C.B.S.E.
 Topper's* Answers
 Mathematics Standard

*Note : This paper is solely for reference purpose. The pattern of the paper has been changed for the academic year 2022-23.

Maximum Time: 3 hour

MM: 80

General Instructions:

Read the following instructions very carefully and strictly follow them:
(i) This question paper comprises four sections $-A, B, C$ and D. This question paper carries 40 questions. All questions are compulsory.
(ii) Section A: Question Numbers 1 to 20 comprises of 20 questions of one mark each.
(iii) Section B: Question Numbers 21 to 26 comprises of 6 questions of two marks each.
(iv) Section C: Question Numbers 27 to 34 comprises of 8 questions three marks each.
(v) Section D: Question Numbers 35 to 40 comprises of 6 questions of four marks each.
(vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions.
(vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
(viii) Use of calculators is not permitted.

SECTION - A

Question numbers 1 to 20 carry 1 mark each.
Question numbers 1 to 10 are multiple choice questions.
Choose the correct option.
Sol.

1. The values) of k for which the quadratic equation $2 x^{2}+k x+2=0$ has equal roots, is
(A) 4
(B) ± 4
(C) -4
(D) 0

For Equal roots;

$R^{2}-16=0$

To know about more useful books click here

$$
k= \pm 4
$$

Ans (B) 士 4

2. Which of the following is not an A.P. ?
(A) $-1.2,0.8,2.8, \ldots$
(B) $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots$
(C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \ldots$
(D) $\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}, \ldots$

Sol.

3. In Figure-1, from an external point P, two tangents $P Q$ and $P R$ are drawn to a circle of radius 4 cm with centre O. If $\angle Q P R=90^{\circ}$, then length of $P Q$ is

Figure-1
(A) 3 cm
(B) 4 cm
(C) 2 cm
(D) $2 \sqrt{2} \mathrm{~cm}$

Sol. (B) 4 cm \qquad
4. The distance between the points $(\mathrm{m},-\mathrm{n})$ and $(-\mathrm{m}, \mathrm{n})$ is
(A) $\sqrt{m^{2}+n^{2}}$
(B) $m+n$
(C) $2 \sqrt{m^{2}+n^{2}}$
(D) $\sqrt{2 m^{2}+2 n^{2}}$

Sol.

$B(-m, n)$

To know about more useful books click here

$A B=2 \sqrt{m^{2}+n^{2}}$

5. The degree of polynomial having zeroes -3 and 4 only is
(A) 2
(B) 1
(C) more than 3
(D) 3

Sol.

6. In Figure -2, $A B C$ is an isosceles triangle, right-angled at C . Therefore

(A) $A B^{2}=2 A C^{2}$
(B) $\mathrm{BC}^{2}=2 \mathrm{AB}^{2}$
(C) $A C^{2}=2 A B^{2}$
(D) $A B^{2}=3 A C^{2}$

Sol.
$A B^{2}=A C^{2}+B C^{2}$
$A B^{2}=2 A C^{2}$
Ans -(A) AB ${ }^{2}=2 A C^{2} 7$
7. The point on the x-axis which is equidistant from $(-4,0)$ and $(10,0)$ is
(A) $(7,0)$
(B) $(5,0)$
(C) $(0,0)$
(D) $(3,0)$

The centre of a cirele whose end points of a diameter are $(-6,3)$ and $(6,4)$ is
To know about more useful books click here
(A) $(8,-1)$
(B) $(4,7)$
(C) $\left(0, \frac{7}{2}\right)$
(D) $\left(4, \frac{7}{2}\right)$

Sol.

8. The pair of linear equations $\frac{3 x}{2}+\frac{5 y}{3}=7$ and $9 x+10 y=14$ is
(A) consistent
(B) inconsistent
(C) consistent with one solution
(D) consistent with many solutions

Sol. $-\frac{3}{2} x+\frac{5}{3} y=7$

To know about more useful books click here

Ans (B) Inconsistent?
9. In figure-3, $P Q$ is tangent to the circle with centre at O, at the point B. If $\angle A O B=100^{\circ}$, then $\angle A B P$ is equal to

Figure-3
(A) 50°
(B) 40°
(C) 60°
(D) 80°

Sol.
(A) $50^{\circ} \Omega$
10. The radius of a sphere (in cm) whose volume is $12 \pi \mathrm{~cm}^{3}$, is
(A) 3
(B) $3 \sqrt{3}$
(C) $3^{2 / 3}$
(D) $3^{1 / 3}$

Sol. ${ }^{\text {- }}$ Volume $=12 \pi$
$\frac{4}{3} \pi \gamma^{3}=12^{3} \pi$
$\gamma^{3}=9$
$\gamma=3^{\frac{2}{3}} \mathrm{~cm}$.
Ans: (c) $3^{\frac{2}{3}} \mathrm{~cm}$
Fill in the blanks in question numbers 11 to 15.
11. $A O B C$ is a rectangle whose three vertices are $A(0,-3), \mathrm{O}(0,0)$ and $B(4,0)$. The length of its diagonal is

Sol.

To know about more useful books click here
12. In the formula $\bar{x}=a+\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \times h, u_{i}=$ \qquad

Sol.

13. All concentric circles are \qquad to each other.
Sol. Similar_
14. The probability of an event that is sure to happen, is \qquad ..
$\frac{1}{P(\text { sure event })=1}$
15. Simplest form of $\left(1-\cos ^{2} A\right)\left(1+\cot ^{2} A\right)$ is \qquad .. .

Sol. $\quad\left(1-\cos ^{2} A\right)\left(1+\cot ^{2} A\right)$

$$
\begin{aligned}
& \left(1-\cos ^{2} A\right)\left(1+\frac{\cos ^{2} A}{\sin ^{2} A}\right. \\
& \left(1-\cos ^{2} A\right)\left(\sin ^{2} A+\cos ^{2} A\right) \\
& \sin ^{2} A \\
& \left.\left(1-\cos ^{2} A\right) \Rightarrow \frac{\sin ^{2} A}{\sin ^{2} A}\right)=
\end{aligned}
$$

Answer the following questions numbers 16 to 20.
16. The $L C M$ of two numbers is 182 and their $H C F$ is 13 . If one of the numbers is 26 , find the other.

Sol. Product of 2 nos. $=\angle \mathrm{CM} \times \mathrm{HCF}$
Let other number be x

17. From a quadratic polynomial, the sum and product of whose zeroes are (-3) and 2 respectively.

Can $\left(x^{2}-1\right)$ be a remainder while dividing $x^{4}-3 x^{2}+5 x-9$ by $\left(x^{2}+3\right)$? Justify your answer with reasons.
Sol. Sum of zeroes $=-3$
Product of Zeroes $=2$
The required Polynomial:
$P(x)=k\left(x^{2}+3 x+2\right)$
To know about more useful books click here
18. Find the sum of the first 100 natural numbers.

Sol. $\quad \angle h=100$
Sum of first 100 natural numbers $=n \frac{(n+1)}{2}$
Ans: Sum of 1 is 100 natural nos. $\Rightarrow \frac{50}{100 \times 101} \frac{2}{2}=50, \$ 0$.
19. Evaluate : $2 \sec 30^{\circ} \times \tan 60^{\circ}$

Sol.
$-2 \sec 30^{\circ} \times \tan 60^{\circ}$

20. In figure-4, the angle of elevation of the top of a tower from a point C on the ground. which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Figure-4

Sol.

$$
h=10 \sqrt{3} \Rightarrow 17.32 \mathrm{~m}
$$

Ans- Height of tower $=17.32 \mathrm{~m}$ (approx).

SECTION - B

Question number 21 to 26 carry 2 marks each.
21. Find the mode of the following distribution:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of Students	4	6	7	12	5	6

To know about more useful books click here

Sol.

Modal marks $=34017$ marks (approx)
22. In Figure-5, a quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that

$$
A B+C D=B C+A D .
$$

Figure-5
In Figure-6, find the perimeter of $\triangle \mathrm{ABC}$, if $\mathrm{AP}=12 \mathrm{~cm}$.

$$
A B+C D=B C+A D
$$

To know about more useful books click here

Figure-6
Choice-(1) Let the circle and quadrilateral
Sol.

Adding (1), (2), (3), (4),
$A P+D P+B R+C R=A Q+B Q+D S+C S$

$$
A D+B C=A B+D C / / \text { Proved. }
$$

23. How many cubes of side 2 cm can be made from a solid cube of side 10 cm ?

Sol. For Small cube: $a=2 \mathrm{~cm}$

Number of cubes that can be made $=125$ cuthes
24. In the given Figure-7, $D E \| \mathrm{AC}$ and $D F \| A F$. Prove that $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$.

Sol.

25. Show that $5+2 \sqrt{7}$ is an irrational number, where $\sqrt{7}$ is given to be an irrational number.

OR
Check whether 12^{n} can end with the digit 0 for any natural number n.
Sol. Let us assume to the contrary that $\Sigma+2 \sqrt{7}$ is rational. Then $\$+2 \sqrt{ } 7$ is of the form $\frac{p}{q}$ where p and q are co primes and $q \neq 0$.

To know about more useful books click here

$$
\begin{gathered}
\frac{p}{q}=5+2 \sqrt{7} \\
\frac{p}{q}-5=2 \sqrt{7} \\
\frac{p-5 q}{2 q}=\sqrt{7}
\end{gathered}
$$

$\frac{p-5 q}{2 q}$ is rational as p and q are untegers
This contradicts the guin fact that $\sqrt{7}$ is irrational.
\therefore our assumption is wrong.
$इ+2 \sqrt{7}$ is irrational //
Proved.
26. If A, B and C are interior angles of a $\triangle A B C$, then show that $\cot \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\tan \left(\frac{\mathrm{A}}{2}\right)$.

Since A, B, C are interior angles of $\triangle A B C$,
Sol.

$$
\begin{aligned}
& \angle A+\angle B+\angle C=180^{\circ}(A S P) \\
& \angle A+\angle B+\angle C=90^{\circ} \\
& \angle \frac{B+\angle C}{2}=90^{\circ}-\frac{A}{2} \rightarrow 1 \\
& \cot \left(\frac{B+C}{2}\right)=\tan \left(\frac{A}{2}\right) \rightarrow \text { To Prove: } \\
& \angle H S: \quad, \quad \alpha,
\end{aligned}
$$

$$
\cot \left(\frac{B+C}{2}\right) \longrightarrow
$$

sub (1),

$$
\cot \left(90^{\circ}-\frac{\angle A}{2}\right) \quad\left\{\because \cot \left(90^{\circ}-\theta\right)=\tan \theta\right\}
$$

$$
\operatorname{ctan}\left(\frac{\angle A}{2}\right)=R H S
$$

Proved.

SECTION - C

Question number 27 to 34 carry 3 marks each.
27. In figure-8, a square $O P Q R$ is inscribed in a quadrant $O A Q B$ of a circle. If the radius of circle is $6 \sqrt{2} \mathrm{~cm}$, find the area of the shaded region.

Figure-8

Sol.
Given, radius of circle $(r)=6 \sqrt{2} \mathrm{~cm}$
Here, $O A=O B=O Q=6 \sqrt{2} \mathrm{~cm}$

In $\triangle O P Q$,

$$
\begin{aligned}
(O P)^{2}+(P Q)^{2} & =(O Q)^{2} \\
(O P)^{2}+(O P)^{2} & =(O Q)^{2} \\
2(O P)^{2} & =(O Q)^{2} \\
2(O P)^{2} & =(6 \sqrt{2})^{2} \\
O P & =6 \mathrm{~cm}
\end{aligned}
$$

Now, area of shaded region $=$

- area (square with side, $O P=6 \mathrm{~cm}$)

$$
\begin{aligned}
& =\frac{1}{4} \pi r^{2}-(O P)^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times(6 \sqrt{2})^{2}-(6)^{2}
\end{aligned}
$$

To know about more useful books click here

	$=\frac{11 \times 36}{7}-36$
	$=36 \times \frac{4}{7}$
	$=20.57 \mathrm{~cm}^{2}$
Thus, area of shaded region is $20.57 \mathrm{~cm}^{2}$.	

28. Construct a $\triangle A B C$ with sides $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.

OR
Draw a circle of radius 3.5 cm . Take a point P outside the circle at a distance of 7 cm from the centre of the circle and construct a pair of tangents to the circle from that point.

Sol.

(\$. With M as centre and $\gamma=O M /$ draw a circle, passing through $=$ and P to meet the previous circle at A and B.
(4) Join $A P, B P$. AP and $B P$ are the required tangents.

To know about more useful books click here
29. Prove that: $\frac{2 \cos ^{3} \theta-\cos \theta}{\sin \theta-2 \sin ^{3} \theta}=\cot \theta$

Sol.

$$
2 \frac{\cos ^{3} \theta-\cos \theta}{\sin \theta-2 \sin ^{3} \theta}=\cot \theta
$$

IHS:

$$
\begin{aligned}
& \frac{\cos \theta(2 \cos \theta-1)}{\sin \theta\left(1-2 \sin ^{2} \theta\right)} \\
& \frac{\cos \theta\left[2\left(1-\sin ^{2} \theta\right)-1\right]}{\sin \theta\left(1-2 \sin ^{2} \theta\right)}
\end{aligned}
$$

$$
\frac{\cos \theta\left[2-2 \sin ^{2} \theta-1\right]}{\sin \theta\left(1-2 \sin ^{2} \theta\right)} \Rightarrow \frac{\cos \theta}{\sin \theta} \times \frac{\left(1-2 \sin ^{2} \theta\right)}{\left(1-2 \sin ^{2} \theta\right)} \Rightarrow \cot \theta
$$

$$
\text { HS }=\text { RUS }=\cot \theta / /
$$

Proved.
30. A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numberator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.

OR

The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages.

Sol. Choice -(2)
Let the Present age of
Father $=x$ years
S Son $=y$ years

\qquad
$x+3 \leqslant 12 y+1,8$
$x+3=2(y+3)+10$
$x+3=2 y+6+10$
$x+3=2 y+6+10$
To know about more useful books click here

$$
\begin{array}{r}
\begin{array}{r}
x-2 y=16-3 \\
x-2 y-13=0
\end{array} \\
\text { Solving (1) and (2), } \quad x-3 y-3=0 \\
-x+2 y+13=0 \\
-y+10=0 \\
y=10 \\
x=32 \\
x
\end{array} \quad \begin{array}{r}
x \\
\text { Ans: Present age of father }=33 \text { years } \\
\text { son }=10 \text { years }
\end{array}
$$

31. Using Euclid's Algorithm, find the largest number which divides 870 and 258 leaving remainder 3 in each case.

Sol.

$$
\begin{array}{r}
870-3=867 \\
+258-3=255
\end{array}
$$ $!$

$\operatorname{HCF}(867,255)$ by Euclid's Division Algorithm:

$$
\begin{aligned}
& 867=255 \times 3+102 \\
& 255=102 \times 2+51 \\
& 102=(51) \times 2+0 \\
& H C F(867,255)=\$ 1
\end{aligned}
$$

Ans: The largest number which derides 870 and 258 leaving remainder 3 in each case is 51 .
32. Fin d the ratio in which the y-axis divides the line segment joining the points $(6,-4)$ and $(-2,-7)$. Also find the point of intersection.

OR
Sol.
Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are vertices of an isosceles right triangle.
choice - (1)
\qquad
 $A(6,-4)$ and $B(-2,-7)$

Let P divide $A B$ in the ratio
coordinates of $P: P\left(-\frac{2 k+6}{k+1}, \frac{-7 k-4}{k+1}\right)$

$$
\begin{array}{r}
-2 \frac{k+6}{k+1}=0 \\
-2 k+6=0 \\
2 k=6 \\
k=\xi^{2}
\end{array}
$$

Ratio in which y axis divides $A B=3: 1$

$$
y=\frac{-7(3)-4}{(3)+1}
$$

$$
y=\frac{-21-4}{4}
$$

$$
y=\frac{-25}{4}
$$

. Point of intersection $=P\left(\frac{0,-25}{4}\right)$. of y axis and line

- segment.

33. In an A.P. given that the first term $(a)=54$, the common difference $(d)=-3$ and the $n^{\text {th }}$ term $\left(a_{n}\right)=0$, find n and the sum of first n terms $\left(S_{n}\right)$ of the A.P.

Sol.

To know about more useful books click here

Ans: $n=19$

34. Read the following passage and answer the questions given at the end :

Diwali Fair

A game in a booth at a Diwali Fair involves using a spinner first. Then, if the spinner stops on an even number, the player is allowed to pick a marble from a bag. The spinner and the marbles in the bag are represented in Figure-9.

Prizes are given, when a black marble is picked. Shweta plays the game once.

Figure-9
(i) What is the probability that she will be allowed to pick a marble from the bag ?
(ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize, when it is given that the bag contains 20 balls out of which 6 are black?
Sol. (i) Total number of 'Numbers' on spinner $=6$ 6
No. of favourable outcomes
$P($ shweta being allowed to pick a marble $)=$ No. of favourable outcome
Total number of outcomes Probability of bring allowed to $\Rightarrow \frac{5}{6}$
pick a marble
(ii) Total number of marbles $=20$
black marbles $=6$

To know about more useful books click here

SECTION - D

Question number 35 to 40 carry 4 marks each.
35. Sum of the areas of two squares is $544 \mathrm{~m}^{2}$. If the difference of their perimeters is 32 m , find the sides of the two squares.

OR

A motorboat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

Sol. For motorboat:
Speed in still water $=18 \mathrm{~km} / \mathrm{he}$
Let speed of :izeam $=x \mathrm{~km} / \mathrm{hr}$
upstream speed $=18-x \mathrm{~km} / \mathrm{hr}$
downstream speed $=18+x \mathrm{~km} / \mathrm{hr}$.
$t=\frac{d}{s}$
$\frac{24}{18-x}-\frac{24}{18+x}=1$
$24\left(\frac{1}{18-x}-\frac{1}{18+x}\right)=1$
$\frac{18+x-18+x}{(18-x)(18+x)}=\frac{1}{24}$.

$(18-x)(18+x) 24$
$\frac{2 x}{324-x^{2}}=\frac{1}{24}$
$48 x=324-x^{2}$
$x^{2}+48 x-324=0$.

$(x+54)(x-6)=0$
$\begin{aligned} \dot{x} & =-54 \text { (invalid-upeed cannot be negative) } \\ x & =6\end{aligned}$
\qquad
Sped of the stream $=6 \mathrm{~km} /$ for.
36. A solid toy is the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of the base is 7 cm . Determine the volume of the toy. Also find the area of the coloured sheet required to cover the toy (Use $\pi=\frac{22}{7}$ and $\sqrt{149}=12.2$).

Sol.

37. For the following data, draw a 'less than' ogive and hence find the median of the distribution.

Age (in years)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Number of Persons	5	15	20	25	15	11	9

OR
The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. Find the mean and the median of the number of wickets taken.

Number of wickets	$20-60$	$60-100$	$100-140$	$140-180$	$180-220$	$220-260$
Number of bowlers	7	5	16	12	2	3

To know about more useful books click here

Sol.

Aage(inyrs)	No. Of persons	lessthan	cf
$\left(c_{0} I\right)$	(f)		
$0-10$	5	$\angle 10$	5
$10-20$	15	$\angle 20$	20
$20-30$	20	$\angle 30$	40
$\sqrt{30-40}$	25	$\angle 40$	65
$-40-50$	15	$\angle 50$	80
$50-60$	11	$\angle 60$	91
$60-70$	9	$\angle 70$	100
	100		

-|| Median of the distribution: 34 years (by graph and calculation)
38. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. (Use $\sqrt{3}=1.73$)

To know about more useful books click here

Sol.

Let ${ }^{\circ} A B \rightarrow$ Transmission tower

$B C \rightarrow$ Building -20 m
$P \rightarrow$ Point on the ground.
$\begin{aligned} \text { In } \triangle P A C, \angle C=90^{\circ} & x=20 \mathrm{~m} \\ \tan 60^{\circ}=\frac{h+20}{x} & \\ 20+h & =\sqrt{3} \\ h & =20 \sqrt{3}-20\end{aligned}$

$$
\frac{20+h}{20}=\sqrt{3}
$$

$$
h=20 \sqrt{3}-20
$$

$$
\begin{aligned}
& h=20(\sqrt{3}-t) \\
& h=14.6 \mathrm{~m} . \quad 7
\end{aligned}
$$

$$
\text { In } \triangle P B C, \angle C=90^{\circ}
$$

\qquad
\qquad

$$
\tan 45^{\circ}=\frac{20}{x} \Rightarrow 1=\frac{20}{x}
$$

\qquad
\qquad
\qquad
Ans: - Height of transmission tower $=14.6 \mathrm{~mm}$
39. Prove that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides.

Sol.

Proof:
In $\triangle A B C$ and $\triangle \triangle D B$,

$$
\begin{aligned}
& \angle A B C=\angle A D B=90^{\circ} \\
& \angle 1=\angle 1(\text { common }) \\
& \therefore \triangle A B C \sim \triangle A D B(A A)
\end{aligned}
$$

To know about more useful books click here

$$
\begin{aligned}
& \text { by } C P S \Gamma, \quad \frac{A B}{A D}=\frac{B C}{D E}=\frac{A C}{A B} \\
& \Rightarrow \\
& \frac{A B}{A D}=\frac{A C}{A B} \\
& \\
& A B^{2}=A C \cdot A D \rightarrow(1)
\end{aligned}
$$

In $\triangle A B C$ and $\triangle B D C$

$$
\begin{gathered}
\angle A B C=\angle B D C=90^{\circ} \\
\angle 2=\angle 2(\text { common) } \\
\therefore \triangle A B C \sim \triangle B D C(A A) \\
b y C P S T, \frac{A B}{B D}=\frac{B C}{D C}=\frac{A C}{B C} \\
\frac{B C}{D C}=\frac{A C}{B C} \Rightarrow B C^{2}=A C \cdot D C \rightarrow \text { (2) }
\end{gathered}
$$

Adding (1) and (2),

$$
\begin{gathered}
A B^{2}+B C^{2}=A C \cdot A D+A C \cdot D C \\
A B^{2}+B C^{2}=A C(A D+D C) \\
A B^{2}+B C^{2}=A C^{2}
\end{gathered}
$$

Hence Proved.
40. Obtain other zeroes of the polynomial $p(x)=2 x^{4}-x^{3}-11 x^{2}+5 x+5$ if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.

OR
What minimum must be added to $2 x^{3}-3 x^{2}+6 x+7$ so that the resulting polynomial will be divisible by $x^{2}-4 x+8 ?$
Sol.
choice - (1)

$$
P(x)=2 x^{4}-x^{3}-11 x^{2}+5 x+5
$$

Given zeroes: $\sqrt{5},-\sqrt{5}$.

Sum of zeroes $=\sqrt{5}-\sqrt{5}=0$
Product of zeroes $=\sqrt{5} \times-\sqrt{5}=-5$.

$$
f(x)=x^{2}+0 x-5
$$

To know about more useful books click here

