Sample Question Paper-1
 (Specimen Paper issued by CISCE dated $12^{\text {th }}$ July, 2022)
 MATHEMATICS
 Class-10

SOLVED

Answers to this Paper must be written on the paper provided separately.
 You will not be allowed to write during the first 15 minutes.
 This time is to be spent in reading the Question Paper.
 The time given at the head of this Paper is the time allowed for writing the answers.
 Attempt all questions from Section \boldsymbol{A} and any four questions from Section B.
 All working, including rough work, must be clearly shown, and must be done on the same sheet as the rest of the answer.
 Omission of essential working will result in loss of marks.
 The intended marks for questions or parts of question are given in brackets []
 Mathematical tables are provided.

Section-A
 (Attempt all questions from this Section)

Question 1.

Choose the Correct answer to the questions from the given options:
[15 Marks]
(i) The SGST paid by a customer to the shopkeeper for an article which is priced at ₹ 500 is ₹ 15 . The rate of GST charged is:
(a) 1.5%
(b) 3%
(c) 5%
(d) 6%
(ii) When the roots of a quadratic equation are real and equal then the discriminant of the quadratic equation is:
(a) Infinite
(b) Positive
(c) Zero
(d) Negative
(iii) If $(x-1)$ is a factor of $2 x^{2}-a x-1$, then the value of ' a ' is:
(a) -1
(b) 1
(c) 3
(d) -3
(iv) Given $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \times X=\left[\begin{array}{l}p \\ q\end{array}\right]$. The order of matrix X is:
(a) 2×2
(b) 1×2
(c) 2×1
(d) 1×1
(v) $57,54,51,48$, \qquad are in Arithmetic Progression. The value of the $8^{\text {th }}$ term is:
(a) 36
(b) 78
(c) -36
(d) -78
(vi) The point $A(p, q)$ is invariant about $x=p$ under reflection. The coordinates of it's image A^{\prime} is:
(a) $A^{\prime}(p,-q)$
(b) $A^{\prime}(-p, q)$
(c) $A^{\prime}(p, q)$
(d) $A^{\prime}(-p,-q)$
(vii) In the given diagram the $\triangle A B C$ is similar to $\triangle D E F$ by the axiom:

(a) SSS
(b) SAS
(c) AAA
(d) RHS
(viii) The volume of a right circular cone with same base radius and height as that of a right circular cylinder, is $120 \mathrm{~cm}^{3}$. The volume of the cylinder is:
(a) $240 \mathrm{~cm}^{3}$
(b) $60 \mathrm{~cm}^{3}$
(c) $360 \mathrm{~cm}^{3}$
(d) $480 \mathrm{~cm}^{3}$
(ix) The solution set for the given in equation is: $-8 \leq 2 x<8, x \in W$
(a) $\{-4,-3,-2,-1,0,1,2,3,4\}$
(b) $\{-4,-3,-2,-1\}$
(c) $\{0,1,2,3\}$
(d) $\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,67,8\}$
(x) The probability of the Sun rising from the east is $P(S)$. The value of $P(S)$ is:
(a) $\mathrm{P}(\mathrm{S})=0$
(b) $\mathrm{P}(\mathrm{S})<0$
(c) $\mathrm{P}(\mathrm{S})=1$
(d) $\mathrm{P}(\mathrm{S})>1$
(xi) If $\left[\begin{array}{ll}2 & x \\ 0 & 1\end{array}\right]+3\left[\begin{array}{ll}2 & 1 \\ 4 & 0\end{array}\right]=\left[\begin{array}{cc}8 & 8 \\ 12 & 1\end{array}\right]$. The value of x is:
(a) 2
(b) 3
(c) 4
(d) 5
(xii) The centroid of a $\triangle \mathrm{ABC}$ is $G(6,7)$. If the coordinates of the vertices A, Band C are $(a, 5),(7,9)$ and $(5$, 7) respectively. The value of a is:
(a) 9
(b) 6
(c) 3
(d) 7
(xiii) In the given diagram $A C$ is a diameter of the circle and $\angle A D B=35^{\circ}$. The degree measure of x is:

(a) 55°
(b) 35°
(c) 45°
(d) 70°
(xiv) If the $n^{\text {th }}$ term of an Arithmetic Progression (A.P.) is $(n+3)$, then the first three terms of the (A.P.) are:
(a) 1,2,3
(b) 2, 4, 6
(c) $4,5,6$
(d) $7,8,9$
(xv) The median of a grouped frequency distribution is found graphically by drawing:
(a) a linear graph
(b) a histogram
(c) a frequency polygon
(d) a cumulative frequency curve

Question 2

(i) Salman deposits ₹ 1200 every month in a recurring deposit account for $21 / 2$ years. If the rate of interest is 6% per annum, find the amount he will receive on maturity.
(ii) $3,9, m, 81$ and n are in continued proportion. Find the values of m and n.
(iii) Prove that: $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

Question 3

(i) The inner circumference of the rim of a circular metal tub is 44 cm .

Find:
(a) The inner radius of the tub
(b) The volume of the material of the tub if it's outer radius is 8 cm .

Use $\pi=\frac{22}{7}$
Give your answer correct to three significant figures.
(ii) From the given figure:

(a) Write down the coordinates of A and B .
(b) If P divides AB in the ratio 2:3, find the coordinates of point P .
(c) Find the equation of a line parallel to line AB and passing through origin.
(iii) Use graph set for this question. Take $2 \mathrm{~cm}=1$ unit along the axes.

Plot the $\triangle \mathrm{OAB}$, where $\mathrm{O}(0,0)$, $\mathrm{A}(3,-2), \mathrm{B}(2,-3)$.
(a) Reflect the $\triangle \mathrm{OAB}$ through the origin and name it as $\triangle \mathrm{OA}^{\prime} \mathrm{B}^{\prime}$.
(b) Reflect the $\triangle \mathrm{OA}^{\prime} \mathrm{B}^{\prime}$ on the y - axis and name it as $\triangle \mathrm{OA}^{\prime \prime} \mathrm{B}^{\prime \prime}$.
(c) Reflect the $\Delta \mathrm{OA}^{\prime} \mathrm{B}^{\prime}$ on the x - axis and name it as $\Delta \mathrm{OA}^{\prime \prime \prime} \mathrm{B}^{\prime \prime \prime}$.
(d) Join the points $\mathrm{AA}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{A}^{\prime \prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{B}$ and give the geometrical name of the closed figure so formed.

Section-B

(Attempt any four questions from this Section.)

Question 4

(i) The following bill shows the GST rates and the marked price of articles:

BILL: COMPUTERS		
Articles	Marked price	Rate of GST
Graphic Card	Rs 15500.00	18%
Laptop adapter	Rs 1900.00	28%

Find the total amount to be paid for the above bill.
(ii) Solve the following quadratic equation,

$$
7 x^{2}+2 x-2=0
$$

Give your answer correct to two places of decimal
(iii) Use graph sheet for this question. Draw a histogram for the daily earnings of 54 medical stores in the following table and hence estimate the mode for the following distribution. Take $2 \mathrm{~cm}=₹ 500$ units along the x-axis and $2 \mathrm{~cm}=5$ stores along the y-axis.

Daily earnings (₹)	$4500-5000$	$5000-5500$	$5500-6000$	$6000-6500$	$6500-7000$
No. of medical stores	20	14	12	5	3

Question 5

(i) $A=\left[\begin{array}{cc}3 & -2 \\ -1 & 4\end{array}\right], B=\left[\begin{array}{l}6 \\ 1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{c}-4 \\ 5\end{array}\right]$, Evaluate $\mathrm{AB}-5 \mathrm{C}$
(ii) In the given figure, O is the centre of circle. The tangent PT meets the diameter RQ produced at P .
(a) Prove $\triangle \mathrm{PQT} \sim \Delta \mathrm{PTR}$
(b) If $\mathrm{PT}=6 \mathrm{~cm}, \mathrm{QR}=9 \mathrm{~cm}$. Find the length of PQ

(iii) Factorise the given polynomial completely, using Remainder Theorem:
$6 x^{3}+25 x^{2}+31 x+10$

Question 6

(i) ABCD is a square where $\mathrm{B}(1,3), \mathrm{D}(3,2)$ are the end points of the diagonal BD .

Find:
(a) the coordinates of point of intersection of the diagonals AC and BD
(b) the equation of the diagonal AC
(ii) Prove that: $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\sec \theta \cdot \operatorname{cosec} \theta$
(iii) The first, the last term and the common difference of an Arithmetic Progression are 98, 1001 and 7 respectively. Find the following for the given Arithmetic Progression:
(a) number of terms ' n '.
(b) Sum of the ' n ' terms.

Question 7

(i) A box contains some green, yellow and white tennis balls. The probability of selecting a green ball is $\frac{1}{4}$ and yellow ball is $\frac{1}{3}$. If the box contains 10 white balls, then find:
(a) total number of balls in the box.
(b) probability of selecting a white ball.
(ii) A cone and a sphere having the same radius are melted and recast into a cylinder. The radius and height of the cone are 3 cm and 12 cm respectively. If the radius of the cylinder so formed is 2 cm , find the height of the cylinder.
(iii) In the given diagram, ABCD is a cyclic quadrilateral and PQ is a tangent to the smaller circle at E . Given $\angle A E P=70^{\circ}, \angle B O C=110^{\circ}$. Find:

(a) $\angle E C B$,
(b) $\angle B E C$,
(c) $\angle B F C$,
(d) $\angle D A B$,

Question 8

(i) Solve the following equation:

$$
-\frac{x}{3}-4 \leq \frac{x}{2}-\frac{7}{3}<-\frac{7}{6}, x \in R
$$

Represent the solution set on a number line.
(ii) The following table gives the petrol prices per litre for a period of 50 days.

Price (₹)	$85-90$	$90-95$	$95-100$	$100-105$	$105-110$
No. of days	12	10	8	15	5

Find the mean price of petrol per litre to the nearest rupee using step-deviation method.
(iii) In the given diagram, ABC is a triangle and BCFD is a parallelogram.
$\mathrm{AD}: \mathrm{DB}=4: 5$ and $\mathrm{EF}=15 \mathrm{~cm}$.

Find:
(a) $A E: E C$
(b) $D E$
(c) $B C$

Question 9

(i) Amit takes 12 days less than the days taken by Bijoy to complete a certain work. If both, working together, takes 8 days to complete the work, find the number of days taken by Bijoy to complete the work, working alone.
(ii) Use a graph sheet for this question. The daily wages of 120 workers working at a site are given below:

Wages (₹)	$250-300$	$300-350$	$350-400$	$400-450$	$450-500$	$500-550$	$550-600$
No. of workers	8	15	20	30	25	15	7

Use $2 \mathrm{~cm}=₹ 50$ and $2 \mathrm{~cm}=20$ workers along x - axis and y-axis respectively to draw an ogive and hence estimate
(a) the median wages
(b) the inter - quartile range of wages
(c) percentage of workers whose daily wage is above ₹ 475 .

Question 10

(i) Solve for x, using the properties of proportion.

$$
\frac{\sqrt{2+x}+\sqrt{3-x}}{\sqrt{2+x}-\sqrt{3-x}}=3
$$

(ii) Using ruler and compasses, construct a regular hexagon of side 4.5 cm . Hence construct a circle circumscribing the hexagon. Measure and write down the length of the circum-radius.
(iii) An observer standing on the top of a lighthouse 150 m above the sea level watches a ship sailing away. As he observes, the angle of depression of the ship changes from 50° to 30°. Determine the distance travelled by the ship during the period of observation. Give your answer correct to the nearest meter. (Use Mathematical Table for this question.)

SOLUTIONS

Sample Question Paper-1 MATHEMATICS

SECTION-A

1. (i) Option (d) is correct.

Explanation: SGST paid $=₹ 15$

$$
\begin{aligned}
\text { Purchase price } & =₹ 500 \\
\text { Total GST } & =\text { SGST }+ \text { CGST } \\
& =15+15 \\
& =30 \\
\text { Rate } & =\frac{\text { Amount of GST }}{\text { Total Price }} \times 100 \\
& =\frac{30}{500} \times 100=6 \%
\end{aligned}
$$

(ii) Option (c) is correct.

Explanation: We know that,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Since the roots are real and equal

$$
\begin{aligned}
\Rightarrow & x & =\frac{-b}{2 a}, \frac{-b}{2 a} \\
\Rightarrow & b^{2}-4 a c & =0 \\
\Rightarrow & D & =0
\end{aligned}
$$

(iii) Option (b) is correct.

Explanation: Since $(x-1)$ is a factor of $2 x^{2}-$ $a x-1$

$$
\begin{array}{rlrl}
\therefore & & x & =1 \\
\Rightarrow & 2(1)^{2}-a(1)-1 & =0 \\
\Rightarrow & & 2-a-1 & =0 \\
\Rightarrow & & 1-a & =0 \\
\Rightarrow & & 1 & =a \\
\Rightarrow & & a & =1
\end{array}
$$

(iv) Option (c) is correct.

Explanation: Here $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix
and $\binom{p}{q}$ is a 2×1 matrix
So, to obtain a 2×1 matrix from a 2×2 matrix, we multiply a 2×2 matrix by 2×1 matrix.

A $m \times n$ matrix is multiplied by $n \times p$ matrix to obtain a $m \times p$ matrix.
(v) Option (a) is correct.

Explanation: $\quad \mathrm{AP}=57,54,51,48, \ldots \ldots .$.
Here,

$$
\begin{aligned}
a & =57 \\
d & =54-57 \\
d & =-3 \\
a_{n} & =a+(n-1) d
\end{aligned}
$$

Here,

$$
\Rightarrow \quad a_{8}=57+(8-1)(-3)
$$

$$
\Rightarrow \quad a_{8}=57+7(-3)
$$

$$
\Rightarrow \quad a_{8}=57-21
$$

$$
\Rightarrow \quad a_{8}=36
$$

(vi) Option (a) is correct.

Explanation: We know that only those points which lie on the line are invariant points when reflected in the line. So, only those points are invariant which are on the line $x=p$.
Hence, line passing through $x=p$ will be considered x - axis and thus the coordinates of image are $\mathrm{A}^{\prime}(p,-q)$
(vii) Option (b) is correct.

Explanation: Here $\frac{4}{24}=\frac{3}{18}$
$\Rightarrow \quad \frac{A B}{D E}=\frac{B C}{E F}$
and $\quad \angle A B C=\angle D E F$
So, by SAS similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
(viii) Option (c) is correct.

Explanation: Volume of cone $=120 \mathrm{~cm}^{3}$
We know that,

$$
\begin{array}{cc}
\Rightarrow & \text { Volume of cone }=\frac{1}{3} \pi r^{2} h \\
\Rightarrow & \frac{1}{3} \pi r^{2} h=120 \\
\Rightarrow & \pi r^{2} h=120 \times 3 \\
\Rightarrow & \text { Volume of cylinder }=360 \mathrm{~cm}^{3}
\end{array}
$$

(ix) Option (c) is correct.

Explanation: Here $-8 \leq 2 x<8$

$$
\begin{array}{lc}
\Rightarrow & -8 \div 2 \leq 2 x \div 2<8 \div 2 \\
\Rightarrow & -4 \leq x<4
\end{array}
$$

$\Rightarrow \quad x=-4,-3,-2,-1,0,1,2,3$
But since $x \in \mathrm{~W}$,

$$
x=\{0,1,2,3\}
$$

(x) Option (c) is correct.

Explanation: Since the sun always rises from east, it is a certain event. Therefore, the probability $P(S)=1$
(xi) Option (d) is correct.

Explanation: $\left(\begin{array}{ll}2 & x \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}6 & 3 \\ 12 & 0\end{array}\right)=\left(\begin{array}{cc}8 & 8 \\ 12 & 1\end{array}\right)$

$$
\Rightarrow\left(\begin{array}{cc}
2+6 & x+3 \\
0+12 & 1+0
\end{array}\right)=\left(\begin{array}{cc}
8 & 8 \\
12 & 1
\end{array}\right)
$$

On comparison

$$
\begin{array}{rlrl}
& & x+3 & =8 \\
\Rightarrow & x & =5
\end{array}
$$

(xii) Option (b) is correct.

Explanation: The centroid of triangle

$$
\begin{array}{rlrl}
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \\
\Rightarrow & & (6,7) & =\left(\frac{a+7+5}{3}, \frac{5+9+7}{3}\right) \\
\Rightarrow & (6,7) & =\left(\frac{a+12}{3}, \frac{21}{3}\right)
\end{array}
$$

On comparison, $6=\frac{a+12}{3}$
$\Rightarrow \quad 18=a+12$
$\Rightarrow \quad a=6$
(xiii) Option (a) is correct.

Explanation: Join CD
Since $A C$ is diameter
$\Rightarrow \quad \angle A D C=90^{\circ}$
(Angle in a semicircle are equal to 90°)
$\Rightarrow \quad \angle C D B+\angle A D B=90^{\circ}$
$\Rightarrow \quad \angle C D B+35^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle C D B=55^{\circ}$
Now $\quad \angle C A B=\angle C D B$
(Angles in the same segment)
$\Rightarrow \quad \angle C A B=55^{\circ}$
(xiv) Option (c) is correct.

Explanation: Since $n^{\text {th }}$ term $=(n+3)$

$$
\begin{array}{ll}
\Rightarrow & a_{n}=(n+3) \\
\Rightarrow & a_{1}=(1+3) \\
\Rightarrow & a_{1}=4 \\
\Rightarrow & a_{2}=(2+3)=5 \\
\text { and } & a_{3}=(3+3)=6
\end{array}
$$

So, the first three terms of the AP are 4,5 and 6
(xv) Option (d) is correct.

Explanation: The median for a grouped frequency distribution is found graphically by drawing a cumulative frequency curve.
2. (i) Monthly deposit = ₹ 1200 ,
$n=30$ months, $r=6 \%$

$$
\begin{aligned}
\text { Interest } & =\frac{n(n+1) \times P \times r}{2400} \\
& =\frac{30(30+1) \times 1200 \times 6}{2400} \\
& =\frac{30 \times 31 \times 1200 \times 6}{2400} \\
& =30 \times 31 \times 3 \\
& =2790
\end{aligned}
$$

So, Maturity Value $=P \times n+I$

$$
\begin{aligned}
& =1200 \times 30+2790 \\
& =36000+2790 \\
& =₹ 38790
\end{aligned}
$$

(ii) Since, $3,9, m, 81$ and n are in continued proportion

$$
\Rightarrow \quad \frac{3}{9}=\frac{9}{m}=\frac{m}{81}=\frac{81}{n}
$$

$$
\text { So, } \quad 3 m=9 \times 9
$$

$$
\Rightarrow \quad m=81 \div 3
$$

$$
\Rightarrow \quad m=27
$$

$$
\text { Now, } \quad 27 n=81 \times 81
$$

$$
\begin{array}{ll}
\Rightarrow & n=81 \times 3 \\
\Rightarrow & n=243
\end{array}
$$

(iii) $L H S=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$
$\Rightarrow \frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$
$\Rightarrow \frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}$
$\Rightarrow \frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}$
$\left(\cos ^{2} A+\sin ^{2} A=1\right)$
$\Rightarrow \frac{2+2 \sin A}{(1+\sin A)(\cos A)}$
$\Rightarrow \frac{2(1+\sin A)}{(1+\sin A)(\cos A)}$
$\Rightarrow \frac{2}{\cos A} \quad\left(\because \frac{1}{\cos A}=\sec A\right)$
$\Rightarrow 2 \sec A=$ RHS
Hence Proved
3. (i) Inner circumference of circular metal tub

$$
\left.\begin{array}{rlrl}
& =44 \mathrm{~cm} \\
\Rightarrow & & 2 \pi r & =44 \\
\Rightarrow & & 2 \times \frac{22}{7} \times r & =44 \\
\Rightarrow & & r & =44 \times \frac{7}{22} \times \frac{1}{2} \\
\Rightarrow & & & r
\end{array}\right)=7 \mathrm{~cm}
$$

Now, Volume of material of tub

$$
\begin{aligned}
& =\frac{2}{3} \pi\left(R^{3}-r^{3}\right) \\
& =\frac{2}{3} \times \frac{22}{7} \times\left(8^{3}-7^{3}\right) \\
& =\frac{2}{3} \times \frac{22}{7} \times(512-343) \\
& =\frac{2}{3} \times \frac{22}{7} \times 169 \\
& =354.095 \mathrm{~cm}^{3} \\
& =354 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) (a) Coordinates of $A=(5,0)$,

Coordinates of $B=(0,3)$
(b) $P=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

$$
\begin{aligned}
& =\left(\frac{2(0)+3(5)}{2+3}, \frac{2(3)+3(0)}{2+3}\right) \\
& =\left(\frac{15}{5}, \frac{6}{5}\right)=\left(3, \frac{6}{5}\right)
\end{aligned}
$$

Therefore, the coordinates of point P, are $\left(3, \frac{6}{5}\right)$.
(c) For parallel lines, $m_{1}=m_{2}$

Slope of line $A B=\frac{3-0}{0-5}=\frac{3}{-5}=\frac{-3}{5}$
Now, $\quad \frac{y-y_{1}}{x-x_{1}}=\frac{-3}{5}$
$\Rightarrow \quad \frac{y-0}{x-0}=\frac{-3}{5}$
$\Rightarrow \quad \frac{y}{x}=\frac{-3}{5}$
$\Rightarrow \quad-3 x=5 y$
$\Rightarrow \quad 3 x+5 y=0$

SECTION-B

4. (i) MP of Graphic card $=₹ 15,500$

$$
\begin{aligned}
\mathrm{GST} & =18 \% \\
\mathrm{GST} & =0.18 \times 15500 \\
& =₹ 2790 \\
\mathrm{SP} & =15500+2790 \\
\mathrm{SP} & =₹ 18,290
\end{aligned}
$$

$$
\Rightarrow \quad \text { GST }=0.18 \times 15500
$$

So,

Now, MP of Laptop Adapter $=₹ 1900$

$$
\begin{array}{ll}
\Rightarrow & \text { GST }=0.28 \times 1900 \\
\Rightarrow & \text { GST }=₹ 532 \\
\text { So, } & \text { SP }=1900+532 \\
\Rightarrow & \text { SP }=₹ 2432
\end{array}
$$

Total amount to be paid $=18,290+2432$

$$
=₹ 20,722
$$

(ii)
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow x=\frac{-2 \pm \sqrt{(2)^{2}-4(7)(-2)}}{2(7)}$
$\Rightarrow x=\frac{-2 \pm \sqrt{4+56}}{14}$
$\Rightarrow x=\frac{-2 \pm \sqrt{60}}{14}$
$\Rightarrow x=\frac{-2 \pm 7.746}{14}$
$\Rightarrow x=\frac{-2+7.746}{14}$ and $x=\frac{-2-7.746}{14}$
$\Rightarrow x=\frac{5.746}{14}$ and $x=\frac{-9.746}{14}$
$\Rightarrow x=0.41$ and $x=0.696 \sim 0.70$

5. (i)

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
3 & -2 \\
-1 & 4
\end{array}\right) \text { and } B=\binom{6}{1} \\
\text { So, } A B & =\left(\begin{array}{cc}
18 & -2 \\
-6 & +4
\end{array}\right)=\binom{16}{-2} \\
C & =\binom{-4}{5}
\end{aligned}
$$

So, $5 C=\binom{-20}{25}$
Now,
$A B-5 C=\binom{16}{-2}-\binom{-20}{25}=\left(\begin{array}{cc}16 & +20 \\ -2 & -25\end{array}\right)=\binom{36}{-27}$
(ii) (a)

Here, in $\triangle \mathrm{PQT}$ and $\triangle \mathrm{PTR}$

$$
\angle P Q T=\angle P R T
$$

(Alternate Segment Theorem; For any circle, the angle formed between the tangent and the chord through the point of contact of the tangent is equal to the angle formed by the chord in the alternate segment)
Also, $\quad \angle \mathrm{QPT}=\angle \mathrm{TPR}$ (common)
So, by AA similarity criterion,

$$
\Delta \mathrm{PQT} \sim \Delta \mathrm{PTR}
$$

(b) Now, If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal
to the product of the measures of the secant segment and its external secant segment.
So,

$$
P T^{2}=P R \times P Q
$$

Let PQ be $x \mathrm{~cm}$

$$
\begin{array}{rlrl}
\Rightarrow & & 6 \times 6 & =(x+9)(x) \\
\Rightarrow & & 36 & =x^{2}+9 x \\
\Rightarrow & & x^{2}+9 x-36 & =0 \\
\Rightarrow & & x^{2}+12 x-3 x-36 & =0 \\
\Rightarrow & x(x+12)-3(x+12) & =0 \\
\Rightarrow & & (x-3)(x+12) & =0 \\
\Rightarrow & & x & =3 \text { and } x=-12
\end{array}
$$

Since, x represents length of a segment, it can't be negative. Thus $P Q=3 \mathrm{~cm}$

$$
\begin{equation*}
p(x)=6 x^{3}+25 x^{2}+31 x+10 \tag{iii}
\end{equation*}
$$

Here,

$$
\begin{aligned}
p(-2) & =6(-2)^{3}+25(-2)^{2}+31(-2)+10 \\
& =6 \times-8+25 \times 4+31 \times-2+10 \\
& =-48+100-62+10 \\
& =0
\end{aligned}
$$

So, $x=-2$ is the zero of the given polynomial.
$\Rightarrow x+2$ is a factor of the given polynomial.
Now, by long division:

$$
\begin{aligned}
& x+2) 6 x^{3}+25 x^{2}+31 \mathrm{x}+10\left(6 x^{2}+13 x+5\right. \\
& 6 x^{3}+12 x^{2} \\
& (f) \frac{(-)}{13 x^{2}+31 x+10} \\
& 13 x^{2}+26 x \\
& \frac{(-))(-)}{+8 x+/ 10} \\
& \frac{5 x+10}{5-)} \begin{array}{c}
(-) \\
0
\end{array} \\
& p(x)=(x+2)\left(6 x^{2}+13 x+5\right) \\
& =(x+2)\left(6 x^{2}+10 x+3 x+5\right) \\
& =(x+2)[2 x(3 x+5)+1(3 x+5)] \\
& p(x)=(x+2)(2 x+1)(3 x+5)
\end{aligned}
$$

6. (i)

Since $A B C D$ is a square, diagonals bisect each other
\Rightarrow diagonals AC and BD intersect each other at the midpoint of BD

$$
\begin{aligned}
\Rightarrow \text { Midpoint of } B D & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{1+3}{2}, \frac{3+2}{2}\right) \\
& =\left(\frac{4}{2}, \frac{5}{2}\right) \\
& =\left(2, \frac{5}{2}\right)
\end{aligned}
$$

\because diagonals of square are at right angles with each other. So $m_{1} m_{2}=-1$

$$
\begin{aligned}
& \left(\frac{3-2}{1-3}\right)\left(\frac{y-\frac{5}{2}}{x-2}\right)=-1 \\
& \left(\frac{1}{-2}\right)\left(\frac{2 y-5}{2 x-4}\right)=-1 \\
& \frac{2 y-5}{2 x-4}=2 \\
& \Rightarrow \quad 2 y-5=4 x-8 \\
& \Rightarrow \quad 4 x-2 y-3=0
\end{aligned}
$$

(ii) $L H S=\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}$
$=\sqrt{\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}}$
$=\sqrt{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta}}$
$=\sqrt{\frac{1}{\cos ^{2} \theta \sin ^{2} \theta}}$
$=\sqrt{\sec ^{2} q \operatorname{cosec}^{2} q}$
$=\sec \theta \operatorname{cosec} \theta=$ RHS
Hence proved
(iii) $\quad a=98, a_{n}=1001, d=7$
(a) We know that, $a_{n}=a+(n-1) \mathrm{d}$
$\Rightarrow \quad 1001=98+(n-1)(7)$
$\Rightarrow \quad 903=(n-1)(7)$
$\Rightarrow \quad 129=n-1$
$\Rightarrow \quad n=130$
So, the number of terms is 130 .
(b) Now, $\quad S_{n}=\frac{n}{2}(a+l)$

$$
\begin{aligned}
& =\frac{130}{2}(98+1001) \\
& =65 \times 1099 \\
& =71,435
\end{aligned}
$$

Therefore, sum of n terms is 71,435 .
7. (i) (a) $\mathrm{P}($ selecting green ball $)=\frac{1}{4}$
$P($ selecting yellow ball $)=\frac{1}{3}$
Now, P (selecting green ball) +P (selecting yellow ball) +P (selecting white ball) = 1
$\Rightarrow \frac{1}{4}+\frac{1}{3}+P($ selecting white ball $)=1$
$\Rightarrow \frac{7}{12}+P($ Selecting white ball $)=1$
$\Rightarrow \mathrm{P}($ selecting white ball $)=1-\frac{7}{12}$
$\Rightarrow \mathrm{P}($ selecting white ball $)=\frac{5}{12}$
$\Rightarrow \frac{10}{\text { Total number of balls }}=\frac{5}{12}$
\Rightarrow Total number of balls $=24$
Therefore, total number of balls $=24$
(b) $P($ selecting white ball $)=\frac{5}{12}$
(ii) Since, a cone and sphere are melted and recasted into a cylinder
$\Rightarrow \quad$ Volume of cone + Volume of sphere $=$ Volume of cylinder
$\Rightarrow \quad \frac{1}{3} \pi r^{2} h+\frac{4}{3} \pi r^{3}=\pi R^{2} H$
$\Rightarrow \quad \frac{4}{3}(3)^{2}(12)+\frac{4}{3}(3)^{3}=(2)^{2} H$
$\Rightarrow \quad 36+36=4 H$
$\Rightarrow \quad 72=4 H$
$\Rightarrow \quad H=18$
Height of cylinder $=18 \mathrm{~cm}$
(iii)

$$
\begin{array}{lc}
\Rightarrow & \frac{-x}{3}-\frac{x}{2} \leq \frac{5}{3} \\
\Rightarrow & \frac{-2 x-3 x}{6} \leq \frac{5}{3} \\
\Rightarrow & \frac{-5 x}{6} \leq \frac{5}{3} \\
\Rightarrow & -x \leq 2 \\
\Rightarrow & x \geq-2 \\
\text { And } \quad \frac{x}{2}<\frac{7}{6} \\
\Rightarrow & x<\frac{7}{3}
\end{array}
$$

(a) Since $\angle A E P=70^{\circ}$

$$
\Rightarrow \quad \angle B E P=70^{\circ}
$$

$$
\Rightarrow \quad \angle B C E=\angle E C B=70^{\circ}
$$

(Alternate segments theorem)
(b) Since, $\angle B O C=110^{\circ}$

So, $\quad \angle B E C=110 \div 2=55^{\circ}$
(Degree measure theorem)
(c) Here, reflex

$$
\begin{aligned}
\angle B O C & =360^{\circ}-110^{\circ}=250^{\circ} \\
\Rightarrow \quad \angle B F C & =250 \div 2=125^{\circ}
\end{aligned}
$$

(Degree measure theorem)
(d) Since, $\angle B C E=70^{\circ}$
$\Rightarrow \quad \angle B C D=180^{\circ}-70^{\circ} \quad$ (linearpair)
$\Rightarrow \quad \angle B C D=110^{\circ}$
Now, $\angle D A B+\angle B C D=180^{\circ}$ (Opposite angles of a cyclic quadrilateral are supplementary)

$$
\begin{array}{ll}
\Rightarrow & \angle \mathrm{DAB}=180^{\circ}-110^{\circ} \\
\Rightarrow & \angle \mathrm{DAB}=70^{\circ}
\end{array}
$$

8. (i) $\frac{-x}{3}-4 \leq \frac{x}{2}-\frac{7}{3}<\frac{-7}{6}$
$\Rightarrow \frac{-x}{3}-4+\frac{7}{3} \leq \frac{x}{2}-\frac{7}{3}+\frac{7}{3}<\frac{-7}{6}+\frac{7}{3}$
$\Rightarrow \frac{-x-12+7}{3} \leq \frac{x}{2}<\frac{7}{6}$
$\Rightarrow \quad \frac{-x-5}{3} \leq \frac{x}{2}<\frac{7}{6}$
$\Rightarrow \frac{-x}{3}-\frac{5}{3} \leq \frac{x}{2}<\frac{7}{6}$
So, $\quad \frac{-x}{3}-\frac{5}{3} \leq \frac{x}{2}$

(7/3)
(ii)

Price (F)	No. of days	Class mark	$\begin{gathered} d_{i}=x_{i} \\ -\mathrm{A} \end{gathered}$	$u_{i}=\frac{d_{i}}{h}$	$f_{i} u_{i}$
85-90	12	87.5	-10	-2	-24
90-95	10	92.5	-5	-1	-10
95-100	8	$97.5=\mathrm{A}$	0	0	0
100-105	15	102.5	5	1	15
105-110	5	107.5	10	2	10
	$\Sigma f_{i}=50$				$\Sigma f_{i} u_{i}$ $=-9$
	$\bar{X}=$	$\begin{aligned} & =A+\frac{\sum f}{\sum} \\ & =97.5+(\\ & =97.5+ \\ & =97.5-0 . \\ & =96.6 \end{aligned}$	$\begin{aligned} & \frac{f_{i} u_{i}}{f_{i}} \times h \\ & \left(\frac{-9}{50}\right) \times \\ & \left(\frac{-9}{10}\right) \\ & .9 \end{aligned}$		

So, price of petrol per litre (to nearest rupee)

$$
=₹ 97
$$

(iii) (a)

Here, $D F|\mid B C$
(Opposite sides of parallelogram are parallel)

$$
\begin{aligned}
& \Rightarrow \quad D E \| B C \\
& \Rightarrow \quad \frac{A D}{D B}=\frac{A E}{E C}
\end{aligned}
$$

(Basic Proportionality Theorem)
$\Rightarrow \quad \frac{4}{5}=\frac{A E}{E C}$
(b) $\angle A D E$
$=\angle A B C$ (Corresponding angles)
And $\angle A E D=\angle A C B$
(Corresponding angles)
By AA Similarity criterion, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$

$$
\Rightarrow \quad \frac{A D}{D B}=\frac{A E}{A C}=\frac{D E}{B C}
$$

(By CPST)
Now, Since $\quad \frac{A D}{D B}=\frac{4}{5}$
$\Rightarrow \quad \frac{D B}{A D}=\frac{5}{4}$
$\Rightarrow \quad \frac{D B}{A D}+1=\frac{5}{4}+1$
$\Rightarrow \quad \frac{D B+A D}{A D}=\frac{5+4}{4}$
$\Rightarrow \quad \frac{A B}{A D}=\frac{9}{4}$
$\Rightarrow \quad \frac{A B}{A D}=\frac{4}{9}=\frac{A E}{A C}=\frac{D E}{B C}$
$\Rightarrow \quad \frac{D E}{D F}=\frac{4}{9}$
($\mathrm{BC}=\mathrm{DF}$; opposite sides of parallelogram are equal)
$\Rightarrow \quad \frac{D E}{D E+15}=\frac{4}{9}$
$\Rightarrow \quad 9 D E=4 D E+60$
$\Rightarrow \quad 5 D E=60$
$\Rightarrow \quad D E=60 \div 5$
$\Rightarrow \quad D E=12 \mathrm{~cm}$
(c) Also, since $\frac{D E}{B C}=\frac{4}{9}$
$\Rightarrow \quad \frac{12}{B C}=\frac{4}{9}$
$\Rightarrow \quad B C=27 \mathrm{~cm}$
9. (i) Let number of days taken by Bijoy to complete the work alone $=x$
\Rightarrow Time taken by Amit to finish the work alone $=(x-12)$ days
\Rightarrow Work done by Bijoy in one day $=\frac{1}{x}$
And Work done by Amit in one day $=\frac{1}{x-12}$
Time taken when both work together $=8$ days.
According to question,

$$
\begin{aligned}
& & \frac{1}{x}+\frac{1}{x-12} & =\frac{1}{8} \\
\Rightarrow & & \frac{x-12+x}{(x)(x-12)} & =\frac{1}{8} \\
\Rightarrow & & \frac{2 x-12}{x^{2}-12 x} & =\frac{1}{8} \\
\Rightarrow & & 16 x-96 & =x^{2}-12 x \\
\Rightarrow & & x^{2}-12 x-16 x+96 & =0 \\
\Rightarrow & & x^{2}-28 x+96 & =0 \\
\Rightarrow & & x^{2}-24 x-4 x+96 & =0 \\
\Rightarrow & & x(x-24)-4(x-24) & =0 \\
\Rightarrow & & (x-24)(x-4) & =0 \\
\Rightarrow & & x-24 & =0 \text { and } x-4=0 \\
\Rightarrow & & x & =24 \text { and } x=4
\end{aligned}
$$

but if $x=4$, then time taken by Amit will be x $-12=4-12=-8$ days; which is not possible. Therefore, time taken by Bijoy to complete the work alone is 24 days.
(ii)

Wages (in ₹)	No. of workers $($ f)	Wages (in ₹)	No. of workers (c.f.)
$250-300$	8	Less than 300	8
$300-350$	15	Less than 350	23
$350-400$	20	Less than 400	43
$400-450$	30	Less than 450	73
$450-500$	25	Less than 500	98
$500-550$	15	Less than 550	113
$550-600$	7	Less than 600	120

(a) $N=120$, which is even

$$
\begin{aligned}
\text { Median } & =\left(\frac{120}{2}\right)^{\text {th }} \text { term } \\
& =60^{\text {th }} \text { term. }
\end{aligned}
$$

From the graph,
$60^{\text {th }}$ term is: 430
Therefore, median $=430$.
(b) Upper quartile $=\left(\frac{3 N}{4}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{3 \times 120}{4}\right)^{\text {th }} \text { term } \\
& =90^{\text {th }} \text { term }
\end{aligned}
$$

From the graph,
$90^{\text {th }}$ term is: 482.5
Now,Lower quartile $=\left(\frac{N}{4}\right)^{\text {th }}$ term

$$
=30^{\text {th }} \text { term }
$$

from the graph,
$30^{\text {th }}$ term is: 370
Inter - quartile range

$$
\begin{aligned}
& =Q_{3}-Q_{1} \\
& =482.5-370 \\
& =112.5
\end{aligned}
$$

(c) Number of workers above wage rate of ₹ 475

$$
=120-86=34
$$

$$
\begin{aligned}
\text { Percentage } & =\frac{34}{120} \times 100 \\
& =28.33 \%
\end{aligned}
$$

10. (i) Here $\frac{\sqrt{2+x}+\sqrt{3-x}}{\sqrt{2+x}-\sqrt{3-x}}=3$

On applying componendo and dividendo:

$$
\begin{array}{rlrl}
& & \frac{3+1}{3-1} & =\frac{\sqrt{2+x}+\sqrt{3-x}+\sqrt{2+x}-\sqrt{3-x}}{\sqrt{2+x}+\sqrt{3-x}-\sqrt{2+x}+\sqrt{3-x}} \\
\Rightarrow & \frac{4}{2} & =\frac{2 \sqrt{2+x}}{2 \sqrt{3-x}}
\end{array}
$$

On squaring both sides

$$
(2)^{2}=\left(\frac{\sqrt{2+x}}{\sqrt{3-x}}\right)^{2}
$$

$$
\begin{array}{rlrl}
4 & =\frac{2+x}{3-x} \\
12-4 x & =2+x \\
& & 10 & =5 x \\
\Rightarrow & x & =10 \div 5 \\
\Rightarrow \quad & x & =2
\end{array}
$$

(ii) Step of construction:
(a) Draw a line segment $\mathrm{AB}=4.5 \mathrm{~cm}$.
(b) Taking A and B as centres draw lines AF, BC each of angle 120° and each of length 4.5 cm . Similarly, we draw other segment CD, DE and EF. Hence, we get the regular hexagon ABCDEF .
(c) Draw perpendicular bisector of AB and BC which meets at point O .
(d) Taking O as centre and OA as radius draw a circle passes through point A, B, C, D, E and F.

Circum-radius $=4.5 \mathrm{~cm}$ For a hexagon $\mathrm{OA}=$ Radius

Find CD

$$
\begin{array}{ll}
\text { Here } & \tan 50^{\circ}=\frac{A B}{B C} \\
\Rightarrow & 1.1918=\frac{150}{B C}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad B C=\frac{150}{1.1918} \\
& \Rightarrow \quad B C=125.86 \mathrm{~m} \\
& \text { Now, } \quad \tan 30^{\circ}=\frac{A B}{B D} \\
& \Rightarrow \quad 0.57735=\frac{150}{B D} \\
& \Rightarrow \quad B D=\frac{150}{0.57735} \\
& \Rightarrow \quad B D=259.80 \mathrm{~m}
\end{aligned}
$$

So, distance travelled during observation

$$
\begin{aligned}
& =B D-B C \\
& =259.80-125.86 \\
& =133.94 \mathrm{~m} \\
& \sim 134 \mathrm{~m}
\end{aligned}
$$

