

Class - 11, Unit-I

Physical World

Good Workers work for Extended
 Session.
 Strength wise arrangement of fundamental forces in ascending order: Gravitation < Weak Nuclear force < Electromagnetism < Strong Nuclear force

Class - 11, Unit-II

Motion In A Straight Line

Delhi to Vadodara via Tundla Agra.
Displacement/time = Velocity
Velocity / time = acceleration

Class - 11, Unit-III

1.(a) Newton's Laws of Motion

Newton, Newton don't kick cow
She may move ahead little bit now* Newton hears her MAAA sound** Cow gives Newton a kick rebound***

* Newton's 1st law. A body continues its state of rest or state of motion unless it is acted upon by an unbalanced force.
** Newton's 2nd law F = ma
*** Newton's 3rd law : Every action has its equal and opposite reaction
Interpretation :
1st two lines of the rhyme depicts the 1st law of motion
3rd line depicts the 2nd law of motion
i.e. $F=m \times l$

Lat the depicts the 3rd law of motion

1.(b) Motion In A Straight Line

A will be \mathbf{I}, when 0 is close to \mathbf{T}
Replace the " Δ " simply with " d "
Average Velocity $=\Delta D / \Delta T$
$\lim _{\Delta \mathrm{T} \rightarrow 0} \frac{\Delta \mathrm{D}}{\Delta \mathrm{T}}=$ Instantaneous velocity $=\mathrm{dD} / \mathrm{dT}$
Average Acceleration $=\Delta \mathrm{V} / \Delta \mathrm{T}$
$\lim _{\Delta \mathrm{T} \rightarrow 0} \frac{\Delta \mathrm{~V}}{\Delta \mathrm{~T}}=$ Instantaneous velocity $=\mathrm{dV} / \mathrm{dT}$

Class - 11, Unit-IV

Work, Energy And Power

Fernandez d'souza ordered noodles,
but was served pizza and pizza was a zest.
If force and Displacement are in opposite direction, then work done is negative.
If force and Displacement are in same direction, then work done is positive.
If force and Displacement are perpendicular to each other, then work done is zero.

Class - 11, Unit-V

Motion Of System Of Particles \& Rigid Body
How rhino came swift? Since dino came slow.
Write $2 M R^{2}$ under each figure and then divide by
2, 3, 4, 5 respectively.

Class - 11, Unit-VI

Kelper's Laws of Planetary motion :

Interpretation:

Letter E and F of Essential Food represents "Elliptical" and "Foci".
$\mathbf{1}^{\text {st }}$ Law : Planets move in elliptical orbits with Sun at one of the foci.
Letter E of the word Everyday represents "Equal":
$\mathbf{2}^{\text {nd }}$ Law : A planet covers the equal area space in equal interval of time no matter where it is in its orbit.
$2 / 3$ and T of the last two words represents the "power of Time Period" and "power of semi-major axis:

$3^{\text {rd }}$ Law :

Square of the Time-period of the planet is proportional to the cube of the semi major axes of the orbit.
$\mathrm{T}^{2} \propto \mathrm{R}^{3}$.

Class - 11, Unit-VII

1. Mechanical Properties Of Solid

Young Ravi bought a pen.

(1) Relation between \mathbf{Y}, \mathbf{B} and σ : (write Y and $\mathrm{B}(1+$ σ) with coefficients and an equal sign in between. $1 Y=3 B(1+\sigma)$
To find the coefficient of σ, refer the anti-clock circle, subtract the coefficients of B from
coefficient of Y i.e. $1-3=-2$
So, the relation is $1 \mathbf{Y}=3 \mathbf{B}(1-2 \sigma)$ or, $\mathbf{Y}=3 \mathbf{B}(1-2 \sigma)$
(2) Relation between \mathbf{Y}, η and σ : (write \mathbf{Y} and $\eta(1+$ σ) with coefficients and an equal sign in between.

$$
1 \mathbf{Y}=2 \eta(1+\sigma)
$$

To find the coefficient of σ, subtract the coefficient of \mathbf{Y} from coefficient of η i.e. $2-1=1$
So, the relation is $1 \mathbf{Y}=2 \eta(1+\sigma)$ or, $\mathbf{Y}=2 \eta(1+\sigma)$

Young Ravi bought a pen

(2 for η)
Young's
Modulus
(1 for Y)

2. Thermal Properties of Matter

Fingers we have five

Cats have nine lives.

With $\mathbf{1 6 0}$ more

Cat will help you sure!

Fingers we have five $\rightarrow 5 \mathrm{~F}$
Cats have nine lives. $\rightarrow 9 C$
With 160 more $\rightarrow 9 \mathrm{C}+160$
Cat will help you sure! $\rightarrow 5 \mathrm{~F}=9 \mathrm{C}+160$

Class - 11, Unit-VIII

Thermodynamics

Temperature, Volume, Pressure No

 Heat is transferredConstant temperature \rightarrow Isothermal process
Constant volume \rightarrow Isochoric process
Constant pressure \rightarrow Isobaric process
No heat transferred \rightarrow Adiabatic process

Class - 11, Unit-IX

Behaviour of Perfect Gas \& Kinetic Theory

Degrees of freedom :
Baa Baa Black Sheep
Have you any wool?
Yes sir, Mom has $\mathbf{3}$ bags full.
Dadi needs $\mathbf{5}$ bags normally cool
Papa keeps 6 bags normal rule.
Papa, Dadi each needs $\mathbf{2}$ bags more High cold whenever, be very sure.
Mom has $\mathbf{3}$ bags full \rightarrow Degrees of freedom of Monoatomic gas is 3 .
Dadi needs 5 bags normally cool
Degrees of freedom of diatomic gas at normal \rightarrow (room) temperature is 5 .
Papa keeps 6 bags normal rule \rightarrow Degrees of freedom of Polyatomic gas at normal (room) temperature is 6 .
Papa, Dadi each needs $\mathbf{2}$ bags more
\rightarrow Degrees of freedom of Polyatomic gas at high temperature is $6+2=8$.
High cold whenever, be very sure \rightarrow Degrees of freedom of Diatomic gas at high
temperature is $5+2=7$.

Class - 11, Unit-X

Waves

(1) Teacher Punished Lazy Dog.

Particle oscillation in Transverse wave \rightarrow Perpendicular to the direction of propagation of wave
Particle oscillation in Longitudinal wave \rightarrow In the direction of propagation of wave

Class - 12, Unit-I

Electric Charge \& Field

Equally divide cost per annum.
To find electric field, divide the charge (enclosed) by the free space permittivity and area of the Gaussian

Class - 12, Unit-II

Resistor colour code :

$\begin{array}{llllll}0 & 1 & 234 & 5 & 7 & 8\end{array} 9$

Black
Interpretation:
Colour codes of carbon resistors :

Colour	Corresponding number
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Berlin	6
Violet	7
Grey	8
White	9

Class - 12, Unit-III

Moving Charge And Magnetism

Fleming's left and right hand rule:

In Fleming's left hand rule, Thumb indicates FORCE.
In Fleming's left hand rule, Thumb indicates MOTION.
In both rules, first finger indicates FIELD and second finger indicates CURRENT

Class - 12, Unit-IV

Alternating Current

Calcutta City Very Lovely and Very Congested
For capacitive circuit \rightarrow Current leads Voltage
For inductive circuit \rightarrow voltage leads current

Class - 12, Unit-V

Electromagnetic Waves

I. Russian Magician showed an
Interesting Very Unusual X-ray eye
Game

Electromagnetic waves with increasing frequency (decreasing wavelength) is in the order of:
(a) Radio wave
(b) Microwave
(c) Infrared
(d) Visible light
(e) Ultraviolet
(f) X-Rays
(g) Gamma Rays

Class - 12, Unit-VI

(a). Ray Optics \& Optical Instruments

M means MORE i.e

Mirror Formula
M means M
So, $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
Magnification will be of opposite sign :
So, $m=-\frac{v}{u}$
Particle oscillation in Transverse wave \rightarrow Perpendicular to the direction of propagation of wave
Particle oscillation in Longitudinal wave \rightarrow In the direction of propagation of wave

(b). Ray Optics \& Optical Instruments

L means MORE i.e

Lens Formula

L means LESS i.e-
So, $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
Magnification will be of opposite sign :
So, $m=+\frac{v}{u}$

Particle oscillation in Transverse wave \rightarrow Perpendicular to the direction of propagation of wave

Particle oscillation in Longitudinal wave \rightarrow In the direction of propagation of wave

Class-12, Unit-VII

Einstein's equation of Photoelectric

 effect :W E Unite to form People

Add
Energy of electron emitted
Work Function
Energy of emitted electron + Work function $=$ Energy of incident Photon
Interpretation :
$E+\varphi=h f$
Or, $E=h f=\varphi$

Class - 12, Unit-VIII

(a). Atom : Hydrogen Spectra

Papa brings Pastry for Babu and Lal

When $\mathrm{ni}=1$, the series is Lyman
When ni $=2$, the series is Balmer
When ni $=3$, the series is Paschen
When ni $=4$, the series is Brackett
When $\mathrm{ni}=5$, the series is \mathbf{p}-fund
(b). Atom : Hydrogen Spectra

$\mathbf{1}$ is Unimportant, $\mathbf{2}$ is Very

 important and rest are ImportantIf $n i=1$, i.e. Lyman series is in $\mathbf{U V}$ range.
If $\mathrm{ni}=2$, i.e. Balmer series is in VISIBLE range.
If ni $=3,4$ and 5 , i.e. Paschen series, Brackett
series and p-fund series are in IR range
(c). Isotope, Isobar, Isotone

ISO Tope Bar Tone

TOPE (Pi.e numbers of PROTONs are same and numbers of NEUTRONs different
ISO-BAR No(PNo (Ni.e. both PROTONs and NEUTRONs differ in number (Total remains same.)
TONE ©i.e. numbers of NEUTRONs are same and numbers of PROTONs different

In isotopes, numbers of protons are same. Numbers of neutrons are different.

In isotones, numbers of neutrons are same. Numbers of protons are different. In isobars, numbers of neutrons are different. Numbers of protons are also different. But the total nucleons remain same.

Class - 12, Unit-IX

Electronic Devices

Truth table of AND and OR gate

For AND gate, when both the switches are ON, then only the bulb is ON.
i.e. When both the inputs are 1 , then only output is 1 . Otherwise the output is 0 .

For OR gate, when both the switches are OFF, then only the bulb is OFF.
i.e. When both the inputs are 0 , then only output is 0 . Otherwise the output is 1

