CHEMISTRY

Sample Question Papers

Self Assessment Paper

General Instructions:

Read the following instructions carefully.

- (a) There are 33 questions in this question paper. All questions are compulsory.
- **(b)** Section A: Q. No. 1 to 16 are objective type questions. Q. No. 1 and 2 are passage based questions carrying 4 marks each while Q. No. 3 to 16 carry 1 mark each. MCQs or Reason Assertion Type based on given passage each carrying 1 mark.
- (c) Section B: Q. No. 17 to 25 are Short Answer Questions and carry 2 marks each.
- (d) Section C: Q. No. 26 to 30 are Short Answer Questions and carry 3 marks each.
- (e) Section D: Q. No. 31 to 33 are Long Answer Questions carrying 5 marks each.
- (f) There is no overall choice. However, internal choices have been provided.
- (g) Use of calculators and log tables is not permitted.

Section 'A'

OBJECTIVE TYPE

Read the passage given below and answer the following questions :

 $(1\times 4=4)$

Alcohols are versatile compounds. They react both as nucleophiles and electrophiles. The bond between O–H is broken when alcohols react as nucleophiles.

Alcohols as nucleophiles

(i)
$$R - \overset{\cdot}{O} - H + \overset{\cdot}{C} - \longrightarrow R - \overset{\downarrow}{O} - \overset{\downarrow}{C} - \longrightarrow R - O - \overset{\downarrow}{C} - + H^+$$

(ii) The bond between C–O is broke when they react as electrophiles. Protonated alcohols react in this manner

Protonated alcohols as electrophiles R-CH₂-OH + $\dot{H} \rightarrow$ R-CH₂- \dot{O} H₂

Based on the cleavage of O–H and C–O bonds, the reactions of alcohols and phenols may be divided into two groups :

- (a) Reactions involving cleavage of O-H bond
- 1. Acidity of alcohols and phenols
 - (i) Reaction with metals: Alcohols and phenols react with active metals such as sodium, potassium and aluminium to yield corresponding alkoxides/phenoxides and hydrogen.

$$2 \text{ R-O-H} + 2 \text{ Na} \rightarrow 2 \text{R-O-Na} + \text{H}_2$$

Sodium
alkoxide

The following questions are multiple choice questions. Choose the most appropriate answer:

- (i) Write down the decreasing order of reactivity of sodium metal towards primary, secondary and tertiary alcohols.
 - (a) 1° alc $< 2^{\circ}$ alc $< 3^{\circ}$ alc
- **(b)** 1° alc > 2° alc > 3° alc
- (c) 3° alc < 1° alc < 2° alc
- (d) 3° alc $> 1^{\circ}$ alc $< 2^{\circ}$ alc
- (ii) Name the following reaction:

- (a) Williamson's synthesis
- (b) Kolbe's reaction
- (c) Reimer-Tiemann reaction
- (d) Sandmayer's reaction
- (iii) Give the descending order of acid strength of alcohols.
 - (a) $RCH_2OH > RR'CHOH >> RR'R''COH$
 - (b) $RCH_2OH > RR'R''COH > RR'CHOH$
 - (c) RCH₂OH < RR'CHOH << RR'R"COH
 - (d) RCH₂OH < RR'R"COH < RR'CHOH
- (iv) Write the IUPAC name of the following compound:
 - 1CH₃ 2C - OH 3CH₂
 - (a) 2-methyl, 2-phenyl ethanol
- (b) 2-phenyl butanol
- (c) 2-Phenylpropan-2-ol
- (d) 1-methyl, 1-phenyl ethanol

OR

Which of the following compounds will give butanone on oxidation with alkaline KMnO₄ solution?

(a) Butan-1-ol

(b) Butan-2-ol

(c) Both of these

(d) None of these

Q.2. Read the passage given below and answer the following questions:

 $(1\times 4=4)$

The reaction in which a nucleophile replaces already existing nucleophile in a molecule is called nucleophilic substitution reaction. Haloalkanes are substrate in these reactions. In this type of reaction, a nucleophile reacts with haloalkane (the substrate) having a partial positive charge on the carbon atom bonded to halogen. A substitution reaction takes place and halogen atom, called leaving group departs as halide ion. Since the substitution reaction is initiated by a nucleophile, it is called nucleophilic substitution reaction.

In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- **(c)** Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.
- Assertion: Chlorobenzene is formed by reaction of chlorine with benzene in the presence of AlCl₃. **Reason**: $[AlCl_4]^-$ is the species that attacks the benzene ring in this reaction.

(ii) Assertion: Electrophilic substitution reactions occur slowly in haloarenes.

Reason: The reason for this is -R effect of the benzene ring.

(iii) Assertion: Haloalkanes, though polar, are insoluble in water.

Reason: Haloalkanes do not form hydrogen bonds with water.

(iv) Assertion: In monohaloarenes, further electrophilic substitution occurs at ortho and para positions.

Reason: Halogen atom is a ring deactivator.

OR

Assertion: It is difficult to replace chlorine by -OH in chlorobenzene in comparison to that in chloroethane.

Reason: Carbon-chlorine (C—Cl) bond in chlorobenzene has a partial double bond character due to resonance.

Following questions (No. 3 -11) are Multiple Choice Questions carrying 1 mark each:

- Q3. Solid A is a very hard electrical insulator in solid as well as in molten state and melts at an extremely high temperature. What type of solid is it?
 - (a) Semiconductors

(b) Ionic compounds

(c) Covalent compounds

(d) Partial covalent compounds CH₃

Q4. Write the IUPAC name of the following: CH₂—

C,H,OH

- (a) 3-ethyl-3-methyl butan-2-ol
- (b) 3,3-dimethyl pentan-2-ol
- (c) 3-methyl-3-ethyl butan-2-ol
- (d) 3,3-dimethyl pentanol

Write the product of the following reaction:

(a) $C_6H_5CH_2CH_2OH$

(b) $C_6H_5OH + CH_3CH_3$

(c) $C_6H_5CH(OH)CH_3$

- (d) $C_6H_5CH_2OH + CH_4$
- **Q5.** When $KMnO_4$ solution is added to oxalic acid solution, the decolourisation is slow in the beginning but becomes instantaneous after sometime because
 - (a) CO₂ is formed as the product.
 - **(b)** Reaction is exothermic.
 - (c) MnO_4 catalyses the reaction.
 - (d) Mn^{2+} acts as auto-catalyst.
- **Q6.** In Clemmensen reduction carbonyl compound is treated with _____
 - (a) zinc amalgam + HCl
- (b) sodium amalgam + HCl
- (c) zinc amalgam + nitric acid
- (d) sodium amalgam + HNO₃

OR

The best method for preparing primary amines from alkyl halides without changing the number of carbon atoms in the chain is

- (a) Hoffmann Bromamide reaction
- (b) Gabriel phthalimide synthesis

(c) Sandmeyer reaction

- (d) Reaction with NH₃
- **Q7.** Which of the following expressions is correct for the rate of reaction given below?

 $5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(l)$

(a)
$$\frac{\Delta[Br^{-}]}{\Delta t} = 5 \frac{\Delta[H^{+}]}{\Delta t}$$

(b)
$$\frac{\Delta[Br^{-}]}{\Delta t} = \frac{6}{5} \frac{\Delta[H^{+}]}{\Delta t}$$

(c)
$$\frac{\Delta[Br^{-}]}{\Delta t} = \frac{5}{6} \frac{\Delta[H^{+}]}{\Delta t}$$

(d)
$$\frac{\Delta[Br^-]}{\Delta t} = 6 \frac{\Delta[H^+]}{\Delta t}$$

Q8. IUPAC name of $CrCl_3(py)_3$ is

- (a) Trichloridotripyridinechromium(III)
- (b) Tripyridinetrichlorochromium(III)
- (c) Tripyridinotrichlorochromium(VI)
- (d) Trichloridotripyridinechromium(VI)

OR

IUPAC name of [Pt $(NH_3)_2Cl(NO_2)$] is :

- (a) Platinum diaminechloronitrite
- (b) Chloronitrito-N-ammineplatinum(II)
- (c) Diamminechloridonitrito-N-platinum(II)
- (d) Diamminechloronitrito-N-platinum(II)
- Q9. A compound is formed by two elements M and N. The element N forms ccp and atoms of M occupy

 $\frac{1}{3}$ rd of tetrahedral voids. What is the formula of the compound?

(a) MN_3

(b) M_2N_3

(c) M_3N_2

(d) M_3N_4

Q10. What is the formula for the following compound?

Dichloridobis(ethane-1,2-diamine) platinum (IV) nitrate

- (a) $[PtCl_2(en)_2](NO_3)_2$
- **(b)** $[PtCl_2(NO_3)_2(en)_2]$
- (c) $[PtCl_2](NO_3)_2(en)_2$
- (d) $[Pt (NH_3)BrCl (NO_2)]^{-1}$

Q11. Which stoichiometric defect does not change the density of the crystal?

(a) Frenkel defect

(b) Schottky defect

(c) Interstitial defect

(d) F-centres

OR

The anion D:\Pagination\OSBO\Nov\02-11-2020\pack\01 On Tips- 12 Folder\Links which is occupied by an electron is known as

(a) Interstitial defect

(b) F-centres

(c) Frenkel defect

(d) Schottky defect

In the following questions (Q. No. 12 - 16) a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.
- **Q12. Assertion** (A): Coagulation power of Al³⁺ is more than Na⁺.

Reason (R): Greater the valency of the flocculating ion added, greater is its power to cause precipitation (Hardy-Schulze rule).

Assertion (A): Λ_m for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.

Reason (R): For weak electrolytes degree of dissociation increases with dilution of solution.

- **Q13.** Assertion (A): $[Cr(H_2O)_6]Cl_2$ and $[Fe(H_2O)_6]Cl_2$ are reducing in nature.
 - **Reason** (**R**): Unpaired electrons are present in their *d*-orbitals.
- Q14. Assertion (A): Hydrolysis of (–)-2-bromooctane proceeds with inversion of configuration.
 - **Reason (R)**: This reaction proceeds through the formation of a carbocation.
- **Q15. Assertion (A)**: Formaldehyde is a planar molecule.
 - **Reason (R):** It contains sp² hybridised carbon atom.
- **Q16. Assertion (A)**: Acetanilide is less basic than aniline.
 - **Reason (R):** Acetylation of aniline results in decrease of electron density on nitrogen.

Section 'B'

The following questions (Q.No 17 - 25) are Short Answer Type – I and carry 2 marks each.

Q17. Define order of reaction. Predict the order of reaction in the given graphs:

Where $[R]_0$ is the initial concentration of reactant and $t_{1/2}$ is half life.

Why are powdered substances more effective adsorbents than their crystalline forms?

- Q18. Calculate the freezing point of a solution containing 60 g of glucose (Molar mass = 180 g mol⁻¹) in 250 g of water. (K_f of water = 1.86 K kg mol⁻¹)
- Q19. How will you carry out the following conversions
 - (a) Ethanal to Propanone.
 - (b) Toluene to Benzoic acid.
- Q20. For the reaction

$$2N_2O_5$$
 (g) $\to 4NO_2$ (g) + O_2 (g),

the rate of formation of NO_2 (g) is 2.8×10^{-3} M s⁻¹. Calculate the rate of disappearance of N_2O_5 (g).

A current of 1.50A was passed through an electrolytic cell containing AgNO₃ solution with inert electrodes. The weight of silver deposited was 1.50 g. How long did the current flow? (Molar mass of Ag = 108 g mol^{-1} , $1F = 96500 \text{ C mol}^{-1}$).

Q21. Draw the structure of major monohalo product in each of the following reactions:

(i)
$$OH \xrightarrow{SOCl_2}$$

(ii) $CH_2-CH = CH_2 + HBr \xrightarrow{Peroxide}$

OR

How will you carry out the following conversion:

- (i) 2-Bromopropane to 1-bromopropane
- (ii) Benzene to p-chloronitrobenzene
- **Q22.** Out of $[CoF_6]^{3-}$ and $[Co(en)_3]^{3+}$, which one complex is,
 - (i) Paramagnetic,
 - (ii) More stable,
 - (iii) Inner orbital complex and
 - (iv) High spin complex (Atomic number of Co = 27)

OR

Discuss the factors affecting stability of coordination complexes.

- **Q23.** What are the transition elements? Write two characteristics of the transition elements.
- **Q24.** Give reasons:
 - (i) Electrophilic substitution in aromatic amines takes place more readily than benzene.
 - (ii) CH₃CONH₂ is a weaker base than CH₃CH₂NH₂.
- **Q25.** Write any two differences between Physisorption and Chemisorption.

OR

- (a) Write the dispersed phase and dispersion medium of milk.

(b) Why is adsorption exothermic in nature?

Section 'C'

- (Q.No 26 30) are Short Answer Type II carrying 3 marks each.
- **Q26.** Give reasons:
 - (i) Acetylation of aniline reduces its activation effect.
 - (ii) CH_3NH_2 is more basic than $C_6H_5NH_2$.
 - (iii) Although –NH $_2$ is o/p directing group, yet aniline on nitration gives a significant amount of m-nitroaniline.

OR

How will you convert the following:

- (i) Nitrobenzene into aniline,
- (ii) Ethanoic acid into methanamine,
- (iii) Aniline to N-phenylethanamide. (Write the chemical equations involved.)
- Q27. Complete and balance the following chemical equations:
 - (a) $Fe^{2+} + MnO_4^- + H^+ \rightarrow$
 - (b) $MnO_4^- + H_2O + I^- \rightarrow$
 - (c) $PCl_5 \xrightarrow{Heat} >$
- **Q28.** Write the structures of the main products in the following reactions :

(iii)
$$CH=CH_2$$

$$+H_2O \xrightarrow{H^+}$$
(iii) $+HI \xrightarrow{}$

OR

Complete the following equations:

(a)
$$\xrightarrow{\text{conc. NaOH}}$$

(b) CH_3COCH_3
 $\xrightarrow{\text{LiAlH}_4}$

(c) $\text{CH}_3\text{-COOH}$
 $\xrightarrow{\text{(a) CL}_2/P}$
 $\xrightarrow{\text{(b) H,O}}$

- Q29. (a) Write the product when D-glucose reacts with conc. HNO₃.
 - (b) Amino acids show amphoteric behaviour. Why?
 - (c) Name the products obtained after the hydrolysis of lactose.
- Q30. (a) Write the formula of the following coordination compound: Iron(III) hexacyanoferrate(II).
 - (b) On the basis of crystal field theory, write the electronic configuration for d^4 ion if $\Delta_0 < P$.

Section 'D'

(Q.No 31 to 33) are Long Answer Type carrying 5 marks each.

- (a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.
- **(b)** Aquatic animals are more comfortable in cold water than in warm water.
- (c) Elevation of boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.
- (ii) Give reasons:
 - (a) Cooking is faster in pressure cooker than in cooking pan.
 - (b) Red Blood Cells (RBC) shrink when placed in saline water but swell in distilled water.

OR

- (i) Define the following terms:
 - (a) Ideal solution
 - (b) Osmotic pressure.
- (ii) Calculate the boiling point elevation for a solution prepared by adding 10 g CaCl₂ to 200 g of water, assuming that CaCl₂ is completely dissociated. (K_b for water = 0.512 K kg mol⁻¹; Molar mass of CaCl₂ = 111 g mol⁻¹)
- **Q32.** (a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: Sn (s) $| Sn^{2+} (0.004 \text{ M}) | | H^+ (0.020 \text{ M}) | H_2(g) (1 \text{ bar}) | Pt (s)$ (Given : $E^{\circ}Sn^{2+}/Sn = -0.14V$)
 - **(b)** Give reasons:
 - (i) On the basis of E° values, O₂ gas should be liberated at anode but it is Cl₂ gas which is liberated in the electrolysis of aqueous NaCl.
 - (ii) Conductivity of CH₃COOH decreases on dilution.

8

OR

(a) For the reaction

$$2AgCl\ (s) + H_2\ (g)\ (1\ atm) \rightarrow 2Ag(s) + 2H^+\ (0.1\ M) + 2Cl^-(0.1\ M),$$

$$\Delta G^{\circ} = -43600 \text{ J at } 25^{\circ}\text{C}.$$

Calculate the e.m.f. of the cell.

$$[\log 10^{-n} = -n]$$

- (b) Define fuel cell and write its two advantages.
- Q33. (a) When concentrated sulphuric acid was added to an unknown salt present in a test tube a brown gas (A) was evolved. This gas intensified when copper turnings were added to this test tube. On cooling, the gas (A) changed into a colourless solid (B).
 - (i) Identify (A) and (B).
 - (ii) Write the structures of (A) and (B).
 - (iii) Why does gas (A) change to solid on cooling?
 - $\begin{tabular}{ll} \textbf{(b)} & Arrange the following in the decreasing order of their reducing character: \\ \end{tabular}$

HF, HCl, HBr, HI

(c) Complete the following reaction:

$$XeF_4 + SbF_5 \longrightarrow$$

OR

- **(i)** Account for the following:
 - (a) Reducing character decreases from SO₂ to TeO₂.
 - (b) HClO₃ is a stronger acid than HClO.
 - (c) Xenon forms compounds with fluorine and oxygen only.
- (ii) Complete the following equations:
 - (a) 4NaCl + MnO₂ + 4H₂SO₄ \rightarrow
 - (b) $6XeF_4 + 12H_2O \rightarrow$

