

# PHYSICS

## Class - 11, Unit-I

#### Physical World

# Good Workers work for Extended Session.

Strength wise arrangement of fundamental forces in ascending order : **G**ravitation < **W**eak Nuclear force < **E**lectromagnetism < **S**trong Nuclear force

#### Class - 11, Unit-II

#### **Motion In A Straight Line**

Delhi to Vadodara via Tundla Agra.

**D**isplacement/**t**ime = **V**elocity **V**elocity / **t**ime = **a**cceleration

# Class - 11, Unit-III

#### **1.(a)** Newton's Laws of Motion

Newton, Newton don't kick cow She may move ahead little bit now\* Newton hears her MAAA sound\*\* Cow gives Newton a kick

#### rebound\*\*\*

\* Newton's 1st law. A body continues its state of rest or state of motion unless it is acted upon by an unbalanced force.

\*\* Newton's 2nd law F = ma

\*\*\* Newton's 3rd law : Every action has its equal and opposite reaction

Interpretation :

1st two lines of the rhyme depicts the 1st law of motion 3rd line depicts the 2nd law of motion

i.e. F = m × l

Lat the depicts the 3rd law of motion

#### 1.(b) Motion In A Straight Line

A will be I, when 0 is close to T

Replace the " $\Delta$ " simply with "d"

**A**verage Velocity =  $\Delta D/\Delta T$ 

 $\lim_{\Delta T \to 0} \frac{\Delta D}{\Delta T} = \text{Instantaneous velocity} = dD/dT$ 

Average Acceleration =  $\Delta V / \Delta T$ 

 $\lim_{\Delta T \rightarrow 0} \frac{\Delta V}{\Delta T} = \text{Instantaneous velocity} = \text{dV/dT}$ 

#### Class - 11, Unit-IV

#### Work, Energy And Power

Fernandez d'souza ordered noodles, but was served pizza and pizza was a zest.

If **f**orce and **D**isplacement are in **o**pposite direction, then work done is **n**egative.

If force and **D**isplacement are in **s**ame direction, then work done is **p**ositive.

If force and Displacement are **p**erpendicular to each other, then **w**ork done is **z**ero.

# Class - 11, Unit-V

#### Motion Of System Of Particles & Rigid Body

How rhino came swift? Since dino came slow.

Write 2MR<sup>2</sup> under each figure and then divide by 2, 3, 4, 5 respectively.



# Class - 11, Unit-VI



#### **Mnemonics**

#### Interpretation:

Letter E and F of Essential Food represents "Elliptical" and "Foci".

**1**<sup>st</sup> **Law** : Planets move in **elliptical** orbits with Sun at one of the foci.

Letter E of the word Everyday represents "Equal":

**2<sup>nd</sup> Law** : A planet covers the equal area space in equal interval of time no matter where it is in its orbit.

2/3 and T of the last two words represents the "power of Time Period" and "power of semi-major axis:

#### 3rd Law :

Square of the Time-period of the planet is proportional to the cube of the semi major axes of the orbit.

 $T^2 \alpha R^3$ .

#### Class - 11, Unit-VII

1. Mechanical Properties Of Solid

Young Ravi bought a pen.

(1) Relation between **Y**, **B** and  $\sigma$ : (write Y and B(1+ $\sigma$ ) with coefficients and an equal sign in between. 1Y = 3B (1 +  $\sigma$ )

To find the coefficient of  $\sigma_{\!\!,}$  refer the anti-clock circle, subtract the coefficients of B from

coefficient of Y i.e. 1 - 3 = -2

So, the relation is  $1\mathbf{Y} = 3\mathbf{B} (1 - 2\sigma)$  or,  $\mathbf{Y} = 3\mathbf{B} (1 - 2\sigma)$ 

(2) Relation between **Y**,  $\eta$  and  $\sigma$ : (write **Y** and  $\eta(1 + \sigma)$  with coefficients and an equal sign in between.

$$1\mathbf{Y} = 2\eta (1 + \sigma)$$

To find the coefficient of  $\sigma$ , subtract the coefficient of **Y** from coefficient of  $\eta$  i.e. 2 - 1 = 1

So, the relation is  $1\mathbf{Y} = 2\eta (1 + \sigma)$  or,  $\mathbf{Y} = 2\eta (1 + \sigma)$ 

#### Young **R**avi **b**ought a **p**en



- 2. Thermal Properties of Matter
- Fingers we have five Cats have nine lives. With 160 more Cat will help you sure! Fingers we have five  $\rightarrow$  5F Cats have nine lives.  $\rightarrow$  9C With 160 more  $\rightarrow$  9C + 160 Cat will help you sure!  $\rightarrow$  5F = 9C + 160

#### Class - 11, Unit-VIII

#### Thermodynamics

Temperature, Volume, Pressure No Heat is transferred

Constant temperature  $\rightarrow$  Isothermal process Constant volume  $\rightarrow$  Isochoric process Constant pressure  $\rightarrow$  Isobaric process No heat transferred  $\rightarrow$  Adiabatic process

#### Class - 11, Unit-IX

**Behaviour of Perfect Gas & Kinetic Theory** 

- Degrees of freedom :
- Baa Baa Black Sheep
- Have you any wool?
- Yes sir, **M**om has **3** bags full.
- Dadi needs 5 bags normally cool
- Papa keeps 6 bags normal rule.
- Papa, Dadi each needs 2 bags more
- **H**igh **c**old whenever, be very sure.

**M**om has **3** bags full  $\rightarrow$  Degrees of freedom of Monoatomic gas is 3.

Dadi needs 5 bags normally cool

Degrees of freedom of diatomic gas at normal  $\rightarrow$  (room) temperature is 5.

Papa keeps 6 bags normal rule  $\rightarrow$  Degrees of freedom of Polyatomic gas at normal (room) temperature is 6.

Papa, Dadi each needs 2 bags more → Degrees of freedom of Polyatomic gas at high temperature is 6+2=8.

**H**igh cold whenever, be very sure  $\rightarrow$  Degrees of freedom of Diatomic gas at high

temperature is 5+2=7.

#### Class - 11, Unit-X

#### Waves

#### Teacher Punished Lazy Dog.

Particle oscillation in **T**ransverse wave  $\rightarrow$  **P**erpendicular to the direction of propagation of wave

Particle oscillation in Longitudinal wave  $\rightarrow$  In the direction of propagation of wave

#### Class - 12, Unit-I

#### **Electric Charge & Field**

Equally divide cost per annum.

To find **e**lectric field, **d**ivide the **c**harge (enclosed) by the free space **p**ermittivity and **a**rea of the Gaussian



Interpretation :

Colour codes of carbon resistors :

| Colour | Corresponding<br>number |
|--------|-------------------------|
| Black  | 0                       |
| Brown  | 1                       |
| Red    | 2                       |
| Orange | 3                       |
| Yellow | 4                       |
| Green  | 5                       |
| Berlin | 6                       |
| Violet | 7                       |
| Grey   | 8                       |
| White  | 9                       |

#### Class - 12, Unit-III

#### Moving Charge And Magnetism

Fleming's left and right hand rule:

Force Thumb First Finger Field Second Finger Current Thumb Motion Feel Free to Call Me Left Right hand < hand rule rule Thumb Motion Second Finger Current First Finger Field Force Thumb

In Fleming's left hand rule, Thumb indicates FORCE.

In Fleming's left hand rule, Thumb indicates MOTION.

In both rules, first finger indicates FIELD and second finger indicates CURRENT

#### Class - 12, Unit-IV

#### **Alternating Current**

Calcutta City Very Lovely and Very Congested

For capacitive circuit  $\rightarrow$  Current leads Voltage For inductive circuit  $\rightarrow$  voltage leads current

#### Class - 12, Unit-V

#### **Electromagnetic Waves**

Russian Magician showed an Interesting Very Unusual X-ray eye Game

| Electromagnetic waves with increasing frequency |
|-------------------------------------------------|
| (decreasing wavelength) is in the order of:     |
| (a) <b>R</b> adio wave                          |
| (1)                                             |

- (b) **M**icrowave
- (c) Infrared
- (d) **V**isible light
- (e) **U**ltraviolet
- (f) X-Rays
- (g) **G**amma Rays

#### Class - 12, Unit-VI

(a). Ray Optics & Optical Instruments



**M m**eans **M**ORE **i.e** Mirror Formula

#### M means MORE i.e+

So, 
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

Magnification will be of opposite sign :

So, m = 
$$-\frac{v}{u}$$

Particle oscillation in Transverse wave  $\rightarrow$  Perpendicular to the direction of propagation of wave

Particle oscillation in Longitudinal wave  $\rightarrow$  In the direction of propagation of wave

#### (b). Ray Optics & Optical Instruments



**L m**eans **M**ORE **i.e** Lens Formula

L means LESS i.e– So,  $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ Magnification will be of opposite sign :

So, m = 
$$+\frac{v}{u}$$

Particle oscillation in Transverse wave  $\rightarrow$  Perpendicular to the direction of propagation of wave

Particle oscillation in Longitudinal wave  $\rightarrow$  In the direction of propagation of wave

# Class - 12, Unit-VII



#### Work Function

Energy of emitted electron + Work function = Energy of incident Photon

Interpretation :

 $E + \phi = hf$ 

Or, E = hf =  $\phi$ 

# Class - 12, Unit-VIII

#### (a). Atom : Hydrogen Spectra

Papa **b**rings Pastry for Babu **a**nd Lal

When ni = 1, the series is Lyman When ni = 2, the series is **B**almer When ni = 3, the series is **P**aschen When ni = 4, the series is **B**rackett When ni = 5, the series is **p**-fund

#### (b). Atom : Hydrogen Spectra

1

۹P

**1** is Unimportant, **2** is Very important **a**nd **r**est **a**re Important

If ni = 1, i.e. Lyman series is in **UV** range. If ni = 2, i.e. Balmer series is in **VIS**IBLE range. If ni = 3, 4 and 5, i.e. Paschen series, Brackett series and p-fund series are in **IR** range

#### (c). Isotope, Isobar, Isotone



In isotopes, numbers of protons are same. Numbers of neutrons are different.

In isotones, numbers of neutrons are same. Numbers of protons are different.

In isobars, numbers of neutrons are different. Numbers of protons are also different. But the

total nucleons remain same.

#### Class - 12, Unit-IX

**Electronic Devices** 

**T**ruth **t**able of **A**ND and **OR g**ate



For AND gate, when both the switches are ON, then only the bulb is ON.

i.e. When both the inputs are 1, then only output is 1. Otherwise the output is 0.



For OR gate, when both the switches are OFF, then only the bulb is OFF.

i.e. When both the inputs are 0, then only output is 0. Otherwise the output is 1



# **CHEMISTRY**

# Chapter - 1 Some Basic Concepts in Chemistry

- 1. Metric System
- The Great Morning King Henry Doesn't Usually Drink chocolate Milk Mixed with Natural Powder

The  $\rightarrow$  Tera (×10<sup>12</sup>) Great  $\rightarrow$  Giga (×10<sup>9</sup>) Morning  $\rightarrow$  Mega (×10<sup>6</sup>) King  $\rightarrow$  Kilo (×10<sup>3</sup>) Henry  $\rightarrow$  Hecto (×10<sup>2</sup>) Doesn't  $\rightarrow$  Deca (×10) Usually  $\rightarrow$  Unit (×1) Drink  $\rightarrow$  Deci (×10<sup>-1</sup>) Chocolate  $\rightarrow$  Centi (×10<sup>-2</sup>) Milk  $\rightarrow$  Milli (×10<sup>-3</sup>) Mixed with  $\rightarrow$  Micro (×10<sup>-6</sup>) Natural  $\rightarrow$  Nano (×10<sup>-9</sup>) Powder  $\rightarrow$  Pico (×10<sup>-12</sup>)

# Chapter - 2 **States of Matter**

#### 1. Gas Law's

# **PTV**

(letters that touches are directly proportional & letter don't are indirectly proportional)

 $[P \propto T], [V \propto T], P \propto \frac{1}{V}$ 

#### 2. Const terms in Gas Laws



Paid TV Can Be Good

Const terms  $\rightarrow$  Pressure (P) Temp (T) Volume (V) Gas Law  $\rightarrow$  Boyle's (Gay-Lussac's)

#### 3. Ideal Gas Behavior

# PLIGHT

High temp & Low pressure to achieve ideal Gas behavior  $PL \rightarrow Pressure Low$  $IG \rightarrow Inert Gas$  $HT \rightarrow High Temp$ 

4. Kinetic Theory of Gas

Mother SPEAKS

- $M \rightarrow$  Motion (Gas Particle are in Random Motion)
- $S \rightarrow Size$  (negligible size of particle to total volume)
- $P \rightarrow Pressure$  (Pressure exerted due to Collision with walls of container)
- $E \rightarrow Elastic Collision$
- $A \rightarrow Attractive forces are not present$
- $K \rightarrow K.E \propto Temp$

 $S \rightarrow$  Speed (Distribution of speed of particles remain const.)

#### 5. Crystal System

# **C**u **T**e **M**OTHe **R** 3224

Unit Cell - Cubic, Tetragonal, Monoclinic, Orthorhombic, Triclinic, Hexagonal, Rhombohetral **Edge Length** - a=b=c,  $a=b\neq c$ ,  $a\neq b\neq c$ ,  $a\neq b\neq c$ ,  $a \neq b \neq c$ ,  $a = b \neq c$ , a = b = c**Axial Length** -  $\alpha = \beta = \gamma$ ,  $\alpha = \beta = \gamma$ ,  $\alpha = \beta \neq \gamma$ ,  $\infty = \beta = \gamma$ ,  $\alpha \neq \beta \neq \gamma, \alpha = \beta \neq \gamma, \alpha = \beta = \gamma$ No. of Bravias Lattice - 3, 2, 2, 4, 1, 1, 1

#### 6. Edge Length

# TOM Handpicked Tag (HT) of Class

**R**epresentative (CR)

Triclinic, Orthorhombic, Monoclinic  $(a \neq b \neq c)$ Hexagonal, Tetragonal  $(a=b\neq c)$ Cubic, Rhombohetral (a=b=c)

#### 7. Axial Angles

# TORC Has More (HM) Twists (T)

Tetragonal, Orthorhombic, Rhombohedral, Cubic  $(\alpha = \beta = \gamma)$ Hexagonal, Monoclinic ( $\infty = \beta \neq \gamma$ ) Triclinic ( $\infty \neq \beta \neq \gamma$ )

# Chapter - 3

#### **Atomic Structure**

1. Atomic No. & Mass No.

#### APEMAN

Atomic No. = No. of Protons = No. of Electrons Mass No. = Atomic No. + No. of neutrons

#### 2. Isotopes, Isobars & Isotones

Bring Top Talented MAN (BTT MAN)

Atoms having same Isobars  $\rightarrow$  Mass Number Isotopes  $\rightarrow$  Atomic Number Isotones  $\rightarrow$  Neutrons



#### 9



6. Metal activity series



Balancing Half Cell Steps : (1) Atoms (2) Oxygen (3) Hydrogen (4) Charge

7. Electro Chemical Series

# Priyanka Chopra Sees Movie About Zebra In The Libya Hiring Cobra Studying Algebra

Potassium < Calcium < Sodium < Magnesium < Aluminium < Zinc < Iron < Tin < Lead < Hydrogen < Copper < Silver < Gold (Au)

#### 8. For Galvanic Cell

# LOAN

Loss of e<sup>-</sup> Oxidation Anode Negative

#### 9. Electrolytic Cell



Loss of e<sup>−</sup> Oxidation Anode Positive

# Chapter - 9 Chemical Kinetics and Surface Chemistry

#### 1. Mechanism of Heterogeneous Catalysis

#### RAID Program

(a) Reactant diffusion on surface
(b) Adsorption of Reactant
(c) Intermediate formation
(d) Desorption of product
(e) Product leaves the surface

- 2. Types of Colloids
- Soft SAGE And Shredded Face (SSAGEASF)

| Dispersed | Dispersion | Type of Colloids |
|-----------|------------|------------------|
| Phase     | Medium     | Solid Sol        |
| Solid     | Solid      | Solid Sol        |
| Solid     | Liquid     | Sol              |
| Solid     | Gas        | Aerosol          |
| Liquid    | Solid      | Gel              |
| Liquid    | Liquid     | Emulsion         |
| Liquid    | Gas        | Aerosol          |
| Gas       | Solid      | Solid Sol        |
| Gas       | Liquid     | Foam             |

# Chapter - 10 Classification of Elements and Periodicity in Properties

- 1. Elements of Atomic No (1-18)
- Happy Harry Listen BBC Network
   Over French Network. Native
   Magpies Always Sit Peacefully
   Searching Clear Areas
   H, He, Li, Be, B, C, N, O, F, Ne, Na, Al, Si, P, S, Cl, Ar

#### 2. Group I Elements

Little Nasty Kids Rub Cats Fur

Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb) Caesium (Cs), Francium (Fr)

- 3. Group II Elements
- Beer Mugs Can Snap Bar's

#### **R**eputation

Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), Radium (Ra)

4. Group III Elements

#### BAGIT

Boron (B), Aluminium (Al), Gallium (Ga), Indium (In), Thallium (Tl)

- 5. Group IV B Elements
- Can Simple Germans Surprise Public

Carbon (C), Silicon (Si), Germanium (Ge), Tin (Sn), Lead (Pb)

- 6. Group V B Elements
- New Police Assign Subordinate Bikram on Duty

Nitrogen (N), Phosphorus (P), Arsenic (As), Antimony (Sb), Bismuth (Bi)

- 7. Group VI B Elements
- Old Sahranpur Seems Terribly • Polluted

Oxygen (O), Sulphur (S), Selenium (Se), Tellurium (Te), Polonium (Po)

8. Group VII B Elements

#### First Class Biryani In Australia

Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Astatine (Al)

- 9. Group VIII B/18 Elements
- He never Arrived; Karan exited with Rohan

Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Ex), Radon (Rn)

#### 10. 3d-Series

Scary Tiny Vicious Creatures are Mean females come to Night Club Zen

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,

#### 11. 4d-Series

Yes S(z)sir Nob. Most Technicians Rub Rod's Pale Silver Cadillac Y, Zr, Nb>Mo, Tc, Ru, Rh, Pd, Ag, Cd

#### 12. 5d-Series

Late Harry Took Walk, Reached Office In Pajamas After an Hour La....., Hf, Ta, W, Re, OS, Ir, Pt, Au, Hg

#### 13. Lanthanides

Ladies Can't Put Needles Properly in Slot-machnies. Every Girl Tries Daily However, Every Time You'd be lose

La, Ce, Pr, Nd, Pm, Sm, Eu Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

#### Chapter - 11 General Principles and Process of Isolation of Metal

- 1. Process of Metallurgy
- CIP (Read opp PIC)

(a) Concentration of Ore(b) Isolation(c) Purification

- 2. Concentration of Ore
- Honest Man Feeling Low (HMFL)
  - (a) Hydraulic Washing(b) Magnetic Separation(c) Froath Floatation Method(d) Leaching
- 3. Conversion to Oxide
- CRAP

Calcination  $\rightarrow$  Absence of O<sub>2</sub> Roasting  $\rightarrow$  Presence of O<sub>2</sub>

4. Ores

#### MISH

#### Prime Minister Going China

Iron ores  $\rightarrow$  Magnetite, Iron pyrites, Siderite, Haematite Copper ores  $\rightarrow$  Copper pyrites, Malachite, Copper Glance, Cuprite

# Chapter - 12

# Hydrogen, s & p-Block Elements Hydrogen

- 1. Isotopes of Hydrogen
- Pro-Diabetic Treatment PDT)



- 2. H-Bonding
- iso FON ! (Say Fun)

Fluorine, Oxygen, Nitrogen

- 3. Hardness of Water
- **C**M is **t**emporarily **h**ard with **H**ead
- Clerks (HC) but permanently

Temporary hardness due to  $Mg(HCO_3)_2$ ,  $Ca(HCO_3)_2$ Permanent hardness due to  $MgCl_2$ ,  $CaCl_2$ ,  $MgSO_4$ ,  $CaSO_4$  Hard with civil servants (CS)  $Cl_7$ ,  $SO^{2-}$ hydrogen Carbonate (HCO<sub>3</sub><sup>-</sup>)

12

# s-block elements

#### 4. Group I Elements

Little Nasty Kids Ruts Cats Far

Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Caesium (Cs), Francium (Fr)

#### 5. Group II Elements

Beer Mug Can Snape Bar's

#### **R**eputation

Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), Radium (Ra)

#### 6. Castner Kellnar Cell

Cement Modified Soil (CMS)

# Oxidised

Cathode Mercury (Hg) on which

Sodium ion(Na+) is oxidised

 $\mathsf{ACC} \to \mathsf{reduced} \to \mathsf{Anode}$  of carbon on which  $\mathsf{Cl}^{\scriptscriptstyle-}$  is reduced

#### 7. Properties of Birch Reagent

Roman People Can Commute (RPCC)

 $(Na/Li + liq.NH_3) - (Reducing in nature, Paramagnetic, conducting, Coloured)$ 

#### p-block elements

8. Group 13 Elements

# BAGIT

Boron (B), Aluminium (Al), Gallium (Ga), Indium (In), Thallium (Tl)

#### 9. Group 14 Elements

Can Simple Germans Surprise Public

Carbon (C), Silicon (Si), Germanium (Ge), Tin (Sn), Lead (Pb),

#### 10. Borax bead Test

Multiple Program Combined (MPC) for Your Growth (FYG). New Boys Get (NBG) Common Boys Room (CBR) for Combining Desktop Drawing (CDD)

- Ion Oxidising Flame Reducing Flame Mn + Pink Colour less  $\rightarrow$
- Mn<sub>2</sub>+ Colour less MPC  $\rightarrow$ Fe<sub>2</sub>+/Fe<sub>2</sub>+ Yellow Green FYG  $\rightarrow$ Ni<sub>2</sub>+ Brown Grey NBG  $\rightarrow$ Blue Cu<sub>2</sub>+ Red CBR  $\rightarrow$  $Co_{3} +$ Deep Blue Deep Blue CDD  $\rightarrow$

# p-block elements

#### 11. Group 15 Elements

New Police Assigns Subordinate
 Bikram on duty

Nitrogen (N) Phosphorus (P) Arsenic (As) Antimony (Sb) Bismuth (Bi)

#### 12. Group 16 Elements

Old Sahranpur Seems Terribly Polluted Oxygen (O)

Sulphur (S) Selenium (Se) Tellurium (Te) Polonium (Pu)

#### 13. Group 17 Elements

# First Class Biryani In Australia

- Fluorine (F) Chlorine (Cl) Bronine (Br) Iodine (I) Astatine (At)
- 14. Group 18 Elements
  - He Never Arrived; Karan exited with Rohan
    - Helium (He) Neon (Ne) Argon (Ar) Krypton (Kr) Xenon (Xe)

# Chapter - 13 d & f block elements and Coordination Compounds

#### 1. 3d-Series

Scary Tiny Vicious Creatures are Mean; Females Come to Night Club Zen

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

#### 2. 4d-Series

- Yes S(z)ir, Nob Most Technicians Rub Rod's Pale Silver Cadillac Y, Zr, Nb, Mo,Tc, Ru, Rh, Pd, Ag, Cd
- 3. 5d-Series
- Late Harry Took Walk, Reached Office In Pajamas After an Hour La..... Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg
- 4. Lanthanides
- Ladies Can't Put Needles Properly is Slot-machines. Every Girl Tries Daily, However, Every Time You'd be Lose

La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

#### 5. Spectrochemical Series

I Bought Some Copies to Study Fundamental of Chemistry. He Nurtured Excellence in Necessary Coordination Compound

 $I < Br^- < SCN^- < Cl^- < S^{2-} < OH^- < C_2O_4^{-2-} < H_2O < NC5^- < EDTA^{4-} < NH_3 < CN^- < CO$ 

#### 6. Pairing of e<sup>-</sup> Octahedral Complexes



Common League People win Hearts

CFSE  $(\Delta_0)$  < Pairing Energy Ligand  $\rightarrow$  Weak field Type of complex  $\rightarrow$  High spin Pairing of e<sup>-</sup> in t<sub>2</sub>g orbital

#### 7. Werner's theory

f

#### Plcturesque SNow

Primary valency  $\rightarrow$  Ionisable (Charge on Ionisation sphere) Secondary valency  $\rightarrow$  Non Ionisable (Coordination Number)

8. Spectrochemical series

er I

I Bought Some Copies to Study
Fundamental of Chemistry
He Nutured Excellence in Necessary
Coordination Compounds

 $\begin{aligned} |\cdot < Br^{-} < SCN^{-} < Cl^{-} < S^{2-} < OH^{-} < C_{2}O_{4}^{2-} < H_{2}O < \\ NCS^{-} < EDTA^{4-} < NH_{3} < CN^{-} < CO \\ |\cdot = 1 \end{aligned}$   $\begin{aligned} Br^{-} = Brought \\ SCN^{-} = Some \\ Cl^{-} = Copies to \\ S^{2-} = Study \\ F = Fundamental \\ OH^{-} = Of \\ C_{2}O_{4}^{2-} = Chemistry \\ H_{2}O = He \\ NCS^{-} = Nutured \\ EDTA^{4-} = Excellence in \\ NH_{3} = Necessary \\ CN^{-} = Coordination \end{aligned}$ 

CO = Compounds

#### 9. Pairing of e<sup>-</sup> Octahedral Complexes

# Common League People win Hearts

Vice-Versa

(i) CFSE  $(\Delta_0)$  < Pairing Energy (P.E) Ligand  $\rightarrow$  Weak field ligand Type of complex  $\rightarrow$  High spin Complex Pairing of e<sup>-</sup> in t2g orbital (ii) CFSE  $(\Delta_0)$  < Pairing Energy (P.E)

#### 10. Werner's theory

#### Plcturesque SNow

Primary valency  $\rightarrow$  Ionisable i.e., Charge on Ionisation sphere (PIcturesque) Secondary valency  $\rightarrow$  Non Ionisable i.e., Coordination number (SNow)

# Chapter - 14 Environmental Chemistry

1. Gases air Pollutants

# HOSCN

Hydrocarbons, Oxides of Sulphur (SO $_2$ , SO $_3$ ), Carbon (CO, CO $_2$ ), Nitrogen (NO, NO $_2$ )

(a) Geometrical(b) Optical





16



# MATHEMATICS



- 2. Finite Set A set having finite number of elements.
- **3.** Infinite **S**et A set having infinite number of elements.
- **4.** Equivalent **S**et Two finite sets A and B are said to be equivalent if n(A)=n(B).
- **5.** Equal Set Two sets A and B are equal if every element of A is in B.
- **6.** Singleton Set A sets having one element is called singleton set.

#### Sets And Representations (b)

Laws of Algebra of Statements : lacd and Icai are friends

#### Interpretation :

- 1. Idempotent Law -
  - (i)  $(A \land A) \Leftrightarrow A$
  - (ii)  $(A \lor A) \Leftrightarrow A$

- (i)  $(A \land B) \land C \Leftrightarrow A \land (B \land C)$
- (ii)  $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
- 3. Commutative Law -
- (i)  $A \lor B \Leftrightarrow B \lor A$
- (ii)  $A \land B \Leftrightarrow B \land A$ (iii)  $A \land B \Leftrightarrow B \land A$
- 4. Distributive Law -
  - (i)  $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
  - (ii)  $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
- 5. Identity Laws -
  - (i)  $A \lor T \Leftrightarrow A$
  - (ii)  $A \land F \Leftrightarrow F$

- (iii)  $A \lor T \Leftrightarrow T$
- (iv)  $A \lor F \Leftrightarrow A$
- 6. Complement Laws -
  - (i)  $A \lor (\sim A) \Leftrightarrow T$
  - (ii)  $A \land (\sim A) \Leftrightarrow F$
  - (iii)  $\sim T \Leftrightarrow F$
  - (iv)  $\sim F \Leftrightarrow T$
- 7. Absorption Law -

(i) 
$$A \lor (A \land B) \Leftrightarrow A$$

- (ii)  $A \land (A \lor B) \Leftrightarrow A$
- (iii)  $\sim (A \land B) \Leftrightarrow (-A) \lor (-B)$
- 8. Involution Law -
  - (i)  $\sim (\sim A) \Leftrightarrow A$

# Chapter - 2 Complex Numbers and Quadratic Equations





**Interpretation:** Complex numbers are expressed in the form of a+ib where 'i' is an imaginary number called 'iota' and the value of iota is  $\sqrt{-1}$ 

#### **Types of Linear Inequalities**



- 1. Numerical Inequality 3<5, 8>4
- 2. Literal or Variable Inequalities x < 5, y > 8
- 3. Double Inequality- 5<*x*<9, 3<*y*<10

- 4. Strict Inequality- *x* < 9, 5 < 10
- 5. Slack Inequality-  $x \ge 7$ ,  $y \le 9$
- 6. linear Inequality in One Variable- x < 9, y > 12
- 7. linear Inequality in Two Variable- 5x+7y<12
- 8. Quadratic Inequality-  $x^2 + 5x \le 10$

#### Chapter - 3

#### Matrices and Determinants

Identity Matrix-

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad a_{ij} = 1 \text{ when } i = j$$



Zero Matrix-

 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 



#### Singular Matrix

A square matrix is said to be singular matrix if determinant of matrix denoted by |A| is zero otherwise it is non zero matrix

Inverse Of a Matrix

- Determinant

"a Determined Artist Can become a Singer, if he is **O**ptimistic. (Zero) "a Determined Artist Can Never be Singer" if he is **Not O**ptimistic Non Singular  $if_{H}|\dot{A}| = \dot{O}$ , then A is Singular Otherwise, A is non-Singular ≠0 (Zero) "If Determined Artist is Not Optimistic then **ADJ**ust **B**elow International Adjoint \_\_By Inverse Musicians" Determinant Matrix

"A is(non-singular)*i.e.*  $|A| \neq 0$  then

(adj A)

#### Interpretation : Singular & Non Singular Matrix -

if |A| = 0, then A is singular. Otherwise A is non-singular

#### Inverse of a Matrix -

Inverse of a Matrix exists if A is non- singular *i.e* |A| # 0, and is given by

$$A^{-1} = \frac{I}{|A|} \operatorname{adj} A$$

#### Properties Of |A|

Properties of |A| -

identical then |A| = a



(i) |A| remains unchanged, if the rows and

(ii) If any two rows (or columns) of A are

(iii) If any two rows (or Columns) of A are

columns of A are interchanged i.e. |A| = |A'|

interchanged, then the sign of |A| changes.

# Chapter - 5 Principle of Mathematical Induction

Ĩ

San Francis Principal OM Invited Parents

#### SFPOMIP

Principle of Mathematical Induction (B) Provided Test Paper of 1<sup>st</sup> Term PTP(1)T

Principle of Mathematical Induction (C) Also Test Paper of K<sup>th</sup> Term

# ATP(K)T

Principle of Mathematical Induction (D) Then Test Paper of (K+1)th Term TPTP(K+1)T

Principle of Mathematical Induction (E) Hence Paper of **nth** is Trustworthy For All Necessary Numbers

# HP(n)TFANN

#### Principle of Mathematical Induction (F)

**SFPOMIP-**Steps for Principle of Mathematical Induction Proof

# Interpretation :

**Step1:** Let P(n) be a result or statement formulated in terms of n in a given equation.

**Principle of Mathematical Induction (G) PTP(1)T-**Prove that P(1) is true.

**Interpretation : Step2:** Prove that P(1) is true.

**Principle of Mathematical Induction (H) ATP(K)T-**Assume that P(*K*) is true.

# Interpretation :

**Step3:** Assume that P(k) is true.

#### Principle of Mathematical Induction (I)

**TPTP(K+1)T-**prove that P(k+1) is true.

## Interpretation :

**Step4:** Using step 3, prove that P(k+1) is true.

#### Principle of Mathematical Induction (J)

**HP(n)TFANN** - Hence, by the principle of mathematical induction, P(*n*) is true for all natural numbers n

# Interpretation :

**Step5:** Thus, P(1) is true and P(k+1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all natural numbers n.

# Chapter - 7 Sequence and Series

**R**elationship between **A**M, **G**M and **H**M

Area Of House in Square Gigameter

Of (Multiplication) Square Geometric Mean

Arithmetic Mean Harmonic Mean

Arithmetic Progression (AP)

(a) N<sup>th</sup> Term of Arithmetic Progression -

Nokia Offers Additional Programmers in

E T A P N 1 B D English To Attract Positive New One Buyer Daily

Nth Term of AP = a + (n - 1)d



Mean Value Theorem & Rolle's
Theorem
differentiable
on open interval



#### Interpretation : Mean Value Theorem -

if f:  $[a,b] \rightarrow R$  Continuous on [a,b] and differential on (a,b), then  $\exists$  some c in (a,b) such that-

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

#### Rolle's Theorem -

If f: [a,b] $\rightarrow$  R continuous on [a,b] and differentiable on [a,b] and f(a) = f(b) then  $\exists$  some c in (a,b) s.t. f'(c) =0

#### Chapter - 9 Integral Calculus





L — Linear

#### Interpretation :

Differential equation is of the form  $\frac{dy}{dx}$ +py=Q,

where P and Q are constants or the function of 'x' is called a first order linear differential equations. Its solution is given as

Y.IF=≡Q.IF+C

# Homogeneous Differential Equation

Hojayega Geneous Dimag Ekdum



#### Interpretation :

Differential equation can be expressed in the

form 
$$\frac{dy}{dx} = f(x, y)$$
 or  $\frac{dx}{dy} = g(x, y)$ 

where f(x,y) and g(x,y) are homogeneous functions of sum is called a homogeneous Differential equation. These equations can be solved by substituting y=vx so that dependent variable y is changed to another variable v, where v is some unknown function.



#### Interpretation :

Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the co. ordinate axes. If l, m, n are the D. cs of a line, then  $l^2+m^2+n^2=1$ 

# Chapter - 13 Vector Algebra



#### Interpretation : Types of Vectors-

**1. Zero Vector -** Initial and terminal points coincide

- 2. Unit Vector Magnitude is unity
- 3. Coinitial Vectors Same initial points
- 4. Collinear vectors Parallel to the same Line

**5. Equal Vectors** - Same magnitude and direction

**6. Negative of a vector-** Same magnitude, opp. direction



#### **Properties Of Vectors(B)**

"Neither choose East nor choose north, always choose North-East and save your time".



#### Interpretation :

The vector sum of two coinitial vectors is given by the diagonal of the parallelogram whose adjacent sides are given vectors.





#### Interpretation:

The vector sum of the three sides of a triangle taken in order is  $\overrightarrow{O}$  i.e  $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{O}$ 

# Chapter - 14 Statistics & Probability

Mutually Exclusive Events MEE-Mutual Enemies Everywhere Morning Evening Everyday Cannot Occur Mutually Exclusive Events cannot occur Sametime

simultaneously

#### **Interpretation**:

Events A & B are called mutually exclusive events if occurrence of any one of them excludes occurrence of other event, i.e. they cannot occur simultaneously.

eg: A die is thrown. Event A=All even outcomes & events B=All odd outcomes. then, A & B are mutually exclusive events, they cannot occur simultaneously

# Poisson Distribution DPD – Directions for Pure Dishes

Distribution–Poisson Distribution





# Variance and standard deviation for ungrouped data-(a) Standard deviation for ungrouped data-Subject me Distinction Un Groups ki (Standard) (Deviation) (Ungrouped data) Rhti, jo "Add kre Xtra Mehnont (Root) $(\Sigma' sign)$ (minus) X Bar Double Power ke saath" Distinction wale Number ke Saath" S. D. (σ) = Divided by "Nere Naam me mera Sign-S se sigma Variance for ungrouped data "Vedic Fundamentals Under Graduates (Variance) (for) (Ungrouped data) lagaao **S**quare me **D**istinction (Square) (Standard) (Deviation) number Paao" Variance = $(Standard deviation)^2$ Interpretation : Standard deviation of ungrouped data :

S.D. of ungrouped data is the square root of squared deviation from the mean of data. It is denoted by the symbol " 6 "

#### Variance for ungrouped data :

Variance for ungrouped data is defined as the square of S.D. It is denoted by "  $6^{2"}$ 

#### Chapter - 15

# Sum and Difference of two Angles







#### Interpretation :

The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

\*  $\sin\theta = 0 \Leftrightarrow \theta = n\pi$ 

\* 
$$\cos\theta = 0 \Leftrightarrow \theta = (2n+1)\frac{p}{2}$$

\*  $tan\theta = 0 \Leftrightarrow \theta = n\pi$ 

