Strictly as per the Latest Syllabus To know about more useful books click here # Latest Syllabus APPLIED MATHEMATICS (Code No.- 055) CLASS-XII Number of Paper : 1 Total number of Periods : 240 (35 Minutes Each) Time : 3 Hours Max Marks : 80 | No. | Units | No. of Periods | Marks | |------|--|----------------|-------| | I | Numbers, Quantification and Numerical Applications | 30 | 09 | | II | Algebra | 20 | 10 | | III | Calculus | 50 | 15 | | IV | Probability Distributions | 35 | 10 | | V | Inferential Statistics | 10 | 05 | | VI | Index Numbers and Time-based data | 30 | 10 | | VII | Financial Mathematics | 50 | 15 | | VIII | Linear Programming | 15 | 06 | | | Total | 240 | 80 | | | Internal Assessment | | 20 | | - | | | | | | |------------|---|--|--|--|--| | SI.
No. | Contents | Learning Outcomes : Students will be able to | Notes / Explanation | | | | UNI | T - 1 NUMBERS, QUA | NTIFICATION AND NUMERICAL A | APPLICATIONS | | | | 1.1 | Modulo Arithmetic | Define modulus of an integer Apply arithmetic operations using modular arithmetic rules | Definition and meaningIntroduction to modulo operatorModular addition and subtraction | | | | 1.2 | Congruence Modulo | Define congruence moduloApply the definition in various problems | Definition and meaningSolution using congruence moduloEquivalence class | | | | 1.3 | Simple Arithmetic
Functions | Define arithmetic function Enlist different arithmetic functions Apply the arithmetic functions on given number | Properties and Examples of: (i) Euler totient function (ii) Number of divisor function (iii) Divisor sum function (iv) Mobius function | | | | 1.4 | Alligation and
Mixture | Understand the rule of alligation to produce a mixture at a given price Determine the mean price of a mixture Apply rule of alligation | Meaning and Application of rule of alligation Mean price of a mixture | | | | 1.5 | Numerical Problems | Solve real life problems mathematical | ly | | | | | Boats and Streams
(upstream and
downstream) | Distinguish between upstream and downstream Express the problem in the form of an equation | • Problems based on speed of stream and the speed of boat in still water | | | | | Pipes and Cisterns | • Determine the time taken by two or more pipes to fill or empty the tank | • Calculation of the portion of the tank filled or drained by the pipe(s) in unit time | |-----|--|---|--| | | Races and Games | • Compare the performance of two players w.r.t. time, distance | Calculation of the time taken/
distance covered / speed of each
player | | | Partnership | Differentiate between active partner and sleeping partner Determine the gain or loss to be divided among the partners in the ratio of their investment with due consideration of the time | Definition, Profit division among the partners | | | Scheduling | Define scheduling Differentiate between FCFS & SJF Solve problems based on FCFS and SJF | Definition and meaning Use of Gantt chart Simple problems based on FCFS (First come First serve) and SJF (shortest job first) | | 1.6 | Numerical
Inequalities | Describe the basic concepts of
numerical inequalities Understand and write numerical
inequalities | Comparison between two statements/situations which can be compared numerically Application of the techniques of numerical solution of algebraic inequations | | UNI | T - 2 ALGEBRA | Charles Charles | | | 2.1 | Matrices and types of matrices | Define matrix Identify different kinds of matrices Find the size / order of matrices | The entries, rows and columns of matrices Present a set of data in a matrix form | | 2.2 | Equality of matrices,
Transpose of a
matrix, Symmetric
and Skew symmetric
matrix | Determine equality of two matrices Write transpose of given matrix Define symmetric and skew symmetric matrix | Examples of transpose of matrix A square matrix as a sum of symmetric and skew symmetric matrix Observe that diagonal elements of skew symmetric matrices are always zero | | 2.3 | Algebra of Matrices | Perform operations like addition & subtraction on matrices of same order Perform multiplication of two matrices of appropriate order Perform multiplication of a scalar with matrix | Addition and Subtraction of matrices Multiplication of matrices (It can be shown to the students that Matrix multiplication is similar to multiplication of two polynomials) Multiplication of a matrix with a real number | | 2.4 | Determinants | Find determinant of a square matrix Use elementary properties of determinants | Singular matrix, Non singular matrix AB = A B Simple problems to find determinant value | | 2.5 | Inverse of a matrix | Define the inverse of a square matrix Explain elementary row operations and use to it find the inverse of a matrix Apply properties of inverse of matrices | Inverse of a matrix using: (a) cofactors (b) elementary row operations If A and B are invertible square matrices of same size, (i) (AB)⁻¹ = B⁻¹A⁻¹ (ii) (A⁻¹)⁻¹ = A (iii) (AT)⁻¹ = (A⁻¹)^T | |-------|---|---|---| | 2.6 | Solving system of simultaneous equations using matrix method, Cramer's rule and row reduction method | Solve the system of simultaneous equations using (i) Cramer's Rule (ii) Inverse of coefficient matrix (iii) Row reduction method Formulate real life problems into a system of simultaneous linear equations and solve it using these methods | Solution of system of simultaneous equations upto three variables only (non-homogeneous equations) | | 2.7 | Simple applications
of matrices and
determinants
including Leontiff
input output model
for two variables | Apply simple applications of matrices and determinants in different areas of mathematics, physics, coding, encryption etc. Apply real life applications particularly for Leontiff input output model for two variables in economics | Real life applications of Matrices and Determinant Leontiff Input-output model that represents the interdependencies between different sectors of a national economy or different regional economies | | | T - 3 CALCULUS | | | | Diffe | erentiation and its App | lications | | | 3.1 | Higher Order
Derivatives | Determine second and higher order derivatives Understand differentiation of parametric functions and implicit functions | Simple problems based on higher order derivatives Differentiation of parametric functions and implicit functions (upto 2nd order) | | 3.2 | Application of Derivatives | Determine the rate of change of various quantities Understand the gradient of tangent and normal to a curve at a given point Write the equation of tangents and normal to a curve at a given point | quantities such as area and volume with respect to time or its dimension | | 3.3 | Marginal Cost and
Marginal Revenue
using derivatives | Define marginal cost and marginal
revenue Find marginal cost and marginal
revenue | • Examples related to marginal cost, marginal revenue, etc. | | 3.4 | Increasing /
Decreasing
Functions | Determine whether a function is increasing or decreasing Determine the conditions for a function to be increasing or decreasing | • Simple problems related to increasing and decreasing behaviour of a function in the given interval | | 3.5 | Maxima and Minima | Determine critical points of the function Find the point(s) of local maxima and local minima and corresponding local maximum and local minimum values Find the absolute maximum and absolute minimum value of a function Solve applied problems | A point x= c is called the critical point of f if f is defined at c and f'(c)=0 or f is not differentiable at c To find local maxima and local minima by: First Derivative Test Second Derivative Test Contextualized real life problems | | |-------------------------------------|--|--|--|--| | Integ | gration and its Applica | tions | (A) | | | 3.6 | Integration | Understand and determine indefi-
nite integrals of simple functions
as anti-derivative | Integration as a reverse process of
differentiation Vocabulary and Notations related
to Integration | | | 3.7 | Indefinite Integrals
as family of curves | Evaluate indefinite integrals of
simple algebraic functions by
method of: (i) substitution (ii) partial fraction (iii) by parts | Simple integrals based on each method (non-trigonometric function) | | | 3.8 | Definite Integrals as area under the curve | Define definite integral as area under the curve Understand fundamental theorem of Integral calculus and apply it to evaluate the definite integral Apply properties of definite integrals to solve the problems | Evaluation of definite integrals using properties | | | 3.9 | Application of Integration | Identify the region representing
C.S. and P.S. graphically Apply the definite integral to
find consumer surplus-producer
surplus | Problems based on finding Total cost when Marginal Cost is given Total Revenue when Marginal Revenue is given Equilibrium price and equilibrium quantity and hence consumer and producer surplus | | | Differential Equations and Modeling | | | | | | 3.10 | Differential
Equations | Recognize a differential equationFind the order and degree of a differential equation | Definition, order, degree and examples | | | 3.11 | Formulating and
Solving Differential
Equations | Formulate differential equation Verify the solution of differential equation Solve simple differential equation | Formation of differential equation
by eliminating arbitrary constants Solution of simple differential
equations (direct integration only) | | | 3.12 | Application of Dif-
ferential Equations | Define Growth and Decay ModelApply the differential equations to
solve Growth and Decay Models | • Growth and Decay Model in Biological sciences, Economics and business, etc. | | | UNI | UNIT - 4 PROBABILITY DISTRIBUTIONS | | | | | |-----|------------------------------------|---|--|--|--| | 4.1 | Probability
Distribution | Understand the concept of
Random Variables and its
Probability Distributions Find probability distribution of
discrete random variable | Definition and example of discrete
and continuous random variable
and their distribution | | | | 4.2 | Mathematical
Expectation | • Apply arithmetic mean of frequency distribution to find the expected value of a random variable | • The expected value of discrete random variable as summation of product of discrete random variable by the probability of its occurrence. | | | | 4.3 | Variance | • Calculate the Variance and S.D. of a random variable | Questions based on variance and
standard deviation | | | | 4.4 | Binomial
Distribution | Identify the Bernoulli Trials and apply Binomial Distribution Evaluate Mean, Variance and S.D of a binomial distribution | Characteristics of the binomial distribution Binomial formula: P(r) = ⁿC_r p^r q^{n-r} Where n = number of trials p = probability of success q = probability of failure Mean = np Variance = npq Standard Deviation = √npq | | | | 4.5 | Poison Distribution | Understand the Conditions of
Poisson Distribution Evaluate the Mean and Variance of
Poisson distribution | • Characteristics of Poisson
Probability distribution
Poisson formula:
$P(x) = \frac{\lambda^{x} \cdot e^{-\lambda}}{x!}$ • Mean = Variance = λ | | | | 4.6 | Normal Distribution | Understand normal distribution is
a Continuous distribution Evaluate value of Standard normal
variate Area relationship between Mean
and Standard Deviation | Characteristics of a normal probability distribution Total area under the curve = total probability = 1 Standard Normal Variate: Z = x-μ/σ where x = value of the random variable μ = mean σ = S.D. | | | | UNI | UNIT - 5 INFERENTIAL STATISTICS | | | | | | 5.1 | Population and
Sample | Define Population and Sample Differentiate between population and sample Define a representative sample from a population Differentiate between a representative and non-representative sample | Population data from census, economic surveys and other contexts from practical life Examples of drawing more than one sample set from the same population Examples of representative and non-representative sample | | | | | | Draw a representative sample using simple random sampling Draw a representative sample using and systematic random sampling | • Problems based on random sampling using simple random sampling and systematic random sampling (sample size less than 100) | |-----|---|---|--| | 5.2 | Parameter and
Statistics and
Statistical
Interferences | Define Parameter with reference to Population Define Statistics with reference to Sample Explain the relation between Parameter and Statistic Explain the limitation of Statistic to generalize the estimation for population Interpret the concept of Statistical Significance and Statistical Inferences State Central Limit Theorem Explain the relation between Population-Sampling Distribution-Sample | Conceptual understanding of Parameter and Statistics Examples of Parameter and Statistic limited to Mean and Standard deviation only Examples to highlight limitations of generalizing results from sample to population Only conceptual understanding of Statistical Significance/Statistical Inferences Only conceptual understanding of Sampling Distribution through simulation and graphs | | 5.3 | t-Test (one sample
t-test and two
independent groups
t-test) | • | Examples and non-examples of Null and Alternate hypothesis (only non-directional alternate hypothesis) Framing of Null and Alternate hypothesis Testing a Null Hypothesis to make Statistical Inferences for small sample size (for small sample size: t- test for one group and two independent groups Use of t-table | | UNI | T - 6 INDEX NUMBER | S AND TIME BASED DATA | | | 6.1 | Index Numbers | • Define Index numbers as a special type of average | Meaning and DefinitionUtility of Index Numbers | | 6.2 | Construction of Index numbers | • Construct different type of index numbers | Simple Index numbersWeighted index numbers | | 6.3 | Test of adequacy of Index numbers | • Apply unit test and time reversal test | Unit test Time reversal test | | 6.4 | Time Series | • Identify time series as chronological data | Meaning and Definition | | 6.5 | Components of Time
Series | Distinguish between different components of time series | Secular trendSeasonal variationCyclical variationIrregular variation | | 6.6 | Time Series analysis for univariate data | • Solve practical problems based on statistical data and Interpret the result | • Fitting a straight line trend and estimating the value | |-------|--|--|--| | 6.7 | Secular Trend | • Understand the long term tendency | • The tendency of the variable to increase or decrease over a long period of time | | 6.8 | Methods of | • Demonstrate the techniques of | Moving Average method | | TINIT | Measuring trend | finding trend by different methods | Method of Least Squares | | | Γ - 7 FINANCIAL MA | | Manning of Damatritus and Civilina | | 7.1 | Perpetuity, Sinking
Funds | Explain the concept of perpetuity and sinking fund Calculate perpetuity Differentiate between sinking fund and saving account | Meaning of Perpetuity and Sinking
Fund Real life examples of sinking fund Advantages of Sinking Fund Sinking Fund vs. Savings account | | 7.2 | Valuation of Bonds | Define the concept of valuation of
bond and related terms Calculate value of bond using
present value approach | Meaning of Bond Valuation Terms related to valuation of bond: Coupon rate, Maturity rate and Current price Bond Valuation Methods: (i) Present Value Approach (ii) Relative Price Approach | | 7.3 | Calculation of EMI | Explain the concept of EMI Calculate EMI using various methods | Methods to calculate EMI: (i) Flat-Rate Method(ii) Reducing-Balance Method Real life examples to calculate EMI of various types of loans, purchase of assets, etc. | | 7.4 | Calculation of
Returns, Nominal
Rate of Return | Explain the concept of rate of return and nominal rate of return Calculate rate of return and nominal rate of return | • Formula for calculation of Rate of Return, Nominal Rate of Return | | 7.5 | Compound Annual
Growth Rate | Understand the concept of
Compound Annual Growth Rate Differentiate between Compound
Annual Growth Rate and Annual
Growth Rate Calculate Compound Annual
Growth Rate | Meaning and use of Compound
Annual Growth Rate Formula for Compound Annual
Growth Rate | | 7.6 | Stock, Shares and
Debentures | Explain the concept of stock, shares and debentures Enlist features related to equity shares and debentures Interpret case studies related to shares and debentures (Simple Case studies only) | Meaning of Stock, shares and debentures Types of Shares and Debentures Features and advantages of equity shares and debentures Real life examples of shares & debentures | | 7.7 | Linear method of Depreciation T - 8 LINEAR PROGR. | Define the concept of linear method of Depreciation Interpret cost, residual value and useful life of an asset from the given information Calculate depreciation | Meaning and formula for Linear
Method of Depreciation Advantages and disadvantages of
Linear Method | |-----|---|--|---| | | | | N. 1 | | 8.1 | Introduction and related terminology | • Familiarize with terms related to Linear Programming Problem | Need for framing linear programming problem Definition of Decision Variable, Constraints, Objective function, Optimization and Non Negative conditions | | 8.2 | Mathematical
formulation of
Linear Programming
Problem | • Formulate Linear Programming Problem | Set the problem in terms of decision
variables, identify the objective
function, identify the set of problem
constraints, express the problem in
terms of inequations | | 8.3 | Different types of
Linear Programming
Problems | • Identify and formulate different types of LPP | • Formulate various types of LPP's like Manufacturing Problem, Diet Problem, Transportation Problem, etc. | | 8.4 | Graphical method of solution for problems in two variables | • Draw the Graph for a system of linear inequalities involving two variables and to find its solution graphically | Corner Point Method for the
Optimal solution of LPP Iso-cost/ Iso-profit Method | | 8.5 | Feasible and
Infeasible Regions | Identify feasible, infeasible,
bounded and unbounded regions | • Definition and Examples to explain the terms | | 8.6 | Feasible and infeasible solutions, optimal feasible solution | Understand feasible and infeasible solutionsFind optimal feasible solution | Problems based on optimizationExamples of finding the solutions
by graphical method | #### Practical: Use of spreadsheet Graphs of an exponential function, demand and supply functions on Excel and study the nature of function at various points, maxima/minima Matrix operations using Excel #### Suggested practical using the spreadsheet - (i) Plot the graphs of functions on excel and study the graph to find out the point of maxima/minima - (ii) Probability and dice roll simulation - (iii) Matrix multiplication and the inverse of a matrix - (iv) Stock Market data sheet on excel - (v) Collect the data on weather, price, inflation, and pollution analyze the data and make meaningful inferences - (vi) Collect data from newspapers on traffic, sports activities and market trends and use excel to study future trends