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  The Old-Babylonians (400 BC) stated and solved problems involving quadratic equations.
  The Greek mathematician Euclid’s developed a geometrical approach for finding out roots, which are solutions 

of quadratic equations.
  In Vedic manuscripts, procedures are described for solving quadratic equations by geometric methods related to 

completing a square.
  Brahmagupta (C.E. 598-665) gave an explicit formula to solve a quadratic equation of the form ax2 + bx + c = 0.
  Sridharacharya (C.E. 870-930) derived the quadratic formula for solving a quadratic equation by the method of 

completing the perfect square.
  An Arab mathematician Al-Khwarizmi (about C.E. 800) studied quadratic equations of different types.
  Abraham bar Hiyya Ha-nasi, in his book ‘Liber embadorum’ published in Europe in C.E. 1145 gave complete 

solutions of different quadratic equations.
  Golden ratio f is the root of quadratic equation x2 – x – 1 = 0.

discriminant and Nature of roots

  For the quadratic equation ax2 + bx + c = 0, the expression b2 – 4ac is known as discriminant i.e., Discriminant D 
= b2 – 4ac.

  Nature of roots of a quadratic equation :
  (i) If b2 – 4ac > 0, the quadratic equation has two distinct real roots.
  (ii) If b2 – 4ac = 0, the quadratic equation has two equal real roots.
  (iii) If b2 – 4ac < 0, the quadratic equation has no real roots.

Know the Terms

 
 The real roots of ax2 + bx + c = 0, where a ¹ 0 are

 

- -b b ac
a

+ 2 4
2  

and
 

- - -b b ac
a

2 4
2

, where b2 – 4ac
 
> 0.

  
 
Roots of ax2 + bx + c = 0, where a ¹ 0 are

 

- b
a2  

and 
- b
a2

, where b2 – 4ac
 
= 0

  Quadratic identities :
  (i) (a + b)2  = a2 + 2ab + b2

  (ii)  (a – b)2  = a2 – 2ab + b2

  (iii)   a2 – b2  = (a + b) (a – b)
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CHAPTer-2 
ArITHmeTIC ProgressIoN

revision Notes

To Find nth Term of the Arithmetic Progression

  An arithmetic progression is a sequence of numbers in which each term is obtained by adding a fixed number d 
to the preceding term, except the first term.

  The difference between the two successive terms of an A.P. is called the common difference.

  Each number in the sequence of arithmetic progression is called a term of an A.P.

  The arithmetic progression having finite number of terms is called a finite arithmetic progression.

  The arithmetic progression having infinite number of terms is called an infinite arithmetic progression.
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  A list of numbers a1, a2, a3, …… is an A.P., if the differences a2 – a1, a3 – a2, a4 – a3, … give the same value i.e., ak+1 – ak 
is same for all different values of k.

  The general form of an A.P. is a, a +  d, a +  2d, a + 3d, …..

  If the A.P. a, a + d, a + 2d,………, l is reversed to l, l – d, l – 2d, ………, a, the common difference changes to negative 
of original sequence common difference. 

Know the Formulae
  The general term of an A.P. is expressed as :

                                                             an = a + (n – 1)d. ......... from the starting.
        where, a is the first term d is the common difference and n is the number of terms.
  The general term of an A.P. l, l – d, l – 2d,…….., a is given by :        
                                                                          an = l + (n – 1)(– d) = l – (n – 1)d .......... from the end.

  where, l is the last term, d is the common difference and n is the number of terms.

  Sum of n terms of an A.P. is given by :

     Sn = 
n
2

 [2a + (n – 1) d]

  where, a is the first term, d is the common difference and n is the total number of terms. 
  Sum of n terms of an A.P., when first and last term is given, is

     Sn = 
n
2

 [a + l]

  where, a is the first term and l is the last term.
  The nth term of an A.P. is the difference of the sum of first n terms and the sum of first (n – 1) terms of it. i.e.,
     an = Sn – Sn – 1.

Mnemonics

SAND

S : Means Sum of terms
A : Means first term
N : Means nth term of n term
D : Means common difference

Know the Terms
  A sequence is defined as an ordered list of numbers.
  The first, second and third terms of a sequence are denoted by t1, t2 and t3 respectively. 
  If the terms of sequence are connected with plus (+) or minus (–), the pattern is called a series.
  Example : 2 + 4 + 6 + 8 + ........ is a series.
  The sequence of numbers 0, 1, 1, 2, 3, 5, 8, 13,...... was discovered by a famous Italian Mathematician Leonardo 

Fibonacci, when he was dealing with the problem of rabbit population.
  If the terms of a sequence or a series are written under specific conditions, then the sequence or series is called a 

progression.
  If a constant is added or subtracted from each term of an A.P., the resulting sequence is also an A.P.
  If each term of an A.P. is multiplied or divided by a constant, the resulting sequence is also an A.P.
  The selection of three terms in an A.P. are
  (i) a – d, a, a + d
  (ii) The selection of four terms in an A.P. are a – 3d, a – d, a + d, a + 3d.
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  If the nth term is in linear form i.e., an + b = an, the sequence is in A.P.
  If the terms are selected at a regular interval, the given sequence is in A.P.
  If three consecutive number a, b and c are in A.P., the sum of first and third number is twice the middle number 

i.e., 2b = a + c.
  Facts about the Common Difference
  If common difference is:
  (a) Positive, the A.P. is increasing. E.g. 2,4,6,8,…….
  (b) Zero, the A.P. is constant. E.g. 5,5,5,5,5,……..

  (c) Negative, the A.P. is decreasing. E.g. 24,21,18,15,……
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UNIT II: geomeTry

CHAPTer-3 
CIrCles

revision Notes
  A tangent to a circle is a line that intersects the circle at one point only.

  The common point of the circle and the tangent is called the point of contact.

  The length of the segment of the tangent drawn from the external point P and the point of contact with the circle 
is called the length of the tangent.

  A tangent to a circle is a special case of the secant when the two end points of the corresponding chord  
coincide.

  There is no tangent to a circle passing through a point lying inside the circle.

  There are exactly two tangents to a circle through a point outside the circle.

  At any point on the circle there can be one and only one tangent.

  The tangent at any point of a circle is perpendicular to the radius through the point of contact.

  The lengths of the tangents drawn from an external point to a circle are equal.

  In the figure, PA = PB.
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CHAPTER-2 
ARITHMETIC PROGRESSION

Revision Notes

To Find nth Term of the Arithmetic Progression
  An arithmetic progression is a sequence of numbers in which each term is obtained by adding or subtracting a 

fixed number d to the preceding term, except the first term.
  The difference between the two successive terms of an A.P. is called the common difference.
	 Each number in the sequence of arithmetic progression is called a term of an A.P.
  The arithmetic progression having finite number of terms is called a finite arithmetic progression.
  The arithmetic progression having infinite number of terms is called an infinite arithmetic progression.

  A list of numbers a1, a2, a3, …… is an A.P., if the differences a2 – a1, a3 – a2, a4 – a3, … give the same value i.e., ak+1 – ak 
is same for all different values of k.

  The standard form of an A.P. is a, a +  d, a +  2d, a + 3d, …..

  If an A.P. a, a + d, a + 2d,………, l is reversed to l, l – d, l – 2d, ………, a, then common difference changes to 
negative of original sequence common difference.

Sum of n Terms of an Arithmetic Progression
  Sum of n terms of an A.P. is given by:

    Sn = n
2

 [2a + (n – 1)d]

  where, a is the first term, d is the common difference and n is the total number of terms. 
  Sum of n terms of an A.P. when first and last term is given.

    Sn = n
2

[a + l]

  where, a is the first term and l is the last term.
  The nth term of an A.P. is the difference of the sum of first n terms and the sum to first (n – 1) terms of it. 
  i.e.,  an = Sn – Sn – 1.

Mnemonics

Concept: nth Term of Arithmetic Progression = a + (n – 1)d.

Nokia Offers Additional Programmer in English To Attract Positive New One Buyer Daily
Interpretation:
  Nokia's 'N' is nth term.
  Offer's 'O' is of
  Additional's 'A' is Arithmetic 
  Programmer's 'P' is Progression
  In's 'I' is is.
  English's 'E' is Equal
  To's 'T' is To
  Attract's 'A' is a
  Positive's 'P' is +
  New's 'N' is n
  One buyer is – 1
  Daily's 'D' is d
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  The general (nth) term of an A.P. is expressed as:

                                                             an = a + (n – 1)d. ......... from the starting.

        where, a is the first term and d is the common difference.

  The general (nth) term of an A.P. l, l – d, l – 2d,…….., a is given by:        

    an = l + (n – 1)(– d) = l – (n – 1)d .......... from the end.

  where, l is the last term, d is the common difference and n is the number of terms.

Know the Terms

  A sequence is defined as an ordered list of numbers.

  The first, second and third terms of a sequence are denoted by t1, t2 and t3 respectively. 

  If the terms of sequence are connected with plus (+) or minus (–), the pattern is called a series.

  Example: 2 + 4 + 6 + 8 + ........ is a series.

  The sequence of numbers 0, 1, 1, 2, 3, 5, 8, 13,...... was discovered by a famous Italian Mathematician Leonasalo 
Fibonacci, when he was dealing with the problem of rabbit population.

  If the terms of a sequence or a series are written under specific conditions, then the sequence or series is called a 
progression.

  If a constant is added or subtracted from each term of an A.P., the resulting sequence is also an A.P.

  If each term of an A.P. is multiplied or divided by a constant, the resulting sequence is also an A.P.

  If the nth term is in linear form i.e., an + b = an, the sequence is in A.P.

  If the terms are selected at a regular interval, the given sequence is in A.P.

  If three consecutive numbers a, b and c are in A.P., the sum two numbers is twice the middle number i.e., 2b = a + c.

ll

UNIT II: GEOMETRY

CHAPTER-3 
CIRCLES

Revision Notes

 		Tangent: A tangent to a circle is a line that intersects the circle at one point only.

		The common point of the circle and the tangent is called the point of contact.

		Secant: Two common points (A and B) between line PQ and circle.

		A tangent to a circle is a special case of the secant when the two end points of the corresponding chord coincide.

		There is no tangent to a circle passing through a point lying inside the circle.

		At any point on the circle there can be one and only one tangent.

		The tangent at any point of a circle is perpendicular to the radius through the point of contact.


