# Topper's\* Answers

# C.B.S.E. 2020

# Class-X

## Delhi / Outside Delhi

#### Maximum Time: 3 hours

\*Note : This paper is solely for reference purpose. The pattern of the paper has been changed for the academic year 2022-23.

## **General Instructions:**

Read the following instructions very carefully and strictly follow them:

- (*i*) This question paper comprises **four** sections A, B, C and D. This question paper carries **40** questions. All questions are compulsory.
- (ii) Section A: Question Numbers 1 to 20 comprises of 20 questions of one mark each.
- (iii) Section B: Question Numbers 21 to 26 comprises of 6 questions of two marks each.
- (iv) Section C: Question Numbers 27 to 34 comprises of 8 questions three marks each.
- (v) Section D: Question Numbers 35 to 40 comprises of 6 questions of four marks each.
- (vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt **only one of the choices** in such questions.
- (vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (viii) Use of calculators is not permitted.
- **SECTION A**

### Question numbers 1 to 20 carry 1 mark each.

Choose the correct option in question numbers 1 to 10.

| 1.   | Given that HCF (156, 78), LCM (156, 78) is |                                     |                              |                       |  |  |  |  |
|------|--------------------------------------------|-------------------------------------|------------------------------|-----------------------|--|--|--|--|
|      | (A) 156                                    | <b>(B)</b> 78                       | (C) 156 × 78                 | <b>(D)</b> 156 × 2    |  |  |  |  |
| Sol. | (A) 156                                    | [/                                  |                              |                       |  |  |  |  |
| 2.   | Sides of two simila                        | ar triangles are in the ratio 4 : 9 | . Areas of these triangles a | are in the raio       |  |  |  |  |
|      | <b>(A)</b> 4:9                             | <b>(B)</b> 2:3                      | (C) 81:16                    | <b>(D)</b> 16:81      |  |  |  |  |
| Sol. | (D) 16:                                    | 81                                  |                              |                       |  |  |  |  |
| 3.   | The distance betw                          |                                     |                              |                       |  |  |  |  |
|      | (A) $\sqrt{61}$ units                      | (B) $\sqrt{37}$ units               | (C) 5 units                  | (D) $\sqrt{17}$ units |  |  |  |  |
| Sol. | (B) V37                                    | units                               |                              |                       |  |  |  |  |
| 4.   | The discriminant                           | of the quadratic equation $2x^2$ –  | 4x + 3 = 0 is                |                       |  |  |  |  |
|      | (A) – 8                                    | <b>(B)</b> 10                       | (C) 8<br>OR                  | (D) $2\sqrt{2}$       |  |  |  |  |
|      | Roots of the quad                          | ratic equation $2x^2 - 4x + 3 = 0$  | are                          |                       |  |  |  |  |
| Sol. | (A) real and equa (choice-I) (A)           | l (B) real and distinct             | (C) not real                 | (D) real              |  |  |  |  |
| 5.   | Numbers of zeroe                           | s of the polynomial $p(x)$ shown    | n in Figure-1, are           |                       |  |  |  |  |

To know about more useful books *click here* 

#### MM: 80

**Mathematics** 

(Basic)

|                  |                                                         | X' <b>&lt;</b>                           | p(x)<br>$O \longrightarrow X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |
|------------------|---------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Sol.             | (A) 3<br>(C) L                                          | (B) 2                                    | ♥<br>(C) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>(D)</b> 0                                |
| 6.               | A dice is thrown once                                   | e. The probability of g                  | setting an od number is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |
|                  | (A)<br>1                                                | (B) $\frac{1}{2}$                        | (C) $\frac{4}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D) $\frac{2}{6}$                           |
|                  | (B) 1.                                                  | /                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                          |
| Sol.             | 2                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 7.               | The value of $k$ for wh                                 | iich the equations $3x$ -                | -y + 8 = 0 and $6x + ky = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 represent coincident lines, is           |
|                  | (A) $-\frac{1}{2}$                                      | (B) $\frac{1}{2}$                        | (C) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>(D)</b> – 2                              |
| Sol.             | (D) -2                                                  |                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                           |
| 8.               | If $\sin A = \cos A$ , $0 \le A$                        | $\Lambda \leq 90^\circ$ , then the angle | e A is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 6.1              | $\frac{(A) 30^{\circ}}{(D)}$ 45'                        | <b>(B)</b> 60°                           | (C) 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (D) 45°                                     |
| 501.<br>9.       | The second term from                                    | n the end of the A.P. 5                  | 5, 8, 11,, 47 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |
|                  | $(\underline{A})$ 50                                    | <b>(B)</b> 45                            | (C) 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(D)</b> 41                               |
| Sol.             | C) 44                                                   | solid hemisphere is                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |
| 10.              | (A) $3\pi r^2$                                          | (B) $2\pi r^2$                           | (C) $4\pi r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (D) $\frac{2}{\pi r^2}$                     |
|                  |                                                         | <b>(D)</b> 2 <i>h</i>                    | (C) ±1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (D) $\frac{1}{3}$ <i>m</i>                  |
| Sol.             | (A) 379-                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| Fill in ti<br>11 | <i>he blanks in question n</i><br>The roots of the equa | numbers 11 to 15. $r^2 + hr + c = 0$     | are equal if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| Sol.             | $\mathbb{D} = 0$                                        | ) (discriminant                          | t il-hearn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
|                  | on b <sup>2</sup> -                                     | 4ac = 0                                  | Shere $a = 1$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>                                       |
|                  | <u>_b_z</u>                                             | 4e /                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                         |
| 12.              | The mid-point of the $\left( -\frac{1}{2} \right)$      | line segment joining                     | the points $(-3, -3)$ and $(-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 3) is                                     |
| Sol.             | (-3,0)                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 13.              | The lengths of the tar                                  | ngents drawn from ai                     | n external point to a circle a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e                                           |
| Sol.             | equal.                                                  |                                          | and the second s |                                             |
| 14.              | For a given distribution median of the distrib          | on with 100 observation ution is         | ons, the 'less than' ogive an 'r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nore than' ogive intersect at (58, 50). The |
| Sol.             | 58                                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |

**15.** In the quadratic polynomial  $t^2 - 16$ , sum of the zeroes is \_\_\_\_\_.

75

$$\alpha + \beta = -\dot{b} = 0$$

Sol.

Sol.

Answer the following question numbers 16 to 20.

**16.** Write the  $26^{th}$  term of the A.P. 7, 4, 1, – 2, .....

۵. Sol. а

۵

17. Find the coordinates of the point on *x*-axis which divides the line segment joining the points (2, 3) and (5, -6) in the ratio 1 : 2.

$$y_{n} = 1, m_{2} = 2$$

$$y_{1} = 2, x_{2} = 5$$

$$y_{1} = 3, y_{2} = -6$$
Let the point be P and its coordinates be(x,y)
$$(x,y) = (m, x_{2} + m_{2}x, m, y_{2} + m_{2}y, m, + m_{2}, m, + m_{$$

OR

**18.** If 
$$\operatorname{cosec} \theta = \frac{5}{4}$$
, find the vlue of  $\cot \theta$ 

Find the value of  $\sin 42^\circ - \cos 48^\circ$ .

- Sol. (Choice-II)  $\sin 42^\circ \cos 4.8^\circ$ =  $\sin 42^\circ - \sin (90-48)^\circ$  {::  $\cos \theta = \sin (90-\theta)$ } =  $\sin 42^\circ - \sin 42^\circ$ = 0
  - **19.** The angle of elevation of the top of the tower AB from a point C on the ground, which is 60 m away from the foot of the tower, is 30°, as shown in figure-2. Find the height of the tower.



**20.** In Figure-3, find the length of the tangent PQ drawn from the point P to a circle with centre at O, given that OP = 12 cm and OQ = 5 cm.



Sol.

m OQP Δ 90 20Q P radiues is ythagona = n 0 1200 5cm PO 0

#### **SECTION - B**

#### Question number 21 to 26 carry 2 marks each.

21. A cylindrical bucket, 32 cm high and with radius of base 14 cm, is filled completely with sand. Find the volume of the sand.  $\left(\text{Use } \pi = \frac{22}{7}\right)$ 



**22.** In Figure-4,  $\triangle$  ABC and  $\triangle$  XYZ are shown. If AB = 3.8 cm, AC =  $3\sqrt{3}$  cm, BC = 6 cm, XY =  $6\sqrt{3}$  cm, XZ = 7.6 cm, YZ = 12 cm and  $\angle A = 65^{\circ}$ ,  $\angle B = 70^{\circ}$ , then find the value of  $\angle Y$ .



If the areas of two similar triangles are equal, show that they are congruent.

29ms. 22. (Choice II) Given AABC~ A POR an (ABC) = or (PQR 6 To prover : DABC ≌ D PQR Proof: an(ABC) ar(ABC) = or (PQR Ξ ar(PQR the ratio of areas of two similar AA ar ( ABC) to the satio equal as in their sides Pa ar ( PQR) ,2 AB = PQ AB = PQ 2. AC= PR AC COR Similarly QR

To know about more useful books *click here* 

[5

and (3. From (1. 2. A POR (SSS congruency ABC S · · Proved If sec 2A = cosec (A – 30°),  $0^{\circ} < 2A < 90^{\circ}$ , then find the value of  $\angle A$ . 23. sec 2A = cosec (A-30) Sol. sec 0 = { cosec (90'-0) = cosed A-30 19291 (90-2A 90°-9A 90°+30 = 2 = 2 120 = 2 24. Show that every positive even integer is of the form 2q and that every positive odd integer is of the form 2q + 1, where q is some integer. a lie any positive integer. Let it be divided 2 giving 'q' as quotient, 'r' as remainder. Sol. Let giving = 20 + H According to Euclid's divison algorithm. 0<n<b => 0<n<2 p can either be nohen - r = 0 a = 2q + 0 = 2q = 2q(Here a is even when r=1 a = 2q + 1(Here a is odd) Thus, from (1) and (2.) i can be said that ever 20 and even positive odd Integer is integer is of the form 25. How many two-digit numbers are divisible by 6? OR In an A.P. it is given that common difference is 5 and sum of its first ten terms is 75. Find the first term of the A.P. ans 250 ( Choice -II Sol. d = 5 n = 10,  $S_{10} = 75$  $\alpha = 2$ 

 $g_n = \underbrace{n \left[ 2a + (n-1)d \right]}_{2}$ To know about more useful books *click here* 

| $d = 5$ , $n = 10$ , $S_{10} = 75$ | N.  |
|------------------------------------|-----|
| a = ?                              | 1   |
| $3_{n} = 3 n [2a + (n-1)d]$        |     |
| 1 12                               |     |
| $S_{10} = 10 [20 + (10 - 1)5]$     | _   |
| 2/                                 |     |
| $S_{10} = \frac{10 [2a + 45]}{2}$  | _   |
| $75 \times 2 = 200 + 450$          |     |
| $150 - 450 \neq 20a$               | 5   |
| -300 = 20a                         | L C |
| q = -300                           | 100 |
| 2.0                                |     |
| a = -15                            | Er. |
|                                    |     |

26. The following table shows the ages of the patients admitted in a hospital during a year :

| Age (in years) :                   | 5 – 15 | 15 – 25 | 25 – 35 | 35 – 45 | 45 – 55 | 55 – 65 |  |  |  |
|------------------------------------|--------|---------|---------|---------|---------|---------|--|--|--|
| Number of patients :               | 60     | 110     | 210     | 230     | 150     | 50      |  |  |  |
| Find the mode of the distribution. |        |         |         |         |         |         |  |  |  |

Sol.

·I· 60 110 25 35 210 35 -45 230 45 - 55 50 56 55-65 210 230 150 2 F Mode 1+ xh = fo 35+ 0 2 X



Question number 27 to 34 carry 3 marks each.

27. Seema has a  $10 \text{ m} \times 10 \text{ m}$  kitchen garden attached to her kitchen. She divides it into a  $10 \times 10$  grid and wants to grow some vegetables and herbs used in the kitchen. She puts some soil and manure in that and sows a green chilly plant at A, a coriander plant at B and a tomato plant at C.

Her friend Kusum visited the garden and praised the plants grown there. She pointed out that they seem to be in a straight line. See the below diagram carefully and answer the following questions :  $\frac{y}{y}$ 



(i) Write the coordinates of the points A, B and C taking the 10 × 10 grid as coordinate axes.(ii) By distance formula or some other formula, check whether the points are collinear.

Coordinates 3 Coord are collinear then AB+BC AC = AB = 0 tin £. BC Ξ

To know about more useful books *click here* 

Sol.



**28.** In Figure-5, a circle is inscribed in a  $\triangle$  ABC touching BC, CA and AB at P, Q and R respectively. If AB = 10 cm, AQ = 7 cm, CQ = 5 cm, find the length of BC.



In Figure-6, two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that  $\angle PTQ = 2 \angle OPQ$ .



CQ = 5cm = CPqual tangents from C? -BC = BP + CPfrom (1) BC = 3+5 BC = Scm

Prove that  $\sqrt{2}$  is an irrational number. 29.

Sol.

Let us assume that J2 is national simplest where a and b' Then, a. are co-prime integers, b≠0  $\sqrt{2} = \frac{a}{b}$ squaring both the sides we get  $\frac{2}{b^2} = \frac{\alpha^2}{b^2}$  $2b^{2} = q^{2}$  $\neq$  (1.) Thus, 2 divides a<sup>2</sup> { : it divides b<sup>2</sup>} => 2 divides a {:2 is prime & divides a<sup>2</sup>} - ? Let a = 2 c for some integer c  $a^2 = 4c^2$ 262=4c2 [from ()  $b^2 = 2c^2$ Thus, 2 divides b2 S: 2 divides c2? => 2 divides b E: Ris prime + divides b? }-(3.) from (2) and (3) we get 2 as a common factor of a and b But this contradicts the fact that a and b are co - primes. This contradiction has avisen due to our wrong assumption Therefore, J2 is invational number. 30. Prove that :  $(\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$ 

Sol.

|      | Cosec D -                | $(ot \theta)^2 =$           | 1 - Los O |                                 |  |
|------|--------------------------|-----------------------------|-----------|---------------------------------|--|
|      |                          |                             | 1 + 005 0 | $\checkmark$                    |  |
| From | n L.H.S.                 |                             | $\cap$    |                                 |  |
|      | (coiec o - c             | $(0,0)^2$                   |           | 1                               |  |
| =    | Cosec <sup>2</sup> 0 + ( | ot <sup>2</sup> 0 - 2 cosec | 0 cot 0   | $\{(a-b)^2 = a^2 + b^2 - 2ab\}$ |  |
| =    | 1. + cos                 | $2\theta - 2x \downarrow$   | , Coso    |                                 |  |
|      | sin.O sin                | 2D sin                      | 0 sin 0   | /                               |  |

| = 1 = 00120 9 (010)                                                        |            |
|----------------------------------------------------------------------------|------------|
| $\sin^2 \theta$ $\sin^2 \theta$ $\sin^2 \theta$                            |            |
| $= 1 + \cos^2 \theta - 2 \cos \theta$                                      |            |
| sin <sup>2</sup> 0                                                         |            |
| $(1 - \cos \theta)^2$ $(1 - \cos \theta)^2$ $(a^2 + b^2 - 2ab = (a - b)^2$ | <u>י</u> ר |
| $1 - \cos^2 \theta$ {: $\sin^2 \theta \neq \cos^2 \theta = 1$              |            |
| $= (1-\cos\theta)(1-\cos\theta) >$                                         |            |
| (1-cos D)(1+ cos D) { : a2-b2= (a+b                                        | )(a-b) {   |
| $= 1 - \cos \theta$<br>1 + \cos \theta                                     | (@         |
| = R.H.S.                                                                   | 6          |
| Therefore, Proved.                                                         | 15         |

31. 5 pencils and 7 pens together cost Rs. 250 whereas 7 pencils and 5 pens together cost Rs. 302. Find the cost of one pencil and that of a pen.OR

Solve the following pair of equations using cross-multiplication method : x - 3y - 7 = 03x - 5y - 15 = 0Let the cast of I pencil be Ex and cost of I pen be Ey Then, -ar ATO 74 250  $5\pi$ = = 302 Multiplying 7 subtracting by 11. and from (2 35 +49 5 5 241 240 = 240 24 y = ₹ 10 Substituti 5n+ 10 2 0 52 250 +70 = . 9L = 180 5 x=736 Cost 0 An Cos 0

12]

- 32. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting
- (i) a king of red colour.
- (ii) the queen of diamonds.
- (iii) an ace.

OR

A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears

- (i) a two-digit number.
- (ii) a perfect \$quare number.
- (iii) a prime number less than 15.



**33.** In Figure-7, ABCD is a square of side 14 cm. From each corner of the square, a quadrant of a circle of radius 3.5 cm is cut and also a circle of radius 4 cm is cut as shown in the figure. Find the area of the remaining (shaded) portion of the square.



Figure-7

Sol

| Area | of th    | e square | = (side)<br>= $(14)^2$ | . /       |         |            |
|------|----------|----------|------------------------|-----------|---------|------------|
|      | 5.4      | 4        | = 196 cm2              | - /       |         |            |
| Area | of 4     | quadrant | s = 4x                 | θχχ       | H2]     |            |
| s    | <b>v</b> | V        |                        | 360       |         |            |
| -    |          |          | = 4×[=                 | 90° x 22; | 3.5×3.5 | $\swarrow$ |
|      |          |          | 3                      | 60° 7     | /       |            |



34. Draw the circle of radius 3 cm. Take a point P outside the circle at a distance of 7 cm from the centre O of the circle and draw two tangents to the circle.



To know about more useful books click here

[ 13

#### **SECTION - D**

#### Question number 35 to 40 carry 4 marks each.

In a right-angled triangle, prove that the square of the hypotenuse is equal to the sum of the squares of the 35. Sol. remaining two sides. 13 Ans. 35. ABC ů right angled LB = 90'A D AC > hypotenuse Jo prove: AC2 = AB2+BC2 Const. : Draw AD 1 AD AC Proof: In A ADB and A ABC LADB = LABC = 90 LDAB = LBAC (common) (AA- similarity ٠. ADB ~ ABC criterion) = AD AB =) AB AC =) AB2 = AD X AG In A BDC and A ABC LBDC = LABC = 90° LBCD = LACB (common DABC AA- similarity Uniterion) ABDC V · · · =) BD BC De -BC AC BC2 =) DO = Adding 2 2.  $(1 \cdot$ AC + ACXDC 1 = AD AB2+BC X AC (  $2 + BC^{2} =$ AD+ AA  $+BC^2 =$ AB ACXA AB2+BC2 = AC · · · Proved

37.

Sol.

**36.** Divide polynomial  $-x^3 + 3x^2 - 3x + 5$  by the polynomial  $x^2 + x - 1$  and verify the division algorithm.

OR Find other zeroes of the polynomial  $p(x) = 2x^4 - 3x^3 - 3x^2 + 6x - 2$ if two of its zeroes are  $\sqrt{2}$  and  $-\sqrt{2}$ ( Choice-I) -Ons . 36 . x + 4 x2 +x-+ 3x -32+5 n + 5 -8x+9 Divisor = x2+x-1 Dividend = -x3+ 3x2. 32+5 Remainder -- 9x+9 -1+4 Quotient According to the division algorithm? dend = + Remainder Quotient X - x3 + 3x2 - 3x +5 N2+x-1 x+9) x3 + 3x2 3\*+5 = L.H.S. Proved. •. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower, fixed at

the top of a 20 m high building, are 45° and 60° respectively. Find the height of the tower. (Use  $\sqrt{3} = 1.73$ )

D penso 37. AC → height building = 20m 20m 60  $\frac{(D) \rightarrow \text{height of}}{(D) = x \text{ m}}.$ transmission tower B =xm. A

AB -> distance of the point from the foot of the building .= y. m. In A ABC vortical on the L CAB = 90 building stands ground 3 1 20 1. AADB  $AB = 90^{\circ}$ stands ventical conthe ground, building tan 60° = AD AB 13 20+2 1 ¥ =) 13 20+2 2 19m 20 20+x= 20.53 2053 -20 x = x= 201 52 x= 20(1.73 20× 0.7 2 = = 14.60 h tower m

**38.** A bucket is in the form of a frustum of a cone of height 30 cm with the radii of its lower and upper circular ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. (Use  $\pi = 3.14$ )

OR

Water in a canal 6 m wide and 1.5 m deep, is flowing with a speed of 10 km/hr. How much area will it irrigate in 30 minutes if 4 cm of standing water is needed ?

(Choice-I) h = 30 cm91, = 10 cm =  $H_2 = 20 \, \mathrm{cm}$ = Valum Capacity Volume foustur a cone 0 -200 3.14 (100+400 +200) ×10 = = 3.14 × 700 × 10 2198 × 10 = = 21980 cm3

To know about more useful books *click here* 

Sol.

**39.** Draw a 'more than' ogive for the following distribution :

| Weight<br>(in kg) :     | 40 - 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44 - 48                                                                                                                                             | 48 – 52    | 52 – 56       | 56 - 60   | 60-64 | 64 - |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|-----------|-------|------|
| Number of<br>Students : | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                  | 30         | 24            | 18        | 12    | 2    |
| cumulative frequency    | X 1 (440,<br>00 T (440,<br>0) (4 | (+3,36) $(+3,36)$ $((52,56))$ $((55,32))$ $((55,32))$ $((56,32))$ $((56,32))$ $((56,32))$ $((56,32))$ $((56,32))$ $((56,32))$ $((56,32))$ $(56,56)$ | Acate      | :1cm = 10 uni |           |       |      |
|                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I (Lower                                                                                                                                            | limits)    |               | C . fr.   |       |      |
|                         | More t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | than 40 (                                                                                                                                           | orequal to | )             | 100       | 1     |      |
|                         | More +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | than 44(                                                                                                                                            | or equal t | 0) (0         | (100-4)=9 | 6     |      |
| x *                     | More t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | han 48 C                                                                                                                                            | or equal t | 0)            | 96-10=8   | 6     |      |
| 1.1.1.1.1.1             | More -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | han 52(                                                                                                                                             | or equal t | (a)           | 86-30=    | 56    |      |
|                         | More 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | han 56 (                                                                                                                                            | or equal ? | io)           | 56-24=    | 32    |      |
|                         | More -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | han 60 (                                                                                                                                            | or equal   | to)           | 32-18=    | 14    |      |
|                         | More -U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an 64 (                                                                                                                                             | or equal   | to) /         | 14-12=    | 2     |      |
|                         | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |            | ~             |           |       |      |
| Coord                   | inates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | → (40<br>(44                                                                                                                                        | ,100)      |               |           |       |      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (48                                                                                                                                                 | ,86)       | /             |           |       |      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150                                                                                                                                                 | 5.01       |               |           |       |      |

(56, 32)(60, 14) (64, 2)

**40.** A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Find the original speed of the train.

OR Sum of the areas of two squares is 468 m<sup>2</sup>. If the difference of their parameters is 24 m, find the sides of the two squares. (Choice-II) Ans • 40• للمديد (٢

the two squares be x m and y m resp. Let the des N square 14x sid 0 Perimeter ATR ATO 4 = 2 4 x Aries idi ATO 22 +1 50m (i. 58 C =1 6 216 =0 +18 10 distance cannot be negative because We = 1 con 12+6 x = = 18 m

two squares are 18 m and 12 m.

Sol.

Side