

MATHEMATICS

Chapter - 1 Sets, Relations and Functions

Sets And Representations (a)

Today's Scenario, Equally Talented Singers Find Infinite New Songs To Sing.

Interpretation:

Types of Sets:

- 1. Empty or Null Set A set which has no element.
- Finite Set A set having finite number of elements.
- **3.** Infinite **S**et A set having infinite number of elements.
- **4.** Equivalent **S**et Two finite sets A and B are said to be equivalent if n(A)=n(B).
- **5. E**qual **S**et Two sets A and B are equal if every element of A is in B.
- **6. S**ingleton **S**et A sets having one element is called singleton set.

Sets And Representations (b)

Laws of Algebra of Statements : lacd and Icai are friends

Interpretation:

- 1. Idempotent Law -
 - (i) (A∧A) ⇔ A
 - (ii) **(**A∨A) ⇔ A
- 2. Associative Law -
 - (i) $(A \land B) \land C \Leftrightarrow A \land (B \land C)$
 - (ii) $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
- 3. Commutative Law -
 - (i) $A \lor B \Leftrightarrow B \lor A$
 - (ii) A∧B ⇔ B∧A
- 4. Distributive Law -
 - (i) $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
 - (ii) $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
- 5. Identity Laws -
 - (i) $A \lor T \Leftrightarrow A$
 - (ii) $A \wedge F \Leftrightarrow F$

- (iii) A∨T⇔T
- (iv) $A \lor F \Leftrightarrow A$
- 6. Complement Laws -
 - (i) $A \lor (\sim A) \Leftrightarrow T$
 - (ii) $A \land (\sim A) \Leftrightarrow F$
 - (iii) ~T ⇔ F
 - (iv) ~F ⇔ T
- 7. Absorption Law -
 - (i) $A \lor (A \land B) \Leftrightarrow A$
 - (ii) $A \land (A \lor B) \Leftrightarrow A$
 - (iii) $\sim (A \land B) \Leftrightarrow (-A) \lor (-B)$
- 8. Involution Law -
 - (i) ~(~A) ⇔ A

Chapter - 2 Complex Numbers and Quadratic Equations

(iota) $i = \sqrt{-1}$

Interpretation: Complex numbers are expressed in the form of a+ib where 'i' is an imaginary number called 'iota' and the value of iota is $\sqrt{-1}$

Types of Linear Inequalities

Interpretation:

- 1. Numerical Inequality 3<5, 8>4
- 2. Literal or Variable Inequalities x<5, y>8
- 3. Double Inequality- 5<x<9, 3<y<10

- 4. Strict Inequality- x<9, 5<10
- 5. Slack Inequality- $x \ge 7$, $y \le 9$
- 6. linear Inequality in One Variable- x < 9, y > 12
- 7. linear Inequality in Two Variable- 5x+7y<12
- 8. Quadratic Inequality- $x^2 + 5x \le 10$

Chapter - 3 Matrices and Determinants

Identity Matrix-

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$a_{ij} = 0 \text{ when } i = j$$

$$a_{ij} = 1 \text{ when } i = j$$

Zero Matrix-

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Singular Matrix

A square matrix is said to be singular matrix if determinant of matrix denoted by | A | is zero otherwise it is non zero matrix

Inverse Of a Matrix

"a Determined Artist Can become a Singer,

if he is Optimistic. (Zero)

"a Determined Artist Can Never be Singer

if he is Not Optimistic

Non Singular

if A | = O, then A is Singular Otherwise,
A is non-Singular

≠0 (Zero)

"If **D**etermined **A**rtist is **N**ot **O**ptimistic

Interpretation: Singular & Non Singular Matrix -

if |A| = 0, then A is singular. Otherwise A is non-singular

Inverse of a Matrix -

Inverse of a Matrix exists if A is non- singular *i.e* |A| # 0, and is given by

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A$$

Properties Of |A|

Possible Clockwise Directions of (of Distance)
Properties Determinant

Action

R - Society wale
C - Society me
Shift hojaye
and C Society
Wale R me
Shift ho jaye,
Distance
Same hi
Rahegi

- (3) Circle 1 Wale Circle 2 Se Jaye and Circle 2 Wale Circle 1 Se to Distance same **N**ahi rahegi
- ① Distance = 0 if $R_1=R_2$ (Route 1=Route 2) |A| = 0 if $R_1=R_2$
- (5) Distance = 0 if $C_1 = C_2$ (Circle 1=Circle 2)

Interpretation: Properties of |A| -

- (i) |A| remains unchanged, if the rows and columns of A are interchanged i.e. |A| = |A'|
- (ii) If any two rows (or columns) of A are interchanged, then the sign of |A| changes.
- (iii) If any two rows (or Columns) of A are identical then |A| = a

Chapter - 5 Principle of Mathematical Induction

San Francis Principal OM Invited Parents

SFPOMIP

Principle of Mathematical Induction (B)
Provided Test Paper of 1st Term
PTP(1)T

Principle of Mathematical Induction (C)
Also Test Paper of Kth Term

ATP(K)T

Principle of Mathematical Induction (D)
Then Test Paper of (K+1)th Term
TPTP(K+1)T

Principle of Mathematical Induction (E)
Hence Paper of nth is Trustworthy
For All Necessary Numbers

HP(n)TFANN

Principle of Mathematical Induction (F)

SFPOMIP-Steps for Principle of Mathematical Induction Proof

Interpretation:

Step1: Let P(n) be a result or statement formulated in terms of n in a given equation.

Principle of Mathematical Induction (G)
PTP(1)T-Prove that P(1) is true.

Interpretation:

Step2: Prove that P(1) is true.

Principle of Mathematical Induction (H) ATP(K)T-Assume that P(K) is true.

Interpretation:

Step3: Assume that P(k) is true.

Principle of Mathematical Induction (I)

TPTP(K+1)T-prove that P(k+1) is true.

Interpretation:

Step4: Using step 3, prove that P(k+1) is true.

Principle of Mathematical Induction (J)

HP(n)TFANN - Hence, by the principle of mathematical induction, P(n) is true for all natural numbers n

Interpretation:

Step5: Thus, P(1) is true and P(k+1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all natural numbers n.

Chapter - 7 Sequence and Series

Relationship between AM, GM and HM

Arithmetic Progression (AP)

(a) N^{th} Term of Arithmetic Progression -

Chapter - 8 Limits Continuity and Differentiability

L' Hospital's Rule for Evaluating Limits

Numerator fights with Denominator, both are Critical $\left(\frac{0}{0}, \frac{\infty}{\infty}\right)$, Lao Hospital, Bulao Dr.

Differentiate

L' Hospital'S Rule

Interpretation:

if
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 takes $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form

then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

where
$$f'(x) = \frac{df(x)}{dx}$$
 and $g'(x) = \frac{dg(x)}{dx}$

Sandwich Theorem for Evaluating Limits

Likhil always uses **S**amesize **(L) M**iddle bread to make **T**hree layer Sandwich

Interpretation:

If
$$f(x) \le g(x) \le h(x) \ \forall \ x \in (\alpha, \beta) - \{a\}$$

and $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$ then $\lim_{x \to a} g(x) = L$
where $a \in (\alpha, \beta)$

$$h(x)$$

$$g(x)$$

$$f(x)$$

Mean Value Theorem & Rolle's Theorem

Interpretation:Mean Value Theorem -

if f: $[a,b] \rightarrow R$ Continuous on [a,b] and differential on (a,b), then \exists some c in (a,b) such that-

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Rolle's Theorem -

If f: $[a,b] \rightarrow R$ continuous on [a,b] and differentiable on [a,b] and f(a) = f(b) then \exists some c in (a,b) s.t. f'(c) =0

Chapter - 9 Integral Calculus

SeCond FundAmental Theorem of

Definite Integration

f c c F a d F b F a

Continuous anti derivative

Closed

You can also remember

Interpretation:

Let f be a continuous function defined on a closed interval [a,b] and F be an anti derivative

of f. Then
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

where a and b are called limit of Integration.

Chapter - 10 Differential Equations

Linear Differential Equations

SOLDE-YIF-EIQ-IFC

Son Of Liladhar Dixit Eklavya (SOLDE)

S — Solution

D — Differential

 $\mathsf{O}-\mathsf{Of}$

E — Equation

L — Linear

Interpretation:

Differential equation is of the form $\frac{dy}{dx} + py = Q$,

where P and Q are constants or the function of 'x' is called a first order linear differential equations. Its solution is given as

Homogeneous Differential Equation

Hojayega Geneous Dimag Ekdum

Interpretation:

Differential equation can be expressed in the

form
$$\frac{dy}{dx} = f(x, y)$$
 or $\frac{dx}{dy} = g(x, y)$

where f(x,y) and g(x,y) are homogeneous functions of sum is called a homogeneous Differential equation. These equations can be solved by substituting y=vx so that dependent variable y is changed to another variable v, where v is some unknown function.

Chapter - 11 Coordinate Geometry

Equation of **S**traight **L**ine in Various forms :

Interpretation:

- **(1)** Point Slope form :- $y-y_1 = m(x-x_1)$
- (2) Slope intercept form :- y = mx + c

(3) Two point form :-
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

(4) Intercept form:-
$$\frac{x}{a} + \frac{y}{b} = 1$$

(5) Normal / Perpendicular form :- $x \cos \alpha + y \sin \alpha = P$

(6) General Form :-
$$ax + bx + c = 0$$

Area of Triangle

Area =
$$\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_3)]$$

Eccentricity of conic Sections

English alphabet Counting Sequence

Interpretation:

Eccentricity of Conic Sections-

- (a) If e=1, the conic is called parabola.
- (b) If 0<e<1, the conic is called ellipse.
- (c) If e>1, the conic is called hyperbola.
- (d) If e=0, the conic is called circle.

Chapter - 12 Three Dimensional Geometry

Direction Cosines

Direction Ratios

Interpretation:

Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the co. ordinate axes. If l, m, n are the D. cs of a line, then $l^2+m^2+n^2=1$

Chapter - 13 Vector Algebra

Types Of Vectors (A)

Interpretation:

Types of Vectors-

- **1. Zero Vector -** Initial and terminal points coincide
- 2. Unit Vector Magnitude is unity
- 3. Coinitial Vectors Same initial points
- 4. Collinear vectors Parallel to the same Line
- **5. Equal Vectors** Same magnitude and direction
- **6. Negative of a vector-** Same magnitude, opp. direction

Properties Of Vectors(B)

"Neither choose East nor choose north, always choose North-East and save your time".

North

Interpretation:

The vector sum of two coinitial vectors is given by the diagonal of the parallelogram whose adjacent sides are given vectors.

 $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$

Properties Of Vectors(C)

Interpretation:

The vector sum of the three sides of a triangle taken in order is \overrightarrow{O} i.e $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{O}$

Chapter - 14 Statistics & Probability

Mutually Exclusive Events

MEE-Mutual Enemies Everywhere
Morning Evening Everyday Cannot Occur

Mutually Exclusive Events cannot occur

Interpretation:

Events A & B are called mutually exclusive events if occurrence of any one of them excludes occurrence of other event, i.e. they cannot occur simultaneously.

eg: A die is thrown. Event A=All even outcomes & events B=All odd outcomes. then, A & B are mutually exclusive events, they cannot occur simultaneously

Poisson Distribution

DPD – Directions for Pure Dishes

Here LemoN Quinoa Is Costliest Pure Dish
Here $\lambda = nq$ is called Poisson Distribution

Normal Distribution
DND — Do Not Disturb

Distribution Normal Distribution

Parking x Entry Ticket is One rs.

Per Single Root for 2 Persons and

Entry Point is Mid Half Zone 2.

Power Minus $\frac{1}{2}$

Variance and standard deviation for ungrouped data-

(a) Standard deviation for ungrouped data-

"Mere Naam me mera Sign-S se sigma

Variance for ungrouped data "Vedic Fundamentals Under Graduates

(Variance) (for) (Ungrouped data) lagaao **S**quare me **D**istinction

(Square) (Standard) (Deviation) number Paao"

Variance = (Standard deviation)²

Interpretation:

Standard deviation of ungrouped data:

S.D. of ungrouped data is the square root of squared deviation from the mean of data. It is denoted by the symbol " 6 "

Variance for ungrouped data:

Variance for ungrouped data is defined as the square of S.D. It is denoted by " 6²"

Chapter - 15 Sum and Difference of two Angles

Interpretation:

- * $sin (A \pm B) = sin A cos B \pm cos A sin B$
- * $cos (A \pm B) = cos A cos B \mp sin A sin B$

* tan (A ± B) =
$$\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Standard General Solution of Trigonometric Ratios

Interpretation:

The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

- * $\sin\theta = 0 \Leftrightarrow \theta = n\pi$
- * $\cos\theta = 0 \Leftrightarrow \theta = (2n + 1)\frac{p}{2}$
- * $tan\theta = 0 \Leftrightarrow \theta = n\pi$

Chapter - 16 Mathematical Reasoning

Algebra of statements -

