MATHEMATICS

CBSE
Sample Question Papers

Self Assessment Paper

General Instructions :

1. This question paper contains two parts A and B. Each part is compulsory. Part A carries 24 marks and Part B carries 56 marks.
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part A and Part B have choices.

Part-A :

1. It consists of two sections- I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs .
Part-B :
4. It consists of three sections-III, IV and V.
5. Section III comprises of 10 questions of $\mathbf{2}$ marks each.
6. Section IV comprises of 7 questions of 3 marks each.
7. Section V comprises of 3 questions of 5 marks each.
8. Internal choice is provided in 3 questions of Section -III, 2 questions of Section -IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART-A

Section-I

Question numbers 1 to 16 are very short answer type questions.

1. Find the domain of function $\cos ^{-1}(2 x-1)$.
[AT] 2. Let $A=\{1,2,3, \ldots n\}$ and $B=\{a, b\}$. Then find the number of surjections from A into B.
2. If $R=\{(x, y): x+2 y=10\}$ is a relation on N, find the range of R.
3. If $\left|\begin{array}{lll}2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{array}\right|+3=0$, then find the value of x.
4. Find the values of x and y make the following pair of matrices equal :
$\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right],\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$.
To know about more useful books for class-12 click here
5. If $\left[\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}6 \\ 5\end{array}\right]$, then find the value of x and y.
6. Evaluate : $\int_{0}^{\pi / 8} \tan ^{2}(2 x)$.

Find the value of $\int_{1}^{4}|x-5| d x$.
[AII 8. If $y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$, then find $\frac{d y}{d x}$.

OR

Write the order and the degree of the following differential equation :

$$
x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x\left(\frac{d y}{d x}\right)^{4}=0
$$

9. Find the point, where the tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets x-axis ?

OR
AII If $f(x)=\left\{\begin{array}{l}m x+1 \text { if } x \leq \frac{\pi}{2} \\ \sin x+n, \\ \text { if } x>\frac{\pi}{2}\end{array}\right.$, is continuous at $x=\frac{\pi}{2}$ then what is the relation between m and n ?
10. Write a unit vector in the direction of the sum of vectors $\vec{a}=2 \vec{i}+2 \vec{j}-5 \vec{k}$ and $\vec{b}=2 \vec{i}+\vec{j}-7 \vec{k}$.

OR

AII If tangent of the curve $y^{2}+3 x-7=0$ at the point (h, k) is parallel to line $x-y=4$, then the value of k is \qquad .
11. Find the direction cosines of the line : $\frac{x-1}{2}=-y=\frac{z+1}{2}$
12. If the cartesian equation of a line are $\frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$, write the vector equation for the line.
13. Find a vector in the direction $\vec{a}=\hat{i}-3 \hat{j}$ that has magnitude 5 units.
14. If a line has direction ratios $3,-1,-3$, then find its direction cosines.

AI 15. If A and B are two events such that $P(A \mid B)=p, P(A)=p, P(B)=1 / 3$ and $P(A \cup B)=5 / 9$, then find p.
16. If A and B are two events such that $P(A)=0.5, P(B)=0.8$ and $P(A \cup B)=0.9$, then find $P(A / B)$.

OR

If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.8$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.6$, then $\mathrm{P}(\mathrm{A} \cup B)$ is equal to

Section-II

Both the case study based questions are compulsory. Attempt any 4 sub parts from each question 17 and 18. Each question carries 1 mark.
17. There is an right circular cone of maximum volume that can be inscribed in a sphere of radius r.

Based on the above information answer the following questions:
(i) What is the volume of cone (V) ?
(a) $\frac{1}{3} \pi\left(-h^{3}+2 h^{2} r\right)$
(b) $\frac{1}{2} \pi\left(-h^{3}+2 h^{2} r\right)$
(c) $\frac{1}{4} \pi\left(-h^{3}+2 h^{2} r\right)$
(d) $\frac{1}{5} \pi\left(-h^{3}+2 h^{2} r\right)$
(ii) What is the volume of $\frac{d \mathrm{~V}}{d h}$?
(a) $\frac{\pi}{2}\left(-3 h^{2}+4 h r\right)$
(b) $\frac{\pi}{4}\left(-3 h^{2}+4 h r\right)$
(c) $\frac{\pi}{3}\left(-3 h^{2}+4 h r\right)$
(d) $\frac{\pi}{5}\left(-3 h^{2}+4 h r\right)$
(iii) What is the value of $\frac{d^{2} \mathrm{~V}}{d h^{2}}$?
(a) $-\frac{4 \pi r^{2}}{3}$
(b) $-\frac{4 \pi r^{3}}{3}$
(c) $-\frac{4 \pi r}{3}$
(d) $-\frac{4 \pi r^{5}}{3}$
(iv) What is the relation between h and r ?
(a) $2 h=4 r$
(b) $3 h=4 r$
(c) $2 h=3 r$
(d) $3 h=2 r$
(v) What is the value of OD?
(a) $r-h$
(b) $h-r$
(c) $r-\frac{h}{2}$
(d) $h-\frac{r}{2}$
18. Two numbers are selected at random (without replacement) from the first six positive integers. Let x denotes the larger of the two numbers obtained.
First 6 positive integers

\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	2	3	4	5	6

Based on the above information, answer the following questions:
(i) What is the value of $\mathrm{P}(\mathrm{X}=5)=$?
(a) $\frac{4}{15}$
(b) $\frac{5}{15}$
(c) $\frac{3}{15}$
(d) $\frac{2}{15}$
(ii) What is the value of $\mathrm{P}(\mathrm{X}=3)=$?
(a) $\frac{1}{15}$
(b) $\frac{2}{15}$
(c) $\frac{3}{15}$
(d) $\frac{5}{15}$
(iii) What is the value of mean of the distribution?
(a) 4
(b) 4.22
(c) 4.44
(d) 4.66
(iv) What is the formula of variance?
(a) $\sum X_{i}^{2} P_{i}-(\mu)^{2}$
(b) $\sum X_{i}^{2} \mathrm{P}_{\mathrm{i}}-\sum X_{i} \mathrm{P}_{\mathrm{i}}(X)^{2}$
(c) $\sum X_{i} P_{i}^{2}-(\mu)^{2}$
(d) $\sum X_{i} \mathrm{P}_{\mathrm{i}}^{2}-\sum \mathrm{X}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}(\mathrm{X})^{2}$
(v) What is the value of variance?
(a) 1.51
(b) 1.53
(c) 1.55
(d) 1.57

To know about more useful books for class-12 click here

PART-B

Section-III

Question numbers 19 to 28 carry 2 marks each.
19. Let $f: X \rightarrow Y$ be a function. Define a relation R on X given by $R=\{(a, b): f(a)=f(b)\}$. Show that R is a transitive relation.
20. If $A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$, show that $(A-2 I)(A-3 I)=0$.
21. Find $\int \frac{x+1}{(x+2)(x+3)} d x$.

OR

(AI) Find the value of $\int_{0}^{1} \tan ^{-1}\left(\frac{1-2 x}{1+x-x^{2}}\right) d x$.
22. Find the particular solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$; given that $y(0)=\sqrt{3}$.
23. Find the sum of the order and the degree of the following differential equation :

$$
\frac{d^{2} y}{d x^{2}}+\sqrt[3]{\frac{d y}{d x}}+(1+x)=0
$$

24. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}.
[AIT 25. If $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}, \vec{c}=2 \hat{j}-\hat{k}$ are three vectors, find the area of the parallelogram having diagonals $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$.
25. If E and F be two events such that $P(E)=\frac{1}{3}, P(F)=\frac{1}{4}$, find $P(E \cup F)$ if E and F are independent events.

OR

Suppose that 5 men out of 100 and 25 women out of 1000 are good orators. Assuming that there are equal number of men and women, find the probability of choosing a good orator.
27. Find the second derivative of $e^{2 x}$ with respect to x.

OR

If $y=\sin ^{-1}\left(6 x \sqrt{1-9 x^{2}}\right),-\frac{1}{3 \sqrt{2}}<x<\frac{1}{3 \sqrt{2}}$, then find $\frac{d y}{d x}$.
28. Find the interval of the function $f(x)=\frac{2 x^{2}-1}{x^{4}}, x>0$.

Section-IV

Question Number 29 to 35 carry 3 marks each.
(AI) 29. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{x^{2}+1}, \forall x \in R$ is neither one-one nor onto.
30. If $y=(\cos x)^{x}+\tan \sqrt[-1]{x}$, then find $\frac{d y}{d x}$.

OR

The feasible solution for an LPP is shown in given figure. Let $Z=3 x-4 y$ be the objective function. Find the point of minimum of Z.

31. Solve $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ subject to the initial condition $y(0)=0$.
32. Find the intervals on which the function $f(x)=(x-1)^{3}(x-2)^{2}$ is (a) strictly increasing (b) strictly decreasing.
33. Find : $\int \frac{\sin x}{\sin ^{3} x+\cos ^{3} x} d x$.
34. Find: $\int \frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+2)} d x$.
35. $\int \cot ^{2} x d x$ is equal to \qquad

If $\int_{0}^{a} \frac{1}{1+4 x^{2}} d x=\frac{\pi}{8}$, then $a=$ \qquad OR . 6

Section-V

Question numbers 36 to 38 carry 5 marks each.
[AI 36. If $A=\left[\begin{array}{lll}1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1\end{array}\right]$, Find A^{-1}.
Hence, solve the system of equations :

$$
\begin{array}{r}
x+3 y+4 z=8 \\
2 x+y+2 z=5 \\
5 x+y+z=7
\end{array}
$$

and
OR
Find the values of p and q, for which

$$
f(x)=\left\{\begin{array}{cc}
\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, & \text { if } x<\frac{p}{2} \\
p, & \text { if } x=\frac{\pi}{2} \\
\frac{q(1-\sin x)}{(p-2 x)^{2}}, & \text { if } x>\frac{p}{2}
\end{array}\right.
$$

is continuous at $x=\frac{\pi}{2}$.
To know about more useful books for class-12 click here
[AT] 37. Find the vector and cartesian equations of the plane passing through the points $(2,2,-1),(3,4,2)$ and $(7,0,6)$. Also find the vector equation of a plane passing through $(4,3,1)$ and parallel to the plane obtained above.

OR

Show that the line of intersection of the planes $x+2 y+3 z=8$ and $2 x+3 y+4 z=11$ is coplanar with the line $\frac{x+1}{1}=\frac{y+1}{2}=\frac{z+1}{3}$. Also find the equation of the plane containing them.

AI 38. Solve the following linear programming problem graphically :
Minimize: $Z=6 x+3 y$
Subject to the constraints : $\left\{\begin{array}{c}4 x+y \geq 80 \\ x+5 y \geq 115 \\ 3 x+2 y, \leq 150 \\ x \geq 0, y \geq 0\end{array}\right.$

OR

Solve the following linear programming problem graphically :
Minimize : $Z=600 x+400 y$
Subject to the constraints :
and

$$
x+2 y \leq 12
$$

