Solved Paper, 2021-22 MATHEMATICS (BASIC)

Term-I, Set-4

Series : JSK/2

Time allowed : 90 Minutes

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper contains 50 questions out of which 40 questions are to be attempted. All questions carry equal marks.
- (ii) This question paper contains three Sections: A, B and C.
- (iii) Section A has 20 questions. Attempt any 16 questions from Q. No 1 to 20.
- (iv) Section B has 20 questions. Attempt any 16 questions from Q. No. 21 to 40.
- (v) Section C consists of two Case Studies containing 5 questions is each case. Attempt any 4 questions from Q. No. 41 to 45 and another 4 from Q. No. 46 to 50.
- (vi) There is only one correct option for every multiple choice question (MCQ). Marks will not be awarded for answering more than one option.
- (vii) There is no negative marking.

SECTION - A

[1 Mark Each]

(In this Section, there are 20 questions. Any 16 are to be attempted.)

- 1. HCF of 92 and 152 is (a) 4 (b) 19 (c) 23 (d) 57
- 2. In $\triangle ABC$, $DE \parallel BC$, AD = 4 cm, DB = 6 cm and AE = 5 cm. The length of EC is

 $4 \text{ cm} \qquad 5 \text{ cm} \\ D \qquad E \\ 6 \text{ cm} \qquad C \\ (a) 7 \text{ cm} \qquad (b) 6.5 \text{ cm}$

(a) 7 cm (b) 8.5 cm (c) 7.5 cm (d) 8 cm

- 3. The value of k, for which the pair of linear equations x + y 4 = 0, 2x + ky 3 = 0 have no solution, is
 (a) 0
 (b) 2
 - (a) 0 (c) 6
- (c) 6 (d) 8 4. The value of (tan² 45° – cos² 60°) is
- (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{3}{2}$ (d) $\frac{3}{2}$
- 5. A point (x, 1) is equidistant from (0, 0) and (2, 0). The value of x is

(c) 2 (d)
$$\frac{1}{2}$$

6. Two coins are tossed together. The probability of getting exactly one head is

(a)	$\frac{1}{4}$	(b) $\frac{1}{2}$
(c)	$\frac{3}{4}$	(d) 1

7. A circular arc of length 22 cm subtends an angle θ at the centre of the circle of radius 21 cm. The value of θ is

(c) 60° (d) 30°

8. A quadratic polynomial having sum and product of its zeroes as 5 and 0 respectively, is

(a) $x^2 + 5x$ (b) 2x(x-5)

- (c) $5x^2 1$ (d) $x^2 5x + 5$
- **9.** If *P*(*E*) = **0.65**, then the value of **P**(not **E**) is
 - (a) 1.65 (b) 0.25
 - (c) 0.65 (d) 0.35

10. It is given that $\triangle DEF \sim \triangle PQR$. *EF* : *QR* = 3 : 2, then value of ar(DEF) : ar(PQR) is

(a) 4:9	(b)	4:3
•	/	• • •	

(c) 9:2 (d) 9:4

Question Paper Code No. 430/2/4

Max. Marks: 40

11. Zeroes of a quadratic polynomial $x^2 - 5x + 6$ are

(a) −5,1	(b) 5, 1
(c) 2, 3	(d) $-2, -3$

12. $\frac{57}{300}$ is a

16.

- (a) non-terminating and non-repeating decimal expansion.
- (b) terminating decimal expansion after 2 places of decimals.
- (c) terminating decimal expansion after 3 places of decimals.
- (d) non-terminating but repeated decimal expansion.
- 13. Perimeter of a rectangle whose length (l) is 4 cm more than twice its breadth (b) is 14 cm. The pair of linear equations representing the above information is
 - (a) l + 4 = 2b 2(l + b) = 14(b) l - b = 4 2(l + b) = 14(c) l = 2b + 4 l + b = 14(d) l = 2b + 42(l + b) = 14
- 14. $5.\overline{213}$ can also be written as

(a)	5.213213213	(b) 5.2131313
(c)	5.213	(d) $\frac{5213}{1000}$

15. The ratio is which the point (4, 0) divides the line segment joining the points (4, 6) and (4, -8) is
(a) 1:2
(b) 3:4

()	()
(c) 4:3	(d) 1:1
Which of the followi	ng is not defined ?
(a) $\cos 0^\circ$	(b) coses 90°

(a)	sec 0°	(b)	cosec 9
(c)	tan 90°	(d)	cot 90°

17. In the given figure, a circle is touching a semi-circle at C and its diameter AB at O. If AB = 28 cm, what is the radius of the inner circle ?

 The vertices of a triangle OAB are O(0, 0), A(4, 0) and B(0, 6). The median AD is drawn on OB. The length AD is

		1=0				
	(a) `	V52	units		(b)	5 units
	(c) 2	5 un	its		(d)	10 units
9.	In a n	right	angle	d triangle PQ	PR,	$\angle Q = 90^\circ$. If $\angle P =$
	45°, t	hen	value	of tan P – cos	2 R	is
	(a) 0				(b)	1
						•

(c)
$$\frac{1}{2}$$
 (d) $\frac{3}{2}$

20. If $\tan \theta = \frac{2}{3}$, then the value of sec θ is

(a)
$$\frac{\sqrt{13}}{3}$$
 (b) $\frac{\sqrt{5}}{3}$
(c) $\sqrt{\frac{13}{3}}$ (d) $\frac{3}{\sqrt{13}}$

SECTION - B

10

(There are <mark>20 questions of 1 mark each. Any 16 are to be attempted.)</mark>

21. The perimeter of the sector of a circle of radius 14 cm and central angle 45° is

- (c) 28 cm (d) 39 cm
- 22. A bag contains 16 red balls, 8 green balls and 6 blue balls. One ball is drawn at random. The probability that it is blue ball is

(a)	$\frac{1}{6}$	(b) $\frac{1}{5}$
(c)	$\frac{1}{30}$	(d) $\frac{5}{6}$

- 23. If sin θ cos θ = 0, then the value of θ is
 - (a) 30° (b) 45° (c) 90° (d) 0°
- 24. The probability of happening of an event is 0.02. The probability of not happening of the event is

[1 mark each]

- (a) 0.02 (b) 0.80 (c) 0.98 (d) $\frac{49}{100}$
- 25. Two concentric circles are centred at O. The area of shaded region, if outer and inner radii are 14 cm and 7 cm respectively, is

(Attempt any 4 questions from Q. No. 41 to 45 and another 4 from Q. No. 46 to 50.)

Case Study-I

Sukriti throws a ball upwards, from a rooftop which is 8 m high from ground level. The ball reaches to some maximum height and then returns and hit the ground.

If height of the ball at time *t* (in sec) is represented by *h*(*m*), then equation of its path is given as $h = -t^2 + 2t + 8$

- 34. The zeroes of quadratic polynomial $x^2 + 99x + 127$ are
 - (a) both negative (b) both positive
 - (c) one positive and one negative
 - (d) reciprocal of each other
- 35. The mid-point of line segment joining the points (-3, 9) and (-6, -4) is

(a)
$$\left(\frac{-3}{2}, \frac{-13}{2}\right)$$
 (b) $\left(\frac{9}{2}, \frac{-5}{2}\right)$
(c) $\left(\frac{-9}{2}, \frac{5}{2}\right)$ (d) $\left(\frac{9}{2}, \frac{5}{2}\right)$

36. The decimal expansion of $\frac{13}{2 \times 5^2 \times 7}$ is

- (a) terminating after 1 decimal place
- (b) non-terminating and non-repeating
- (c) terminating after 2 decimal places
- (d) non-terminating but repeating
- 37. In $\triangle ABC$, $DE \parallel BC$, AD = 2 cm, DB = 3 cm, DE : BC is equal to

[1 mark each]

 $\frac{1}{2} = \frac{1}{k}$

 $k = \frac{1 \times 2}{1} = 2$

So,

Therefore,

-					
41.	The maximum height achie	eved by ball is:			\xleftarrow{x}
	(a) 7 m	(b) 8 m			\sum_{r}
	(c) 9 m	(d) 10 m			\rightarrow
42.	The polynomial represente	ed by above graph is:			
	(a) linear polynomial			R	∇
	(b) quadratic polynomial				s
	(c) constant polynomial				
	(d) cubic polynomial			AB	
43.	Time taken by ball to reach	ı maximum height is:		Diagrammatic	View
	(a) 2 second	(b) 4 second		Quilts are available in vario	ous colours and design.
	(c) 1 second	(d) 2 minute		Geometric design include	s shapes like squares,
44.	Number of zeroes of the po	olynomial whose graph		One such design is shown	ons etc. 1 above. Two triangles
	is given, is			are highlighted, $\triangle ABC$ and	ΔPQR.
	(a) 1	(b) 2		Based on above information	n, answer the following
	(c) 0	(d) 3	46.	Which of the following cri	teria is not suitable for
45.	Zeroes of the polynomial a	re:		$\triangle ABC$ to be similar to $\triangle QR$	P ?
	(a) 4	(b) −2, 4		(a) SAS	(b) AAA (d) RHS
	(c) 2, 4	(d) 0, 4	47.	If each square is of length <i>x</i>	unit, then length BC is
	Case Study-	II		equal to	
	NENE			(a) $x\sqrt{2}$ unit	(b) $2x$ unit
				(c) $2\sqrt{x}$ unit	(d) $x\sqrt{x}$ unit
	<u>ny ny ny</u>		48.	Ratio BC : PR is equal to (a) 2 · 1	(b) 1 · 4
				(c) 1:2	(d) 4:1
	ht ht ht		49.	ar(PQR) : ar(ABC) is equal	to
				(a) 2.1 (c) $4:1$	(d) 1:8
	n zu n zu n z		50.	Which of the following is n	not true ?
				(a) $\Delta TQS \sim \Delta PQR$ (c) $\Delta BAC \sim \Delta POR$	(b) $\Delta CBA \sim \Delta STQ$ (d) $\Delta POR \sim \Delta ABC$
				~	
		SOLU'	ΓΙ	ON	
		SECT	'ION	- A	
1.	(a) 4				
1.	Explanation: Prime factor	visation of 92		So, $\frac{4}{6} = \frac{5}{100}$	
		$= 2 \times 2 \times 23$		6 EC	30
	Prime factorisation of 152	$2 \times 2 \times 25$ $2 = 2 \times 2 \times 2 \times 19$		Therefore, EC = $\frac{0 \times 5}{4}$ =	$\frac{30}{4}$
	To find HCF, we multiply	y all the prime factors		= 7.5 cm	-
	common to both number	s:	3.	(b) 2	
	Therefore, HCF	$F = 2 \times 2 = 4$		Explanation:	
2.	(c) 7.5 cm			For no solution $\frac{a_1}{a_1} = \frac{b_1}{a_1}$	$b_1 \uparrow \underline{c_1}$
	Explanation: Since DE	BC,			c_2
	$\frac{AD}{AD} = \frac{AE}{AE}$ (By	Basic Proportionality		Here, $a_1 = 1$, $a_2 = 2$, b_1	= 1, $b_2 = k$, $c_1 = -4$, $c_2 = -3$
	$DB FC^{(D)}$			1 .	1 2 2

 $\frac{AD}{DB} = \frac{AE}{EC}$ (By Basic Proportionality)

Theorem)

Since AD = 4 cm, DB = 6 cm and AE = 5 cm

4]

4. (d) 3/4

Explanation: We know that,

$$\tan 45^\circ = 1 \text{ and } \cos 60^\circ = \frac{1}{2}$$
So, $(\tan^2 45^\circ - \cos^2 60^\circ) = \left\{ (1)^2 - \left(\frac{1}{2}\right)^2 \right\}$

$$= \left(1 - \frac{1}{4}\right)$$

$$= \frac{3}{4}$$

5. (a) 1

Explanation: Let the point (x, 1) be A, (0, 0) be B and (2, 0) be C. According to question, AB = AC[Using distance formula $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\sqrt{(0-x)^2 + (0-1)^2} = \sqrt{(2-x)^2 + (0-1)^2}$ \Rightarrow Squaring both sides $\Rightarrow \left(\sqrt{(0-x)^{2} + (0-1)^{2}}\right)^{2} = \left(\sqrt{(2-x)^{2} + (0-1)^{2}}\right)^{2}$ $(0-x)^{2} + (0-1)^{2} = (2-x)^{2} + (0-1)^{2}$ (-x)² + (-1)² = (4-4x + x²) + (-1)² {Since, (a - b)² = (a² - 2ab + b²)} x² + 1 = 4 - 4x + x² + 1 \Rightarrow \Rightarrow \Rightarrow 0 = 4 - 4x \Rightarrow 4x = 4 \Rightarrow \Rightarrow x = 1

6. (b)
$$\frac{1}{2}$$

1

Explanation: When two coins are tossed together, the possible outcomes are: HH, HT, TH and TT

Exactly one head is occurring in only two cases (HT and TH) out of the four listed above.

So, $P(E) = \frac{\text{Number of favourable outcomes}}{\text{Number of total outcomes}}$ $\therefore P(E) = \frac{2}{4}$ $= \frac{1}{2}$

7. (c) 60°

Explanation:

Length of arc =
$$\frac{\theta}{360^{\circ}} \times 2\pi r$$

 $\Rightarrow \qquad 22 = \frac{\theta}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21$
 $\Rightarrow \qquad \theta = \frac{22 \times 360^{\circ} \times 7}{2 \times 21 \times 22}$
 $\therefore \qquad \theta = 60^{\circ}$

8. (b) 2x(x-5)

Explanation: Let the zeroes be α and β . According to question, $\alpha + \beta = 5$ and $\alpha\beta = 0$ Now, $p(x) = k (x^2 - (\alpha + \beta)x + \alpha\beta),$ where *k* is any real number $p(x) = k \left(x^2 - 5x + 0 \right),$ \Rightarrow where *k* is any real number When k = 2 $p(x) = 2(x^2 - 5x)$ \Rightarrow p(x) = 2x(x-5)9. (d) 0.35 Explanation: We know that, P(E) + P (not E) = 1

P(E) + P (not E) = 1 $\Rightarrow \quad 0.65 + P (not E) = 1$ $\Rightarrow \quad P (not E) = 1 - 0.65$ $\therefore \quad P (not E) = 0.35$

10. (d) 9:4

 \Rightarrow

Explanation: Since $\Delta DEF \sim \Delta PQR$

$$\frac{ar(\Delta DEF)}{ar(\Delta PQR)} = \left(\frac{EF}{QR}\right)^{2}$$

(If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.)

$$\Rightarrow \qquad \frac{ar(\Delta DEF)}{ar(\Delta PQR)} = \left(\frac{3}{2}\right)^2$$
$$\Rightarrow \qquad \frac{ar(\Delta DEF)}{ar(\Delta PQR)} = \frac{9}{4}$$

11. (c) 2, 3

Explanation: $p(x) = x^2 - 5x + 6 = 0$ \Rightarrow $x^2 - 3x - 2x + 6 = 0$ (splitting the middle term) \Rightarrow x(x-3) - 2(x-3) = 0 \Rightarrow (x-3)(x-2) = 0 \Rightarrow x = 3, 2

12. (b) terminating decimal expansion after 2 places of decimals.

Explanation: Here
$$\frac{57}{300}$$
 can be written as
 $\frac{57}{2^2 \times 3^1 \times 5^2}$
Further, it can be written as $\frac{19}{2^2 \times 5^2} = \frac{19}{100}$
 $= 0.19$
Since, the denominator is of the form $2^m \times 5^n$, the decimal expansion will be terminating.

Therefore, it is terminating decimal expansion after 2 decimal places.

13. (d)
$$l = 2b + 4$$

2(l+b) = 14

Explanation: To solve the above question, let us break the statement into parts.

It says that perimeter is 14 cm \therefore 2(*l* + *b*) = 14 Also, length is 4 cm more than twice its breadth. \Rightarrow Length = 2 × Breadth + 4 \therefore *l* = 2*b* + 4

14. (a) 5.213213213...

Explanation: Bar present on 213 in 5.213 means 213 is repeated multiple times.

15. (b) 3 : 4

Explanation: Let the ratio be *k* : 1. Using section formula,

$$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$\Rightarrow \qquad (4, 0) = \left(\frac{k \times 4 + 1 \times 4}{k + 1}, \frac{k \times -8 + 1 \times 6}{k + 1}\right)$$

$$\Rightarrow \qquad (4, 0) = \left(\frac{4k + 4}{k + 1}, \frac{-8k + 6}{k + 1}\right)$$

$$\therefore \qquad 4 = \frac{4k + 4}{k + 1}$$
and
$$0 = \frac{-8k + 6}{k + 1}$$

$$\Rightarrow \qquad 0 = -8k + 6$$

$$\Rightarrow \qquad 8k = 6$$

$$\therefore \qquad \frac{k}{1} = \frac{6}{8} = \frac{3}{4}$$

Therefore, the required ratio is 3:4.

16. (c) tan 90°

Explanation: $\tan 90^\circ = \frac{\sin 90^\circ}{\cos 90^\circ} = \frac{1}{0}$ = not defined

17. (c) 7 cm

Explanation: Here AB is the diameter of the semicircle, so AB = 28 cm OA is the radius; so, OA = OC = 14 cm But OC is the diameter of the circle and we know that diameter = $2 \times \text{radius}$ \therefore $OC = 2 \times \text{radius}$ \Rightarrow $14 = 2 \times \text{radius}$ \therefore $\text{radius} = \frac{14}{2} = 7$ cm

18. (b) 5 units

Explanation: Co-ordinates of D can be found with help of mid-point formula *i.e.* $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $\Rightarrow \qquad D = \left(\frac{0 + 0}{2}, \frac{0 + 6}{2}\right)$ $\Rightarrow \qquad D = \left(\frac{0}{2}, \frac{6}{2}\right)$

D = (0, 3)• Now, length of AD can be found using the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $AD = \sqrt{(4-0)^2 + (0-3)^2}$ ⇒ $AD = \sqrt{(4)^2 + (3)^2}$ \Rightarrow $AD = \sqrt{16+9}$ \Rightarrow $AD = \sqrt{25}$ \Rightarrow AD = 5 \Rightarrow \therefore Length of AD = 5 units **19.** (c) $\frac{1}{2}$

Explanation: Since
$$\angle P = 45^{\circ}$$

 $\Rightarrow \qquad \angle R = 45^{\circ}$
 $(\angle P + \angle Q + \angle R = 180^{\circ})$
Now, $\tan P = \tan 45^{\circ} = 1$
Also, $\cos R = \cos 45^{\circ} = \frac{1}{\sqrt{2}}$
Now, $\tan P - \cos^2 R = 1 - \left(\frac{1}{\sqrt{2}}\right)^2$
 $= 1 - \frac{1}{2}$
 $= \frac{1}{2}$

20. (a) $\frac{\sqrt{13}}{3}$

Explanation: In ΔABC, right-angled at B, $\angle A = \theta$ let $\tan \theta = \frac{2}{3}$ Given, 3 k $\tan \theta = \frac{BC}{AB} = \frac{2}{3}$ \Rightarrow C Let BC = 2k and AB = 3kBy Pythagoras Theorem $AC^2 = AB^2 + BC^2$ $AC^2 = (2k)^2 + (3k)^2$ \Rightarrow $AC^2 = 4k^2 + 9k^2$ \Rightarrow $AC^2 = 13k^2$ ⇒ $AC = \sqrt{13}k$ \Rightarrow $\sec \theta = \frac{AC}{AB} = \frac{\sqrt{13}k}{3k}$ Now, $=\frac{\sqrt{13}}{3}$

21. (d) 39 cm

Explanation: Perimeter of sector of circle
= length of arc + 2 × radius
=
$$\frac{\theta}{360^{\circ}} \times 2\pi r + 2 \times 14$$

= $\frac{45}{360^{\circ}} \times 2 \times \frac{22}{7} \times 14 + 28$
= 11 + 28
= 39 cm

22. (b) $\frac{1}{5}$

Explanation: $P(E) = \frac{\text{Number of favourable outcomes}}{\text{Number of total outcomes}}$ Number of blue balls = 6Total number of balls = 16 + 8 + 6 = 30 \therefore P (getting a blue ball) = $\frac{6}{30} = \frac{1}{5}$

23. (b) 45°

Explanation: S	Since $\sin \theta - \cos \theta = 0$
\Rightarrow	$\sin\theta = \cos\theta$
⇒	$\frac{\sin\theta}{\cos\theta} = 1$
\Rightarrow	$\tan \theta = 1$
\Rightarrow	$\tan \theta = \tan 45^{\circ}$
	$\theta = 45^{\circ}$

24. (c) 0.98

Explanation: We know that, P(E) + P (not E) = 1 Given, P(E) = 0.02So, $0.02 + P \pmod{E} = 1$ P (not E) = 1 - 0.02 \Rightarrow P(not E) = 0.98*.*..

25. (a) 462 cm²

Explanation: Area of shaded region = Area of outer circle – Area of inner circle (Let R = radius of outer circle and r = radius of inner circle) $= \pi R^2 - \pi r^2$ $= \pi (R^2 - r^2)$ $= \frac{22}{7} \{ (14)^2 - (7)^2 \}$ $=\frac{22}{7}(196-49)$ $=\frac{22}{7} \times 147$ $= 22 \times 21 = 462$ \therefore Area of shaded region = 462 cm² **26.** (d) $2 \sec^2 \theta$

Explanation: $\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta}$

$$= \frac{1 - \sin\theta + 1 + \sin\theta}{(1 + \sin\theta)(1 - \sin\theta)} \text{ (Taking L.C.M.)}$$

$$= \frac{2}{(1)^2 - \sin^2\theta}$$

$$\{\text{Since, } (a - b) (a + b) = a^2 - b^2\}$$

$$= \frac{2}{1 - \sin^2\theta}$$

$$= \frac{2}{\cos^2\theta} \text{ (Since, } 1 - \sin^2\theta = \cos^2\theta)$$

$$= 2\sec^2\theta \qquad \left(\because \frac{1}{\cos^2\theta} = \sec^2\theta\right)$$

27. (b) 1:3

Explanation: Let the ratio be *k* : 1 Using section formula,

$$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$(0, 0) = \left(\frac{k \times -3 + 1 \times 1}{k + 1}, \frac{k \times 9 + 1 \times -3}{k + 1}\right)$$

$$(0, 0) = \left(\frac{-3k + 1}{k + 1}, \frac{9k - 3}{k + 1}\right)$$

$$0 = \frac{-3k + 1}{k + 1} \text{ and } 0 = \frac{9k - 3}{k + 1}$$

$$0 = -3k + 1 \text{ and } 0 = 9k - 3$$

$$3k = 1 \text{ and } 9k = 3$$

$$\frac{k}{1} = \frac{1}{3} \text{ and } \frac{k}{1} = \frac{3}{9} = \frac{1}{3}$$

Therefore, the required ratio is 1 : 3.

28. (c) any real number

Explanation: The points A (-8, 0) and B (8, 0) lie on X-axis.

The mid-point of the line joining these two points can be found with the help of mid-point

ormula
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

 $\Rightarrow \qquad O = \left(\frac{-8 + 8}{2}, \frac{0 + 0}{2}\right)$
 $\Rightarrow \qquad O = (0, 0)$

Therefore, the line that bisects AB is the y-axis and it is given that it passes through a point (0, k); so, k is any real number.

29. (a) Two congruent figure are always similar

Explanation: Since two figures are congruent, their corresponding sides are equal and thus the ratio of corresponding sides will always be equal to 1 and equal to each other. Therefore, two congruent figures are always similar.

SECTION - B

30. (a) (-5,6)

Explanation: Given that x = -5 and y = 6The lines drawn for the given equations meet at (-5, 6) and thus (-5, 6) is the solution of the given equations.

31. (d) (3, 1)

Explanation: Since the centre of circle lies at (0, 0) and its radius is 3 units. From the given options, let us calculate the distance of each from the centre using distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ For (-1, -1), $OA = \sqrt{(-1 - 0)^2 + (-1 - 0)^2}$ $= \sqrt{(-1)^2 + (-1)^2}$ $= \sqrt{1 + 1} = \sqrt{2}$ Since $\sqrt{2} < 3$, it lies inside the circle. For (0, 3),

$$OB = \sqrt{(0-0)^2 + (3-0)^2}$$
$$= \sqrt{(0)^2 + (3)^2}$$
$$= \sqrt{0+9} = \sqrt{9} = 3$$

Since 3 = 3, it lies on the circle. For (1, 2),

$$OC = \sqrt{(1-0)^2 + (2-0)^2}$$
$$= \sqrt{(1)^2 + (2)^2}$$
$$= \sqrt{1+4} = \sqrt{5}$$

Since $\sqrt{5} < 3$, it lies inside the circle. For (3, 1),

$$OD = \sqrt{(3-0)^2 + (1-0)^2}$$
$$= \sqrt{(3)^2 + (1)^2} = \sqrt{9+1}$$
$$= \sqrt{10}$$

Since $\sqrt{10} > 3$, so point (3,1) it lies outside the circle.

32. (b) 9

Explanation: For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Here, $a_1 = 3$, $a_2 = k$, $b_1 = 5$, $b_2 = 15$, $c_1 = -8$, $c_2 = -24$ So, $\frac{3}{k} = \frac{5}{15} = \frac{-8}{-24}$ $\Rightarrow \qquad \frac{3}{k} = \frac{1}{3}$ $\Rightarrow \qquad k = 9$

33. (c) 2

Explanation: Let the two consecutive even	n
numbers be $2n$ and $(2n + 2)$.	
Prime factorisation of $2n = 2 \times n$	
Prime factorisation of $(2n + 2) = 2 \times (n + 1)$	
To find HCF, we multiply all the prime factor	s
common to both numbers.	
Therefore, $HCF = 2$	

34. (a) both negative

Explanation:
$$p(x) = x^2 + 99x + 127$$

Here, sum of zeroes $= \frac{-b}{a} = -99$ and
product of zeroes $= \frac{c}{a} = 127$

Since, product of zeroes is positive and sum is negative, it is possible only when both the zeroes are negative. Therefore, both the zeroes are negative.

35. (c)
$$\left(\frac{-9}{2}, \frac{5}{2}\right)$$

Explanation: The mid-point of the line joining these two points can be found with the help of mid-point formula $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ \Rightarrow mid-point, $O = \left(\frac{-3 + (-6)}{2}, \frac{9 + (-4)}{2}\right)$ \Rightarrow mid-point, $O = \left(\frac{-9}{2}, \frac{5}{2}\right)$

36. (d) non-terminating but repeating

Explanation:

The denominator of $\frac{13}{2 \times 5^2 \times 7}$ is not of the form $2^m \times 5^n$, so, its decimal expansion is non-terminating but repeating.

37. (b) 2 : 5

Explanation: Since $DE \parallel BC$ $\Rightarrow \qquad \angle ADE = \angle ABC$ and $\angle AED = \angle ACB$ \therefore By AA similarity criterion $\triangle ADE \sim \triangle ABC$ By C.P.C.T. $\frac{AD}{AB} = \frac{DE}{BC}$ $\Rightarrow \qquad \frac{2}{5} = \frac{DE}{BC}$ (AB = AD + DB) = 2 + 3 = 5 cm $\therefore \qquad DE : BC = 2 : 5$

38. (a) 1000

Explanation:			
We know that $HCF \times LCM$			
	= Product of two numbers		
\Rightarrow	$HCF \times LCM = 20 \times 50$		
<i>.</i>	$HCF \times LCM = 1000$		

39. (d) None

Explanation: Since 6^n is expressed as $(2 \times 3)^n$, it can never end with digit 0 as it does not have 5 in its prime factorisation.

Explanation:
$$(1 + \tan^2 A) (1 + \sin A) (1 - \sin A)$$

= $(1 + \tan^2 A) \{(1)^2 - \sin^2 A\}$
 $\{ \because (a + b) (a - b) = (a^2 - b^2) \}$

$$= \left(1 + \frac{\sin^2 A}{\cos^2 A}\right) (1 - \sin^2 A)$$
$$= \left(\frac{\cos^2 A + \sin^2 A}{\cos^2 A}\right) (\cos^2 A)$$
$$\{\because 1 - \sin^2 A = \cos^2 A\}$$
$$= 1$$

41. (c) 9 m

Explanation: Here, $h = -t^2 + 2t + 8$ It is of the form $ax^2 + bx + c$ So, t = xFor a parabola, x-coordinate for maximum height is $x = \frac{-b}{2a}$. $x = \frac{-2}{2(-1)}$ \Rightarrow $=\frac{-2}{-2}=1$ $t = 1 \sec \theta$ \Rightarrow Now, the height covered by ball in 1 second $= -(1)^2 + 2(1) + 8$ = -1 + 2 + 8 $= 9 \, {\rm m}$... The maximum height reached by the ball is

9 m.

Explanation: The graph of quadratic polynomial is a parabola.

Explanation: For a parabola, x-coordinate for maximum height is $x = \frac{-b}{2a}$ \Rightarrow $x = \frac{-2}{2(-1)}$ $= \frac{-2}{-2} = 1$ \therefore $t = 1 \sec$

44. (b) 2

Explanation: Number of zeroes of a quadratic polynomial = 2.

Explanation: Here $h = -t^2 + 2t + 8 = 0$ $\Rightarrow -t^2 + 2t + 8 = 0$ $\Rightarrow -t^2 + 4t - 2t + 8 = 0$ $\Rightarrow -t(t-4) - 2(t-4) = 0$ $\Rightarrow (t-4)(-t-2) = 0$ $\therefore t = 4, -2$

SECTION - C

Case Study-II

46. (d) RHS

Explanation: RHS is not a similarity criterion.

47. (a) $x\sqrt{2}$ unit

Explanation: Since
$$AB = AC = x$$
 units
 $\Rightarrow AB^2 + AC^2 = BC^2$
(by Pythagoras theorem)
 $\Rightarrow x^2 + x^2 = BC^2$
 $\Rightarrow BC^2 = 2x^2$
 $\therefore BC = x\sqrt{2}$ units

48. (c) 1 : 2

Explanation: Here QR = 2x and QP = 2x \Rightarrow $PR^2 = QR^2 + QP^2$ \Rightarrow $PR^2 = (2x)^2 + (2x)^2$ \Rightarrow $PR^2 = 4x^2 + 4x^2$ \Rightarrow $PR^2 = 8x^2$ \Rightarrow $PR = 2\sqrt{2x}$ Now, $BC : PR = \sqrt{2x} : 2\sqrt{2x} = 1 : 2$

49. (c) 4 : 1

Explanation: Since $\frac{AB}{QP} = \frac{BC}{PR} = \frac{CA}{RQ}$ $\Delta ABC \sim \Delta QPR$ (by SSS similarity criterion) $\Rightarrow \qquad \frac{ar(\Delta QPR)}{ar(\Delta ABC)} = \left(\frac{PR}{BC}\right)^2$

(If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.)

$$\Rightarrow \qquad \frac{ar(\Delta QPR)}{ar(\Delta ABC)} = \left(\frac{2}{1}\right)^2$$
$$\therefore \qquad \frac{ar(\Delta QPR)}{ar(\Delta ABC)} = \frac{4}{1}$$

50. (d) $\Delta PQR \sim \Delta ABC$

Explanation: Since $\triangle ABC \sim \triangle QPR$, $\triangle PQR$ is not similar to $\triangle ABC$. The points A and B are not corresponding to P and Q respectively.