ISC Solved Paper 2023
 Class-XII

 Mathematics

 Mathematics}
(Maximum Marks : 80)
(Time allowed : Three hours)
(Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.)

This Question Paper consists of three sections A, B and C
Candidates are required to attempt all questions from Section A and all questions
EITHER from Section B OR Section C.
Section A: Internal choice has been provided in two questions of two marks each, two questions of four marks each had two questions of six marks each.
Section B: Internal choice has been provided in one question of two marks and one question of four marks. Section C: Internal choice has been provided in one question of two marks and one question of four marks. All working, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer. The intended marks for questions or parts of questions are given in brackets [].

Mathematical tables and graph papers are provided.

SECTION - A

1. In subparts (i) to (x) choose the correct options and in subparts (xi) to (xv), answer the questions as instructed.
(i) A relation R on $\{1,2,3\}$ is given by $R=\{(1,1)$, $(2,2),(1,2),(3,3),(2,3)\}$. Then the relation R is:
(a) Reflexive
(b) Symmetric
(c) Transitive
(d) Symmetric and Transitive
(ii) If A is a square matrix of order 3 , then $|2 A|$ is equal to:
[1]
(a) $2|\mathrm{~A}|$
(b) $4|\mathrm{~A}|$
(c) $8|\mathrm{~A}|$
(d) $6|\mathrm{~A}|$
(iii) If the following function is continuous at $x=$ 2 then the value of k will be:
[1]

$$
f(x)= \begin{cases}2 x+1, & \text { if } x<2 \\ k, & \text { if } x=2 \\ 3 x-1, & \text { if } x>2\end{cases}
$$

(a) 2
(b) 3
(c) 5
(d) -1
(iv) An edge of a variable cube in increasing at the rate of $10 \mathrm{~cm} / \mathrm{s}$. How fast will the volume of the cube increase if the edge is 5 cm long? [1]
(a) $75 \mathrm{~cm}^{3} / \mathrm{s}$
(b) $750 \mathrm{~cm}^{3} / \mathrm{s}$
(c) $7500 \mathrm{~cm}^{3} / \mathrm{s}$
(d) $1250 \mathrm{~cm}^{3} / \mathrm{s}$
(v) Let $f(x)=x^{3}$ be a function with domain $\{0,1,2$, $3\}$. Then domain of f^{-1} is:
(a) $\{3,2,1,0\}$
(b) $\{0,-1,-2,-3\}$
(c) $\{0,1,8,27\}$
(d) $\{0,-1,-8,-27\}$
(vi) For the curve $y^{2}=2 x^{3}-7$, the slope of the normal at $(2,3)$ is:
[1]
(a) 4
(b) $\frac{1}{4}$
(c) -4
(d) $\frac{-1}{4}$
(vii) Evaluate: $\int \frac{x}{x^{2}+1} d x$
(a) $2 \log \left(x^{2}+1\right)+c(b)$
(b) $\frac{1}{2} \log \left(x^{2}+1\right)+c$
(c) $e^{x^{2}+1}+c$
(d) $\log x+\frac{x^{2}}{2}+c$
(viii) The derivative of $\log x$ with respect to $\frac{1}{x}$ is:
(a) $\frac{1}{x}$
(b) $\frac{-1}{x^{3}}$
(c) $\frac{-1}{x}$
(d) $-x$
(ix) The interval in which the function $f(x)=5+$ $36 x-3 x^{2}$ increases wilL be:
(a) $(-\infty, 6)$
(b) $(6, \infty)$
(c) $(-6,6)$
(d) $(0,-6)$
(x) Evaluate: $\int_{-1}^{1} x^{17} \cos ^{4} x d x$
(a) ∞
(b) 1
(c) -1
(d) 0
(xi) Solve the differential equation: $\frac{d y}{d x}=\operatorname{cosec} y$
(xii) For what value of k the matrix $\left[\begin{array}{cc}0 & k \\ -6 & 0\end{array}\right] \begin{gathered}\text { is a } \\ \text { skew symmetric matrix? }\end{gathered}$ [1]
(xiii)Evaluate: $\int_{0}^{1}|2 x+1| d x$
(xiv) Evaluate: $\int \frac{1+\cos x}{\sin ^{2} x} d x$
(xv) A bag contains 19 tickets, numbered from 1 to 19. Two tickets are drawn randomly in succession with replacement. Find the probability that both the tickets drawn are even numbers.
[1]
Ans. (i) Option (a) is correct
Explanation: Given set is $\mathrm{A}=\{1,2,3\}$ and given relation is $R=\{(1,1),(2,2),(1,2),(3,3),(2,3)\}$
R is reflexive as $(1,1),(2,2),(3,3) \in R$
R is not transitive as $(1,2),(2,3) \in R \Rightarrow(1,3) \notin R$
R is not symmetric as $(1,2) \in R$ but $(2,1) \notin R$
(ii) Option (c) is correct

Explanation: Given A is a square matrix of order 3
Then,
$|2 A|=2^{3}|A|=8|A|$
(iii) Option (c) is correct

Explanation: As $f(x)$ is continuous of $x=2$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(3 x-1) \\
& =3 \times 2-1=5 \\
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2 x+1) \\
& =2 \times 2+1=5 \\
& \Rightarrow \quad f\left(2^{-}\right)=f\left(2^{+}\right)=k \\
& \Rightarrow \quad \begin{array}{r}
\text { Since } \\
k=5
\end{array}
\end{aligned}
$$

(iv) Option (b) is correct

Explanation: Let the edge of cube be $x \mathrm{~cm}$
Then,

$$
\begin{equation*}
\frac{d x}{d t}=10 \mathrm{~cm} / \mathrm{s} \tag{i}
\end{equation*}
$$

Volume of cube, $\quad V=x^{3} \mathrm{~cm}^{3}$
$\therefore \quad \frac{d V}{d t}=3 x^{2}\left(\frac{d x}{d t}\right)$
[On differentiating w.r.t t]

$$
\left.\frac{d V}{d t}\right|_{x=5 \mathrm{~cm}}=3(5)^{2} \times 10
$$

$$
\begin{aligned}
& {\left[\text { From eq (i), } \frac{d x}{d t}=10 \mathrm{~cm} / \mathrm{s}\right. \text {] }} \\
& =750 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

(v) Option (c) is correct

Explanation:
Given,

$$
f(x)=x^{3}
$$

Domain of $f(x)=\{0,1,2,3\}$
$\therefore \quad$ Range of $f(x)=\left\{0^{3}, 1^{3}, 2^{3}, 3^{3}\right\}$

$$
=\{0,1,8,27\}
$$

f can be written as,
Now, $\quad f^{-1}=\{(0,0),(1,1),(8,2),(27,3)\}$
Thus, domain of $f^{-1}=\{0,1,8,27\}$
(vi) Option (d) is correct

Explanation: Given curve is $y^{2}=2 x^{3}-7$
On differentiating w.r.t. x, we get

$$
\begin{aligned}
2 y \frac{d y}{d x} & =6 x^{2} \\
\Rightarrow \quad & \frac{d y}{d x}
\end{aligned}=\frac{3 x^{2}}{y}
$$

Slope of tangent at $(2,3)=\left.\frac{d y}{d x}\right|_{\text {at }(2,3)}$

$$
=\frac{3(2)^{2}}{3}=4
$$

Hence slope of normal at $(2,3)$ is

$$
\begin{aligned}
& =\frac{-1}{\text { Slope of tangent at }(2,3)} \\
& =-\frac{1}{4}
\end{aligned}
$$

(vii) Option (b) is correct

Explanation:

$$
\begin{aligned}
\int \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x \\
& =\frac{1}{2} \log \left(x^{2}+1\right)+C
\end{aligned}
$$

(viii) Option (d) is correct

Explanation: Let $u=\log x$ and $v=\frac{1}{x}$
$\therefore \quad \frac{d u}{d x}=\frac{1}{x}$
and

$$
\frac{d v}{d x}=-\frac{1}{x^{2}}
$$

$$
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}
$$

$$
=\frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=-x
$$

(ix) Option (a) is correct

Explanation:
Given,

$$
f(x)=5+36 x-3 x^{2}
$$

$\therefore \quad f^{\prime}(x)=36-6 x$
For increasing function, $36-6 x>0$
$\Rightarrow 6-x>0 \Rightarrow 6>x$
Hence, $x \in(-\infty, 6)$
(x) Option (d) is correct

Explanation: Let $\quad I=\int_{-1}^{1} x^{17} \cos ^{4} x d x$
Here, $\quad f(x)=x^{17} \cos ^{4} x$

$$
f(-x)=-x^{17} \cos ^{4} x=-f(x)
$$

Thus, $f(x)$ is an odd function.
We know that,

$$
\begin{array}{rlrl}
& & \int_{-a}^{a} f(x) d x & =0 \\
\therefore & I & =\int_{-1}^{1} x^{17} \cos ^{4} x d x=0
\end{array}
$$

(xi) Given differential equation is

$$
\begin{aligned}
& & \frac{d y}{d x} & =\operatorname{cosec} y \\
& & & \frac{d y}{\operatorname{cosec} y}
\end{aligned}=d x
$$

(xii) Let

$$
A=\left[\begin{array}{cc}
0 & k \\
-6 & 0
\end{array}\right]
$$

Given A is skew symmetric i.e., $A^{\prime}=-A$
Now,

$$
A^{\prime}=\left[\begin{array}{cc}
0 & -6 \\
k & 0
\end{array}\right]
$$

Thus, $\quad\left[\begin{array}{cc}0 & -6 \\ k & 0\end{array}\right]=-\left[\begin{array}{cc}0 & k \\ -6 & 0\end{array}\right]$

$$
\Rightarrow \quad\left[\begin{array}{cc}
0 & -6 \\
k & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -k \\
6 & 0
\end{array}\right]
$$

On comparing corresponding elements, we get
(xiii)

$$
\begin{aligned}
k & =6 \\
\int_{0}^{1}|2 x+1| d x & =\int_{0}^{1}(2 x+1) d x \\
& =2 \int_{0}^{1} x d x+\int_{0}^{1} 1 d x \\
& =2\left[\frac{x^{2}}{2}\right]_{0}^{1}+[x]_{0}^{1} \\
& =1+1=2 \\
\int \frac{1+\cos x}{\sin ^{2} x} d x & =\int \frac{1+\cos x}{1-\cos ^{2} x} d x \\
& =\int \frac{1+\cos x}{(1+\cos x)(1-\cos x)} d x \\
& =\int \frac{1}{1-\cos x} d x \\
& =\int \frac{1}{1-\left(1-2 \sin ^{2} \frac{x}{2}\right)} d x \\
& =\int \frac{1}{2 \sin ^{2} \frac{x}{2}} d x
\end{aligned}
$$

(xiv)

$$
\begin{aligned}
& =\frac{1}{2} \int \operatorname{cosec}^{2} \frac{x}{2} d x \\
& =\frac{1}{2}\left(-2 \cot \frac{x}{2}\right)+C \\
& =-\cot \frac{x}{2}+C
\end{aligned}
$$

(xv) We have total number of tickets in bag from 1 to 19

$$
\begin{aligned}
& =1,2,3, \ldots, 19 \\
n(S) & =19
\end{aligned}
$$

Total even number of tickets in the bag is $2,4, \ldots, 18$ $n(E)=9$
Probability (Both the tickets drawn have even numbers)

$$
\begin{aligned}
& =\frac{9}{19} \times \frac{9}{19} \\
& =\left(\frac{9}{19}\right)^{2}
\end{aligned}
$$

2. (i) If $f(x)=\left[4-(x-7)^{3}\right]^{\frac{1}{5}}$ is a real invertible function, then find $f^{-1}(x)$

OR

(ii) Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: \mathrm{A} \rightarrow \mathrm{B}$ is a function defined by $f(x)=\frac{x-1}{x-2}$ then show
that f is a one - one and an onto function [2]
Ans. If $f(x)$ is invertible then it is one-one and onto
We have,

$$
f(x)=\left[4-(x-7)^{3}\right]^{1 / 5}
$$

One-One

$$
\begin{array}{rlrl}
& & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & & {\left[4-\left(x_{1}-7\right)^{3}\right]^{1 / 5}} & =\left[4-\left(x_{2}-7\right)^{3}\right]^{1 / 5} \\
\Rightarrow & 4-\left(x_{1}-7\right)^{3} & =4-\left(x_{2}-7\right)^{3}
\end{array}
$$

$$
\left.\Rightarrow \quad \begin{array}{c}
\text { [Taking 5 p } \\
\\
\\
\\
\\
\\
\end{array} x_{1}-7\right)^{3}=\left(x_{2}-7\right)^{3}
$$

$$
\Rightarrow \quad x_{1}-7=x_{2}-7
$$

[Taking cube root both sides]
$\Rightarrow \quad x_{1}=x_{2}$
$\Rightarrow f$ is one-one

Onto

Let $\quad y=f(x)=\left[4-(x-7)^{3}\right]^{1 / 5}$
$\Rightarrow \quad y^{5}=4-(x-7)^{3}$
$\Rightarrow \quad(x-7)^{3}=4-y^{5}$
$\Rightarrow \quad x-7=\left(4-y^{5}\right)^{1 / 3}$
$\Rightarrow \quad x=\left(4-y^{5}\right)^{1 / 3}+7$
Thus, $\forall y \in R, \exists x=\sqrt[3]{4-y^{5}}+7 \in R$
$\Rightarrow f$ is onto
Hence,

$$
f^{-1}(y)=x=\sqrt[3]{4-y^{5}}+7
$$

We get $f^{-1}(x)$ if we replace y with x in above equation.

$$
f^{-1}(x)=\sqrt[3]{4-x^{5}}+7
$$

OR

Given, $A=R-\{2\}, B=R-\{1\}$
and $f: A \rightarrow B$ is defined as $f(x)=\frac{x-1}{x-2}$

One-One

Let $x_{1}, x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{array}{rlrl}
& & \frac{x_{1}-1}{x_{1}-2} & =\frac{x_{2}-1}{x_{2}-2} \\
\Rightarrow & \left(x_{1}-1\right)\left(x_{2}-2\right) & =\left(x_{2}-1\right)\left(x_{1}-2\right) \\
\Rightarrow & x_{1} x_{2}-2 x_{1}-x_{2}+2 & =x_{1} x_{2}-2 x_{2}-x_{1}+2 \\
\Rightarrow & -2 x_{1}-x_{2} & =-2 x_{2}-x_{1} \\
\Rightarrow \quad-2 x_{1}+x_{1} & =-2 x_{2}+x_{2} \\
\Rightarrow \quad & -x_{1} & =-x_{2} \\
\Rightarrow & x_{1} & =x_{2} \\
& \therefore f \text { is one-one }
\end{array}
$$

Onto

Let $y \in B=R-\{1\}$, then $y \neq 1$
The function f is onto if there exists $x \in A$ such that $f(x)=y$.

$$
\begin{array}{lrl}
\text { Now, } & f(x) & =y \\
\Rightarrow & \frac{x-1}{x-2} & =y \\
\Rightarrow & x-1 & =y(x-2) \\
\Rightarrow & x-1 & =x y-2 y \\
\Rightarrow & x(1-y) & =1-2 y \\
\Rightarrow & x & =\frac{1-2 y}{1-y} \in A
\end{array}
$$

Thus, for any $y \in B, \exists x=\frac{1-2 y}{1-y} \in A$ such that

$$
\begin{aligned}
f\left(\frac{1-2 y}{1-y}\right) & =\frac{\left(\frac{1-2 y}{1-y}\right)-1}{\left(\frac{1-2 y}{1-y}\right)-2} \\
& =\frac{(1-2 y)-(1-y)}{(1-2 y)-2(1-y)} \\
& =\frac{-y}{-1}=y
\end{aligned}
$$

Therefore f is onto.
3. Evaluate the following determinant without expanding.
[2]
$\left|\begin{array}{ccc}5 & 5 & 5 \\ a & b & c \\ b+c & c+a & a+b\end{array}\right|$
Ans. $\left|\begin{array}{ccc}5 & 5 & 5 \\ a & b & c \\ b+c & c+a & a+b\end{array}\right|$

$$
=5\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
b+c & c+a & a+b
\end{array}\right|
$$

[Taking 5 common from R_{1}]

$$
=5\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a+b+c & a+b+c & a+b+c
\end{array}\right|
$$

$$
=5(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
1 & 1 & 1
\end{array}\right|
$$

[Taking $a+b+c$ common from R_{3}] $=5(a+b+c) \times 0$ [R_{1} and R_{3} are identical]

$$
=0
$$

4. The probability of the event A occurring is $\frac{1}{3}$ and of the event B occurring is $\frac{1}{2}$. If A and B are independent events, then find the probability of neither A nor B occurring.
Ans. Given,

$$
\begin{equation*}
P(A)=\frac{1}{3} \text { and } P(B)=\frac{1}{2} \tag{2}
\end{equation*}
$$

Here,

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B) \\
& {[\text { Since, events ar }} \\
&= \frac{1}{3} \cdot \frac{1}{2} \\
&= \frac{1}{6}
\end{aligned}
$$

[Since, events are independent]

Thus, P(neither A nor B occurring)

$$
\begin{aligned}
& =1-P(\text { both events occur }) \\
& =1-P(A \cap B) \\
& =1-\frac{1}{6} \\
& =\frac{5}{6}
\end{aligned}
$$

5. Solve for x :

$$
\begin{equation*}
5 \tan ^{-1} x+3 \cot ^{-1} x=2 \pi \tag{2}
\end{equation*}
$$

Ans. Given, $5 \tan ^{-1} x+3 \cot ^{-1} x$
We know that,

$$
\begin{align*}
& \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \tag{i}\\
& \Rightarrow \quad \cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x \\
& \therefore \quad 5 \tan ^{-1} x+3\left(\frac{\pi}{2}-\tan ^{-1} x\right)=2 \pi \quad \text { [From eq (i)] } \\
& \Rightarrow \quad 5 \tan ^{-1} x+\frac{3 \pi}{2}-3 \tan ^{-1} x=2 \pi \\
& \Rightarrow \quad 2 \tan ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow \quad \tan ^{-1} x=\frac{\pi}{4} \\
& \Rightarrow \quad x=\tan \left(\frac{\pi}{4}\right) \\
& \Rightarrow \quad x=1
\end{align*}
$$

6. (i) Evaluate: $\int \cos ^{-1}(\sin x) d x$

OR

(ii) If $\int x^{5} \cos \left(x^{6}\right) d x=k \sin \left(x^{6}\right)+C$, find the value of k.

Ans .(i)

$$
I=\int \cos ^{-1}(\sin x) d x
$$

$$
\begin{aligned}
\text { Let } & & \cos ^{-1}(\sin x) & =\theta \\
\Rightarrow & & \sin x & =\cos \theta \\
\Rightarrow & & \sin x & =\sin \left(\frac{\pi}{2}-\theta\right) \\
\Rightarrow & & x & =\frac{\pi}{2}-\theta \\
\Rightarrow & & \theta & =\frac{\pi}{2}-x \\
\therefore & & I & =\int \theta d x \\
& & & =\int\left(\frac{\pi}{2}-x\right) d x \\
& & & =\frac{\pi}{2} x-\frac{x^{2}}{2}+C
\end{aligned}
$$

(ii) Let

$$
I=\int x^{5} \cos \left(x^{6}\right) d x
$$

$$
\begin{array}{rlrl}
\text { Put } & & x^{6} & =t \\
\Rightarrow & & 6 x^{5} d x & =d t \\
\Rightarrow & & x^{5} d x & =\frac{d t}{6} \\
\therefore & & I & =\frac{1}{6} \int \cos t d t \\
& & =\frac{1}{6} \sin t+C \\
& & & \frac{1}{6} \sin \left(x^{6}\right)+C
\end{array}
$$

According to question,

$$
\begin{array}{ll}
& \int x^{5} \cos \left(x^{6}\right) d x=k \sin \left(x^{6}\right)+C \\
\therefore & \frac{1}{6} \sin \left(x^{6}\right)+C=k \sin \left(x^{6}\right)+C
\end{array}
$$

On comparing, we get

$$
k=\frac{1}{6}
$$

7. If $\tan ^{-1}\left(\frac{x-1}{x+1}\right)+\tan ^{-1}\left(\frac{2 x-1}{2 x+1}\right)=\tan ^{-1}\left(\frac{23}{36}\right)$ then prove that $24 x^{2}-23 x-12=0$
Ans. $\tan ^{-1}\left(\frac{x-1}{x+1}\right)+\tan ^{-1}\left(\frac{2 x-1}{2 x+1}\right)=\tan ^{-1}\left(\frac{23}{36}\right)$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{\frac{x-1}{x+1}+\frac{2 x-1}{2 x+1}}{1-\left(\frac{x-1}{x+1}\right)\left(\frac{2 x-1}{2 x+1}\right)}\right)=\tan ^{-1}\left(\frac{23}{36}\right) \\
& {\left[\because \tan ^{-1} A+\tan ^{-1} B=\tan ^{-1}\left(\frac{A+B}{1-A B}\right)\right]} \\
& \Rightarrow \tan ^{-1}\left[\frac{(x-1)(2 x+1)+(2 x-1)(x+1)}{(x+1)(2 x+1)-(x-1)(2 x-1)}\right] \\
& =\tan ^{-1}\left(\frac{23}{36}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left[\frac{\left(2 x^{2}-x-1\right)+\left(2 x^{2}+x-1\right)}{\left(2 x^{2}+3 x+1\right)-\left(2 x^{2}-3 x+1\right)}\right] \\
& =\tan ^{-1}\left(\frac{23}{36}\right) \\
& \Rightarrow \quad \tan ^{-1}\left[\frac{4 x^{2}-2}{6 x}\right]=\tan ^{-1}\left(\frac{23}{36}\right) \\
& \Rightarrow \quad \frac{4 x^{2}-2}{6 x}=\frac{23}{36} \\
& \Rightarrow \quad \frac{2 x^{2}-1}{3 x}=\frac{23}{36} \\
& \Rightarrow \quad 36\left(2 x^{2}-1\right)=23(3 x) \\
& \Rightarrow \quad 12\left(2 x^{2}-1\right)=23 x \\
& \Rightarrow \quad 24 x^{2}-23 x-12=0 \quad \text { Hence Proved }
\end{aligned}
$$

8. If $y=e^{a x} \cos b x$, then prove that

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0 \tag{i}
\end{equation*}
$$

Ans.Given, $\quad y=e^{a x} \cos b x$

$$
\therefore \begin{align*}
\frac{d y}{d x} & =a y-b e^{a x} \sin b x \tag{ii}\\
\frac{d^{2} y}{d x^{2}} & =a \frac{d y}{d x}-b\left(a e^{a x} \cdot \sin b x+b e^{a x} \cos b x\right) \\
\frac{d^{2} y}{d x^{2}} & =a \frac{d y}{d x}-a\left(a y-\frac{d y}{d x}\right)-b^{2} y
\end{align*}
$$

[from eq. (i)]

$$
\begin{array}{rlrl}
& \frac{d^{2} y}{d x^{2}}=a \frac{d y}{d x}-a^{2} y+a \frac{d y}{d x}-b^{2} y \\
\therefore & & \frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0
\end{array}
$$

Hence Proved
9. (i) In a company, 15% of the employees are graduates and 85% of the employees are nongraduates. As per the annual report of the company, 80% of the graduate employees and 10% of the non-graduate employees are in the Administrative position. Find the probability that an employee selected at random from those working in administrative position will be a graduate.

OR

(ii) A problem in Mathematics is given to three students A, B and C. Their chances of solving the problem are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability that
(a) exactly two students will solve the problem.
(b) at least two of them will solve the problem.

Ans. Probability of graduate employees

$$
=P\left(E_{1}\right)=\frac{15}{100}
$$

Probability of non-graduate employees

$$
=P\left(E_{2}\right)=\frac{85}{100}
$$

Probability of graduate employees in Administrative position

$$
=P\left(\frac{A}{E_{1}}\right)=\frac{80}{100}
$$

Probability of non-graduate employees in Administrative position

$$
=P\left(\frac{A}{E_{2}}\right)=\frac{10}{100}
$$

By Bayes' Theorem

$$
\begin{aligned}
& P\left(\frac{E_{1}}{A}\right)=\frac{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)} \\
&=\frac{\frac{80}{100} \times \frac{15}{100}}{\frac{80}{100} \times \frac{15}{100}+\frac{85}{100} \times \frac{10}{100}} \\
&=\frac{1200}{1200+850} \\
&=\frac{1200}{2050} \\
&=0.5853 \\
&=0.59 \\
& \text { OR }
\end{aligned}
$$

Given, $P(A)=\frac{1}{2}, \quad P(B)=\frac{1}{3}, \quad P(C)=\frac{1}{4}$

$$
P(\bar{A})=\frac{1}{2}, \quad P(\bar{B})=\frac{2}{3}, \quad P(\bar{C})=\frac{3}{4}
$$

(a) Probability that exactly two students will solve the problem
$=P(A \cap B \cap \bar{C})+P(A \cap \bar{B} \cap C)+P(\bar{A} \cap B \cap C)$
$=P(A) \cdot P(B) \cdot P(\bar{C})+P(A) \cdot P(\bar{B}) \cdot P(C)$ $+P(\bar{A}) \cdot P(B) \cdot P(C)$
$=\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4}+\frac{1}{2} \times \frac{2}{3} \times \frac{1}{4}+\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}$
$=\frac{3+2+1}{2 \times 3 \times 4}$
$=\frac{6}{24}=\frac{1}{4}$
(b) Probability that atleast two of them will solve the problem
$=$ Probability that exactly two students will solve the problem + Probability that all solve the problem

$$
\begin{aligned}
& =\frac{1}{4}+P(A) \cdot P(B) \cdot P(C) \\
& =\frac{1}{4}+\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}=\frac{1}{4}+\frac{1}{24}=\frac{7}{24}
\end{aligned}
$$

10. (i) Solve the differential equation:

$\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
OR
(ii) Solve the differential equation:
$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$
Ans. (i) We have, $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$

$$
\left.\begin{array}{ll}
\Rightarrow & \frac{d x}{d y} \tag{4}
\end{array}=\frac{\tan ^{-1} y}{1+y^{2}}-\frac{x}{1+y^{2}}\right) ~=\frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}}
$$

which is of the form $\frac{d x}{d y}+P x=Q$

$$
\begin{array}{rlrl}
\therefore & I F & =e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y} \\
\text { I.F. } & =e^{\int \frac{1}{1+y^{2}} d x}=e^{\tan ^{-1} y} \\
\text { I.F. } \times x & =\int I \cdot F \cdot \times Q d y \\
\Rightarrow \quad & & e^{\tan ^{-1}} y \cdot x & =\int e^{\tan ^{-1}} y \cdot \frac{\tan ^{-1} y}{1+y^{2}} d y \\
\Rightarrow \quad & & e^{\tan ^{-1}} y \cdot x & =\int \frac{e^{t} \cdot t \cdot d t}{I} \\
\Rightarrow \quad e^{\tan ^{-1}} y \cdot x & =t \cdot e^{t}-\int 1 \cdot e^{t} d y \\
& =t \cdot .^{t}-e^{t}+c \\
& =e^{t}(t-1)+c \\
\Rightarrow \quad & & e^{\tan ^{-1}} y \cdot x & =e^{\tan ^{-1}} y\left(\tan ^{-1} y-1\right)+c
\end{array}
$$

OR

Given, $\quad\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{2}-y^{2}}{2 x y} \\
& \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}
\end{aligned}
$$

Put $y=v x, \frac{d y}{d x}=v+\frac{x d v}{d x}$

$$
\begin{array}{rr}
\Rightarrow & v+x \frac{d v}{d x}=\frac{v^{2} x^{2}-x^{2}}{2 x v x} \\
\Rightarrow & v+x \frac{d v}{d x}=\frac{x^{2}\left(v^{2}-1\right)}{x^{2} 2 v} \\
\Rightarrow & x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}-v \\
\Rightarrow & x \frac{d v}{d x}=\frac{v^{2}-1-2 v^{2}}{2 v} \\
\Rightarrow & x \frac{d v}{d x}=-\frac{\left(1+v^{2}\right)}{2 v} \\
\Rightarrow & \frac{2 v}{1+v^{2}} d v=\frac{-1}{x} d x
\end{array}
$$

by Superable Method on integrating both side

$$
\begin{array}{ll}
\Rightarrow & \int \frac{2 v}{1+v^{2}} d x=\int-\frac{1}{x} d x \\
\Rightarrow & \log \left(1+v^{2}\right)=-\log x+\log c
\end{array}
$$

$$
\begin{array}{lc}
\Rightarrow & \log \left(1+v^{2}\right)=\log \frac{c}{x} \\
\Rightarrow & \left(1+v^{2}\right)=\frac{c}{x} \\
\Rightarrow & x\left(1+v^{2}\right)=c \\
\Rightarrow & \frac{x\left(x^{2}+y^{2}\right)}{x^{2}}=c \\
\Rightarrow & x^{2}+y^{2}=c x
\end{array}
$$

11. Use matrix method to solve the following system of equations.
[6]
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
Ans. Given system of equations is

$$
\begin{aligned}
& \frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4 \\
& \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1 \\
& \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2
\end{aligned}
$$

Let $\frac{1}{x}=u, \frac{1}{y}=v, \frac{1}{z}=w$
The system of equations become

$$
\begin{array}{r}
2 u+3 v+10 w=4 \\
4 u-6 v+5 w=1 \\
6 u+9 v-20 w=2
\end{array}
$$

Writing equation as $A X=B$

$$
\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Hence, $A=\left[\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right] X=\left[\begin{array}{c}u \\ v \\ w\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$

$$
\begin{aligned}
|A| & =2\left|\begin{array}{cc}
-6 & 5 \\
9 & -20
\end{array}\right|-3\left|\begin{array}{cc}
4 & 5 \\
6 & -20
\end{array}\right|+10\left|\begin{array}{cc}
4 & -6 \\
6 & 9
\end{array}\right| \\
& =2(120-45)-3(-80-30)+10(36+36) \\
& =2(75)-3(-110)+10(72) \\
& =150+330+720 \\
& =1200
\end{aligned}
$$

$\therefore \quad|A| \neq 0$
So, the system of equation is consistent and has unique solution
Now,

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \operatorname{adj}(A) \\
\operatorname{adj}(A) & =\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right] \\
\operatorname{adj}(A) & =\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -110 & 30 \\
72 & 0 & -24
\end{array}\right]
\end{aligned}
$$

Now, $\quad A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$

$$
=\frac{1}{1200}\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -110 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

$$
X=\frac{1}{1200}\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -110 & 30 \\
72 & 0 & -24
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{c}
300+150+150 \\
440-100+60 \\
288+0-48
\end{array}\right]
$$

$$
=\frac{1}{1200}\left[\begin{array}{l}
600 \\
400 \\
140
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right]
$$

Hence, $u=\frac{1}{2}, v=\frac{1}{3}$, and $w=\frac{1}{5}$
Thus, $x=2, y=3$ and $z=5$
12. (i) Prove that the semi-vertical angle of the right circular cone of given volume and least curved area is $\cot ^{-1} \sqrt{2}$.

OR
(ii) A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum, then find the length of its sides. Also calculate the area of the football field.
Ans. Let h, r and α be the height, radius and semi-vertical angle of the right angled triangle.
We know, volume of cone is given by

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
\Rightarrow \quad h & =\frac{3 V}{\pi r^{2}}
\end{aligned}
$$

Also, slant height, $l=\sqrt{h^{2}+r^{2}}$
Curved surface area is given by

$$
\begin{aligned}
A & =\pi r l=\pi r \sqrt{r^{2}+h^{2}} \\
A & =\pi r \sqrt{r^{2}+\frac{9 V^{2}}{\pi^{2} r^{4}}} \\
\therefore \quad A & =\sqrt{\pi^{2} r^{4}+\frac{9 V^{2}}{r^{2}}}
\end{aligned}
$$

Differentiating the above w.r.t. r, we get

$$
\frac{d A}{d r}=\frac{1}{2 \sqrt{\pi^{2} r^{4}+\frac{9 V^{2}}{r^{2}}}}\left(4 \pi^{2} r^{3}-\frac{18 V^{2}}{r^{3}}\right)
$$

A is maximum or minimum, when $\frac{d A}{d r}=0$

$$
\begin{aligned}
& \therefore \frac{1}{2 \sqrt{\pi^{2} r^{4}+\frac{9 V^{2}}{r^{2}}}}\left(4 \pi^{2} r^{3}-\frac{18 V^{2}}{r^{3}}\right)=0 \\
& \Rightarrow \quad 4 \pi^{2} r^{3}-18 V^{2} r^{-3}=0 \\
& \Rightarrow \quad 4 \pi^{2} r^{3}=18 V^{2} r^{-3} \\
& \Rightarrow \quad 4 \pi^{2} r^{3}=18\left(\frac{1}{3} \pi r^{2} h\right)^{2} r^{-3} \\
& \Rightarrow \quad \frac{h}{r}=\sqrt{2}
\end{aligned}
$$

Thus, $\cot \theta=\sqrt{2}$
Hence, semi-vertical angle, $\theta=\cot ^{-1} \sqrt{2}$
Also, for $r<\left(\frac{3 V}{\pi \sqrt{2}}\right)^{\frac{1}{3}}, \frac{d A}{d r}<0$
and for $r>\left(\frac{3 V}{\pi \sqrt{2}}\right)^{\frac{1}{3}}, \frac{d A}{d r}>0$
So, curved surface area for $r^{3}=\frac{3 V}{\pi \sqrt{2}}$ or $V=\frac{\pi r^{3} \sqrt{2}}{3}$ is the least.

OR

Here, area of rectangular portion $=2 r x$

and \quad perimeter of track $=2 x+2 \pi r$
Given perimeter of track $=440 \mathrm{~m}$

$$
\begin{equation*}
2 x+2 \pi r=440 \tag{i}
\end{equation*}
$$

So, area of rectangular portion, $A=r(440-2 \pi r)$

$$
\begin{aligned}
A & =r(440-2 \pi r) \\
A & {[\text { from (i)] }}
\end{aligned}
$$

$$
\frac{d A}{d r}=440-4 \pi r
$$

Area to be maximum,

$$
\begin{aligned}
& & \frac{d A}{d r} & =0 \\
\therefore & & 440-4 \pi r & =0 \\
\Rightarrow & & r & =\frac{110}{\pi}
\end{aligned}
$$

Now,

$$
\frac{d^{2} A}{d r^{2}}=-4 \pi<0
$$

From (i), we get

$$
\begin{aligned}
2 x & =440-2 \pi r \\
& =440-2 \pi\left(\frac{110}{\pi}\right) \\
& \\
\therefore \quad & =440-220 \\
\therefore & =220 \\
& x
\end{aligned}
$$

$$
\left[\because r=\frac{110}{\pi}\right]
$$

Hence sides of rectangle are $2 r=\frac{220}{\pi} \mathrm{~m}$ and $x=110 \mathrm{~m}$.
Area of football field $=$ Area of rectangle

$$
\begin{aligned}
& \quad+2(\text { area of semicircle }) \\
& = \\
& \quad x \times 2 r+2\left(\frac{\pi r^{2}}{2}\right) \\
& =110 \times \frac{220}{\pi}+\pi\left(\frac{110}{\pi}\right)^{2} \\
& =\frac{24200}{\pi}+\frac{12100}{\pi} \\
& = \\
& =\frac{36300}{\pi} \\
& =
\end{aligned}
$$

13. (i) Evaluate: $\int \frac{3 e^{2 x}-2 e^{x}}{e^{2 x}+2 e^{x}-8} d x$

> OR
(ii) Evaluate: $\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x$

Ans. (i) Let

$$
\begin{aligned}
I & =\int \frac{3 e^{2 x}-2 e^{x}}{e^{2 x}+2 e^{x}-8} d x \\
e^{x} & =t
\end{aligned}
$$

$$
\begin{aligned}
\text { let } & & e^{x} & =t \\
\Rightarrow & & e^{x} d x & =d t \\
\Rightarrow & & d x & =\frac{d t}{t} \\
\therefore & & I & =\int \frac{3 t^{2}-2 t}{t^{2}+2 t-8} \frac{d t}{t}
\end{aligned}
$$

Differentiating A w.r.t. r, we get
$=\int \frac{3 t-2}{t^{2}+2 t-8} d t$
Now,

$$
\frac{3 t-2}{t^{2}+2 t-8}=\frac{3 t-2}{(t+4)(t-2)}
$$

So,

$$
\begin{aligned}
\frac{3 t-2}{(t+4)(t-2)} & =\frac{A}{(t+4)}+\frac{B}{(t-2)} \\
3 t-2 & =A(t-2)+B(t+4) \\
3 t-2 & =(A+B) t+(4 B-2 A)
\end{aligned}
$$

On comparing, we get

$$
\begin{equation*}
A+B=3 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
4 B-2 A=-2 \tag{ii}
\end{equation*}
$$

or $\quad 2 B-A=-1$
On solving eqs. (i) \& (ii), we get

$$
\begin{array}{rlrl}
A & =\frac{7}{3} \text { and } B=\frac{2}{3} \\
\therefore \quad & \frac{3 t-2}{t^{2}+2 t-8} & =\frac{7}{3} \frac{1}{(t+4)}+\frac{2}{3} \frac{1}{t-2} \\
\therefore \quad I & =\frac{7}{3} \int \frac{1}{t+4} d t+\frac{2}{3} \int \frac{1}{t-2} d t \\
& =\frac{7}{3} \log |t+4|+\frac{2}{3} \log |t-2|+C \\
& =\frac{7}{3} \log \left|e^{x}+4\right|+\frac{2}{3} \log \left|e^{x}-2\right|+C \\
& & \quad \text { OR } \quad
\end{array}
$$

(ii) Let

$$
I=\int \frac{2}{(1-x)\left(1+x^{2}\right)}
$$

We can write integrand as

$$
\begin{aligned}
\frac{2}{(1-x)\left(1+x^{2}\right)} & =\frac{2}{-(x-1)\left(1+x^{2}\right)} \\
& =\frac{-2}{(x-1)\left(1+x^{2}\right)}
\end{aligned}
$$

Applying partial fraction,

$$
\begin{align*}
\frac{-2}{(x-1)\left(1+x^{2}\right)} & =\frac{A}{(x-1)}+\frac{B x+C}{\left(1+x^{2}\right)} \\
\frac{-2}{(x-1)\left(1+x^{2}\right)} & =\frac{A\left(1+x^{2}\right)+(B x+C)(x-1)}{(x-1)\left(1+x^{2}\right)} \\
-2 & =A\left(1+x^{2}\right)+(B x+C)(x-1) \tag{i}
\end{align*}
$$

Putting $x=1$, we get

$$
-2=2 A+0
$$

$\Rightarrow \quad A=-1$
Putting $x=0$, we get

$$
\begin{aligned}
& & -2 & =A+(-C) \\
\Rightarrow & & -2 & =-1-C \\
\Rightarrow & & C & =1
\end{aligned}
$$

Putting $A=-1, C=1$ in eq (i), we get

$$
B=1
$$

So, $\frac{-2}{(x-1)\left(1+x^{2}\right)}=\frac{-1}{(x-1)}+\frac{x+1}{\left(x^{2}+1\right)}$

$$
\begin{aligned}
\therefore \quad I & =\int-\frac{1}{(x-1)} d x+\int \frac{x+1}{x^{2}+1} d x \\
& =-\int \frac{1}{(x-1)} d x+\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x
\end{aligned}
$$

$$
=-\int \frac{1}{(x-1)} d x+I_{1}+\int \frac{1}{x^{2}+1} d x
$$

where $\quad I_{1}=\int \frac{x}{x^{2}+1} d x$

$$
\begin{align*}
& \text { let } \quad x^{2}+1=t \\
& \Rightarrow \quad 2 x d x=d t \\
& \Rightarrow \quad x d x=\frac{d t}{2} \\
& \therefore \quad I_{1}=\frac{1}{2} \int \frac{d t}{t} \\
& =\frac{1}{2} \log |t|+C \\
& =\frac{1}{2} \log \left|x^{2}+1\right|+C_{1} \tag{ii}
\end{align*}
$$

Thus,

$$
\begin{array}{r}
I=-\int \frac{1}{(x-1)} d x+\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
=-\log |x-1|+\frac{1}{2} \log \left|x^{2}+1\right| \\
+\tan ^{-1} x+C_{1}+C_{2} \\
\quad[\text { from eq. (ii)] } \\
=-\log |x-1|+\frac{1}{2} \log \left|x^{2}+1\right| \\
+\tan ^{-1} x+C \\
{\left[C=C_{1}+C_{2}\right]}
\end{array}
$$

14. A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.
Ans. Total number of fruits $=30$
Number of rotten (spoiled) fruits $=10$
Number of unspoiled fruits $=20$
Probability of rotten fruits $P($ rotten $)=\frac{10}{30}$
Probability of unspoiled fruits $P($ unspoiled $)=\frac{20}{30}$
Let X be the random variable of number of unspoiled fruit.
So, $\quad X=0,1,2$
Two fruit can be drawn in 30 fruits
$P(X=0)=$ Two fruits are spoiled fruits

$$
\begin{aligned}
& =\frac{{ }^{10} C_{2}}{{ }^{30} C_{2}}=\frac{10 \times 9 \times 2}{2 \times 30 \times 29} \\
& =\frac{9}{87}
\end{aligned}
$$

$P(X=1)=1$ fruit is unspoiled and 1 fruit is spoiled

$$
\begin{aligned}
& =\frac{{ }^{20} C_{1} \cdot{ }^{10} C_{1}}{{ }^{30} C_{2}}=\frac{20 \times 10 \times 2}{30 \times 29} \\
& =\frac{40}{87}
\end{aligned}
$$

$P(X=2)=$ Two fruits are unspoiled

$$
\begin{array}{rlr}
=\frac{{ }^{20} C_{2}}{{ }^{30} C_{2}}=\frac{20 \times 19 \times 2}{30 \times 29 \times 2} & & =\sum X_{i} P\left(X_{i}\right) \\
& =X_{0} P\left(X_{0}\right)+X_{1} P\left(X_{1}\right)+X_{2} P\left(X_{2}\right) \\
=\frac{38}{87} & & =0 \times \frac{9}{87}+1 \times \frac{40}{87}+2 \times \frac{38}{87} \\
\text { Mean of probability distribution } & & =\frac{116}{87}=1.33
\end{array}
$$

SECTION - B

[15 Marks]
15. In subparts (i) and (ii) choose the correct options and in subparts (iii) to (v), answer the questions as instructed.
(i) If $|\vec{a}|=3,|\vec{b}|=\frac{\sqrt{2}}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector then the angle between \vec{a} and \vec{b} will be:
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
(ii) The distance of the point $2 \hat{i}+\hat{j}-\hat{k}$ from the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+4 \hat{k})=9$ will be:
(a) 13
(b) $\frac{13}{\sqrt{21}}$
(c) 21
(d) $\frac{21}{\sqrt{13}}$
(iii) Find the area of the parallelogram whose diagonals are $\hat{i}-3 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.
(iv) Write the equation of the plane passing through the point $(2,4,6)$ and marking equal intercepts on the coordinate axes.
(v) If the two vectors $3 \hat{i}+a \hat{j}+\hat{k}$ and $2 \hat{i}-\hat{j}+8 \hat{k}$ are perpendicular to each other, then find the value of a.
Ans. (i) Option (b) is correct
Explanation: Given, $|\vec{a}|=3,|\vec{b}|=\frac{\sqrt{2}}{3}$

$$
\text { and }|\vec{a} \times \vec{b}|=1
$$

We know that,

$$
|\vec{a} \times \vec{b}|=||\vec{a}|| \vec{b}|\sin \theta \hat{n}|
$$

where θ is the angle between \vec{a} and \vec{b}

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta .1
$$

$$
\begin{array}{lc}
\Rightarrow & 1=3 \times \frac{\sqrt{2}}{3} \sin \theta \\
\Rightarrow & \sin \theta=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4} \\
\Rightarrow & \theta=\frac{\pi}{4}
\end{array}
$$

(ii) Option (b) is correct

Explanation: We know that

$$
\text { distance }=\frac{|\vec{a} \cdot \vec{n}-d|}{|\vec{n}|}
$$

Given, $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{n}=\hat{i}-2 \hat{j}+4 \hat{k}, d=9$

$$
\begin{aligned}
\therefore \quad \text { distance } & =\frac{|(2 \hat{i}+\hat{j}-\hat{k}) \cdot(\hat{i}-2 \hat{j}+4 \hat{k})-9|}{|\hat{i}-2 \hat{j}+4 \hat{k}|} \\
& =\frac{|2-2-4-9|}{\sqrt{1+4+16}} \\
& =\frac{13}{\sqrt{21}}
\end{aligned}
$$

(iii) Let $\vec{d}_{1}=\hat{i}-3 \hat{j}+\hat{k}$ and $\overrightarrow{d_{2}}=\hat{i}+\hat{j}+\hat{k}$

Area of parallelogram $=\frac{1}{2}\left|\overrightarrow{d_{1}} \times \vec{d}_{2}\right|$

$$
\begin{aligned}
\overrightarrow{d_{1}} \times \overrightarrow{d_{2}} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 1 \\
1 & 1 & 1
\end{array}\right| \\
& =\hat{i}(-3-1)-\hat{j}(1-1)+\hat{k}(1+3) \\
& =-4 \hat{i}+4 \hat{k} \\
\therefore \quad\left|\overrightarrow{d_{1}} \times \vec{d}_{2}\right| & =\sqrt{(-4)^{2}+(4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32}
\end{aligned}
$$

Thus, area of parallelogram

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{32} \text { unit }^{2} \\
& =\sqrt{8} \text { unit }^{2}
\end{aligned}
$$

(iv) The equation of the plane intercepts on the coordinate axes area a, b and c is

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \\
& \text { Given, } \\
& a=b=c \\
& \therefore \quad \frac{x}{a}+\frac{y}{a}+\frac{z}{a}=1 \\
& \Rightarrow \quad x+y+z=a
\end{aligned}
$$

This plane passes through point $(2,4,6)$.

$$
\begin{aligned}
\therefore & & 2+4+6 & =a \\
\Rightarrow & & a & =12
\end{aligned}
$$

Thus, required equation of plane is $x+y+z=12$.
(v) For perpendicular vectors $\vec{a} \cdot \vec{b}=0$

$$
\begin{array}{rlrl}
\therefore & \therefore(3 \hat{i}+\alpha \hat{j}+\hat{k}) \cdot(2 \hat{i}-\hat{j}+8 \hat{k}) & =0 \\
\Rightarrow & & 6-\alpha+8 & =0 \\
\Rightarrow & & \alpha & =14
\end{array}
$$

16. (i) $A(1,2,-3)$ and $B(-1,-2,1)$ are the end points of a vector $\overrightarrow{A B}$ then find the unit vector in the direction of $\overrightarrow{A B}$.

OR

(ii) If \hat{a} is unit vector and $(2 \vec{x}-3 \hat{a}) \cdot(2 \vec{x}+3 \hat{a})=91$, find the value of $|\vec{x}|$.
Ans. (i) We have, $A(1,2,-3)$ and $B(-1,-2,1)$

$$
\begin{array}{rlrl}
\overrightarrow{A B} & =(-1-1) \hat{i}+(-2-2) \hat{j}+(1+3) \hat{k} \\
\therefore & \overrightarrow{A B} & =-2 \hat{i}-4 \hat{j}+4 \hat{k}
\end{array}
$$

Unit vector in direction of $\overrightarrow{A B}$

$$
\begin{aligned}
& =\frac{-2 \hat{i}-4 \hat{j}+4 \hat{k}}{\sqrt{(-2)^{2}+(-4)^{2}+(4)^{2}}} \\
& =\frac{-2(\hat{i}+2 \hat{j}-2 \hat{k})}{\sqrt{4+16+16}} \\
& =\frac{-2(\hat{i}+2 \hat{j}-2 \hat{k})}{6} \\
& =-\frac{1}{3}(\hat{i}+2 \hat{j}-2 \hat{k})
\end{aligned}
$$

(ii) Given,

$$
\begin{gathered}
\text { OR } \\
(2 \vec{x}-3 \hat{a}) \cdot(2 \vec{x}+3 \hat{a})=91
\end{gathered}
$$

$$
\begin{array}{rlrl}
\Rightarrow & 4|\vec{x}|^{2}+6 \vec{x} \cdot \hat{a}-6 \hat{a} \cdot \vec{x}-9|\hat{a}|^{2} & =91 \\
\Rightarrow & & 4|\vec{x}|^{2}+6 \cdot \vec{x} \cdot 1-6 \cdot 1 \cdot \vec{x}-9 \cdot 1=91 & {[\because \hat{a}=1]} \\
\Rightarrow & & 4|\vec{x}|^{2}=100 \\
\Rightarrow & & |\vec{x}|^{2}=25 \\
\Rightarrow & & |\vec{x}|=5
\end{array}
$$

17. (i) Find the equation of the plane passing through the point $(1,1,-1)$ and perpendiculartotheplanes $x+2 y+3 z=7$ and $2 x-3 y+4 z=0$.

OR

(ii) A line passes through the point $(2,-1,3)$ and is perpendicular to the lines
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$
and
$\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k}) . \quad$ Obtain its equation.

Ans. Let the equation of plane passing through point $(1,1,-1)$ be
$a(x-1)+b(x-1)+c(x+1)=0$
Eq (i) is perpendicular to the plane $x+2 y+3 z-7$ $=0$
$\therefore \quad 1 . a+2 . b+3 . c=0$
Again eq (i) is perpendicular to plane $2 x-3 y+4 z$ $=0$

$$
\begin{align*}
\therefore & 2 \cdot a-3 \cdot b+4 . c & =0 \\
\Rightarrow & 2 a-3 b+4 c & =0 \tag{iii}
\end{align*}
$$

On solving eqs (ii) and (iii), we get

$$
\begin{aligned}
& \frac{a}{8+9}
\end{aligned}=\frac{b}{6-4}=\frac{c}{-3-4},
$$

$\Rightarrow a=17 k, b=2 k$ and $c=-7 k$
Putting the values of a, b and c in eq (i), we get

$$
\begin{array}{rlrl}
& 17 k(x-1)+2 k(y-1)-7 k(z+1) & =0 \\
\Rightarrow & 17(x-1)+2(y-1)-7(z+1) & =0 \\
\Rightarrow & 17 x+2 y-7 \mathrm{z}-17-2-7 & =0 \\
\Rightarrow & & 17 x+2 y-7 z-26 & =0
\end{array}
$$

Let eq. of required line passing Through $(2,-1,3)$ is

$$
\vec{r}=(2 \vec{i}-\vec{j}-3 \vec{k})+\mu(\vec{i}+2 \vec{j}+2 \vec{k})
$$

eq. (1) is perpendicular to

$$
\begin{aligned}
& \qquad \begin{aligned}
& \vec{r}=(\vec{i}-\vec{j}-\vec{k})+\lambda(2 \vec{i}+\vec{j}+\vec{k}) \\
& \therefore \quad 2 x-2 y+2=0 \\
& \text { Again eq (i) is perpendicular to }
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\vec{r} & =(2 \vec{i}-\vec{j}-3 \vec{k})+\pi(\vec{i}+2 \vec{j}+2 \vec{k}) \\
\therefore & k+2 y+22 & =0
\end{array}
$$

On solving eq. (2) and (3) we get

$$
\begin{aligned}
\frac{x}{-4-2} & =\frac{y}{1-4}=\frac{z}{4-2} \\
\frac{x}{-6} & =\frac{y}{-3}=\frac{z}{2}=k
\end{aligned}
$$

$\Rightarrow x=-6 k, y=3 k$ and $z=2 k$
Putting the values of x, y and $z k$ eq
we get $\vec{r}=(2 \vec{i}-3 \vec{j}+3 \vec{k})+\lambda_{1}(-6 \vec{i}-3 \vec{j}+3 \vec{k})$
18. Find the area of the region bounded by the curve x^{2}
$=4 y$ and the line $x=4 y-2$.

Ans. Given curve $x^{2}=4 y \ldots$ (i) represents an upward parabola with vertex $(0,0)$ and axis along y-axis
Given equation of line is $x=4 y-2$
On solving eqs (i) \& (ii), we get

$$
\begin{equation*}
x^{2}=x+2 \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad x^{2}-x-2=0$
$\Rightarrow \quad(x-2)(x+1)=0$
$\Rightarrow \quad x=2,-1$
when

$$
x=2, y=1
$$

and

$$
x=-1, y=\frac{1}{4}
$$

Thus, line meets the parabola at the points
$\mathrm{A}(2,1)$ and $\mathrm{B}\left(-1, \frac{1}{4}\right)$.

Required area $=($ Area under the line $x=4 y-2)$

$$
\text { - (Area under the parabola } \left.x^{2}=4 y\right)
$$

$$
=\int_{-1}^{2}\left(\frac{x+2}{4}\right) d x-\int_{-1}^{2} \frac{x^{2}}{4} d x
$$

[From eq. (ii), $y=\frac{x+2}{4}$ and from eq. (i), $y=\frac{x^{2}}{4}$]
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{2}$
$=\frac{1}{4}\left[\left\{\frac{2^{2}}{2}+2(2)\right\}-\left\{\frac{(-1)^{2}}{2}+2(-1)\right\}\right]$
$-\frac{1}{12}\left(2^{3}-(-1)^{3}\right)$
$=\frac{1}{4}\left(6+\frac{3}{2}\right)-\frac{1}{12} \times 9$
$=\frac{15}{8}-\frac{9}{12}$
$=\frac{9}{8}$ sq. unit
19. In subparts (i) and (ii) choose the correct options and in subparts (iii) to (v), answer the questions as instructed.
(i) If the demand function is given by $p=1500-$ $2 x-x^{2}$ then find the marginal revenue when x $=10$
(a) 1160
(b) 1600
(c) 1100
(d) 1200
(ii) If the two regression coefficients are 0.8 and 0.2 , then the value of coefficient of correlation r will be:
(a) ± 0.4
(b) ± 0.16
(c) 0.4
(d) 0.16
(iii) Out of the two regression lines $x+2 y-5=0$ and $2 x+3 y=8$, find the line of regression of y on x.
(iv) The cost function $C(x)=3 x^{2}-6 x+5$. Find the average cost when $x=2$.
(v) The fixed cost of a product is ₹ 30,000 and its variable cost per unit is ₹ 800 . If the demand function is $p(x)=4500-100 x$, find the breakeven values.
Ans. (i) Option (a) is correct.
Explanation: Given, $\quad p=1500-2 x-x^{2}$
Revenue function, $\quad R=p x$

$$
R=1500 x-2 x^{2}-x^{3}
$$

Marginal revenue $=\frac{d R}{d x}$

$$
\begin{aligned}
& =\frac{d}{d x}\left(1500 x-2 x^{2}-x^{3}\right) \\
& =1500-4 x-3 x^{2}
\end{aligned}
$$

Marginal revenue at $x=10$ is

$$
\begin{aligned}
& =1500-4(10)-3(10)^{2} \\
& =1500-40-300 \\
& =1160
\end{aligned}
$$

(ii) Option (c) is correct.

$$
\text { Explanation: } \quad \begin{aligned}
r & =\sqrt{0.8 \times 0.2} \\
& =\sqrt{0.16} \\
& =\sqrt{(0.4)^{2}} \\
& =0.4
\end{aligned}
$$

Here, correlation coefficient will be positive because both the coefficients are positive.
(iii)

$$
\begin{array}{r}
x+2 y-5=0 \tag{i}\\
2 x+3 y=8
\end{array}
$$

Let eq (i), be on x and eq. (ii) be x on

$$
\begin{array}{rlrl}
& \text { Slope of eq }(\mathrm{i}) & =-\frac{1}{2} \tag{ii}\\
& & \text { Slope of eq (ii) } & =-\frac{2}{3} \\
\Rightarrow \quad & b_{y x} & =-\frac{1}{2}, \&+\frac{1}{b_{x y}}=\frac{-1}{3} \\
\Rightarrow \quad b_{y x} & =-\frac{1}{2}, \& b_{x y}=\frac{-3}{2}
\end{array}
$$

Since both $b_{y x}$ and $b_{x y}$ are of since sign and

$$
b_{y x} \times b_{x y}=-\frac{1}{2} \times \frac{-3}{2}=\frac{3}{4}<1
$$

\therefore Our assumption is true
Hence eq. (i) i.e., $x+2 y-5=0$ is a line of regression of y on x.
From eq (ii), the regression line of y on x is
(iv) Given,

$$
C(x)=3 x^{2}-6 x+5
$$

$$
\begin{aligned}
\text { Average cost } & =\frac{C(x)}{x} \\
& =3 x-6+\frac{5}{x}
\end{aligned}
$$

(Average cost $)_{\mathrm{at} x=2}=3(2)-6+\frac{5}{2}$

$$
=\frac{5}{2}=2.5
$$

(v)

Total cost $=$ fixed cost + variable cost

$$
C(x)=₹ 30,000+₹ 800 x
$$

where $x=$ total unit
Also, revenue function, $R(x)=p . x$

$$
=(4500-100 x) x
$$

$[\because$ Given $p=4500-100 x]$
$=4500 x-100 x^{2}$
Profit function $P(x)=R(x)-C(x)$

$$
\begin{aligned}
& =4500 x-100 x^{2}-30000-800 x \\
& =-100 x^{2}+3700 x-30000
\end{aligned}
$$

At break even point, $P(x)=0$
$\therefore-100 x^{2}+3700 x-30000=0$
or, $\quad x^{2}-37 x+300=0$

$$
\begin{aligned}
x & =\frac{+37 \pm \sqrt{(-37)^{2}-4(1)(300)}}{2 \times 1} \\
& =\frac{37 \pm \sqrt{1369-1200}}{2} \\
& =\frac{37 \pm 13}{2} \\
& =\frac{37+13}{2} \text { and } \frac{37-13}{2} \\
& =\frac{50}{2} \text { and } \frac{24}{2} \\
& =25 \text { and } 12
\end{aligned}
$$

So, break even values are 25 and 12 .
20. (i) The total cost function for x units is given by $C(x)=\sqrt{6 x+5}+2500$. Show that the marginal cost decreases as the output x increases.
[2]
OR
(ii) The average revenue function is given by $A R=$ $25-\frac{x}{4}$.
Find total revenue function and marginal revenue function.
Ans. (i) Given,

$$
\begin{aligned}
& C(x)=\sqrt{6 x+5}+2500 \\
& M C=\frac{d C}{d x}
\end{aligned}
$$

or,

$$
=\frac{d}{d x}[\sqrt{6 x+5}+2500]
$$

$$
M C=\frac{1}{2}(6 x+5)^{-1 / 2}(6)
$$

or,

$$
M C=\frac{3}{\sqrt{6 x+5}}
$$

Now, put $x=2$,

$$
\begin{aligned}
M C & =\frac{3}{\sqrt{12+5}}=\frac{3}{\sqrt{17}} \\
& =\frac{3}{4.12}=0.72
\end{aligned}
$$

Put $x=3$,

$$
\begin{aligned}
M C & =\frac{3}{\sqrt{18+5}}=\frac{3}{\sqrt{23}} \\
& =\frac{3}{4.79}=0.62
\end{aligned}
$$

So, it is clear, as we increase output x, MC decreases.

OR

(ii) Given, average revenue $=A R=25-\frac{x}{4}$

$$
\text { Total revenue } R(x)=p \cdot x=25 x-\frac{x^{2}}{4}
$$

$$
\text { Marginal revenue, } \mathrm{MR}=\frac{d}{d x} R(x)
$$

$$
=\frac{d}{d x}\left(25 x-\frac{x^{2}}{4}\right)
$$

$$
=25-\frac{x}{2}
$$

21. Solve the following Linear Programming Problem graphically.
Maximise $Z=5 x+2 y$ subject to:
$x-2 y \leq 2$,
$3 x+2 y \leq 12$,
$-3 x+2 y \leq 3$,
$x \geq 0, y \geq 0$
Ans. Given LPP is

$$
\text { Subject to: } \begin{aligned}
\operatorname{Max} z & =5 x+2 y \\
x-2 y & \leq 2 \\
3 x+2 y & \leq 12 \\
-3 x+2 y & \leq 3 \\
x & \geq 0, y \geq 0
\end{aligned}
$$

Converting the inequations into equations, we get

$$
\begin{align*}
x-2 y & =2 \tag{i}\\
3 x+2 y & =12 \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
& \text { Since, } \quad A R=\frac{R}{x} \\
& =\frac{p \cdot x}{x}=p \\
& \therefore \quad p=25-\frac{x}{4}
\end{aligned}
$$

$$
\begin{align*}
-3 x+2 y & =3 \tag{iii}\\
x & =0, y=0 \tag{iv}
\end{align*}
$$

On plotting the above set of equation, we get the corner points as $\mathrm{A}(0,1.5), \mathrm{B}(3.5,0.75), \mathrm{C}(2,0)$, $\mathrm{D}(1.5,3.75), \mathrm{O}(0,0)$.

The value of the objective function are:

Point (x, y)	$z=5 x+2 y$
$\mathrm{~A}(0,1.5)$	$5 \times 0+2 \times 1.5=3$
$\mathrm{~B}(3.5,0.75)$	$5 \times 3.5+2 \times 0.75=19$ (max)
$\mathrm{C}(2,0)$	$5 \times 2+2 \times 0=10$
$\mathrm{D}(1.5,3.75)$	$5 \times 1.5+2 \times 3.75=15$
$\mathrm{O}(0,0)$	$5 \times 0+2 \times 0=0$

So, maximum value of z is 19 .
22. (i) The following table shows the Mean, the Standard Deviation and the coefficient of correlation of two variables x and y.

Series	x	y
Mean	8	6
Standard deviation	12	4
Coefficient of correlation	0.6	

Calculate:
(a) the regression coefficient $b_{x y}$ and $b_{y x}$
(b) the probable value of y when $x=20$

OR
(ii) An analyst analysed 102 trips of a travel company. He studied the relation between travel expenses (y) and the duration (x) of these trips. He found that the relation between x and y was linear. Given the following data, find the
regression equation of y on x.
$\Sigma x=510, \Sigma y=7140, \Sigma x^{2}=4150, \Sigma y^{2}=740200$, $\Sigma x y=54900$
Ans.(i) Given,

$$
\begin{aligned}
r & =0.6 \\
\text { Mean of } x & =\bar{x}=8 \\
\text { Mean of } y & =\bar{y}=6
\end{aligned}
$$

$$
\text { S.D. of } x=\sigma_{x}=12
$$

$$
\text { S.D. of } y=\sigma_{y}=4
$$

$$
\begin{align*}
b_{x y} & =\frac{r \sigma_{x}}{\sigma_{y}}=\frac{0.6 \times 12}{(4)} \tag{i}\\
& =\frac{0.6 \times 12}{4}=1.8 \\
b_{y x} & =\frac{r \sigma_{y}}{\sigma_{x}}=\frac{0.6 \times 4}{(12)} \\
& =\frac{0.6 \times 4}{12}=0.2
\end{align*}
$$

(ii) Regression line y on x is given by

$$
\begin{aligned}
y-\bar{y} & =b_{y x}(x-\bar{x}) \\
y-6 & =0.2(x-8) \\
y & =0.2 x-1.6+6 \\
& =0.2 x+4.4
\end{aligned}
$$

at $x=20$

$$
\begin{aligned}
& =0.2 \times 20+4.4 \\
& =4+4.4 \\
y & =8.4
\end{aligned}
$$

(ii) Given, $n=102, \Sigma x=510, \Sigma y=7140, \Sigma x^{2}=4150$, $\Sigma y^{2}=740200, \Sigma x y=54900$
We know that, regression equation of y on x is

So,

$$
\begin{aligned}
y-\bar{y} & =b_{y x}(x-\bar{x}) \\
\bar{x} & =\frac{\sum x}{n}=\frac{510}{102}=5 \\
\bar{y} & =\frac{\sum y}{n}=\frac{7140}{102}=70 \\
b_{y x} & =\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n(\bar{x})^{2}} \\
& =\frac{54900-(102)(5)(70)}{4150-102(5)^{2}} \\
& =\frac{54900-35700}{4150-2550} \\
& =\frac{19200}{1600}=12
\end{aligned}
$$

Regression line y on x is

$$
\begin{array}{rlrl}
& & y-70 & =12(x-5) \\
\Rightarrow & y & =12 x-60+70 \\
\Rightarrow & y & =12 x+10 \\
\Rightarrow & y & =2(6 x+5)
\end{array}
$$

