

Maximum Time: 3 hours

MM: 80
*Note : This paper is solely for reference purpose. The pattern of the paper has been changed for the academic year 2022-23.

General Instructions:

Read the following instructions very carefully and strictly follow them:
(i) This question paper comprises four sections - A, B, C and D. This question paper carries 40 questions. All questions are compulsory.
(ii) Section A: Question Numbers 1 to 20 comprises of 20 questions of one mark each.
(iii) Section B: Question Numbers 21 to 26 comprises of 6 questions of two marks each.
(iv) Section C: Question Numbers 27 to 34 comprises of 8 questions three marks each.
(v) Section D: Question Numbers 35 to 40 comprises of 6 questions of four marks each.
(vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions.
(vii) In addition to this, separate instructions are given with each section and question, wherever necessary. (viii) Use of calculators is not permitted.

SECTION - A

Question numbers 1 to 20 carry 1 mark each.
Choose the correct option in question numbers 1 to 10.

1. Given that $\operatorname{HCF}(156,78), \operatorname{LCM}(156,78)$ is
(A) 156
(B) 78
(C) 156×78
(D) 156×2

Sol. (A) 156
2. Sides of two similar triangles are in the ratio $4: 9$. Areas of these triangles are in the raio
(A) $4: 9$
(B) $2: 3$
(C) $81: 16$
(D) $16: 81$

Sol. (D) $16: 81$
3. The distance between the points $(-1,-3)$ and $(5,-2)$ is
(A) $\sqrt{61}$ units
(B) $\sqrt{37}$ units
(C) 5 units
(D) $\sqrt{17}$ units

Sol. (B) $\sqrt{37}$ units

4. The discriminant of the quadratic equation $2 x^{2}-4 x+3=0$ is
(A) -8
(B) 10
(C) 8
(D) $2 \sqrt{2}$

Roots of the quadratic equation $2 x^{2}-4 x+3=0$ are
(A) real and equal
(B) real and distinct
(C) not real
(D) real

Sol. (choice-I)

5. Numbers of zeroes of the polynomial $p(x)$ shown in Figure-1, are

To know about more useful books click here

(A) 3
(B) 2
(C) 1
(D) 0

Sol. $\quad(C) 1$

6. A dice is thrown once. The probability of getting an od number is
(A)
(B) $\frac{1}{2}$
(C) $\frac{4}{6}$
(D) $\frac{2}{6}$

Sol. $(B) \frac{1}{2}+1$
7. The value of k for which the equations $3 x-y+8=0$ and $6 x+k y=-16$ represent coincident lines, is
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 2
(D) -2

Sol. $(D)-2$
8. If $\sin A=\cos A, 0 \leq A \leq 90^{\circ}$, then the angle A is equal to
(A) 30°
(B) 60°
(C) 0°
(D) 45°

Sol.

(D) 45°

9. The second term from the end of the A.P. $5,8,11, \ldots, 47$ is
(A) 50
(B) 45
(C) 44
(D) 41

Sol.

(C) 44

10. Total surface area of a solid hemisphere is
(A) $3 \pi r^{2}$
(B) $2 \pi r^{2}$
(C) $4 \pi r^{2}$
(D) $\frac{2}{3} \pi r^{2}$

Sol. (A) $3 \pi r^{2}$
Fill in the blanks in question numbers 11 to 15.
11. The roots of the equation, $x^{2}+b x+c=0$ are equal if \qquad -
Sol.

$D=0 \quad$ (discriminant is zero)
or $b^{2}-4 a c=0$
$b^{2}=4 c$

12. The mid-point of the line segment joining the points $(-3,-3)$ and $(-3,3)$ is \qquad .

Sol. $(-3,0)$
13. The lengths of the tangents drawn from an external point to a circle are \qquad .

Sol.
equal:
14. For a given distribution with 100 observations, the 'less than' ogive an 'more than' ogive intersect at $(58,50)$. The median of the distribution is \qquad .
58
Sol.
To know about more useful books click here
15. In the quadratic polynomial $t^{2}-16$, sum of the zeroes is \qquad .

Sol.

$$
\alpha+\beta=\frac{-b}{a}=\frac{b}{1}=0
$$

Answer the following question numbers 16 to 20.
16. Write the $26^{\text {th }}$ term of the A.P. $7,4,1,-2, \ldots$. .

Sol.

17. Find the coordinates of the point on x-axis which divides the line segment joining the points $(2,3)$ and $(5,-6)$ in the ratio $1: 2$.
Sol.

Since the point is on x-axis, therefore \forall the point on y-axis will be ' O '.
18. If $\operatorname{cosec} \theta=\frac{5}{4}$, find the value of $\cot \theta$.

Find the value of $\sin 42^{\circ}-\cos 48^{\circ}$.

To know about more useful books click here

Sol. (Choice-II)

$$
\begin{aligned}
& \sin 42^{\circ}-\cos 48^{\circ} \\
= & \sin 42^{\circ}-\sin (90-48)^{\circ} \quad\{\because \cos \theta=\sin (90-\theta)\} \\
= & \sin 42^{\circ}-\sin 42^{\circ} \\
= & 0
\end{aligned}
$$

19. The angle of elevation of the top of the tower $A B$ from a point C on the ground, which is 60 m away from the foot of the tower, is 30°, as shown in figure-2. Find the height of the tower.

Figure-2
Sol.

20. In Figure-3, find the length of the tangent $P Q$ drawn from the point P to a circle with centre at O, given that $\mathrm{OP}=12 \mathrm{~cm}$ and $\mathrm{OQ}=5 \mathrm{~cm}$.

Figure-3
Sol.

To know about more useful books click here

SECTION - B

Question number 21 to 26 carry 2 marks each.
21. A cylindrical bucket, 32 cm high and with radius of base 14 cm , is filled completely with sand. Find the volume of the sand. (Use $\pi=\frac{22}{7}$)

Sol. Cylinder

$h=32 \mathrm{~cm} \quad \pi=\frac{22}{7}$	
$r=14 \mathrm{~cm}$	
Volume of sand	$=$ vel of cylinder
	$=\pi r^{2} h$

	$=\left(\frac{22}{7} \times+4^{2} \times 14 \times 32\right) \mathrm{cm}^{3}$
	$=19712 \mathrm{~cm}^{3}$

22. In Figure-4, $\triangle A B C$ and $\triangle X Y Z$ are shown. If $A B=3.8 \mathrm{~cm}, A C=3 \sqrt{3} \mathrm{~cm}, B C=6 \mathrm{~cm}, X Y=6 \sqrt{3} \mathrm{~cm}$, $\mathrm{XZ}=7.6 \mathrm{~cm}, \mathrm{YZ}=12 \mathrm{~cm}$ and $\angle \mathrm{A}=65^{\circ}, \angle \mathrm{B}=70^{\circ}$, then find the value of $\angle \mathrm{Y}$.

Figure-4
OR
If the areas of two similar triangles are equal, show that they are congruent.
Sol. Ans. 22. (Choice II)

Jo prover: $\triangle A B C \cong \triangle P Q R$
Proof:

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=1 \quad\{\because \operatorname{ar}(A B C)=\operatorname{ar}(P Q R\}
$$

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2} \quad\{\because \text { the ratio of areas of two similar } \quad \Delta \text { is equal to the ravatio of their sides }\}
$$

$\frac{A B}{P Q}=1^{2}$ $P Q$

To know about more useful books click here

From (1.) (2.) and (3.)

23. If $\sec 2 A=\operatorname{cosec}\left(A-30^{\circ}\right), 0^{\circ}<2 A<90^{\circ}$, then find the value of $\angle A$.

Sol. $\sec 2 A=\operatorname{cosec}\left(A-30^{\circ}\right) \sim$

24. Show that every positive even integer is of the form 2 q and that every positive odd integer is of the form $2 q+1$, where q is some integer.
Sol. Let a be any positive integer. Let it le divided by 2 giving ' q ' as quotient, ' r ' as remainder..

$$
a=2 q+r
$$

According to Euclid's divison algorithm.

$$
0 \leq r<b \Rightarrow 0 \leq r<2
$$

r can either be of or 1
When - $r=0$

$$
\begin{aligned}
& a=2 q+0 \Rightarrow a=2 q \text { (Here } \\
& \text { When } r=1 \\
& a=2 q+1 \text { (Here a is odd) }
\end{aligned}
$$

Thus, from (1.) and (2.) it cen be said that everyevpositive integer is of the form $2 q$ and every positive odd integer is of the form $2 q+1$.
25. How many two-digit numbers are divisible by 6 ?

OR
In an A.P. it is given that common difference is 5 and sum of its first ten terms is 75 . Find the first term of the A.P.
Sol. Ans. 250 (Choice - II)

$$
\begin{aligned}
& d=5 \quad, n=10, s_{10}=75 \\
& a=? \\
& s_{n}=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$

To know about more useful books click here

$$
\begin{aligned}
& d=5, \quad, n=10, S_{10}=75 \\
& a=? \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{10}=\frac{10}{2}[2 a+(10-1) 5] \\
& S_{10}=\frac{10}{2}[2 a+45] \\
& 75 \times 2=20 \not 0+450 \\
& 150-450 \neq 20 a \\
& -300=20 a \\
& a=\frac{-30 \varnothing}{20} \\
& a=-15
\end{aligned}
$$

26. The following table shows the ages of the patients admitted in a hospital during a year :

Age (in years) :	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Number of patients :	60	110	210	230	150	50

Sol.
Find the mode of the distribution.

$$
\begin{aligned}
\text { Mode } & =l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \\
& =35+\left[\frac{230-210}{460-210-150}\right] \times 10
\end{aligned}
$$

To know about more useful books click here

SECTION - C

Question number 27 to 34 carry 3 marks each.

27. Seem has a $10 \mathrm{~m} \times 10 \mathrm{~m}$ kitchen garden attached to her kitchen. She divides it into a 10×10 grid and wants to grow some vegetables and herbs used in the kitchen. She puts some soil and manure in that and sows a green chilly plant at A, a coriander plant at B and a tomato plant at C.
Her friend Kusum visited the garden and praised the plants grown there. She pointed out that they seem to be in a straight line. See the below diagram carefully and answer the following questions :

(i) Write the coordinates of the points A, B and C taking the 10×10 grid as coordinate axes.
(ii) By distance formula or some other formula, check whether the points are collinear.

Sol.

Coordinates of $B=(5,4)$

Coordinates of. $C=(7,6)$,
(ii.) If the points are collinear then,
$-\quad A B+B C=A C$

$$
A B+B C=A C
$$

To know about more useful books click here
$B C=\sqrt{4+4}$
$B C=\sqrt{8} /$ unit
$A C=\sqrt{(7-2)^{2}+(6-2)^{2}}$
$A C=\sqrt{25+16}$
$A C=\sqrt{41}$
$\because \sqrt{13}+\sqrt{8} \neq \sqrt{41}$
\therefore "The points art not collinear.
28. In Figure-5, a circle is inscribed in a $\triangle A B C$ touching $B C, C A$ and $A B$ at P, Q and R respectively. If $A B=10 \mathrm{~cm}$, $A Q=7 \mathrm{~cm}, C Q=5 \mathrm{~cm}$, find the length of $B C$.

Figure-5
OR
In Figure-6, two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

Figure-6
Sol. Ans. 28. (choice - I)
$A B=10 \mathrm{~cm}, A Q=7 \mathrm{~cm}, C Q=5 \mathrm{~cm}$
$B C=?$
$A R=A Q$ (equal tangents from point A) \{langents from a
$A R=7 \mathrm{~cm}$ point outside the circle are equal in length $\}$
$A B=A R+B R$
$B R=A B-A R$
$B R=10-7$
$B R=3 \mathrm{~cm}$
$B R=B P=3 \mathrm{~cm}$ (equal tangents from B)

To know about more useful books click here

29. Prove that $\sqrt{2}$ is an irrational number.

Sol. Let us assume that $\sqrt{2}$ is rational
Then, $\frac{a}{b}$ is its simplest where ' a ' and ' b ' are
co-prime integers, $b \neq 0$
$\sqrt{2}=\frac{a}{b}$
squaring both the sides we get

$\Rightarrow 2$ divides a $\left\{\because 2\right.$ is prime e dived es $\left.a^{2}\right\}$ (2.)
Let $a=2 c$ for some integer c

$$
a^{2}=4 c^{2}
$$

$2 b^{2}=4 c^{2} \quad$ [from (1)]
$b^{2}=2 c^{2}$
Thus, 2 divides $b^{2}\left\{\because 2\right.$ divides $\left.c^{2}\right\}$
$\Rightarrow 2$ divides $b\left\{: 2\right.$ is prime 4 divides $\left.b^{2}\right\}$-(3.)
From (2.) and (3.) we get 2 as a common factor of a and b
But this contradicts the fact that a and b are
CO-primes.
This contradiction has arisen due to our wrong assumption
Therefore, $\sqrt{2}$ is irrational number.
30. Prove that:

$$
(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}
$$

Sol.
$\quad(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
From L.H.S.
$=\frac{(\operatorname{cosec} \theta-\cot \cdot \theta)^{2}}{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta-2 \operatorname{cosec} \theta \cot \theta} \quad\left\{(a-b)^{2}=a^{2}+b^{2}-2 a b\right\}$
$=\frac{1}{\sin ^{2} \cdot \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-2 \times \frac{1}{\sin \theta} \times \frac{\cos \theta}{\sin \theta}$

To know about more useful books click here

31. 5 pencils and 7 pens together cost Rs. 250 whereas 7 pencils and 5 pens together cost Rs. 302 . Find the cost of one pencil and that of a pen.

> OR

Solve the following pair of equations using cross-multiplication method :
Sol.

$$
\begin{array}{r}
x-3 y-7=0 \\
3 x-5 y-15=0
\end{array}
$$

Let the cost of 1 pencil be ₹ x and cost of 1 pen be $₹ y$.
Then, ATQ,

$35 x+49 y$	$=1750$
$35 x+25 y$	$=1510$
$24 y$	$=240$
y	$=\frac{240}{24}$
y	$=\mp 10$
$5 x+7(10)$	$=250$
$5 x=250$	+10
se $x=\frac{180}{5}$	
$x=₹ 36$	

To know about more useful books click here
32. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting
(i) a king of red colour.
(ii) the queen of diamonds.
(iii) an ace.

OR
A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears
(i) a two-digit number.
(ii) a perfect \$quare number.
(iii) a prime number less than 15 .

Sol. (Choice-I (i.). Jotal no. of red king $=2$

Total no. of cards $=52$	
	$=\frac{2}{52}$
	$=\frac{\text { Total no no of outcomes a }}{2}$

(ii.) Diemond suit has 1 queen
$P($ getting the queen of diamonds $)=\frac{1}{52}$

(iii.) There are total 4 ace (one in each suit)

$$
P(\text { getting an ace })=\frac{4}{182}=\frac{1}{13}
$$

33. In Figure-7, ABCD is a square of side 14 cm . From each corner of the square, a quadrant of a circle of radius 3.5 cm is cut and also a circle of radius 4 cm is cut as shown in the figure. Find the area of the remaining (shaded) portion of the square.

Figure-7
Sol.

$$
\begin{aligned}
& =\left(4 \times \frac{1}{4} \times 22 \times 0.5 \times 3.5\right) \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{22}{7} \times(4)^{2} \\
& =\frac{352}{7}=50.29 \mathrm{~cm}^{2} \text { (approx.) }
\end{aligned}
$$

Area of shaded region = Area of square - (Area of sqquadeants \pm Area of circle

$$
\begin{aligned}
& =196-(38.5+50.29) \\
& =(196-88.7 \mathrm{~g}) \\
& =107.21 \mathrm{~m}^{2} \quad \text { (uffrose) }
\end{aligned}
$$

34. Draw the circle of radius 3 cm . Take a point P outside the circle at a distance of 7 cm from the centre O of the circle and draw two tangents to the circle.

Sol.

PT and PS are the required tangents.
Steps of construction:

1. Draw a circle with radius 3 cm
2. Jake a point P outside the s circle which is 7 cm away from the ventre of the circle.
3. Join OP.
4. Draw the perpendicular bisector of $O P$ which intersects it at m.
5. Taking M as centre and radius equal to PM draw another circle.
6. Hark the points of intersection of bigger circle and smatter circle as T and S
7. Join PT and PS.

To know about more useful books click here

SECTION - D

Question number 35 to 40 carry 4 marks each.
35. In a right-angled triangle, prove that the square of the hypotenuse is equal to the sum of the squares of the Sol. remaining two sides.

In $\triangle B D C$ and $\triangle A B C$
$\begin{aligned} \angle B D C & =\angle A B C=90^{\circ} \\ \angle B C D & =\angle A C B \text { (common) } \\ \therefore \triangle B D C & \sim \triangle A B C \text { (} A A-\text { similarity criterion) } \\ \Rightarrow B D & =D C\end{aligned}$
$\Rightarrow \frac{B D}{A C}=\frac{D C}{B C}$.
$\Rightarrow B C^{2}=A C / D C$ - 2
Adding (1.) \& (2.) useget,
$A B^{2}+B C^{2}=A D \times A C+A C \times D C$
$A B^{2}+B C^{2}=A C(A D+D C)$
$A B^{2}+B C^{2}=A C \times A C$
$A B^{2}+B C^{2}=A C^{2}$
\therefore Proved

To know about more useful books click here
36. Divide polynomial $-x^{3}+3 x^{2}-3 x+5$ by the polynomial $x^{2}+x-1$ and verify the division algorithm.

OR

Find other zeroes of the polynomial
$\mathrm{p}(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$
if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$
Sol. Ans. 36. (Choc elI)

Divisor: $=x^{2}+x-1$
Dividend $=-x^{3}+3 x^{2}-3 x+5$
Remainder - $-8 x+9$
Quotient $=-x+4$

According to the division algorithm
Dividend $=$ Divisor. \times Quotient + Remainder
$x^{3}+3 x^{2}-3 x+5=(-x+4)(-x+4)+(-8 x+9)$

$-x^{3}+3 x^{2}-3 x+5$	$=\left(x^{2}+x-1\right) \times(-x+4)+(-8 x+9)$
	$=-x^{3}+4 x^{2}-x^{2}+4 x+x-4-8 x+9$
	$=-x^{3}+3 x^{2}-3 x+5$
	$=$ L.H.S.
\therefore Proved.	

37. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower, fixed at the top of a 20 m high building, are 45° and 60° respectively. Find the height of the tower. (Use $\sqrt{3}=1.73$)
Sol.

To know about more useful books click here

38. A bucket is in the form of a frustum of a cone of height 30 cm with the radii of its lower and upper circular ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. (Use $\pi=3.14$)

OR
Water in a canal 6 m wide and 1.5 m deep, is flowing with a speed of $10 \mathrm{~km} / \mathrm{hr}$. How much area will it irrigate in 30 minutes if 4 cm of standing water is needed?
Sol. (Choice-I)

To know about more useful books click here
39. Draw a 'more than' ogive for the following distribution :

Weight (in kg) :	$40-44$	$44-48$	$48-52$	$52-56$	$56-60$	$60-64$	$64-68$
Number of Students :	4	10	30	24	18	12	2

Sol.

$C \cdot I$ (Lower limits)	$c \cdot f$
More than 40 (or equal to)	100
More than 44 (or equal to)	$(100-4)=96$
More than 48 (or equal to)	$96-10=86$
More than 52 (or equal to)	$86-30=56$
More than 56 (or equal to)	$56-24=32$
More than 60 (or equal to)	$32-18=14$
More than 64 (or equal to)	$14-12=2$

To know about more useful books click here
40. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{hr}$ more, it would have taken 1 hour less for the same journey. Find the original speed of the train.

OR
Sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their parameters is 24 m , find the sides of the two squares.
Sol. (Choice-II) Ans. 40. Choice (II)
Let the sides of the thur squares be $x \mathrm{~m}$ and $y m$ resp. $\triangle T Q$, Perimeter of square $\neg 4 \times$ side
ATQ, $\quad 4 x-4 y=24$ $4(x-y)=24$

Area of square $=(\text { side })^{2}$

\qquad

