- > Non-terminating Repeating (or Recurring) Decimals: The decimal expansion obtained from $\frac{p}{q}$ repeats periodically, then it is called non-terminating repeating (or recurring) decimal.
- > Just divide the numerator by the denominator of a fraction. If you end up with a remainder of 0, you have a terminating decimal otherwise repeating or recurring decimal.
- ➤ The sum or difference of a rational and an irrational number is irrational.
- > The product and quotient of a non-zero rational and an irrational number is irrational.
- Let $x = \frac{p}{q}$ be a rational number, such that the prime factorization of q is of the form $2^m 5^n$, where n and m are nonnegative integers. Then, x has a decimal expansion which terminates.
- Let x be a rational number whose decimal expansion terminates. Then, x can be expressed in the form $\frac{p}{q}$, where p and q are co-primes and the prime factorization of q is of the form 2^m5^n , where m and n are non-negative integers.
- Let $x = \frac{p}{q}$ be a rational number, such that the prime factorization of q is not of the form $2^m 5^n$, where n and m are non-negative integers. Then, x has a decimal expansion which is non-terminating repeating.

Know the Formulae

or

and

For two positive integers a and b, we have

HCF
$$(a, b) \times LCM(a, b) = a \times b$$

HCF $(a, b) = \frac{a \times b}{LCM(a, b)}$
LCM $(a, b) = \frac{a \times b}{HCF(a, b)}$

UNIT II: ALGEBRA

Chapter - 2 : Polynomials

Revision Notes

Zeroes of a Polynomial and Coefficients of Quadratic Polynomials

- **Polynomial:** An algebraic expression in the form of $a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$, (where n is a whole number and $a_0, a_1, a_2, \dots, a_n$ are real numbers) is called a polynomial in one variable x of degree n.
- **Value of a Polynomial at a given point :** If p(x) is a polynomial in x and 'α' is any real number, then the value obtained by putting $x = \alpha$ in p(x), is called the value of p(x) at $x = \alpha$.
- **Zero of a Polynomial:** A real number k is said to be a zero of a polynomial p(x), if p(k) = 0. Geometrically, the zeroes of a polynomial p(x) are precisely the X-co-ordinates of the points, where the graph of y = p(x) intersects the X-axis.
 - (i) A linear polynomial has one and only one zero.
 - (ii) A quadratic polynomial has at most two zeroes.
 - (iii) A cubic polynomial has at most three zeroes.
 - (iv) In general, a polynomial of degree n has at most n zeroes.

> Graphs of Different types of Polynomials:

- **Linear Polynomial:** The graph of a linear polynomial p(x) = ax + b is a straight line that intersects X-axis at one point only.
- **Quadratic Polynomial:** (i) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola which opens upwards, if a > 0 and intersects X-axis at a maximum of two distinct points.
 - (ii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola which opens downwards, if a < 0 and intersects X-axis at a maximum of two distinct points.
- Cubic polynomial: Graph of cubic polynomial $p(x) = ax^3 + bx^2 + cx + d$ intersects X-axis at a maximum of three distinct points.

> Relationship between the Zeroes and the Coefficients of a Polynomial:

(i) Zero of a linear polynomial =
$$\frac{(-1)^{1} \text{ Constant term}}{\text{Coefficient of } x}$$

If ax + b is a given linear polynomial, then zero of linear polynomial is $\frac{-b}{a}$

(ii) In a quadratic polynomial,

Sum of zeroes of a quadratic polynomial =
$$\frac{(-1)^1 \text{ Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of zeroes of a quadratic polynomial =
$$\frac{(-1)^2 \text{ Constant term}}{\text{Coefficient of } x^2}$$

:. If α and β are the zeroes of a quadratic polynomial $ax^2 + bx + c$, then

$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

(iii) If α , β and γ are the zeroes of a cubic polynomial $ax^3 + bx^2 + cx + d$, then

$$\alpha + \beta + \gamma = (-1)^{1} \frac{b}{a} = -\frac{b}{a}, \quad \alpha\beta + \beta\gamma + \gamma\alpha = (-1)^{2} \frac{c}{a} = \frac{c}{a} \text{ and } \alpha\beta\gamma = (-1)^{3} \frac{d}{a} = -\frac{d}{a}$$

Discriminant of a Quadratic Polynomial: For $f(x) = ax^2 + bx + c$, where $a \ne 0$, $b^2 - 4ac$ is called its discriminant D. The discriminant D determines the nature of roots/zeroes of a quadratic polynomial.

Case I : If D > 0, graph of $f(x) = ax^2 + bx + c$ will intersect the X-axis at two distinct points, x-co-ordinates of points of intersection with X-axis is known as 'zeroes' of f(x).

: f(x) will have two zeroes and we can say that roots/zeroes of the two given polynomials are real and unequal. **Case II :** If D = 0, graph of $f(x) = ax^2 + bx + c$ will touch the X-axis at one point only.

 $\therefore f(x)$ will have only one 'zero' and we can say that roots/zeroes of the given polynomial are real and equal.

Case III: If D < 0, graph of $f(x) = ax^2 + bx + c$ will neither touch nor intersect the X-axis.

 \therefore f(x) will not have any real zero.

Know the Formulae

Relationship between the zeroes and the coefficients of a Polynomial :

S. No.	Type of polynomial	General form	Maximum Number of zeroes	Relationship between zeroes and coefficients
1.	Linear	$ax + b$, where $a \neq 0$	1	$k = -\frac{b}{a}$, i.e., $k = \frac{-\text{Constant term}}{\text{Coefficient of } x}$
2.	Quadratic	$ax^2 + bx + c$, where $a \neq 0$	2	Sum of zeroes, $(\alpha + \beta) = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2} = -\frac{b}{a}$ Product of zeroes, $(\alpha\beta) = \frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{c}{a}$
3.	Cubic	$ax^3 + bx^2 + cx + d$, where $a \neq 0$	3	Sum of zeroes, $(\alpha + \beta + \gamma) = \frac{-\text{Coefficient of } x^2}{\text{Coefficient of } x^3} = -\frac{b}{a}$ Product of sum of zeroes taken two at a time, $(\alpha\beta + \beta\gamma + \gamma\alpha) = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3} = \frac{c}{a}$ Product of zeroes, $(\alpha\beta\gamma) = \frac{-\text{Constant term}}{\text{Coefficient of } x^3} = -\frac{d}{a}$

Mnemonics

Concept: Formula
$$\rightarrow \alpha . \beta = \frac{c}{a}$$

Amitabh Bachchan went Canada by aeroplane.

Interpretation:

Amitabh's A \Rightarrow Alpha (α) Bachchan's B \Rightarrow Beta (β)

Canada's $C \Rightarrow Constant (c)$

By for Divide by and aeroplane's $a \Rightarrow Variable$.

CHAPTER -2 : POLYNOMIALS

