PHYSICS

APPENDIX-A

A.1 SI Units

	SI Base Unit		
Base Quantity	Name	Symbol	
Length	metre	m	
Mass	kilogram	kg	
Time	second	s	
Electric current	ampere	А	
Temperature	kelvin	К	
Amount of substance	mole	mol	
Luminous intensity	candela	cd	

A.2 Some Derived SI Units

Quantity	Name	Symbol	Expression in Terms of Base Units	Expression in Terms of SI Units
Plane angle	radian	ω	m/m	
Frequency	hertz	Hz	s ⁻¹	
Force	newton	Ν	$kg \cdot m/s^2$	J/m
Pressure	pascal	Pa	$kg/m \cdot s^2$	N/m ²
Energy	joule	J	$kg \cdot m^2/s^2$	N · m
Power	watt	W	$kg \cdot m^2/s^3$	J/s
Electric charge	coulomb	С	A · s	
Electric potential	volt	V	$kg \cdot m^2/A \cdot s^3$	W/A
Capacitance	farad	F	$A^2 \cdot s^4/kg \cdot m^2$	C/V
Electric resistance	ohm	Ω	$kg \cdot m^2/A^2 \cdot s^3$	V/A
Magnetic flux	weber	φ	$kg \cdot m^2/A \cdot s^2$	T∙ m
Magnetic field	tesla	В	$kg/A \cdot s^2$	Nb/m ² or tesla
Inductance	henry	L	$kg \cdot m^2/A^2 \cdot s^2$	$T \cdot m^2/A$

APPENDIX-B

B.1 Conversion Factors

Length

	m	cm	km	in.	ft	mi
1 meter	1	10 ²	10 ⁻³	39.37	3.281	6.214×10^{-4}
1 centimeter	10 ⁻²	1	10 ⁻⁵	0.3937	3.281×10^{-2}	6.214×10^{-6}
1 kilometer	10 ³	10^{5}	1	3.937×10^4	3281×10^{3}	0.6214
1 inch	2.540×10^{-2}	2.540	2.540×10^{-5}	1	8.333×10^{-2}	1.578×10^{-5}
1 foot	0.3048	30.48	3.048×10^{-4}	12	1	1.894×10^{-4}
1 mile	1609	1.609×10^{5}	1.609	6.336×10^4	5280	1

Mass

	kg	g	slug	u
1 kilogram	1	10 ³	6.854×10^{-2}	6.024×10^{26}
1 gram	10 ⁻³	1	6.852×10^{-5}	6.024×10^{23}
1 slug	14.59	1.459×10^{4}	1	8.789×10^{27}
1 atomic mass unit	1.660×10^{-27}	1.660×10^{-24}	1.137×10^{-28}	1
<i>Note</i> : 1 metric ton = 1000 kg.				

	s	min	h	day	yr
1 second	1	1.667×10^{-2}	2.778×10^{-4}	1.157×10^{-5}	3.169×10 ⁻⁸
1 minute	60	1	1.667×10^{-2}	6.944×10^{-4}	1.901×10^{-6}
1 hour	3600	60	1	4.167×10^{-2}	1.141×10^{-4}
1 day	8.640×10^{4}	1440	24	1	2.738×10^{-5}
1 year	3.156×10^{7}	5.259×10^{5}	8.766×10^{3}	365.2	1

Speed

Time

	m/s	cm/s	ft/s	mi/h
1 meter per second	1	10 ²	3.281	2.237
1 centimeter per second	10 ⁻²	1	3.281×10^{-2}	2.237×10^{-2}
1 foot per second	0.3048	30.48	1	0.6818
1 mile per hour	0.4470	44.70	1.467	1

Note : 1 mi/min = 60 mi/h = 88 ft/s.

Force

	Ν	lb
1 newton	1	0.2248
1 pound	4.448	1

Energy, **Energy Transfer**

	J	ft · lb	eV
1 joule	1	0.7376	6.242×10^{18}
1 foot-pound	1.356	1	8.464×10^{18}
1 electron volt	1.602×10^{-19}	1.182×10^{-19}	1
1 calorie	4.186	3.087	2.613×10^{19}
1 British thermal unit	1.055×10^{3}	7.779×10^{2}	6.585×10^{21}
1 kilowatt-hour	3.600×10^{6}	2.655×10^{6}	2.247×10^{25}
	cal	Btu	kWh
1 joule	cal 0.2389	Btu 9.481 × 10 ⁻⁴	kWh 2.778×10^{-7}
1 joule 1 foot-pound	cal 0.2389 0.3239	Btu 9.481×10^{-4} 1.285×10^{-3}	$\frac{\text{kWh}}{2.778 \times 10^{-7}} \\ 3.766 \times 10^{-7}$
1 joule 1 foot-pound 1 electron volt	cal 0.2389 0.3239 3.827 × 10 ⁻²⁰	Btu 9.481×10^{-4} 1.285×10^{-3} 1.519×10^{-22}	kWh 2.778×10^{-7} 3.766×10^{-7} 4.450×10^{-26}
1 joule 1 foot-pound 1 electron volt 1 calorie	cal 0.2389 0.3239 3.827×10^{-20} 1	Btu 9.481×10^{-4} 1.285×10^{-3} 1.519×10^{-22} 3.968×10^{-3}	kWh 2.778×10^{-7} 3.766×10^{-7} 4.450×10^{-26} 1.163×10^{-6}
1 joule 1 foot-pound 1 electron volt 1 calorie 1 British thermal unit	cal 0.2389 0.3239 3.827 × 10^{-20} 1 2.520 × 10^2	Btu 9.481×10^{-4} 1.285×10^{-3} 1.519×10^{-22} 3.968×10^{-3} 1	kWh 2.778×10^{-7} 3.766×10^{-7} 4.450×10^{-26} 1.163×10^{-6} 2.930×10^{-4}

Pressure

1 pound per square inch

	Ра		atm	
1 pascal	1		9.869×10^{-6}	
1 atmosphere	1.013×10^{5}		1	
1 centimeter mercury ^a	1.333×10^{3}	1.333×10^3 1.316×10^{-2}		
1 pound per square inch	6.895×10^3 6.805×10^{-2}		6.805×10^{-2}	
1 pound per square foot	47.88		4.725×10^{-4}	
	cm Hg	lb/in. ²	lb/ft ²	
1 pascal	7.501×10^{-4}	1.450×10^{-4}	2.089×10^{-2}	
1 atmosphere	76	14.70	2.116×10^{3}	
1 centimeter mercury ^a	1	0.1943	27.85	

1

 6.944×10^{-3}

144

1

 3.591×10^{-2} 1 pound per square foot At 0°C and at a location where the free-fall acceleration has its "standard" value, 9.80665 m/s².

5.171

B.2 Conversions of useful physical quantities

Length

1 in. = 2.54 cm (exact)1 m = 39.37 in = 3.281 ft1 ft = 0.3048 m12 in. = 1 ft3 ft = 1 yd1 yd = 0.9144 m1 km = 0.621 mi 1 mi = 1.609 km1 mi = 5280 ft $1 \,\mu m = 10^{-6} \,m = 10^3 \,nm$ $1 \text{ light-year} = 9.461 \times 10^{15} \text{ m}$ Area

 $1 \text{ m}^2 = 10^4 \text{ cm}^2 = 10.76 \text{ ft}^2$ $1 \text{ ft}^2 = 0.0929 \text{ m}^2 = 144 \text{ in.}^2$ $1 \text{ in.}^2 = 6.452 \text{ cm}^2$

Volume

 $1 \text{ m}^3 = 10^6 \text{ cm}^3 = 6.102 \times 10^4 \text{ in.}^3$ $1 \text{ ft}^3 = 1.728 \text{ in.}^3 = 2.83 \times 10^{-2} \text{ m}^3$ $1 L = 1000 cm^3 = 1.0576 qt = 0.0353 ft^3$ 1 ft³ = 7.481 gal = 28.32 L = $2.832 \times 10^{-2} \text{ m}^3$ $1 \text{ gal} = 3.786 \text{ L} = 231 \text{ in.}^3$

Mass

1000 kg = 1 t (metric ton)1 slug = 14.59 kg $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV}/c^2$

Force

1 N = 0.2248 lb1 lb = 4.448 NVelocity 1 mi/h = 1.47 ft/s = 0.447 m/s = 1.61 km/h1 m/s = 100 cm/s = 3.281 ft/s1 mi/min = 60 mi/h = 88 ft/s

Acceleration

 $1 \text{ m/s}^2 = 3.28 \text{ ft/s}^2 = 100 \text{ cm/s}^2$ $1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2 = 30.48 \text{ cm/s}^2$ Pressure $1 \text{ bar} = 10^5 \text{ N/m}^2 = 14.50 \text{ lb/in.}^2$ 1 atm = 760 mm Hg = 76.0 cm Hg $1 \text{ atm} = 14.7 \text{ lb/in.}^2 = 1.013 \times 10^5 \text{ N/m}^2$ $1 \text{ Pa} = 1 \text{ N/m}^2 = 1.45 \times 10^{-4} \text{ lb/in.}^2$ Time $1 \text{ yr} = 365 \text{ days} = 3.16 \times 10^7 \text{ s}$ $1 \text{ day} = 24 \text{ h} = 1.44 \times 10^3 \text{ min} = 8.64 \times 10^4 \text{ s}$ Energy $1 J = 0.738 ft \cdot lb$ 1 cal = 4.186 J $1 \text{ Btu} = 252 \text{ cal} = 1.054 \times 10^3 \text{ J}$ $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ $1 \text{ kWh} = 3.60 \times 10^6 \text{ J}$ Power $1 \text{ hp} = 550 \text{ ft} \cdot \text{lb/s} = 0.746 \text{ kW}$ $1 \text{ W} = 1 \text{ J/s} = 0.738 \text{ ft} \cdot \text{lb/s}$ 1 Btu/h = 0.293 WSome Approx imations Useful for Estimation Problems $1 \,\mathrm{m} \approx 1 \,\mathrm{vd}$ $1 \text{ m/s} \approx 2 \text{ mi/h}$

1 m ∼ 1 yu	$1 \text{ m/s} \sim 2 \text{ m/m}$
$1 \text{ kg} \approx 2 \text{ lb}$	$1 \ yr \approx \pi \times 10^7 \ s$
$1 \mathrm{N} \approx \frac{1}{4} \mathrm{lb}$	$60 \text{ mi/h} \approx 100 \text{ ft/s}$
$1 L \approx \frac{1}{4} \text{gal}$	$1 \text{ km} \approx \frac{1}{2} \text{ mi}$

APPENDIX-C

C.1 Important Constants

Symbol	Meaning	Best Value	Approximate Value
с	Speed of light in vacuum	2.99792458×10^8 m/s	$3.00 \times 10^8 \text{ m/s}$
G	Gravitational constant	$6.67408(31) imes 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$	$6.67 imes 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
N _A	Avogadro's number	$6.02214129(27) \times 10^{23}$	$6.02 imes 10^{23}$
k	Boltzmann's constant	$1.3806488(13) \times 10^{-23}$ J/K	1.38×10^{-23} J/K
R	Gas constant	8.3144621(75) J/ mol . K	8.31 J/ mol · K = 1.99 cal / mol . K = 0.0821 atm . L/mol . K
σ	Stefan-Boltzmann constant	$5.670373(21) imes 10^{-8} W/m^2$. K	$5.67 imes 10^{-8} ext{ W/m}^2 \cdot ext{K}$
k	Coulomb force constant	$8.987551788 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$	$8.99 imes 10^9 { m N} \cdot { m m}^2 \! / { m C}^2$
q _e	Charge on electron	$-1.602176565(35) \times 10^{-19} \text{ C}$	$-1.60 \times 10^{-19} \mathrm{C}$
ε	Permittivity of free space	$8.854187817\times 10^{-12}\text{C}^2\!/\text{N}~.~\text{m}^2$	$8.85 imes 10^{-12} { m C}^2 / { m N} . { m m}^2$
μ_0	Permeability of free space	$4\pi imes 10^{-7} \mathrm{T}$. m/A	$1.26 \times 10^{-6} \mathrm{T} \cdot \mathrm{m/A}$
h	Planck's constant	$6.62606957(29) imes 10^{-34} \mathrm{J} . \mathrm{s}$	$6.63 imes 10^{-34}\mathrm{J}~.~\mathrm{s}$

C.2 Submicroscopic Masses

Symbol	Meaning	Best Value	Approximate Value
m _e	Electron mass	$9.10938291(40) \times 10^{-31} \mathrm{kg}$	$9.11 \times 10^{-31} \mathrm{kg}$
m_p	Proton mass	$1.672621777(74) imes 10^{-27} \mathrm{kg}$	$1.6726 imes 10^{-27} \mathrm{kg}$
m_n	Neutron mass	$1.674927351(74) imes 10^{-27} \mathrm{kg}$	$1.6749 imes 10^{-27} \mathrm{kg}$
u	Atomic mass unit	$1.660538921(73) \times 10^{-27} \mathrm{kg}$	$1.6605 \times 10^{-27} \mathrm{kg}$

C.3 Solar System Data

Sun	mass	$1.99 \times 10^{30} \mathrm{kg}$
	average radius	$6.96 \times 10^8 \mathrm{m}$
	Earth-sun distance (average)	$1.496 \times 10^{11} \mathrm{m}$
Earth	mass	$5.9736 imes 10^{24} \mathrm{kg}$
	average radius	$6.376 \times 10^6 \mathrm{m}$
	orbital period	$3.16 imes 10^7 \mathrm{s}$
Moon	mass	$7.35 \times 10^{22} \mathrm{kg}$
	average radius	$1.74 \times 10^6 \mathrm{m}$
	orbital period (average)	$2.36 \times 10^6 \mathrm{s}$
	Earth-moon distance (average)	$3.84 \times 10^8 \mathrm{m}$

C.4 Metric Prefixes for Powers of Ten and Their Symbols

Prefix	Symbol	Value	Prefix	Symbol	Value
tera	Т	10 ¹²	deci	d	10 ⁻¹
giga	G	10 ⁹	centi	с	10-2
mega	М	10 ⁶	milli	m	10 ⁻³
kilo	k	10 ³	micro	μ	10-6
hecto	h	10 ²	nano	n	10 ⁻⁹
deka	da	10 ¹	pico	р	10-12
-	-	$10^0 (=1)$	femto	f	10 ⁻¹⁵

C.5 Selected British Units

Length	1 inch (in.) = 2.54 cm (exactly)
	1 foot (ft) = 0.3048 m
	1 mile (mi) = 1.609 km
Force	1 pound (ld) = 4.448 N
Energy	1 British thermal unit (Btu) = 1.055×10^3 J
Power	1 horsepower (hp) = 746 W
Pressure	$1 \text{ lb} / \text{in}^2 = 6.895 \times 10^3 \text{ Pa}$

C.6 Other Units

Length	1 light year (ly) = 9.46×10^{15} m
	1 astronomical unit (au) = 1.50×10^{11} m
	1 nautical mile = 1.852 km
	1 angstrom (Å) = 10^{-10} m
Area	1 acre (ac) = $4.05 \times 10^3 \text{ m}^2$
	1 square foot (ft ²) = $9.29 \times 10^{-2} \text{ m}^2$

	$1 \text{ barn } (b) = 10^{-28} \text{ m}^2$
Volume	1 liter (<i>L</i>) = 10^{-3} m ³
	1 U.S. gallon (gal) = $3.785 \times 10^{-3} \text{ m}^3$
Mass	1 solar mass = 1.99×10^{30} kg
	1 metric ton = 10^3 kg
	1 atomic mass unit (u) = 1.6605×10^{-27} kg
Time	1 year (y) = 3.16×10^7 s
	1 day (d) = 86,400 s
Speed	1 mile per hour (mph) = 1.609 km/h
	1 nautical mile per hour (naut) = 1.852 km/h
Angle	1 degree (°) = 1.745×10^{-2} rad
	1 minute of arc (') = $1/60$ degree
	1 second of arc (") = $1/60$ minute of arc
	$1 \text{ grad} = 1.571 \times 10^{-2} \text{ rad}$
Energy	1 kiloton TNT (kT) = 4.2×10^{12} J
	1 kilowatt hour (kW . h) = 3.60×10^6 J
	1 food calorie (kcal) = 4186 J

	1 calorie (cal) = 4.186 J	
	1 electron volt (eV) = 1.60×10^{-19} J	
Pressure	1 atmosphere (atm) = 1.013×10^5 Pa	
	1 millimeter of mercury (mm Hg) = 133.3 Pa	
	1 torricelli (torr) = 1 mm Hg = 133.3 Pa	
Nuclear decay rate	1 curie (Ci) = 3.70×10^{10} Bq	

C.8 The Greek Alphabet

Alpha А Eta Η Nu Ν Tau Т α η ν τ Beta В β Theta Θ θ Xi Ξ ξ Upsilon Υ υ I 0 Phi Φ Gamma Iota ι Omicron ø Г γ 0 Delta Δ δ Kappa Κ κ Pi П π Chi Х χ Epsilon Е Lambda Λ λ Rho Р Psi ε ρ ψ ψ Ζ ζ Zeta Σ Mu М μ Sigma σ Omega Ω ω

APPENDIX-D

Symbols, Dimensions, and Units of Physical Quantities

Quantity	Common Symbol	Unit	Dimensions	Unit in Terms of Base SI Units
Acceleration	\vec{a}	m/s ²	L/T ²	m/s ²
Amount of substance	п	MOLE		mol
Angle	θ, φ	radian (rad)	1	
Angular acceleration	ā	rad/s^2	T ⁻²	s ⁻²
Angular frequency	ω	rad/s^2	T ⁻¹	s ⁻¹
Angular momentum	Ĺ	kg.m ² /s	ML ² /T	kg.m²/s
Angular velocity	ŵ	rad/s	T ⁻¹	s ⁻¹
Area	А	m^2	L^2	m^2
Atomic number	Z			
Capacitance	С	farad (F)	Q^2T^2/ML^2	A ² .s ⁴ /kg.m ²
Charge	q, Q, е	coulomb (C)	Q	A.s
Line Charge density	λ	C/m	Q/L	A·s/m
Surface Charge density	σ	C/m ²	Q/L^2	A·s/m ²
Volume Charge density	ρ	C/m ³	Q/L ³	A·s/m ³
Conductivity	σ	$1/\Omega \cdot m$	Q ² T/ML ³	$A^2 \cdot s^3 / kg \cdot m^3$
Current	Ι	AMPERE	Q/T	А
Current density	J	A/m ²	Q/TL^2	A/m ²
Density	ρ	kg/m ³	M/L ³	kg/m ³
Dielectric constant	κ			
Electric dipole moment	Р	$C \cdot m$	QL	A·s·m
Electric field	Ē	V/m	ML/QT ²	kg·m/A·s ³

C.7 Useful Formulae

Circumference of a circle with radius r or diameter d	$C = 2\pi r = \pi d$
Area of a circle with radius <i>r</i> or diameter <i>d</i>	$A = \pi r^2 = \pi d^2 / 4$
Area of a sphere with radius <i>r</i>	$A = 4\pi r^2$
Volume of a sphere with radius <i>r</i>	$V = (4/3) (\pi r^3)$

Electric flux	Φ_E	$V \cdot m$	ML ³ /QT ²	$kg \cdot m^3/A \cdot s^3$
Electromotive force	ε	volt (V)	ML ² /QT ²	$kg \cdot m^2 / A \cdot s^3$
Energy	E, U, K	joule (J)	ML ² /T ²	$kg \cdot m^2/s^2$
Entropy	S	J/K	ML ² /T ² K	$kg \cdot m^2/s^2 \cdot K$
Force	F	newton (N)	ML/T ²	$kg \cdot m/s^2$
Frequency	f/v	hertz (Hz)	T^1	s ⁻¹
Heat	Q	joule (J)	ML ² /T ²	$kg \cdot m^2/s^2$
Inductance	L	henry (H)	ML^2/Q^2	$kg \cdot m^2/A^2 \cdot s^2$
Length	ℓ,L	Meter	L	m
Displacement	Δx , $\Delta ec r$			
Distance	d, h			
Position	x, y, z, \vec{r}			
Magnetic dipole moment	$ec{\mu}$	$N \cdot m/T$	QL ² /T	$A \cdot m^2$
Magnetic field	B	tesla (T) (= Wb/m^2)	M/QT	kg/A·s ²
Magnetic flux	Φ_B	weber (Wb)	ML ² /QT	$kg \cdot m^2 / A \cdot s^2$
Mass	<i>m</i> , M	Kilogram	М	kg
Molar specific heat	С	J/mol · K		kg·m²/s²·mol·K
Moment of inertia	Ι	$kg \cdot m^2$	ML^2	kg·m ²
Momentum	$\vec{\mathrm{P}}$	kg ⋅ m/s	ML/T	kg·m/s
Time Period	Т	S	Т	S
Permeability of free space	μ_0	N/A ² (=H/m)	ML/Q ²	$kg \cdot m/A^2 \cdot s^2$
Permittivity of free space	ε ₀	$C^2/N \cdot m^2 (=F/m)$	Q^2T^2/ML^3	$A^2 \cdot s^4 / kg \cdot m^3$
Potential	V	volt (V) $(=J/C)$	ML ² /QT ²	kg·m²/A·s³
Power	Р	watt (W)(= J/s)	ML ² /T ³	kg·m ² /s ³
Pressure	Р	pascal (Pa)(=N/m ²)	M/LT ²	kg/m·s²
Resistance	R	ohm (Ω)(=V/A)	ML ² /Q ² T	$kg \cdot m^2 / A^2 \cdot s^3$
Specific heat	С	J/kg · K	L^2/T^2K	$m^2/s^2 \cdot K$
Speed	υ	m/s	L/T	m/s
Temperature	Т	Kelvin	K	K
Time	t	Second	Т	S
Torque	$ec{ au}$	$N \cdot m$	ML^2/T^2	$kg \cdot m^2/s^2$
Velocity	\overline{v}	m/s	L/T	m/s
Volume	V	m ³	L ³	m ³
Wavelength	λ	m	L	m
Work	W	joule (J) $(=N \cdot m)$	ML^2/T^2	kg·m ² /s ²

APPENDIX-E

Indian Space Research Organisation (ISRO) - - - - [1975 to 2020]

India has been successfully launching satellites of many types since 1975.

Satellites have been launched from various vehicles, including those launched by American, Russian and European rockets, as well as those launched indigenously by India.

The organization responsible for India's satellite program is the Indian Space Research Organisation (ISRO).

Satellites	Launch Date	Launch Vehicle
Aryabhata	19-Apr-75	u-11 Interkosmos
Bhaskara-I	07-Jun-79	C-1 Interkosmos
Rohini Technology Payload	10-Aug-79	SLV-3
Rohini RS-1	18-Jul-80	SLV-3
Rohini RS-D1	31-May-81	SLV-3
Ariane Passenger Payload Experiment	19-Jun-81	Ariane-1 (V-3)
Bhaskara-II	20-Nov-81	C-1 Intercosmos
INSAT-1A	10-Apr-82	Delta 3910 PAM-D
Rohini RS-D2	17-Apr-83	SLV-3
INSAT-1B	30-Aug-83	Shuttle [PAM-D]
Stretched Rohini Satellite Series (SROSS-1)	24-Mar-87	ASLV
IRS-1A	17-Mar-88	Vostok
Stretched Rohini Satellite Series (SROSS-2)	13-Jul-88	ASLV
INSAT-1C	21-Jul-88	Ariane-3
INSAT-1D	12-Jun-90	Delta 4925
IRS-1B	29-Aug-91	Vostok
INSAT-2DT	26-Feb-92	Ariane-44L H10
Stretched Rohini Satellite Series (SROSS-C)	20-May-92	ASLV
INSAT-2A	10-Jul-92	Ariane-44L H10
INSAT-2B	23-Jul-93	Ariane-44L H10+
IRS-1E	20-Sep-93	PSLV-D1
Stretched Rohini Satellite Series (SROSS-C2)	04-May-94	ASLV
IRS-P2	15-Oct-94	PSLV-D2
INSAT-2C	07-Dec-95	Ariane-44L H10-3
IRS-1C	29-Dec-95	Molniva
IRS-P3	21-Mar-96	PSLV-D3
INSAT-2D	04-Jun-97	Ariane-44L H10-3
IRS-1D	29-Sep-97	PSLV-C1
INSAT-2E	03-Apr-99	Ariane-42P H10-3
Oceansat-(IRS-P4)	26-May-99	PSLV-C2
INSAT-3B	22-Mar-2000	Ariane-5G
GSAT-1	18-Apr-01	GSLV-D1
Technology Experiment Satellite (TES)	22-Oct-01	PSLV-C3
INSAT-3C	24-Jan-02	Ariane-42L H10-3
Kalpana-1(METSAT)	12-Sep-02	PSLV-C4
INSAT-3A	10-Apr-03	Ariane-5G
GSAT-2	08-May-03	GSLV-D2
INSAT-3E	28-Sep-03	Ariane-5G
RESOURCESAT-1(IRS-P6)	17-Oct-03	PSLV-C5
EDUSAT	20-Oct-04	GSLV-F01
HAMSAT	05-May-05	PSLV-C6
CARTOSAT-1	05-May-05	PSLV-C6
INSAT-4A	22-Dec-05	Ariane-5GS
INSAT-4C	10-Jul-06	GSLV-F02
CARTOSAT-2	10-Jan-07	PSLV-C7
Space Capsule Recovery Experiment(SRF-1)	10-Jan-07	PSLV-C7
INSAT-4B	12-Mar-07	Ariane-5ECA
INSAT-4CR	02-Sep-07	GSLV-F04
CARTOSAT-2A	28-Apr-08	PSLV-C9
		1001 07

IMS-1 (Third World Satellite – TWsat)	28-Apr-08	PSLV-C9
Chandrayaan-1	22-Oct-08	PSLV-C11
RISAT-2	20-Apr-09	PSLV-C12
ANUSAT	20-Apr-09	PSLV-C12
Oceansat-2(IRS-P4)	23-Sep-09	PSLV-C14
GSAT-4	15-Apr-10	GSLV-D3
CARTOSAT-2B	12-Jul-10	PSLV-C15
StudSat	12-Jul-10	PSLV-C15
GSAT-5P /INSAT-4D	25-Dec-10	GSLV-F06
RESOURCESAT-2	20-Apr-11	PSLV-C16
Youthsat	20-Apr-11	PSLV-C16
GSAT-8 / INSAT-4G	21-May-11	Ariane-5VA-202
GSAT-12	15-Jul-11	PSLV-C17
Megha-Tropiques	12-Oct-11	PSLV-C18
Інеріциев	12-Oct-11	PSLV-C18
RISAT-1	26-Apr-12	PSI V-C19
SRMSAT	26-Apr-12	PSLV-C18
CSAT-10	20-74p1-12 29-Sep-12	Ariane-5VA-209
SARAI	25-50p-12 25 Eeb 13	PSLV C20
IPNSS 14	01 Jul 13	PSLV C22
	26 Jul 12	Ariano 5
	20-Jui-13	Ariano 5
Mara Orbitar Mission (MOM)	05 Nov 12	
CEAT 14	05-INOV-13	PSLV-C25
G5AI-14 IDNICC 1D	03-Jan-14	
IRN55-ID IBNICC 1C	04-Apt-14	PSLV-C24
IRNS5-IC	16-Oct-14	PSLV-C26
GSAI-16	0/-Dec-14	Ariane-5
IRNSS-ID	28-Mar-15	PSLV-C27
GSAI-6	27-Aug-15	GSLV-D6
Astrosat	28-Sep-15	PSLV-C30
GSAI-15	11-Nov-15	Ariane 5 VA-22/
IRNSS-IE	20-Jan-16	PSLV-C31
IRNSS-IF	10-Mar-16	PSLV-C32
IRNSS-1G	28-Apr-16	PSLV-C33
Cartosat-2C	22-Jun-16	PSLV-C34
CartoSat-2E	8 September 2016,	INSAT-3DR
Pratham	26 September 2016,	PSLV-C35
GSAT-18	6 October 2016,	Ariane-5 ECA
ResourceSat-2A	7 December 2016,	PSLV-C36
CartoSat-2D	15 February 2017,	PSLV-C37
South Asia Satellite (GSAT-9)	5 May 2017,	GSLV Mk.II[3
GSAT-19	05-Jun-17	GSLV Mk.III-D1
NIUSat[23-June 2017,	PSLV-C38
GSAT-17	29 June 2017,	Ariane-5 ECA
IRNSS-1H	02-Sep-17	PSLV-C39
CartoSat-2F	10-January 2018,	PSLV-C40
GSAT-6A	29-Mar-18	GSLV-F08
IRNSS-11	12-Apr-18	GSLV-F08, PSLV-C41
GSAT-29	01-Nov-18	GSLV Mk III D2
HySIS	29-Nov-18	PSLV-C43
GSAT-7A	19-Dec-18	GSLV Mk.II-F11
Microsat-R	23-Jan-19	PSLV-C44
EMISAT	01-Apr-19	PSLV-C45
PS4 Stage attached with ExseedSat-2, AMSAT, ARIS and AIS payloads	01-Apr-19	PSLV-C45
Risat-2B	21-May-19	PSLV-C46
Chandrayaan-2	22-Jul-19	Chandrayaan-2

CHEMISTRY

APPENDIX-A

A Table of Greek letters

Upper case	Lower case	In English
А	α	alpha
В	β	beta
Г	γ	gamma
Δ	δ	delta
Е	ε	epsilon
Z	ζ	zeta
Н	η	eta
Θ	θ	theta
Ι	ı	iota
K	к	kappa
Λ	λ	lambda
М	μ	mu
N	υ	nu
Ξ	يح	csi
0	0	omicron
П	π	pi
Р	ρ	rho
Σ	σ	sigma
Т	τ	tau
Ŷ	υ	upsilon
Φ	φ	phi
Ψ	Ψ	psi
X	χ	chi
Ω	ω	omega

APPENDIX-B

Useful Physical Constant in Chemistry

Constant	Symbol	Value
Acceleration due to gravity	g	9.8 m s ⁻²
Atomic mass unit	amu, m _u or u	$1.66 \times 10^{-27} \text{ kg}$
Avogadro's Number	N, N _A	$6.022 \times 10^{23} \text{mol}^{-1}$
Bohr radius	r _o	$0.529 \times 10^{-10} \mathrm{m}$
Boltzmann constant	k	$1.38 \times 10^{-23} \mathrm{J} \mathrm{K}^{-1}$
Electron charge to mass ratio	$\frac{-e}{m_e}$	$-1.7588 \times 10^{11} \mathrm{C \ kg^{-1}}$
Electron classical radius	r _e	$2.818 \times 10^{-15} \mathrm{m}$
Electron mass energy(J)	m _e c ²	$8.187 \times 10^{-14} \text{J}$
Electron mass energy (MeV)	m _e c ²	0.511 MeV
Electron rest mass	m _e	$9.109 \times 10^{-31} \mathrm{kg}$
Faraday constant	F	$9.649 \times 10^4 \mathrm{Cmol^{-1}}$
Fine-structure constant	α	7.297×10^{-3}
Gas constant	R	8.314 J mol ⁻¹ K ⁻¹
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{Nm^2 Kg^{-2}}$
Neutron mass energy	m _n c ²	1.505 × 10 ⁻¹⁰ J or 939.565 MeV
Neutron rest mass	m.	1.675×10^{-27} kg

Neutron-electron mass ratio	$\frac{m_n}{m_e}$	1838.68
Neutron-proton mass ratio	$\frac{m_n}{m_p}$	1.0014
Permeability of a vacuum	μ_0	$4\pi\times 10^{-7} NA^{-2}$
Permittivity of a vacuum	ε ₀	$8.854 \times 10^{-12}\mathrm{F}\;\mathrm{m}^{-1}$
Planck constant	h	$6.626 \times 10^{-34} \text{ J s}$
Proton mass energy	m _p c ²	$\begin{array}{rrrr} 1.503 \ \times \ 10^{-10} \ \mbox{J} \ \ \mbox{or} \\ 938.272 \ \mbox{MeV} \end{array}$
Proton rest mass	m _p	$1.6726 \times 10^{-27} \mathrm{kg}$
Proton-electron mass ratio	$\frac{m_p}{m_e}$	1836.15
Rydberg constant	R _e	$1.0974 \times 10^7m^{-1}$
Speed of light in vacuum	с	$2.9979 \times 10^8 \mathrm{m/s}$

APPENDIX-C

Most Popular Chemists and their Contributions AMEDEO AVOGADRO 1776 – 1856

The first scientist to realize that elements could exist in the form of molecules rather than as individual atoms; originator of Avogadro's law.

JACOB BERZELIUS 1779 – 1848

A founder of modern chemistry : the first person to measure accurate atomic weights for the chemical elements; discovered three elements: cerium, thorium and selenium; devised the modern symbols for elements; described how chemical bonds form by electrostatic attraction.

NIELS BOHR 1885 – 1962

Founded quantum mechanics when he remodeled the atom so electrons occupied 'allowed' orbits around the nucleus while all other orbits were forbidden; architect of the Copenhagen interpretation of quantum mechanics.

ROBERT BOYLE 1627 – 1691

Transformed chemistry from a field bogged down in alchemy and mysticism into one based on measurement. He defined elements, compounds, and mixtures; and he discovered the first gas law – Boyle's Law.

LAWRENCE BRAGG 1890 - 1971

Discovered how to locate the positions of atoms in solids using X-ray diffraction, enabling scientists to build 3D models of the atomic arrangements in solids. The discovery was arguably the most significant experimental breakthrough of twentieth century science.

HENNIG BRAND 1630 – 1710

Discovered phosphorus, becoming the first named person in history to discover a chemical element.

GEORG BRANDT 1694 - 1768

The first named person in history to discover a new metal – cobalt; was one of the first scientists to condemn alchemy, publicly demonstrating tricks used by alchemists to make people think they could make gold.

ROBERT BUNSEN 1811 – 1899

Discovered cesium and rubidium; discovered the antidote to arsenic poisoning; invented the zinc-carbon battery and flash photography; discovered how geysers operate. Chargaff's rules paved the way to the discovery of DNA's structure.

MARIE CURIE 1867 – 1934

Codiscovered the chemical elements radium and polonium; made numerous pioneering contributions to the study of radioactive elements; carried out the first research into the treatment of tumors with radiation.

JOHN DALTON 1766 - 1844

Dalton's Atomic Theory is the basis of chemistry; discovered Gay-Lussac's Law relating gases' temperature, volume, and pressure; discovered the law of partial gas pressures.

DEMOCRITUS (C. 460 — C. 370 BC)

Devised an atomic theory featuring tiny particles always in motion interacting through collisions; advocated a universe containing an infinity of diverse inhabited worlds governed by natural, mechanistic laws rather than gods; deduced that the light of stars explains the Milky Way's appearance; discovered that a cone's volume is one-third that of the cylinder with the same base and height.

EMPEDOCLES (C. 490 - C. 430 BC)

An ancient theory of natural selection; mass conservation; and the four elements which are now often misattributed to Aristotle.

MICHAEL FARADAY 1791 - 1867

Discovered electromagnetic induction; devised Faraday's laws of electrolysis; discovered the first experimental link between light and magnetism; carried out the first roomtemperature liquefaction of a gas; discovered benzene.

ROSALIND FRANKLIN 1920 – 1958

Provided much of the experimental data used to establish the structure of DNA; discovered that DNA can exist in two forms; established that coal acts as a molecular sieve.

WILLARD GIBBS 1839 - 1903

Gibbs invented vector analysis and founded the sciences of modern statistical mechanics and chemical thermodynamics.

GEORGE DE HEVESY 1885 – 1966

Discovered element 72, hafnium. Pioneered isotopes as tracers to study chemical and biological processes; discovered how plants and animals utilize particular chemical elements after they are taken in as nutrients.

FRED HOYLE 1915 - 2001

Established that most of the naturally occurring elements in the periodic table were made inside stars and distributed through space by supernova explosions.

IRENE JOLIOT-CURIE 1897 - 1956

Co-discovered how to convert stable chemical elements into 'designer' radioactive elements; these have saved millions of lives and are used in tens of millions of medical procedures every year.

MARTIN KLAPROTH 1743 - 1817

Discovered the chemical elements uranium, zirconium, and cerium – naming the first two of these elements; verified the discoveries of titanium, tellurium and strontium, again naming the first two.

STEPHANIE KWOLEK 1923 – 2014

Invented kevlar, the incredibly strong plastic used in applications ranging from body armor to tennis racquet strings.

ANTOINE LAVOISIER 1743 – 1794

A founder of modern chemistry; discovered oxygen's role in combustion and respiration; discovered that water is a compound of hydrogen and oxygen; proved that diamond and charcoal are different forms of the same element, which he named carbon.

ERNEST LAWRENCE 1901 - 1958

Invented the cyclotron, used by scientific teams in his laboratories to discover large numbers of new chemical elements and isotopes. Founded big science.

JANE MARCET 1769 - 1858.

Author of *Conversations on Chemistry*, a unique textbook for its time written for people with little formal education, such as girls and the poor. The book inspired Michael Faraday to overcome his poor origins to become a great scientist.

DMITRI MENDELEEV 1834 – 1907

Discovered the periodic table in a dream. Utilized the organizing principles of the periodic table to correctly predict the existence and properties of six new chemical elements.

HENRY MOSELEY 1887 - 1915

Proved that every element's identity is uniquely determined by its number of protons, establishing this is the true organizing principle of the periodic table; correctly predicted the existence of four new chemical elements; invented the atomic battery.

GIULIO NATTA 1903 - 1979

Discovered how to produce polymer chains with orderly spatial arrangements – i.e. stereoregular polymers.

ALFRED NOBEL 1833 - 1896

Invented dynamite, the blasting cap, gelignite, and ballistite; grew enormously wealthy manufacturing explosives; used his wealth to bequeath annual prizes in science, literature, and peace.

HANS CHRISTIAN OERSTED 1777 – 1851

Discovered electromagnetism when he found that electric current caused a nearby magnetic needle to move; discovered piperine and achieved the first isolation of the element aluminum.

LOUIS PASTEUR 1822 - 1895

The father of modern microbiology; transformed chemistry and biology with his discovery of mirror-image molecules; discovered anaerobic bacteria; established the germ theory of disease; invented food preservation by pasteurization.

LINUS PAULING 1901 - 1994

Maverick giant of chemistry; formulated valence bond theory and electronegativity; founded the fields of quantum chemistry, molecular biology, and molecular genetics. Discovered the alpha-helix structure of proteins; proved that sickle-cell anemia is a molecular disease.

MARGUERITE PEREY 1909 – 1975

Discovered francium, the last of the naturally occurring chemical elements to be discovered – all elements since have been produced artificially.

WILLIAM PERKIN 1838 - 1907

At age 18 started the synthetic dye revolution when his discovery of mauveine brought the once formidably expensive color purple to everyone. Perkins' revolution took the world by storm, transforming textiles, foods and medicine.

C. V. RAMAN 1888 - 1970

Discovered that light can donate a small amount of energy to a molecule, changing the light's color and causing the molecule to vibrate. The color change acts as a 'fingerprint' for the molecule that can be used to identify molecules and detect diseases such as cancer.

WILLIAM RAMSAY 1852 - 1916

Predicted the existence of the noble gases and discovered or was first to isolate every member of the group; created the world's first neon light.

ERNEST RUTHERFORD 1871 - 1937

The father of nuclear chemistry and nuclear physics; discovered and named the atomic nucleus, the proton, the alpha particle, and the beta particle; discovered the concept of nuclear half-lives; achieved the first laboratory transformation of one element into another.

GLENN SEABORG 1912 TO 1999

Took part in the discovery of ten of the periodic table's chemical elements. His work on the electronic structure of elements led to the periodic table being rewritten.

HERMANN STAUDINGER 1881 - 1965

Founded macromolecular chemistry when he established that molecules made of hundreds of thousands of atoms exist; demonstrated that synthetic polymers can make fibers similar to natural fibers; discovered polyoxymethylene; discovered pyrethroid natural insecticides.

J.J. THOMSON 1856 - 1940

Discovered the electron; invented one of the most powerful tools in analytical chemistry - the mass spectrometer; obtained the first evidence for isotopes of stable elements.

HAROLD UREY 1893 - 1981

Discovered deuterium; showed how isotope ratios in rocks reveal past Earth climates; founded modern planetary science; the Miller-Urey experiment demonstrated that electrically sparking simple gases produces amino acids - the building blocks of life.

ALESSANDRO VOLTA 1745 – 1827

Pioneer of electrical science; invented the electric battery; wrote the first electromotive series; isolated methane for the first time; discovered a methane-air mixture could be exploded using an electric spark - the basis of the internal combustion engine.

SERGEI WINOGRADSKY 1856 - 1953

Founded microbial ecology; discovered chemosynthetic life forms which obtain energy from chemical reactions rather than from sunlight; discovered nitrogen-fixing bacteria in soil that make nitrates available to green plants.

18 2 18 17 Helium 4003 17 Helium 4003 17 Helium 2 17 Helium 2 17 Helium 2 17 18 10 17 18 17 18 17 18 17 18 35 18 17 18 19 235 36 117 18 35 118 25 36 118 25 36 118 25 36 118 25 36 117 118 20035 117 118 20035 118 20035 222038 118 20035 222038 118 20035 222038 118 118 20044 118 20035 220038 1102 113 20044	Actinide
17 9 9 9 9 9 9 9 17 17 17 17 17 17 17 17 17 17 17 18.998 17 17 17 17 17 17 17 17 17 17 19 17 17 19 93.433 17 17 12 12 18 18 13 13.434 19 11 29.944 12 19 126.947 11 20.945 11 156.967 11 20.945 11 156.961 10 20.945 1002 102 102 102 102 102 102 102	Actinide
	Actin
16 16 16 13 15 15 16 14 16 16 16 15 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 17 17 17 17 17 17 17 18 17 17 17 10 10 10 10	
15 14007 14007 14007 15 14007 15 14007 15 15 15 15 15 15 15 15 15 15	Lantha-
14 14 14 14 14 14 14 14 14 14	(254) [oble] Gas
5 13 13 13 13 13 13 13 13 13 13 13 13 13	Sen N
ents 228 228 228 228 228 228 228 22	Halog
Elem 118 118 118 118 118 118 118 118 118 11	Von- ietal
Current of the second s	- N
III III III III III III III III III II	Semi meta
	sic stal
dic ^{101,201,101,101,101,101,101,101,101,101,}	Ba Mc
Perio Perio	ransition
6 6 6 6 6 6 6 6 6 6 6 6 6 6	aline T
558 558 558 558 858 858 858 858 858 858	Alk
	Alkali Metal
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	232.038
m 111 m 111 m 318 scandid 43394 43394 43394 43394 43394 1 Y 1 Y 889-11 889-11 1 1	227.028
e construction of the second s	
11A 11A 11A 11A 11A 11A 11A 11000 10 10 11 11 11 11 11 11 11 11 11	

APPENDIX-D

Ē 4 Ē

APPENDIX-E

Important Organic Chemical Reactions

Sandmeyer Reaction

The Sandmeyer reaction is a chemical reaction which is used to synthesize aryl halides from aryl diazonium salts. This reaction is a method for substitution of an aromatic amino group by preparing diazonium salt that is followed by its displacement and copper salts often catalyze it.

Gattermann Reaction

Bromine and Chlorine can be present in the benzene ring by preparing the benzene diazonium salt solution with similar halogen acid present with copper powder. This is the Gattermann Reaction.

$$\operatorname{ArN}_{2}^{+}\chi^{-} - \underbrace{\operatorname{Cu/HCl}}_{\operatorname{Cu/HBr}} \operatorname{ArCl} + \operatorname{N}_{2} + \operatorname{CuX}_{2}$$

Balz-Schiemann Reaction

When arene-diazonium chloride is prepared with fluoroboric acid, arene diazonium fluoroborate is precipitated and decomposes to yield aryl fluoride which on heating.

$$\operatorname{Ar} \overset{^{+}}{\operatorname{N}_{2}} \operatorname{Cl}^{^{-}} + \underset{\operatorname{Fluoro boric}}{\operatorname{HBF}_{4}} \xrightarrow{^{+}} \operatorname{Ar} - \overset{^{+}}{\operatorname{N}_{2}} \operatorname{Br} F_{4}^{^{-}} \xrightarrow{^{-}\operatorname{Heat}} \operatorname{Ar} - F + BF_{3} + N_{2}$$

Finkelstein Reaction

In the Finkelstein Reaction Alkyl iodides are prepared easily by the reaction of alkyl chlorides with Nal in dry acetone.

$$R - X + NaI \rightarrow R - I + NaX_{(X = Cl, Br)}$$

Swarts Reaction

When alkyl chloride is heated in the presence of a metallic fluoride like AgF, Hg_2F_2 , SbF_3 or CoF_2 , we get alkyl fluoride

$$H_3C - X + AgF \rightarrow H_3C - F + AgX$$

(X = Cl,Br)

Wurtz Reaction

When Alkyl halides get reacted with sodium with dry ether, we get hydrocarbons that include the double number of carbon atoms present in the halide. This is known as the Wurtz Reaction.

$$\begin{array}{c} CH_{3}Br+2Na+BrCH_{3} & \xrightarrow{dry \ ether} \\ CH_{3}Br+2Na+BrC_{2}H_{5} & \xrightarrow{dry \ ether} \\ CH_{3}Br+2Na+BrC_{2}H_{5} & \xrightarrow{dry \ ether} \\ C_{2}H_{5} - C_{2}H_{5} \\ Bromoethane & n-Bu \ tan \ e \end{array}$$

Wurtz-Fittig Reaction

When a mixture of alkyl halide and aryl halide gets treated with sodium in dry ether, we get an alkyl arene.

Fittig Reaction

Aryl halides prepared with sodium in dry ether to give analogous compounds where two aryl groups joined.

Friedel-Crafts Alkylation Reaction

Benzene is prepared with an alkyl halide in the presence of anhydrous aluminum chloride to give alkylbenzene.

Friedel-Crafts Acylation Reaction

We get acyl benzene when an acyl halide is reacted with benzene in the presence of Lewis acids.

4-Methoxyacetophenone (Major)

Reimer-Tiemann Reaction

When preparing phenol with chloroform in the presence of sodium hydroxide, –CHO group is present at the ortho position of the benzene ring which results into salicylaldehyde.

Kolbe's Reaction

Phenol reacts with sodium hydroxide to give sodium phenoxide which then reacts with carbon dioxide in acidic medium to give 2-hydroxybenzoic acid.

Rosenmund Reduction

When Acyl chloride is hydrogenated to an aldehyde over a catalyst, known as Rosenmund catalyst which is either palladium or barium sulfate.

Benzoyl chloride

Stephen Reaction

Nitriles with stannous chloride in the presence of hydrochloric acid reduced to the corresponding imine and give the corresponding aldehyde after hydrolysis.

$$RCN + SnCl_{2} + HCl \longrightarrow RCH = NH \xrightarrow{H_{3}O^{+}} RCHO$$

Etard Reaction

Chromyl chloride oxidizes methyl group to get chromium complex which on hydrolysis provides corresponding benzaldehyde.

CH[OCrOHCl₂] 2 - CrO₂Cl

Toluene

Chromium complex

Benzene is prepared with carbon monoxide and hydrogen chloride in the presence of anhydrous aluminium chloride to give benzaldehyde.

Clemmensen Reduction

In Clemmensen reduction, Carbonyl group of aldehydes and ketones on treatment with zinc amalgam and concentrated hydrochloric acid reduced to CH₂ group.

$$\sum_{i=0}^{i} C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$$

Wolff Kishner Reduction

Carbonyl group of aldehydes and ketones on treatment with hydrazine which on heating with sodium hydroxide in a high boiling solvent (ethylene glycol) reduced to CH₂ group.

$$C = O \xrightarrow{\text{NH}_2\text{NH}_2} C = \text{NNH}_2 \xrightarrow{\text{KOH/ethylene glycol}} \text{heat}$$

Tollens' test

Heating an aldehyde with fresh prepared ammoniacal silver nitrate solution produces a bright silver mirror due to the formation of silver metal.

$$\begin{array}{c} \text{RCHO} + 2[\text{Ag}(\text{NH}_3)]_2 + 3\text{OH}^- \longrightarrow \text{RCOO} + 2\text{Ag} + 2\text{H}_2\text{O} + 4\text{NH}_2 \\ \\ \text{Silver mirror} \end{array}$$

Fehling's test

Fehling's solution A (aqueous copper sulfate) and Fehling solution B (alkaline sodium potassium tartrate) are mixed in equal amounts before the test. A reddish brown precipitate is obtained when an aldehyde is heated with Fehling's reagent.

$$R-CHO + 2Cu^{2+} + 5OH^{-} \longrightarrow RCOO^{-} + Cu_2O + 3H_2O$$

Reddish-brown ppt

Aldol reaction

Aldehydes and ketones having one α -hydrogen undergo a reaction in the presence of dilute alkali as the catalyst to produce α -hydroxy aldehydes or β -hydroxy ketones.

(i) Aldol condensation

Aldol and Ketol lose water to provide α,β-unsaturated carbonyl compounds which are aldol condensation products. . dil NaOH

$$\begin{array}{ccc} 2 \text{ CH}_{3} - \text{CHO} & \xleftarrow{\text{CH}_{3}} - \text{CH} - \text{CH}_{2} - \text{CHO} \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

$$2 \operatorname{CH}_{3} - \operatorname{CO} - \operatorname{CH}_{3} \xleftarrow{\operatorname{Ba}(\operatorname{OH})_{2}} \operatorname{CH}_{3} - \operatorname{C} - \operatorname{CH}_{2}\operatorname{CO} - \operatorname{CH}_{3}$$

$$\stackrel{|}{\underset{\operatorname{Propanone}}{\operatorname{Propanone}}} \operatorname{CH}_{3} - \operatorname{C} - \operatorname{CH}_{2}\operatorname{CO} - \operatorname{CH}_{3}$$

$$\stackrel{|}{\underset{\operatorname{OH}}{\operatorname{OH}}}$$

$$\stackrel{(\operatorname{Ketol})}{\underset{\operatorname{Ketol}}{\operatorname{Ketol}}}$$

4-Hydroxy-4-methylpentan - 2 - one

$$\xrightarrow{A} -H_2O \xrightarrow{CH_3} CH_3 - C = CH - CO - CH_4$$
4 -Methylpent -3 -en - 2 -one
(Aldol condensation product)

(ii) Cross aldol condensation

Aldol condensation is carried out between two different aldehydes and ketones. It gives a mixture of four products if both of them includes α -hydrogen atoms.

Cannizzaro Reaction

Aldehydes without α -hydrogen atom undergo self-oxidation and reduction reaction when prepared with concentrated alkali.

Sodium benzoate

Kolbe electrolysis

In Kolbe electrolysis, An aqueous solution of sodium or potassium salt of a carboxylic acid gives alkane containing an even number of carbon atoms on electrolysis.

 $2CH_3COONa + 2H_2O \xrightarrow{\text{Electrolysis}} CH_3 - CH_3 + 2CO_2 + H_2 + 2NaOH$ Sodium acetate

Hell-Volhard-Zelinsky (HVZ) Reaction

Carboxylic acids having a α -hydrogen are halogenated at the α -position give α -halo carboxylic acids on treatment with chlorine or bromine in the presence of small amount of red phosphorus.

Gabriel Phthalimide Synthesis

Phthalimide prepared with ethanolic potassium hydroxide produces potassium salt of phthalimide when heated with alkyl halide followed by alkaline hydrolysis forms the corresponding primary amine.

Hoffmann Bromamide Degradation Reaction

An amide with bromine in an aqueous solution of sodium hydroxide produces primary amines. Migration of an alkyl or aryl group takes place from carbonyl carbon of the amide to the nitrogen atom. The amine so produced includes one carbon less than that present in the amide.

$$R-C-NH_2 + Br_2 + 4NaOH \longrightarrow R-NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$$

Carbylamine Reaction

Aliphatic and aromatic primary amines when heated with chloroform and ethanolic potassium hydroxide produces isocyanides or carbyl amines which are foul smelling substances.

$$R-NH_2 + CHCl_3 + 3KOH \xrightarrow{Heat} R-NC + 3KCl + 3H_2O$$

Hinsberg's Test

Benzenesulfonyl chloride ($C_6H_5SO_2Cl$) reacts with primary and secondary amines to produce sulphonamides.

(i) The reaction of benzene-sulfonyl chloride with primary amine yields N-ethyl benzene-sulfonyl amide. The hydrogen attached to the nitrogen in sulphonamide is strongly acidic due to the presence of strong electron withdrawing sulfonyl group. Hence, it is soluble in alkali.

$$\bigcirc \begin{matrix} || \\ -S - Cl + H - N - C_2 H_5 \longrightarrow \bigcirc \begin{matrix} || \\ -S - N - C_2 H_5 + HCl \\ 0 & H & 0 \\ H & 0 & H \\ \hline N - Ethylbenzenesulphonamide \\ (Soluble in alkali) \end{matrix}$$

(ii) In the reaction with a secondary amine, N, N-diethylbenzenesulfonamide is formed. Since N,N-diethyl benzene sulphonamide does not contain any hydrogen atom attached to a nitrogen atom, it is not acidic and hence insoluble in alkali.

(iii) Tertiary amines do not react with benzenesulphonyl chloride.

Coupling Reactions

Benzene diazonium chloride gets reacted with phenol in which the phenol molecule at its para position is mixed with the diazonium salt to give p-hydroxyazobenzene.

p – Hydroxyazobenzene (orange dye)

APPENDIX-F

Important Reagents

List of Organic Reagents

Aqueous NaOH	Reflux	Nucleophilic substitution, converts haloalkanes to alcohols.	
Mg in dry ether	Reflex	Used to make Grignard reagents with haloalkanes.	
PCI ₅	Room temperature	Chlorinating agent, reacts with OH group in alcohols and carboxylic acids.	
HNO ₃ and H ₂ SO ₄	55°C	Adds NO ₂ group into benzene ring.	
CI ₂ and AICl ₃	Warm gently	Adds Cl group into benzene ring.	
CH ₃ CH ₂ Cl and AICl ₃	Warm gently	Adds CH ₃ CH ₂ group into benzene ring.	
HCI and NaNO ₂	Below 5°C	Forms diazonium salts with phenylamine.	
Name of Reagent	Conditions	Example of its Use	
$K_2Cr_2O_7$ with conc. H_2SO_4	Warm gently	Oxidising agent , used commonly for oxidising secondary alcohols to ketones.	
Excess conc. H ₂ SO ₄	Heat to 170°C	Dehydrating agent, used to dehydrate alcohols to alkenes.	
Cl ₂ (g)	Ultra violet light	Free radical reaction, used to convert alkanes to haloalkanes.	
Br ₂ in CCl ₄	Room temperature, in the dark	Electrophilic addition, converts alkenes to dihaloalkanes.	
H ₂ (g)	Nickel catalyst, 300°C and 30 atmosphereic pressure	Hydrogenating agent, used to convert benzene to cyclohexane.	
H ₂ (g)	Nickel catalyst, 150°C	Reducing agent, used to convert alkenes to alkanes	
Tin in hydrochloric acid	Reflux	Reducing agent for converting nitrobenzene to phenylamine.	
Acidified KMnO ₄	Room temperature	Oxidising agent, converts alkenes to diols.	
NaOH in ethanol	Reflux	Elimination reaction, converts haloalkanes to alkenes.	
NaOH (Intramolecular Cannizaro) reaction		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(i) Aluminium isobutoxide (ii) Acetone (Oppenaur Oxidation)		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
RO ⁻ (Claisen Schmidt Reaction)		$H_{3}C-C-H + H + H + H + H + H + H + H + H + H +$	
(i) Acetic anhydride (ii) Sodium acetate (Perkin reaction)	s	$\begin{array}{c} O \\ H_{3}C-CH_{2} \\ H_{3}C-CH_{2} \\ H_{3}C-CH_{2} \\ H_{3}C-C-ONa \end{array} \xrightarrow{O} CH=CH-C-OH \\ Cinnamic acid \\ CH=CH-C-OH \\ CH=C-OH \\ CH=C-O$	

		Reduces ketone to alcohol
(i) Aluminium isobutoxide		C = O Aluminium iso butoxide $C = OH$
tion)		propan-2-ol
		П This is reaction of compounds which don't have alpha bydrogen
		O O
Cannizzaro Reaction		$1 \frac{50\%}{N_2OH}$ +H ₃ C-OH
		H H Wall H O
		ON OH
Cross Cannizaro reaction		
		H H NaOH H O
		CH ₃ CH ₃
Anhydrous H contains no		$CH_3 - C - O - CH_3 \xrightarrow{HI} CH_3 - C - I + CH_3OH$
Water		CH ₃
		ОН
		СНО
(i) CHCH ₃ - Alc KOH		Salicyldehyde
(Riemann Tiemann reaction)		OH /
(i) CO ₂		
(ii) H_3O^+ (Kolbe's reaction)	High Pressure	ОН ОН
		L L
		O CH ₃ OH O OH
AlCl ₃ (Fries rearrangement)	Heat	
		H ₂ COO
		он он
(i) $K_2 S_2 O_8$		
(ii) H ₃ O ⁺ (Elb's persulphate oxidation)		
,		I OH
		Cl OH
(i) Fused NaOH (ii) H ₂ O ⁺ (Dow's process)	High Pressure	
KMnO ₄ , H ⁺ (or) K ₂ Cr ₂ O ₇ , $\overline{H^+}$ (or) H ₂ CrO ₄		Oxidises alcohol to acid
PCC (Pyridinium chloro chro-	Solvent CS ₂	Restricted oxidation of alcohol. Forms aldehyde.
		,OH ,O
MnO ₂ special oxidising agent for alcohol		
		С
		ОН

HI				
For 1 degree carbon		$H_3C \longrightarrow O \longrightarrow CH_3 + HI \longrightarrow H_3C \longrightarrow H_3C-I OH$		
For 3 degree carbon		$H_3C \longrightarrow O \longrightarrow CH_3 + HI \longrightarrow H_3C \longrightarrow H_3C - OH$		
Conc HI contains very less water		$\begin{array}{c} \begin{array}{c} CH_{3} \\ H_{3}C \\ -O \\ I \\ CH_{3} \end{array} \xrightarrow{H1} H_{3}C \\ H_{$		
(i) Alc KOH (ii) NaNH ₂		$H \xrightarrow{Cl} Cl Cl$ $H \xrightarrow{H} H \xrightarrow{HC} HC = CH$ $H \xrightarrow{H} H$		
X ₂ /CCI ₄		Adds both X on compound having double or triple bond		
Cold Dil KMnO ₄		$\begin{array}{c} R \\ \hline \\ R \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
Hot KMnO ₄		$R \xrightarrow{\frown} R_1 \xrightarrow{\frown} R \xrightarrow{\bigcirc} R_1 \xrightarrow{\longrightarrow} R_1 \xrightarrow$		
CF ₃ SO ₃ ⁻		Super Leaving Group		
LiAH ₄ -ether		Reduces ester to alcohol		
NaBH ₄ – ROH (protic solvent)		Reduces to alcohol but cannot act on ester		
Cr ₂ O ₂ -Cu ₂ O	Heat, High pressure	Causes cleavage and reduction of ester $R \xrightarrow{\qquad } O \xrightarrow{ } R \xrightarrow{ } OH + R_1 \longrightarrow OH$		
$OsO_4 + H_2O-NaHSO_3$ or Cold Dilute KMnO ₄ (Hydroxylation)		Gives syn vicinal diol from alkene HO OH $C = C \xrightarrow{I} C - C$		
Per-formic acid (Anti Hydroxylation)		Gives anti vicinal diol $c = c \xrightarrow{HO} c - c \xrightarrow{I} OH$		
HBr in presence of H_2O_2 (Only for HBr)		Anti Markovnikov's $R CH_2 R Br$		

Hot Alkaline KMnO ₄		$R = \frac{1}{R_1} R_1$	either C = O or COOH $\rightarrow R - + R_1 - O + R_1$	
CH ₂ -I ₂ , ZnCu		Adds methyl group	o in cyclic manner	
Alcoholic KOH		Removes HX from compound and adds double bond		
Zn dust		Removes all HX		
H_2 Pd/BaSO ₄ or S-Quinoline (Lindlar's catalyst) or BH ₃ -THF		Reduces alkyne to a	alkene	
$Ph_3P = CH_2$		Replaces O of Carbonyl with methyl $C = O \xrightarrow{Ph_3P=CH_2} C=CH_2$		
NOX	H_3C H_3C $N=O$ CH_2 O		² NOCI N=O	
OMDM (Oxymercuration demercuration) (i) Hg $(OAc)_2$ + THF-H ₂ O (ii) NaBH ₄ -OH ⁻		H_3C CH_2 H_3C CH_3 OH		
NBS		Substitutes allyic carbon with aldehyde		
(i) NH ₂ -NH ₂ (ii) RO ⁻	heat	Reduces carbony	l group to ketone or aldehyde	
H ₃ PO ₂ Heat		Removes diazo group $\stackrel{+}{N \equiv N-Cl} \xrightarrow{H_3PO_2}$		
LiAH ₄ or NaBH ₄ or Ph ₃ SnH		Reduction		
R ₂ CuL (Lithium dialkylcuprate)		Removes halogen from RX and adds R		
Mg-ether	r		Adds Mg between R & X	
Red P + HI		Reduces all to corresponding alkanes		
Name Cond		lition	Example	
$Br_2 + CS_2$			Causes Br to go on ring	
Br ₂ + H ₂ O Compound should be than benzene		be more activated	$\bigcup_{Br_i/H,O} \bigcup_{Br}$	

Sn + HCI	Reduces nitro group O N O NH_2 $Sn+HCI$ O $Sn+HCI$
CuCI + HCI	Removes Diazo group $\stackrel{+}{N} \equiv N-Cl^{-}$ $\stackrel{CuCl}{\longmapsto} \stackrel{CuCl}{\longmapsto}$
NH ₄ H or NaS or Na ₂ S	Special regents which reduce only NO ₂ group
$CrO_2CI_2 + H_3O^+$	Converts toluene to benzaldehyde

APPENDIX-G

Important Minerals, Compositions & their Chemical Formula

Mineral	Composition		Remarks
Apatite	Calcium phosphate	Ca ₁₀ (PO ₄) ₄ X ₂ (X is F, Cl, or (OH).]	Main mineral in phosphate rock
Asbestos	Hydrated magnesium silicate	Mg ₆ (Si ₄ O ₁₂)(OH) ₃	In form of long fibres
Barite	Barium sulphate	BaSO ₄	Filler for pigments
Betonies	A clay mineral	$(Al.Mg)_8(Si_4O_{10})_3(OH)_{10} \cdot 12H_2O$	Agglomeration additive
Borax	Sodium borate	$Na_2B_4O_7 \bullet 10H_2O$	
Clay	Hydrated aluminium silicates		Used in paper making
Cryolite	Sodium aluminium fluoride	Na ₃ AlF ₆	Low melting point
Diamond - industrial	Crystalline carbon	С	The hardest mineral
Diatomite	Hydrated silica		Marine fossils, large surface area
Feldspar	A mineral group	K, Al silicates	
Fluorspar	Calcium fluoride	CaF ₂	Main source of fluorine
Garnet	A group of silicates that crystal- lize in the cubic system		Abrasives, gemstones
Graphite	Carbon (crystalline)	С	
Gypsum	Calcium sulphate	CaSO ₄ •2H ₂ O	
Kaolinite	A clay mineral	Al ₄ (Si ₄ O ₁₀)(OH) ₈	
Limestone	Calcium carbonate	CaCO ₃	
Magnetite	Magnesium carbonate	MgCO ₃	
Marble	Calcium carbonate	CaCO ₃ crystalline	
Mica		K, Al silicates	
Nepheline syenite	Sodium aluminium silicate		
Potash	Potassium chloride and carbon- ate	KCl, K ₂ CO ₃	Fertilizer
Pumice	Silicate		Porous, light, volcanic rock, large surface area
Quartz	Silica	SiO ₂	

Salt	Sodium chloride	NaCl	
Sand and gravel	Silica	SiO ₂	
Sulfur	Sulfur	S	
Talc	Hydrated magnesium silicate	Mg ₃ (Si ₄ O ₁₀)(OH) ₂	Also known as soapstone
Trona	Sodium carbonate	Na ₂ CO ₃ •NaHCO ₃ •2H ₂ O	
Vermiculite	Hydrated silicates		Expands and swells on heat- ing
Zeolite	Hydrated alkali alumino silicates	$Na_2(AlO_2)_x(SiO_2)_y \bullet nH_2O$	Ion exchanger

APPENDIX-H

Important Metals & their Ores

S.No	Metal	Ores
1	Aluminium(Al)	Bauxite, Corundum, Feldspar, Cryolite, Alunite, Kaolin
2	Antimony(Sb)	Stibnite
3	Barium(Ba)	Barytes
4	Bismuth(Bi)	Bismuthate
5	Cadmium(Cd)	Greenockite
6	Calcium(Ca)	Dolomite, Calcite, Gypsum, Fluorspar, Asbestos
7	Cobalt(Co)	Smelite
8	Copper(Cu)	Cuprite, Copper glance ,Copper pyrites
9	Gold(Au)	Calaverite, Sylvenites
10	Iron(Fe)	Hematite, Limonite, Magnetite, Siderite, Iron pyrite, Copper pyrites
11	Lead(Pb)	Galena
12	Magnesium(Mg)	Magnesite, Dolomite, Epsom salt, Kieserite, Carnalite
13	Manganese(Mn)	Pyrolusite, Magnate
14	Mercury(Hg)	Cinnabar
15	Nickel(Ni)	Millerite
16	Potassium(K)	Nitrate(saltpetre), Carnallite
17	Silver(Ag)	Ruby silver, Horn silver
18	Sodium(Na)	Chile saltpetre , Trona, Borax, Common salt
19	Strontium(Sr)	Strontianite, Silestone
20	Tin(Sn)	Cassiterite
21	Uranium(U)	Carnallite, Pitch blende
22	Zinc(Zn)	Zinc blende, Zincite, Calamine

BIOLOGY APPENDIX-A

List of Medicinal Plants and their uses

	Name of plant	Source of plant (Scientific)	Uses
1	Aconite	Aconitum ferox –plant root	Leprosy, cholera, catarrh
2	Aloe vera	Aloe barbadensis- succulent leaves.	Used as hydrating agent for smooth skin
3	Arjuna	Terminalia arjuna- dry Bark	Correct Blood pressure, heart beat, congestive heart failure, OPD for easy breath
4	Ashwagandha	Withania somnifera-roots & stem bases.	Neurotonic, Rheumatism, gout, hypertension, cancer
5	Belladonna	Atropa accuminata-leaves & flowers	Anti-spasmodic, anticholinergic, antidote for chloral hydrate & opium poisoning
6	Black pepper	Piper nigrum-unripe fruits	As stomachic (enhances hunger), carminative (enhances eructation)
7	Caraway	Carum carvi-dry ripe fruits	Expels gas by eructation
8	Cardamom	Elettaria cardamomum-dry-ripe fruits	Expels gas by eructation (carminative)
11	Castor oil	Ricinus communis-seed's fixed oil	Catharatic (in constipation), hair growth promoter
12	Cinnamon	Cinnamomum zeylanicum-bark	Carminative (enhances eructation)
13	Citronella oil	<i>Cymbopogan nardus</i> -volatile oil from leaves	Mosquito repellent
14	Clove	Eugenia caryophyllus-dry flower bud	Dental analgesic, anti-septic, carminative
15	Coriander	Coriandrum sativum-dry fruits	Carminative
16	Digitalis	Digitalis purpurea-dried leaves	Treatment of heart failure and cardiac arrhythmia
17	Egyptian Henbane	Hyoscyamus niger-leaves & flower tip	Relieve spasm of urinary tract & gripping effect of purgatives
18	Eucalyptus oil	Eucalyptus citriodara-leaf oil	Has essential oils with uses like Expectorant (Removes phlegm), counter-irritant.
19	Fennel	Foeniculum vulgare-dry ripe fruit	Expels gas by eructation
20	Garlic	Allium sativum-bulbs	To enhance libido, expel phlegm, for eructation
21	Ginger	Zingiber officinale, dried rhizome	Anti-emetic, anti-inflammatory.
22	Glycyrrhiza (Liquorice)	<i>Glycyrrhiza glabra;</i> dried roots and stolons	Expectorant and anti-inflammatory
23	Senna	Cassia angustifolia-dried leaflets	For purgation of bowels.
24	Isapgol	Plantago ovata-crushed seeds	To relieve constipation (laxative)
25	Jira	Cuminum cyminum-dry ripe fruit	Stimulant, carminative
26	Lemon grass Oil	<i>Cymbopogan flexosus</i> -volatile oil of leaves & other plant parts	Vitamin-A precursor
27	Opium poppy	Papaver somniferum-dry latex from unripe seed capsule	To relieve severe pains, cough, & also as hypnotic
28	Peruvian bark	Cinchona ledgeriana-dried bark	Anti-malarial drug
29	Rauwolfia	Rauwolfia serpentina-Dry roots	As an anti-hypertensive agent
30	Sandal wood oil	Santalum album-volatile oil	Decreases frequent urination tendency.
31	Tulsi	Ocimum sanctum-fresh & dry leaves	Uses of tulsi are Anti-bacterial, insecticide and immune modulator
32	Turmeric	Curcuma longa-dry rhizomes	Anti-septic, anti-oxidant, condiment
33	Vinca	Catharanthus roseus-entre plant	medicinal plants for cancer treatment, anticancer herbs

APPENDIX-B

Spices Yielding Plants

	English Common Name	Botanical Name	Family Name	Part used as spice
1.	Cardamom (Small)	Elettaria cardamomum Maton	Zingiberaceae	Fruit,Seed
	Cardamom (Large)	Amomum subulatum Roxb.	Zingiberaceae	Fruit,Seed
2.	Pepper	Piper nigrum L.	Piperaceae	Fruit
3.	Chilli, Bird's Eye	Capsicum frutescens L.	Solanaceae	Fruit
	Capsicum	Capsicum annuum L.	Solanaceae	Fruit
4.	Ginger	Zingiber officinale Rosc.	Zingiberaceae	Rhizome
5.	Turmeric	Curcuma longa L.	Zingiberaceae	Rhizome
6.	Coriander	Coriandrum sativum L.	Apiaceae	Leaf & Fruit
7.	Cumin	Cuminum cyminum L.	Apiaceae	Fruit
8.	Fennel	Foeniculum vulgare Mill.	Apiaceae	Fruit
9.	Fenugreek	Trigonella foenum-graecum L.	Fabaceae	Seed
10.	Celery	Apium graveolens L.	Apiaceae	Leaf, Fruit & Stem
11.	Aniseed	Pimpinella anisum L.	Apiaceae	Fruit
12.	Ajowan	Trachyspermum ammi L.	Apiaceae	Fruit
13.	Caraway	Carum carvi L.	Apiaceae	Fruit
14.	Cinnamon	Cinnamomum zeylanicum	Lauraceae	Bark
15.	Garlic	Allium sativum L.	Alliaceae	Bulb
16.	Curry leaf	Murraya koenigii(L) Sprengel	Rutaceae	Leaf
17.	Mint	Mentha piperita L.	Lamiaceae	Leaf
18.	Saffron	Crocus sativus L.	Iridaceae	Stigma
19.	Tejpat	Cinnamomum tamala (Buch Ham)	Lauraceae	Bark & Leaf
20.	Pepper Long	Piper longum L.	Piperaceae	Fruit
21.	Star Anise	Illicium verum Hook.	Illiciaceae	Fruit
22.	Clove	Syzygium aromaticum(L)	Myrtaceae	Unopened Flower bud
23.	Asafoetida	Ferula asafoetida L.	Apiaceae	resin from rhizome,root
24.	Nutmeg	Myristica fragrans Houtt.	Myristicaceae	Seed
25.	Mace	Myristica fragrans Houtt.	Myristicaceae	Aril

APPENDIX-C

Difference between Scanning Electron Microscopy and Transmission Electron Microscopy

Properties	Scanning Electron Microscopy (SEM)	Transmission Electron Microscopy (TEM)	
Light Source	SEM is based on scattered electrons, i.e., electrons emitted from the surface of a specimen.	Electrons are used as "light source". TEM uses transmit- ted electrons (electrons which are passing through the sample) to create an image.	
Purpose	SEM provides detailed images of the surfaces of cells so SEM shows only the morphology of samples.	TEM is used to view thin specimens (tissue sections, mol- ecules, etc). TEM can show many characteristics of the sample, such as internal composition, morphology, crys- tallization etc.	
Sample Prepara- tion	Sample is coated with a thin layer of a heavy metal such as gold or palladium.	The sample in TEM has to be cut thinner (70-90 nm) be- cause electrons cannot penetrate very far into materials.	
Resolution	SEM can resolve objects as close as 20 nm.	TEM has much higher resolution than SEM and can re- solve objects as close as 1 nm.	
Magnification	The magnifying power of SEM is up to 50,000X.	The magnifying power of TEM is up to 2 million times.	
Processing of sam- ple (s)	SEM allows for large amount of sample to be ana- lyzed at a time	With TEM only small amount of sample can be analysed at a time.	
3D picture	SEM provides a 3-dimensional image	TEM provides a 2-dimensional picture.	
Applications	To study the topography and atomic composition of specimens, process control and also, for exam- ple, the surface distribution of immuno-labels	To image the interior of cells (in thin sections), the struc- ture of protein molecule, the organization of molecules in viruses and cytoskeletal filaments.	

APPENDIX-D

The Nobel Prize in Physiology or Medicine awarded between 1901 and 2019

(2019) William G. Kaelin Jr, Sir Peter J. Ratcliffe and Gregg L. Semenza "for their discoveries of how cells sense and adapt to oxygen availability"

(2018) James P. Allison and Tasuku Honjo "for their discovery of cancer therapy by inhibition of negative immune regulation"

By stimulating the inherent ability of our immune system to attack tumor cells they established an entirely new principle for cancer therapy.

(2017) Jeffrey C. Hall, Michael Rosbash and Michael W. Young "for their discoveries of molecular mechanisms controlling the circadian rhythm"

(2016) Yoshinori Ohsumi "for his discoveries of mechanisms for autophagy"

Ohsumi's discoveries led to the understanding of how the cell recycles its content. His discoveries opened the path to understanding the fundamental importance of autophagy in many physiological processes, such as in the adaptation to starvation or response to infection. Mutations in autophagy genes can cause disease, and the autophagic process is involved in several conditions including cancer and neurological disease.

(2015) William C. Campbell and Satoshi Ōmura "for their discoveries concerning a novel therapy against infections caused by roundworm parasites"

Tu Youyou "for her discoveries concerning a novel therapy against Malaria"

(2011) Bruce A. Beutler and Jules A. Hoffmann "for their discoveries concerning the activation of innate immunity"

Ralph M. Steinman "for his discovery of the dendritic cell and its role in adaptive immunity"

(2010) Robert G. Edwards "for the development of *in vitro* fertilization"

(2009) Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak "for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase"

The long, thread-like DNA molecules that carry our genes are packed into chromosomes, the telomeres being the caps on their ends. Elizabeth Blackburn and Jack Szostak discovered that a unique DNA sequence in the telomeres protects the chromosomes from degradation. Carol Greider and Elizabeth Blackburn identified telomerase, the enzyme that makes telomere DNA. These discoveries explained how the ends of the chromosomes are protected by the telomeres and that they are built by telomerase.

(2008) Harald zur Hausen"for his discovery of human papilloma viruses causing cervical cancer", the second most common cancer among women.

Françoise Barré-Sinoussi and Luc Montagnier "for their discovery of human immunodeficiency virus"

(2006) Andrew Z. Fire and Craig C. Mello "for their discovery of RNA interference – gene silencing by double-stranded RNA"

(2005) Barry J. Marshall and J. Robin Warren "for their discovery of the bacterium *Helicobacter pylori* and its role in gastritis and peptic ulcer disease"

(2001) Leland H. Hartwell, Tim Hunt and Sir Paul M. Nurse "for their discoveries of key regulators of the cell cycle"

(1997) Stanley B. Prusiner "for his discovery of Prions – a new biological principle of infection"

(1993) Richard J. Roberts and Phillip A. Sharp "for their discoveries of split genes"

(1986) Stanley Cohen and Rita Levi-Montalcini "for their discoveries of growth factors"

(1983) Barbara McClintock "for her discovery of mobile genetic elements"

(1978) Werner Arber, Daniel Nathans and Hamilton O. Smith "for the discovery of restriction enzymes and their application to problems of molecular genetics"

(1975) David Baltimore, Renato Dulbecco and Howard Martin Temin"for their discoveries concerning the interaction between tumour viruses and the genetic material of the cell"

(1972) Gerald M. Edelman and Rodney R. Porter "for their discoveries concerning the chemical structure of antibodies"

(1971) Earl W. Sutherland, Jr. "for his discoveries concerning the mechanisms of the action of hormones"

(1969) Max Delbrück, Alfred D. Hershey and Salvador E. Luria "for their discoveries concerning the replication mechanism and the genetic structure of viruses"

(1968) Robert W. Holley, Har Gobind Khorana and Marshall W. Nirenberg "for their interpretation of the genetic code and its function in protein synthesis"

(1966) Peyton Rous "for his discovery of tumour-inducing viruses"

Charles Brenton Huggins "for his discoveries concerning hormonal treatment of prostatic cancer"

(1965) François Jacob, André Lwoff and Jacques Monod "for their discoveries concerning genetic control of enzyme and virus synthesis"

(1962) Francis Harry Compton Crick, James Dewey Watson and Maurice Hugh Frederick Wilkins "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material"

(1959) Severo Ochoa and Arthur Kornberg "for their discovery of the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic acid"

(1958) George Wells Beadle and Edward Lawrie Tatum "for their discovery that genes act by regulating definite chemical events"

Joshua Lederberg "for his discoveries concerning genetic recombination and the organization of the genetic material of bacteria"

(1953) Hans Adolf Krebs "for his discovery of the citric acid cycle"

Fritz Albert Lipmann "for his discovery of co-enzyme A and its importance for intermediary metabolism"

(1952) Selman Abraham Waksman "for his discovery of streptomycin, the first antibiotic effective against tuberculosis"

(1946) Hermann Joseph Muller "for the discovery of the production of mutations by means of X-ray irradiation"

(1945) Sir Alexander Fleming, Ernst Boris Chain and Sir Howard Walter Florey "for the discovery of penicillin and its curative effect in various infectious diseases"

(1936) Sir Henry Hallett Dale and Otto Loewi "for their discoveries relating to chemical transmission of nerve impulses"

(1933) Thomas Hunt Morgan "for his discoveries concerning the role played by the chromosome in heredity"

(1932) Sir Charles Scott Sherrington and Edgar Douglas Adrian "for their discoveries regarding the functions of neurons"

(1930) Karl Landsteiner "for his discovery of human blood groups"

(1924) Willem Einthoven "for his discovery of the mechanism of the electrocardiogram"

(1923) Frederick Grant Banting and John James Rickard Macleod "for the discovery of insulin"

(1922) Archibald Vivian Hill "for his discovery relating to the production of heat in the muscle"

Otto Fritz Meyerhof "for his discovery of the fixed relationship between the consumption of oxygen and the metabolism of lactic acid in the muscle"

(1905) Robert Koch "for his investigations and discoveries in relation to tuberculosis"

(1904) Ivan Petrovich Pavlov "in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged"

(1902) Ronald Ross "for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it"

There are basically three kinds of microscopy: light microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

Light microscopes use normal light; it can magnify transparent things 1,000 times.

Transmission electron microscopes give a more detailed view of the internal organization of cells and organelles. They use an electronic beam, which kills objects as it passes through.

In addition, for examination under a TEM, objects are often stained with heavy metals like osmium, and for SEM with gold which is highly reflective for electronic rays.

A TEM can magnify things 10,000,000 times. Scanning electron microscopes show an image of the surface of cells and organisms using reflected electronic beam. It can magnify things 1,000,000 times.