Topper's Answers (Issued by CBSE)
 C.B.S.E. 2019
 Class-X

Mathematics

Time : 3 Hours

Max. Marks : 80

General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 30 questions divided into four sections - A, B, C and D.
(iii) Section A contains 6 questions of $\mathbf{1}$ mark each. Section B contains $\mathbf{6}$ questions of $\mathbf{2}$ marks each, Section C contains $\mathbf{1 0}$ questions of 3 marks each and Section D contains 8 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of $\mathbf{3}$ marks each and three questions of 4 marks each. You have to attempt only one of the alternafives in all such questions.
(v) Use of calculators is not permitted.

Delhi Set

Code No. 30/1

SECTION-A

Question numbers 1 to 6 carry 1 mark each.

1. If $\tan \alpha=\frac{5}{12}$, find the value of $\sec \alpha$.

Sol.

To know about more useful books for class-10 click here

2. Two concentric circles of radii a and $b(a>b)$ are given. Find the length of the chord of the larger circle which touches the smaller circle.
Sol.

3. Write the discriminant of the quadratic equation $(x+5)^{2}=2(5 x-3)$.

Sol. 3. $(x+5)^{2}=2(5 x-3)$
$\Rightarrow x^{2}+25+10 x=10 / x-6$
$\Rightarrow x^{2}+3 q=0$.
$a=1, b=0, c /=31$
Discriminant $=b^{2}-4 a c$
$=0^{2}-4 \times 1 \times 31$
$=0-6124$
$=-73-124$
4. Express 429 as a product of its prime factors.

Sol. 4. 429 com be expressed as - $\quad 3\left(\frac{429}{11(143)}\right.$
5. Find the sum of the first 10 multiples of 6 .

Sol. 5. First 10 multiples of 6 form $A P \rightarrow \frac{6}{a}, 12,18 \cdots \frac{60}{l}$

6. The distance between point $\mathrm{A}(5,-3)$ and $\mathrm{B}(13, m)$ in 10 units. Calculate the value of m.

Sol. 6. $\begin{aligned} \text { gives, } A=5,-3 \\ B=13, \mathrm{~m} \\ A B=10 \text { unis }\end{aligned}$
Usisig distance formula;
To know about more useful books for class-10 click here

Question numbers 7 to 12 carry 2 marks each.
7. A die is thrown once. Find the probability of getting (i) a composite number, (ii) a prime number.

Sol.

ii) prime no.: $2,3,5$.
Pirabaliility $=20,0 / 0$

8. Cards numbered 7 to 40 were put in a box. Poonam selects a card at random. What is the probability that Poonam selects a card which is a multiple of 7 ?
Sol. 8. Event: cards numbered from 7-40 are chases Total possible outcomes: $(7,8,9-140)=34$ cards.

- Favourable event: cadeds multiple of 7 .

To know about more useful books for class-10 click here

9. In parallelogram $\mathrm{ABCD}, \mathrm{A}(3,1), \mathrm{B}(5,1) \mathrm{C}(a, b)$ and $\mathrm{D}(4,3)$ are the vertices. Find vertex $\mathrm{C}(a, b)$.

Sol.
 dtagonale of a porelelegyam bisect each other.
\therefore Dis the midpoint of both $A C$ and $B D$.

$$
\begin{aligned}
& x=\frac{4+5}{2}, y=\frac{3+1}{2} \\
& \Rightarrow x=\frac{9}{2} \quad, y=2 \text {. } \\
& \text { on AC } \\
& x=\frac{3+a}{2}, \quad y=\frac{b+1}{2} \\
& \Rightarrow \quad \frac{a}{x}=\frac{3+a}{x} \\
& \text {, } y 2=\frac{b+1}{2} \Rightarrow a=6, b=3 \\
& \Rightarrow \quad a=6 \\
& b=3 \text {. }
\end{aligned}
$$

10. Solve below simultaneous equations for x and $y, .3 x-5 y=4$ and $9 x-2 y=7$.

Sol. 10. Given -

$$
\begin{aligned}
& 3 x-5 y=4 \\
& 9 x-2 y=7
\end{aligned}
$$

To find - ' x ' and ' y '
Multiplying (1) $\times 3$, and (2) $\times 1$ and addling; we get $=$.
$(3 x-5 y) \times 3-+(9 x-2 y) \times 1=4 \times 3-7 \times 1$
$\Rightarrow 9 x-15 y^{2}-9 x+2 y=\sqrt{2}-7$
$\Rightarrow-13 y=5 \quad \Rightarrow y=-\frac{5}{13}$
Then, Putting $y=\frac{-5}{\sqrt{3}}$ in (i);
$3 x=4+5 y$
$\Rightarrow 3 x=4+5 x-\frac{5}{13}$
To know about more useful books for class-10 click here

11. If HCF of 65 and 117 is expressible in the form $65 n-117$, then find the value of n.

Sol.

12. For what value of k, the given quadratic equation $k x^{2}-6 x-1=0$ has no real roots ?

Sol. 12)

SECTION-C

Question numbers 13 to 22 carry 3 marks each.
13. If $\tan (A+B)=1$ and $\tan (A-B)=\frac{1}{\sqrt{3}}, 0^{\circ}<A+B<90^{\circ}, A>B$, then find the values of A and B.

Sol. 18. Givesu, $\tan (A+B)=1$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$

To know about more useful books for class-10 click here

14. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Sol.

$$
\text { To prove: } \begin{aligned}
& \angle A O B+\angle C O D=180^{\circ} \\
& \text { or } \angle A O D+\angle B O C=180^{\circ}
\end{aligned}
$$

$$
\text { or } \angle A O D+\angle B O C=180^{\circ}
$$

We know, that tangents from same exterior point subtend
equal angle at the centre of circle with radius s.

$$
\therefore \angle A O P=\angle A O S=\angle 1 / \text { say })
$$

Similarly, $\begin{aligned} \angle B O Q & =\angle B O Q=\angle 2 \\ \angle C O Q & =\angle C O R=\angle 3\end{aligned}$
$\angle D O R=\angle \angle D O S=\angle 4$.

$\therefore \quad \angle A O P+\angle B O P+\angle B O Q+\angle C O Q+\angle C O R+\angle D O R+\angle D O S+\angle A O S=360^{\circ}\| \|$	
[Complete angle around	
appoint]	
$\Rightarrow 2 \angle 1+2 \angle 2+2 \angle 33+2 \angle 4=360^{\circ}$	
\Rightarrow	$\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$
\Rightarrow	$(\angle 1+\angle 2)+(\angle 3+\angle 4)=180^{\circ}$
\Rightarrow	$\angle A O B+\angle C O D>180^{\circ}$

To know about more useful books for class-10 click here

15. A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.

Number of days :	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$	$30-36$	$36-42$
Number of students :	10	11	7	4	4	3	1

\Rightarrow Mean $=21+\left(\frac{-46}{4 \theta}\right) \times 6$
\qquad

$\begin{aligned} &=21-6.9 \\ &=14.1 \text { day. } \\ & \text { Mean of no of days student remains absent }=14.1 \text { days }\end{aligned}$
16. A wiper blade has length 21 cm , sweeps 120°. Calculate the area swept by two blades.

Sol. 16. Given, each wiper blade hastength $(v)=21 \mathrm{~cm}$. and sweeps angle $=120^{\circ}$

Area sevept by oneblade $=\frac{\theta^{*}}{360^{\circ}} \times \pi^{2}{ }^{2}$ unit square

Blades donal overlap.
\therefore Area swept by $2 \mathrm{blades}=462 \times 2 \mathrm{~cm}^{2}=924 \mathrm{~cm}^{2}$
17. In similar triangle, $\triangle A B C$ and $\triangle P Q R, A D$ and $P M$ are the medians respectively Prove that $\frac{A D}{P M}=\frac{A B}{P Q}$

Sol.

From bother (8) and (8); meet that.

To know about more useful books for class-10 click here
18. Verify $g(x)=x^{3}-3 x+1$ in a factor of $\mathrm{P}(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$ or not.

Sol. 18. Gives: $\quad p(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$.

$$
g(x)=x^{3}-3 x+1
$$

To check: if $g(x)$ is a factor of $p(x)$ or not.
Method: Simply divide.

We get remainder $=2$
Therefore, $p(x)$ is not completely divesibleley $g(x)$
$g(x)$ is not a factor of $p(x)$
19. Prove that $\sqrt{3}$ is an irrational number.

Sol. 19. Let yes assume, if possible, that $\sqrt{3}$ is rational Then, $\sqrt{3}$ can befexpressed as $\frac{p}{q}$ where $(q \neq 0)$ and

on squaring foothsiches,

$$
\begin{aligned}
& 3 \\
\Rightarrow \quad p^{2} & \frac{p^{2}}{q^{2}} \\
& 3 q^{2}
\end{aligned}
$$

3 dindales p^{2}
$\therefore 3$ alivrides p.
Then, ρ can be written as; $p=2 a$ for some integer ' a '.

To know about more useful books for class-10 click here

$\therefore 3$ divides beth pand q, 3 inacommah factor of pond q. But, pandqare co-primes.

Therefore, our assumption is wrong
20. In $\triangle A B C, A$ is $(1,-4) . E(0,-1)$ and $D(2,-1)$ are the midpoints of $A B$ and $A C$. Calculate the area of $\triangle A B C$.
20. Given: Triangle $A B C$ with
let coordinates of B be $\left(x_{2}, y_{2}\right)$ and that of C be $\left(x_{3}, y_{3}\right)$. using section formula for mid-point;

Similarly, $\frac{1+x_{3}}{2}=0, \quad-\frac{-4+y_{3}}{2}=-1$

$$
\Rightarrow \quad x_{3}=-1 \quad, \quad y_{3}=-2.7
$$

To know about more useful books for class-10 click here

Area of triangle	$=\frac{1}{2}\left\|x_{1}\left(y_{2}=y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\|$ unit	
squat\|		
	$=\frac{1}{2}\|1(-252)+3(2+4)+(-1)(-4-52)\|$ unit square	
	$=\frac{1}{2}\|1 \times 0+3 \times 6+(-1 \times-8)\|$ sq. units	
	$=\frac{1}{2}\|18+5\|$ sp. units $=12$ eq. units	
\therefore Preaof Δ	$=12$ sq. units.	

21. Two numbers are in the ratio of $5: 6$. If 7 is subtracted from each there ratio becomes $4: 5$. Find the numbers.

Sol. 21. Let the required two numbers be $5 x$ and $6 x$ given, if 7 is Inlithacte of from path nos, ratio r becomes 4:5 New. nos $=(5 x-7)$ and $(6 x-7)$.

	solving (1);
	$5(5 x-7)=4(6 x-7)$
\Rightarrow	$25 x-55=24 x-28$
\Rightarrow	$x=35-28$
\Rightarrow	$x=7 \quad 5 \quad$ The requires was. are : $5 x=38$
$\quad 6 x=42$	

22. A Cylindrical task of radius 40 cm in filled unto height 3.15 m by an other cylindrical pipe with the rate of $2.52 \mathrm{~km} / \mathrm{h}$ in $\frac{1}{2}$ hour. Calculate the diameter of cylindrical pipe?

Sol.

Height of tank filled $=3.15 \mathrm{~m}$
Timetaken $=\frac{1}{2} \mathrm{~h}=30$ minutes $=30 \times 60 \mathrm{~s}$.
$\begin{aligned} & \text { Rate of flow of water }=2.52 \mathrm{~km} / \mathrm{h}=\frac{\frac{14}{256} 2}{120} \times \frac{8}{18} \\ & \text { nix pipe } \\ &=0.7 \mathrm{~s} . \\ &=0.7 \mathrm{~m} / \mathrm{s} .\end{aligned}$

To know about more useful books for class-10 click here

Question numbers 23 to 30 carry 4 marks each.
23. In Figure, a decorative block is shown which is made of two solids, a cube and a hemisphere. The base of the block is a cube with edge 6 cm and the hemisphere fixed on the top has a diameter of 4.2 cm . Find
(a) the total surface area of the block.
(b) the volume of the block formed. (Take $\pi=\frac{22}{7}$)

OR

A bucket open at the top is in the form of a frustum of a cone with a capacity of 12308.8 cm^{3}. The radii of the top and bottom circular ends are 20 cm and 12 cm respectively. Find the height of the bucket and the area of metal sheet used in making the bucket. (Use $\pi=3 \cdot 14$)

Sol.

Side of cube $=6 \mathrm{~cm}$.
b) Volume of block formed $=$ volume of cube + volume of hemisphere

$$
=a^{3}+\frac{2}{3} \pi r^{3}
$$

$$
=6^{3}+\frac{2}{3} \times \frac{22}{7} \times 2.1^{3} \mathrm{~cm}^{3}
$$

$=2164 \frac{2}{3} \times \frac{22}{7} \times \frac{\frac{8}{12} \times 21 \times 21 \mathrm{~cm}^{3}}{1000}$

$$
=216+19.40 \mathrm{c} \mathrm{~cm}^{3}
$$

$$
235.464 \mathrm{~cm}^{3} .
$$

24. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Sol. 24. To prove: square of hypotenuse, in a right briangle, is equal to the sum of squares of other two sides. (Pytwagoras theorem)
$-1 /$

$$
\begin{aligned}
& \begin{array}{r}
\text { a) total surface area of blocks }=\text { metal surface area of cube }+ \text { curved surface } \\
\text { area of hemisphere - area enclousd by base } \\
\text { of heminperere }
\end{array} \\
& =6 a^{2}+\frac{4 \pi x^{2}}{2}-\pi r^{2} \\
& 6 a^{2}+\pi r^{2} \\
& =6 \times 6^{2}+\frac{22}{7} \times(2.1)^{2} \mathrm{~cm}^{2} \\
& =216+\frac{22}{7} \times 2^{0.3} \times 2.1 \mathrm{~cm}^{2} \\
& =[216+13.86] \mathrm{cm}^{2} \\
& =229.86 \mathrm{~cm}^{2}
\end{aligned}
$$

25. Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.

Class interval :	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Frequency :	10	8	12	24	6	25	15

Sol. 25. Morenthan series
More than 20-100
Move than $30-90$
More than $40-82$
More than 50-70
Move than $60=46$
More than $70-40$
More than $80-15$
More than $80-0$
More than $90-0$

Class Interval	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Frequency	10	8	12	24	6	25	15

$$
\begin{aligned}
& \Sigma f_{i}=100 \\
& n=100 . \quad n=50
\end{aligned}
$$

for move than ogive, we plat the point $A(20,100), B(36,90), 6(40,82)$ $D(50,70), E(60,46), F(70,40), G(80,15)$ and $H(90,0))$
To know about more useful books for class-10 click here

26. The shadow of a tower standing on a level ground is found to be 40 m longer when the Sun's altitude is 30° than when it was 60°. Find the height of the tower. (Given $\sqrt{3}=1.732$)

To know about more useful books for class-10 click here

27. If m times the $m^{\text {th }}$ term of an Arithmetic Progression is equal to n times its $n^{\text {th }}$ term and $m \neq n$, show that the $(m+n)^{\text {th }}$ term of the A.P. is zero.
Sol. 27. Let the first term of given A, P. be ' a ' And, the common difference be ' d '.
Given; $\quad m\left(a_{m}\right)=n\left(a_{n}\right) \quad[m \neq n]$.
To show: $\quad a_{(m+n)}=0$
$\Rightarrow m\left(a_{m}\right)=n\left(a_{n}\right)$

$$
0
$$

$$
\Rightarrow m[a+(m-1) d]=n[a+(n-1) d]
$$

$$
\Rightarrow a m+m d(m-1)=a n+n d(n-1)
$$

$$
\Rightarrow a m-a n=n d(n-1)=m d(m-1)
$$

$$
\Rightarrow a(m-n)=d[n(n-1)-m(m-1)]
$$

$$
\Rightarrow a(m-n)=d\left[n^{2}-n-m^{2}+m\right]
$$

$$
\Rightarrow a(m-n)=d\left[n^{2}-m m^{2}+m-n\right]
$$

$$
\Rightarrow a(m-n)=\alpha[(m+n)(n-m)+(m-n)]
$$

$$
\Rightarrow \quad a(x-n)=d(m-n)[-(n+n)+1]
$$

$$
\begin{array}{ll}
\Rightarrow & a-d[-(m+n)+1] \\
\Rightarrow & a+(m+n-1) d=0
\end{array}
$$

$$
\begin{aligned}
\Rightarrow \quad a_{m+n}=0 \\
a_{m+n}=a
\end{aligned}
$$

Hence, proved!

To know about more useful books for class-10 click here

28. A shopkeeper buy certain number of books in $₹ 80$. If he buy 4 more books then new cost price of each book is reduced by ₹ 1 . Find the number of books initially he buy.
Sol. 28. Let the no. of books bought by the shopkeeper be ' n '.

given new cont of each book is Rs. 1 less than earlier.

$$
\begin{aligned}
\Rightarrow n & =\frac{-4 \pm \sqrt{676}}{2} \\
& =\frac{-4 \pm 26}{2} \Rightarrow n=\frac{-38}{2} \text { or } \frac{22}{2}
\end{aligned}
$$

$$
\Rightarrow n=\frac{-4 \pm \sqrt{1296}}{2}
$$

$$
\Rightarrow n=\frac{-4 \pm 36}{2}
$$

$$
\Rightarrow n=\frac{-40}{2} \text { or } \frac{32}{2} \Rightarrow x=-20 \text { ar } 16
$$

Since, no. of bookies awhole no., it cannot be negative
$n=-20$ pan be ignored.
$\therefore n=16$
No. of books bought by the shopkeeper $=16$.
29. Construct a pair of tangents to a circle of radius 4 cm from an external point at a distance 6 cm from the centre of the circle.

Sol.

30. Prove that :
$\frac{1}{1+\sin ^{2} \theta}+\frac{1}{1+\cos ^{2} \theta}+\frac{1}{1+\sec ^{2} \theta}+\frac{1}{1+\operatorname{cosec}^{2} \theta}=2$
Sol.

