Sample Question Paper, 2021-22
 (Issued by CBSE Board on $14^{\text {th }}$ January, 2022) MATHEMATICS (Term- II) SOLVED

Time allowed : 2 Hours
Max. Marks : 40

General Instructions :

1. This question paper contains three section $\boldsymbol{A}, \boldsymbol{B}$ and C. Each part is compulsory.
2. Section - \boldsymbol{A} has $\mathbf{6}$ short answer type (SA1) questions of 2 marks each.
3. Section - B has 4 short answer type (SA2) questions of 3 marks each.
4. Section - C has 4 long answer type questions (LA) of 4 marks each.
5. There is an internal choice in some of the questions.
6. Q14 is a case-based problem having 2 sub parts of 2 marks each.
7. Find : $\int \frac{\log x}{(1+\log x)^{2}} d x$

OR

Find : $\int \frac{\sin 2 x}{\sqrt{9-\cos ^{4} x}} d x$
2. Write the sum of the order and the degree of the following differential equation:
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=5$
3. If \hat{a} and \hat{b} are unit vectors, then prove that $|\hat{a}+\hat{b}|=2 \cos \frac{\theta}{2}$, where θ is the angle between them.
4. Find the direction cosines of the following line:
$\frac{3-x}{-1}=\frac{2 y-1}{2}=\frac{z}{4}$
5. A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.
6. Two cards are drawn at random from a pack of 52 cards one-by-one without replacement. What is the probability of getting first card red and second card Jack?
7. Find : $\int \frac{x+1}{\left(x^{2}+1\right) x} d x$
8. Find the general solution of the following differential equation:
$x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)$

OR

Find the particular solution of the following differential equation, given that $y=0$ when $x=\frac{\pi}{4}$: $\frac{d y}{d x}+y \cot x=\frac{2}{1+\sin x}$
9. If $\vec{a} \neq \overrightarrow{0}, \vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$, then show that $\vec{b}=\vec{c}$.
10. Find the shortest distance between the following lines:

$$
\begin{aligned}
& \vec{r}=(\hat{i}+\hat{j}-\hat{k})+s(2 \hat{i}+\hat{j}+\hat{k}) \\
& \vec{r}=(\hat{i}+\hat{j}+2 \hat{k})+t(4 \hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

OR

Find the vector and the cartesian equations of the plane containing the point $\hat{i}+2 \hat{j}-\hat{k}$ and parallel to the lines $\vec{r}=(\hat{i}+2 \hat{j}+2 \hat{k})+s(2 \hat{i}-3 \hat{j}+2 \hat{k})=0$ and $\vec{r}=(3 \hat{i}+\hat{j}-2 \hat{k})+t(\hat{i}-3 \hat{j}+\hat{k})=0$

Section - C

[4 Marks each]
11. Evaluate: $\int_{-1}^{2}\left|x^{3}-3 x^{2}+2 x\right| d x$
12. Using integration, find the area of the region in the first quadrant enclosed by the line $x+y=2$, the parabola $y^{2}=x$ and x-axis.

OR

Using integration, find the area of the region $\left\{(x, y): 0 \leq y \leq \sqrt{3} x, x^{2}+y^{2} \leq 4\right\}$
13. Find the foot of the perpendicular from the point (1, $2,0)$ upon the plane $x-3 y+2 z=9$. Hence, find the distance of the point $(1,2,0)$ from the given plane.

Case-Based/Data Based

14. An insurance company believes that people can be divided into two classes: those who are accident prone and those who are not. The company's
statistics show that an accident-prone person will have an accident at sometime within a fixed one-year period with probability 0.6, whereas this probability is 0.2 for a person who is not accident prone. The company knows that 20 percent of the people is
 accident prone.
Based on the given information, answer the following questions.
(i) What is the probability that a new policyholder will have an accident within a year of purchasing a policy?
(ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone? [2]

MATHEMATICS
 CBSE Marking Scheme Answers 2021-2022 (Issued by Board)

Section - A

1. $\int \frac{\log x}{(1+\log x)^{2}} d x$

$$
\begin{align*}
& =\int \frac{\log x+1-1}{(1+\log x)^{2}} d x \\
& =\int \frac{1}{1+\log x} d x-\int \frac{1}{(1+\log x)^{2}} d x \\
& =\frac{1}{1+\log x} \times x-\int \frac{-1}{(1+\log x)^{2}} \times \frac{1}{x} \times x d x \\
& \quad-\int \frac{1}{(1+\log x)^{2}} d x \\
& 1
\end{align*}
$$

OR
$\int \frac{\sin 2 x}{\sqrt{9-\cos ^{4} x}} d x$
Put $\quad \cos ^{2} x=t$
$\Rightarrow-2 \cos x \sin x d x=d t$

$$
\Rightarrow \quad \sin 2 x d x=-d t
$$

The given integral

$$
\begin{aligned}
& =-\int \frac{d t}{\sqrt{3^{2}-t^{2}}} \\
& =-\sin ^{-1} \frac{t}{3}+c \\
& =-\sin ^{-1} \frac{\cos ^{2} x}{3}+c
\end{aligned}
$$

2.

$$
\begin{array}{rlrl}
\text { Order } & =2 & \mathbf{1} \\
\text { Degree } & =1 & 1 / 2 \\
\text { Sum } & =3 & 1 / 2
\end{array}
$$

3. $(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})=|\hat{a}|^{2}+|\hat{b}|^{2}+2(\hat{a} \cdot \hat{b})$
$|\hat{a}+\hat{b}|^{2}=1+1+2 \cos \theta$

$$
=2(1+\cos \theta)=4 \cos ^{2} \frac{\theta}{2}
$$$1 / 2$

$$
\therefore \quad|\hat{a}+\hat{b}|=2 \cos \frac{\theta}{2}
$$

$1 / 2$
4. The given line is

$$
\begin{equation*}
\frac{x-3}{1}=\frac{y-\frac{1}{2}}{1}=\frac{z}{4} \tag{1}
\end{equation*}
$$

Its direction ratios are $<1,1,4>$
Its direction cosines are
$\left(\frac{1}{3 \sqrt{2}}, \frac{1}{3 \sqrt{2}}, \frac{4}{3 \sqrt{2}}\right)$
5. Let X be the random variable defined as the number of red balls.

Then

$$
\begin{aligned}
X & =0,1 \\
P(X=0) & =\frac{3}{4} \times \frac{2}{3}=\frac{6}{12}=\frac{1}{2} \\
P(X=1) & =\frac{1}{4} \times \frac{3}{3}+\frac{3}{4} \times \frac{1}{3}=\frac{6}{12}=\frac{1}{2}
\end{aligned}
$$

Probability distribution Table:

X	0	0
$P(X)$	$\frac{1}{2}$	$\frac{1}{2}$

6. \quad The required probability $=P($ (The first is a red jack card and The second is a jack card) or (The first is a red non-jack card and The second is a jack card)) 1

$$
\begin{equation*}
=\frac{2}{52} \times \frac{3}{51}+\frac{24}{52} \times \frac{4}{51}=\frac{1}{26} \tag{1}
\end{equation*}
$$

Section - B

7. Let

$$
\begin{aligned}
& \frac{x+1}{\left(x^{2}+1\right) x}=\frac{A x+B}{x^{2}+1}+\frac{C}{x}=\frac{(A x+B) x+C\left(x^{2}+1\right)}{\left(x^{2}+1\right) x} \\
& \Rightarrow \quad x+1=(A x+B) x+C\left(x^{2}+1\right) \quad \text { (An identity) }
\end{aligned}
$$

Equating the coefficients, we get
$B=1, C=1, A+C=0$
Hence, $A=-1, B=1, C=1$
The given integral

$$
\begin{aligned}
& =\int \frac{-x+1}{x^{2}+1} d x+\int \frac{1}{x} d x \\
& =\frac{-1}{2} \int \frac{2 x-2}{x^{2}+1} d x+\int \frac{1}{x} d x \\
& =\frac{-1}{2} \int \frac{2 x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x+\int \frac{1}{x} d x \\
& =\frac{-1}{2} \log \left(x^{2}+1\right)+\tan ^{-1} x \\
& \quad+\log |x|+c 1^{1 / 2}
\end{aligned}
$$

8. We have the differential equation

$$
\frac{d y}{d x}=\frac{y}{x}-\sin \left(\frac{y}{x}\right)
$$

The equation is a homogeneous differential equation.

$$
\begin{array}{lrl}
\text { Putting } & y & =v x \\
\Rightarrow & \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{array}
$$

The differential equation becomes

$$
\begin{array}{rlrl}
& & v+x \frac{d v}{d x} & =v-\sin v \\
\Rightarrow & \frac{d v}{\sin v} & =-\frac{d x}{x} \\
\Rightarrow & \operatorname{cosec} v d v & =-\frac{d x}{x}
\end{array}
$$

Integrating both sides, we get

$$
\log |\operatorname{cosec} v-\cot v|=-\log |x|+\log K,
$$

$K>0$ (Here, $\log K$ is an arbitrary constant.)
which is the required general solution.

OR

The differential equation is a linear differential equation

$$
\begin{equation*}
\Rightarrow \quad \mathrm{IF}=e^{\int \cot x d x}=e^{\int \log \sin x}=\sin x \tag{1}
\end{equation*}
$$

The general solution is given by

$$
\begin{align*}
y \sin x & =\int 2 \frac{\sin x}{1+\sin x} d x \\
\Rightarrow \quad y \sin x & =2 \int \frac{\sin x+1-1}{1+\sin x} d x \\
& =2 \int\left[1-\frac{1}{1+\sin x}\right] d x \\
\Rightarrow \quad y \sin x & =2 \int\left[1-\frac{1}{1+\cos \left(\frac{\pi}{2}-x\right)}\right] d x \\
\Rightarrow \quad y \sin x & =2 \int\left[1-\frac{1}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right] d x
\end{align*}
$$

$\Rightarrow \quad y \sin x=2 \int\left[1-\frac{1}{2} \sec ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)\right] d x$
$\Rightarrow y \sin x=2\left[x+\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right]+c$
Given that $y=0$, when $x=\frac{\pi}{4}$,
Hence, $\quad 0=2\left[\frac{\pi}{4}+\tan \frac{\pi}{8}\right]+c$
$\Rightarrow \quad c=-\frac{\pi}{2}-2 \tan \frac{\pi}{8}$
Hence, the particular solution is

$$
\begin{aligned}
y=\operatorname{cosec} x & {\left[2\left\{x+\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right\}\right.} \\
& \left.-\left(\frac{\pi}{2}+2 \tan \frac{\pi}{8}\right)\right] 1 / 2
\end{aligned}
$$

Alternative method

$\frac{d y}{d x}+y \cot x=\frac{2}{1+\sin x}$
The differential equation is a linear differential equations
$\therefore \quad$ I.F. $=e^{\int \cot x d x}=e^{\ln \sin x}=\sin x$
The general solution is given by

$$
\begin{aligned}
y \sin x & =2 \int \frac{\sin x}{1+\sin x} d x \\
& =2 \int \frac{1+\sin x-1}{1+\sin x} d x \\
& =2 \int \frac{1+\sin x}{1+\sin x} d x-2 \int \frac{1 d x}{1+\sin x} \\
y \sin x & =2 x-2 \int \frac{1-\sin x}{\cos ^{2} x} d x \\
y \sin x & =2 x-2 \int \sec ^{2} x+2 \int \tan x \sec x d x \\
y \sin x & =2 x-2 \tan x+2 \sec x+c
\end{aligned}
$$

Given that

$$
\begin{aligned}
& y=0 \text { when } x=\frac{\pi}{4} \\
& 0=\frac{\pi}{2}-2+\sqrt{2}+C \\
& C=-\left(\frac{\pi}{2}-2+\sqrt{2}\right)
\end{aligned}
$$

Since, the particular solution is

$$
y \sin x=2 x-2 \tan x+2 \sec x-\frac{\pi}{2}+2-\sqrt{2}
$$

9. We have

$$
\begin{aligned}
& & \vec{a} \cdot(\vec{b}-\vec{c}) & =0 \\
\Rightarrow & & (\vec{b}-\vec{c}) & =\overrightarrow{0} \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \\
\Rightarrow & & \vec{b} & =\vec{c} \text { or } \vec{a} \perp(\vec{b}-\vec{c})
\end{aligned}
$$

$$
\begin{aligned}
\text { Also, } & & \vec{a} \times(\vec{b}-\vec{c}) & =\overrightarrow{0} \\
\Rightarrow & & (\vec{b}-\vec{c}) & =\overrightarrow{0} \text { or } \vec{a} \|(\vec{b}-\vec{c}) \\
\Rightarrow & & \vec{b} & =\vec{c} \text { or } \vec{a} \|(\vec{b}-\vec{c})
\end{aligned}
$$

\vec{a} cannot be both perpendicular to $(\vec{b}-\vec{c})$ and parallel to $(\vec{b}-\vec{c})$

Hence, $\vec{b}=\vec{c}$.
10. Here, the lines are parallel. The shortest distance

$$
\begin{align*}
& =\left|\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}}{|\vec{b}|}\right| \\
& =\frac{|(3 \hat{k}) \times(2 \hat{i}+\hat{j}+\hat{k})|}{\sqrt{4+1+1}} \quad \mathbf{1}+1 / 2 \\
(3 \hat{k}) \times(2 \hat{i}+\hat{j}+\hat{k}) & =\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
0 & 0 & 3 \\
2 & 1 & 1
\end{array}\right|=-3 \hat{i}+6 \hat{j} \tag{1}
\end{align*}
$$

Hence, the required shortest distance

$$
=\frac{3 \sqrt{5}}{\sqrt{6}} \text { units }
$$

OR

Since, the plane is parallel to the given lines, the cross product of the vector $2 \hat{i}-3 \hat{j}+2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$ will be normal to the plane

$$
\begin{align*}
(2 \hat{i}-3 \hat{j}+2 \hat{k}) \times(\hat{i}-3 \hat{j}+\hat{k}) & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -3 & 2 \\
1 & -3 & 1
\end{array}\right| \\
& =3 \hat{i}-3 \hat{k} \tag{1}
\end{align*}
$$

The vector equation of the plane is

$$
\vec{r} \cdot(3 \hat{i}-3 \hat{k})=(\hat{i}+2 \hat{j}-\hat{k}) \cdot(3 \hat{i}-3 \hat{k})
$$

or,

$$
\vec{r} \cdot(\hat{i}-\hat{k})=2
$$

and the cartesian equation of the plane is

$$
x-z-2=0 .
$$

Section-C

11. The given definite integral

$$
\begin{aligned}
& =\int_{-1}^{2}|x(x-1)(x-2)| d x \\
& =\int_{-1}^{0}|x(x-1)(x-2)| d x+\int_{0}^{1}|x(x-1)(x-2)| d x \\
& +\int_{1}^{2}|x(x-1)(x-2)| d x \quad 11 / 2
\end{aligned}
$$

$$
\begin{align*}
& =-\int_{-1}^{0}\left(x^{3}-3 x^{2}+2 x\right) d x+\int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x \\
& -\int_{1}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x \quad 1 / 2 \\
& =-\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{-1}^{0}+\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1} \\
& -\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{1}^{2} \\
& =\frac{9}{4}+\frac{1}{4}+\frac{1}{4}=\frac{11}{4} \tag{2}
\end{align*}
$$

12. Solving $x+y=2$ and $y^{2}=x$ simultaneously, we get the points of intersection as $(1,1)$ and $(4,-2)$.

1

The required area $=$ The shaded area

$$
\begin{aligned}
& =\int_{0}^{1} \sqrt{x} d x+\int_{1}^{2}(2-x) d x \\
& =\frac{2}{3}\left[x^{3 / 2}\right]_{0}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{2}{3}+\frac{1}{2}=\frac{7}{6} \text { square units }
\end{aligned}
$$

OR

Solving $y=\sqrt{3} x$ and $x^{2}+y^{2}=4$, we get the points of intersection as $(1, \sqrt{3})$ and $(-1,-\sqrt{3})$

The required area $=$ The shaded area
$=\int_{0}^{1} \sqrt{3} x d x+\int_{1}^{2} \sqrt{4-x^{2}} d x$
$=\frac{\sqrt{3}}{2}\left[x^{2}\right]_{0}^{1}+\frac{1}{2}\left[x \sqrt{4-x^{2}}+4 \sin ^{-1} \frac{x}{2}\right]_{1}^{2}$
$=\frac{\sqrt{3}}{2}+\frac{1}{2}\left[2 \pi-\sqrt{3}-2 \frac{\pi}{3}\right]$
$=\frac{2 \pi}{3}$ square units
13. The equation of the line perpendicular to the plane and passing through the point $(1,2,0)$ is

$$
\begin{equation*}
\frac{x-1}{1}=\frac{y-2}{-3}=\frac{z}{2} \tag{1}
\end{equation*}
$$

The coordinates of the foot of the perpendicular are $(\mu+1,-3 \mu+2,2 \mu)$ for some μ

These coordinates will satisfy the equation of the plane. Hence, we have

$$
\mu+1-3(-3 \mu+2)+2(2 \mu)=9
$$

$$
\begin{equation*}
\Rightarrow \quad \mu=1 \tag{1}
\end{equation*}
$$

The foot of the perpendicular is $(2,-1,2)$. $1 / 2$
Hence, the required distance
$=\sqrt{(1-2)^{2}+(2+1)^{2}+(0-2)^{2}}=\sqrt{14}$ untis

Case-Based/Data Based

14. Let $E_{1}=$ The policy holder is accident prone.
$E_{2}=$ The policy holder is not accident prone.
$E=$ The new policy holder has an accident within a year of purchasing a policy.
(i) $\quad P(E)=P\left(E_{1}\right) \times P\left(\frac{E}{E_{1}}\right)+P\left(\frac{E}{E_{2}}\right) \times P\left(\frac{E}{E_{2}}\right)$

$$
=\frac{20}{100} \times \frac{6}{10}+\frac{80}{100} \times \frac{2}{10}=\frac{7}{25}
$$

(ii) By Bayes' Theorem,

$$
\begin{align*}
P\left(\frac{E_{1}}{E}\right) & =\frac{P\left(E_{1}\right) \times P\left(\frac{E}{E_{1}}\right)}{P(E)} \tag{1}\\
& =\frac{\frac{20}{100} \times \frac{6}{10}}{\frac{280}{1000}}=\frac{3}{7} \tag{1}
\end{align*}
$$

Solved Paper, 2021-2022 MATHEMATICS
 Term-I, Set-4

Series: SSJ/2

Question Paper
Code No. 065/2/4

Time allowed : 90 Minutes

Max. Marks : 40

General Instructions :

(i) This question paper comprises of $\mathbf{5 0}$ questions out of which $\mathbf{4 0}$ questions are to be attempted as per instructions. All questions carry equal marks.
(ii) The question paper consists of three Sections - Section A, B and C.
(iii) Section - A contains 20 questions. Attempt any 16 questions from Q. No. 1 to 20.
(iv) Section - B also contains 20 questions. Attempt any 16 questions from Q. No. 21 to 40.
(v) Section - C contains 10 questions including one Case Study. Attempt any 8 questions from Q. No. 41 to 50.
(vi) There is only one correct option for every Multiple Choice Question (MCQ). Marks will not be awarded for answering more than one option.
(vii) There is no negative marking.

SECTION - A

In this section, attempt any 16 questions out of Questions 1-20. Each question is of one mark.

1. Differential of $\log \left[\log \left(\log x^{5}\right)\right]$ w.r.t x is
(a) $\frac{5}{x \log \left(x^{5}\right) \log \left(\log x^{5}\right)}$
(b) $\frac{5}{x \log \left(\log x^{5}\right)}$
(c) $\frac{5 x^{4}}{\log \left(x^{5}\right) \log \left(\log x^{5}\right)}$
(d) $\frac{5 x^{4}}{\log x^{5} \log \left(\log x^{5}\right)}$
2. The number of all possible matrices of order 2×3 with each entry 1 or 2 is
(a) 16
(b) 6
(c) 64
(d) 24
3. A function $f: \mathrm{R} \rightarrow \mathrm{R}$ is defined as $f(x)=x^{3}+1$. Then the function has
(a) no minimum value
(b) no maximum value
(c) both maximum and minimum values
(d) neither maximum value nor minimum value
4. If $\sin y=x \cos (a+y)$, then $\frac{d x}{d y}$ is
(a) $\frac{\cos a}{\cos ^{2}(a+y)}$
(b) $\frac{-\cos a}{\cos ^{2}(a+y)}$
(c) $\frac{\cos a}{\sin ^{2} y}$
(d) $\frac{-\cos a}{\sin ^{2} y}$
5. The points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$, where tangent is parallel to X-axis are
(a) $(\pm 5,0)$
(b) $(0, \pm 5)$
(c) $(0, \pm 3)$
(d) $(\pm 3,0)$
6. Three points $\mathrm{P}(2 x, x+3), \mathrm{Q}(0, x)$ and $\mathrm{R}(x+3, x+6)$ are collinear, then x is equal to
(a) 0
(b) 2
(c) 3
(d) 1
7. The principal value of $\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is
(a) $\frac{\pi}{12}$
(b) π
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{6}$
8. If $\left(x^{2}+y^{2}\right)^{2}=x y$, then $\frac{d y}{d x}$ is
(a) $\frac{y+4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}$
(b) $\frac{y-4 x\left(x^{2}+y^{2}\right)}{x+4\left(x^{2}+y^{2}\right)}$
(c) $\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}$
(d) $\frac{4 y\left(x^{2}+y^{2}\right)-x}{y-4 x\left(x^{2}+y^{2}\right)}$
9. If a matrix A is both symmetric and skew symmetric, then A is necessarily a
(a) Diagonal matrix
(b) Zero square matrix
(c) Square matrix
(d) Identity matrix
10. Let set $X=\{1,2,3\}$ and a relation R is defined in X as:
$R=\{(1,3),(2,2),(3,2)\}$, then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are
(a) $\{(1,1),(2,3),(1,2)\}$
(b) $\{(3,3),(3,1),(1,2)\}$
(c) $\{(1,1),(3,3),(3,1),(2,3)\}$
(d) $\{(1,1),(3,3),(3,1),(1,2)\}$
11. A Linear Programming Problem is as follows:

$$
\begin{array}{ll}
\text { Minimise } & z=2 x+y \\
\text { subject to the constraints } & x \geq 3, x \leq 9, y \geq 0 \\
& x-y \geq 0, x+y \leq 14
\end{array}
$$

The feasible region has
(a) 5 corner points including $(0,0)$ and $(9,5)$
(b) 5 corner points including $(7,7)$ and $(3,3)$
(c) 5 corner points including $(14,0)$ and $(9,0)$
(d) 5 corner points including $(3,6)$ and $(9,5)$
12. The function $f(x)= \begin{cases}\frac{e^{3 x}-e^{-5 x}}{x}, & \text { if } x \neq 0 \\ k & \text { if } x=0\end{cases}$ is continuous at $x=0$ for the value of k, as
(a) 3
(b) 5
(c) 2
(d) 8
13. If $\mathrm{C}_{i j}$ denotes the cofactor of element $\mathrm{P}_{i j}$ of the matrix $P=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4\end{array}\right]$, then the value of $C_{31} \cdot C_{23}$ is
(a) 5
(b) 24
(c) -24
(d) -5
14. The function $y=x^{2} e^{-x}$ is decreasing in the interval
(a) $(0,2)$
(b) $(2, \infty)$
(c) $(-\infty, 0)$
(d) $(-\infty, 0) \cup(2, \infty)$
15. If $\mathrm{R}=\left\{(x, y) ; x, y \in \mathrm{Z}, x^{2}+y^{2} \leq 4\right\}$ is a relation in set Z, then domain of R is
(a) $\{0,1,2\}$
(b) $\{-2,-1,0,1,2\}$
(c) $\{0,-1,-2\}$
(d) $\{-1,0,1\}$
16. The system of linear equations

$$
\begin{aligned}
& 5 x+k y=5 \\
& 3 x+3 y=5
\end{aligned}
$$

will be consistent if
(a) $k \neq-3$
(b) $k=-5$
(c) $k=5$
(d) $k \neq 5$
17. The equation of the tangent to the curve $y\left(1+x^{2}\right)=$ $2-x$, where it crosses the X-axis is
(a) $x-5 y=2$
(b) $5 x-y=2$
(c) $x+5 y=2$
(d) $5 x+y=2$
18. $\left[\begin{array}{cc}3 c+6 & a-d \\ a+d & 2-3 b\end{array}\right]=\left[\begin{array}{cc}12 & 2 \\ -8 & -4\end{array}\right]$ are equal, then value of
(a) 4
(b) 16
(c) -4
(d) -16
19. The principal value of $\tan ^{-1}\left(\tan \frac{9 \pi}{8}\right)$ is
(a) $\frac{\pi}{8}$
(b) $\frac{3 \pi}{8}$
(c) $-\frac{\pi}{8}$
(d) $-\frac{3 \pi}{8}$
20. For two matrices $\mathrm{P}=\left[\begin{array}{rr}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $\mathrm{Q}^{\mathrm{T}}=\left[\begin{array}{rrr}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$
(a) $\left[\begin{array}{rr}2 & 3 \\ -3 & 0 \\ 0 & -3\end{array}\right]$
(b) $\left[\begin{array}{rr}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]$
(c) $\left[\begin{array}{rr}4 & 3 \\ -0 & -3 \\ -1 & -2\end{array}\right]$
(d) $\left[\begin{array}{rr}2 & 3 \\ 0 & -3 \\ 0 & -3\end{array}\right]$

SECTION - B

In this Section attempt any 16 questions out of the Questions 21-40. Each question is of one mark.
21. The function $f(x)=2 x^{3}-15 x^{2}+36 x+6$ is increasing in the interval
(a) $(-\infty, 2) \cup(3, \infty)$
(b) $(-\infty, 2)$
(c) $(-\infty, 2] \cup[3, \infty)$
(d) $[3, \infty)$
22. If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, then $\frac{d y}{d x}$ is
(a) $\frac{\cos \theta+\cos 2 \theta}{\sin \theta-\sin 2 \theta}$
(b) $\frac{\cos \theta-\cos 2 \theta}{\sin 2 \theta-\sin \theta}$
(c) $\frac{\cos \theta-\cos 2 \theta}{\sin \theta-\sin 2 \theta}$
(d) $\frac{\cos 2 \theta-\cos \theta}{\sin 2 \theta+\sin \theta}$
23. What is the domain of the function $\cos ^{-1}(2 x-3)$?
(a) $[-1,1]$
(b) $(1,2)$
(c) $(-1,1)$
(d) $[1,2]$
24. A matrix $\mathrm{A}=\left[a_{i j}\right]_{3 \times 3}$ is defined by
$a_{i j}=\left\{\begin{array}{cc}2 i+3 j, & i<j \\ 5, & \quad i=j \\ 3 i-2 j, & i>j\end{array}\right.$

The number of elements in A which are more than 5, is:
(a) 3
(b) 4
(c) 5
(d) 6
25. If a function f defined by
$f(x)=\left\{\begin{array}{cc}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 3 & \text { if } x=\frac{\pi}{2}\end{array}\right.$
is continuous at $x=\frac{\pi}{2}$, then the value of k is
(a) 2
(b) 3
(c) 6
(d) -6
26. For the matrix $X=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right],\left(X^{2}-X\right)$ is
(a) 2 I
(b) 3 I
(c) I
(d) 5 I
27. Let $\mathrm{X}=\left\{x^{2}: x \in \mathrm{~N}\right\}$ and the function $f: \mathrm{N} \rightarrow \mathrm{X}$ is defined by $f(x)=x^{2}, x \in \mathrm{~N}$. Then this function is
(a) injective only
(b) not bijective
(c) surjective only
(d) bijective
28. The corner points of the feasible region for a Linear Programming problem are $P(0,5), Q(1,5), R(4,2)$ and $S(12,0)$. The minimum value of the objective function $\mathrm{Z}=2 x+5 y$ is at the point
(a) P
(b) Q
(c) R
(d) S
29. The equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$ is
(a) $2 y-3 m x+a m^{3}=0$
(b) $2 x+3 m y 3 a m^{4}-a m^{2}=0$
(c) $2 x+3 m y+3 a m^{4}-2 a m=0$
(d) $2 x+3 m y-3 a m^{4}-2 a m^{2}=0$
30. If A is a square matrix of order 3 and $|A|=-5$, then $|\operatorname{adj} \mathrm{A}|$ is
(a) 125
(b) -25
(c) 25
(d) ± 25
31. The simplest form of $\tan ^{-1}\left[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right]$ is
(a) $\frac{\pi}{4}-\frac{x}{2}$
(b) $\frac{\pi}{4}+\frac{x}{2}$
(c) $\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$
(d) $\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x$
32. If for the matrix $A=\left[\begin{array}{cc}\alpha & -2 \\ -2 & \alpha\end{array}\right],\left|A^{3}\right|=125$, then the
value of α is
(a) ± 3
(b) -3
(c) ± 1
(d) 1
33. If $y=\sin \left(m \sin ^{-1} x\right)$, then which one of the following equations is true?
(a) $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+m^{2} y=0$
(b) $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0$
(c) $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0$
(d) $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-m^{2} x=0$
34. The principal value of $\left[\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})\right]$ is
(a) π
(b) $-\frac{\pi}{2}$
(c) 0
(d) $2 \sqrt{3}$
35. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
(a) $e^{1 / e}$
(b) e
(c) $\left(\frac{1}{e}\right)^{1 / e}$
(d) e^{e}
36. Let matrix $\mathrm{X}=\left[x_{i j}\right]$ is given by $\mathrm{X}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right]$. Then the matrix $\mathrm{Y}=\left[m_{i j}\right]$, where $m_{i j}=$ Minor of $x_{i j}$, is
(a) $\left[\begin{array}{ccc}7 & -5 & -3 \\ 19 & 1 & -11 \\ -11 & 1 & 7\end{array}\right]$
(b) $\left[\begin{array}{ccc}7 & -19 & 11 \\ 5 & -1 & -1 \\ 3 & 11 & 7\end{array}\right]$
(c) $\left[\begin{array}{ccc}7 & 19 & -11 \\ -3 & 11 & 7 \\ -2 & -1 & -1\end{array}\right]$
(d) $\left[\begin{array}{ccc}7 & 19 & -11 \\ -1 & -1 & 1 \\ -3 & -11 & 7\end{array}\right]$
37. A function $f: R \rightarrow R$ defined by $f(x)=2+x^{2}$ is
(a) not one-one
(b) one-one
(c) not onto
(d) neither one-one nor onto
38. A Linear Programming Problem is as follows:

Maximise / Minimise objective function $Z=2 x-y+$ 5
Subject to the constraints

$$
\begin{aligned}
3 x+4 y & \leq 60 \\
x+3 y & \leq 30 \\
x & \geq 0, y \geq 0
\end{aligned}
$$

If the corner points of the feasible region are $\mathrm{A}(0$, $10), B(12,6), C(20,0)$ and $O(0,0)$, then which of the following is true ?
(a) Maximum value of Z is 40
(b) Minimum value of Z is -5
(c) Difference of maximum and minimum values of Z is 35
(d) At two corner points, value of Z are equal
39. If $x=-4$ is a root of $\left|\begin{array}{lll}x & 2 & 3 \\ 1 & x & 1 \\ \text { the other two roots is }\end{array}\right|=0$, then the sum of
3
(a) 4
(b) -3
(c) 2
(d) 5
40. The absolute maximum value of the function $f(x)=$ $4 x-\frac{1}{2} x^{2}$ in the interval $\left[-2, \frac{9}{2}\right]$ is
(a) 8
(b) 9
(c) 6
(d) 10

SECTION - C

Attempt any 8 questions out of the Questions 41-50. Each question is of one mark.
41. In a sphere of radius r, a right circular cone of height h having maximum curved surface area is inscribed. The expression for the square of curved surface of cone is
(a) $2 \pi^{2} r h\left(2 r h+h^{2}\right)$
(b) $\pi^{2} h r\left(2 r h+h^{2}\right)$
(c) $2 \pi^{2} r\left(2 r h^{2}-h^{3}\right)$
(d) $2 \pi^{2} r^{2}\left(2 r h-h^{2}\right)$
42. The corner points of the feasible region determined by a set of constraints (linear inequalities) are $\mathrm{P}(0,5)$, $Q(3,5), R(5,0)$ and $S(4,1)$ and the objective function is $\mathrm{Z}=a x+2 b y$ where $a, b>0$. The condition on a and b such that the maximum Z occurs at Q and S is
(a) $a-5 b=0$
(b) $a-3 b=0$
(c) $a-2 b=0$
(d) $a-8 b=0$
43. If curves $y^{2}=4 x$ and $x y=c$ cut at right angles, then the value of c is
(a) $4 \sqrt{2}$
(b) 8
(c) $2 \sqrt{2}$
(d) $-4 \sqrt{2}$
44. The inverse of the matrix $X=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$ is
(a) $\quad 24\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right]$
(b) $\frac{1}{24}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(c) $\frac{1}{24}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right]$
45. For an L.P.P. the objective function is $Z=4 x+3 y$, and the feasible region determined by a set of constraints (linear inequations) is shown in the graph.

Which one of the following statements is true?
(a) Maximum value of Z is at R .
(b) Maximum value of Z is at Q .
(c) Value of Z at R is less than the value at P .
(d) Value of Z at Q is less than the value at R .

Case Study

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of $₹ 50$ per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ $400 x$ (depth) ${ }^{2}$. Association will like to have minimum cost.

46. Let side of square plot is $x \mathrm{~m}$ and its depth is h metres, then $\operatorname{cost} C$ for the pit is
(a) $\frac{50}{h}+400 h^{2}$
(b) $\frac{12500}{h}+400 h^{2}$
(c) $\frac{250}{h}+h^{2}$
(d) $\frac{250}{h}+400 h^{2}$
47. Value of h (in m) for which $\frac{d C}{d h}=0$ is
(a) 1.5
(b) 2
(c) 2.5
(d) 3
48. $\frac{d^{2} C}{d h^{2}}$ is given by
(a) $\frac{25000}{h^{3}}+800$
(b) $\frac{500}{h^{3}}+800$
(c) $\frac{100}{h^{3}}+800$
(d) $\frac{500}{h^{3}}+2$
49. Value of x (in m) for minimum cost is
(a) 5
(b) $10 \sqrt{\frac{5}{3}}$
(c) $5 \sqrt{5}$
(d) 10
50. Total minimum cost of digging the pit (in ₹) is
(a) 4,100
(b) 7,500
(c) 7,850
(d) 3,220

SOLUTIONS

SECTION - A

1. (a) $\frac{5}{x \log \left(x^{5}\right) \log \left(\log x^{5}\right)}$

Explanation: Let $y=\log \left[\log \left(\log x^{5}\right)\right]$

$$
\begin{aligned}
\therefore \quad \begin{aligned}
\frac{d y}{d x} & =\frac{1}{\log \left(\log x^{5}\right)} \frac{d y}{d x}\left[\log \left(\log x^{5}\right)\right] \\
& =\frac{1}{\log \left(\log x^{5}\right)} \cdot \frac{1}{\log x^{5}} \frac{d}{d x} \log x^{5} \\
& =\frac{1}{\log \left(x^{5}\right) \log \left(\log x^{5}\right)} \frac{1}{x^{5}} \frac{d}{d x}\left(x^{5}\right) \\
& =\frac{5}{x \log \left(x^{5}\right) \log \left(\log x^{5}\right)}
\end{aligned},=\text { Chain Rule) }
\end{aligned}
$$

2. (c) 64

Explanation: The order of the matrix $=2 \times 3$
The number of elements $=2 \times 3=6$

Each place can have either 1 or 2 . So, each place can be filled in 2 ways.
Thus, the number of possible matrices $=2^{6}=64$
3. (d) neither maximum value nor minimum value

Explanation: Given, $f(x)=x^{3}+1$

Thus, $f(x)$ has neither maximum value nor minimum value.
4. (a) $\frac{\cos a}{\cos ^{2}(a+y)}$

$$
\text { Explanation: Given, } \sin y=x \cos (a+y)
$$

$$
\Rightarrow \quad x=\frac{\sin y}{\cos (a+y)}
$$

Differentiating with respect to y, we get

$$
\frac{d x}{d y}=\frac{\cos (a+y) \frac{d}{d y}(\sin y)-\sin y \frac{d}{d y}\{\cos (a+y)\}}{\cos ^{2}(a+y)}
$$

$$
\Rightarrow \quad \frac{d x}{d y}=\frac{\cos (a+y) \cos y-\sin y[-\sin (a+y)]}{\cos ^{2}(a+y)}
$$

$$
\Rightarrow \quad \frac{d x}{d y}=\frac{\cos (a+y) \cos y+\sin y \sin (a+y)}{\cos ^{2}(a+y)}
$$

$$
\Rightarrow \quad \frac{d x}{d y}=\frac{\cos [(a+y)-y]}{\cos ^{2}(a+y)}
$$

$$
\Rightarrow \quad \frac{d x}{d y}=\frac{\cos a}{\cos ^{2}(a+y)}
$$

5. (b) $(0, \pm 5)$

Explanation: The equation of the given curve:

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25} \quad=\mathbf{1} \ldots(\mathbf{i})
$$

On differentiating both sides w.r.t. x, we get

$$
\frac{2 x}{9}+\frac{2 y}{25} \frac{d y}{d x}=1
$$

$\Rightarrow \quad \frac{d y}{d x} \quad=\frac{-25 x}{9 y}$
Since, tangent is parallel to X-axis, then the slope of the tangent is zero.
$\therefore \quad \frac{-25}{9} \frac{x}{y}=0$, which is possible if $\mathrm{x}=0$

$$
\begin{aligned}
& \therefore \\
& f^{\prime}(x)=3 x^{2} \text { and } f^{\prime \prime}(x)=6 x \\
& \text { Put } \\
& f^{\prime}(x)=0 \\
& \Rightarrow \quad 3 x^{2}=0 \Rightarrow x=0 \\
& \text { At } \quad x=0, f^{\prime \prime}(x)=0
\end{aligned}
$$

Put $x=0$ in eq (i), we get

$$
\frac{y^{2}}{25}=\mathbf{1} \Rightarrow y^{2}=\mathbf{2 5} \Rightarrow y= \pm 5
$$

Hence, required points are $(0, \pm 5)$.
6. (d) 1

Explanation: As points are collinear
\Rightarrow area of triangle formed by 3 points is zero.

$$
\begin{aligned}
\Rightarrow & \frac{1}{2}\left|\begin{array}{rl}
\left(x_{1}-x_{2}\right) & \left(x_{2}-x_{3}\right) \\
\left(y_{1}-y_{2}\right) & \left(y_{2}-y_{3}\right)
\end{array}\right| & =0 \\
\Rightarrow & \frac{1}{2}\left|\begin{array}{cc}
(2 x-0) & \{0-(x+3)\} \\
(x+3-x) & \{x-(x+6)\}
\end{array}\right| & =0 \\
\Rightarrow & \left|\begin{array}{cc}
2 x & -(x+3) \\
3 & -6
\end{array}\right| & =0 \\
\Rightarrow & -12 x+3(x+3) & =0 \\
\Rightarrow & -12 x+3 x+9 & =0 \\
\Rightarrow & -9 x & =-9 \\
\Rightarrow & x & =1
\end{aligned}
$$

7. (a) $\frac{\pi}{12}$

Explanation: $\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
$=\cos ^{-1}\left(\cos \frac{\pi}{3}\right)-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$=\frac{\pi}{3}-\sin ^{-1}\left(\sin \frac{\pi}{4}\right)$
$=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}$
8. (c) $\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}$

Explanation: Given, $\quad\left(x^{2}+y^{2}\right)^{2}=x y$
$\Rightarrow \quad x^{4}+2 x^{2} y^{2}+y^{4}-x y=0$
Differentiating w.r.t. x, we get

$$
\begin{aligned}
& 4 x^{3}+2\left[2 x y^{2}+x^{2} \cdot 2 y \frac{d y}{d x}\right]+4 y^{3} \frac{d y}{d x}-\left[y+x \frac{d y}{d x}\right]=0 \\
& \frac{d y}{d x}\left[4 x^{2} y+4 y^{3}-x\right]+\left[4 x^{3}+4 x y^{2}-y\right]=0 \\
& \frac{d y}{d x}= \frac{-\left[4 x^{3}+4 x y^{2}-y\right]}{\left[4 x^{2} y+4 y^{3}-x\right]}
\end{aligned}
$$

or $\frac{d y}{d x}=\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}$
9. (b) Zero square matrix

Explanation: If matrix A is symmetric

$$
A^{T}=A
$$

If matrix A is skew-symmetric

$$
A^{T}=-A
$$

Also, diagonal elements are zero.
Since, it is given that matrix A is both symmetric and skew-symmetric.
\therefore

$$
A=A^{T}=-A
$$

Which is only possible if A is zero matrix.

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=A^{T}=-A
$$

Thus, if a matrix A is both symmetric and skew symmetric, then A is necessarily a zero matrix.
10. (c) $\{(1,1),(3,3),(3,1) .(2,3)\}$

Explanation:

(i) R is reflexive if it contains $\{(1,1),(2,2)$ and (3, 3) \}.

Since, $(2,2) \in R$. So, we need to add $(1,1)$ and $(2,2)$ to make R reflexive.
(ii) R is symmetric if it contains $\{(2,2),(1,3),(3,1)$, $(3,2),(2,3)\}$.
Since, $\{(2,2),(1,3),(3,2)\} \in R$. So, we need to add $(3,1)$ and $(2,3)$.
Thus, minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are $\{(1,1),(3,3),(3,1),(2,3)\}$.
11. (b) 5 corner points including $(7,7)$ and $(3,3)$

Explanation: On plotting the constraints $x=3$, $x=9, x=y$ and $x+y=14$, we get the following graph. From the graph given below it clear that feasible region is ABCDEA, including corner points $\mathrm{A}(9,0), \mathrm{B}(3,0), \mathrm{C}(3,3), \mathrm{D}(7,7)$ and $\mathrm{E}(9,5)$.
Thus feasible region has 5 corner points including $(7,7)$ and $(3,3)$.

12. (d) 8

Explanation: Since, $f(x)$ is continuous at $x=0$, then $\mathrm{LHL}=\mathrm{RHL}=f(0)$ or $\mathrm{LHL}=\mathrm{RHL}=k$
Now, \quad LHL $=\lim _{h \rightarrow 0} \frac{e^{3(0-h)}-e^{-5(0-h)}}{0-h}$

$$
=\lim _{h \rightarrow 0} \frac{e^{-3 h}-e^{5 h}}{-h}
$$

$$
=\lim _{h \rightarrow 0}\left(\frac{e^{-3 h}-1}{-h}\right)+\lim _{h \rightarrow 0}\left(\frac{e^{5 h}-1}{h}\right)
$$

$$
=3 \lim _{h \rightarrow 0}\left(\frac{e^{-3 h}-1}{-3 h}\right)+5 \lim _{h \rightarrow 0}\left(\frac{e^{5 h}-1}{5 h}\right)
$$

$$
=3 \times 1+5 \times 1=8
$$

Thus, $k=8$.
13. (a) 5

Explanation:

Here, $\quad C_{31}=(-1)^{3+1}\left|\begin{array}{cc}-1 & 2 \\ 2 & -3\end{array}\right|=3-4=-1$
and

$$
C_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & -1 \\
3 & 2
\end{array}\right|=-(2+3)=-5
$$

Thus, $\quad C_{31} \cdot C_{23}=(-1)(-5)=5$
14. (d) $(-\infty, 0) \cup(2, \infty)$.

Explanation: We have,

$$
f(x)=y=x^{2} \mathrm{e}^{-x}
$$

$\therefore \frac{d y}{d x}=2 x e^{-x}+x^{2}(-1) e^{-x}=x e^{-x}(2-x)$

Now, put $\frac{d y}{d x}=0$
$\Rightarrow x=0$ and $x=2$
The points $x=0$ and $x=2$ divide the real line into three disjoint intervals i.e., $(-\infty, 0),(0,2)$ and $(2, \infty)$ In intervals, $(-\infty, 0)$ and $(2, \infty), f^{\prime}(x)<0$ as e^{-x} is always positive.
$\therefore f(x)$ or y is decreasing in $(-\infty, 0)$ and $(2, \infty)$.
15. (b) $\{-2,-1,0,1,2\}$

Explanation: Given, $R=\left\{(x, y): x, y \in Z, x^{2}+y^{2}\right.$ $\leq 4\}$
Let $x=0$, then $y^{2} \leq 4 \Rightarrow y=0, \pm 1, \pm 2$
Thus, domain of $R=\{-2,-1,0,1,2\}$
16. (d) $k \neq 5$

Explanation: We have, $\quad 5 x+k y-5=0$ and
$3 x+3 y-5=0$
For consistent system
$\Rightarrow \quad \frac{5}{3} \neq \frac{k}{3}$,
17. (c) $x+5 y=2$

Explanation: Given, $y\left(1+x^{2}\right)=2-x$
If it cuts X-axis, then y-coordinate is 0 .

$$
\begin{aligned}
\therefore & 0\left(1+x^{2}\right) & =2-x \\
\Rightarrow & x & =2
\end{aligned}
$$

Thus, point of contact is $(2,0)$.
Now, differentiating eq.(i) w.r.t. x, we get

$$
y \cdot(2 x)+\frac{d y}{d x}\left(1+x^{2}\right)=-1
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{d y}{d x}
\end{array}=\frac{-1-2 x y}{1+x^{2}}, ~ \frac{d y}{d x}=\frac{-(1+2 x y)}{1+x^{2}}, ~\left(\left.\frac{d y}{d x}\right|_{(2,0)}=\frac{-1}{5}\right.
$$

Thus, equation of tangent is

$$
\begin{aligned}
y-0 & =\frac{-1}{5}(x-2) \\
5 y+x & =2 \\
x+5 y & =2
\end{aligned}
$$

18. (a) 4

$$
\begin{align*}
& \text { Explanation: Given, }\left[\begin{array}{cc}
3 c+6 & a-d \\
a+d & 2-3 d
\end{array}\right]=\left[\begin{array}{cc}
12 & 2 \\
-8 & -4
\end{array}\right] \\
& \therefore \quad 3 c+6=12 \tag{i}\\
& a-d=2 \tag{ii}\\
& a+d=-8 \tag{iii}\\
& 2-3 b=-4 \tag{iv}\\
& \text { From eq. (i), we get } \\
& c=2
\end{align*}
$$

On solving eqs. (ii) and (iii), we get $a=-3$ and $d=$ -5 from eq. (iv), we get $b=2$

Now,

$$
\begin{aligned}
& a b-c d=(-3) 2-2(-5) \\
& a b-c d=-6+10=4
\end{aligned}
$$

19. (a) $\frac{\pi}{8}$

$$
\begin{array}{ll}
\text { Explanation: } \tan ^{-1}\left(\tan \frac{9 \pi}{8}\right)=\tan ^{-1}\left(\tan \left(\pi+\frac{\pi}{8}\right)\right) \\
=\tan ^{-1}\left(\tan \frac{\pi}{8}\right)=\frac{\pi}{8} & {\left[\because \frac{\pi}{8} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]}
\end{array}
$$

20. (b) $\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]$

Explanation:

Here, $\quad Q=\left(Q^{T}\right)^{T}=\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]$

Now,

$$
\begin{aligned}
P-Q & =\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & 3 \\
-3 & 0 \\
-1 & -2
\end{array}\right]
\end{aligned}
$$

SECTION-B

21. (c) $(-\infty, 2] \cup[3, \infty)$

22. (b) $\frac{\cos \theta-\cos 2 \theta}{\sin 2 \theta-\sin \theta}$

$$
\begin{array}{lrl}
\text { Explanation: Given, } & x & =2 \cos \theta-\cos 2 \theta \\
\text { and } & y & =2 \sin \theta-\sin 2 \theta \\
\text { Therefore, } & \frac{d x}{d \theta} & =-2 \sin \theta+2 \sin 2 \theta \\
\text { and } & \frac{d y}{d \theta} & =2 \cos \theta-2 \cos 2 \theta
\end{array}
$$

$$
\begin{array}{ll}
\therefore & \frac{d y}{d x}=\frac{2 \cos \theta-2 \cos 2 \theta}{-2 \sin \theta+2 \sin 2 \theta} \\
\text { or } & \frac{d y}{d x}=\frac{\cos \theta-\cos 2 \theta}{\sin 2 \theta-\sin \theta}
\end{array}
$$

23. (d) $[1,2]$

Explanation: Let,	$f(x)=\cos ^{-1}(2 x-3)$
\because	$-1 \leq 2 x-3 \leq 1$
\Rightarrow	$2 \leq 2 x \leq 4$
\Rightarrow	$1 \leq x \leq 2$
$\therefore x \in[1,2]$ or domain of x is $[1,2]$.	

24. (b) 4

Explanation: Here, $\mathrm{A}=\left[\begin{array}{ccc}5 & 8 & 11 \\ 4 & 5 & 13 \\ 7 & 5 & 5\end{array}\right]$
Thus, number of elements more than 5 , is 4 .
25. (c) 6

Explanation: Since, $f(x)$ is continuous at $x=\frac{\neq}{2}$
Therefore,

$$
\lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)
$$

\Rightarrow

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=3
$$

$$
\Rightarrow \quad k \lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)}{2\left(\frac{\pi}{2}-x\right)}=3
$$

$$
\Rightarrow \quad \frac{k}{2} \lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)}{\left(\frac{\pi}{2}-x\right)}=3
$$

$$
\Rightarrow \quad \frac{k}{2} \times 1=3 \Rightarrow k=6
$$

26. (a) 2 I

Explanation:

Here $\quad X^{2}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ $\Rightarrow \quad X^{2}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$

$$
\Rightarrow \quad X^{2}=2\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=2 I
$$

27. (a) injective only

$$
\begin{array}{rlrl}
& \text { Explanation: Let } & x_{1}, x_{2} & \in \mathrm{~N} \\
& & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & x_{1}^{2} & =x_{2}^{2} \\
\Rightarrow & & x_{1}^{2}-x_{2}^{2} & =0 \\
\Rightarrow & & \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) & =0 \\
\Rightarrow & x_{1} & =x_{2} \\
& & \left\{x_{1}+x_{1}\right. & \left.=0 \text { as } x_{1}, x_{2} \in \mathrm{~N}\right\}
\end{array}
$$

Hence, $f(x)$ is injective.
Also, the elements like 2 and 3 have no pre-image in N . Thus, $f(x)$ is not surjective.
28. (c) R

Explanation:

Corner Points	Value of $Z=2 x+5 y$
$\mathrm{P}(0,5)$	$\mathrm{Z}=2(0)+5(5)=25$
$\mathrm{Q}(1,5)$	$\mathrm{Z}=2(1)+5(5)=27$
$\mathrm{R}(4,2)$	$\mathrm{Z}=2(4)+5(2)=18$ ® Minimum
$\mathrm{S}(12,0)$	$\mathrm{Z}=2(12)+5(0)=24$

Thus, minimum value of Z occurs at $\mathrm{R}(4,2)$.
29. (d) $2 x+3 \mathrm{my}-3 \mathrm{am}^{4}-2 a m^{2}=0$

Explanation: $\quad a y^{2}=x^{3}$
Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
& 2 a y \frac{d y}{d x}
\end{aligned}=3 x^{2}, ~ \frac{d y}{d x}=\frac{3 x^{2}}{2 a y}
$$

Slope of the tangent at $\left(a m^{2}, a m^{3}\right)$ is

$$
\begin{aligned}
\left(\frac{d y}{d x}\right)_{\left(a m^{2}, a m^{3}\right)} & =\frac{3\left(a m^{2}\right)^{2}}{2 a\left(a m^{3}\right)} \\
& =\frac{3 a^{2} m^{4}}{2 a^{2} m^{3}}=\frac{3 m}{2}
\end{aligned}
$$

Now, slope of format at $\left(a m^{2}, a m^{3}\right)=\frac{-1}{\left(\frac{d y}{d x}\right)_{\left(a m^{2}, a m^{3}\right)}}$

$$
=\frac{-2}{3 m}
$$

Thus, equation of normal at $\left(a m^{2}, a m^{3}\right)$ is

$$
\left(y-a m^{3}\right)=\frac{-2}{3 m}\left(x-a m^{2}\right)
$$

$\Rightarrow 3 m y-3 a m^{4}+2 x-2 a m^{2}=0$
$\Rightarrow 2 x+3 m y-3 a m^{4}-2 a m^{2}=0$
30. (c) 25

Explanation: We know that,

$$
|\operatorname{adj} A|=|A|^{n-1}
$$

where n is the order of the matrix

$$
\begin{aligned}
\therefore \quad|\operatorname{adj} A| & =(5)^{3-1} \\
& =5^{2}=25
\end{aligned}
$$

31. (c) $\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$

Explanation: We have,

$$
\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)
$$

Put $x=\cos 2 \theta$, so that $\theta=\frac{1}{2} \cos ^{-1} x$
$\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right)$
$=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right)$
$=\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right)$
$=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)$
$=\tan ^{-1}(1)-\tan ^{-1}(\tan \theta)$

$$
\left[\because \tan ^{-1}\left(\frac{x-y}{1+x y}\right)=\tan ^{-1} x-\tan ^{-1} y\right]
$$

$=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)-\theta$
$=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$
32. (a) ± 3

$$
\begin{array}{ll}
\text { Explanation: Given, } & A=\left[\begin{array}{cc}
\alpha & -2 \\
-2 & \alpha
\end{array}\right] \\
\Rightarrow & |A|=\alpha^{2}-4 \\
\text { Also, given } & \left|A^{3}\right|=125 \tag{i}
\end{array}
$$

$$
\begin{array}{rrr}
\Rightarrow & |A|^{3} & =125 \\
\Rightarrow & |A| & =5 \\
\Rightarrow & \alpha^{2}-4 & =5 \quad \text { [from eq. (i)] } \\
\Rightarrow & \alpha^{2} & =9 \\
\Rightarrow & \alpha & = \pm 3
\end{array}
$$

33. (b) $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0$

Explanation: Given, $y=\sin \left(m\left(\sin ^{-1} x\right)\right)$
Differentiating both sides w.r.t. x, we get

$$
\begin{array}{ll}
& \frac{d y}{d x}=\cos \left(m \sin ^{-1} x\right) \times \frac{m}{\sqrt{1-x^{2}}} \\
\Rightarrow & \frac{d y}{d x}=\frac{m \cos \left(m \sin ^{-1} x\right)}{\sqrt{1-x^{2}}} \\
\Rightarrow \quad & y^{\prime}=\frac{m \cos \left(m \sin ^{-1} x\right)}{\sqrt{1-x^{2}}} \tag{ii}\\
\Rightarrow \quad & \left(\sqrt{1-x^{2}}\right) y^{\prime}=m \cos \left(m \sin ^{-1} x\right)
\end{array}
$$

Differentiating again w.r.t. ' x ', we get

$$
\begin{aligned}
& y^{\prime \prime \prime}\left(\sqrt{1-x^{2}}\right)+y^{\prime} \frac{(-2 x)}{2 \sqrt{1-x^{2}}} \\
& =-m^{2} \sin \left(m \sin ^{-1} x\right) \frac{1}{\sqrt{1-x^{2}}} \\
& \Rightarrow \\
& \Rightarrow \quad y^{\prime \prime}\left(1-x^{2}\right)-x y^{\prime}=-m^{2} y \\
& \Rightarrow \quad y^{\prime \prime}\left(1-x^{2}\right)-x y^{\prime}+m^{2} y=0 \\
& \text { or, } \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0
\end{aligned}
$$

34. (b) $-\frac{\pi}{2}$

Explanation: We have,

$$
\begin{aligned}
& \tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) \\
& =\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\pi+\cot ^{-1} \cot \sqrt{3} \\
& =\frac{\pi}{3}-\left(\pi-\frac{\pi}{6}\right) \\
& =-\frac{\pi}{2}
\end{aligned}
$$

35. (a) $e^{1 / e}$

Explanation: Let $y=\left(\frac{1}{x}\right)^{x}$
Then, $\quad \log y=x \log \left(\frac{1}{x}\right)=-x \log x$
Differentiating both sides w.r.t. x
$\therefore \quad \frac{1}{y} \frac{d y}{d x}=-\left[x \cdot \frac{1}{x}+\log x\right]$

$$
\begin{equation*}
=-(1+\log x) \tag{ii}
\end{equation*}
$$

On differentiating again eq. (ii), we get

$$
\begin{aligned}
& \frac{1}{y} \frac{d^{2} y}{d x^{2}}-\frac{1}{y^{2}}\left(\frac{d y}{d x}\right)^{2} \\
= & \frac{-1}{x} \ldots(\text { iii })
\end{aligned}
$$

From eq. (ii), we get

$$
\begin{aligned}
& \frac{d y}{d x}=-y(1+\log x) \\
& =-\left(\frac{1}{x}\right)^{x}(1+\log x)
\end{aligned}
$$

For maximum or minimum values of y, put $\frac{d y}{d x}=0$

Therefore, $\left(\frac{1}{x}\right)^{x}(1+\log x)=0$
However, $\left(\frac{1}{x}\right)^{x} \neq 0$ for any value of x. Therefore

$$
1+\log x=0
$$

$\Rightarrow \quad \log x=-1 \Rightarrow x=e^{-1} \Rightarrow x=\frac{1}{e}$
When $x=\frac{1}{e}$, from eq. (iii)

$$
\frac{1}{y} \frac{d^{2} y}{d x^{2}}-0=-e
$$

$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-e(e)^{1 / e}<0$
Hence, y is maximum when $x=\frac{1}{e}$ and maximum value of $y=e^{1 / e}$.
36. (d) $\left[\begin{array}{ccc}7 & 19 & -11 \\ -1 & -1 & 1 \\ -3 & -11 & 7\end{array}\right]$

$$
\begin{aligned}
& \text { Explanation: } \quad m_{11}=\left|\begin{array}{cc}
4 & -5 \\
-1 & 3
\end{array}\right|=12-5=7 \\
& m_{12}=\left|\begin{array}{cc}
3 & -5 \\
2 & 3
\end{array}\right|=9+10=19 \\
& m_{13}=\left|\begin{array}{cc}
3 & 4 \\
2 & -1
\end{array}\right|=-3-8=-11 \\
& m_{21}=\left|\begin{array}{ll}
-1 & 2 \\
-1 & 3
\end{array}\right|=-3+2=-1 \\
& m_{22}=\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|=3-4=-1 \\
& m_{23}=\left|\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right|=-1+2=1 \\
& m_{31}=\left|\begin{array}{cc}
-1 & 2 \\
4 & -5
\end{array}\right|=5-8=-3 \\
& m_{32}=\left|\begin{array}{cc}
1 & 2 \\
3 & -5
\end{array}\right|=-5-6=-11 \\
& m_{33}=\left|\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right|=4+3=7 \\
& \therefore \quad Y=\left[\begin{array}{ccc}
7 & 19 & -11 \\
-1 & -1 & 1 \\
-3 & -11 & 7
\end{array}\right]
\end{aligned}
$$

37. (d) neither one-one nor onto

Explanation: Given,	$f(x)=2+x^{2}$
For one-one,	$f\left(x_{1}\right)=f\left(x_{2}\right)$
\Rightarrow	$2+x_{1}^{2}=2+x_{2}^{2}$
\Rightarrow	$x_{1}^{2}=x_{2}^{2}$
\Rightarrow	$x_{1}= \pm x_{2}$
\Rightarrow	$x_{1}=x_{2}$
or	$x_{1}=-x_{2}$
Thus, $f(x)$ is not one-one.	

For onto
Let $\quad f(x)=y$ such that $y \in R$
$\therefore \quad x^{2}=y-2$
$\Rightarrow \quad x= \pm \sqrt{y-2}$
Put $y=-3$, we get

$$
x= \pm \sqrt{-3-2}= \pm \sqrt{-5}
$$

Which is not possible as root of negative is not a real number.
Hence, x is not real.
So, $f(x)$ is not onto.
38. (b) Minimum value of Z is -5

Explanation:

Corner Points	Value of $Z=2 x-y+5$
$\mathrm{~A}(0,10)$	$\mathrm{Z}=2(0)-10+5=-5$ (Minimum)
$\mathrm{B}(12,6)$	$\mathrm{Z}=2(12)-6+5=23$
$\mathrm{C}(20,0)$	$\mathrm{Z}=2(20)-0+5=45$ (Maximum)
$\mathrm{O}(0,0)$	$\mathrm{Z}=0(0)-0+5=5$

So the minimum value of Z is -5 .
39. (a) 4

$$
\begin{aligned}
& \text { Explanation: Given, }\left|\begin{array}{lll}
x & 2 & 3 \\
1 & x & 1 \\
3 & 2 & x
\end{array}\right|=0 \\
& \Rightarrow \quad x\left(x^{2}-2\right)-2(x-3)+3(2-3 x)=0 \\
& \Rightarrow \quad x^{3}-13 x+13=0
\end{aligned}
$$

Since $(x+4)$ is one root of above cubic equation.

$$
\text { Sum roots }=0
$$

$\therefore \quad$ Sum of two roots $+(-4)=0$
Sum of two roots $=4$
40. (a) 8

Explanation: Given, $f(x)=4 x-\frac{1}{2} x^{2}$

$$
\begin{array}{lrl}
\therefore & f^{\prime}(x) & =4-\frac{1}{2}(2 x)=4-x \\
\text { put } & f^{\prime}(x) & =0 \\
\Rightarrow & 4-x & =0 \\
\Rightarrow & x & =4
\end{array}
$$

Then, we evaluate the f at critical point $x=4$ and at the end points of the interval $\left[-2, \frac{9}{2}\right]$.

$$
\begin{aligned}
f(4) & =16-\frac{1}{2}(16)=16-8=8 \\
f(-2) & =-8-\frac{1}{2}(4) \\
& =-8-2=-10 \\
f\left(\frac{9}{2}\right) & =4\left(\frac{9}{2}\right)-\frac{1}{2}\left(\frac{9}{2}\right)^{2} \\
& =18-\frac{81}{8}=7.875
\end{aligned}
$$

Thus, the absolute maximum value of f on $\left[-2, \frac{9}{2}\right]$ is 8 occurring at $x=4$.

SECTION - C

41. (c) $2 \pi^{2} r\left(2 r h^{2}-h^{3}\right)$

Explanation:

Here,

$$
\begin{aligned}
\text { CSA of cone } & =\pi R l \\
\text { Radius of sphere } & =r \\
\text { height of cone } & =h
\end{aligned}
$$

In $\triangle A O C$,

$$
\begin{array}{rlrl}
& A O^{2}=A C^{2}+O C^{2} \\
\Rightarrow & r^{2}=R^{2}+(h-r)^{2} \\
\Rightarrow & R^{2}=2 h r-h^{2} \\
\therefore & & \text { Radius of cone, } R=\sqrt{2 h r-h^{2}} \tag{i}
\end{array}
$$

In $\triangle \mathrm{ABC}$,

$$
\begin{array}{rlrl}
A B^{2} & =A C^{2}+B C^{2} \\
\Rightarrow \quad l^{2} & =R^{2}+h^{2} \\
\Rightarrow \quad l^{2} & =2 h r-h^{2}+h^{2} \\
\therefore \quad & \text { slant height } & =\sqrt{2 h r} \quad \ldots \text { (ii } \tag{ii}\\
& & \text { CSA of cone } & =\pi R l \\
& =\pi \sqrt{2 h r-h^{2}} \sqrt{2 h r}
\end{array}
$$

$$
(\text { CSA of cone })^{2}=\pi^{2}\left(2 h r-h^{2}\right)(2 h r)
$$

$$
=2 \pi^{2} h r\left(2 h r-h^{2}\right)
$$

$$
=2 \pi^{2} r\left(2 r h^{2}-h^{3}\right)
$$

42. (d) $a-8 b=0$

Explanation: Given, Max. $Z=a x+2 b y$
Max. value of Z on $Q(3,5)=$ Max. value of Z on $S(4$, 1)
$\begin{aligned} \Rightarrow & 3 a+10 b & =4 a+2 b \\ \Rightarrow & a-8 b & =0\end{aligned}$
43. (a) $4 \sqrt{2}$

Explanation: Given curves, $y^{2}=4 x$ and $x y=c$ cuts orthogonally.

Let they intersect at $\left(x_{1}, y_{1}\right)$.

$$
\begin{array}{ll}
\text { Now, } & \begin{array}{c}
y^{2}
\end{array}=4 x \\
\therefore & 2 y \frac{d y}{d x}=4 \\
\Rightarrow & \frac{d y}{d x}=\frac{2}{y} \\
\Rightarrow & \left.\frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}=\frac{2}{y_{1}}
\end{array}
$$

and $\quad x y=c$
$\therefore \quad x \frac{d y}{d x}+y=0$
$\therefore \quad \frac{d y}{d x}=\frac{-y}{x}$
$\left.\Rightarrow \quad \frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}=-\frac{y_{1}}{x_{1}}$
From eqs. (i) and (ii)

$$
\begin{array}{rlrl}
& & \frac{2}{y_{1}} \times\left(\frac{-y_{1}}{x_{1}}\right) & =-1 \quad \quad\left[\because m_{1} m_{2}=-1\right] \\
\Rightarrow & & x_{1} & =2 \\
& & \\
& & x_{1} & =2 \text { in } y_{1}^{2}=4 x_{1}, \text { we get } \\
& & y_{1}^{2} & =4(2)=8 \\
\Rightarrow & & y_{1} & =2 \sqrt{2}
\end{array}
$$

Now, put value of x_{1} and y_{1} in $x_{1} y_{1}=c$, we get

$$
c=2(2 \sqrt{2})=4 \sqrt{2}
$$

44. (d)
$\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4}\end{array}\right]$

Explanation: The inverse of a diagonal matrix is obtained by replacing each element in the diagonal with its reciprocal.

Since,

$$
X=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

$$
X^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]
$$

45. (b) Maximum value of Z is at Q.
Explanation:

Corner Points of Feasible Region	Value of $z=(z=4 x+3 y)$
$\mathrm{O}(0,0)$	$\mathrm{Z}=4(0)+3(0)=0$
$\mathrm{P}(0,40)$	$\mathrm{Z}=4(0)+3(40)=120$
$\mathrm{Q}(30,20)$	$\mathrm{Z}=4(30)+3(20)=180$ (Maximum)
$\mathrm{R}(40,0)$	$\mathrm{Z}=4(40)+3(0)=160$

Thus, Maximum value of z is at Q, which is 180 .
46. (b) $\frac{12500}{h}+400 h^{2}$

Explanation: $\mathrm{C}=\frac{250 \times 50}{h}+400 \times h^{2}$

$$
\Rightarrow \quad C=\frac{12500}{h}+400 h^{2}
$$

47. (c) 2.5 m

Explanation: Since,

$$
\mathrm{C}=\frac{12500}{h}+400 h^{2}
$$

$\therefore \quad \frac{d C}{d h}=\frac{-12500}{h^{2}}+800 h$
Put $\quad \frac{d C}{d h}=0$
$\therefore \quad \frac{-12500}{h^{2}}+800 h=0$
$\Rightarrow \quad 800 h^{3}=12500$
$\Rightarrow \quad h^{3}=\frac{125}{8}$
$\Rightarrow \quad h=\frac{5}{2}=2.5 \mathrm{~m}$
48. (a) $\frac{25000}{h^{3}}+800$

Explanation: Since,

$$
\begin{array}{ll}
\therefore & \frac{d C}{d h}=\frac{-12500}{h^{2}}+800 h \\
\therefore & \frac{d^{2} C}{d h^{2}}=\frac{-(-2) \times 12500}{h^{3}}+800 \\
\Rightarrow & \frac{d^{2} C}{d h^{2}}=\frac{25000}{h^{3}}+800
\end{array}
$$

49. (d) 10 m

Explanation: For minimum cost, put $\frac{d C}{d h}=0$, we get

$$
\begin{aligned}
& h=2.5 \mathrm{~m} \\
& h=2.5, \frac{d^{2} C}{d h^{2}}>0
\end{aligned}
$$

(Hence, minimum)
Value of x at minimum cost

$$
\begin{aligned}
x & =\frac{400 \times(2.5)^{2}}{250} \\
& =\frac{2500}{250}=10 \mathrm{~m}
\end{aligned}
$$

50. (b) 7,500

Explanation: Total minimum cost,

$$
\begin{equation*}
C=\frac{12500}{h}+400 h^{2} \tag{At2.5}
\end{equation*}
$$

$$
\begin{array}{ll}
\Rightarrow & C=\frac{12500}{2.5}+400(2.5)^{2} \\
\Rightarrow & C=5000+2500 \\
\Rightarrow & C=₹ 7500
\end{array}
$$

םםם

