Sample Question Paper, 2021-22 (Issued by CBSE Board on $14^{\text {th }}$ January, 2022) MATHEMATICS STANDARD(Term- II)

SOLVED

Time: 2 Hours
Max. Marks: 40

General Instructions :

1. The question paper consists of 14 questions divided into 3 sections A, B, C.
2. All questions are compulsory.
3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

Section - A

[2 Marks Each]

1. Find the value of $a_{25}-a_{15}$ for the AP: $6,9,12,15, \ldots \ldots .$.

OR

If 7 times the seventh term of the $A P$ is equal to 5 times the fifth term, then find the value of its $12^{\text {th }}$ term.
2. Find the value of m so that the quadratic equation $m x(5 x-6)+q=0$ has two equal roots.
3. From a point P, two tangents $P A$ and $P B$ are drawn to a circle $C(0, r)$.

If $O P=2 r$, then find $\angle A P B$. What type of triangle is $A P B$?

4. The curved surface area of a right circular cone is
$12320 \mathrm{~cm}^{2}$. If the radius of its base is 56 cm , then find its height.
5. Mrs. Garg recorded the marks obtained by her students in the following table. She calculated the modal marks of the students of the class as 45 . While printing the data, a blank was left. Find the missing frequency in the table given below.

Marks Obtained	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of Students	5	10	-	6	3

6. If Ritu were younger by 5 years than what she really is, then the square of her age would have been 11 more than five times her present age. What is her present age?

OR

Solve for $\mathrm{x}: 9 x^{2}-6 p x+\left(p^{2}-q^{2}\right)=0$

Section - B

7. Following is the distribution of the long jump competition in which 250 students participated. Find the median distance jumped by the students. Interpret the median

Distance (in m)	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$
Number of Students	40	80	62	38	30

8. Construct a pair of tangents to a circle of radius 4 cm , which are inclined to each other at an angle of 60°.
9. The distribution given below shows the runs scored by batsmen in one-day cricket matches. Find the mean number of runs.

Runs scored	$0-40$	$40-80$	$80-120$	$1200-$ 160	$160-200$
Number of batsmen	12	20	35	30	23

10. Two vertical poles of different heights are standing 20 m away from each other on the level ground. The angle of elevation of the top of the first pole from the foot of the second pole is 60° and angle of elevation of the top of the second pole from the foot of the first pole is 30°. Find the difference between the heights of two poles. (Take $\sqrt{3}=1.73$)

OR

A boy 1.7 m tall is standing on a horizontal ground, 50 m away from a building. The angle of elevation of the top of the building from his eye is 60°. Calculate the height of the building. (Take $\sqrt{3}=1.73$)

Section-C

[4 Marks Each]
11. The internal and external radii of a spherical shell are 3 cm and 5 cm respectively. It is melted and recast into a solid cylinder of diameter 14 cm , find the height of the cylinder. Also find the total surface area of the cylinder. (Take $\pi=\frac{22}{7}$)
12. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact to the centre.

OR
Two tangents $T P$ and $T Q$ are drawn to a circle with centre O from an external point T.
Prove that $\angle P T Q=2 \angle O P Q$

Case Study-1

13. Trigonometry in the form of triangulation forms the basis of navigation, whether it is by land, sea or air. GPS a radio navigation system helps to locate our position on earth with the help of satellites.

A guard, stationed at the top of a 240 m tower, observed an unidentified boat coming towards it. A clinometer or inclinometer is an instrument used for measuring angles or slopes(tilt). The guard used the clinometer to measure the angle of depression of the boat coming towards the lighthouse and found it to be 30°.

(Lighthouse of Mumbai Harbour. Picture credits Times of India Travel)
(i) Make a labelled figure on the basis of the given information and calculate the distance of the boat from the foot of the observation tower.
[2]
(ii) After 10 minutes, the guard observed that the boat was approaching the tower and its distance from tower is reduced by $240(\sqrt{3}-1)$ m . He immediately raised the alarm. What was the new angle of depression of the boat from the top of the observation tower?

Case Study-2

14. Push-ups are a fast and effective exercise for building strength. These are helpful in almost all sports including athletics. While the push-up primarily targets the muscles of the chest, arms, and shoulders, support required from other muscles helps in toning up the whole body.

Nitesh wants to participate in the push-up challenge. He can currently make 3000 push-ups in one hour.

But he wants to achieve a target of 3900 push-ups in 1 hour for which he practices regularly. With each day of practice, he is able to make 5 more push-ups in one hour as compared to the previous day. If on first day of practice he makes 3000 push-ups and continues to practice regularly till his target is achieved. Keeping the above situation in mind answer the following questions:
(i) Form an A.P representing the number of pushups per day and hence find the minimum number of days he needs to practice before the day his goal is accomplished?
(ii) Find the total number of push-ups performed by Nitesh up to the day his goal is achieved. [2]

CBSE Marking Scheme 2021-22 (Issued by Board)

Section - A

1.

$$
\begin{aligned}
a & =6, d=3 ; \\
a_{25} & =6+24(3)=78 \\
a_{15} & =6+14(3)=48 \\
a_{25}-a_{15} & =78-48 \\
a_{25}-a_{15} & =30 \\
& \text { OR } \\
7(a+6 d) & =5(a+4 d) \\
\Rightarrow \quad 2 a+22 d & =0 \\
\Rightarrow \quad a+11 d & =0 \\
\Rightarrow \quad t_{12} & =0
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

$6,9,12,15, \ldots \ldots .$. is the given A.P.

$$
\text { First term }=a=6
$$

Common Difference $=d=9-6=3$

$$
\begin{aligned}
n^{\text {th }} \text { term } & =a_{n}=a+(n-1) d \\
25^{\text {th }} \text { term } & =a_{25} \\
& =6+(25-1) \times 3 \\
& =6+(24) \times 3 \\
& =6+72 \\
& =78 \\
15^{\text {th }} \text { term } & =a_{15} \\
& =6+(15-1) \times 3 \\
& =6+(14) \times 3 \\
& =6+42 \\
& =48 \\
a_{25}-a_{15} & =78-48=30 \\
& \text { OR }
\end{aligned}
$$

Let ' a ' and ' d ' be the first term and common difference of AP

$$
\begin{aligned}
& n^{\text {th }} \text { term }=a_{n}=a+(n-1) d \\
& 7^{\text {th }} \text { term }=a_{7}=a+(7-1) d=a+6 d \\
& 5^{\text {th }} \text { term }=a_{5}=a+(5-1) d=a+4 d
\end{aligned}
$$

According to the Questions,

$$
\begin{align*}
7 a_{7} & =5 a_{5} \\
7(a+6 d) & =5(a+4 d) \\
7 a+42 d & =5 a+20 d \\
7 a-5 a+42 d-20 d & =0 \\
2 a+22 d & =0 \\
2(a+11 d) & =0 \\
a+11 d & =0 \tag{i}\\
12^{\text {th }} \text { term } & =a_{12} \\
& =a+11 d \\
& =0
\end{align*}
$$

(From (i)

Hence, $12^{\text {th }}$ term is zero.
2. Given $5 m x^{2}-6 m x+9=0$

Since, $\quad b^{2}-4 a c=0$
for equal roots

$$
\begin{aligned}
& & (-6 m)^{2}-4(5 m)(9) & =0 \\
\Rightarrow & & 36 m(m-5) & =0 \\
\Rightarrow & & m & =0,5 ; \text { rejecting } m=0,
\end{aligned}
$$

we get $m=5$
[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Since, $m x(5 x-6)+9=0$ has equal roots
$\therefore \quad$ Discriminant $=0$
$\Rightarrow \quad b^{2}-4 a c=0$
Quadratic equation can be written as

$$
5 m x^{2}-6 m x+9=0
$$

Here,

$$
a=5 m, b=-6 m, c=9
$$

Put in (i),

$$
\begin{array}{rlrl}
(6 m)^{2}-4(5 m)(9) & =0 & m & =0 \\
& =36 m^{2}-180 m=0 & \text { or } m=5 \\
& =36 m(m-5)=0 &
\end{array}
$$

Either

$$
m=0 \text { or } m=5
$$

Since, $m=0$ is not possible Hence,
3.

Let $\angle A P O=\theta$

$$
\sin \theta=\frac{O A}{O P}=\frac{1}{2} \Rightarrow \theta=30^{\circ}
$$

$\Rightarrow \quad \angle A P B=2 \theta=60^{\circ}$
Also $\quad \angle P A B=\angle P B A=60^{\circ}$ $(\therefore P A=P B)$
$\Rightarrow \triangle A P B$ is equilateral
[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Radius of given circle $O A=r$ units
Let,

$$
\angle A P O=\theta
$$

Radius is always perpendicular to tangent

$$
=\quad O A \perp A P
$$

So, $\quad \angle O A P=90^{\circ}$
$\therefore \triangle O A P$ is a right angled triangle In $\triangle O A P$,

$$
\begin{aligned}
& \sin \theta=\frac{O A}{O P} \\
& \sin \theta=\frac{r}{2 r}=\frac{1}{2} \\
& \sin \theta=\sin 30^{\circ} \\
& \theta=30^{\circ} \\
& \angle A P O=30^{\circ} \\
& \angle A P B=2 \times \angle A P O=2 \times 30^{\circ}=60^{\circ} \\
& P A=P B \quad[\text { Length of tangents } \\
& \text { from an external point are equal in length] }
\end{aligned}
$$

Let, $\quad \angle A B P=\angle B A P=x$
So, from $\triangle A P B$,

$$
\angle A P B+\angle A B P+\angle B A P=180^{\circ}
$$

[Angle sum property of triangle] $60^{\circ}+x+x=180^{\circ}$
or

$$
x=60^{\circ}
$$

$\therefore \triangle A P B$ is equilateral triangle.

$$
\text { 4. } \operatorname{CSA} \text { (cone) }=\pi r l=12320 \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
\frac{22}{7} \times 56 \times l & =12320 \\
l & =70 \mathrm{~cm} \\
h & =\sqrt{70^{2}-56^{2}}=42 \mathrm{~cm}
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Let \quad Height of cone $=h$

$$
\text { Radius of cone }=56 \mathrm{~cm}
$$

$$
\text { C.S.A of cone }=12320 \mathrm{~cm}^{2}
$$

Let slant height of cone $=l \mathrm{~cm}$
Curved surface area of cone $=\pi r l$

$$
\Rightarrow \quad 12320=\frac{22}{7} \times 56 \times l
$$

$$
\Rightarrow \quad \frac{12320 \times 7}{22 \times 56}=l
$$

$$
\Rightarrow \quad l=70 \mathrm{~cm}
$$

$$
\text { Now, } \quad l^{2}=h^{2}+r^{2}
$$

$$
\Rightarrow \quad(70)^{2}=h^{2}+(56)^{2}
$$

$$
\Rightarrow \quad h^{2}=4900-3136
$$

$$
\Rightarrow \quad h^{2}=1764
$$

$$
\Rightarrow \quad h^{2}=42^{2}
$$

$$
\Rightarrow \quad h=42 \mathrm{~cm}
$$

5. Modal class is $40-60, l=40$,

$$
\begin{aligned}
h & =20, f_{1}==? \\
f_{0} & =10, f_{2}=6 \\
45 & =40+20 \times\left[\frac{f_{1}-10}{2 f_{1}-10-6}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \frac{1}{4} & =\frac{f_{1}-10}{2 f_{1}-16} \\
\Rightarrow & 2 f_{1}-16 & =4 f_{1}-40 \\
\Rightarrow & f_{1} & =12
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Marks obtained	Number of students
$0-20$	5
$20-40$	10
$40-60$	x (Say)
$60-80$	6
$80-100$	3

$$
\begin{array}{rlrl}
\text { Mode } & =45 \\
\Rightarrow \quad & & \text { Modal class } & =40-60
\end{array}
$$

Lower limit of modal class $(l)=40$
Size of modal class $(h)=20$
Frequency corresponding to modal class

$$
\left(\mathrm{F}_{1}\right)=x
$$

Frequency preceding to modal class

$$
\left(\mathrm{F}_{0}\right)=10
$$

Frequency preceding to modal class $\left(F_{2}\right)=6$

$$
\begin{array}{rlrl}
\text { Mode } & =l+\frac{F_{1}-F_{0}}{2 F_{1}-F_{0}-F_{2}} \times h \\
\Rightarrow & & =40+\frac{x-10}{2 x-10-6} \times 20 \\
\Rightarrow & \frac{5}{20} & =\frac{x-10}{2 x-16} \times 20 \\
\Rightarrow & \frac{5}{4} & =\frac{x-10}{2 x-16} \\
\Rightarrow & 2 F_{1}-16 & =4 F_{1}-40 \\
\Rightarrow \quad 2 F_{1}-4 F_{1} & =-40+16 \\
\Rightarrow & -2 F_{1} & =-24 \\
\Rightarrow \quad & F_{1} & =12
\end{array}
$$

6. Let the present age of Ritu be x years

$$
\begin{aligned}
&(x-5)^{2}=5 x+11 \\
& x^{2}-15 x+14=0 \\
&(x-14)(x-1)=0 \\
& \Rightarrow \quad x=1 \text { or } 14 \\
& x=14 \text { years (rejecting } x=1 \text { as in that case Ritu's age } \\
& 5 \text { years ago will be }- \text { ve) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR } \\
9 x^{2}-6 p x+\left(p^{2}-q^{2}\right) & =0 \\
a & =9, b=-6 p, c=p^{2}-q^{2} \\
D & =b^{2}-4 a c \\
& =(-6 p)^{2}-4(9)\left(p^{2}-q^{2}\right) \\
& =36 q^{2} \\
x & =\frac{-b \pm \sqrt{D}}{2 a}=\frac{6 p \pm 6 q}{18} \\
& =\frac{p+q}{3} o r \frac{p-q}{3}
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Let present age of Ritu $=x$ years
As per question given the following equation can be formed:
$\Rightarrow \quad(x-5)^{2}=11+5 x$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}-10 x+25=11+5 x \\
& \Rightarrow x^{2}-10 x-5 x+25-11=0 \\
& \Rightarrow \quad x^{2}-15 x+14=0 \\
& \Rightarrow \quad x^{2}-14 x-1 x+14=0 \\
& \Rightarrow x(x-14)-1(x-14)=0 \\
& \Rightarrow \quad(x-14)(x-1)=0 \\
& \Rightarrow \quad x-14=0, x-1=0 \\
& x=14, x=1
\end{aligned}
$$

Since, her age can't be 1 , so her present age will be 14 years.

OR

$$
9 x^{2}-6 p x+\left(p^{2}-q^{2}\right)=0
$$

In comparing with

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
a & =9, b=-6 p, c=p^{2}-q^{2}
\end{aligned}
$$

Solve by quadratic formula,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-6 p)^{2}-4(9)\left(p^{2}-q^{2}\right) \\
& =36 p^{2}-36 p^{2}+36 q^{2} \\
& =36 q^{2}
\end{aligned}
$$

Now, $\quad x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-6 p) \pm \sqrt{36 q^{2}}}{2(9)}$

$$
=\frac{6 p \pm 6 q}{18}
$$

$$
x=\frac{p+q}{3} \text { or } \frac{p-q}{3}
$$

Section - B

7.

Distance (in m)	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$
Number of Students	40	80	62	38	30
$c f$	40	120	182	220	250

$$
\begin{aligned}
\frac{n}{2} & =\frac{250}{2} \\
& =125 \Rightarrow \text { median class is } 2-3, \\
l & =2, h=1, c f=120, f=62 \\
\text { Median } & =l+\frac{\frac{n}{2}-c f}{f} \times h \\
& =2+\frac{5}{62} \\
& =\frac{129}{62}=2 \frac{5}{62} \mathrm{~m} \text { or } 2.08 \mathrm{~m}
\end{aligned}
$$

50% of students jumped below $2 \frac{5}{62} \mathrm{~m}$ and 50% above it.
[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Distance (in m)	No. of students (Frequency)	Cumulative frequency
$0-1$	40	40
$1-2$	80	120
$2-3$	62	182
$3-4$	38	220
$4-5$	30	250
$\mathbf{N = 2 5 0}$		
Take	$\frac{N}{2}=\frac{250}{2}=125$	

$\therefore \quad$ Median class $=2-3$
Lower limit of median class $(l)=2$
Size of median class $(h)=1$
Frequency corresponding to median class

$$
(f)=62
$$

Total number of observations

$$
\text { Frequency }(N)=250
$$

Cumulative frequency preceding
Median class (c.f.) $=120$

$$
\begin{aligned}
\text { Median } & =l+\frac{\frac{N}{2}-c . f .}{f} \times h \\
& =2+\frac{125-120}{62} \times 1 \\
& =2+\frac{5}{62}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{129}{62} \\
& =2 \frac{5}{62} \mathrm{~m} \text { or } 2.08 \mathrm{~m}
\end{aligned}
$$

$\therefore 50 \%$ of students jumped below 2.08 m and 50% of students jumped above 2.08 m .
8. Draw circle of radius 4 cm

Draw $O A$ and construct $\angle A O B=120^{\circ}$
Draw $\angle O B P=\angle O B P=90^{\circ}$
$P A$ and $P B$ are required tangents
[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Steps of construction:

1. Draw a circle of radius 4 cm .
2. Draw two radii having an angle of 120°.
3. Let the radii intersect circle at A and B.
4. Draw angle of 90° on both A and B.
5. The point where both rays of 90° intersect is P.
6. $P A$ and $P B$ are the required tangents.
7.

Runs Scored	$0-40$	$40-80$	$80-120$	$120-160$	$160-200$	Total
Number of Batsmen $\left(f_{i}\right)$	12	20	35	30	23	$\Sigma f_{i}=120$
x_{i}	20	60	100	140	180	
$f_{i} x_{i}$	240	1200	3500	4200	4140	$\Sigma f_{i} x_{i}=13280$

Mean $(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{13280}{120}=110.67$ runs
[CBSE Marking Scheme, 2021-22]
10.

In $\triangle P Q S$,
$\tan 60^{\circ}=\frac{y}{20}$
$\Rightarrow \quad y=20 \sqrt{3} \mathrm{~m}$
In $\triangle R S Q, \quad \tan 30^{\circ}=\frac{x}{20}$
$\Rightarrow \quad x=\frac{20}{\sqrt{3}} \mathrm{~m}$
$y-x=20 \sqrt{3}-\frac{20}{\sqrt{3}}=\frac{40}{\sqrt{3}}=\frac{40 \sqrt{3}}{3}=23.06 \mathrm{~m}$
OR

Let $P R$ be the building and $A B$ be the boy
In $\triangle P Q R, \tan 60^{\circ}=\frac{P Q}{50} \Rightarrow P Q=50 \sqrt{3} \mathrm{~m}$
Height of the building $=(50 \sqrt{3}+1.7) \mathrm{m}$
$=88.2 \mathrm{~m}$
[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Let the heights of two pole be y and x.
Distance between the poles is $Q S=20 \mathrm{~m}$.

In $\triangle P Q S$,

$$
\begin{aligned}
\angle Q & =90^{\circ} \\
\tan 60^{\circ} & =\frac{P Q}{Q S}
\end{aligned}
$$

$$
\sqrt{3}=\frac{y}{20}
$$

$$
y=20 \sqrt{3} \mathrm{~m}
$$

In $\triangle \mathrm{RSQ}$,

$$
\begin{aligned}
\angle S & =90^{\circ} \\
\tan 30^{\circ} & =\frac{R S}{Q S} \\
\frac{1}{\sqrt{3}} & =\frac{x}{20} \\
\frac{20}{\sqrt{3}} & =x \\
x & =\frac{20}{3} \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Difference between their heights

$$
\begin{aligned}
y-x & =\left(20 \sqrt{3}-\frac{20}{3} \sqrt{3}\right) \mathrm{m} \\
& =\frac{20}{3} \sqrt{3} \times 2 \\
& =\frac{40}{3} \sqrt{3} \\
& =23.07 \mathrm{~m}
\end{aligned}
$$

OR

$$
\begin{aligned}
\text { Height of Boy } & =A B=1.7 \mathrm{~m} \\
& =Q R=1.7 \mathrm{~m}
\end{aligned}
$$

Distance between Boy and building

$$
\begin{aligned}
& B R=50 \mathrm{~m} \\
& \Rightarrow \quad A Q=50 \mathrm{~m} \\
& \text { In } \triangle P Q A \text {, } \\
& \angle Q=90^{\circ} \\
& \tan 60^{\circ}=\frac{P Q}{A Q} \\
& \sqrt{3}=\frac{P Q}{50} \\
& 50 \sqrt{3}=P Q
\end{aligned}
$$

Total height of the building $=P Q+Q R$

$$
\begin{aligned}
& =86.5+1.7 \\
& =88.2 \mathrm{~m}
\end{aligned}
$$

Section-C

11. Volume of shell = Volume of cylinder

$$
\begin{aligned}
& \Rightarrow \quad \frac{4 \pi}{3}\left[5^{3}-3^{3}\right] \\
& \Rightarrow \quad \begin{aligned}
& =\pi(7)^{2} h \\
\text { TSA of cylinder is } & =\frac{8}{3}=2 \frac{2}{3} \mathrm{~cm} \\
& =2 \times \frac{22}{7} \times 7 \times\left(7+\frac{8}{3}\right) \\
& =44 \times \frac{29}{3} \\
& =\frac{1276}{3} \mathrm{~cm}^{2} \text { or } 425.33 \mathrm{~cm}^{2}
\end{aligned} \\
& \\
&
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]
Detailed Solution:
Internal radius $(r)=3 \mathrm{~cm}$
External radius $(\mathrm{R})=5 \mathrm{~cm}$

Radius of cylinder $\left(\mathrm{R}_{1}\right)=\frac{14}{2}=7 \mathrm{~cm}$
Let height of cylinder $=h \mathrm{~cm}$
According to the question,
[When one shape is reshaped into another shape the volumes are same of both shapes]

$$
\begin{aligned}
\frac{4}{3} \pi\left(R^{3}-r^{3}\right) & =\pi\left(R_{1}\right)^{2} h \\
\frac{4}{3}\left(5^{3}-3^{3}\right) & =(7)^{2} h \\
\frac{4}{3} \times(125-27) & =49 h \\
\frac{4}{3} \times \frac{98}{49} & =h
\end{aligned}
$$

$$
\begin{aligned}
h & =\frac{8}{3} \mathrm{~m} \text { or } 2 \frac{2}{3} \mathrm{~cm} \\
\text { TSA of cylinder } & =2 \pi r\left(h+R_{1}\right) \\
& =2 \times \frac{22}{7} \times 7\left(\frac{8}{3}+7\right) \\
& =44 \times \frac{29}{3} \\
& =\frac{1276}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

or $425.33 \mathrm{~cm}^{2}$
12.

$\angle O A P+\angle O B P+\angle A P B+\angle A O B=360^{\circ}$
$\Rightarrow 90^{\circ}+90^{\circ}+\angle A P B+\angle A O B=360^{\circ}$
(\because Tangent \perp radius)
$\Rightarrow \angle A P B+\angle A O B=180^{\circ}$
OR

Let $\quad \angle P T Q=\theta$
$T P Q$ is an isosceles triangle

$$
\begin{aligned}
\angle T P Q & =\angle T Q P=\frac{1}{2}\left(180^{\circ}-\theta\right) \\
& =90^{\circ}-\frac{\theta}{2} \\
\angle O P T & =90^{\circ} \\
\angle O P Q & =\angle O P T-\angle T P Q \\
& =90^{\circ}-\left(90^{\circ}-\frac{\theta}{2}\right) \\
& =\frac{\theta}{2} \\
\angle O P Q & =\frac{1}{2} \angle P T Q \\
2 \angle O P Q & =\angle P T Q
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

Given: $P A$ and $P B$ are two tangents to a circle with centre O.

To Prove:

$$
\angle A P B+\angle A O B=180^{\circ}
$$

Proof: $\square O A P B$ is a quadrilateral, $O A$ is radius and $P A \& P B$ are tangents.

$$
\therefore \quad \angle O A P=\angle O B P=90^{\circ}
$$

[Radius is always perpendicular to tangent] By angle sum property of quadrilateral.

$$
\begin{aligned}
& \therefore \angle A O B+\angle O B P+\angle A P B+\angle O A P \\
&=360^{\circ} \\
& \therefore \angle A O B+90^{\circ}+\angle A P B+90^{\circ}=360^{\circ} \\
& \therefore \quad \angle A P B+\angle A O B=180^{\circ}
\end{aligned}
$$

Hence Proved.

OR

Given: A circle with centre O two tangents $T P$ and $T Q$ to the circle where P and Q are the point of contact.
$\begin{aligned} \text { To Prove: } & & \angle P T Q & =2 \angle O P Q \\ \text { Proof: } & & T P & =T Q\end{aligned}$
[length of tangents drawn from same external point to a circle are equal]

$\therefore \quad \angle T Q P=\angle T P Q$
[Angles opposite to equal sides are equal]
Now, $P T$ is a tangent $\& O P$ is radius
$\therefore \quad O P \perp T P[$ Radius and Tangent
are perpendicular to each other]
$\Rightarrow \quad \angle O P T=90^{\circ}$

$$
\begin{align*}
\angle O P Q+\angle T P Q & =90^{\circ} \\
\angle T P Q & =90^{\circ}-\angle O P Q \tag{ii}
\end{align*}
$$

In $\triangle P T Q$,
By angle sum property of triangle,

$$
\begin{array}{rlrl}
\angle T P Q+\angle T Q P+\angle P T Q & =180^{\circ} \quad[\text { From (i) }] \\
\angle T P Q+\angle T P Q+\angle P T Q & =180^{\circ} \\
\Rightarrow \quad & & 2[T P Q+\angle P T Q & =180^{\circ} \\
\Rightarrow \quad 2\left(90^{\circ}-\angle O P Q\right)+\angle P T Q & =180^{\circ} \quad[\text { From (ii) }] \\
\Rightarrow \quad 180-2 \angle O P Q+\angle P T Q & =180^{\circ} \\
\angle P T Q & =2 \angle O P Q
\end{array}
$$

Hence Proved.

Case Study-1

13. (i)

In $\triangle P T R, \quad \tan 30^{\circ}=\frac{240}{x} \Rightarrow x=240 \sqrt{3} \mathrm{~m}$
(ii) Distance of boat from tower

$$
\begin{aligned}
& =240 \sqrt{3}-240(\sqrt{3}-1) \\
& =240 \mathrm{~m}
\end{aligned}
$$

Let the angle of depression $=\theta$

$$
\tan \theta=\frac{240}{240}=1
$$

$$
\Rightarrow \quad \theta=45^{\circ}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

(i) Height of light house $=240 \mathrm{~m}$

In $\triangle P R T$,

$$
\begin{aligned}
\angle R & =90^{\circ} \\
\tan 30^{\circ} & =\frac{240}{x}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{240}{x} \\
x & =240 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

Distance of foot from the foot of observation tower $=240 \sqrt{3} \mathrm{~m}$.
(ii) After 10 minutes,

Distance between boat and light house is reduced by

$$
=24(\sqrt{3}-1) \mathrm{m}
$$

\therefore Distance between boat and light house

$$
\begin{aligned}
& =240 \sqrt{3}-240(\sqrt{3}-1) \\
& =240 \sqrt{3}-240 \sqrt{3}+240 \\
& =240 \mathrm{~m}
\end{aligned}
$$

Let the point C is the new position of boat,

$$
\begin{array}{ll}
& \tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{240}{240} \\
\Rightarrow \quad & \theta=45^{\circ}
\end{array}
$$

Case Study-2

14. (i) $3000,3005,3010, \ldots, 3900$

$$
\begin{aligned}
& & a_{n} & =a+(n-1) d \\
\Rightarrow & & 3900 & =3000+(n-1) 5 \\
\Rightarrow & & 900 & =5 n-5 \Rightarrow 5 n=905 \\
\Rightarrow & & n & =181
\end{aligned}
$$

Minimum number of days of practice $=\mathrm{n}-1$

$$
=180 \text { days }
$$

(ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+1) \\
& =\frac{181}{2} \times(3000+3900) \\
& =624450 \text { push-ups }
\end{aligned}
$$

[CBSE Marking Scheme, 2021-22]

Detailed Solution:

(i) By the given situation the A.P. to be formed is:

3000, 3005, 3010, 3900

$$
\text { First term }=a=3000
$$

Common Difference $=d=3005-3000$

$$
d=5
$$

According to the problem

$$
n^{\text {th }} \text { term }\left(a_{n}\right)=3900
$$

To Find n

$$
\begin{aligned}
n^{\text {th }} \text { term } & =a_{n} \\
& =a+(n-1) d \\
3900 & =3000+(n-1) 5
\end{aligned}
$$

or

$$
\begin{aligned}
3900-3000 & =(n-1) 5 \\
900 & =(n-1) 5 \\
\frac{900}{5} & =n-1 \\
180+1 & =n
\end{aligned}
$$

$$
n=181
$$

Minimum number of days he needs to practice before his goal is accomplished

$$
\begin{aligned}
& =181-1 \\
& \quad \quad \quad \text { Excluding the last day] } \\
& =180
\end{aligned}
$$

(ii) Total Number of push-ups performed means sum of all push-ups he did in 181 days.

$$
\begin{equation*}
\therefore \quad \mathrm{S}_{n}=\frac{n}{2}[a+l] \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{S}_{n}= & \text { Sum of all push-ups in } \\
& 181 \text { days. } \\
n= & \text { number of days }=181 \\
a= & \text { first term of the A.P. } \\
= & 3000 \\
l= & \text { last term }=3900
\end{aligned}
$$

Put all values in (i)

$$
\begin{aligned}
\Rightarrow \quad \mathrm{S}_{n} & =\frac{181}{2}[3000+3900] \\
& =\frac{181}{2}[6900] \\
& =624450
\end{aligned}
$$

Total number of Push-ups performed in 181 days

$$
=624450
$$

Solved Paper, 2021-22 MATHEMATICS (STANDARD)

 Term-I, Set-4

 Term-I, Set-4}

Series : JSK/2

Question Paper

Code No. 030/2/4

Time allowed : 90 Minutes

Max. Marks : 40

General Instructions :

(i) The question paper contains 50 questions out of which 40 questions are to be attenpted. All questions carry equal marks.
(ii) The question paper consists of three sections - Section A, B and C.
(iii) Section-A contains of 20 questions. Attempt any 16 questions from Q. No. 1 to 20.
(iv) Section-B also contains 20 questions. Attempt any 16 questions from Q. No. 21 to 40.
(v) Section-C contains of two Case Studies containing 5 questions in each case. Attempt any 4 questions from Q. No. 41 to 45 and another 4 from Q. No. 46 to 50.
(vi) There is only one correct option for every Multiple Choice Question (MCQ). Marks will not be awarded for answering more than one option.
(vii) There is no negative marking.

SECTION-A

Q. No. 1 to 20 are of 1 mark each. Attempt any 16 from

Q. No. 1 to 20.

1. The exponent of 5 in the prime factorisation of 3750 is
(a) 3
(b) 4
(c) 5
(d) 6
2. The graph of a polynomial $P(x)$ cuts the x-axis at 3 points and touches it at 2 other points. The number of zeroes of $P(x)$ is
(a) 1
(b) 2
(c) 3
(d) 5
3. The values of x and y satisfying the two equations $32 x$ $+33 y=34,33 x+32 y=31$ respectively are
(a) $-1,2$
(b) $-1,4$
(c) $1,-2$
(d) $-1,-4$
4. If $A(3, \sqrt{3}), B(0,0)$ and $C(3, k)$ are the three vertices of an equilateral triangle $A B C$, then the value of k is
(a) 2
(b) -3
(c) $-\sqrt{3}$
(d) $-\sqrt{2}$
5. In figure, $D E \| B C, A D=2 \mathrm{~cm}$ and $B D=3 \mathrm{~cm}$, then $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)$ is equal to

(a) $4: 25$
(b) $2: 3$
(c) $9: 4$
(d) $25: 4$
6. If $\cot \theta=\frac{1}{\sqrt{3}}$, the value of $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta$ is
(a) 1
(b) $\frac{40}{9}$
(c) $\frac{38}{9}$
(d) $5 \frac{1}{3}$
7. The area of a quadrant of a circle where the circumference of circle is 176 m , is
(a) $2464 \mathrm{~m}^{2}$
(b) $1232 \mathrm{~m}^{2}$
(c) $616 \mathrm{~m}^{2}$
(d) $308 \mathrm{~m}^{2}$
8. For an event $E, P(E)+P(\bar{E})=x$, then the value of $x^{3}-3$ is
(a) -2
(b) 2
(c) 1
(d) -1
9. What is the greatest possible speed at which a girl can walk 95 m and 171 m in an exact number of minutes?
(a) $17 \mathrm{~m} / \mathrm{min}$.
(b) $19 \mathrm{~m} / \mathrm{min}$.
(c) $23 \mathrm{~m} / \mathrm{min}$.
(d) $13 \mathrm{~m} / \mathrm{min}$.
10. In figure, the graph of a polynomial $P(x)$ is shown.

The number of zeroes of $P(x)$ is

(a) 1
(b) 2
(c) 3
(d) 4
11. Two lines are given to be parallel. The equation of one of the lines is $3 x-2 y=5$. The equation of the second line can be
(a) $9 x+8 y=7$
(b) $-12 x-8 y=7$
(c) $-12 x+8 y=7$
(d) $12 x+8 y=7$
12. Three vertices of a parallelogram $A B C D$ are $A(1,4)$, $B(-2,3)$ and $C(5,8)$. The ordinate of the fourth vertex D is
(a) 8
(b) 9
(c) 7
(d) 6
13. In $\triangle A B C$ and $\triangle D E F, \angle F=\angle C, \angle B=\angle E$ and $A B=\frac{1}{2}$
$D E$. Then the two triangles are
(a) Congruent, but not similar
(b) Similar, but not congruent
(c) Neither congruent nor similar
(d) Congruent as well as similar
14. In $\triangle A B C$ right angled at $B, \sin A=\frac{7}{25}$, then the value of $\cos C$ is
(a) $\frac{7}{25}$
(b) $\frac{24}{25}$
(c) $\frac{7}{24}$
(d) $\frac{24}{7}$
15. The minute hand of a clock is 84 cm long. The distance covered by the tip of minute hand from 10:10 am to 10:25 am is
(a) 44 cm
(b) 88 cm
(c) 132 cm
(d) 176 cm
16. The probability that the drawn card from a pack of 52 cards is neither an ace nor a spade is
(a) $\frac{9}{13}$
(b) $\frac{35}{52}$
(c) $\frac{10}{13}$
(d) $\frac{19}{26}$
17. Three alarm clocks ring their alarms at regular intervals of 20 min ., 25 min . and 30 min . respectively. If they first beep together at 12 noon, at what time will they beep again for the first time?
(a) $4: 00 \mathrm{pm}$
(b) $4: 30 \mathrm{pm}$
(c) $5: 00 \mathrm{pm}$
(d) $5: 30 \mathrm{pm}$
18. A quadratic polynomial, the product and sum of whose zeroes are 5 and 8 respectively is
(a) $k\left[x^{2}-8 x+5\right]$
(b) $k\left[x^{2}+8 x+5\right]$
(c) $k\left[x^{2}-5 x+8\right]$
(d) $k\left[x^{2}+5 x+8\right]$
19. Points $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,-3 y)$. The values of y are
(a) $1,-7$
(b) $-1,7$
(c) 2,7
(d) $-2,-7$
20. Given that $\sec \theta=\sqrt{2}$, the value of $\frac{1+\tan \theta}{\sin \theta}$ is
(a) $2 \sqrt{2}$
(b) $\sqrt{2}$
(c) $3 \sqrt{2}$
(d) 2

SECTION-B

Q. No. 21 to 40 are of 1 mark each. Attempt any 16 from Q. 21 to 40.
21. The greatest number which when divides 1251,9377 and 15628 leaves remainder 1,2 and 3 respectively is
(a) 575
(b) 450
(c) 750
(d) 625
22. Which of the following cannot be the probability of an event?
(a) 0.01
(b) 3%
(c) $\frac{16}{17}$
(d) $\frac{17}{16}$
23. The diameter of a car wheel is 42 cm . The number of complete revolutions it will make in moving 132 km is
(a) 10^{4}
(b) 10^{5}
(c) 10^{6}
(d) 10^{3}
24. If θ is an acute angle and $\tan \theta+\cot \theta=2$, then the value of $\sin ^{3} \theta+\cos ^{3} \theta$ is
(a) 1
(b) $\frac{1}{2}$
(c) $\frac{\sqrt{2}}{2}$
(d) $\sqrt{2}$
25. The ratio in which the line $3 x+y-9=0$ divides the line segment joining the points $(1,3)$ and $(2,7)$ is
(a) $3: 2$
(b) $2: 3$
(c) $3: 4$
(d) $4: 3$
26. If $x-1$ is a factor of the polynomial $p(x)=x^{3}+a x^{2}+$ $2 b$ and $a+b=4$, then
(a) $a=5, b=-1$
(b) $a=9, b=-5$
(c) $a=7, b=-3$
(d) $a=3, b=1$
27. If a and b are two coprime numbers, then a^{3} and b^{3} are
(a) Coprime
(b) Not coprime
(c) Even
(d) Odd
28. The area of a square that can be inscribed in a circle of area $\frac{1408}{7} \mathrm{~cm}^{2}$ is
(a) $321 \mathrm{~cm}^{2}$
(b) $642 \mathrm{~cm}^{2}$
(c) $128 \mathrm{~cm}^{2}$
(d) $256 \mathrm{~cm}^{2}$
29. If $A(4,-2), B(7,-2)$ and $C(7,9)$ are the vertices of a $\triangle A B C$, then $\triangle A B C$ is
(a) equilateral triangle
(b) isosceles triangle
(c) right angled triangle
(d) isosceles right angled triangle
30. If α, β are the zeroes of the quadratic polynomial $p(x)=x^{2}-(k+6) x+2(2 k-1)$, then the value of k, if $\alpha+\beta=\frac{1}{2} \alpha \beta$, is
(a) -7
(b) 7
(c) -3
(d) 3
31. If n is a natural number, then $2\left(5^{n}+6^{n}\right)$ always ends with
(a) 1
(b) 4
(c) 3
(d) 2
32. The line segment joining the points $P(-3,2)$ and $Q(5$, 7) is divided by the y-axis in the ratio
(a) $3: 1$
(b) $3: 4$
(c) $3: 2$
(d) $3: 5$
33. If $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$, then $p^{2}-q^{2}=$
(a) $a^{2}-b^{2}$
(b) $b^{2}-a^{2}$
(c) $a^{2}+b^{2}$
(d) $b-a$
34. If the perimeter of a circle is half to that of a square, then the ratio of the area of the circle to the area of the square is
(a) $22: 7$
(b) $11: 7$
(c) $7: 11$
(d) $7: 22$
35. A dice is rolled twice. The probability that 5 will not come up either time is
(a) $\frac{11}{36}$
(b) $\frac{1}{3}$
(c) $\frac{13}{36}$
(d) $\frac{25}{36}$
36. The LCM of two numbers is 2400 . Which of the following CAN NOT be their HCF?
(a) 300
(b) 400
(c) 500
(d) 600
37. In figure, $P Q, Q B$ and $R C$ are each perpendicular to $A C$. If $x=8 \mathrm{~cm}$ and $z=6 \mathrm{~cm}$, then y is equal to

(a) $\frac{56}{7} \mathrm{~cm}$
(b) $\frac{7}{56} \mathrm{~cm}$
(c) $\frac{25}{7} \mathrm{~cm}$
(d) $\frac{24}{7} \mathrm{~cm}$
38. In a $\triangle A B C, \angle A=x^{0}, \angle B=(3 x-2)^{\circ}, \angle C=y^{0}$. Also $\angle C$ $-\angle B=9^{\circ}$. The sum of the greatest and the smallest angles of this triangle is
(a) 107°
(b) 135°
(c) 155°
(d) 145°
39. If $\sec \theta+\tan \theta=p$, then $\tan \theta$ is
(a) $\frac{p^{2}+1}{2 p}$
(b) $\frac{p^{2}-1}{2 p}$
(c) $\frac{p^{2}-1}{p^{2}+1}$
(d) $\frac{p^{2}+1}{p^{2}-1}$
40. The base $B C$ of an equilateral $\triangle A B C$ lies on the y-axis. The co-ordinates of C are $(0,-3)$. If the origin is the mid-point of the base $B C$, what are the co-ordinates of A and B ?
(a) $A(\sqrt{3}, 0), B(0,3)$
(b) $\quad A(\pm 3 \sqrt{3}, 0), B(3,0)$
(c) $A(\pm 3 \sqrt{3}, 0), B(0,3)$
(d) $\quad A(-\sqrt{3}, 0), B(3,0)$

SECTION-C

Q. No. 41-45 are based on Case Study-I, you have to answer any (4) four questions. Q. No. 46-50 are based on Case Study-II, you have to answer any (4) four questions.

Case Study-I

A book store shopkeeper gives books on rent for reading. He has variety of books in his store related to fiction, stories and quizzes etc. He takes a fixed charge for the first two days and an additional charge for subsequent day. Amruta paid ₹ 22 for a book and kept for 6 days; while Radhika paid ₹ 16 for keeping the book for 4 days.

Assume that the fixed charge be $₹ x$ and additional charge (per day) be ₹ y.
Based on the above information, answer any four of the following questions:
41. The situation of amount paid by Radhika, is algebraically represented by
(a) $x-4 y=16$
(b) $x+4 y=16$
(c) $x-2 y=16$
(d) $x+2 y=16$
42. The situation of amount paid by Amruta, is algebraically represented by
(a) $x-2 y=11$
(b) $x-2 y=22$
(c) $x+4 y=22$
(d) $x-4 y=11$
43. What are the fixed charges for a book?
(a) ₹9
(b) ₹13
(c) ₹10
(d) ₹ 15
44. What are the additional charges for each subsequent day for a book?
(a) ₹6
(b) ₹5
(c) ₹ 4
(d) ₹3
45. Which is the total amount paid by both, if both of them have kept the book for 2 more days?
(a) ₹ 35
(b) ₹52
(c) ₹50
(d) ₹58

Case Study-II

A farmer has a field in the shape of trapezium, whose map with scale $1 \mathrm{~cm}=20 \mathrm{~m}$, is given below:
The field is divided into four parts by joining the opposite vertices.

Based on the above information, answer any four of the following questions:
46. The two triangular regions $A O B$ and $C O D$
(a) Similar by AA criterion
(b) Similar by SAS criterion
(c) Similar by RHS criterion
(d) Not similar
47. The ratio of the area of the $\triangle A O B$ to the area of $\triangle C O D$, is
(a) $4: 1$
(b) $1: 4$
(c) $1: 2$
(d) $2: 1$
48. If the ratio of the perimeter of $\triangle A O B$ to the perimeter of $\triangle C O D$ of would have been $1: 4$, then
(a) $A B=2 C D$
(b) $A B=4 C D$
(c) $C D=2 A B$
(d) $C D=4 A B$
49. If in $\triangle s A O D$ and $B O C, \frac{A O}{B C}=\frac{A D}{B O}=\frac{O D}{O C}$, then
(a) $\triangle A O D \sim \triangle B O C$
(b) $\triangle A O D \sim \triangle B C O$
(c) $\triangle A D O \sim \triangle B C O$
(d) $\triangle O D A \sim \triangle O B C$
50. If the ratio of areas of two similar triangles $A O B$ and COD is $1: 4$, then which of the following statements is true?
(a) The ratio of their perimeters is $3: 4$
(b) The corresponding altitudes have a ratio 1:2
(c) The medians have a ratio 1:4
(d) The angle bisectors have a ratio 1:16

Solutions

SECTION-A

1. (b) 4

Explanation: According to the prime factorisation, 3750 can be written as
$3750=5 \times 5 \times 5 \times 5 \times 3 \times 2=5^{4} \times 3^{1} \times 2^{1}$
It is clear from above, that exponent of 5 in the prime factorisation of 3750 is 4 .
2. (d) 5

Explanation: According to the property of the polynomials,
Number of zeroes $=$ Number of points at which graph intersects the x-axis.
It is mentioned in the question that, the graph intersects x-axis at 3 points and it touches it at 2 further points.
This means that the graph intersects the x-axis at 5 different points.
Therefore, number of zeroes $=5$.
3. (a) $-1,2$

$$
\begin{align*}
& \text { Explanation: The given equations are, } \\
& \begin{aligned}
& 32 x+33 y=34 \\
& \text { \& }
\end{aligned} \quad \begin{array}{l}
33 x+32 y=31
\end{array} \tag{i}
\end{align*}
$$

Subtract eq.(ii) from eq.(i)

$$
-x+y=3
$$

$$
\begin{aligned}
& \text { or } \quad y=3+x \\
& \text { Put this value of } y \text { in (i), we get } \\
& 32 x+33(3+x)=34 \\
& \Rightarrow \quad 32 x+99+33 x=34 \\
& \Rightarrow \quad 65 x=34-99 \\
& \Rightarrow \quad 65 x=-65 \\
& \text { or } \quad x=-1 \\
& \text { Also, } \quad y=3+x \\
& \Rightarrow \quad y=3+(-1) \\
& =3-1=2
\end{aligned}
$$

Hence, the correct solution is $x=-1$ and $y=2$.
4. (c) $\sqrt{3}$

Explanation: $A(3, \sqrt{3}), B(0,0)$ and $C(3, k)$ are the vertices of the triangle $A B C$.

As in the equilateral triangle $A B C$ all sides are equal.

Then, apply distance formula for sides $A B$ and $B C$.

According to the distance formula,

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A B & =\sqrt{(3-0)^{2}+(\sqrt{3}-0)^{2}} \\
& =\sqrt{9+3}=\sqrt{12} \text { units } \\
B C & =\sqrt{(3-0)^{2}+(k-0)^{2}} \\
& =\sqrt{9+k^{2}} \text { units }
\end{aligned}
$$

Now,

$$
A B=B C
$$

$$
\sqrt{12}=\sqrt{9+k^{2}}
$$

or

$$
12=9+k^{2}
$$

or $\quad k^{2}=3$
or

$$
k= \pm \sqrt{3}
$$

5. (d) $25: 4$

Explanation:

First we need to prove that $\triangle A B C \& \triangle A D E$ are similar.

$$
\angle A D E=\angle A B C
$$

[Corresponding angles]

$$
\angle A=\angle A
$$

[Common]
By, AA similarity rule $\triangle A B C \sim \triangle A D E$
According to the theorem, "Ratio of area of similar triangles is equal to the square of the ratio of corresponding sides."
$\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(A D E)}=\frac{A B^{2}}{A D^{2}}$

$$
=\frac{(2+3)^{2}}{(2)^{2}}=\frac{5^{2}}{2^{2}}=\frac{25}{4}
$$

6. (d) $5 \frac{1}{3}$

Explanation: It is given that

$$
\begin{aligned}
\cot \theta & =\frac{1}{\sqrt{3}}=\cot 60^{\circ} \\
\Rightarrow \quad \theta & \theta
\end{aligned}
$$

Substituting the value of θ

$$
\begin{aligned}
\sec ^{2} \theta+\operatorname{cosec}^{2} \theta & =\sec ^{2} 60^{\circ}+\operatorname{cosec}^{2} 60^{\circ} \\
& =(2)^{2}+\left(\frac{2}{\sqrt{3}}\right)^{2} \\
& =4+\frac{4}{3}=\frac{16}{3}=5 \frac{1}{3}
\end{aligned}
$$

7. (c) $616 \mathrm{~m}^{2}$

Explanation: It is given that circumference of the circle is $176 \mathrm{~cm}^{2}$

$$
\begin{array}{rlrl}
\Rightarrow & 2 \pi r & =176 \\
\Rightarrow & 2 \times \frac{22}{7} \times r & =176 \\
\Rightarrow & & r & =\frac{176 \times 7}{2 \times 22}=28 \mathrm{~cm}
\end{array}
$$

Also, in a quadrant $\theta=90^{\circ}$

$$
\begin{aligned}
\text { Area of quadrant } & =\frac{\theta}{360^{\circ}} \times \pi r^{2} \\
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 28 \times 28 \\
& =616 \mathrm{~cm}^{2}
\end{aligned}
$$

8. (a) -2

Explanation: Given

$$
\begin{equation*}
P(E)+P(\bar{E})=x \tag{i}
\end{equation*}
$$

Also, according to the law of probability,

$$
\begin{equation*}
P(E)+P(\bar{E})=1 \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get
$x=1$
Put value of x in $x^{3}-3$, we get

$$
x^{3}-3=(1)^{3}-3=1-3=-2
$$

9. (b) $19 \mathrm{~m} / \mathrm{min}$.

Explanation: As the girl needs to walk 95 m and 171 m at the exact number of minutes.
So, we have to find HCF of 95 and 171.
According to prime factorisation of 95 and 171

$$
\begin{aligned}
95 & =5 \times 19 \\
171 & =3 \times 3 \times 19 \\
\operatorname{HCF}(95,171) & =19
\end{aligned}
$$

Hence, greatest possible speed is $19 \mathrm{~m} / \mathrm{min}$.
10. (c) 3

Explanation: According to the property of the polynomials,
Number of zeroes $=$ Number of points at which graph intersects the x-axis.

From the figure it is clear that the graph intersects X-axis at three different points. Therefore, the polynomial has 3 zeroes.
11. (c) $-12 x+8 y=7$

Explanation: The given equation is

$$
3 x-2 y=5
$$

According to the condition that if two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are parallel
then

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
$$

Taking option (C) and applying the above condition on it and in the given equation.
or $\quad \frac{3}{-12}=\frac{-2}{8} \neq \frac{5}{7}$
12. (b) 9

Explanation: Let $A(1,4) B(-2,3) C(5,8)$ and $D(a, b)$ are the vertices of a parallelogram.
Midpoint of diagonal $A C$

$$
\begin{aligned}
& =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{1+5}{2}, \frac{4+8}{2}\right) \\
& =\left(\frac{6}{2}, \frac{12}{2}\right)=(3,6)
\end{aligned}
$$

Midpoint of diagonal $B D$

$$
\begin{aligned}
& =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-2+a}{2}, \frac{3+b}{2}\right)
\end{aligned}
$$

The diagonals of the parallelogram bisect each other. The diagonals share same mid-point.

$$
\therefore \quad(3,6)=\left(\frac{-2+a}{2}, \frac{3+b}{2}\right)
$$

On comparing both sides, we get

$$
3=\frac{-2+a}{2} \text { and } 6=\frac{3+b}{2}
$$

In the question value of ordinate is asked,

$$
\begin{aligned}
6 & =\frac{3+b}{2} \\
12 & =3+b \\
b & =9
\end{aligned}
$$

13. (b) Similar, but not congruent

Explanation: According to the definition of similarity of two triangles, "Two triangles are similar when their corresponding angles are equal and the sides are in proportion"

According to the question,

$$
\angle F=\angle C \text { and } \angle B=\angle E
$$

Since,

$$
A B=\frac{1}{2} D E
$$

[Given]

Also

$$
\frac{A B}{D E}=\frac{1}{2}
$$

Which means the triangles are similar but not congruent.
14. (a) $\frac{7}{25}$

$$
\begin{aligned}
& \text { Explanation: } \\
& \qquad \begin{aligned}
\sin \theta & =\frac{\text { Perpendicular }}{\text { Hypotenuse }} \\
\text { and } & \cos \theta
\end{aligned}=\frac{\text { Base }}{\text { Hypotenuse }} \\
& \sin A
\end{aligned}
$$

15. (c) 132 cm

Explanation: Length of minute hand $=$ Radius of the quadrant $/$ sector so formed $=84 \mathrm{~cm}$.
In 1 minute, minute hand makes an angle of 6°. Therefore, in 15 minutes it makes an angle of $15 \times 6^{\circ}=90^{\circ}$

Distance covered by the tip of the minute hand

$$
\begin{aligned}
& =\text { Length of arc } \\
& =\frac{\theta}{360^{\circ}} \times 2 \pi r \\
& =\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 84 \\
& =132 \mathrm{~cm} .
\end{aligned}
$$

16. (a) $\frac{9}{13}$

Explanation: Total ace cards $=4$ and total spade cards $=13-1=12$ (One card among aces is also a spade)
Cards which are neither ace or spade

$$
=52-16=36
$$

Required probability $=\frac{36}{52}=\frac{9}{13}$
17. (c) $5: 00 \mathrm{pm}$

Explanation: Time when they ring together

$$
=\operatorname{LCM}(20,25,30)
$$

According to prime factorisation,

$$
\begin{aligned}
& 20=2 \times 2 \times 5 \\
& 25=5 \times 5 \\
& 30=2 \times 3 \times 5
\end{aligned}
$$

$\operatorname{LCM}(20,25,30)=2 \times 2 \times 3 \times 5 \times 5=300$
Thus, 3 bells ring together after 300 minutes or 5 hours.
Since, they rang together first at 12 noon, then they ring together again at 5 pm
18. (a) $k\left[x^{2}-8 x+5\right]$

Explanation: For any quadratic polynomial,

$$
\begin{aligned}
& a x^{2}+b x+c \\
& \text { Sum of zeroes }=\frac{-b}{a} \\
& 8=\frac{-b}{a} \\
& \frac{8}{1}=\frac{-b}{a}
\end{aligned}
$$

or $b=-8 k, a=1 k$
Also, product of zeroes $=\frac{c}{a}$

$$
\begin{aligned}
5 & =\frac{c}{a} \\
\frac{5}{1} & =\frac{c}{a}
\end{aligned}
$$

or $c=5 k, a=1 k$
Polynomial whose sum of zeroes or product of zeroes are given,
Required Polynomial $=a x^{2}+b x+c$

$$
\begin{aligned}
& =k x^{2}-8 k x+5 k \\
& =k\left(x^{2}-8 x+5\right)
\end{aligned}
$$

19. (b) $-1,7$

Explanation: As points A and B lie on the circle and O is the centre.
$A O$ and $B O$ will be the radii of the circle.

So, $\quad A O=B O$
$\Rightarrow \sqrt{(2-(-1))^{2}+(-3 y-y)^{2}}$

$$
=\sqrt{(2-5)^{2}+(-3 y-7)^{2}}
$$

(Applying distance formula on both AO and BO)

$$
\begin{array}{rlrl}
& & d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\Rightarrow & (3)^{2}+(-4 y)^{2}=(-3)^{2}+(-3 y-7)^{2} \\
\Rightarrow & 9+16 y^{2}=9+9 y^{2}+49+42 y \\
\Rightarrow & 16 y^{2}-9 y^{2}-42 y-49=0 \\
\Rightarrow & & 7 y^{2}-42 y-49=0 \\
\Rightarrow & 7\left(y^{2}-6 y-49\right)=0 \\
\Rightarrow & y^{2}-7 y+1 y-49=0 \\
\Rightarrow & y(y-7)+1(y-7)=0 \\
\Rightarrow & (y-7)(y+1) & =0 \\
\Rightarrow & & y & =7,-1
\end{array}
$$

20. (a) $2 \sqrt{2}$

Explanation: It is given that

$$
\begin{equation*}
\sec \theta=\sqrt{2} \tag{i}
\end{equation*}
$$

Also, $\quad \sec 45^{\circ}=\sqrt{2}$
From (i) and (ii), we get

$$
\begin{equation*}
\theta=45^{\circ} \tag{ii}
\end{equation*}
$$

Put value of θ in $\frac{1+\tan \theta}{\sin \theta}$,

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \quad \frac{1+\tan \theta}{\sin \theta}=\frac{1+\tan 45^{\circ}}{\sin 45^{\circ}} \\
& \text { or } \\
& \frac{1+1}{\frac{1}{\sqrt{2}}} \\
&
\end{aligned}
$$

SECTION-B

21. (d) 625

Explanation: First subtract the remainders from their respective numbers,

$$
\begin{aligned}
1251-1 & =1250 \\
9377-2 & =9375 \\
15628-3 & =15625
\end{aligned}
$$

According to the prime factorisation,

$$
\begin{aligned}
1250 & =2 \times 5 \times 5 \times 5 \times 5 \\
9375 & =3 \times 5 \times 5 \times 5 \times 5 \times 5 \\
15625 & =5 \times 5 \times 5 \times 5 \times 5 \times 5 \\
\operatorname{HCF}(1250,9375,15625) & =5 \times 5 \times 5 \times 5=625
\end{aligned}
$$

22. (d) $\frac{17}{16}$

Explanation: Probability of an event is always a proper fraction.
Also, $0 \leq \mathrm{P}(\mathrm{E}) \leq 1$
But $\frac{17}{16}>1$
Therefore, $\frac{17}{16}$ can never be probability of any event.
23. (b) 10^{5}

Explanation: Diameter of wheel $=42 \mathrm{~cm}$
Radius of the wheel $=\frac{42}{2}=21 \mathrm{~cm}$
Distance in 1 revolution
= Circumference of the wheel
$=2 \pi r$
$=2 \times \frac{22}{7} \times 3$
$=132 \mathrm{~cm}$
Total distance covered by the wheel
$=132 \mathrm{~km}=132 \times 100000 \mathrm{~cm}=13200000 \mathrm{~cm}$
Number of revolutions
$=\frac{\text { Total distance covered by wheel }}{\text { Distance covered in } 1 \text { revolution }}$
$=\frac{13200000}{132}=100000=10^{5}$
24. (c) $\frac{\sqrt{2}}{2}$

Explanation:

$$
\begin{array}{rlrl}
\tan \theta+\cot \theta & =2 \\
& \text { or } \quad \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} & =2 \\
& \text { or } \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} & =2 \\
& \text { or } \quad \sin ^{2} \theta+\cos ^{2} \theta & =2 \sin \theta \cos \theta \\
\text { or } & & =2 \sin \theta \cos \theta \\
& \text { or } \quad \sin \theta \cos \theta & =\frac{1}{2} \tag{i}\\
(\sin \theta+\cos \theta)^{2} & =\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta \\
& =1+2 \times \frac{1}{2} \\
& =1+1=2
\end{array}
$$

Therefore,

$$
\begin{equation*}
\sin \theta+\cos \theta=\sqrt{2} \tag{ii}
\end{equation*}
$$

Now taking,

$$
\begin{aligned}
\sin ^{3} \theta+\cos ^{3} \theta & =(\sin \theta+\cos \theta)^{3} \\
& -3 \sin \theta \cos \theta(\sin \theta+\cos \theta) \\
& =(\sqrt{2})^{3}-3 \times \frac{1}{2} \times \sqrt{2} \\
& =2 \sqrt{2}-\frac{3}{2} \sqrt{2}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

25. (c) $3: 4$

Explanation: Let the the point of intersection be $M(x, y)$.

Let the line λ divides the line AB in the ratio $k: 1$. According to the section formula,

$$
\begin{aligned}
M(x, y)=(& \left.\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
& =\left(\frac{k(2)+1(1)}{k+1}, \frac{k(7)+1(3)}{k+1}\right) \\
& =\left(\frac{2 k+1}{k+1}, \frac{7 k+3}{k+1}\right)
\end{aligned}
$$

This point M lies on the line λ.
Therefore, $3\left(\frac{2 k+1}{k+1}\right)+\frac{7 k+3}{k+1}-9=0$
or

$$
6 k+3+7 k+3-9(k+1)=0
$$

$$
4 k-3=0
$$

$$
k=\frac{3}{4}
$$

The ratio is $k: 1$ or $3: 4$.
26. (b) $a=9, b=-5$

Explanation: Given,

$$
\begin{align*}
p(x) & =x^{3}+a x^{2}+2 b \\
a+b & =4 \tag{i}
\end{align*}
$$

$x-1$ is a factor of the polynomial $P(x)$,
which means $x=1$ is a zero of the polynomial $p(x)$.
$\therefore \quad p(1)=0$
or $(1)^{3}+a(1)^{2}+2 b=0$
or $\quad 1+a+2 b=0$
or $\quad a+2 b=-1$
Subtracting (i) from (ii), we get

$$
\begin{equation*}
b=-5 \tag{ii}
\end{equation*}
$$

Substituting the value of b in (i), we get $a=9$
\therefore

$$
a=9 \& b=-5
$$

27. (a) Coprime

Explanation: As a and b are co-prime then a^{3} and b^{3} are also co-prime.
We can understand above situation with the help of an example.
Let $a=3$ and $b=4$

$$
a^{3}=3^{3}=27 \text { and } b^{3}=4^{3}=64
$$

Clearly, $\operatorname{HCF}(a, b)=\operatorname{HCF}(3,4)=1$
Then, $\operatorname{HCF}\left(a^{3}, b^{3}\right)=\operatorname{HCF}(27,64)=1$
28. (c) $128 \mathrm{~cm}^{2}$

Explanation:

$$
\text { Area of circle }=\frac{1408}{7} \mathrm{~cm}^{2}
$$

[Given]

$$
\begin{aligned}
& \text { or } \\
& \pi r^{2}=\frac{1408}{7} \\
& \frac{22}{7} \times r^{2}=\frac{1408}{7} \\
& \text { or } \\
& r^{2}=\frac{1408}{7} \times \frac{7}{22} \\
& \text { or } \quad r=\sqrt{64} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

Diameter of circle $=2 r=16 \mathrm{~cm}$
As square is inscribed in the circle, diameter of
circle $=$ diagonal of square $=16 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of square } & =\frac{(\text { diagonal of square })^{2}}{2} \\
& =\frac{16^{2}}{2}=\frac{256}{2}=128 \mathrm{~cm}^{2}
\end{aligned}
$$

29. (c) right angled triangle

Explanation: $A(4,-2), B(7,-2)$ and $C(7,9)$ are the vertices of a triangle.
Using distance formula,

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A B & =\sqrt{[7-4]^{2}+[-2-(-2)]^{2}} \\
& =\sqrt{3^{2}+0}=3 \\
B C & =\sqrt{[7-7]^{2}+[9-(-2)]^{2}} \\
& =\sqrt{0+11^{2}}=11
\end{aligned}
$$

$$
\begin{aligned}
A C & =\sqrt{[7-4]^{2}+[9-(-2)]^{2}} \\
& =\sqrt{3^{2}+11^{2}} \\
& =\sqrt{9+121}=\sqrt{129}
\end{aligned}
$$

Clearly, they are not equilateral or isosceles.
Also,

$$
A C^{2}=A B^{2}+B C^{2}
$$

Which mean it is following Pythagoras theorem.
$\therefore \triangle A B C$ is a right angled triangle.
30. (b) 7

Explanation: $p(x)=x^{2}-(k+6) x+2(2 k-1)$ is the given polynomial
Here, $a=1, b=-(k+6) \& C=2(2 k-1)$
Sum of zeroes $=\alpha+\beta$

$$
\begin{aligned}
& =\frac{-b}{a} \\
& =k+6
\end{aligned}
$$

Product of zeroes $=\alpha \beta$

$$
=\frac{c}{a}
$$

It is given that,

$$
=\frac{2(2 k-1)}{1}=2(2 k-1)
$$

$$
\begin{array}{rlrl}
& & \alpha+\beta & =\frac{1}{2} \alpha \beta \\
\Rightarrow & & k+6 & =\frac{1}{2} 2(2 k-1) \\
\Rightarrow & & k+6 & =2 k-1 \\
\Rightarrow & & -k & =-7 \\
\text { or } & k & =7
\end{array}
$$

31. (d) 2

Explanation: Let us take an example of different powers of 5 .
As,

$$
\begin{align*}
& 5^{1}=5 \\
& 5^{2}=25 \\
& 5^{3}=125 \\
& 5^{4}=625
\end{align*}
$$

It is clear from above example that 5^{n} will always end with 5 .
Similarly, 6^{n} will always end with 6 .
So, $5^{n}+6^{n}$ will always end with $5+6=11$
Also, $2\left(5^{n}+6^{n}\right)$ always ends with $2 \times 11=22$
i.e., it will always end with 2 .
32. (d) $3: 5$

Explanation: Let the point on y-axis which divides the line $P Q$ is $M(0, y)$ and the ratio be $k: 1$.
According to the section formula,

$$
\begin{aligned}
& M(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
& \quad M(0, y)=\left(\frac{5 k+(-3)}{k+1}, \frac{k(7)+1(2)}{k+1}\right)
\end{aligned}
$$

On comparing, we get

$$
0=\frac{5 k-3}{k+1}
$$

or

$$
\begin{aligned}
5 k-3 & =0 \\
k & =\frac{3}{5}
\end{aligned}
$$

33. (b) $b^{2}-a^{2}$

Explanation: $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+$ $a \operatorname{cosec} \theta=q$ are the given equations.
Taking, $p^{2}-q^{2}$
$=(a \cot \theta+b \operatorname{cosec} \theta)^{2}-(b \cot \theta+a \operatorname{cosec} \theta)^{2}$
$=a^{2} \cot ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta+2 a b \cdot \cot \theta \cdot \operatorname{cosec} \theta$
$-b^{2} \cot ^{2} \theta-a^{2} \operatorname{cosec}^{2} \theta-2 a b \cdot \cot \theta \cdot \operatorname{cosec} \theta$
$=a^{2}\left(\cot ^{2} \theta-\operatorname{cosec}^{2} \theta\right)+b^{2}\left(\cot ^{2} \theta-\operatorname{cosec}^{2} \theta\right)$
$=a^{2}(-1)+b^{2}(-1)$
$=b^{2}-a^{2}$
[using, $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$]
34. (d) $7: 22$

Explanation: Let radius of the circle be $r \mathrm{~cm}$ and side of the square is $a \mathrm{~cm}$.
According to the question, perimeter of the circle is half of perimeter of the square.

$$
\begin{aligned}
& \Rightarrow \quad 2 \pi r=\frac{1}{2}(4 a) \\
& \Rightarrow \quad r=\frac{2 a}{2 \neq} \\
& \text { or } \quad \frac{r}{a}=\frac{1}{\neq} \\
& \frac{\text { Area of the circle }}{\text { Area of the square }}=\frac{\neq r^{2}}{a^{2}} \\
& =\pi \times \frac{1}{\pi^{2}}=\frac{1}{\pi} \text { or } \frac{7}{22}
\end{aligned}
$$

35. (d) $\frac{25}{36}$

Explanation: All possible events are written below:

$\left(\begin{array}{ll}1 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\binom{1}{3}$	(14)	(15)	(1 6)
$\binom{1}{1}$	$\binom{2}{2}$	(2 3)	(2 4)	(2 5)	(2 6)
$\binom{3}{1}$	$\binom{3}{2}$	$\binom{3}{3}$	(3 4)	(35)	(36)
$\binom{4}{1}$	$\binom{4}{2}$	(4 3)	(4 4)	(45)	(4 6)
$\left(\begin{array}{ll}5 & 1\end{array}\right)$	$\left(\begin{array}{l}5 \\ 2\end{array}\right.$	(5 3)	(54)	(5 5)	(56)
(6 1)	(62)	(63)	(6 4)	(65)	(6 6)

Total events $=36$
Out of the events in which 5 will not come up either time are $(1,1)(1,2)(1,3)(1,4)(1,6)(2,1)$
$(2,2)(2,3)(2,4)(2,6)(3,1)(3,2)(3,3)(3,4)(3,6)$ $(4,1)(4,2)(4,3)(4,4)(4,6)(6,1)(6,2)(6,3)(6,4)$ $(6,6)$.
No. of required events in $=25$

$$
\text { Required probability }=\frac{25}{36}
$$

36. (c) 500

Explanation: According to the property, HCF of two numbers is also a factor of LCM of same two numbers.
Out of all the options, only (C) 500 is not a factor of 2400 .
Therefore, 500 cannot be the HCF.
37. (d) $\frac{24}{7} \mathrm{~cm}$

Explanation:

$$
\Rightarrow \quad \frac{B Q}{A P}=\frac{C B}{C A}
$$

[Since, $\triangle C B Q \sim \Delta C A P$]

$$
\begin{equation*}
\Rightarrow \quad \frac{y}{x}=\frac{B Q}{C R} \tag{i}
\end{equation*}
$$

In $\triangle A C R$, we have $B Q \| C R$

$$
\Rightarrow \quad \frac{B Q}{A P}=\frac{A B}{A C}
$$

[Since, $\triangle A B Q \sim \triangle A C R$]

$$
\Rightarrow \quad \frac{y}{z}=\frac{A B}{A C}
$$

Adding (i) and (ii), we get

$$
\begin{array}{ll}
& \\
\Rightarrow & \frac{y}{x}+\frac{y}{z}=\frac{C B}{A C}+\frac{A B}{A C} \\
\Rightarrow & \frac{y}{x}+\frac{y}{z}=\frac{A B+B C}{A C} \\
\Rightarrow & \frac{y}{x}+\frac{y}{z}=\frac{A C}{A C} \\
\Rightarrow & \frac{y}{x}+\frac{y}{z}=1 \\
\Rightarrow & \frac{1}{x}+\frac{1}{z}=\frac{1}{y}
\end{array}
$$

Put $x=8$ and $z=6$

$$
\begin{aligned}
\frac{1}{y} & =\frac{1}{8}+\frac{1}{6} \\
& =\frac{14}{48}=\frac{7}{24} \\
\Rightarrow \quad y & =\frac{24}{7}
\end{aligned}
$$

38. (a) 107°

Explanation: $\angle A=x^{\circ}, \angle B=3 x-2^{\circ}$ and $\angle C=y^{\circ}$
Sum of angles in a triangle is 180°.
Therefore, $x+3 x-2+y=180^{\circ}$

$$
\begin{array}{lrrl}
\text { or } & 4 x+y & =182 \tag{i}\\
\text { Also, } & \angle C-\angle B & =90^{\circ} \\
& \text { or } & y-(3 x-2) & =90^{\circ} \\
& \text { or } & y-3 x & =70^{\circ}
\end{array}
$$

Subtracting (ii) from (i), we get

$$
7 x=175
$$

$$
\text { or } \quad x=250
$$

Put $x=25^{\circ}$ in (ii), we get $y=82^{\circ}$
Therefore,

$$
\begin{aligned}
& \angle A=25^{\circ}, \angle B=3 x-2=3(25)-2=73^{\circ} \\
& \text { And } \quad \angle C=y^{\circ}
\end{aligned}
$$

Sum of greatest and smallest angle

$$
=82^{\circ}+25^{\circ}=107^{\circ}
$$

39. (b) $\frac{p^{2}-1}{2 p}$

Explanation: $\sec \theta+\tan \theta=p$
is the given equation.
Since, $\quad 1+\tan ^{2} \theta=\sec ^{2} \theta$
or $\quad \sec \theta=\sqrt{1+\tan ^{2} \theta}$
Put this value in (i), we get
$\sqrt{1+\tan ^{2} \theta}+\tan \theta=p$
or $\quad \sqrt{1+\tan ^{2} \theta}=p-\tan \theta$
Squaring both sides, we get

$$
1+\tan ^{2} \theta=p^{2}+\tan ^{2} \theta-2 p \tan \theta
$$

or
$1=p^{2}-2 p(\tan \theta)$
or

$$
1-p^{2}=-2 p \tan \theta
$$

or
40. (c) $A(\pm 3 \sqrt{3}, 0), B(0,3)$

Explanation:

O is the midpoint of the base $B C$ i.e., O is the midpoint of B and $C(0,-3)$

Therefore, coordinates of point B is $(0,3)$
So,

$$
B C=6 \text { units. }
$$

Let the coordinates of point A be $(x, 0)$.

$$
\tan \theta=\frac{p^{2}-1}{2 p}
$$

Using distance formula,

Also,

$$
\begin{aligned}
B C & =A B \\
\sqrt{x^{2}+9} & =\sqrt{36}
\end{aligned}
$$

$$
x^{2}=27
$$

or

$$
x= \pm 3 \sqrt{3}
$$

Coordinates of A and B are $(\pm 3 \sqrt{3}, 0)$ and $(0,3)$ respectively.

SECTION-C

41. (d) $x+2 y=16$

Explanation: Let the fixed charge for two days be $₹ x$ and additional charge be ₹ y per day.
As Radhika has taken book for 4 days.
It means that Radhika will pay fixed charge for first two days and pays additional charges for next two days.

$$
x+2 y=16
$$

42. (c) $x+4 y=22$

Explanation: As the fixed charge for two days be $₹ x$ and additional charge be ₹ y per day
It means that Amruta will pay fixed charge for first two days and pays additional charges for next four days.

$$
x+4 y=22
$$

43. (c) ₹ 10

Explanation:

$$
\begin{align*}
& x+2 y=16 \tag{i}\\
& x+4 y=22 \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i), we get
$y=3$ and put this value of x in (i), we get $x=10$.
Therefore, fixed charge is $x=₹ 10$.
44. (d) ₹3

Explanation: From solution of Q.43, we get $y=3$. Therefore, additional charges is $y=₹ 3$.
45. (c) ₹ 50

Explanation: For two more days price charged will be

$$
2 y=2 \times 3=6
$$

Total money paid by Amruta and Radhika is
$22+16+6+6=₹ 50$

Case Study-II

46. (b) Similar by SAS criterion
47. (b) $1: 4$

Explanation: According to the theorem, "Ratio of area of similar triangles is equal to the square of the ratio of corresponding sides".

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(C O D)} & =\frac{(A B)^{2}}{(C D)^{2}} \\
& =\frac{25}{100}=1: 4
\end{aligned}
$$

48. (d) $C D=4 A B$

Explanation:

$\frac{\text { Perimeter of } \triangle A O B}{\text { Perimeter of } \triangle C O D}=\frac{1}{4}$
Also, $\frac{\text { Perimeter of } \triangle A O B}{\text { Perimeter of } \triangle C O D}=\frac{A B}{C D}$
$\begin{array}{ll}\Rightarrow & \frac{1}{4}=\frac{A B}{C D} \\ \Rightarrow & C D=4 A B\end{array}$
49. (b) $\triangle A O D \sim \triangle B C O$
50. (c) The medians have a ratio $1: 4$

IMPORTANT

The candidate should check that the Test Book Series printed on the OMR Sheet is the same as printed on the Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the invigilator for replacement of both the Test Booklet and the Answer Sheet.

Q.No.	Response	Q.No.	Response	Q.No.	Response	Q.No.	Response
01	(A) (B) (C) (D)	16	(A) (B) (C) (D)	31	(A) (B) (C) (D)	46	(A) (B) (C) (D)
02	(A) (B) (C) (D)	17	(A) (B) (C) (D)	32	(A) (B) (C) (D)	47	(A) (B) (C) (D)
03	(A) (B) (C) (D)	18	(A) (B) (C) (D)	33	(A) (B) (C) (D)	48	(A) (B) (C) (D)
04	(A) (B) (C) (D)	19	(A) (B) (C) (D)	34	(A) (B) (C) (D)	49	(A) (B) (C) (D)
05	(A) (B) (C) (D)	20	(A) (B) (C) (D)	35	(A) (B) (C) (D)	50	(A) (B) (C) (D)
06	(A) (B) (C) (D)	21	(A) (B) (C) (D)	36	(A) (B) (C) (D)	51	(A) (B) (C) (D)
07	(A) (B) (C) (D)	22	(A) (B) (C) (D)	37	(A) (B) (C) (D)	52	(A) (B) (C) (D)
08	(A) (B) (C) (D)	23	(A) (B) (C) (D)	38	(A) (B) (C) (D)	53	(A) (B) (C) (D)
09	(A) (B) (C) (D)	24	(A) (B) (C) (D)	39	(A) (B) (C) (D)	54	(A) (B) (C) (D)
10	(A) (B) (C) (D)	25	(A) (B) (C) (D)	40	(A) (B) (C) (D)	55	(A) (B) (C) (D)
11	(A) (B) (C) (D)	26	(A) (B) (C) (D)	41	(A) (B) (C) (D)	56	(A) (B) (C) (D)
12	(A) (B) (C) (D)	27	(A) (B) (C) (D)	42	(A) (B) (C) (D)	57	(A) (B) (C) (D)
13	(A) (B) (C) (D)	28	(A) (B) (C) (D)	43	(A) (B) (C) (D)	58	(A) (B) (C) (D)
14	(A) (B) (C) (D)	29	(A) (B) (C) (D)	44	(A) (B) (C) (D)	59	(A) (B) (C) (D)
15	(A) (B) (C) (D)	30	(A) (B) (C) (D)	45	(A) (B) (C) (D)	60	(A) (B) (C) (D)

