Sample Question Paper, 2021-22

(Issued by CBSE Board on 14th January, 2022) APPLIED MATHEMATICS (Term- II)

SOLVED

General Instructions:

- *(i)* The question paper is divided into 3 sections A, B and C
- (ii) Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- (iii) Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- *(iv)* Section C comprises of 4 questions of 4 marks each. It contains one case study based question. Internal choice has been provided in one question.

Section - A

(2 marks each)

1. The marginal revenue function for a commodity is given by $MR = 9 + 2x - 6x^2$. Find the demand function.

The marginal cost of producing *x* pairs of tennis shoes is given by the following function:

$$MC = 50 + \frac{300}{x+1}$$

OR

If the fixed cost is ₹ 2000, then find the total cost function.

- 2. Find the present value of a perpetuity of ₹ 600 at end of each quarter, if money is worth 8% compounded quarterly.
- 3. What effective rate is equivalent to a nominal rate of 8% per annum compounded quarterly?

OR

Find the present value of an annuity of ₹1000, payable at the end of each year for 5 years, if money is worth 6% compounded annually. [Given $(1.06)^{-5}=0.7473$]

- **4.** A sampling distribution of the sample means \overline{X} is formed from a population with mean weight $\mu = 60$ kg and standard deviation $\sigma = 9$ kg. What is the expected value and standard deviation of \overline{X} , if sample size is 36?
- **5.** Find the trend values using 3 yearly moving average for the loans sanctioned to farmers by a particular branch of a bank in a village.

The data is given as follows:

Year	2016	2017	2018	2019	2020	2021
Amount (in ₹ lakh)	25	30	32	40	45	50

6. The feasible region of the L.P.P. Min Z = 3x + 2y subject to constraints $2x + y \ge 6$, $x - y \ge 0$, $x \ge 0$, $y \ge 0$ is given below:

Determine the optimal solution Justify your answer.

- **7.** The supply function for a commodity is given by $p = x^2 + 4x + 3$, where *x* is the quantity supplied at the price *p*. Find the producer's surplus, when the price of the commodity is ₹ 48.
- **8.** The following table shows the quarterly sales (in ₹ crore) of a real estate company. Compute the trend by quarterly moving averages.

Quarters Year	2016	2017	2018	2019
2018	12	14	18	20 🧲
2019	18	16	20	22
2020	27	24	30	36

OR

Fit a straight line trend by the method of least squares and also estimate the trend for the year 2023.

Year	2014	2015	2016	2017	2018	2019	2020
Amount (in ₹ lacs)	26	26	44	42	108	120	166

- **9.** A machine produces washers of thickness 0.50 mm. To determine whether the machine is in proper working order, a sample of 10 washers is chosen for which the mean thickness is 0.53 mm and the standard deviation is 0.03 mm. Test the hypothesis at 5% level of significance so that the machine is working in proper order. [Given critical value, $t_{0.025} = 2.262$ at v(d.f) = 9]
- 10. A person invested ₹ 15000 in a mutual fund and the value of investment at the time of redemption was ₹ 25000. If CAGR for this investment is 8.88%, then calculate the time period for which the given amount was invested? [Given log(1.667)=0.2219 & log(1.089)=0.037]

(4 marks each)

11. S & D chemicals produces two products, an alkaline solution and a base oil that are sold as raw material to the companies manufacturing soaps and detergents. On the basis of current inventory levels and estimated demand for the coming month, S & D's management has decided that combined production of alkaline solution and the base oil must be at least 3500 gallons. S & D chemicals are also committed to supply 1250 gallons of alkaline solution to one of its major customer. The alkaline solution and base oil requires respectively 2 hours and 1 hour of processing time per gallon. The total processing time available for the coming month is 6000 hours. The production cost is ₹ 200 per gallon for the alkaline solution and ₹ 300 per gallon for the base oil.

Formulate the above as a L.P.P and solve it by using graphical method, to help S & D chemicals for determining the minimum production cost.

- 12. A machine costing ₹ 50,000 is to be replaced at the end of 10 years, when it will have a salvage value of ₹ 5000. In order to provide money at that time for a machine costing the same amount, a sinking fund is set up. If equal payments are placed in the fund at the end of each quarter and the fund earns at the rate of 8% compounded quarterly, then what should each payment be? [Given (1.02)⁴⁰ = 2.208]
- 13. A couple wishes to purchase a house for ₹ 15,00,000 with a down payment of ₹ 4,00,000. If they can amortize the balance at an interest rate of 9% per annum compounded monthly for 10 years, then find the monthly installment (EMI). Also find the total interest paid. [Given (1.0075)⁻¹²⁰ = 0.4079]

OR

A ₹ 2000, 8% bond is redeemable at the end of 10 years at ₹ 105. Find the purchase price to yield 10% effective rate. [Given $(1.1)^{-10} = 0.3855$]

CASE STUDY

14. General anaesthesia is used for major operations to cure the patients and conduct pain free surgeries. Propofol is a commonly used anaesthetic injected for major operations such as knee replacement or open heart surgery. It also acts as a sedative and an analgesic.

A patient is rushed to operation theatre for a 2-hour cardiac surgery. A person is anaesthetized when its blood stream contains at least 3 mg of propofol per kg of body weight. The rate of change of propofol (x), in the body is proportional to the quantity of propofol present at that time. Based on the above information. Answer the following questions:

- (i) Show that the propofol given intravenously is eliminated exponentially from the patients' blood stream. 2
- (ii) What dose of propofol should be injected, to induce unconsciousness in a 50 kg adult for a two hours operation?

(Given $(2)^{\frac{1}{5}} = 1.1487$ & assume half-life of propofol = 5 hours)

CBSE Marking Scheme 2021-2022 (Issued by Board)

Section - A

1. Given, $MR = 9 + 2x - 6x^2$ Let the demand function be p, We know that, $TR = \int (9 + 2x - 6x^2) dx$ $TR = 9x + x^2 - 2x^3 + C$ where C is Integration Constant When x = 0, TR = 0, so C = 0 $TR = 9x + x^2 - 2x^3 = px$ 1 $px = 9x + x^2 - 2x^3$ \Rightarrow $p = 9 + x - 2x^2$ \rightarrow which is the required demand function. 1 OR Let the total cost function be TC $TC = \int \left(50 + \frac{300}{x+1} \right) dx$ $TC = 50x + 300\log|x + 1| + C$ If x = 0, TC = ₹ 2000 $2000 = 300(\log 1) + C$ So 1 C = 2000 \Rightarrow So $TC = 50x + 300\log(x + 1) + 2000$ Hence, the required total cost function $TC = 50x + 300\log(x + 1) + 2000$ 1 **2.** Let the present value of perpetuity be P Given, R = ₹ 600 $i = \frac{0.08}{4} = 0.02$ 1 Present value of perpetuity = $P = \frac{R}{i}$ $P = \frac{600}{0.02} = ₹ 30,000$ 1 \Rightarrow

- **3.** Let the effective rate be *r*(subscript){*eff*}

Since,
$$r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$$
 1

(Given r = 0.08)

$$= \left(1 + \frac{0.08}{4}\right)^4 - 1$$

= (1.02)⁴ - 1 = 0.0824 or 8.24% 1

So effective rate is 8.24% compounded quarterly.

OR

Present value of ordinary annuity

1

1

1

1 + 1

$$= R\left(\frac{1-(1+r)^{-n}}{r}\right)$$

= 1000 $\left(\frac{1-(1.06)^{-5}}{0.06}\right)$
= 1000 $\left(\frac{1-0.7473}{0.06}\right)$
= ₹ 4211.67

4. Let the expected value be E, standard deviation be SD and sample size be n

$$\sqrt{n} = E(X) = 6 \, \text{kg} \qquad 1$$

Standard deviation of

5.

 $\overline{X} = SD(\overline{X})$ $=\frac{\sigma}{\sqrt{n}}=\frac{9}{6}$ $= 1.5 \, \text{kg}$

Year	Y	3 yearly moving total	3 yearly moving average (Trend)
2016	25	_	—
2017	30	87	29
2018	32	102	34
2019	40	117	39
2020	45	135	45
2021	50		

6. The feasible region is given as follows:

The values at the corner points P and Q can be shown as:

Corner points	$\mathbf{Z} = 3x + 2y$
P (2, 2)	10
Q (3, 0)	9

The smallest value of Z is 9. Since, the feasible region is unbounded, we draw the graph of 3x + 2y < 9. The resulting open half plane has points common with feasible region, therefore Z = 9 is not the minimum value of Z. Hence, the optimal solution does not exist. **1**

Section - B

7. Substituting, $p_0 = ₹ 48$ in $p = x^2 + 4x + 3$ We get $x_0 = 5$

$$PS = p_0 x_0 - \int_0^{x_0} g(x) dx$$

= 48×5- $\int_0^5 (x^2 + 4x + 3) dx$ 1
= 240- $\left[\frac{x^3}{3} + 2x^2 + 3x\right]_0^5$
= ₹ 133.33 1

8.

Year	Quarters	Y	4-Quarterly Moving Total	4 Quarterly Moving average (Centered)
	Q ₁	12		
2018	Q ₂	14		<u> </u>
2018	Q ₃	18	64	16.75
	Q_4	20	70 70	17.75
	Q ₁	18	72	18.25
2010	Q ₂	16	74	18.75
2019	Q ₃	20	85	20.125
	Q_4	22	93	22.25
	Q1	27	103	24.50
2020	Q ₂	24	117	27.5
2020	Q ₃	30		
	Q ₄	36		_

1

The trend value are given by 4 quarterly centered moving average.

 $1\frac{1}{2} + 1\frac{1}{2}$

OR								
Year Y		X = Year - 2017	X^2	ХҮ				
2014	26	- 3	9	- 78				
2015	26	- 2	4	- 52				
2016	44	- 1	1	- 44				
2017	42	0	0	0				
2018	108	1	1	108				
2019	120	2	4	240				
2020	166	3	9	498				
	$\Sigma \Upsilon = 532$		$\Sigma X^2 = 28$	$\Sigma XY = 672$				

$$a = \frac{\Sigma Y}{n} = \frac{532}{7} = 76, b = \frac{\Sigma X Y}{\Sigma X^2} = \frac{672}{28} = 24$$

1

 $Y_C = a + bX$, $Y_C = 76 + 24X$ 1 Estimated sales = Y_C for 2023 = 76 + 24 × 6 = ₹ 220 lacs

- **9.** Define Null hypothesis H_0 and alternate hypothesis H_1 as follows:
 - $H_0: \mu = 0.50 \text{ mm}$
 - $H_1: \mu \neq 0.50 \text{ mm}$

Thus, a two-tailed test is applied under hypothesis H_{0} , 1

We have,

$$t = \frac{\overline{X} - \mu}{S} \sqrt{n - 1} \\ = \frac{0.53 - 0.50}{0.03} \times 3 = 3$$

Since, the calculated value of t = 3 does not lie in the interval $- t_{0.025}$ to $t_{0.025}$ *i.e.*, - 2.262 to 2.262 for 10 - 1 = 9 degree of freedom. So we reject H₀ at 0.05 level. Hence, we conclude that machine is not working properly. **1**

10. We know

$$CAGR = \left| \left(\frac{FV}{IV} \right)^{\frac{1}{n}} - 1 \right| \times 100,$$

where, IV = Initial value of investment FV = Final value of investment

$$\Rightarrow \qquad 8.88 = \left[\left(\frac{25000}{15000} \right)^{\frac{1}{n}} - 1 \right] \times 100$$

$$\Rightarrow 0.0888 = \left(\frac{3}{3}\right)$$

$$\Rightarrow 1.089 = (1.667)$$

$$\Rightarrow \frac{1}{n} \log(1.667) = \log(1.089)$$
$$\Rightarrow u(0.037) = 0.2219$$

$$\Rightarrow \qquad n(0.037) = 0.2219$$

$$\Rightarrow \qquad n = 5.99 \approx 6 \text{ years}$$

Section - C

11. Let the company produces *x* and *y* gallons of alkaline solution and base oil respectively, also let *C* be the production cost.

Min C = 200x + 300ySubject to constraints:

$$x + y \ge 3500 \qquad \qquad \dots (1)$$

$$x \ge 1250 \qquad \dots (2)$$

$$2x + y \le 6000 \qquad \dots (3)$$

Corner points	C = 200x + 300y			
P (1250, 2250)	₹ 9,25,000			
Q (1250, 3500)	₹ 13,00,000			
R (2500, 1000)	₹ 8,00,000			

Minimum cost is 8,00,000 when 2500 gallons of alkaline solutions & 1000 gallons of base oil are manufactured. 1

12. The amount of sinking fund S at any time is given by

$$S = R \left[\frac{(1+i)^n - 1}{i} \right]$$
 1

where R = periodic payment, i = Interest per period, n = number of payments

S = Cost of machine - Salvage value

$$= ₹ 50,000 - ₹ 5000 = ₹ 45,000$$

$$i = \frac{8\%}{4} = 0.02$$

$$45000 = R \left[\frac{(1+0.02)^{40} - 1}{0.02} \right]$$

$$45000 = R \left[\frac{2.208 - 1}{0.02} \right]$$

$$R = \frac{900}{1.208}$$

$$R = ₹ 745.03$$

$$1\frac{1}{2}$$

13. *P* = Cost of house – Cash down payment
P = ₹ 15,00,000 – ₹ 4,00,000 = ₹ 11,00,000

$$0.09$$
 = 0.02=

 \Rightarrow

 \Rightarrow

 \Rightarrow

1

1

1

$$i = \frac{12}{12} = 0.0075$$

$$n = 10 \times 12 = 120$$

$$EMI = R = \frac{P}{a_{n-i}}$$

$$R = \frac{P \times i}{1 - (1+i)^{-n}}$$
1

$$= \frac{11,00,000 \times 0.0075}{1 - (1.0075)^{-120}}$$

$$= \frac{8250}{1 - 0.4079}$$

= $\frac{8250}{0.5921}$ = ₹ 13933.5
Total interest paid = $nR - R$
= 13933.5 × 120 - 11,00,000
= ₹ 5,72,020
OR

1

1

Face value of bond, F = ₹ 2000Redemption value $C = 1.05 \times 2000 = ₹ 2100$ Nominal rate = 8%

$$R = C × i_d = 2000 × 0.08$$

= ₹ 160 1¹/₂

Number of periods before redemption i.e.,

n = 10

Annual yield rate, i = 10% or 0.1

Purchase price,

$$V = R \left[\frac{1 - (1 + i)^{-n}}{i} \right] + C(1 + i)^{-n} \frac{1}{2}$$

= 160 $\left[\frac{1 - (1 + 0.1)^{-10}}{0.1} \right]$
+ 2100(1 + 0.1)⁻¹⁰
= 160 × 6.14 + 2100 × 0.3855
= 982.4 + 809.6
= ₹ 1792
Thus, present value of the bond is ₹ 1792. **1**

CASE STUDY

14.
$$\because \frac{dx}{dt} \propto x$$
,
 $\therefore \qquad \frac{dx}{dt} = -kx$
 $\Rightarrow \qquad \int \frac{dx}{x} = \int -k \, dt$
 $\Rightarrow \qquad \log x = -kt + c$ 1
 $\Rightarrow \qquad x = e^{-kt + c}$
 $\Rightarrow \qquad x = \lambda e^{-kt}$ where $e^c = \lambda$
(i) Let $x = x_0$ at $t = 0$
 $\because \qquad x_0 = \lambda$
 $\Rightarrow \qquad x = x_0 e^{-kt}$
where x_0 = original quantity 1
(ii) Let the half life be t and amount of propofol be

ii) Let the half life be t and amount of propofol be
$$x_0$$

 $\frac{1}{2}$

 \Rightarrow

Now,
$$\frac{x_0}{2} = x_0 e^{-5k}$$
 (:: half life = 5 hours)

$$e^k = 2^{1/5}$$
 1

The quantity of propofol needed in a 50 kg adult at the end of

2 hours =
$$50 \times 3 = 150 \text{ mg}$$

 $\Rightarrow 150 = x_0 e^{-2k}$ [using ...(i)]
 $\Rightarrow x_0 = 150 e^{2k} = 150 (e^k)^2$
 $\Rightarrow x_0 = 150(2^{1/5})^2 = 150 \times 1.3195$
 $x_0 = 197.93 \text{ mg}$ 1

So, 197.53 mg of propofol is needed.

Solved Paper, 2021-22 APPLIED MATHEMATICS

Term-I, Set-4

Series : SSJ/1

Time allowed : 90 Minutes

General Instructions :

- (i) This question paper contains 50 questions out of which **40** questions are to be attempted as per instructions. All questions carry equal marks.
- (ii) The question paper consists three Sections Section A, B and C.
- (iii) Section A consists of 20 questions. Attempt any 16 questions from Q. No. 1 to 20.
- (iv) Section **B** also consists of **20** questions. Attempt any **16** questions from Q. No. **21** to **40**.
- (v) Section C consists of a Case Studies containing 5 questions (Q. No. 46 to 50). Attempt any 8 from Q. No. 41 to 50.
- (vi) There is only **one** correct option for every multiple choice question (MCQ). Marks will **not** be awarded for answering more than one option.
- (vii) There is **no** negative marking.

SECTION - A

In th	is section, attempt any 16 que	estions out of question no	b. $1 - 20$. Each question is of 1	mark. $(16 \times 1 = 16)$			
1.	If $100 = x \pmod{7}$, then the left	east positive value of <i>x</i> is:					
	(A) 2	(B) 3	(C) 6	(D) 4			
2.	If $\tau(n)$ denotes the number of	f divisors of <i>n</i> , then value	of τ(15) is:				
	(A) 3	(B) 4	(C) 5	(D) 7			
3.	If a man rows 32 km downstr	ream and 14 km upstream	n in 6 hours each, then the spe	eed of the stream is:			
	(A) 2 km/h	(B) 1.5 km/h	(C) 2.5 km/h	(D) 2.25 km/h			
4.	In a 2 km race, <i>P</i> can give <i>Q</i> a	a start of 200 m and R a sta	art of 560 m. Then in the same	e race, Q can give R a start of:			
	(A) 360 m	(B) 380 m	(C) 400 m	(D) 430 m			
5.	5. Pipe <i>A</i> and <i>B</i> can fill a tank in 5 hours and 6 hours respectively. Pipe <i>C</i> can empty it in 12 hours. If all the three pipes are opened together, then the time taken to fill the tank is:						
	(A) 2 hours	(B) $2\frac{3}{4}$ hours	(C) 3 hours	(D) $3\frac{9}{17}$ hours			
6.	The solution of $\frac{x-3}{x+5} > 0$, $x = 1$	\neq – 5, $x \in R$ is:					
	(A) $x > 3$	(B) $x < -5$	(C) <i>x</i> < −5 or <i>x</i> > 3	(D) no solution			
7.	If matrix <i>A</i> is given by $A = [a]$	$[a_{ij}]_{2\times 2}$, where $a_{ij} = i + j$, the	en A is equal to:				
	$(\mathbf{A}) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	$(\mathbf{B})\begin{bmatrix}2&3\\3&4\end{bmatrix}$	$(\mathbf{C})\begin{bmatrix}1&1\\2&2\end{bmatrix}$	$\textbf{(D)} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$			
8.	If <i>A</i> is a square matrix such the	hat $A^2 = A$, then $(I + A)^2$ -	- 3A is equal to:				
	(A) I	(B) 2 <i>A</i>	(C) 3 <i>I</i>	(D) <i>A</i>			
9.	If <i>A</i> is a square matrix of orde	er 3 × 3 such that $ A = 4$, then $ 3A $ is equal to:				
	(A) 27	(B) 81	(C) 108	(D) 256			

Question Paper Code No. 465/1/4

Max. Marks: 40

10.	10. The function $f(x) = a^x$ is increasing on <i>R</i> , if:							
11	(A) $a > 0$ If $C(r)$ and $R(r)$ are	e respectiv	(B) a < 0 elv. Cost functio	n and Re	(C) $0 < a < 1$ (D) $a > 1$			
11.	(A) $P(x) = R(x)$	erespectiv	(B) $P(x) = C(x)$	+ R(x)	(C) $P(x) = R($	f(x) - C(x)	(D) $P(x) = R(x).C(x)$	
12.	If ' <i>m</i> ' is the mean o	of Poisson o	distribution, the	n its stan	dard deviation	is given by:		
	(A) \sqrt{m}		(B) <i>m</i> ²		(C) <i>m</i>		(D) $\frac{m}{2}$	
13.	The normal distri	bution curv	ve is symmetrica	l about:				
	(A) $X = \mu$		(B) <i>X</i> = σ		(C) $X = \frac{\mu}{\sigma}$		(D) $X = \frac{\sigma}{\mu}$	
14.	Let X be a discrete	e random v	ariable whose p	robability	y distribution is	s given below:		
	$X = x_i: \qquad 0$	1	2 3	4	5 6	7		
	$P(X=x_i): \qquad 0$	2 <i>K</i>	2K 3K	<i>K</i> ²	$2K^2$ $7K^2$	2K		
	The value of <i>K</i> is:							
	(A) $\frac{1}{10}$		(B) –1		(C) $-\frac{1}{10}$		(D) $\frac{1}{5}$	
15.	In a box of 100 bu	lbs, 10 are o	defective. What i	is the pro	bability that ou	ut of a sample	of 5 bulbs, none is defective?	
	$(\mathbf{A}) \left(\frac{9}{10}\right)^5$		(B) $\frac{9}{10}$		(C) 10 ⁻⁵		(D) $\left(\frac{1}{2}\right)^2$	
16.	If X is a normal va	ariate with	mean μ and star	ndard de	eviation $\sigma > 0$,	then the new	random variate $Z = \frac{X - \mu}{\sigma}$ is a	
	variate with:							
	(A) Mean = 1, St	andard dev	viation $= 0.$		(B) Mean = (B) M	1, Standard de	viation $= 1$.	
17	(C) Mean = 2, St The mean $F(r)$ of	andard dev	viation = 1. $\frac{1}{2}$	browing	(D) Mean = $($	0, Standard de written 1 on th	$v_{1} = 1.$	
17.	on one face is:	the numbe	.is obtained on t	inowing	, u ule nuving v		free faces, 2 off two faces and 5	
	(A) 1		(B) 2		(C) 5		(D) $\frac{8}{3}$	
18.	Which of the follo	wing inde	x number satisfie	es the "tiı	ne reversal test	t"?		
	(A) Fisher's ideal	index nun	iber		(B) Laspeyres' index number			
19.	To calculate Paasc	ex number	ndex, the weight	ts are tak	(D) None or i	these		
1,	(A) p_0	lie 5 price li	(B) <i>p</i> ₁	is are tak	(C) q_0		(D) <i>q</i> ₁	
20.	Given that $\sum p_1 q_1 =$	$= 860, \Sigma p_0 q_0$	$q_0 = 520, \Sigma p_1 q_0 =$	= 630 and	$1\sum p_0 q_1 = 730, v$	vhere subscrip	t 0 and 1 are used for base year	
	(A) 117.81	respectively	y. The Laspeyres (B) 119.5	index n	(C) 121.15		(D) 123.35	
	()			SECTI	ON - B			
In th	is section, attempt	any 16 qu	estions out of qu	uestions	no. 21 - 40. Eac	h question is a	of 1 mark. (16×1=16)	
21.	The remainder w	nen 5 ⁶¹ is d	ivided by 7 is:			1	х, , ,	
	(A) 1		(B) 2		(C) 4		(D) 5	
22.	20 litres of a mixture so as to h	ure contair ave milk ar	ns milk and wate and water in the r	er in the atio 4 : 1	ratio 3 : 1. The , is:	amount of mi	(R) (
72	(A) $/$ Pipe A can fill a to	unk 6 times	(D) 4 faster than a pir	ne R If R	(C) 5 can fill a tank is	n 21 minutes +	$(U) \circ$	
40.	pipes together to	fill the tank	s is:	,с <i>D</i> . II D		n 21 minutes, l	The fire taken by bour the	
	(A) 3 minutes		(B) $4\frac{-}{2}$ minute	es	(C) 7 minute	S	(D) 9 minutes	

	money for 8 months, then for how much time did <i>B</i> invest his money?							
	(A) 11 months	(B) 10 months	(C) 9 months	(D) 5 months				
25.	The solution set of the inequa	ation $ x+2 \le 5$ is:						
	(A) (-7, 5)	(B) [-7, 3]	(C) [-5, 5]	(D) (-7, 3)				
26.	If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } AB = I_3, \text{ th}$	then $(x + y)$ equals:					
	(A) 0	(B) –1	(C) 2	(D) –2				
27.	If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2 \end{bmatrix}$, then $aI + b$	$bA + 2A^2$ equals:						
	(A) A	(B) – <i>A</i>	(C) abA	(D) None of these				
28.	If $A^2 - A + I = 0$, then the in	verse of matrix A is:						
	(A) A^2	(B) $A + I$	(C) <i>I</i> – <i>A</i>	(D) A – I				
29.	If the points (1, 3), (<i>x</i> , 5) and ((2, 7) are collinear, then th	e value of <i>x</i> is:					
	(A) 2	(B) $\frac{3}{2}$	(C) 1	(D) $\frac{3}{4}$				
30.	If $y = Ae^{5x} + Be^{-5x}$, then $\frac{d^2y}{dx^2}$	is:						
	(A) 25 <i>y</i>	(B) 5y	(C) –25y	(D) 15 <i>y</i>				
31.	The point on the curve $x^2 = 2$	ly which is nearest to the j	point (0, 5) is:					
	(A) $(2\sqrt{2},4)$	(B) $(2\sqrt{2},0)$	(C) (0, 0)	(D) (2, 2)				
~~				(-) (-)				
32.	If the total revenue (x) receiv	ed from the sale of x units	s of a product is given by:					
	$K(x) = 3x^2 + 36x$	(+ 5,						
	then the marginal revenue,w	when $x = 15$, is		(D) 310/				
	(A) ₹116	(B) ₹96	(C) ₹90	(D) ₹126				
33.	The equation of normal at th	e point (1, 1) to the curve	$2y + x^2 = 3$ is:					
	$(\mathbf{A}) x + y = 0$	$(\mathbf{B}) x - y = 0$	(C) $x + y = 1$	(D) $x - y = 1$				
34.	Let <i>X</i> represent the difference tossed 6 times. Then the posses	ce between the number of sible values of X are:	of heads and the number of	tails obtained when a coin is				
	(A) 0, 1, 3, 5	(B) 0, 2, 4, 6	(C) 0, 2, 5, 6	(D) 1, 3, 4, 5				
35.	If the mean of a binomial dis	tribution is 81, then the st	andard deviation lies in the i	nterval:				
	(A) [0, 9)	(B) (0, 9]	(C) [0, 3]	(D) (0, 3]				
36.	If a random variable <i>X</i> has the	e Poisson distribution wit	th mean 2. Then, $P(X > 1.5)$ is	3:				
	(A) $2e^{-2}$	(B) 3 <i>e</i> ⁻²	(C) $1 - 2e^{-2}$	(D) $1 - 3e^{-2}$				
37.	There are 50 telephone lines in that all the lines are busy is:	n an exchange. The probal	pility that any one of them wil	l be busy is 0·1. The probability				
	(A) $\frac{5^0 e^{-5}}{0!}$	(B) $1 - \frac{5^0 e^{-5}}{0!}$	(C) $\frac{5^{50}e^{-5}}{50!}$	(D) $1 - \frac{5^{50}e^{-5}}{50!}$				
38.	Price relative of sugar is 135 i its cost in 2020 is:	n the year 2020 compared	l to the year 2019. If the sugar	cost ₹ 30 per kg in 2019, then				
	(A) ₹15 per kg	(B) ₹ 40.50 per kg	(C) ₹ 45.20 per kg	(D) ₹ 65 per kg				
39.	If $\Sigma W \log p = 199.50$ and ΣW	V = 100, then the weighted	d index number is:					
	(A) 120·86	(B) 88·86	(C) 98·86	(D) 78·86				
40.	The condition for the time re	versal test to hold good w	vith usual notation is:					
	$(\mathbf{A}) P_{bc} \times P_{cb} = 1$	(B) $P_{bc} \times P_{cb} = 0$	(C) $P_{bc} + P_{cb} = 1$	$(\mathbf{D}) \ \frac{P_{cb}}{P_{bc}} = 1$				

SECTION - C

In th are b	is section, attempt any ased on a Case-Study	y 8 question:)	s out of q	uestions no	. 41 - 50. Each	n question is of	1 mark. (Quest	ions no. 46 - 50 (8×1=8)
41.	The least value of 'a' s	such that the	function	$f(x) = x^2 + \frac{1}{2}$	ax + 1 is increased	easing on (1, 2)	is:	
	(A) 0	(B)	-1		(C) –2		(D) –4	
42.	The demand function	n of a commo	dity is g	iven by:				
	x = 82 -	· p						
	and its total cost func	tion is given	by:					
	T.C. = 100	+ 60x						
	For maximum profit,	the value of	x is:					
	(A) 15 units	(B)	14 units		(C) 13 units		(D) 11 units	
43.	The mean of the prob	ability distri	bution of	the numbe	r of doublets	in 4 throws of a	a pair of dice, is:	
	(A) 1	(B) $\frac{2}{3}$			(C) $1\frac{3}{5}$		(D) $2\frac{2}{3}$	
44.	It is known from the between 3 p.m. and 4 there be more than 4 0.4394]	e past experi 4 p.m. has a 00 telephone	ence tha mean of e calls ma	t the numb 352 and a s ade in the c	er of telepho tandard devi ommunity be	one calls made ation of 31. Wh etween 3 pm to	daily in a certa nat percentage c 4 pm? [Use : P	in community of the time will $(0 \le Z \le 1.5) =$
	(A) 11·4%	(B)	9.6%		(C) 7·08%		(D) 6·06%	
45.	The index number of	the followin	g data:					
	Relative Index	181	116	110	157			
	Weight	4	12	3	7			
	is:							
	(A) 118·74				(B) 136·34			
	(C) 142·04				(D) 146·14			
				Case-	otudy			

Two products *P* and *Q* are produced such that 0.4 tonne of *P* and 0.7 tonne of *Q* are required to produce one tonne of *P*. Similarly, 0.1 tonne of *P* and 0.6 tonne of *Q* are required to produce one tonne of *Q*. The economy needs 68 tonnes of *P* and 102 tonnes of *Q*.

Based on the above information, answer the following questions:

46.	The technology matrix A is:			
	(A) $\begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$	(B) $\begin{bmatrix} 0.4 & 0.6 \\ 0.7 & 0.1 \end{bmatrix}$	$(\mathbf{C}) \begin{bmatrix} 0.6 & 0.1 \\ 0.7 & 0.4 \end{bmatrix}$	(D) $\begin{bmatrix} 0.4 & 0.7 \\ 0.1 & 0.6 \end{bmatrix}$
47.	The demand matrix is:			
	(A) $\begin{bmatrix} 68\\102 \end{bmatrix}$	$(\mathbf{B})\begin{bmatrix} 68\\ 34 \end{bmatrix}$	$(\mathbf{C})\begin{bmatrix}102\\68\end{bmatrix}$	(D) $\begin{bmatrix} 34\\68 \end{bmatrix}$
48.	(I - A) is:			
	(A) $\begin{bmatrix} 0.6 & -0.6 \\ -0.7 & 0.9 \end{bmatrix}$	$\textbf{(B)} \begin{bmatrix} 0.4 & -0.1 \\ -0.7 & 0.6 \end{bmatrix}$	(C) $\begin{bmatrix} 0.6 & -0.7 \\ -0.1 & 0.4 \end{bmatrix}$	$\textbf{(D)} \begin{bmatrix} 0.6 & -0.1 \\ -0.7 & 0.4 \end{bmatrix}$
49.	$(I - A)^{-1}$ is:			
	(A) $\frac{1}{0.17} \begin{bmatrix} 0.6 & 0.1 \\ 0.1 & 0.6 \end{bmatrix}$	(B) $\frac{1}{0.17} \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$	(C) $\frac{1}{0.17} \begin{bmatrix} 0.4 & 0.7 \\ 0.1 & 0.6 \end{bmatrix}$	(D) $\frac{1}{0.17} \begin{bmatrix} 0.9 & 0.6 \\ 0.7 & 0.6 \end{bmatrix}$
=0				

50. The gross outputs of *P* and *Q* are:

(A) P = 260; Q = 360 (B) P = 220; Q = 640 (C) P = 520; Q = 300 (D) P = 420; Q = 433

SOLUTIONS

SECTION - A

1. (A) 2

Explanation: We know that, $a = b \pmod{c}$ Then *b* is the remainder, when *a* is divided by *c*. \therefore 100 = $x \pmod{7}$ 7 100 (14 $\frac{7}{30}$ $\frac{28}{2} \rightarrow \text{Remainder}$ Thus, x = 2

2. (**B**) 4

Explanation:	$\tau(n) =$ no. of divisors of n
.:.	$\tau(15) = 4$
[Since,	divisors of 15 are 1, 3, 5 and 15]

3. (B) 1.5 km/h

Explanation: Upstream speed =
$$\frac{14}{6}$$

Downstream speed = $\frac{32}{6}$
Speed of the stream = $\frac{\frac{32}{6} - \frac{14}{6}}{2} = \frac{\frac{18}{6}}{2}$
= $\frac{18}{6 \times 2} = \frac{3}{2}$
= 1.5 km/h

- **4.** (C) 400 m
- 5. (D) $3\frac{9}{17}$ hours

Explanation: Here, LCM of 5, 6 and 12 is 60. *i.e.*, L(5, 6, 12) = 60 Suppose capacity of the tank is *l*. Then, quantity filled by pipe *A* in 1 hr = $\frac{60}{5} = 12 l$ Quantity filled by pipe *B* in 1 hr = $\frac{60}{6} = 10 l$ Quantity emptied by pipe *C* in 1 hr = $\frac{60}{12} = 5 l$ So,quantity filled by all three pipes in 1 hr = (12 + 10 - 5)l = 17 lRequired time = $\frac{60}{17} = 3\frac{9}{17}$ hours 6. (C) x < -5 or x > 3

Explanation: Given, $\frac{x-3}{x+5} > 0$, $x \neq -5$ when x > 3, then $\frac{x-3}{x+5} > 0$ when x < -5, then $\frac{x-3}{x+5} > 0$ Thus, for $\frac{x-3}{x+5} > 0$, the solution is x < -5 or x > 3.

7. (**B**) $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$

 Explanation: Here,
 $a_{11} = 1 + 1 = 2$
 $a_{12} = 1 + 2 = 3$
 $a_{21} = 2 + 1 = 3$

 and

 \therefore
 $A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$

8. (A) I

Explanation: We have, $(I + A)^2 - 3A$ = $I^2 + 2IA + A^2 - 3A$ = I + 2A + A - 3A[Since given $A^2 = A$] = I

9. (C) 108

Explanation: $|3A| = (3)^3 |A|$ [\because order of matrix = 3] $= 27 \times 4$ [Given |A| = 4] = 108

```
10. (D) a > 1
```

Explanation: Given, $f(x) = a^x$ \therefore $f(x) = a^x \log a$ for increasing function, f(x) > 0 \therefore $a^x \log a > 0$ $\Rightarrow a^x > 0$ and $\log a > 0$ or $a^x < 0$ and $\log a < 0$ But log function is always positive \Rightarrow $\log a > 0$ \Rightarrow a > 1

11. (C) P(x) = R(x) - C(x)

Explanation: Profit is revenue minus cost *i.e.*, P(x) = R(x) - C(x)

12. (A) \sqrt{m}

Explanation: In case of Poisson distribution S.D = $\sqrt{\text{mean}}$ [5

Thus, $S.D. = \sqrt{m}$

13. (A) $X = \mu$

Explanation: Normal distribution is symmetrical about mean.

[Given, mean = m]

14. (A)
$$\frac{1}{10}$$

Explanation: Here, $\Sigma P_i = 1$ $\therefore 0 + 2K + 2K + 3K + K^2 + 2K^2 + 7K^2 + 2K = 1$ $\Rightarrow 9K + 10K^2 = 1$ $\Rightarrow 10K^2 + 9K - 1 = 0$ $\Rightarrow 10K^2 + 10K - K - 1 = 0$ $\Rightarrow 10K(K + 1) - 1(K + 1) = 0$ $\Rightarrow (K + 1)(10K - 1) = 0$ $\Rightarrow K = -1 \text{ and } K = \frac{1}{10}$ Since, $K \ge 0$ therefore $K = \frac{1}{10}$

15. (A) $\left(\frac{9}{10}\right)^5$

Explanation: Probability of getting a defective bulb,

 $p = \frac{10}{100} = \frac{1}{10}$ $\therefore \qquad q = 1 - p$ $= 1 - \frac{1}{10} = \frac{9}{10}$ Here, n = 5By binomial distribution probability of getting no defective bulb = $P(X = 0) = {}^{n}C_{0} p^{0} q^{n-0}$ $= {}^{5}C_{0} \left(\frac{9}{10}\right)^{5} = \left(\frac{9}{10}\right)^{5}$

16. (D) Mean = 0, Standard deviation = 1.

17. (**B**) 2

Explanation: Total no. of observations = 6

$$P(X = 1) = \frac{3}{6} = \frac{1}{2}$$

$$P(X = 2) = \frac{2}{6} = \frac{1}{3}$$

$$P(X = 5) = \frac{1}{6}$$

(where *X* be a random variable respresending a number on die)

:. Mean,
$$E(X) = \sum p_i X_i$$

= $\frac{1}{2} \times 1 + \frac{1}{3} \times 2 + \frac{1}{6} \times 5$
= $\frac{1}{2} + \frac{2}{3} + \frac{5}{6}$

$$= \frac{3+4+5}{6} \\ = \frac{12}{6} = 2$$

- 18. (A) Fisher's ideal index number
- **19.** (D) *q*₁
- **20.** (C) 121.15

22. (C) 5

Explanation: In 20 l of mixture,

Quantity of milk = $\frac{3}{4} \times 20 = 15 l$ Quantity of water = $\frac{1}{4} \times 20 = 5 l$ Let the quantity of milk added be *x l*. According to be question,

$$\frac{15+x}{5} = \frac{1}{1}$$

$$\Rightarrow \qquad 15+x=2$$

$$\Rightarrow \qquad x=5$$

23. (A) 3 minutes

Explanation: Given, slower pipe filled the tank in 21 minutes Then faster pipe filled the tank in $\frac{21}{6}$ minutes Thus, tank filled by both the pipes in 1 minute $= \frac{1}{21} + \frac{6}{21} = \frac{7}{21} = \frac{1}{3}$

Hence, time taken by both pipes together to fill the tank is 3 minutes.

24. (A) 11 months

Explanation: Let *A* invested \gtrless 11 for 8 months and *B* invested \gtrless 12 for *t* months. Therefore, the ratio of investment of *A* and *B* is

Шř.

.

on: We have, $A^2 - A + I = 0$ $A^{-1}(A^2 - A + I) = A^{-1}(0)$ \Rightarrow

[7

⇒ z has a minima at k = 4from (i), when k = 4, $h^2 = 8$ ⇒ $h = \pm 2\sqrt{2}$ ∴ Required points are $(\pm 2\sqrt{2}, 4)$.

32. (**D**) ₹126

Explanation: $R(x) = 3x^2 + 36x + 5$ Marginal Revenue, $R'(x) = \frac{dR}{dx} = 6x + 36$ \therefore Marginal Revenue at x = 15 is $\frac{dR}{dx}\Big|_{x=15}$ = 6(15) + 36 = ₹126

33. (**B**) x - y = 0

Explanation: Given, curve is
$$2y + x^2 = 3$$
 ...(i)
Differentiating (i), w.r.t. x , we get
 $2\frac{dy}{dx} + 2x = 0$
 $\Rightarrow \qquad \frac{dy}{dx} = -x$
 $\therefore \qquad \left(\frac{dy}{dx}\right)_{(1,1)} = -1$
Thus, slope of normal is $\frac{-1}{\left(\frac{dy}{dx}\right)_{(1,1)}} = 1$
Thus, equation of normal passing through (1, 1)
having slope 1 is: $y - 1 = 1(x - 1)$
 $\Rightarrow \qquad x - y = 0$

34. (B) 0, 2, 4, 6

Explanation: The coin is tossed six times and X represents the difference between the number of heads and the number of tails. $\therefore \qquad X(6H, 0T) = |6-0| = 6$ X(5H, 1T) = |5-1| = 4 X(4H, 2T) = |4-2| = 2

- X(3H, 3T) = |3-3| = 0 X(2H, 4T) = |2-4| = 2 X(1H, 5T) = |1-5| = 4 X(0H, 6T) = |0-6| = 6Thus, possible values are 0, 2, 4, 6.
- **35.** (A) [0, 9)

Explanation: Standard deviation, $\sigma = \sqrt{npq} \ge 0$ Now, mean = np = 81 and q < 1So, $\sigma = \sqrt{npq} < \sqrt{np} = \sqrt{81} = 9$ $\therefore \qquad 0 \le \sigma < 9$ Hence, σ lies in [0, 9)

36. (D) $1 - 3e^{-2}$

Explanation: We know that, $P(X = x) = \frac{e^{-\lambda}\lambda^{x}}{x!}$

Given that mean =
$$2 = \lambda$$

 $\therefore P(X > 1.5) = P(X = 2) + P(X = 3) + ...$
 $\Rightarrow P(X > 1.5) = 1 - [P(X = 0) + P(X = 1)]$
 $= 1 - [e^{-2} + 2e^{-2}] = 1 - 3e^{-2}$

37. (C)
$$\frac{e^{-5}5^{50}}{50!}$$

Explanation: Given, 50 telephone line in an exchange probability that any of them will be busy is 0.1. Let X be the Poisson variable. $\therefore \qquad P(X = r) = \frac{e^{-m}m^r}{r!}, r = 0, 1, 2,$

Here, n = 50, p = 0.1 $m = np = 50 \times 0.1 = 5$ $\therefore P(X = r) = \frac{e^{-5}(5)^r}{r!}, r = 0, 1, 2,, 50$ Thus, P(all lines are busy) = P(X = 50) $\therefore = \frac{e^{-5}(5)^r}{r!}$ For r = 50, $P = \frac{e^{-5}5^{50}}{50!}$

38. (**B**) ₹ 40.50 per kg

Explanation: Let the cost of sugar be $\overline{\mathbf{x}} p$ per kg in 2020. Then, it is given by $135 = \frac{p}{30} \times 100$ $\Rightarrow \qquad p = \frac{135 \times 30}{100} = \frac{4050}{100}$ $= \overline{\mathbf{x}} 40.50 \text{ per kg}$

40. (A)
$$P_{bc} \times P_{cb} = 1$$

41. (C) –2

Explanation: We have, $f(x) = x^2 + ax + 1$ \therefore f'(x) = 2x + aNow, function f will be increasing in (1, 2), if f'(x) > 0 $\Rightarrow 0$ in (1, 2) f'(x) > 0 $\Rightarrow 2x + a > 0$ $\Rightarrow 2x > -a$ $\Rightarrow x > \frac{-a}{2}$ Therefore, we have to find the least value of a such that $x > \frac{-a}{2}$, when $x \in (1, 2)$ $\Rightarrow x > \frac{-a}{2}$, when $x \in (1, 2)$ $\Rightarrow x > \frac{-a}{2}$, when 1 < x < 2Thus, the least value of a for f to be increasing on (1, 2) is given by, $\frac{-a}{2} = 1$ $\Rightarrow a = -2$

Hence, the required value of \vec{a} is -2.

	Explanation: Here, demand function.
l	p(x) = 82 - x
l	and $\cos t \operatorname{function} c(x) = 100 + 60x$
l	$\therefore \text{Profit function, } P(x) = xp(x) - c(x)$
I	$\Rightarrow \qquad P(x) = x(82 - x) - (100 + 60x)$
I	$\Rightarrow \qquad P(x) = 82x - x^2 - 100 - 60x$
I	$\Rightarrow \qquad P(x) = -x^2 + 22x - 100$
I	Now, $\operatorname{put} P'(x) = 0$
I	<i>i.e.</i> , $-2x + 22 = 0$
I	\Rightarrow $x = 11$
I	Also, $P''(x) = -2 < 0$
	(Hence, maximum)
	Thus, value of <i>x</i> is 11 units.

43. (B)
$$\frac{2}{3}$$

Explanation: Let X : Number of doublets X = 0, 1, 2, 3, 4Total number of possible outcomes = 36Doublets = $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$ $P(\text{Doublet}) = \frac{6}{36} = \frac{1}{6}$ $P(\text{Not a Doublet}) = \frac{5}{6}$ X.P(X)X **P(X)** $\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} = \frac{625}{1296}$ 0 0 $4 \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} = \frac{500}{1296}$ 500 1 1296 $6 \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} = \frac{150}{1296}$ 300 2 1296 $4 \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6}$ 60 20 3 1296 1296 $\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$ 1 4 4 1296 1296 \therefore Mean = $\sum XP(X)$ $= 0 + \frac{500}{1296} + \frac{300}{1296} + \frac{60}{1296} + \frac{4}{1296}$ $\frac{2}{3}$ 864 = 1296

- **44.** (D) 6.06%
- **45. (B)** 136.34

46. (A)
$$\begin{vmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{vmatrix}$$

Explanation: Here, the technology matrix is given under

	P Q	Find Demand
Р	0.4 0.1	68
Q	0.7 0.6	102

 \therefore The technology matrix *A* is

$$A = \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$$

47. (A)
$$\begin{vmatrix} 68 \\ 102 \end{vmatrix}$$

Explanation: From above table, Demand matrix = $\begin{bmatrix} 68\\102 \end{bmatrix}$

48. (D)
$$\begin{bmatrix} 0.6 & -0.1 \\ -0.7 & 0.4 \end{bmatrix}$$

Explanation: Since,
$$A = \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$$

 $\Rightarrow \qquad I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$
 $= \begin{bmatrix} 0.6 & -0.1 \\ -0.7 & 0.4 \end{bmatrix}$

49. (**B**)
$$\frac{1}{0.17} \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$$

Explanation:
$$(I-A)^{-1} = \frac{adj(I-A)}{|I-A|}$$

 $|I-A| = 0.24 - 0.07$
 $\therefore \qquad |I-A| = 0.17$
 $adj(I-A) = \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$
Thus, $(I-A)^{-1} = \frac{1}{0.17} \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$

50. (B)
$$P = 220; Q = 640$$

Explanation: The gross output of P and Q is

$$X = (I - A)^{-1}D$$

$$= \frac{1}{0.17} \begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix} \begin{bmatrix} 68 \\ 102 \end{bmatrix}$$

$$= \frac{1}{0.17} \begin{bmatrix} 37.4 \\ 108.8 \end{bmatrix} = \begin{bmatrix} 220 \\ 640 \end{bmatrix}$$
Thus, gross output of P = 220 and gross output o
Q = 640.

10]

_

_

2

-

_

_

