

SELF PRACTICE PAPER SOLUTION

Maximum Time: 1 hour

Unit-I

1. <i>a</i> and <i>b</i> are two positive	e integers sı	ich that		
the least prime	e factor of <i>a</i>	= 3		Sc
and the least prime	e factor of b	= 5		(iii) Co
Then, least prime facto	or of $(a + b)$	= 2.	1	Ех
2. HCF	= 18			
Product	= 12960			
Since, LCM	= Product	of two number HCF	S	
	$=\frac{12960}{1}=7$	720	1	
	18 ,	20		(iv) Co
3. p	$= p \times 1$			Ex
p^2	$= p \times p$			
p^3	$= p \times p \times p$	_		 .
Required LCM	$= p \times p \times p$	$= p^{3}$.	1	
4. $\frac{7}{150} = \frac{7}{2 + 2 + 5^2}$				(v) Co
150 2×3×5				Ex
Since, denominator of of the form $2^m \times 5^n$.	given ratior	al number is n	not	- ÷
decimal expansion.	lence, it is	non-terminati	1 1	7 R
$2\sqrt{125} + \sqrt{20}$	$2\sqrt{5\times5\times}$	$\overline{5} + \sqrt{2 \times 2 \times 5}$	- I	a
5. $\frac{2\sqrt{12}c+\sqrt{2}c}{3\sqrt{5}}$	=	$\frac{3}{3\sqrt{5}}$		
	2.15 /5-1			
	$=\frac{2\times5\sqrt{5}+}{2\sqrt{5}}$	2/5		
	575	-		
	$=\frac{10\sqrt{5}+2}{\sqrt{5}}$	$\sqrt{5}$		Н
	3√5			25
	$=\frac{12\sqrt{5}}{\sqrt{5}}$			8.
	3√5			
	= 4.		1	De
Which is a rational nur	nber.			
6. (i) Correct option: (d). Explanation: Prime fac	tors of 420			
	$= 2 \times 2 \times 3$	$\times 5 \times 7$		9. Le
	$= 2^2 \times 3 \times 5$	5×7		ra
2	420			
2	210			ar
3	105			Sc
5	35			
7	7			
	1			
(ii) Correct option: (a).	I			or

Explanation: Use Euclid's algorithm,

 $420 = 130 \times 3 + 30$ $130 = 30 \times 4 + 10$

 $30 = 10 \times 3 + 0.$ o, the HCF of 420 and 130 is 10. orrect option: (b) xplanation: $LCM = \frac{Product of numbers}{Product of numbers}$ HCF 420×130 10 = 5460orrect option: (c). xplanation: Prime factors of 420 $= 2 \times 2 \times 3 \times 5 \times 7$ $= 2^2 \times 3^1 \times 5^1 \times 7^1$ The sum of exponents of prime factors = 2 + 1 + 1 + 1 = 5.orrect option: (b). **xplanation:** Prime factors of $130 = 2 \times 5 \times 13$ The sum of exponents of prime factors = 1 + 1 + 1 = 3.equired minimum distance will be LCM of 40, 42 nd 45. $40 = 2 \times 2 \times 2 \times 5 = 2^3 \times 5$ $42 = 2 \times 3 \times 7$ $45 = 3 \times 3 \times 5 = 3^2 \times 5$ 1 LCM (40, 42, 45) = $2^3 \times 3^2 \times 5 \times 7$ = 2520 cm. 1 Ience, minimum distance each should walk = 5.20 m. Denominator = 500 $= 2^2 \times 5^3$ 1 ecimal expansion = $\frac{257}{500} = \frac{257 \times 2}{2 \times 2^2 \times 5^3} = \frac{514}{10^3}$ = 0.5141

9. Let *p* be a prime number and if possible, let \sqrt{p} be rational

$$\therefore \sqrt{p} = \frac{m}{n}$$
, where *m* and *n* are co-primes
and $n \neq 0$.

Squaring on both sides, we get

$$\frac{\left(\sqrt{p}\right)^2}{1} = \left(\frac{m}{n}\right)^2$$
$$p = \frac{m^2}{n^2}$$

or $pn^2 = m^2$...(i) **1** $\therefore p$ divides m^2 and p divides m. [$\because p$ divides pn^2] Let m = pq for some integer qOn putting m = pq in eq. (i), we get $pn^2 = p^2q^2$ or $n^2 = pq^2$ *:*.. p divides n^2 [\because p divides pq^2] **1** and p divides n. [:: p is prime and p divides $n^2 \Rightarrow p$ divides n]

Thus, p is a common factor of m and n but this contradicts the fact that *m* and *n* are co-primes. The contradiction arises by assuming that \sqrt{p} is

rational.

Hence, \sqrt{p} is irrational. $\frac{1}{2}$

10. Since, the time to toll next together = LCM (9, 12, 15) 1 $9 = 3 \times 3 = 3^2$ $12 = 2 \times 2 \times 3 = 2^2 \times 3$

 $15 = 3 \times 5$ and LCM (9, 12, 15) = $3^2 \times 2^2 \times 5$ ÷.

= 180 minutes 1 Hence the bells will toll next together after 180 minutes.

11. Let us assume that there is a positive integer *n* for

which $\sqrt{n-1} + \sqrt{n+1}$ is rational and equal to $\frac{p}{2}$,

where, *p* and *q* are positive integers and $(q \neq 0)$. 1

$$\sqrt{n-1} + \sqrt{n+1} = \frac{p}{q}$$
 ...(i)
or $\frac{q}{n} = \frac{1}{\sqrt{n-1} + \sqrt{n+1}}$

Rationalisation of denomination

$$= \frac{\sqrt{n-1} - \sqrt{n+1}}{(\sqrt{n-1} + \sqrt{n+1})(\sqrt{n-1} - \sqrt{n+1})}$$
$$= \frac{\sqrt{n-1} - \sqrt{n+1}}{(n-1) - (n+1)} \qquad \frac{1}{2}$$
$$= \frac{\sqrt{n-1} - \sqrt{n+1}}{-2}$$

or
$$\sqrt{n+1} - \sqrt{n-1} = \frac{2q}{p}$$

$$2\sqrt{n+1} = \frac{p}{q} + \frac{2q}{p}$$

= $\frac{p^2 + 2q^2}{pq}$...(iii)

From (i) and (ii),

 \Rightarrow

$$\sqrt{n-1} = \frac{p^2 - 2q^2}{2pq}$$
 ...(iv) **1**

From (iii) and (iv), $\sqrt{n+1}$ and $\sqrt{n-1}$ both are rational because p and q both are rational. But it is possible only when (n + 1) and (n - 1) both are perfect squares. But they differ by 2 and two perfect squares never differ by 2. So, both (n + 1) and (n - 1)cannot be perfect squares, hence there is no positive integer *n* for which $\sqrt{n-1} + \sqrt{n+1}$ is rational. **1**

...(ii) 1

SELF PRACTICE PAPER SOLUTION

Maximum Time: 1 hour

Unit-II

MM: 25

1.	3x - y = -18	(i)	S =	$2(2 + 4 + 6 + 8 + \dots)$	oto 13 terms)
.	6x - ky = -16	(11)	=	$2 \times 2(1 + 2 + 3 + 4 + 4)$	upto 13 terms)
For coincid	lent lines,		=	$4 \times \frac{13 \times 14}{3}$	
	$\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{c_1}{a_1}$	1/2		2	
\rightarrow	$a_2 b_2 c_2$	/2	=	364	
\rightarrow	3 _1 _8		Thus, Ruc	hi covered in complet	ing this job and
\Rightarrow	$\frac{5}{6} = \frac{-1}{1} = \frac{-6}{16}$		returning b	ack to collect her books =	$= 2 \times 364 = 728 \mathrm{m}.$
	6 -k -16		(iv) Correct op	tion: (d).	
\rightarrow	1 1 1 1		Explanatio	n: The maximum dista	ance travelled by
\rightarrow	$\frac{1}{2} = \frac{1}{k} = \frac{1}{2}$		her		5
So.	k = 2	1/2		$= 2 \times 13 \text{ m}$	
2. Let $f(x) = a$	$4x^{3} + hx^{2} + cx + d$	/2		= 26 m	
If a B v are	e the zeroes of $f(x)$ then		(w) Correct on	tion: (a)	
n 0, p, _i ar			(v) Contect op	uon. (a).	on east is uslated
αβ	$\beta + \beta \gamma + \gamma \alpha = -$		Explanatio	n: The mathematical C	oncept is related
	a		to this que	stion as arithmetic prog	ression.
One root is	$r_{\rm s}$ zero (given) So $\alpha = 0$ $\beta_{\rm v} = \frac{1}{2}$	1	7. Given:	$f(x) = 2x^2 - 7x + 1$	- 3
0110 1001 12	f Zero (given) 50, $\alpha = 0.$ py =	1	SI	1m of roots = n + a = -	Coefficient of <i>x</i>
3. Let $f(x) = x$	$x^{2} + (a + 1)x + b$			a = p + q = -	Coefficient of x^2
As 2 and (-	- 3) are zeroes of polynomial				7
$f(x) = x^2 + $	(a + 1)x + b, then			$= -\left(\frac{-7}{2}\right) =$	$=\frac{7}{2}$ $\frac{1}{2}$
$f(x) = x^{-1}$	f(2) = 0			(2)	2
$(2)^2 + (a)^2$	(2) = 0 + 1)(2) + h = 0			Co	onstant term
(2) 1 (<i>u</i> 1 ±	2a + 2 + h = 0		and Prod	uct of roots = $pq = \frac{1}{Cont}$	$\frac{1}{2}$
TI	2a + b = -6				
And $f(-3)$:	= 0	(i) ¹ /2		$=\frac{3}{2}$	1/2
$(3)^2 + (a + b)^2$	(-3) + h = 0	(1) /2		2	/-
(3) + (u + 0)	(1)(-5) + b = 0 3a + b = 0		Since.	$(n + a)^2 = n^2 + a^2 + a^2$	2na
)-	-3a + b = 6		So.	$(p^2 + q^2) = (n + q)^2 - (n + q)^2$	2na $1/2$
	-5u + b = -6	(ii)	50,	$p + q = (p + q) = (-x^2)$	2pq /2
	5u = b = 0	(ii) and (ii)		$=\left(\frac{7}{2}\right)^{2}-3$	
	5u = 0 [Adding	(1) and (11)]		(2)	
4 Civon	u = 0.	72		/19 3	37
4. Given:	x + 2y = 10			$=\frac{49}{4}-\frac{3}{1}=$	$=\frac{37}{4}$ $\frac{1}{2}$
\Rightarrow	$x + 2 \times 6 = 10$ [* G	$\operatorname{ven} y = 6$		4 1	4
\Rightarrow	x = 10 - 12	1	Honce the	walue of $n^2 + a^2 - 37$	
\Rightarrow	x = -2.	1	Tience, the	value of $p + q = \frac{1}{4}$	
5. Since, $5x^2 - $	-5x + p = 0 has equal roots;				
I nen,	D = 0		8. The series	as per question is 102,	108, 114,,
1.e.,	$b^- = 4ac$		198 which	is an A.P.	
\Rightarrow	$(-5)^2 = 4 \times 3 \times p$		Given, $a =$	102, $d = 6$ and $l = 198$	
\Rightarrow	25 = 12p		Then	198 = 102 + (n-1)6	1/2
\Rightarrow	$p = \frac{25}{2}$.	1		96	
-	12	_	or,	$\frac{10}{6} = n - 1$	
6. VISUAL C	ASE STUDY BASED QUEST	IONS:		0	
			01	-17	1/

(i) Correct option: (c).

Explanation: Since, they have 27 flags, then the middle most flag is 14th flag.

(ii) Correct option: (b).

Explanation: We have, total no. of flags = 27 So, 13 flags to left of middle and 13 flags to right of middle most flag.

(iii) Correct option: (c).

Explanation: The total distance travelled by Ruchi,

$$= \frac{49}{4} - \frac{3}{1} = \frac{37}{4}$$
^{1/2}

on is 102, 108, 114,, dl = 198(n - 1)6 $\frac{1}{2}$ $\frac{1}{2}$ or, n = 17 $S_n = \frac{n}{2}(a+l)$ $\frac{1}{2}$

$$S_{17} = \frac{17}{2} [102 + 198]$$

.

0

r,
$$S_{17} = \frac{17}{2} \times 300 = 17 \times 150 = 2550$$
. ¹/₂

[CBSE Marking Scheme, 2012]

9. The three digit numbers are divided by 7 and leave	11. Let length of given rectangle be x and breadth be y
3 as remainder are	\therefore Area of rectangle = xy 1
101, 108, 115, 997 1	According to the first condition,
Since these are in A.P. $a = 101$, $d = 7$, $a_n = 997$	(x-5)(y+3) = xy-9
$a_n = a + (n-1)d$	\Rightarrow $3x - 5y = 6$ (i) 1
997 = 101 + (n-1)7	According to the second condition.
997 - 101 = 896 = (n - 1)7 ^{1/2}	(x + 3)(y + 2) = xy + 67
$\frac{896}{2} = n - 1$ ^{1/2}	$\Rightarrow \qquad 2x + 3y = 61 \qquad \dots (ii) 1$
n = 128 + 1 = 129 Hence, 129 three digit numbers are divided by 7 which leaves remainder is 3. 1 [CBSE Marking Scheme, 2012]	Multiply eqn. (i) by 3 and eqn. (ii) by 5 and then adding, 9x - 15y = 18 10x + 15y = 305
10. Given: $(x^2 + y^2)(a^2 + b^2) = (ax + by)^2$ $\Rightarrow x^2a^2 + x^2b^2 + y^2a^2 + y^2b^2 = a^2x^2 + b^2y^2 + 2abxy$	$\therefore \qquad \qquad x = \frac{323}{19}$ $\Rightarrow \qquad = 17 \qquad \qquad 1$
$\Rightarrow r^{2}b^{2} + u^{2}a^{2} - 2abru = 0$	Substituting this value of x in eqn. (i),
$\Rightarrow x v + y u - 2uvxy = 0$ $\Rightarrow (xh - ua)^2 = 0$	3(17) - 5y = 6
$[:: (a-b)^2 = a^2 + b^2 - 2ab] 1$	\Rightarrow $5y = 51 - 6$
\Rightarrow $xb = ya$	\therefore $y = 9$ 1
$\therefore \qquad \frac{x}{y} = \frac{y}{1}$	Hence, perimeter = $2(x + y)$
a b	= 2(17 + 9)
Hence proved [CBSE Marking Scheme, 2014]	= 52 units.

SWALLERING

SELF PRACTICE PAPER SOLUTION

Unit-III

MM: 25

 $\frac{1}{2}$

1.	A	↓ B Q	
	Here,	$BQ = \frac{5}{7}AB$	
	or,	$\frac{BQ}{AB} = \frac{5}{7} \Rightarrow \frac{AB}{BQ} = \frac{7}{5}$	
	or,	$\frac{AB}{BQ} - 1 = \frac{7}{5} - 1$	
	or,	$\frac{AB-BQ}{BQ} = \frac{AQ}{BQ} = \frac{7-5}{5} = \frac{2}{5}$	
		AQ:BQ=2:5	1
2.		Mid-point = $\left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$	1/2
		$=\left[\frac{-5+5}{2},\frac{0+0}{2}\right]$	
		= [0, 0].	1/2
3.	Distance b given as,	between two points (x_1, y_1) and (x_2, y_2)	2) is
		$d = \sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$	1⁄2
	where,	$(x_1, y_1) = (4, p)$	
		$(x_2, y_2) = (1, 0)$	
	And,	<i>d</i> = 5	
	Put the val	lues, we have	
		$5^2 = (1-4)^2 + (0-p)^2$	
		$25 = (-3)^2 + (-p)^2$	
		$25 - 9 = p^2$	
		$16 = p^2$	
		$+4 - 4 = n \rightarrow n = \text{or} - 4$	1/2

4. According to the question, a triangle can be represented as :

 \therefore Distance between the points A (0, 3) and B (5, 0) is

$$AB = \left| \sqrt{(5-0)^2 + (0-3)^2} \right| \\ = \left| \sqrt{25+9} \right| \\ = \sqrt{34} \text{ unit}$$

Hence, the required length of diagonal is $\sqrt{34}$. $\frac{1}{2}$

 \therefore The coordinates of P are $\left(\frac{k+6}{k+1}, \frac{-7k+4}{k+1}\right)$ Since, Y-co-ordinates of every point on the X-axis is zero. 7k + 4 = 0 \Rightarrow \Rightarrow So, required ratio is 7 : 4. $\frac{1}{2}$ 6. VISUAL CASE STUDY BASED QUESTIONS: (i) Correct Option: (c) **Explanation:** Point A lies at x = 3, y = 4A = (3, 4)(ii) Correct Option: (a) Explanation: Mid point of B and C: $\left(\frac{6+9}{2}, \frac{7+4}{2}\right) = \left(\frac{15}{2}, \frac{11}{2}\right)$ [:: Co-ordinates of B = (6, 7) and C = (9, 4)] (iii) Correct Option: (c) **Explanation:** Point D lies at x = 6 and y = 1D = (6, 1)(iv) Correct Option: (a) **Explanation**: Since, A = (3, 4) and B = (6, 7)Using distance formula, $AB = \sqrt{(3-6)^2 + (4-7)^2}$ $= \sqrt{3^2 + 3^2}$ $= \sqrt{18} = 3\sqrt{2}$ unit (v) Correct Option: (c) **Explanation**: Since, C = (9, 4), D = (6, 1)Using distance formula $CD = \left| \sqrt{(9-6)^2 (4-1)^2} \right|$ $CD = \left| \sqrt{9+9} \right|$ $CD = \sqrt{18}$

 $= 3\sqrt{2}$ units.

5. Let the line segment joining the given points is divided by the X-axis in the ratio *k* : 1 at point P.

7. Given P (2, -1), Q(3, 4), R(-2, 3) and S(-3, -2). $PQ = \left| \sqrt{(3-2)^2 + (4+1)^2} \right| = \sqrt{26}$ unit $QR = \left| \sqrt{(-2-3)^2 + (3-4)^2} \right| = \sqrt{26}$ unit B (=4[⊢]6) $RS = \left| \sqrt{(-3+2)^2 + (-2-3)^2} \right| = \sqrt{26}$ unit $PS = \left| \sqrt{(-3-2)^2 + (-2+1)^2} \right| = \sqrt{26}$ unit S (-3, -2) P (2, -1) R (-2, 3) Q (3, 4) 1 : All the four sides are equal. or, PQRS is a rhombus. $AB = \sqrt{(1+4)^2 + (-1-6)^2}$ Diagonal, $PR = \left| \sqrt{(-2-2)^2 + (3+1)^2} \right| = \sqrt{32}$ unit Then, $= \sqrt{25 + 49}$ But, $PQ^2 + QR^2 = 26 + 26 = 52 \neq (\sqrt{32})^2$ $=\sqrt{74}$ unit So, ΔPQR is not a right triangle. $BC = \left| \sqrt{(-4+3)^2 + (6+5)^2} \right|$ Hence, PQRS is a rhombus but not a square. 1 8. P(a, b) is mid-point of AB, given A(10, -6) and $= \left| \sqrt{1 + 121} \right|$ B(k, 4) $=\sqrt{122}$ unit $P(a, b) = \left(\frac{k+10}{2}, \frac{-6+4}{2}\right)$ Then, $AC = \sqrt{(1+3)^2 + (-1+5)^2}$ $a = \frac{k+10}{2}, b = -1$ $= \sqrt{16 + 16}$ a - 2b = 18 or, a + 2 = 18 $= 4\sqrt{2}$ unit Now, [Putting b = -1] $\therefore AB \neq BC \neq AC$ a =16 ∴ ∆ABC is scalene. or, Now, area of $\triangle ABC$ $a = \frac{k+10}{2}$ $= \frac{1}{2} |1(6+5) + (-4)(-5+1) + (-3)(-1-6)|$ $\frac{k+10}{2} = 16 \text{ or } k = 22$ $=\frac{1}{2}|11+16+21|$ 1 or, = 24 sq. units P(a, b) = (16, -1)*.*.. [CBSE Marking Scheme, 2014] $AB = \sqrt{(22 - 10)^2 + (4 + 6)^2}$ 10. A(3, 2) and B(-3, 2):. Mid-point of *AB* is lying on *Y*-axis $= \sqrt{244}$ AB is equal distance from X-axis every where of *:*.. $OD \perp AB$

1

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

Hence, 3^{rd} vertex of $\triangle ABC$ is also lying on Y-axis.

 $BC^2 = (x + 3)^2 + (y - 2)^2$

 $AC^{2} = (x-3)^{2} + (y-2)^{2}$

where coordinate of C(x, y)

 $= 2\sqrt{61}$ units. $\frac{1}{2}$

9. The co-ordinates of the vertices of $\triangle ABC$ are A(1, -1), B(-4, 6) and C(-3, -5) respectively.

2]

:. Coordinate of C are below the origin Hence, $y = 2-3\sqrt{3}$

Coordinates of $C = (0, 2 - 3\sqrt{3})$

[CBSE Marking Scheme, 2012]

11. AD is the median of \triangle ABC from vertex A

$$D(x, y) = \left(\frac{3+5}{2}, \frac{-2+2}{2}\right) = (4, 0)$$

$$A(4, -6)$$

$$B(3, -2)$$

$$D(4, 0)$$

$$C(5, 2)$$
1

Area of $\triangle ADB$

$$= \frac{1}{2} \times |4(0+2) + 4(-2+6) + 3(-6-0)|$$

= $\frac{1}{2} \times |8+16-18|$
= $\frac{1}{2} \times 6 = 3$ sq.units ...(i) **1**

Area of $\triangle ADC$

$$= \frac{1}{2} \times |4(0-2) + 4(2+6) + 5(-6-0)|$$

= $\frac{1}{2} \times |-8 + 32 - 30|$
= $\frac{1}{2} \times |-6| = 3$ sq. units 1

Hence, area of $\triangle ADC = 3$ square units. ...(ii) From (i) and (ii),

Area of $\triangle ADB =$ Area of $\triangle ADC$

It is verified that median of \triangle ABC divides it into two triangles of equal areas. Hence Proved. 1

SELF PRACTICE PAPER SOLUTION

Maximum Time: 1 hour

Unit-IV

1. In the given figure,
$$\frac{PA}{PB} = \frac{6}{3} = 2$$
 and $\frac{PD}{PC} = \frac{5}{2.5} = 2$.
Thus $\frac{PA}{PB} = \frac{PD}{PC}$ and $\angle APB = \angle DPC$.
By SAS similarity, we get
 $\angle APB \sim \Delta DPC$. $\frac{1}{2}$
 $\therefore \qquad \angle A = \angle D = 30^{\circ}$
Now, $\angle PBA = 180^{\circ} - (50^{\circ} + 30^{\circ})$
[Angle sum property of a triangle]
 $= 100^{\circ}$. $\frac{1}{2}$

2. We know that the ratio of the areas of triangles will be equal to the square of the ratio of the corresponding sides of the triangles.

Thus, required ratio of the area of the two triangles

$$=\left(\frac{4}{9}\right)^2 = \frac{16}{81}$$

 OP^2

3. We know that the radius is perpendicular to tangent In $\triangle OPQ$, we have

 $\angle P = 90^{\circ}$ By Pythagoras Theorem,

$$OQ^2 = PQ^2 +$$

$$(12)^2 = PQ^2 + (5)^2$$

144 = PQ^2 + 25

$$\begin{array}{c} \Rightarrow & 1 \\ \Rightarrow & P \end{array}$$

 $PQ^2 = 144 - 25$ = 119

⇒

4. Give that, TP and TQ are tangents.

We know that the radius drawn to the tangents will be perpendicular.

 $PQ = \sqrt{119}$ cm.

.:.	$OP \perp TP$	
and	$OQ \perp TQ$	
	$\angle OPT = 90^{\circ}$	
	$\angle OQT = 90^{\circ}$	1/2
In quadril	ateral POQT,	
Sum of all	interior angles = 360°	
$\angle OPT + \angle OPT + OPT + \angle OPT + \Box OPT + \angle OPT + \Box OPT $	$\angle POQ + \angle OQT + \angle PTQ = 360^{\circ}$	
ç	$90^{\circ} + 110^{\circ} + 90^{\circ} + \angle PTQ = 360^{\circ}$	
	$\angle PTQ = 70^{\circ}.$	1/2
5. Here,	AB = 7, PB = 3.	
	AP = AB - PB = 7 - 3 = 4	
<i>.</i>	AP = PB = 4:3.	1

(i) Correct Option: (c) Explanation: Distance travelled by the aeroplane towards North,

$$OA = 1,000 \times \frac{3}{2}$$

= 1,500 km 1

(ii) Correct Option: (d) Explanation: Distance travelled by the aeroplane

towards West,

$$OB = 1,200 \times \frac{3}{2}$$

 $= 1,800 \text{ km}$

1

(iii) Correct Option: (c) Explanation: Angle between North and West direction is always 90°. 1

(iv) Correct Option: (a)

Explanation: Since $\triangle AOB$ is right triangle, by using Pythagoras Theorem, we have

$$AB^{2} = OA^{2} + OB^{2}$$

= (1,500)² + (1,800)²
= 22,50,000 + 32,40,000
= 54,90,000

Thus, the two planes after $1\frac{1}{2}$ hours is at a distance

of
$$AB = \sqrt{54,90,000}$$
 km = 2343 km (Approx.) 1

(v) Correct Option: (a)

....

or,

...

...

or,

1

7. EA and EC are tangents from point E to the circle with centre O_1 .

$$EA = EC$$
 ...(i) ¹/₂

EB and *ED* are tangents from point *E* to circle with centre O_2 .

$$EB = ED \qquad \dots (ii) \frac{1}{2}$$

Adding Eqns. (i) and (ii), EA + EB = EC + EDor, AB = CDor, Hence proved. 1 $CA \mid \mid PR$ 8. In ΔPQR ,

PC

$$\frac{PC}{CQ} = \frac{RA}{AQ}$$
(By BPT)

$$\frac{12}{15} = \frac{25}{12}$$

$$PC = \frac{15 \times 20}{12} = 25 \text{ cm}$$

In
$$\Delta PQR$$
, $CB \mid \mid QR$
 $\therefore \qquad \frac{PC}{CQ} = \frac{PB}{BR}$ (By BPT)
or, $\frac{25}{15} = \frac{15}{BR}$

Oswaal CBSE Question Bank Chapterwise & Topicwise Solved Papers, MATHEMATICS (STANDARD), Class - X

÷.

1

$$BR = \frac{15 \times 15}{25}$$

= 9 cm.

9. Construction : Join A to B. We have, OP = diameterOQ + QP = diameter \Rightarrow Radius + QP = diameter 1 \Rightarrow OQ = PQ =radius \Rightarrow Thus, *OP* is the hypotenuse of right angled ΔAOP . $\ln \Delta AOP, \sin \theta = \frac{AO}{OP} = \frac{1}{2}$ So, $\theta = 30^{\circ}$ 1 $\angle APB = 60^{\circ}$ Hence, Now, in $\triangle ABP$, AP = PB $\angle PAB = \angle PBA = 60^{\circ}$ So, $\therefore \Delta APB$ is an equilateral triangle. 1 [CBSE Marking Scheme, 2014] BD = DE = EC be x10. Let, BE = 2xand BC = 3xNow, in $\triangle ABE$, $AE^2 = AB^2 + BE^2$ $=AB^2+4x^2$...(i) 1/2 в D Е x x In $\triangle ABC$, $AC^2 = AB^2 + BC^2 = AB^2 + 9x^2$ In $\triangle ADB$, $AD^2 = AB^2 + BD^2 = AB^2 + x^2$ and ...(ii) ½ $3AC^2 + 5AD^2 = 3(AB^2 + 9x^2) + 5(AB^2 + x^2)$

$$= 3AB^{2} + 27x^{2} + 5AB^{2} + 5x^{2}$$
$$= 3AB^{2} + 27x^{2} + 5AB^{2} + 5x^{2}$$
$$= 8AB^{2} + 32x^{2}$$
$$= 8(AB^{2} + 4x^{2})$$
$$3AC^{2} + 5AD^{2} = 8AE^{2}.$$
 [From eqn. (i)]

Hence Proved. 1

11. We have to draw

$$\Delta PQR \sim \Delta ABC$$

$$PQ = 8 \text{ cm}$$

$$\therefore \qquad \frac{PQ}{AB} = \frac{8}{6} = \frac{4}{3} \qquad [\therefore AB = 6 \text{ cm}] \mathbf{1}$$
So,
$$PQ = QR = 8 \text{ cm}$$

So, we have to draw $\triangle PQR \sim \triangle ABC$ with scale factor $\frac{4}{3} > 1$ resulting $\triangle PQR$ will be larger than $\triangle ABC$.

Steps of Construction :

(i) Draw BC = 5 cm

- (ii) Draw two arcs of 6 cm each from *B* and *C* in same direction let it be upside.
- (iii) Join AB and AC.

1

- (iv) Draw acute $\angle CBX$ and mark B, B_1 , B_2 , B_3 , B_4 with compass.
- (v) Join B_3C and draw $B_4R \mid B_3C$, *R* is on *BC* produced.
- (vi) Again, draw *RP* || *CA*. *P* is on *BA* produced.

Therefore, $\Delta PQR \sim \Delta ABC$ with PQ = PR = 8 cm. It's scale factor is $\frac{4}{2}$.

2

...

SELF PRACTICE PAPER SOLUTION

Unit-V

M	M	•	2	5
		٠	_	-

1. We know that, in $\triangle ABC$,	From $\triangle ABC$, $\frac{AB}{BC} = \tan 60^\circ$
	h –
	$\Rightarrow \qquad \frac{\pi}{30} = \sqrt{3}$
	$h = 30 \sqrt{3} \mathrm{m}$
B∠C ½	Hence, the height of tower = $30\sqrt{3}$ m. $\frac{1}{2}$
Sum of three angles $= 180^{\circ}$	6 VISUAL CASE BASED OUESTIONS
<i>i.e.</i> , $\angle A + \angle B + \angle C = 180^{\circ}$	(i) Correct option: (a)
$\angle C = 90^{\circ}$ [Given]	Explanation: Clearly, distance covered by the artist
$\angle A + \angle B + 90^\circ = 180^\circ$	is equal to the length of the rope AC. Let AB be the
$\Rightarrow \qquad A + B = 90^{\circ}$	vertical pole of height 12 m.
$\therefore \qquad \cos(A+B) = \cos 90^\circ = 0 \qquad \frac{1}{2}$	It is given that $\angle ACB = 30^{\circ}$
2. $\cos 9\alpha = \sin \alpha$	Thus, in right-angled triangle ABC,
$\cos 9\alpha = \cos \left(90^\circ - \alpha\right)$	$\sin 30^\circ = \frac{AB}{2}$
On comparing both sides, we have	AC
$9\alpha = 90^{\circ} - \alpha$	$\Rightarrow \qquad \frac{1}{1} = \frac{12}{12}$
$10\alpha = 90^{\circ}$	2 AC
$\alpha = 9^{\circ}$	$\therefore \qquad AC = 24 \text{ m.} \qquad 1$
$\therefore \tan 5\alpha = \tan 5 \times 9^\circ = \tan 45^\circ = 1.$	(ii) Correct option: (b).
3. (sec A + tan A) (1 – sin A)	Explanation: In ΔΑΒC,
$=\left(\frac{1}{1}+\frac{\sin A}{\cos A}\right)(1-\sin A)$	$\tan 30^\circ = \frac{AB}{B}$
$(\cos A \cos A)$	BC
$(1+\sin A)$	$\Rightarrow \qquad \frac{1}{\sqrt{2}} = \frac{12}{\sqrt{2}}$
$= \left(\frac{1-\sin A}{\cos A}\right)^{1/2}$	$\sqrt{3}$ BC
$\left(1 + \frac{1}{2}\right)$	$\Rightarrow \qquad BC = 12\sqrt{3} \text{ m.} \qquad 1$
$= \left \frac{1 - \sin A}{\cos A} \right $	(iii) Correct option: (c).
$\left(\cos A \right)$	Explanation:
$\cos^2 A$	$\sqrt{3}$
$-\overline{\cos A}$	We have, $\sin(A+B) = \frac{1}{2}$
$= \cos A.$ $\frac{1}{2}$	$\Rightarrow \sin(A + B) = \sin 60^{\circ}$
4. $9\sec^2 A - 9\tan^2 A = 9(\sec^2 A - \tan^2 A)$	\Rightarrow $A + B = 60^{\circ}$. 1
$= 9(1) \qquad [\because \sec^2 A - \tan^2 A = 1]$	(iv) Correct option: (d).
= 9 1	Explanation: Given, $\sin A \cos C + \cos C \sin A$
5. Let AB be the tower whose height be <i>h</i> m.	Putting $A = 60^{\circ}$ and $C = 30^{\circ}$, we get
BC = shadow = 30 m.	$= \sin 60^{\circ} \cos 30^{\circ} + \cos 30^{\circ} \sin 60^{\circ}$
A A	$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$
	$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2}$
	3 3
Tower	$= -\frac{1}{4} + \frac{1}{4}$
	6
	$= \frac{1}{4}$
	3
Shadow B ½	$=\frac{1}{2}$. 1

(v). Correct option: (a). Explanation: In this question, we used the basic formulae of trigonometry. 1

7. Given : $4\cos\theta = 11\sin\theta$ $\cos \theta = \frac{11}{4} \sin \theta$ or,

Now,
$$\frac{11\cos\theta - 7\sin\theta}{11\cos\theta + 7\sin\theta} = \frac{11 \times \frac{11}{4}\sin\theta - 7\sin\theta}{11 \times \frac{11}{4}\sin\theta + 7\sin\theta} \qquad 1$$
$$= \frac{\sin\theta\left(\frac{121}{4} - 7\right)}{\sin\theta\left(\frac{121}{4} + 7\right)}$$
$$= \frac{121 - 28}{121 + 28} = \frac{93}{149} \cdot \qquad 1$$
$$B. \qquad LHS = -1 + \frac{\sin A\sin(90^\circ - A)}{\cot(90^\circ - A)}$$
$$[\because \sin(90^\circ - \theta) = \cos\theta]$$
$$[\because \cot(90^\circ - \theta) = \tan\theta]$$
$$= -1 + \frac{\sin A\cos A}{\tan A} \qquad \frac{1}{2}$$
$$= -1 + \sin A\cos A \times \cot A \qquad \frac{1}{2}$$
$$[\because \cot\theta = \frac{\cos\theta}{\sin\theta}]$$

$$= -1 + \sin A \cos A \times \frac{\cos A}{\sin A}$$
^{1/2}

 $[\because \sin^2 \theta + \cos^2 \theta = 1]$ $= -1 + \cos^2 A = -(1 - \cos^2 A)$ 1/2 $\sin^2 A = \text{RHS}$ Hence proved. [CBSE Marking Scheme, 2012]

9. Given:

$$x \sin \theta = y \cos \theta$$
or,

$$x = \frac{y \cos \theta}{\sin \theta}$$
...(i) 1
and

$$x \sin^{3} \theta + y \cos^{3} \theta = \sin \theta \cos \theta$$
...(ii)
Substituting x from eqn. (i) in eqn. (ii),

$$\frac{y \cos \theta}{\sin \theta} \sin^{3} \theta + y \cos^{3} \theta = \sin \theta \cos \theta$$

 $\sin\theta$ or, $y\cos\theta\sin^2\theta + y\cos^3\theta = \sin\theta\cos\theta$ or, $y\cos\theta [\sin^2\theta + \cos^2\theta] = \sin\theta\cos\theta$ or, $y\cos\theta \times 1 = \sin\theta\cos\theta$ $y = \sin \theta$...(iii) 1 or, Substituting this value of *y* in eqn. (i), $x = \cos \theta$...(iv) : Squaring and adding eqn. (iii) and eqn. (iv), we get $x^2 + y^2 = \cos^2 \theta + \sin^2 \theta = 1 \quad \mathbf{1}$

Hence proved.

10.
$$\therefore$$
 sec $(90^\circ - \theta) = \operatorname{cosec} \theta$,
tan $(90^\circ - \theta) = \cot \theta$,

$$\cot (90^{\circ} - \theta) = \tan \theta,$$

$$\csc (90^{\circ} - \theta) = \sec \theta$$
 1

Hence,

In Δ

 \Rightarrow

...

 \Rightarrow

 \Rightarrow

 \Rightarrow

$$\frac{\sin\theta\sec(90^{\circ}-\theta)\tan\theta}{\csc(90^{\circ}-\theta)\cos\theta\cot(90^{\circ}-\theta)} - \frac{\tan(90^{\circ}-\theta)}{\cot\theta}$$
$$= \frac{\sin\theta\csc\theta\tan\theta}{\sec\theta\cos\theta\tan\theta} - \frac{\cot\theta}{\cot\theta} \qquad 1$$

$$= \frac{\frac{\sin\theta \times \frac{1}{\sin\theta} \times \tan\theta}{\frac{1}{\cos\theta} \times \cos\theta \tan\theta} - 1 = 1 - 1 = 0 \mathbf{1}$$

11. Let AD be the height (*h*) m of the light house and BC is the distance between two ships

A

$$30^{\circ}$$

 h
 h
 h
 45°
 45°
 C
 100 m
 $B \leftarrow 100 \text{ m}$
 $BC = 100 \text{ m}$
 $In \Delta ADC$ $\tan 45^{\circ} = \frac{h}{DC}$

x = h

ABD,
$$\tan 30^\circ = \frac{h}{100 - DC}$$
$$\frac{1}{\sqrt{3}} = \frac{h}{100 - x}$$
$$100 - x = h\sqrt{3}$$

1.

$$100 - h = h\sqrt{3}$$
 [By (i)]

$$100 = h + h\sqrt{3}$$

$$100 = h\left(1 + \sqrt{3}\right)$$
$$h = \frac{100}{1 + \sqrt{3}}$$

1

$$h = \frac{100}{(\sqrt{3}+1)} \times \frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}$$
$$h = \frac{100(\sqrt{3}-1)}{3-1}$$
$$= 50(\sqrt{3}-1)$$
$$= 50(1.732-1)$$
$$= 50 \times 0.732$$

 \therefore Height of light house = 36.60 m.

SELF PRACTICE PAPER SOLUTION

Unit-VI

MM: 25

1.
$$\because$$
 Circumference of the outer circle, $2\pi r_1 = 88 \text{ cm}$
 \therefore $r_1 = \frac{88 \times 7}{2 \times 22} = 14 \text{ cm}$.
 \therefore $r_2 = \frac{66 \times 7}{2 \times 22} = \frac{21}{2} \text{ cm}$
 $= 10.5 \text{ cm}$
 \therefore Width of the ring = $r_1 - r_2$
 $= 14 - 10.5 \text{ cm} = 3.5 \text{ cm}$. 1
2. Let r be the radius of the circle.
Area of the circle = Sum of areas of two circles
 $\pi^2 = \pi \times (8)^2 + \pi(6)^2$
 σ_r , $\pi^2 = \pi(64 + 36)$
 σ_r , $r = 10 \text{ cm}$.
 \therefore Diameter of the circle = $2 \times 10 = 20 \text{ cm}$.
 $\pi^2 h = 224$
 $\pi^2 h = 224$
 $\pi^2 h = 224$
 $\pi^2 \pi h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 \times h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 \times h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 \times h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 \times h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 \times h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 \times h = 224$
 σ_r , $2 \times \frac{22}{7} \times 7 - 4 h = 24$
 σ_r , $2 \times \frac{22}{7} \times 77 = 4x$
 \therefore $x = \frac{2 \times 22 \times 11}{7} = 121$
Side of the square = 121 \text{ cm}.

5. Area of the circle = sum of areas of two circles $\pi R^2 = \pi \times (40)^2 + \pi (9)^2$

or,
$$R^2 = 1600 + 81$$

or,
$$R = \sqrt{1681} = 41 \text{ cm.}$$

 \therefore Diameter of given circle = $41 \times 2 = 82$ cm.

Correct option: (c). Explanation: Area of 9 circles $= 9 \times \pi r^2$ $= 9 \times \frac{22}{7} \times 7 \times 7$ = 1386 sq cm. 1 Correct option: (d). **Explanation:** Side of square $= 6 \times 7 = 42$ cm (side of square = Diameter of 3 circles) 1 Correct option: (a). Explanation: Area of square = $(side)^2$ $= (42)^2$ $= 1764 \, \text{sq cm}.$ 1 Correct option: (c). Explanation: Area of remaining protion = (1764 - 1386) Sq cm. = 378 sq cm. 1 Correct option: (a). Explanation: The given problem is based on 'Areas Related ti Circles. 1 Angle subtended in 1 minute = 6° θ = angle subtended in 35 minutes $= 35 \times 6^{\circ} = 210^{\circ}$ $\frac{1}{2}$: Area swept by the minute hand = Area of the sector $\frac{1}{2}$ $-\pi r^2 \theta - 22 \cdot 14 \times 14 \times 210_{14}$

$$= \frac{1078}{3} = \frac{359 \cdot 33 \text{ cm}^2}{(\text{Approx})} \frac{1}{2}$$

[CBSE Marking Scheme, 2012]

Volume of remaining solid

= Volume of cylinder
- Volume of cone
=
$$\pi r^2 h - \frac{1}{3} \pi r^2 h$$

= $\frac{2}{3} \pi r^2 h$
= $\frac{2}{3} \times \frac{22}{7} \times 0.7 \times 0.7 \times 2.4$ ^{1/2}
= $44 \times 0.1 \times 0.7 \times 0.8$
= 4.4×0.56
= 2.464 cm³. ^{1/2}

[CBSE Marking Scheme, 2012]

11.

1

 $\frac{1}{2}$

 $\frac{1}{2}$

or,

9. Let the radii of two cylinders be 2x and 3x and their heights be 5y and 4y respectively. $\frac{1}{2}$

Again, ratio of their curved surface areas

$$=\frac{2\pi\times2x\times5y}{2\pi\times3x\times4y}=\frac{5}{6}$$

 \therefore Hence, their curved surface areas are in the ratio of 5 : 6.

$$\therefore \text{ Ratio of their volumes} = \frac{\pi \times (2x)^2 \times 5y}{\pi \times (3x)^2 \times 4y} \qquad 1$$
$$= \frac{5 \times 4}{4 \times 9}$$
$$= \frac{5}{9} \qquad 1$$

Hence, their volumes are in the ratio of 5:9. and their CSAs are in the ratio of 5:6

[CBSE Marking Scheme, 2012]

10.

A 42 cm B

Base of triangle = diameter of semicircle

= 42 cm

and its height = radius of semicircle

$$=\frac{42}{2}=21$$
 cm

Area of shaded portion = Area of semicircle

$$= \frac{1}{2}\pi r^2 - \frac{1}{2} \times \text{base} \times \text{height} \qquad \frac{1}{2}$$

$$= \frac{1}{2} \times \frac{22}{7} \times 21 \times 21 - \frac{1}{2} \times 42 \times 21$$

$$= 693 - 441 = 252$$

Hence, the area of shaded portion = 252 cm². ¹/₂ [CBSE Marking Scheme, 2014]

Let the height of larger cone be H Let height of smaller cone be hand radius of larger & smaller cones are R and r Now, $\Delta ONC \sim \Delta OMA$ $\frac{h}{H} = \frac{r}{R} = \frac{l}{L}$ 1 *.*.. CSA of the frustum = $\frac{15}{16}$ or of (CSA of cone OAB) CSA of cone $OCD = 1 - \frac{15}{16} = \frac{1}{16}$ and of (CSA of cone OAB) CSA of cone OCD 1 or, CSA of cone OAB 16 $\frac{\pi rl}{\pi RL} = \frac{1}{16}$ 1 or, $\left(\frac{r}{R}\right)\left(\frac{l}{L}\right) = \frac{1}{16}$ or, $\left(\frac{h}{H}\right)\left(\frac{h}{H}\right) = \frac{1}{16} \qquad \left(\because \frac{l}{L} = \frac{h}{H}\right)$ or, $\frac{h}{H} = \frac{1}{4}$ or, $h = \frac{1}{4}H$ 1 or, $ON = \frac{1}{4}H$ $MN = \frac{3}{4}H$ and

4 ON : MN = 1 : 3 1 [CBSE Marking Scheme, 2014]

=

SELF PRACTICE PAPER SOLUTION

Unit-VII

1.				
	Class	Frequency	Cumulative frequency	у
	0 – 5	10	10	
	5 – 10	15	25	
	10 – 15	12	37	
	15 - 20	20	57	
	20 - 25	9	66	
	The modal class is the class	s having the maximum fr	equency.	1/2
	The maximum frequency 2	0 belongs to class (15–20).		
	Here,	n	= 66	
	So,	$\frac{\pi}{2}$	$=\frac{66}{2}=33$	
	33 lies in the class 10–15.			
	Therefore, 10–15 is the me	dian class.		C
	So, sum of lower limits of ((15–20) and (10–15) is (15	+ 10) = 25	1/2
2.	(i)			
	Class Interval	c.f.	f	
	0 – 10	63	5	
	10 - 20	58	3	
	20 - 30	55	4	
	30 - 40	51	3	
	40 - 50	48	6	
	50 - 60	42	42	1/2
	So, frequency of the class?	30 - 40 is 3.	12	/-
<i>(</i> ••)		10 + 20		
(11)	Class mark of the class: 10	$-20 = \frac{15}{2} = 15$		1/2
3.	Total outcomes $= 10$		6. Visually Case	Study Based Questions $C + \overline{AE}$
	3+5+5+7+7+7	['] +9+9+9+9 70 ₋	(i) Correct option	: (a).
	Mean =	$=\frac{10}{10}=7$	Explanation :	
	No. of favourable outcome	es = 3	Total no.	of triangles $= 8$
	P(moon) =	3	Triangles with	blue colour $= 3$
	1 (iiieaii) — - 1	10	Triangles with	h red colour $= 8 - 3 = 5$
	[CBSE	Marking Scheme, 2012]	lotal no	b. of squares $= 10$
4	D(winning the game) = 0	08	Squares with	blue colour = 6
4.	P(losing the game) = 0 P(losing the game) = 1	-0.08 = 0.92 1	(ii) Correct option	(a).
	[CBSE	Marking Scheme, 2012]	Explanation:	
5.	The numbers divisible by 2	2 and 3 both are	Number of fax	vourable outcomes for the event that
	6, 12, 18, and 24.		lost figure is tri	angles, <i>i.e.</i> ,
	No. of favourable or	utcomes $= 4$.	i e	quares and triangles) = $8 + 10 = 18$ T(F) = 18
	\therefore <i>P</i> (number divisible by	$2 \text{ and } 3) = \frac{4}{25}$ 1	$\therefore P(\text{getting a t})$	riangles)

....

=

$$= \frac{P(E)}{T(E)} = \frac{8}{18} = \frac{4}{9}.$$
 1

(iii) Correct option: (b). Explanation: Number of favourable outcomes for the events that square is lost, *i.e.*,

and
$$F(E) = 10$$

 $T(E) = 8 + 10 = 18$

$$\therefore P(\text{getting a square}) = P(E) = \frac{10}{18} = \frac{5}{9}.$$

(iv) Correct option: (c).

Explanation: Number of favourable outcomes for the events that lost figure is square of blue colour, i.e.,

$$F(E) = 6$$
 and $T(E) = 18$.

 \therefore *P*(getting a blue square)

$$= P(E) = \frac{F(E)}{T(E)}$$
$$= \frac{6}{18} = \frac{1}{3}.$$
 1

(v) Correct option: (c).

Explanation: Number of favourable outcomes for the events that lost figure is triangle of red colour,

i.e.,
$$F(E) = 15$$

and $T(E) = 18$
 \therefore $P(\text{lost figure is red triangle}) = \frac{5}{18}$. 1

7. Let blue balls = x and red balls = 5

$$\therefore$$
 Total balls = 5 + x
 $P(\text{red ball}) = \frac{5}{5+x}$
 $P(\text{blue ball}) = \frac{x}{1}$

$$\frac{x}{5+x} = 3\frac{5}{5+x}$$

$$\Rightarrow \qquad x = 15. \qquad 1$$

larking Scheme, 2012]

8. (i) Even numbers occur are
(2, 2) (2, 4) (2, 6) (4, 2) (4, 4) (4, 6) (6, 2) (6, 4) (6, 6)
P(number of each die is even) =
$$\frac{9}{36} = \frac{1}{4}$$
 1

(ii) Sum of numbers is 5 in (1, 4) (2, 3) (3, 2) (4, 1) P(sum of numbers appearing on two dice is 5) 4 1 =

$$\frac{1}{36} = \frac{1}{9} \cdot 1$$

9.			
C. I.	f	c.f.	
0 - 10	5	5	
10-20		x + 5	
20 - 30	20	x + 25	
30 - 40	15	x + 40	
40 - 50	у	x + y + 40	
50 - 60	5	x + y + 45	_
	$\Sigma f = 60$		
From table	N = 60 = x	+ y + 45	
\Rightarrow	x + y = 60 - 45	= 15	(i)
Since,	Median = 28.5, w	hich lies between 20 – 30.	1
	Median class $= 20 - 30$		
	Median $= l + \frac{\left(\frac{N}{2}\right)}{l}$	$\left(\frac{h}{f} - c.f.\right) \over f \times h$	
⇒	$28.5 = 20 + \frac{1}{2}$	$\frac{30-(x+5)}{20} \times 10$	
⇒	$8.5 = \frac{25-x}{2}$		1
\Rightarrow	25 - x = 17		
\Rightarrow	x = 25 - 17	= 8	
From (i),	y = 15 - 8 =	= 7	1
Hence,	x = 8 and y	y = 7.	

10.

10.		
Class-Interval	Frequency	
0-10	8	
10 - 20	12	
20 - 30	25	
30 - 40	13	
40 - 50	12	
Total	70	
Here, Modal	class = 20 - 30	1
Ν	Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$	1/2
and $l = 20$, $f_1 = 25$, $f_2 = 13$ and $f_0 = 12$ and	h =10	1/2
N	Mode = $20 + \left(\frac{25 - 12}{50 - 12 - 13}\right) \times 10$	1/2
	$= 20 + \frac{13}{25} \times 10$	
	= 20 + 5.2 = 25.2.	1/2
11.		1
Weight (in kg)	Cumulative Frequency	-
More than 0	120	
More than 10	106	
More than 20	89	
More than 30	67	
More than 40	41	
More than 50	18	
More than 60	0	01/
Plotting the points :		2/2
120 (0, 12)	0)	
110	Scale :	
100	$\begin{array}{c} (10, 106) \\ \text{y-axis 1 cm} = 10 \text{ units} \\ \text{y-axis 1 cm} = 10 \text{ units} \end{array}$	
100		
90 •	(20, 89)	
≥ 80 •		
j 	(30, 67)	
o nulat		
E E	(40, 41)	
40 •	• (40, 41)	
30 •		
20 •	(50, 18)	
10 •		
•	\rightarrow \rightarrow \rightarrow \rightarrow x	21/2
0 1	0 20 30 40 50 60 Lower limits	