations: Let $a \in A$ and $b \in B$ and
(i) Let $A=\{1,2,3,7\}, B$

$$
=\{3,6\} . \text { If } a R b \text { means } a<b
$$

Then we have

$$
R=\{(1,3),(1,6),(2,3),(2,6),(3,6)\}
$$

Here, Dom. $(R)=\{1,2,3\}$,
Range of $R=\{3,6\}$, Co-domain of $R=B=\{3,6\}$
(ii) Let $A=\{1,2,3\}, B=\{2,4,6,8\}$.

If $\quad R_{1}=\{(1,2),(2,4),(3,6)\}$,
and $\quad R_{2}=\{(2,4\},(2,6),(3,8),(1,6)\}$
Then both R_{1} and R_{2} are related from A to B because

$$
R_{1} \subseteq A \times B, R_{2} \subseteq A \times B
$$

Here, Dom

$$
\left(R_{1}\right)=\{1,2,3\}, \text { Range of } R_{1}=\{2,4,6\} ;
$$

$\operatorname{Dom}\left(R_{2}\right)=\{2,3,1\}$, Range of $R_{2}=\{4,6,8\}$

3. Types of relations from one set to another set

(a) Empty relation: A relation R from A to B is called an empty relation or a void relation from A to B if $R=\phi$.
For example, Let

$$
A=\{2,4,6\}, B=\{7,11\}
$$

Let $\quad R=\{(a, b): a \in A, b \in B$ and $|a-b|$ iseven $\}$.
Here R is an empty relation.
(b) Universal relation: A relation R from A to B is said to be the universal relation if $R=A \times B$.
For example, Let

$$
\left.\left.\begin{array}{rl}
& A
\end{array}\right)=\{1,2\}, B=\{1,3\},(2,3)\right\} .
$$

Here, $R=A \times B$, so relation R is a universal relation.

Note:

- The void relation i.e., ϕ and universal relation i.e., $A \times A$ on A are respectively the smallest and largest relations defined on the set A. Also these are also called Trivial Relations and other relation is called a Non-Trivial Relation.
- The relations $R=\phi$ and $R=A \times A$ are two extreme relations.
(c) Identity relation: A relation R defined on a set A is said to be the identity relation on A if $R=\{(a, b): a \in A, b \in A$ and $a=b\}$ Thus identity relation
$R=\{(a, a): \forall a \in A\}$
Scan to know more about this topic

The identity relation on set A is also denoted by I_{A}.
For example, Let $A=\{1,2,3,4\}$,
Then $\quad I_{A}=\{(1,1),(2,2),(3,3),(4,4)\}$.
But the relation given by

$$
R=\{(1,1),(2,2),(1,3),(4,4)\}
$$

is not an identity relation because element of I_{A} is not related to elements 1 and 3 .

Note:

In an identity relation on A every element of A should be related to itself only.
(d) Reflexive relation: A relation R defined on a set A is said to be reflexive if $a R a \forall a \in A$ i.e., $(a, a) \in$ $R \forall a \in A$.
For example, Let $A=\{1,2,3\}$ and R_{1}, R_{2}, R_{3} be the relations given as
$R_{1}=\{(1,1),(2,2),(3,3)\}$,
$R_{2}=\{(1,1),(2,2),(3,3),(1,2)$,
$(2,1),(1,3)\}$ and
$R_{3}=\{(2,2),(2,3),(3,2),(1,1)\}$
Here R_{1} and R_{2} are reflexive relations on A but R_{3} is not reflexive as $3 \in A$ but $(3,3) \notin R_{3}$.

Note:

- The universal relation on a non-void set A is reflexive.
- The identity relation is always a reflexive relation but the converse may or may not be true. As shown in the example above, R_{1} is both identity as well as reflexive relation on A but R_{2} is only reflexive relation on A.
(e) Symmetric relation: A relation R defined on a set A is symmetric if
$(a, b) \in R \Rightarrow(b, a) \in R \forall a, b \in A$ i.e., $a R b \Rightarrow b R a$ (i.e., whenever $a R b$ then $b R a$).

For example, Let $A=\{1,2,3\}$,

$$
\begin{aligned}
& R_{1}=\{(1,2),(2,1)\}, R_{2}=\{(1,2),(2,1),(1,3),(3,1)\} . \\
& R_{3}=\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\} \\
& R_{4}=\{(1,3),(3,1),(2,3)\}
\end{aligned}
$$

Here R_{1}, R_{2} and R_{3} are symmetric relations on A. But R_{4} is not symmetric because $(2,3) \in R_{4}$ but $(3,2) \notin R_{4}$.
(f) Transitive relation: A relation R on a set A is transitive if $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$
i.e., $a R b$ and $b R c \Rightarrow a R c$.

For example, Let $A=\{1,2,3\}$,

$$
R_{1}=\{(1,2),(2,3),(1,3),(3,2)\}
$$

$$
\text { and } \quad R_{2}=\{(1,3),(3,2),(1,2)\}
$$

Here R_{2} is transitive relation whereas R_{1} is not transitive because $(2,3) \in R_{1}$ and $(3,2) \in R_{1}$ but $(2,2) \notin R_{1}$.
(g) Equivalence relation: Let A be a non-empty set, then a relation R on A is said to be an equivalence relation if
(i) R is reflexive i.e.,
$(a, a) \in R \forall a \in A$ i.e., $a R a$.
(ii) R is symmetric i.e.,
$(a, b) \in R$
$\Rightarrow \quad(b, a) \in R \forall a, b \in A$ i.e., $a R b \Rightarrow b R a$.
(iii) R is transitive i.e.,
$(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow \quad(a, c) \in R \forall a, b, c \in A$
i.e., $\quad a R b$ and $b R c \Rightarrow a R c$.

For example, Let $A=\{1,2,3\}$
$R=\{(1,2),(1,1),(2,1),(2,2),(3,3)(1,3),(3,1),(3,2),(2,3)\}$
Here R is reflexive, symmetric and transitive. So R is an equivalence relation on A.
Equivalence classes: Let A be an equivalence relation in a set A and let $a \in A$. Then, the set of all those elements of A which are related to a, is called equivalence class determinedbyaanditisdenotedby $[a]$.Thus, $[a]=\{b \in A$: $(a, b) \in A\}$

Mnemonics

Types of relation

RIPE STRAWBERRY TO EAT
Interpretations
Ripe - reflexive
Strawberry - Symmetric
To - transitive
Eat - Equivalence

Note:

- Two equivalence classes are either disjoint or identical.
- An equivalence relation R on a set A partitions the set into mutually disjoint equivalence classes.
- An important property of an equivalence relation is that it divides the set into pair-wise disjoint subsets called equivalence classes whose collection is called a partition of the set.
Note that the union of all equivalence classes give the whole set.
e.g., Let R denotes the equivalence relation in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$. Then the equivalence class [0] is $[0]=[0, \pm 2, \pm 4, \pm 6, \ldots .$.$] .$

O=uT Key Words

Disjoint: These are sets which have no elements in common.

4. Tabular representation of a relation

In this form of representation of a relation R fromset A to set B, elements of A and B are written in the first column and first row respectively. If $(a, b) \in R$ then we write ' 1 ' in the row containing a and column containing b and if $(a, b) \notin R$ then we write ' 0 ' in the same manner.
For example, Let $A=\{1,2,3\}$,
$B=\{2,5\}$ and $R=\{(1,2),(2,5),(3,2)\}$, then

R	$\mathbf{2}$	$\mathbf{5}$
$\mathbf{1}$	1	0
$\mathbf{2}$	0	1
$\mathbf{3}$	1	0

5. Inverse relation

Let $R \subseteq A \times B$ be a relation from A to B. Then, the inverse relation of R, to be denoted by R^{-1}, is a relation from B to A defined by $R^{-1}=\{(b, a):(a, b) \in R\}$
Thus $(a, b) \in R \Leftrightarrow(b, a) \in R^{-1} \forall a \in A, b \in B$.
Clearly, $\operatorname{Domain}\left(R^{-1}\right)=$ Range of R, Range of $R^{-1}=\operatorname{Domain}(R)$.

O = T Key Words

Domain and Range: The set of x coordinate values is called domain and the set of y coordinate values is called range.

Also, $\left(R^{-1}\right)^{-1}=R$.
For example, Let $A=\{1,2,4\}, B=\{3,0\}$ and let $R=$ $\{(1,3),(4,0),(2,3)\}$ be a relation from A to B, then $R^{-1}=\{(3,1),(0,4),(3,2)\}$.

Key Facts

1. (i) A relation R from A to B is an empty relation or void relation if $R=\phi$
(ii) A relation R on a set A is an empty relation or void relation if $R=\phi$
2. (i) A relation R from A to B is a universal relation if $R=A \times B$.
(ii) A relation R on a set A is an universal relation if $R=A \times A$.
3. A relation R on a set A is reflexive if $a R a, \forall a \in A$.
4. A relation R on a set A is symmetric if whenever $a R b$, then $b R a$ for all $a, b \in A$.
5. A relation R on a set A is transitive if whenever $a R b$ and $b R c$ then $a R c$ for all $a, b, c \in A$.
6. A relation R on A is identity relation if $R=\{(a, a) \forall a \in A\}$ i.e., R contains only elements of the type $(a, a) \forall a \in A$ and it contains no other element.
7. A relation R on a non-empty set A is an equivalence relation if the following conditions are satisfied :
(i) R is reflexive i.e., for every $a \in A,(a, a) \in R$ i.e., $a R a$.
(ii) R is symmetric i.e., for $a, b \in A, a R b \Rightarrow b R a$ i.e., $(a, b) \in R \Rightarrow(b, a) \in R$.
(iii) R is transitive i.e., for all $a, b, c \in A$, we have, $a R b$ and $b R c \Rightarrow a R c$ i.e., $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$.

TYPES OF INTERVALS

(i) Open Intervals: If a and b be two real numbers such that $a<b$ then, the set of all the real numbers lying strictly between a and b is called an open interval. It is denoted by $] a, b[$ or (a, b) i.e., $\{x \in R: a<x<b\}$.
(ii) Closed Intervals: If a and b be two real numbers such that $a<b$ then, the set of all the real numbers lying between a and b such that it includes both a and b as well is known as a closed interval. It is denoted by $[a, b]$ i.e., $\{x \in R: a \leq x \leq b\}$.
(iii) Open Closed Interval: If a and b be two real numbers such that $a<b$ then, the set of all the real numbers lying between a and b such that it excludes a and includes only b is known as an open closed interval. It is denoted by $] a, b]$ or ($a, b]$ i.e., $\{x \in R: a<x \leq b\}$.
(iv) Closed Open Interval: If a and b be two real numbers such that $a<b$ then, the set of all the real numbers lying between a and b such that it includes only a and excludes b is known as a closed open interval. It is denoted by $[a, b[$ or $[a, b)$ i.e., $\{x \in R: a \leq x<b\}$.

Example 1

Let \mathbf{N} denote the set of all natural numbers and R be the relation on $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) \mathrm{R}(\mathrm{c}$, d) if $a d(b+c)=b c(a+d)$. Show that R is an equivalence relation.
Sol.
Step I : Given $(a, b) R(c, d)$ as $a d(b+c)=b c(a+d)$

$$
\therefore \quad \forall a, b \in \mathrm{~N}
$$

or $\quad a b(b+a)=b a(a+b)$
or $\quad(a, b) \mathrm{R}(a, b)$
$\therefore \mathrm{R}$ is reflexive.
Step II : Let $(a, b) \mathrm{R}(c, d)$ for $(a, b),(c, d) \in \mathrm{N} \times \mathrm{N}$
$\therefore \quad a d(b+c)=b c(a+d)$
Also,
$(c, d) \mathrm{R}(a, b)$
$\because \quad c b(d+a)=d a(c+b)$
[By commutation of addition and multiplication on N]
$\therefore \mathrm{R}$ is symmetric.

Step III : Let $(a, b) R(c, d)$ and $(c, d) R(e, f)$ for a, b, c, $d, e, f \in \mathrm{~N}$
$\therefore \quad a d(b+c)=b c(a+d)$
and $\quad c f(d+e)=d e(c+f)$
Dividing eqn. (iv) by abcd and eqn. (v) by cdef
i.e., $\quad \frac{1}{c}+\frac{1}{b}=\frac{1}{d}+\frac{1}{a}$
and

$$
\frac{1}{e}+\frac{1}{d}=\frac{1}{f}+\frac{1}{c}
$$

On adding, we get

$$
\frac{1}{c}+\frac{1}{b}+\frac{1}{e}+\frac{1}{d}=\frac{1}{d}+\frac{1}{a}+\frac{1}{f}+\frac{1}{c}
$$

or

$$
\begin{equation*}
a f(b+e)=b e(a+f) \tag{vi}
\end{equation*}
$$

Hence, $(a, b) \mathrm{R}(e, f)$
$\therefore \mathrm{R}$ is transitive.
From equations (i), (iii) and (vi), R is an equivalence relation.

OBJFCHIVE myps QuFshIONS

Multiple Choice Questions

Q. 1. Let set $X=\{1,2,3\}$ and a relation R is defined in X as: $R=\{(1,3),(2,2),(3,2)\}$, then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are
(A) $\{(1,1),(2,3),(1,2)\}$
(B) $\{(3,3),(3,1),(1,2)\}$
(C) $\{(1,1),(3,3),(3,1),(2,3)\}$
(D) $\{(1,1),(3,3),(3,1),(1,2)\}$
[CBSE TERM-I 2021-22]
Ans. Option (C) is correct.

Explanation:

(i) R is reflexive if it contains $\{(1,1),(2,2)$ and (3, 3) $\}$.

Since, $(2,2) \in R$. So, we need to add $(1,1)$ and $(2,2)$ to make R reflexive.
(ii) R is symmetric if it contains $\{(2,2),(1,3),(3,1)$, $(3,2),(2,3)\}$.
Since, $\{(2,2),(1,3),(3,2)\} \in R$. So, we need to add $(3,1)$ and $(2,3)$.
Thus, minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are $\{(1,1),(3,3),(3,1),(2,3)\}$.
Q. 2. If $\mathrm{R}=\left\{(x, y) ; x, y \in \mathrm{Z}, x^{2}+y^{2} \leq 4\right\}$ is a relation is set Z, then domain of R is
(A) $\{0,1,2\}$
(B) $\{-2,-1,0,1,2\}$
(C) $\{0,-1,-2\}$
(D) $\{-1,0,1\}$
[CBSE TERM-I 2021-22]
Ans. Option (B) is correct.
Explanation: Given, $R=\left\{(x, y): x, y \in \mathrm{Z}, x^{2}+y^{2} \leq 4\right\}$
Let $y=0$, then $x^{2} \leq 4 \Rightarrow x=0, \pm 1, \pm 2$
Thus, domain of $R=\{-2,-1,0,1,2\}$
Q.3. A relation R in set $A=\{1,2,3\}$ is defined as $R=$ $\{(1,1),(1,2),(2,2),(3,3)\}$. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A ?
(A) $(1,1)$
(B) $(1,2)$
(C) $(2,2)$
(D) $(3,3)$
[CBSE TERM-I SQP 2021-22]
Ans. Option (B) is correct.
Q.4. Let the relation R in the set $\mathrm{A}=\{x \in \mathrm{Z}: 0 \leq x \leq 12\}$, given by $\mathrm{R}=\{(a, b):|a-b|$ is a multiple of 4$\}$. Then [1], the equivalence class containing 1 , is :
(A) $\{1,5,9\}$
(B) $\{0,1,2,5\}$
(C) ϕ
(D) A
[CBSE TERM-I SQP 2021-22]
Ans. Option (A) is correct.
Explanation: Equivalence class [1] is the set of elements related to $1=\{1,5,9\}$
Q.5. Let R be the relation in the set N given by $\mathrm{R}=\{(a, b): a=b-2, b>6\}$, then :
(A) $(2,4) \in R$
(B) $(3,8) \in \mathrm{R}$
(C) $(6,8) \in R$
(D) $(8,7) \in R$
[CBSE TERM-I SQP 2021-22]
Ans. Option (C) is correct.
Explanation: 6 $=8-2$
$(6,8)$ is an element of R.
Q. 6. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as $a R b$ if a is congruent to $b \forall a, b \in T$. Then R is
(A) reflexive but not transitive
(B) transitive but not symmetric
(C) equivalence relation
(D) None of these
Q. 7. Consider the non-empty set consisting of children in a family and a relation R defined as $a R b$ if a is brother of b. Then R is
(A) symmetric but not transitive
(B) transitive but not symmetric
(C) neither symmetric nor transitive
(D) both symmetric and transitive
Q. 8. The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
(A) 1
(B) 2
(C) 3
(D) 5

Ans. Option (D) is correct.
Explanation: Given that, $A=\{1,2,3\}$
Now, number of equivalence relations are as follows:
$R_{1}=\{(1,1),(2,2),(3,3)\}$
$R_{2}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$
$R_{3}=\{(1,1),(2,2),(3,3),(1,3),(3,1)\}$
$R_{4}=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$
$R_{5}=\left\{(1,2,3) \Leftrightarrow A \times A=\mathrm{A}^{2}\right\}$
\therefore Maximum number of equivalence relations on the set $A=\{1,2,3\}=5$

Suburchive myps Quishrons

Very Short Answer Type Questions (1 mark each)

Q.1. How many reflexive relations are possible in a set

A whose $n(A)=3$
A [CBSE SQP 2020-21]
Sol. 2^{6} reflexive relations.
[CBSE Marking Scheme, 2020-21]

Detailed Answer:

Given, $\quad n(\mathrm{~A})=3$
Total number of reflexive relations $=2^{n(n-1)}$

$$
=2^{3(3-1)}=2^{3 \times 2}=2^{6}
$$

Commonly Made Error

Answering Tip

- Number of reflexive relations on a set containing n elements is $2^{n^{2}-n}$.
Q.2. An equivalence relation R in A divides it into equivalence classes A_{1}, A_{2}, A_{3}.
What is the value of $A_{1} \cup A_{2} \cup A_{3}$ and $A_{1} \cap A_{2} \cap A_{3}$.
A [CBSE SQP 2020-21]

Sol. $A_{1} \cup A_{2} \cup A_{3}=A$ and $A_{1} \cap A_{2} \cap A_{3}=\phi \quad 1$
[CBSE Marking Scheme 2020-21]
Q. 3. Let $A=\{1,2,3,4\}$. Let R be the equivalence relation on $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$. Find the equivalence class $[(1,3)]$. R\&U [SQP 2017-18]
Q.4. State the reason why the Relation $R=\{(a, b)$: $\left.a \leq b^{2}\right\}$ on the set R of real numbers is not reflexive.

R\&U [NCERT SQP 2016-17]
Sol. $\quad \frac{1}{2}>\left(\frac{1}{2}\right)^{2} \Rightarrow\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$.
Hence, R is not reflexive.
[CBSE Marking Scheme 2016]
Q. 5. State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

R [NCERT]
Sol. We know that, for a relation to be transitive,
$(x, y) \in R$ and $(y, z) \in R \Rightarrow(x, z) \in R$.
Here, $(1,2) \in R$ and $(2,1) \in R$ but $(1,1) \notin R$.
$\therefore \quad R$ is not transitive.
1
Q. 6. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, write the range of R. R\&U [O.D. Set I, II, III, 2014]

Sol. $R=\{(2,3),(4,2),(6,1)\}$
Range $=\{3,2,1\}$
Q. 7. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$ be a relation. Find the range of R.

R\&U [Foreign Set I, 2014]
Sol. Given $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$
$\begin{aligned} & \Rightarrow & R & =\{(2,8),(3,27)\} \\ & \therefore & \text { Range } & =\{8,27\}\end{aligned}$
$1 / 2$
$1 / 2$
Q.8. Let R be the equivalence relation in the set A $=\{0,1,2,3,4,5\}$ given by $R=\{(a, b): 2$ divides $(a-b)\}$. Write the equivalence class [0].

R\&U [Delhi Comptt. Set I, II, III, 2014]
Sol. Given $R=\{(a, b): 2$ divides $(a-b)$

$$
\forall a, b \in A=\{0,1,2,3,4,5\}
$$

Equivalence class $[0]=\{0,2,4\}$

Short Answer Type Questions-I

 (2 marks each)Q.1. Let R be the relation in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$. Show that the relation R transitive? Write the equivalence class [0].

A 1 R\&U [CBSE SQP 2020-21]

Sol. Let 2 divides $(a-b)$ and 2 divides $(\mathrm{b}-\mathrm{c})$: where a, b, $c \in Z$.
So 2 divides $[(a-b)+(b-c)]$
2 divides $(a-c)$: Yes relation R is transitive
[0] $=\{0, \pm 2, \pm 4, \pm 6, \ldots \ldots .$.
[CBSE SQP Marking Scheme 2020]
Q.2. Check if the relation R in the set R of real numbers defined as $R=\{(a, b): a<b\}$ is (i) symmetric, (ii) transitive.
(3) A I R\&U [Delhi Set I, II, III - 2020]
Q.3. Check if the relation R on the set $A=\{1,2,3,4$, $5,6\}$ defined as $R=\{(x, y): y$ is divisible by $x\}$ is (i) symmetric (ii) transitive.

A] R\&U [O. D Set I, II, III - 2020]
Sol. (i) As $(2,4) \in R$ but $(4,2) \notin R \Rightarrow R$ is not symmetric,
(ii) Let $(a, b) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$
$\Rightarrow b=\lambda a$ and $c=\mu b$
Now, $c=\mu b=\mu(\lambda a) \Rightarrow(a, c) \in R$
$\Rightarrow R$ is transitive
[CBSE Marking Scheme 2020]

Detailed Answer:

$$
\begin{aligned}
& A=\{1,2,3,4,5,6\} \\
& R=\{(x, y): y \text { is divisible by } x\}
\end{aligned}
$$

(i) Symmetric

Let $\quad(x, y) \in R$
y is divisible by x
$\therefore x$ is not necessarily divisible by y

$$
(y, x) \notin R
$$

e.g., $\quad(1,2) \in R$

2 is divisible by 1
but 1 is not divisible by 2

$$
(2,1) \notin R
$$

Hence, Given Relation is not symmetric
(ii) Transitive

Let $\quad(x, y) \in R$
y is divisible by x
and $\quad(y, z) \in R$
z is divisible by y
From eq(i) and eq(ii)
z is divisible by x
$\therefore \quad(x, z) \in R$
e.g., $\quad(1,2) \in R$

2 is divisible by 1

$$
\begin{equation*}
(2,4) \in R \tag{i}
\end{equation*}
$$

4 is divisible by 2
From eq(i) and eq(ii)
4 is divisible by 1

$$
(1,4) \in R
$$

Hence, Given Relation is transitive.

Commonly Made Error

- Some students take the relation as "is a factor of" and go wrong.

where $\quad \lambda+\mu-b=k$

$\Rightarrow(a, c) \in \mathrm{R}$
Hence R is transitive

$$
[0]=\{\ldots-4,-2,0,2,4 \ldots\} \quad 11 / 2
$$

[CBSE SQP Marking Scheme 2020]

Commonly Made Error

Equivalence class of 0 is the set of all elements related to 0 .

Answering Tip

- Mostly students go wrong in finding the equivalence class. Some students forget to write 0 in the equivalence class.
Q.2. Prove that the relation R on Z, defined by $R=$ $\{(x, y):(x-y)$ is divisible by 5$\}$ is an equivalence relation.

A R\&U [CBSE O.D SET I - 2020]
Sol. For reflexive
$x-x=0$, for every $x \in Z$ is divisible by $5 \Rightarrow(x, x)$ $\in R$
For symmetric
1/2
$(x, y) \in R \Rightarrow x-y$ is divisible by $5 \Rightarrow y-x$ is divisible by 5
$\Rightarrow(y, x) \in R \Rightarrow R$ is symmetric
For transitive
Let $(x, y) \in R$ and $(y, z) \in R$
$(x, y) \in R \Rightarrow x-y=5 \lambda$
$(y, z) \in R \Rightarrow y-z=5 \mu$
adding (i) and (ii), $x-z=5(\lambda+\mu)=5 k$
$\Rightarrow(x, z) \in R \Rightarrow R$ is transitive
Hence R is an equivalence relation.
[CBSE Marking Scheme 2020 (modified)]
Q.3. Show that the relation R on R defined as $R=$ $\{(a, b): a \leq b\}$, is reflexive, and transitive but not symmetric.

U [CBSE Delhi Set III-2019]
Sol. Clearly $a \leq a \forall a \in R \Rightarrow(a, a) \in R \Rightarrow R$ is reflexive. $1 / 2$ For transitive:
Let $(a, b) \in R$ and $(b, c) \in R, a, b, c \in R$
$\Rightarrow a \leq b$ and $b \leq c \Rightarrow a \leq c \Rightarrow(a, c) \in R$
$\Rightarrow R$ is transitive.
$11 / 2$
For non-symmetric:
Let $a=1, b=2$, As $1 \leq 2 \Rightarrow(1,2) \in R$
but $2 \notin 1 \Rightarrow(2,1) \notin R$
$\Rightarrow R$ is non-symmetric.
1
[CBSE Marking Scheme 2019] (Modified)

Detailed Solution:

Topper Answer, 2019

Commonly Made Error

Some students use numerical examples to show
\quad that a reflexive, symmetric or transitive which is
wrong.

Answering Tip

- Counter examples can be used only to show that a relation is not reflexive, symmetric or transitive.
Q. 4. Show that the relation R on the set Z of all integers defined by $(x, y) \in R \Leftrightarrow(x-y)$ is divisible by 3 is an equivalence relation.

R\&U [CBSE Comptt. Set I, II, III 2018]
Sol. $(x-x)=0$ is divisible by 3 for all $x \in Z$. So, $(x, x) \in R$ $\therefore R$ is reflexive
So $(x, y) \in R$ implies $(y, x) \in R, \forall x, y \in Z$
$\Rightarrow \mathrm{R}$ is symmetric,
$(x-y)$ is divisible by 3 and $(y-z)$ is divisible by 3 . So $(x-z)=(x-y)+(y-z)$ is divisible by 3 . $\quad \mathbf{1} 1 / 2$ $\therefore(x, z) \in R \Rightarrow R$ is transitive
Hence, R is an equivalence relation.
[CBSE Marking Scheme 2018 (modified)]
Q.5. Check whether the relation R in the set R of real numbers, defined by $R=\{(a, b): 1+a b$ $>0\}$, is reflexive, symmetric or transitive.
(8) R\&U [SQP 2018-19]
Q. 6. Show that the relation R in the set $N \times N$ defined by $(a, b) R(c, d)$ if $a^{2}+d^{2}=b^{2}+c^{2} \forall a, b, c, d \in N$, is an equivalence relation. R\&U [SQP 2015-16]

Sol. Let
$(a, b) \in N \times N$
then,
$\because \quad a^{2}+b^{2}=a^{2}+b^{2}$
$\therefore \quad(a, b) R(a, b)$
Hence R is reflexive.
Let $(a, b),(c, d) \in N \times N$ be such that

$$
(a, b) R(c, d)
$$

$\Rightarrow \quad a^{2}+d^{2}=b^{2}+c^{2}$
$\Rightarrow \quad c^{2}+b^{2}=d^{2}+a^{2}$
$\Rightarrow \quad(c, d) R(a, b)$
Hence, R is symmetric.
Let $(a, b),(c, d),(e, f) \in N \times N$ be such that $(a, b) R(c, d),(c, d) R(e, f)$.

$$
\begin{array}{lrl}
\Rightarrow & a^{2}+d^{2} & =b^{2}+c^{2} \tag{i}\\
\text { and } & c^{2}+f^{2} & =d^{2}+e^{2}
\end{array}
$$

Adding eqn. (i) and (ii),
$\Rightarrow a^{2}+d^{2}+c^{2}+f^{2}=b^{2}+c^{2}+d^{2}+e^{2}$
$\Rightarrow \quad a^{2}+f^{2}=b^{2}+e^{2}$
$\Rightarrow \quad(a, b) R(e, f)$
Hence, R is transitive
Since, R is reflexive, symmetric and transitive. Therefore, R is an equivalence relation
[CBSE Marking Scheme 2015 (Modified)]

Commonly Made Error

Students go wrong in solving problems involving ordered pairs.

Answering Tip

- Practice more problems involving relations with ordered pairs.

Long Answer Type Questions (5 marks each)

Q. 1. Let $A=\{x \in Z: 0 \leq x \leq 12\}$. Show that $R=\{(a, b)$: $a, b \in A,|a-b|$ is divisible by 4$\}$ is an equivalence relation. Find the set of all elements related to 1. Write the equivalence class [2].
A) R\&U [CBSE Delhi \& OD Set 2018]

Sol. Reflexive: $|a-a|=0$, which is divisible by $4, \forall a$ $\in A$
$\therefore(a, a) \in R, a \in A \therefore R$ is reflexive
Symmetric: let $(a, b) \in R$
$\Rightarrow|a-b|$ is divisible by 4
$\Rightarrow|b-a|$ is divisible by $4 \quad(\because|a-b|=|b-a|)$
1
$\Rightarrow(b, a) \in R \therefore R$ is is symmetric
Transitive: let $(a, b),(b, c) \in R$
$\Rightarrow|a-b| \&|b-c|$ are divisible by 4
$\Rightarrow a-b= \pm 4 m, b-c= \pm 4 n, m, n \in Z$
Adding we get, $a-c=4(\pm m \pm n)$
$\Rightarrow(a-c)$ is divisible by 4 .
$\Rightarrow|a-c|$ is divisible by $4 \therefore(a, c) \in R$
$\Rightarrow R$ is transitive
Hence R is an equivalence relations in A
Set of elements related to 1 is $(1,5,9)$,
Equivalence class [2]=\{2,6,10\}
[CBSE Marking Scheme 2018 (modified)]

Topper Answer, 2018

```
To show: R is an equivalunce xlation
```

solution.
for Requxive:-
$(a, a): a, a \in A$
$a R a \quad \forall a \in A$
$|a-a|$ is divisible by 4
0 is divisible by 4
whin wi the
\Rightarrow Ruin refuxive relation
Got symmetric relation:-
let $(a, b) \in R \quad \forall a, b \in A$
$a R b \quad \forall a, b \in A$

Q. 2. Show that the relation R in the Set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is divisible by 2$\}$ is an equivalence relation.
(3)3) R\&U [O.D. Set I, II, III Comptt. 2015]

Topic-2

Functions
Concepts Covered • Types of functions and their identification

Revision Notes

1. Domain: If a function is expressed in the form $y=$ $f(x)$, then domain of f means set of all those real values of x for which y is real (i.e., y is well-defined).
Remember the following points:
(a) Negative number should not occur under the square root (even root) i.e., expression under the square root sign must be always ≥ 0.
(b) Denominator should never be zero.
(c) For $\log _{b} a$ to be defined, $a>0$,
 $b>0$ and $b \neq 1$. Also note that $\log _{b} 1$ is equal to zero i.e., 0 .
2. Range: If a function is expressed in the form $y=f(x)$, then range of f means set of all possible real values of y corresponding to every value of x in its domain.

Remember the following points:

(a) At first find the domain of the given function.
(b) If the domain does not contain an interval, then find the values of y putting these values of x from the domain. The set of all these values of y obtained will be the range.
(c) If domain is the set of all real numbers R or set of all real numbers except a few points, then express x in terms of y and from this find the real values of y for which x is real and belongs to the domain.
3. Function as a special type of relation: A relation f from a set A to another set B is said be a function (or mapping) from A to B if with every element (say x) of A, the relation f relates a unique element (say y) of B. This y is called f-image of x. Also x is called pre-image of y under f.
4. Difference between relation and function: A relation from a set A to another set B is any subset of $A \times B$; while a function f from A to B is a subset of $A \times B$ satisfying following conditions:
(a) For every $x \in A$, there exists $y \in B$ such that $(x, y) \in f$.
(b) If $(x, y) \in f$ and $(x, z) \in f$ then, $y=z$.

S. No.	Function	Relation
(i)	Each element of A must be related to some element of B.	There may be some elements of A which are not related to any element of B.

S. No.	Function	Relation
	An element of A should not be related to more (han one element of B.	An element of A may be related to more than one element of B.

5. Real valued function of a real variable: If the domain and range of a function f are subsets of R (the set of real numbers), then f is said to be a real valued function of a real variable or a real function.
6. Some important real functions and their domain \& range

S. No. Function	Representation	Domain	Range
(i) Identity function	$I(x)=x \forall x \in R$	R	R
(ii) Modulus function or Absolute value function	$f(x)=\|x\|= \begin{cases}-x, \text { if } & x<0 \\ x, & \text { if } \\ x \geq 0\end{cases}$	R	$[0, \infty)$
(iii) Greatest integer function or Integral function or Step function	$f(x)=[x] \forall x \in R$	R	Z
(iv) Smallest integer function	$f(x)=[x] \forall x \in R$	R	Z
(v) Signum function	$f(x)=\left\{\begin{array}{l}\frac{\|x\|}{x,} \text { if } x \neq 0 \\ 0, \text { if } \quad x=0\end{array}\right.$ i.e., $f(x)= \begin{cases}1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{cases}$	R	$\{-1,0,1\}$
(vi) Exponential function	$f(x)=a^{x}, \forall a>0, a \neq 1$	R	$(0, \infty)$
(vii) Logarithmic function	$f(x)=\log _{a} x, \forall a \neq 1, a>0$ and $x>0$	$(0, \infty)$	R

7. Types of Function

(a) One-one function (Injective function or Injection): A function $f: A \rightarrow B$ is one-one function or injective function if distinct elements of A have distinct images in B.
Thus, $f: A \rightarrow B$ is one-one $\Leftrightarrow f(a)=f(b)$
$\Rightarrow \quad a=b, \forall a, b \in A$
$\Leftrightarrow \quad a \neq b \Rightarrow f(a) \neq f(b) \forall a, b \in A$.

- If A and B are two sets having m and n elements respectively such that $m \leq n$, then total number of one-one functions from set A to set B is ${ }^{n} C_{m} \times m!$ i.e., ${ }^{n} P_{m}$.
- If $n(A)=n$, then the number of injective functions defined from A onto itself is $n!$.
ALGORITHM TO CHECK THE INJECTIVITY OF A FUNCTION
STEP 1: Take any two arbitrary elements a, b in the domain of f.
STEP 2: Put $f(a)=f(b)$.
STEP 3: Solve $f(a)=f(b)$. If it gives $a=b$ only, then f is a one-one function.
(b) Onto function (Surjective function or Surjection): A function $f: A \rightarrow B$ is onto function or a surjective function if every element of B is the f - image of some element of A. That implies $f(A)=B$ or range of f is the co-domain of f.

Thus, $f: A \rightarrow B$ is onto $\Leftrightarrow f(A)=B$ i.e., range of f $=$ co-domain of f.

ALGORITHM TO CHECK THE SURJECTIVITY OF A FUNCTION

STEP 1: Take an element $b \in B$, where B is the co-domain of the function.

STEP 2: $\operatorname{Put} f(x)=b$.
STEP 3: Solve the equation $f(x)=b$ for x and obtain x in terms of b. Let $x=g(b)$.
STEP 4: If for all values of $b \in B$, the values of x obtained from $x=g(b)$ are in A, then f is onto. If there are some $b \in B$ for which values of x, given by $x=g(b)$, is not in A. Then f is not onto.

Mnemonics
\section*{Types of functions}
Indian Syndicate Bank
Interpretations
Indian - injective
Syndicate - surjective
Bank - Bijective

Also note that a bijective function is also called a one-to-onefunction or one-to-one correspondence. If $f: A \rightarrow B$ is a function such that,
(i) $\quad f$ is one-one $\Rightarrow n(A) \leq n(B)$.
(ii) f is onto $\Rightarrow n(B) \leq n(A)$.

For an ordinary finite set A, a one-one function f $: A \rightarrow A$ is necessarily onto and an onto function f $: A \rightarrow A$ is necessarily one-one for every finite set A.
(d) Identity function: The function $I_{A}: A \rightarrow A ; I_{A}(x)$ $=x, \forall x \in A$ is called an identity function on A.

Note:

$$
\text { - Domain }\left(I_{A}\right)=\text { A and Range }\left(I_{A}\right)=A \text {. }
$$

(e) Equal function: Two functions f and g having the same domain D are said to be equal if $f(x)=g(x)$ for all $x \in D$.

8. Constant and Types of Variables

(a) Constant: A constant is a symbol which retains the same value throughout a set of operations. So, a symbol which denotes a particular number is a constant. Constants are usually denoted by the symbols a, b, c, k, l, m, \ldots etc.
(b) Variable: It is a symbol which takes a number of values i.e., it can take any arbitrary values over the interval on which it has been defined. For example, if x is a variable over R (set of real numbers) then we mean that x can denote any arbitrary real number. Variables are usually denoted by the symbols x, y, z, u, v, \ldots etc.
(i) Independent variable: The variable which can take an arbitrary value from a given set is termed as an independent variable.

Example 1

Determine whether the function $f: \mathbf{A} \rightarrow \mathbf{B}$ defined by $f(x)=4 x+7, x \in$ is one-one.
Show that no two elements in domain have same image in codomain.
(ii) Dependent variable: The variable whose value depends on the independent variable is called a dependent variable.

9. Defining a Function

Consider A and B be two non-empty sets, then a rule f which associates each element of A with a unique element of B is called a function or the mapping from A to B or f maps A to B. If f is a mapping from A to B, then we write $f: A \rightarrow B$ which is read as ' f is mapping from A to B^{\prime} or ' f is a function from A to B^{\prime}.
If f associates $a \in A$ to $b \in B$, then we say that ' b is the image of the element a under the function f or ' b is the f - image of a^{\prime} or 'the value of f at a^{\prime} and denotes it by $f(a)$ and we write $b=f(a)$. The element a is called the pre-image or inverse-image of b.
Thus for a bijective function from A to B,
(a) A and B should be non-empty.
(b) Each element of A should have image in B.
(c) No element of A should have more than one image in B.
(d) If A and B have respectively m and n number of elements then the number of functions defined from A to B is n^{m}.
10. Domain, Co-domain and Range of A function

The set A is called the domain of the function f and the set B is called the co- domain. The set of the images of all the elements of A under the function f is called the range of the function f and is denoted as $f(A)$.
Thus range of the function f is $f(A)=\{f(x): x \in A\}$.
Clearly $f(A)=B$ for a bijective function.

Note:

- It is necessary that every f-image is in B; but there may be some elements in B which are not the f-images of any element of A i.e., whose pre-image under f is not in A.
- Two or more elements of A may have same image in B.
- $f: x \rightarrow y$ means that under the function f from A to B, an element x of A has image y in B.
- Usually we denote the function f by writing y $=f(x)$ and read it as ' y is a function of x^{\prime}.

Solution :

Given, $f: \mathrm{A} \rightarrow \mathrm{B}$ defined by $f(x)=4 x+7, x \in \mathrm{~A}$
Let, $x_{1}, x_{2} \in A$, such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 4 x_{1}+7=4 x_{2}+7 \Rightarrow 4 x_{1}=4 x_{2} \Rightarrow x_{1}=x_{2}$
So, f is one-one function.

OBJFChive ryper QuFshiONS

Multiple Choice Questions

Q. 1. Let $\mathrm{X}=\left\{x^{2}: x \in \mathrm{~N}\right\}$ and the relation $f: \mathbf{N} \rightarrow \mathbf{X}$ is defined by $f(x)=x^{2}, x \in \mathrm{~N}$. Then, this function is
(A) injective only
(B) not bijective
(C) surjective only
(D) bijective
[CBSE TERM-I 2021-22]
Ans. Option (A) is correct.

$$
\begin{array}{rlrl}
\text { Explanation: Let } & x_{1}, x_{2} & \in \mathrm{~N} \\
& & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & x_{1}^{2} & =x_{2}^{2} \\
\Rightarrow & & x_{1}^{2}-x_{2}^{2} & =0 \\
\Rightarrow & & \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) & =0 \\
\Rightarrow & & x_{1} & =x_{2} \\
& & \left\{x_{1}+x_{1} \neq 0 \text { as } x_{1}, x_{2} \in \mathrm{~N}\right\}
\end{array}
$$

Hence, $f(x)$ is injective.
Also, the elements like 2 and 3 have no pre-image in N . Thus, $f(x)$ is not surjective.
Q.2. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=2+x^{2}$ is
(A) not one-one
(B) one-one
(C) not onto
(D) neither one-one nor onto
[CBSE TERM-I 2021-22]
Ans. Option (D) is correct.

$$
\begin{array}{rlrl}
\text { Explanation: } & f(x) & =2+x^{2} \\
& \text { For one-one, } & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & 2+x_{1}^{2} & =2+x_{2}^{2} \\
\Rightarrow & x_{1}^{2} & =x_{2}^{2} \\
\Rightarrow & x_{1} & = \pm x_{2} \\
\Rightarrow & & x_{1} & =x_{2} \\
& \text { or } & x_{1} & =-x_{2}
\end{array}
$$

Thus, $f(x)$ is not one-one.
For onto
Let $\quad f(x)=y$ such that $y \in \mathrm{R}$
$\therefore \quad x^{2}=y-2$
$\Rightarrow \quad x= \pm \sqrt{y-2}$
Put $y=-3$, we get
$\Rightarrow \quad x= \pm \sqrt{-3-2}= \pm \sqrt{-5}$
Q.3. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=2+x^{3}$ is :
(A) One-one but not onto
(B) Not one-one but onto
(C) Neither one-one nor onto
(D) One-one and onto
[CBSE TERM-I SQP 2021-22]
Ans. Option (D) is correct.
Explanation: $f(x)=x^{3}$ is a bijective function.
Q.4. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{4,5,6,7\}$ and let $f=\{(1,4)$, $(2,5),(3,6)\}$ be a function from A to B. Based on the given information, f is best defined as :
(A) Surjective function
(B) Injective function
(C) Bijective function
(D) None of these
[CBSE TERM-I SQP 2021-22]
Ans. Option (B) is correct.
Explanation: F is injective since every element in set B has atmost one pre-image in set A.
Q. 5. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
(A) 720
(B) 120
(C) 0
(D) None of these

Ans. Option (C) is correct.
Explanation: We know that, if A and B are two non-empty finite sets containing m and n elements, respectively, then the number of one-one and onto mapping from A to B is
$n!$ if $m=n$
0 , if $m \neq n$
Given that, $m=5$ and $n=6$
$\therefore m \neq n$
Number of one-one and onto mapping $=0$
Q. 6. Let $A=\{1,2,3, \ldots n\}$ and $B=\{a, b\}$. Then the number of surjections from A into B is
(A) ${ }^{n} P_{2}$
(B) $2^{n}-2$
(C) $2^{n}-1$
(D) None of these

Ans. Option (B) is correct.
Explanation: Total number of functions from A to $B=2^{n}$
Number of into functions $=2$
Number of surjections from A to $B=2^{n}-2$
Q. 7. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x}, \forall x \in R$. Then f is
(A) one-one
(B) onto
(C) bijective
(D) f is not defined
Q. 8. Which of the following functions from Z into Z are bijections?
(A) $f(x)=x^{3}$
(B) $f(x)=x+2$
(C) $f(x)=2 x+1$
(D) $f(x)=x^{2}+1$

Ans. Option (B) is correct.
Explanation: For bijection on $Z, f(x)$ must be oneone and onto.
Function $f(x)=x^{2}+1$ is many-one as $f(1)=f(-1)$
Range of $f(x)=x^{3}$ is not Z for $x \in Z$.
Also $f(x)=2 x+1$ takes only values of type
$=2 k+1$ for $x \in k \in Z$
But $f(x)=x+2$ takes all integral values for $x \in Z$
Hence $f(x)=x+2$ is bijection of Z.
Q. 9. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto

Ans. Option (D) is correct.
Explanation: We know that $f: R \rightarrow R$ is defined as $f(x)=x^{4}$.
Let $x, y \in R$ such that $f(x)=f(y)$
$\Rightarrow \quad x^{4}=y^{4}$
$\Rightarrow \quad x= \pm y$
$\therefore \quad f(x)=f(y)$
does not imply that $x=y$.
For example, $f(1)=f(-1)=1$
$\therefore f$ is not one-one.

Consider an element 2 in co-domain R. It is clear that there does not exist any x in domain R such that $f(x)=2$.
$\therefore f$ is not onto.
Hence, function f is neither one-one nor onto.
Q. 10. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto

SUBJFCriver mpe QuIshtons

Very Short Answer Type Questions (1 mark each)

Q. 1. Check whether the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined as $f(x)=x^{3}$ is one-one or not.
Q. 2. A relation R in the set of real numbers R defined as $R-\{(a, b): \sqrt{a}=b\}$ is a function or not. Justify

R\&U [CBSE SQP - 2021]
Sol. Since \sqrt{a} is not defined for $a \in(-\infty, 0)$

$$
\therefore \quad \sqrt{a}=b \text { is not a function }
$$

[CBSE SQP Marking Scheme 2021]
Q. 3. If $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f=\{(1,4),(2,5)$, $(3,6)\}$ is a function from A to B. State whether f is one-one or not.
(38) [CBSE SQP 2020-21]

Short Answer Type Questions-I

(2 marks each)
Q.1. Show that the function f in $A=R-\left\{\frac{2}{3}\right\}$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is one-one.

A
Q. 2. Show that the function f in $A=R-\left\{\frac{2}{3}\right\}$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is onto.
(38) A
Q. 3. Show that the function $f: R \rightarrow R$ defined as $f(x)=$ x^{2} is neither one-one nor onto.

Sol. Given, a function $f: \mathrm{R} \rightarrow \mathrm{R}$ defined as $f(x)=x^{2}$
For one-one Here, at $x=1, f(1)=1$
and \quad at $x=-1, f(-1)=(-1)^{2}=1$
Thus, $\quad f(1)=f(-1)=1$, but $1 \neq-1$
So, f is not one-one.

For onto Let $y \in \mathrm{R}$ (codomain) be any arbitrary element.
Then, $\quad y=f(x)$
$\Rightarrow \quad y=x^{2}$
$\Rightarrow \quad x=x^{2}$
$\Rightarrow \quad x= \pm \sqrt{y}$
Now, for $\quad y=-2 \in \mathrm{R}, x=\notin \mathrm{R}$
So, f is not onto.
Hence, given function is neither one-one nor onto.
Q. 4. Show that the function $f: N \rightarrow N$, given by $f(x)=$ $2 x$ is one-one but not onto.
Sol. Given, a function $f: N \rightarrow N$, defined as $f(x)=2 x$
For one-one Let, $x_{1}, x_{2} \in N$, such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad 2 x_{1}=2 x_{2}$
$\Rightarrow \quad x_{1}=x_{2}$
So, f is one-one
For onto Let $y \in \mathrm{~N}$ (codomain) be any arbitrary element.
Then, $\quad y=f(x)$
$\Rightarrow \quad y=2 x$
$\Rightarrow \quad x=\frac{y}{2}$
Now, for $y=1, x=\frac{1}{2} \notin N$.
Thus, $y=1 \in N$ (codomain) does not have a preimage in domain (N). So, f is not onto.

Short Answer Type Questions-II

 (3 marks each)Q.1. Show that the function $f: R \rightarrow R$ defined by $f(x)=$ $\frac{x}{x^{2}+1}, \forall x \in R$ is neither one-one nor onto.

Sol. Checking for one-one:
here $f(x)=f\left(\frac{1}{x}\right)$. For example $f(2)=f\left(\frac{1}{2}\right)$
$\therefore f$ is not one-one
Checking for onto:
Let $y=1 \in R$ (co-domain). Then
$y=f(x) \Rightarrow \frac{x}{x^{2}+1}=1$
$\Rightarrow x^{2}-x+1=0$, which has no real roots.
$\therefore R_{f} \neq$ co-domain $\Rightarrow f$ is not onto.
$11 / 2$
[CBSE SQP Marking Scheme 2020 (Modified)]
Q. 2. Show that the function $f: N \rightarrow N$, given by $f(1)=$ $f(2)=1$ and $f(x)=x-1$ for every $x>2$, is onto but not one-one.
Sol. We have a function $f: N \rightarrow N$, defined as $f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$.
For one-one Since $f(1)=f(2)=1$, therefore 1 and have same image, namely 1 . So, f is not one-one.
For onto Note that $y=1$ has two pre-images, namely 1 and 2 . Now, let $y \in N, y \neq 1$ be any arbitrary element.
Then, $y=f(x) \Rightarrow y=x-1$
$\Rightarrow x=y+1>2$ for every $y \in N, y \neq 1$.
Thus, for every $y \in N, y \neq 1$, there exists $x=y+1$ such that

$$
f(x)=f(y+1)=y+1-1=y
$$

Hence, f is onto.
Q. 3. Prove that the function $f: N \rightarrow N$, defined by $f(x)=$ $x^{2}+x+1$ is one-one but not onto.
(R [CBSE Delhi Set III-2019]
Sol. For one-one. Let $x_{1}, x_{2} \in N$.

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Rightarrow x_{1}^{2}+x_{1}+1=x_{2}^{2}+x_{2}+1 \\
& \Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+1\right)=0 \\
& \Rightarrow x_{1}=x_{2} \text { as } x_{1}+x_{2}+1 \neq 0 \\
& \quad\left(\because x_{1}, x_{2} \in N\right) \quad 11 / 2 \\
& f \text { is one-one. }
\end{aligned}
$$

For not onto.
for $y=1 \in N$, there is no $x \in N$ for which $f(x)=1$
$11 / 2$
[CBSE Marking Scheme, 2019]

Detailed Solution:

$$
\begin{aligned}
& \text { Given, } \\
& f(x)=x^{2}+x+1 \\
& \text { for } \\
& x_{1}, x_{2} \in N \\
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& x_{1}^{2}+x_{1}+1=x_{2}^{2}+x_{2}+1 \\
& x_{1}^{2}-x_{2}^{2}+x_{1}-x_{2}=0 \\
& \left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+\left(x_{1}-x_{2}\right)=0 \\
& \left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+1\right)=0
\end{aligned}
$$

Therefore, the given function is one-one.
Also, f is not onto as for $1 \in N$, there does exist any ' x ' in $f(x)=1$.

Long Answer Type Questions
 (5 marks each)

Q. 1. Check which of the following function is onto or into.
(i) $f: A \rightarrow B$, given by $f(x)=3 x$, where $A=\{0,1,2\}$ and $B=\{0,3,6\}$.
(ii) $f: Z \rightarrow Z$, given by $f(x)=3 x+2$, where $Z=$ set of integers.
Sol. (i) We have a function $f: A \rightarrow B$, given by $f(x)=3 x$, where $A=\{0,1,2\}$ and $B=\{0,3,6\}$
Let $y \in B$ be any arbitrary element.
Then,

$$
y=f(x) \Rightarrow y=3 x \Rightarrow x-\frac{y}{3}
$$

Now,

$$
\begin{aligned}
& \text { at } y=0, x=\frac{0}{3}=0 \in A \\
& \text { At } y=3, x=\frac{3}{3}=1 \in A \\
& \text { At } y=6, x=\frac{6}{3}=2 \in A
\end{aligned}
$$

Thus, for each element y of B, there is a pre-image in A.
(ii) We have a function $f: Z \rightarrow Z$, given by $f(x)=3 x+2$. Let $y \in Z$, (codomain of f) be any arbitrary element.
Q. 2. Let R be the set of all non-zero real number. Then, show that $f: R \rightarrow R$, given by $f(x)=\frac{1}{x}$ is one-one and onto.

Sol. Given, $f(x)=\frac{1}{x}$
For one-one Let $x_{1}, x_{2} \in R$, such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad \frac{1}{x_{1}}=\frac{1}{x_{2}} \quad\left[\right.$ put x_{1} and x_{2} in $\left.f(x)=\frac{1}{x}\right]$
$\Rightarrow \quad x_{1}=x_{2}$
So, f is one-one
For onto Let $y \in R$ be any arbitrary element.
Then, $\quad y=f(x)$
$\Rightarrow \quad y=\frac{1}{x}$
$\Rightarrow \quad x=\frac{1}{y} \quad$ [expressing x in terms of y]
It is clear that for every $y \in R$ (codomain), $x \in R$ (domain) Thus, for each $y \in R$ (codomain), there exist

$$
x=\frac{1}{y} \in R \text { (domain), such that } f(x)=f\left(\frac{1}{y}\right)=\frac{1}{\left(\frac{1}{y}\right)}=y
$$

[i.e., every element of codomain has pre-image in domain]
So, f is onto.

comparmicy BASm QuissmoNs

Case based MCQs

Attempt any four sub-parts from each question.

 Each sub-part carries 1 mark.I. Read the following text and answer the following questions on the basis of the same:
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation ' R ' is defined on I as follows:

ONE - NATION
 ONE - ELECTION
 FESTIVAL OF DEMOCRACY
 GENERAL ELECTION - 2019

$R=\left\{\left(V_{1}, V_{2}\right): V_{1}, V_{2} \in \mathrm{I}\right.$ and both use their voting right in general election - 2019\}
[CBSE QB 2021]
Q. 1. Two neighbours X and $Y \in I . X$ exercised his voting right while Y did not cast her vote in general election - 2019. Which of the following is true?
(A) $(X, Y) \in R$
(B) $(Y, X) \in R$
(C) $(X, X) \notin R$
(D) $(X, Y) \notin R$

Ans. Option (D) is correct.
Explanation: $(X, Y) \notin \mathrm{R}$.
$\because X$ exercised his voting right while, Y did not cast her vote in general election-2019
And $R=\left\{\left(V_{1}, V_{2}\right): V_{1} V_{2} \in \mathrm{I}\right.$ and both use their voting right in general election-2019\}
Q.2. Mr. ' X^{\prime} ' and his wife ' W ' both exercised their voting right in general election -2019, Which of the following is true?
(A) both (X, W) and $(W, X) \in R$
(B) $(X, W) \in R$ but $(W, X) \notin R$
(C) both (X, W) and $(W, X) \notin R$
(D) $(W, X) \in R$ but $(X, W) \notin R$

Ans. Option (A) is correct.
Q. 3. Three friends F_{1}, F_{2} and F_{3} exercised their voting right in general election-2019, then which of the following is true?
(A) $\left(F_{1}, F_{2}\right) \in R,\left(F_{2}, F_{3}\right) \in R$ and $\left(F_{1}, F_{3}\right) \in R$
(B) $\left(F_{1}, F_{2}\right) \in R,\left(F_{2}, F_{3}\right) \in R$ and $\left(F_{1}, F_{3}\right) \notin R$
(C) $\left(F_{1}, F_{2}\right) \in R,\left(F_{2}, F_{2}\right) \in R \operatorname{but}\left(F_{3}, F_{3}\right) \notin R$
(D) $\left(F_{1}, F_{2}\right) \notin R,\left(F_{2}, F_{3}\right) \notin R$ and $\left(F_{1}, F_{3}\right) \notin R$
Q. 4. The above defined relation R is \qquad
(A) Symmetric and transitive but not reflexive
(B) Universal relation
(C) Equivalence relation
(D) Reflexive but not symmetric and transitive

Ans. Option (C) is correct.
Explanation: R is reflexive, since every person is friend or itself.
i.e., $\left(F_{1}, F_{2}\right) \in R$

Further, $\left(F_{1}, F_{2}\right) \in R$
$\Rightarrow F_{1}$ is friend of F_{2}
$\Rightarrow F_{2}$ is friend of F_{1}
$\Rightarrow\left(F_{2}, F_{1}\right) \in R$
$\Rightarrow R$ is symmetric
Moreover, $\left(F_{1}, F_{2}\right),\left(F_{2}, F_{3}\right) \in R$
$\Rightarrow F_{1}$ is friend of F_{2} and F_{2} is friend of F_{3}.
$\Rightarrow F_{1}$ is a friend of F_{3}.
$\Rightarrow\left(F_{1}, F_{3}\right) \in R$
Therefore, R is an equivalence relation.
Q. 5. Mr. Shyam exercised his voting right in General Election - 2019, then Mr. Shyam is related to which of the following?
(A) All those eligible voters who cast their votes
(B) Family members of Mr. Shyam
(C) All citizens of India
(D) Eligible voters of India

Ans. Option (A) is correct.
II. Read the following text and answer the following questions on the basis of the same:
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let A be the set of players while B be the set of all possible outcomes.

[CBSE QB 2021]

Ans. Option (A) is correct.
Q. 1. Let $\mathbf{R}: \mathbf{B} \rightarrow \mathbf{B}$ be defined by $\mathbf{R}=\{(x, y): y$ is divisible by $x\}$ is
(A) Reflexive and transitive but not symmetric
(B) Reflexive and symmetric but not transitive
(C) Not reflexive but symmetric and transitive
(D) Equivalence

Ans. Option (A) is correct.
Explanation: R is reflexive, since every element of B i.e.,
$B=\{1,2,3,4,5,6\}$ is divisible by itself.
i.e., $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) \in R$
further, $\quad(1,2) \in R$
but $\quad(2,1) \in R$
Moreover,

$$
\begin{array}{rlrl}
& & (1,2),(2,4) & \in R \\
\Rightarrow & (1,4) & \in R
\end{array}
$$

$\Rightarrow R$ is transitive.
Therefore, R is reflexive and transitive but not symmetric.
Q.2. Raji wants to know the number of functions from A to B. How many number of functions are possible?
(A) 6^{2}
(B) 2^{6}
(C) 6 !
(D) 2^{12}

Ans. Option (A) is correct.
Q. 3. Let R be a relation on B defined by $R=\{(1,2),(2$,
2), $(1,3),(3,4),(3,1),(4,3),(5,5)\}$. Then R is
(A) Symmetric
(B) Reflexive
(C) Transitive
(D) None of these

Ans. Option (D) is correct.
Explanation: $R=\{(1,2),(2,2),(1,3),(3,4),(3,1)$, $(4,3),(5,5)\}$
R is not reflexive. $(3,3) \notin 4$
Since, $(1,1),(3,3),(4,4),(6,6) \in R$
R is not symmetric.
Because, for $(1,2) \in R$ there
$(2,1) \notin R$.
R is not transitive.
Because for all element of B there does not exist, $(a, b)(b, c) \in R$ and $(a, c) \in R$.
Q.4. Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
(A) 6^{2}
(B) 2^{6}
(C) 6 !
(D) 2^{12}

Ans. Option (D) is correct.
Q. 5. Let $R: B \rightarrow B$ be defined by $R=\{(1,1),(1,2),(2,2)$, $(3,3),(4,4),(5,5),(6,6)\}$, then R is
(A) Symmetric
(B) Reflexive and Transitive
(C) Transitive and symmetric
(D) Equivalence

Ans. Option (B) is correct.
III. Read the following text and answer the following questions on the basis of the same:
An organization conducted bike race under 2 different categories-boys and girls. Totally there
were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let $B=\left\{b_{1}, b_{2}, b_{3}\right\} G=\left\{g_{1}, g_{2}\right\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race.
[CBSE QB 2021]

Ravi decides to explore these sets for various types of relations and functions
Q. 1. Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
(A) 2^{6}
(B) 2^{5}
(C) 0
(D) 2^{3}

Ans. Option (A) is correct.
Q. 2. Let $R: B \rightarrow B$ be defined by $R=\{(x, y): x$ and y are students of same sex\}, Then this relation R is
(A) Equivalence
(B) Reflexive only
(C) Reflexive and symmetric but not transitive
(D) Reflexive and transitive but not symmetric

Ans. Option (A) is correct.
Explanation:
$R: B \rightarrow B$ be defined by $R=\{(x, y): x$ and y are students of same sex\}
R is reflexive, since, $(x, x) \in R$
R is symmetric, since, $(x, y) \in R$ and $(y, x) \in R$
R is transitive. For $a, b, c \in B$

$$
\exists(a, b)(b, c) \in R
$$

and $\quad(a, c) \in R$.
Therefore R is equivalence relation.
Q. 3. Ravi wants to know among those relations, how many functions can be formed from B to G ?
(A) 2^{2}
(B) 2^{12}
(C) 3^{2}
(D) 2^{3}

Ans. Option (D) is correct.
Q. 4. Let $R: B \rightarrow G$ be defined by $R=\left\{\left(b_{1}, g_{1}\right),\left(b_{2^{\prime}} g_{2}\right)\right.$, $\left.\left(b_{3^{\prime}} g_{1}\right)\right\}$, then R is \qquad
(A) Injective
(B) Surjective
(C) Neither Surjective nor Injective
(D) Surjective and Injective

Ans. Option (B) is correct.

Explanation:

$R: B \rightarrow G$ be defined by $R=\left\{\left(b_{1}, g_{1}\right),\left(b_{2}, g_{2}\right),\left(b_{3}, g_{1}\right)\right\}$
R is surjective, since, every element of G is the image of some element of B under R, i.e., For $g_{1}, g_{2} \in G$, there exists an elements $b_{1}, b_{2}, b_{3} \in B$, $\left(b_{1} g_{1}\right)\left(b_{2}, g_{2}\right),\left(b_{3}, g_{1}\right) \in R$.
Q.5. Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?
(A) 0
(B) 2 !
(C) 3 !
(D) 0 !

Ans. Option (A) is correct.
IV. Read the following text and answer the following questions on the basis of the same:
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line $y=x-4$. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
[CBSE QB 2021]

Q. 1. Let relation R be defined by $R=\left\{\left(L_{1}, L_{2}\right): L_{1} \| L_{2}\right.$ where $\left.L_{1}, L_{2} \in L\right\}$ then R is \qquad relation
(A) Equivalence
(B) Only reflexive
(C) Not reflexive
(D) Symmetric but not transitive

Ans. Option (A) is correct.
Explanation: Let relation R be defined by
$R=\left\{\left(L_{1}, L_{2}\right): L_{1} \| L_{2}\right.$ where $\left.L_{1}, L_{2} \in L\right\}$.
R is reflexive, since every line is parallel to itself.
Further, $\left(L_{2}, L_{1}\right) \in R$
$\Rightarrow L_{1}$ is parallel to L_{2}
$\Rightarrow L_{2}$ is parallel to L_{1}
$\Rightarrow\left(L_{2}, L_{1}\right) \in R$
Hence, R is symmetric.
Moreover, $\left(L_{1}, L_{2}\right),\left(L_{2}, L_{3}\right) \in R$
$\Rightarrow L_{1}$ is parallel to L_{2} and L_{2} is parallel to L_{3}
$\Rightarrow L_{1}$ is parallel to L_{3}
$\Rightarrow\left(L_{1}, L_{3}\right) \in R$
Therefore, R is an equivalence relation
Q. 2. Let $R=\left\{\left(L_{1}, L_{2}\right): L_{1} \perp L_{2}\right.$ where $\left.L_{1}, L_{2} \in L\right\}$ which of the following is true?
(A) R is Symmetric but neither reflexive nor transitive
(B) R is Reflexive and transitive but not symmetric
(C) R is Reflexive but neither symmetric nor transitive
(D) R is an Equivalence relation

Ans. Option (A) is correct.
Explanation: R is not reflexive, as a line L_{1} can not be perpendicular to itself, i.e., $\left(L_{1}, L_{1}\right) \notin R$.
R is symmetric as $\left(L_{1}, L_{2}\right) \in R$
As, L_{1} is perpendicular to L_{2} and L_{2} is perpendicular to L_{1}

$$
\left(L_{2}, L_{1}\right) \in R
$$

R is not transitive. Indeed, it L_{1} is perpendicular to L_{2} and L_{2} is perpendicular to L_{3}, then L_{1} can never be perpendicular to L_{3}.
In fact L_{1} is parallel to L_{3},
i.e., $\left(L_{1}, L_{2}\right) \in R,\left(L_{2}, L_{3}\right) \in R$ but $\left(L_{1}, L_{3}\right) \notin R$
i.e., symmetric but neither reflexive nor transitive.
Q. 3. The function $f: R \rightarrow R$ defined by $f(x)=x-4$ is
(A) Bijective
(B) Surjective but not injective
(C) Injective but not Surjective
(D) Neither Surjective nor Injective

Ans. Option (A) is correct.

Explanation:

The function f is one-one,

$$
\begin{array}{rlrl}
\text { for } & & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & x_{1}-4 & =x_{2}-4 \\
\Rightarrow & x_{1} & =x_{2}
\end{array}
$$

Also, given any real number y in R, there exists y +4 in R
Such that $f(y+4)=y+4-4=y$
Hence, f is onto
Hence, function is both one-one and onto, i.e., bijective.
Q. 4. Let $f: R \rightarrow R$ be defined by $f(x)=x-4$. Then the range of $f(x)$ is \qquad
(A) R
(B) Z
(C) W
(D) Q

Ans. Option (A) is correct.
Explanation: Range of $f(x)$ is R
Q. 5. Let $R=\left\{\left(L_{1}, L_{2}\right): L_{1} \| L_{2}\right.$ and $\left.L_{1}: y=x-4\right\}$ then which of the following can be taken as L_{2} ?
(A) $2 x-2 y+5=0$
(B) $2 x+y=5$
(C) $2 x+2 y+7=0$
(D) $x+y=7$

Ans. Option (A) is correct.
Explanation: Since, $L_{1} \| \mathrm{L}_{2}$
then slope of both the lines should be same.
Slope of $L_{1}=1$
$\Rightarrow \quad$ Slope of $L_{2}=1$
And $2 x-2 y+5=0$

$$
\begin{aligned}
-2 y & =-2 x-5 \\
y & =x+\frac{5}{2}
\end{aligned}
$$

Slope of $2 x-2 y+5=0$ is 1
So, $2 x-2 y+5=0$ can be taken as L_{2}.

Case based Subjective Questions (4 mark each)

(Each Sub-part carries 2 marks)
I. Read the following text and answer the following questions on the basis of the same:
Rohan is confused in the Mathematics topic 'Relation and equivalence relation'. To clear his concepts on the topic, he took help his elder brother. He has following notes on this topic.
Relation : A relation R from a set A to a set B is a subset of the cartesian product $\mathrm{A} \times \mathrm{B}$ obtained by describing a relationship between first element x and the second element ' y ' of the ordered pairs in A $\times \mathrm{B}$. A relation R in a set A is called. :
Reflexive: If $(a, a) \in \mathrm{R} \forall a \in \mathrm{~A}$.
Symmetric: If $\left(a_{1}, a_{1}\right) \in \mathrm{R} \Rightarrow\left(a_{2}, a_{1}\right) \in \mathrm{R} \forall a_{1}, a_{2} \in \mathrm{R}$.
Transitive : If $\left(a_{1}, a_{1}\right) \in \mathrm{R}$ and $\left(a_{2}, a_{3}\right) \in \mathrm{R} \Rightarrow\left(a_{1}, a_{3}\right)$ $\in \mathrm{R} \forall a_{1}, a_{2}, a_{3} \in \mathrm{~A}$
Equivalence Relation : A relation R in a set A is an equivalence relation if R is reflexive, symmetric and transitive.
Q. 1. Show that relation defined by $\mathrm{R}_{1}=\left\{(x, y) \mid x^{2}=y^{2}\right\}$ $x, y \in \mathrm{R}$ is an equivalence relation.
Sol. Given relation $\mathrm{R}_{1}=\left\{(x, y) \mid x^{2}=y^{2}\right\}$
Reflexive : For all $x \in \mathrm{R}, x^{2}=x^{2}$, so, $(x, x) \in \mathrm{R}^{1}$
Hence, R_{1} is reflexive relation.
Symmetric : For all $x, y \in \mathrm{R}$
If $x^{2}=y^{2}$ then $y^{2}=x^{2}$
Hence, R_{1} is symmetric relation.
Transitive : For all $x, y \in \mathrm{R}, x^{2}=y^{2}$ and for all $y, z \in \mathrm{R}$ $y^{2}=z^{2}$
$\therefore x^{2}=y^{2}=z^{2}$, for all $x, y, z \in \mathrm{R}$
Hence, R_{1} is transitive.
Thus, R_{1} is an equivalence relation.
Q. 2. Check whether the relation (R) ' x greater than y ' for all $x, y \in \mathrm{~N}$ is reflexive, symmetric or transitive.
Sol. Given, x greater than $y, \forall x, y \in \mathrm{~N}$
$\Rightarrow x>y \forall x, y \in \mathrm{~N}$
Reflexive : Now, for $(x, x) \in \mathrm{R}$
Therefore, $x>x$ is not true for any $x \in \mathrm{~N}$
Thus, R is not reflexive.
Symmetric : Now, let $(x, y) \in \mathrm{R}$, then $x>y$ If $x>y$, then $y \notin x$ for any $x, y \in \mathrm{~N}$
Thus, R is not symmetric.
Transitive : Now, let $(x, y) \in \mathrm{R}$ and $(y, z) \in \mathrm{R}$
$\Rightarrow x>y$ and $y>z$
Therefore, $x=>(x, z) \in \mathrm{R}$ for all $x, y, z \in \mathrm{~N}$
Thus, R is transitive.

Solutions for Practice Questions (Topic-1)

Multiple Choice Questions

6. Option (C) is correct.

Explanation: Consider that $a R b$, if a is congruent to $b, \forall a, b \in T$.
Then, $a R a \Rightarrow a \cong a$,
Which is true for all $a \in T$
So, R is reflexive,
Let $a R b \Rightarrow a \cong \mathrm{~b}$
$\Rightarrow b \cong a$
$\Rightarrow b R a$
So, R is symmetric.
Let $a R b$ and $b R c$
$\Rightarrow b \cong b$ and $b \cong a$
$\Rightarrow a \cong c \Rightarrow a R c$
So, R is transitive
Hence, R is equivalence relation.
7. Option (B) is correct.

Explanation: $a R b \Rightarrow a$ is brother of b.
This does not mean b is also a brother of a as b can be a sister of a.
Hence, R is not symmetric.
$a R b \Rightarrow a$ is brother of b
and $b R c \Rightarrow b$ is a brother of c.
So, a is brother of c.
Hence, R is transitive.

Very Short Answer Type Questions

3. $[(1,3)]=\{(x, y) \in A \times A: x+3=y+1\}$ $=\{(x, y) \in A \times A: y-x=2\}$ $=\{(1,3),(2,4)\}$

1
[CBSE Marking Scheme 2017-18]

Short Answer Type Questions-I

2. (i) $1,2 \in \mathbb{R}$ such that $1<2 \Rightarrow(1,2) \in R$, but since 2 is not less than $1 \Rightarrow(2,1) \notin R$. Hence R is not symmetric.
(ii) Let $(a, b) \in R$ and $(b, c) \in R, \therefore a<b$ and $b<c$ $\Rightarrow a<c \Rightarrow(a, c) R \therefore R$ is transitive. $\quad 1$
[CBSE SQP Marking Scheme 2020]

Detailed Answer:

(i) It is not symmetric because if $a<b$ then $b<a$ is not true.
(ii) Here, if $a<b$ and $b<c$ then $a<c$ is also true for all $a, b, c \in$ Real numbers. Therefore R is transitive.

Commonly Made Error

Students use examples to show that the relation is transitive which is wrong.

Answering Tip

- Use only arbitrary elements to prove transitivity.

5. Let $(a, b),(b, c) \in R, f(a)=f(b), f(b)=f(c) \Rightarrow f(a)=f(c)$, $(a, c) \in R$. Thus, Relation is transitive.

Short Answer Type Questions-II

5. Reflexive:
R is reflexive, as $1+a \cdot a=1+a^{2}>0 \Rightarrow(a, a) \in \mathrm{R}$
$\forall a \in R$
Symmetric:
If $\quad(a, b) \in R$
then, $\quad 1+a b>0$
$\Rightarrow \quad 1+b a>0$
$\Rightarrow \quad(b, a) \in R$
Hence, R is symmetric. 1
Transitive:
Let

$$
a=-8, b=-1, c=\frac{1}{2}
$$

Since, $\quad 1+a b=1+(-8)(-1)=9>0$
$\therefore(a, b) \in R$
also, $\quad 1+b c=1+(-1)\left(\frac{1}{2}\right)=\frac{1}{2}>0$
$\therefore(b, c) \in R$
But, $\quad 1+a c=1+(-8)\left(\frac{1}{2}\right)=-3<0$
Hence, R is not transitive.
1
[CBSE Marking Scheme 2018 (modified)]

Commonly Made Error

- Students use counter example to prove reflexive and symmetric.

Answering Tip

- Counter examples can be used only to show exceptions.

Long Answer Type Questions

2. Given $R=\{(a, b):|a-b|$ is divisible by 2$\}$ and

$$
\begin{aligned}
A= & \{1,2,3,4,5\} \\
R= & \{(1,1),(2,2),(3,3),(4,4),(5,5) \\
& (1,3),(1,5),(2,4),(3,5),(3,1), \\
& (5,1),(4,2),(5,3)\}
\end{aligned}
$$

(i) $\forall a \in A,(a, a) \in R$,
$\therefore R$ is reflexive.
[As $\{(1,1),(2,2),(3,3),(4,4)(5,5)\} \in R]$
(ii) $\forall(a, b) \in A,(b, a) \in R$,
$\therefore R$ is symmetric.
$[$ As $\{(1,3),(1,5),(2,4),(3,5)(3,1),(5,1),(4,2),(5,3)\} \in R]$ (iii) $\forall(a, b),(b, c) \in R,(a, c) \in R$ $\therefore R$ is transitive.

1
[As $\{(1,3),(3,1) \in R \Rightarrow(1,1) \in R$ and similarly others]
$\therefore R$ is an equivalence relation.
[CBSE Marking Scheme 2015 (Modified)]

Solutions for Practice Questions (Topic-2)

Multiple Choice Questions

7. Option (D) is correct.

Explanation: We have, $f(x)=\frac{1}{x}, \forall x \in R$
For $x=0, f(x)$ is not defined.
Hence, $f(x)$ is a not defined function.
10. Option (A) is correct.

Explanation: $f: R \rightarrow R$ is defined as $f(x)=3 x$.
Let $x, y \in R$ such that $f(x)=f(y)$
$\Rightarrow \quad 3 x=3 y$
$\Rightarrow \quad x=y$
$\therefore f$ is one-one.
Also, for any real number (y) in co-domain R, there exists $\frac{y}{3}$ in R such that $f\left(\frac{y}{3}\right)=3\left(\frac{y}{3}\right)=y$.
$\therefore f$ is onto.
Hence, function f is one-one and onto.

Very Short Answer Type Questions

1. Let
$f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in \mathrm{R} \quad 1$
\Rightarrow
$\left(x_{1}\right)^{3}=\left(x_{2}\right)^{3}$
$\Rightarrow \quad x_{1}=x_{2}$

Hence $f(x)$ is one-one.
[CBSE SQP Marking Scheme 2021]

Commonly Made Error

- Students get confused between one-one and many-one functions.

Answering Tip

- Injectivity should be determined considering the domain and co-domain. A function which is one-one in a domain may not be one-one in another domain.

3. Given, $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f: A \rightarrow B$ is defined as $f=\{(1,4),(2,5),(3,6)\}$ i.e. $f(1)=4, f(2)=5$ and $f(3)=6$.
It can be seen that the images of distinct elements of A under f are distinct. So, f is one-one. 1

Short Answer Type Questions-I

1. Given $f(x)=\frac{4 x+3}{6 x-4}$

Let,

$$
f\left(x_{1}\right)=f\left(x_{2}\right),
$$

then $\quad \frac{4 x_{1}+3}{6 x_{1}-4}=\frac{4 x_{2}+3}{6 x_{2}-4}$ $1 / 2$
or $\quad\left(4 x_{1}+3\right)\left(6 x_{2}-4\right)=\left(6 x_{1}-4\right)\left(4 x_{2}+3\right) \quad 1 / 2$
or $24 x_{1} x_{2}-16 x_{1}+18 x_{2}-12=24 x_{1} x_{2}+18 x_{1}-16 x_{2}-12$
or $\quad-16 x_{1}+18 x_{2}=18 x_{1}-16 x_{2} \quad 1 / 2$
or $\quad-16 x_{1}-18 x_{1}=-18 x_{2}-16 x_{2}$
or $\quad-34 x_{1}=-34 x_{2}$
or $\quad x_{1}=x_{2}$
$1 / 2$
or f is one-one.
2. Let,

$$
y \in B=R-\left\{\frac{2}{3}\right\}
$$

$\therefore \quad y=f(x)$
or $\quad y=\frac{4 x+3}{6 x-4}$
or
or

$$
6 x y-4 y=4 x+3
$$

or

$$
y(6 x-4)=4 x+3
$$

$$
6 x y-4 x=4 y+3
$$

or

$$
x(6 y-4)=4 y+3
$$

or

$$
x=\frac{4 y+3}{6 y-4} \in B=R-\left\{\frac{2}{3}\right\} \mathbf{1}
$$

or For every value of y except $y=\left\{\frac{2}{3}\right\}$, there is a
pre-image $x=\frac{4 y+3}{6 y-4}=g(y)$.
or
$x \in A$
$\therefore f$ is onto.

REFLECTIONS

- In this chapter we have covered the different types of relations and functions. Look around you and pick some real life relations say 'is the father of',
'is the friend of etc and check whether they are reflexive, symmetric and transitive.

[^0]: DISCLAIMER
 This book is published by Oswad Books and Learning Pvt Ltd ("Publisher") and is intended solely for educational use, to enable students to practice for examinations/tests and reference. The contents of this book primarily comprise a collection of questions that have been sourced from previous examination papers. Any practice questions and/or notes included by the Publisher are formulated by placing reliance on previous question papers and are in keeping with the format/pattern/ guidelines applicable to such papers.
 The Publisher expressly disclaims any liability for the use of, or references to, any terms or terminology in the book, which may not be considered appropriate or may be considered offensive, in light of societal changes. Further, the contents of this book, including references to any persons, corporations, brands, polifical parties, incidents, historical events and/or terminology within the book, if any, are not intended to be offensive, and/or to hurt, insult or defame any person (whether living or dead), entity, gender, caste, religion, race, etc. and any interpretation to this effect is unintended and purely incidental. While we try to keep our publications as updated and accurate as possible, human error may creep in. We expressly disclaim liability for errors and/or omissions in the content, if any, and further disclaim any liability for any loss or damages in connection with the use of the book and reference to its contents".

[^1]: Sumit

