

## MATHEMATICS

## Chapter-1

Sets, Relations and Functions

## Sets And Representations (a)

Today's Scenario, Equally Talented
Singers Find Infinite New Songs To Sing.
$\begin{array}{ll}\text { Today's Scenario, } & \text { Equally talented } \\ \left.\left.\right|_{\text {Types }}\right|_{\text {Sets }} & \underset{\text { Equivalent }}{ } \text { Equal }\end{array}$ Singers Find Infinite New Songs to sing.

## Interpretation :

Types of Sets :

1. Empty or Null Set - A set which has no element.
2. Finite Set - A set having finite number of elements.
3. Infinite Set - A set having infinite number of elements.
4. Equivalent Set - Two finite sets $A$ and $B$ are said to be equivalent if $n(A)=n(B)$.
5. Equal Set - Two sets $A$ and $B$ are equal if every element of $A$ is in $B$.
6. Singleton Set - A sets having one element is called singleton set.

## Sets And Representations (b)

Laws of Algebra of Statements:
lacd and Icai are friends

## Interpretation :

1. Idempotent Law -
(i) $(A \wedge A) \Leftrightarrow A$
(ii) $(A \vee A) \Leftrightarrow A$
2. Associative Law -
(i) $\quad(A \wedge B) \wedge C \Leftrightarrow A \wedge(B \wedge C)$
(ii) $\quad(A \vee B) \vee C \Leftrightarrow A \vee(B \vee C)$
3. Commutative Law -
(i) $A \vee B \Leftrightarrow B \vee A$
(ii) $\mathrm{A} \wedge \mathrm{B} \Leftrightarrow \mathrm{B} \wedge \mathrm{A}$
4. Distributive Law -
(i) $\quad \mathrm{A} \vee(\mathrm{B} \wedge \mathrm{C}) \Leftrightarrow(\mathrm{A} \vee \mathrm{B}) \wedge(\mathrm{A} \vee \mathrm{C})$
(ii) $\quad A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$
5. Identity Laws -
(i) $\mathrm{A} \vee \mathrm{T} \Leftrightarrow \mathrm{A}$
(ii) $A \wedge F \Leftrightarrow F$
(iii) $A \vee T \Leftrightarrow T$
(iv) $A \vee F \Leftrightarrow A$
6. Complement Laws -
(i) $A \vee(\sim A) \Leftrightarrow T$
(ii) $\mathrm{A} \wedge(\sim \mathrm{A}) \Leftrightarrow \mathrm{F}$
(iii) $\sim T \Leftrightarrow F$
(iv) $\sim F \Leftrightarrow T$
7. Absorption Law -
(i) $\mathrm{A} \vee(\mathrm{A} \wedge \mathrm{B}) \Leftrightarrow \mathrm{A}$
(ii) $A \wedge(A \vee B) \Leftrightarrow A$
(iii) $\sim(A \wedge B) \Leftrightarrow(-A) \vee(-B)$
8. Involution Law -
(i) $\sim(\sim A) \Leftrightarrow A$

## Chapter-2

Complex Numbers and Quadratic Equations
Iodine Equipment Shows Result Negative One


Interpretation: Complex numbers are expressed in the form of $a+i b$ where ' $i$ ' is an imaginary number called 'iota' and the value of iota is $\sqrt{-1}$

Types of Linear Inequalities


## Interpretation :

1. Numerical Inequality $-3<5,8>4$
2. Literal or Variable Inequalities $-x<5, y>8$
3. Double Inequality- $5<x<9,3<y<10$
4. Strict Inequality- $x<9,5<10$
5. Slack Inequality- $x \geq 7, y \leq 9$
6. linear Inequality in One Variable- $x<9, y>12$
7. linear Inequality in Two Variable- $5 x+7 y<12$
8. Quadratic Inequality- $x^{2}+5 x \leq 10$

## Chapter - 3

Matrices and Determinants

## Identity Matrix-

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad, \quad \begin{aligned}
& a_{i j}=0 \text { when } \mathrm{i} \\
& \square \mathrm{j} \\
& \mathrm{a}_{\mathrm{ij}}=1 \text { when } \mathrm{i}=\mathrm{j}
\end{aligned}
$$

## (if Zero Matrix- $\quad \begin{aligned} & \mathrm{A}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\end{aligned}$

## Singular Matrix

A square matrix is said to be singular matrix if determinant of matrix denoted by $|A|$ is zero otherwise it is non zero matrix


## Inverse Of a Matrix



## Interpretation :

## Singular \& Non Singular Matrix -

if $|A|=0$, then $A$ is singular. Otherwise $A$ is nonsingular

## Inverse of a Matrix -

Inverse of a Matrix exists if $A$ is non- singular i.e $|A| \# 0$, and is given by
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

## Properties Of $|\mathrm{A}|$


(3) Circle 1 Wale Circle 2 Se Jaye and Circle 2 Wale Circle 1 Se to Distance same Nahi rahegi $\stackrel{\downarrow}{\downarrow}$ (-ve)
(4) Distance $=0$ if $R_{1}=R_{2}$ (Route $1=$ Route 2$)$
$\downarrow \quad|A|=0$ if $R_{1}=R_{2}$
(5) Distance $=0$ if $C_{1}=C_{2}$ (Circle 1=Circle 2)

## Interpretation : Properties of $|\mathbf{A}|$ -

(i) $|A|$ remains unchanged, if the rows and columns of $A$ are interchanged i.e. $|A|=\left|A^{\prime}\right|$
(ii) If any two rows (or columns) of A are interchanged, then the sign of $|\mathrm{A}|$ changes.
(iii) If any two rows (or Columns) of A are identical then $|\mathrm{A}|=\mathrm{a}$

## Chapter - 5 <br> Principle of Mathematical Induction

San Francis Principal OM Invited Parents

## SFPOMIP

Principle of Mathematical Induction (B)
Provided Test Paper of $\mathbf{1}^{\text {st }} \mathbf{T e r m}$ PTP(1)T

Principle of Mathematical Induction (C)
Also Test Paper of $\mathbf{K}^{\text {th }} \mathbf{T e r m}$

## ATP(K)T

Principle of Mathematical Induction (D)
Then Test Paper of $(\mathbf{K + 1})$ th Term
TPTP(K+1)T
Principle of Mathematical Induction (E)
Hence Paper of nth is Trustworthy
For All Necessary Numbers

## HP(n)TFANN

Principle of Mathematical Induction (F)
SFPOMIP-Steps for Principle of Mathematical Induction Proof

## Interpretation :

Step1: Let $P(n)$ be a result or statement formulated in terms of $n$ in a given equation.

Principle of Mathematical Induction (G)
PTP(1)T-Prove that $P(1)$ is true.

## Interpretation :

Step2: Prove that $P(1)$ is true.
Principle of Mathematical Induction (H)
ATP(K)T-Assume that $\mathrm{P}(K)$ is true.

## Interpretation :

Step3: Assume that $\mathrm{P}(k)$ is true.

Principle of Mathematical Induction (I)
TPTP(K+1)T-prove that $P(k+1)$ is true.

## Interpretation :

Step4: Using step 3, prove that $\mathrm{P}(k+1)$ is true.

Principle of Mathematical Induction (J)
HP(n)TFANN - Hence, by the principle of mathematical induction, $P(n)$ is true for all natural numbers $n$

## Interpretation :

Step5: Thus, $P(1)$ is true and $P(k+1)$ is true whenever $\mathrm{P}(k)$ is true. Hence, by the principle of mathematical induction, $\mathrm{P}(n)$ is true for all natural numbers $n$.

## Chapter - 7 <br> Sequence and Series

Relationship between AM, GM and HM
Area Of House in Square Gigameter


Arithmetic Progression (AP)
(a) $\mathrm{N}^{\text {th }}$ Term of Arithmetic Progression -

NOAP


Nokia Offers Additional Programmers in


## Chapter-8 <br> Limits Continuity and Differentiability

L' Hospital's Rule for Evaluating Limits
Sulao Dr.

## Interpretation :

$$
\text { if } \lim _{x \rightarrow a} \frac{f(x)}{\mathrm{g}(\mathrm{x})} \text { takes } \frac{0}{0} \text { or } \frac{\infty}{\infty} \text { form }
$$

$$
\text { then } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

$$
\text { where } f^{\prime}(x)=\frac{d f(x)}{d x} \text { and } g^{\prime}(x)=\frac{d g(x)}{d x}
$$

## Sandwich Theorem for Evaluating Limits

Likhil always uses Samesize (L) Middle bread to make Three layer Sandwich


## Interpretation :

If $f(x) \leq g(x) \leq h(x) \forall x \in(\alpha, \beta)-\{a\}$ and $\lim _{x \rightarrow a} f(x)=\mathrm{L}=\lim _{x \rightarrow a} h(x)$ then $\lim _{x \rightarrow a} g(x)=\mathrm{L}$ where $a \in(\alpha, \beta)$


## Mean Value Theorem \& Rolle's Theorem


$\exists$ Some Character Of


## Interpretation :

## Mean Value Theorem -

if $f:[a, b] \rightarrow R$ Continuous on $[a, b]$ and differential on $(a, b)$, then $\exists$ some $c$ in $(a, b)$ such that-
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

## Rolle's Theorem -

If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on $[a, b]$ and $f(a)=f(b)$ then $\exists$ some $c$ in $(a, b)$ s.t. $f^{\prime}(c)=0$

## Chapter - 9 Integral Calculus


fcc is small fashionable Clothes


## Interpretation :

Let $f$ be a continuous function defined on a closed interval $[a, b]$ and $F$ be an anti derivative of f . Then $\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)$
where $a$ and $b$ are called limit of Integration.

## Chapter - 10 Differential Equations

Linear Differential Equations


## SOLDE-YIF-EIQ-IFC

Son Of Liladhar Dixit Eklavya (SOLDE)


S-Solution
D - Differential
O-Of
E-Equation

L - Linear

## Interpretation :

Differential equation is of the form $\frac{d y}{d x}+p y=Q$, where $P$ and $Q$ are constants or the function of ' $x$ ' is called a first order linear differential equations. Its solution is given as

$$
\mathrm{Y} . \mathrm{IF}=\equiv \mathrm{Q} . \mathrm{IF}+\mathrm{C}
$$

Homogeneous Differential Equation


## Interpretation :

Differential equation can be expressed in the

$$
\text { form } \frac{d y}{d x}=f(x, y) \text { or } \frac{d x}{d y}=g(x, y)
$$

where $f(x, y)$ and $g(x, y)$ are homogeneous functions of sum is called a homogeneous Differential equation. These equations can be solved by substituting $y=v x$ so that dependent variable $y$ is changed to another variable $v$, where $v$ is some unknown function.

Chapter - 11 Coordinate Geometry
Equation of Straight Line in Various forms :


## Interpretation :

(1) Point Slope form :- $y-y_{1}=m\left(x-x_{1}\right)$
(2) Slope intercept form :- $y=m x+c$
(3) Two point form :- $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
(4) Intercept form:- $\frac{x}{a}+\frac{y}{b}=1$
(5) Normal / Perpendicular form :$x \cos \alpha+y \sin \alpha=P$
(6) General Form :- $a x+b x+c=0$

## Area of Triangle



Area $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{3}\right)\right]$

## Eccentricity of conic Sections

English alphabet Counting Sequence


Highest ECcentricity i.e. $\mathbf{e}>1$

## Interpretation :

Eccentricity of Conic Sections-
(a) If $e=1$, the conic is called parabola.
(b) If $0<e<1$, the conic is called ellipse.
(c) If $\mathrm{e}>1$, the conic is called hyperbola.
(d) If $e=0$, the conic is called circle.

## Chapter - 12

## Three Dimensional Geometry

## Direction Cosines


$\mathbf{1}$ glass LeMon juice


## Direction Ratios





## Interpretation :

Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the co. ordinate axes. If $l, m, n$ are the $D$. cs of a line, then $l^{2}+m^{2}+n^{2}=1$

## Chapter - 13 <br> Vector Algebra

## Types Of Vectors (A)



## Interpretation :

## Types of Vectors-

1. Zero Vector - Initial and terminal points coincide
2. Unit Vector - Magnitude is unity
3. Coinitial Vectors - Same initial points
4. Collinear vectors - Parallel to the same Line
5. Equal Vectors - Same magnitude and direction
6. Negative of a vector- Same magnitude, opp. direction

## Properties Of Vectors(B)

"Neither choose East nor choose north, always choose North-East and save your time". North


## Interpretation :

The vector sum of two coinitial vectors is given by the diagonal of the parallelogram whose adjacent sides are given vectors.

$\overrightarrow{A B}+\overrightarrow{A C}=\overrightarrow{A D}$

Properties Of Vectors(C)
Aao Bnaye Circle Tirahe par


## Interpretation:

The vector sum of the three sides of a triangle taken in order is $\overrightarrow{\mathrm{O}}$ i.e

$$
\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\vec{O}
$$

## Chapter - 14 <br> Statistics \& Probability



## Interpretation :

Events A \& B are called mutually exclusive events if occurrence of any one of them excludes occurrence of other event, i.e. they cannot occur simultaneously.
eg: A die is thrown. Event $A=A l l$ even outcomes \& events $B=A l l$ odd outcomes. then, $A \& B$ are mutually exclusive events, they cannot occur simultaneously

## Poisson Distribution

DPD - Directions for Pure Dishes



Here LemoN Quinoa Is Costliest Pure Dish


## Normal Distribution

DND - Do Not Disturb


## Variance and standard deviation for ungrouped data-

(a) Standard deviation for ungrouped data-


Variance for ungrouped data
"Vedic Fundamentals Under Graduates
lagaao Square me Distinction

number Paao"

$$
\text { Variance }=(\text { Standard deviation })^{2}
$$

## Interpretation :

Standard deviation of ungrouped data :
S.D. of ungrouped data is the square root of squared deviation from the mean of data. It is denoted by the symbol " 6 "
Variance for ungrouped data :
Variance for ungrouped data is defined as the square of S.D. It is denoted by " 6 "

## Chapter-15

Sum and Difference of two Angles


## 



Same Sian as inside the bracket in the expansion


## Interpretation :

* $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
* $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$* \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$


## Standard General Solution of Trigonometric Ratios




## Interpretation :

The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

* $\sin \theta=0 \Leftrightarrow \theta=n \pi$
* $\cos \theta=0 \Leftrightarrow \theta=(2 n+1) \frac{p}{2}$
* $\tan \theta=0 \Leftrightarrow \theta=\mathrm{n} \pi$


## Chapter - 16

Mathematical Reasoning
Algebra of statements -


## AND



