Sample Question Paper
 (Issued by Board on 31 ${ }^{\text {st }}$ March, 2023)
 MATHEMATICS BASIC (041)
 Class- X
 Session-2023-24
 SOLVPD

Time Allowed : 3 hours

General Instructions :

(i) This Question Paper has 5 Sections A, B, C, D, and E.
(ii) Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
(iii) Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
(iv) Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
(v) Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
(vi) Section E has 3 sourced based/Case Based/passage based/integrated units of assessment (4 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
(vii) All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
(viii) Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

Section - A

1. If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3} ; x, y$ are prime numbers, then $\operatorname{HCF}(a, b)$ is
(A) $x y$
(B) $x y^{2}$
(C) $x^{3} y^{3}$
(D) $x^{2} y^{2}$
2. The LCM of smallest two-digit composite number and smallest composite number is
(A) 12
(B) 4
(C) 20
(D) 44
3. If $x=3$ is one of the roots of the quadratic equation $x^{2}-2 k x-6=0$, then the value of k is
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 3
(D) 2
4. The pair of equations $y=0$ and $y=-7$ has
(A) One solution
(B) Two solutions
(C) Infinitely many solutions
(D) No solution
5. Value(s) of k for which the quadratic equation $2 x^{2}-k x+k=0$ has equal roots is
(A) 0 only
(B) 4
(C) 8 only
(D) 0,8
6. The distance of the $\operatorname{point}(3,5)$ from x-axis(in units) is
(A) 3
(B) -3
(C) 5
(D) -5
7. If in $\triangle A B C$ and $\triangle P Q R$, we have $\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$ then
(A) $\triangle P Q R \sim \triangle C A B$
(B) $\triangle P Q R \sim \triangle A B C$
(C) $\triangle C B A \sim \triangle P Q R$
(D) $\triangle B C A \sim \triangle P Q R$
8. Which of the following is NOT a similarity criterion?
(A) AA
(B) SAS
(C) AAA
(D) RHS
9. In figure, if $T P$ and $T Q$ are the two tangents to a circle with centre O so that $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is equal to
(A) 60°
(B) 70°
(C) 80°
(D) 90°

10. If $\cos A=\frac{4}{5}$ then the value of $\tan \mathrm{A}$ is
(A) $\frac{3}{5}$
(B) $\frac{3}{4}$
(C) $\frac{4}{3}$
(D) $\frac{1}{8}$
11. If the height of the tower is equal to the length of its shadow, then the angle of elevation of the sun is
(A) 30°
(B) 45°
(C) 60°
(D) 90°
12. $1-\cos ^{2} \mathrm{~A}$ is equal to
(A) $\sin ^{2} A$
(B) $\tan ^{2} \mathrm{~A}$
(C) $1-\sin ^{2} A$
(D) $\sec ^{2} A$
13. The radius of a circle is same as the side of a square. Their perimeters are in the ratio
(A) $1: 1$
(B) $2: \pi$
(C) $\pi: 2$
(D) $\sqrt{ } \pi: 2$
14. The area of the circle is $154 \mathrm{~cm}^{2}$. The radius of the circle is
(A) 7 cm
(B) 14 cm
(C) 3.5 cm
(D) 17.5 cm
15. When a die is thrown, the probability of getting an even number less than 4 is
(A) $1 / 4$
(B) 0
(C) $1 / 2$
(D) $1 / 6$
16. For the following distribution:

Class	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency	10	15	12	20	9

The lower limit of modal class is
(A) 15
(B) 25
(C) 30
(D) 35
17. A rectangular sheet of paper $40 \mathrm{~cm} \times 22 \mathrm{~cm}$, is rolled to form a hollow cylinder of height 40 cm . The radius of the cylinder (in cm) is
(A) 3.5
(B) 7
(C) $\frac{80}{7}$
(D) 5
18. Consider the following frequency distribution:

Class	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Frequency	12	10	15	8	11

The median class is
(A) 6-12
(B) $12-18$
(C) 18-24
(D) 24-30
19. Assertion (A): The point $(0,4)$ lies on y-axis:

Reason(R): The x coordinate of the point on y-axis is zero
(A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(C) Assertions (A) is true but reason (R) is false.
(D) Assertions (A) is false but reason (R) is true.
20. Assertion (A): The HCF of two numbers is 5 and their product is 150 . Then their LCM is 40 .

Reason(R): For any two positive integers a and $b, \operatorname{HCF}(a,(B) \times \operatorname{LCM}(a,(B)=a \times b$.
(A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(C) Assertions (A) is true but reason (R) is false.
(D) Assertions (A) is false but reason (R) is true.

Section - B

21. Find whether the following pair of linear equations is consistent or inconsistent:

$$
\begin{array}{r}
3 x+2 y=8 \\
6 x-4 y=9
\end{array}
$$

22. In the given figure, if $A B C D$ is a trapezium in which $A B\|C D\| E F$,

then prove that $\frac{A E}{E D}=\frac{B F}{F C}$
OR
In figure, if $A D=6 \mathrm{~cm}, D B=9 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $E C=12 \mathrm{~cm}$ and $\angle A D E=48^{\circ}$. Find $\angle A B C$.

23. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.
24. Evaluate: $\sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$.
25. What is the diameter of a circle whose area is equal to the sum of the areas of two circles of radii 40 cm and 9 cm ? OR
A chord of a circle of radius 10 cm subtends a right angle at the centre. Find area of minor segment.
(Use $\pi=3.14$)

Section-C

26. Prove that $\sqrt{3}$ is an irrational number.
27. Find the zeroes of the quadratic polynomial $4 s^{2}-4 s+1$ and verify the relationship between the zeroes and the coefficients.
28. The coach of a cricket team buys 4 bats and 1 ball for $₹ 2050$. Later, she buys 3 bats and 2 balls for $₹ 1600$. Find the cost of each bat and each ball.

OR
A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid ₹ 27 for a book kept for seven days, while Susy paid ₹ 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
29. A circle touches all the four sides of quadrilateral ABCD . Prove that $A B+C D=A D+B C$.
30. Prove that:

$$
(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}
$$

OR
Prove that $\sec A(1-\sin A)(\sec A+\tan A)=1$.
31. A bag contains 6 red, 4 black and some white balls:
(i) Find the number of white balls in the bag if the probability of drawing a white ball is $\frac{1}{3}$.
(ii) How many red balls should be removed from the bag for the probability of drawing a white ball to be $\frac{1}{2}$?

Section - D

32. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.

OR
A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
33. Prove that If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
In $\triangle P Q R, S$ and T are points on $P Q$ and $P R$ respectively. $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that $P Q R$ is an isosceles triangle.
34. A medicine capsule is in the shape of a cylinder with two hemispheres stuck at each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm . Find its surface area.

A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm .

35. The following table gives the distribution of the life time of 400 neon lamps:

Life time (in hours)	Number of lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	86
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

Find the average life time of a lamp.

Section - E

36. CASE STUDY 1

India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in $6^{\text {th }}$ year and 22600 in $9^{\text {th }}$ year.

(1) In which year, the production is ₹ 29,200 .
(2) Find the production during $8^{\text {th }}$ year.

OR

Find the production during first 3 years.
(3) Find the difference of the production during $7^{\text {th }}$ year and $4^{\text {th }}$ year.

37. CASE STUDY 2

Alia and Shagun are friends living on the same street in Patel Nagar. Shagun's house is at the intersection of one street with another street on which there is a library. They both study in the same school and that is not far from Shagun's house. Suppose the school is situated at the point O, i.e., the origin, Alia's house is at A. Shagun's house is at B and library is at C.

Based on the above information, answer the following questions.

(i) How far is Alia's house from Shagun's house?
(ii) How far is the library from Shagun's house?
(iii) Show that for Shagun, school is farther compared to Alia's house and library.

OR
Show that Alia's house, Shagun's house and library for an isosceles right triangle.
38. CASE STUDY 3

A boy is standing on the top of light house. He observed that boat P and boat Q are approaching the light house from opposite directions. He finds that angle of depression of boat P is 45° and angle of depression of boat Q is 30°. He also knows that height of the light house is 100 m .

Based on the above information, answer the following questions.
(i) What is the measure of $\angle \mathrm{APD}$?
(ii) If $\angle \mathrm{YAQ}=30^{\circ}$, then $\angle \mathrm{AQD}$ is also 30°, Why?
(iii) How far is the boat P from the light house?

OR
How far is the boat Q from the light house?

SOLUTIONS

All solutions are as per the CBSE Board Marking Scheme 2023-24

Section - A

1. Option (B) is correct.
$x y^{2}$

Detailed Answer:

Given that,

$$
\begin{aligned}
\Rightarrow \quad & a \\
\Rightarrow \quad b & =x y^{3} y^{2} \\
\Rightarrow \quad & H C F(a, b)
\end{aligned}=x y^{2}=
$$

2. Option (C) is correct.

20

Detailed Answer:

We know that,
Smallest two-digit composite number $=10$
Smallest composite number $=4$
We have, $\operatorname{LCM}(4,10)=2^{2} \times 5=20$
3. Option (B) is correct.
$\frac{1}{2}$

Detailed Answer:

Given that,
$\Rightarrow x=3$ is root of quadratic equation

$$
x^{2}-2 k x-6=0
$$

On putting $x=3$ in given equation,
$\Rightarrow \quad(3)^{2}-2(k)(3)-6=0$
$\Rightarrow \quad 9-6 k-6=0$
$\Rightarrow \quad 6 k=3$
$\Rightarrow \quad k=3 / 6=\frac{1}{2}$
4. Option (D) is correct.

No Solution

Detailed Answer:

Given that,
Pair of linear equations $y=0$ and $y=-7$
We know that, on making the graph of these equations the two lines are parallel to each other and never meet each other.
So, given pair of linear equations does not have any Solution.
5. Option (D) is correct.

0, 8
Detailed Answer:
Given that,
$\Rightarrow \quad 2 x^{2}-k x+k=0$

For equal roots, Discriminant $=0$

| \Rightarrow | $b^{2}-4 a c$ | $=0$ |
| ---: | :--- | ---: | :--- |
| \Rightarrow | $(-k)^{2}-4(2)(k)$ | $=0$ |
| \Rightarrow | $k^{2}-8 k$ | $=0$ |
| \Rightarrow | $k(k-8)$ | $=0$ |
| \Rightarrow | k | $=0,8$ |

6. Option (C) is correct. 5 units

Detailed Answer:

The distance of point $(3,5)$ from the x-axis is equal to the ordinate of the given coordinates. So, the distance from x-axis is 5 units.
7. Option (A) is correct.
$\triangle P Q R \sim \triangle C A B$
1

Detailed Answer:

Given that,
In triangle ABC and PQR ,
$\Rightarrow \quad A B / Q R=B C / P R=C A / P Q$
From the given relation we get,
$\Rightarrow \quad P Q / C A=P R / B C=Q R / A B$
So, triangle $P Q R \sim C A B$.
8. Option (D) is correct.

RHS

Detailed Answer:

RHS is not a similarity criterion, it is a congruence criterion.
9. Option (B) is correct. 70°

Detailed Answer:

We know that,
In given figure,
$\Rightarrow \quad \angle P O Q+\angle P T Q=180^{\circ}$
$\Rightarrow \quad 110^{\circ}+\angle P T Q=180^{\circ}$
$\Rightarrow \quad \angle P T Q=180^{\circ}-110^{\circ}=70^{\circ}$
10. Option (B) is correct.
$3 / 4$

Detailed Answer:

Given that,
$\begin{array}{ll}\Rightarrow & \operatorname{Cos} A=4 / 5 \\ \Rightarrow & \operatorname{Sec} A=5 / 4\end{array}$

$$
\begin{aligned}
& \Rightarrow \quad \tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}-1 \\
& =(5 / 4)^{2}-1=(3 / 4)^{2} \\
& \Rightarrow \quad \tan \mathrm{~A}=3 / 4
\end{aligned}
$$

11. Option (B) is correct.
45°

Detailed Answer:

Given that,
Height of tower = Length of shadow
Let the angle of elevation be x
$\Rightarrow \quad \tan x=\frac{\text { Height of tower }}{\text { Length of shadow }}$
$\Rightarrow \quad \tan x=1 \quad\left(\tan 45^{\circ}=1\right)$
$\Rightarrow \quad x=45^{\circ}$
12. Option (A) is correct.
$\sin ^{2} \mathrm{~A}$

Detailed Answer:

We know that,
$\Rightarrow \quad \sin ^{2} x+\cos ^{2} x=1$
So, we have,
$\Rightarrow \quad 1-\cos ^{2} \mathrm{~A}=\sin ^{2} \mathrm{~A}$
13. Option (C) is correct.
$\pi: 2$

Detailed Answer:

Given that,
Radius of circle $=$ Side of square
Let radius of circle be x
$\Rightarrow \quad$ Radius of circle $=$ Side of square $=x$

$$
\begin{aligned}
\text { Ratio of perimeters } & =\frac{\text { Perimeter of circle }}{\text { Perimeter of square }} \\
& =2 \pi x / 4 x=\pi / 2
\end{aligned}
$$

14. Option (A) is correct.

7 cm

Detailed Answer:

Given that,
Area of circle $=154 \mathrm{~cm}^{2}$
Let the radius of circle be x

$$
\begin{aligned}
& & \pi x^{2} & =154 \\
\Rightarrow & & x^{2} & =49 \\
\Rightarrow & & x & =7 \mathrm{~cm}
\end{aligned}
$$

15. Option (D) is correct.

1/6

Detailed Answer:

We have,
Even number less than $4=\{2\}$
Probability of getting even number less than $4=1 / 6$
16. Option (A) is correct.

15

Detailed Answer:

The class having maximum frequency is 15-20
So, Lower limit of modal class is 15
17. Option (A) is correct.
3.5

Detailed Answer:

Given that,
Dimensions of rectangular sheet $=40 \mathrm{~cm} \times 22 \mathrm{~cm}$
Height of cylinder $=40 \mathrm{~cm}$
Let radius of cylinder be r

$$
\begin{aligned}
\Rightarrow & & 2 \pi r & =22 \\
\Rightarrow & & r & =3.5 \mathrm{~cm}
\end{aligned}
$$

18. Option (B) is correct. 12-18

Detailed Answer:

We have,

$$
\begin{array}{lrl}
\Rightarrow & N & =56 \\
\Rightarrow & N / 2 & =28
\end{array}
$$

Cumulative frequency just greater than or equal to 28 lies in interval 12-18
So, Median class is $12-18$
19. Option (A) is correct.

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

Detailed Answer:

Assertion: The point $(0,4)$ lies on y-axis
Reason: The x-coordinate of the point on y-axis is zero
Hence, both assertion and reason are true and reason is the correct explanation for assertion.
20. Option (D) is correct.

Assertions (A) is true but reason (R) is false.

Detailed Answer:

Assertion: Given that, $H C F=5$
$L C M=40$
Product of numbers $=150$
We know that, $H C F \times L C M=$ Product of numbers $H C F \times L C M=5 \times 40=200$ is not equal to product So, Assertion is False
Reason: for any two positive integers a and $b, H C F$ $(a, b) \times \operatorname{LCM}(a, b)=a \times b$.
Hence, Assertion is false but reason is true.

Section - B

21.

$$
\begin{align*}
3 x+2 y & =8 \\
6 x-4 y & =9 \\
a_{1}=3, b_{1} & =2, c_{1}=8 \\
a_{2}=6, b_{2} & =-4, c_{2}=9 \tag{1}\\
\frac{a_{1}}{a_{2}} & =\frac{3}{6}=\frac{1}{2} \\
\frac{b_{1}}{b_{2}} & =\frac{2}{-4}=\frac{-1}{2} \\
\frac{c_{1}}{c_{2}} & =\frac{8}{9}
\end{align*}
$$

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

The given pair of linear equations has unique solution.
So, the given pair of lines is consistent.
$1 / 2$
22. Given: $A B\|C D\| E F$

To prove:- $\frac{A B}{E D}=\frac{B F}{F C}$
Constant:- Join BD which
intersect EF at G.
Proof: in $\triangle \mathrm{ABD}$
$E G \| A B(E F \| A B)$ $1 / 2$

$$
\begin{equation*}
\frac{A E}{E D}=\frac{B G}{G D}(\text { by } B P T) \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{DBC}$

$$
\begin{align*}
& G F \| C D(E F \| C D) \\
& \frac{B F}{F C}=\frac{B G}{G D}(\text { by } B P T) \tag{2}
\end{align*}
$$

From (1) \& (2)

$$
\frac{A E}{E D}=\frac{B F}{F C}
$$

Hence Proved $1 / 2$
OR
Given: $A D=6 \mathrm{~cm}, D B=9 \mathrm{~cm}$
$A E=8 \mathrm{~cm}, E C=12 \mathrm{~cm}, \angle A D E=48^{\circ}$
To find: $\triangle A B C=$?
Proof: In $\triangle A B C$

Consider, $\frac{A D}{D B}=\frac{A E}{E C}$

$$
\begin{gathered}
\frac{6}{9}=\frac{8}{12} \\
\frac{2}{3}=\frac{2}{3} \\
\frac{A D}{D B}=\frac{A E}{E C}
\end{gathered}
$$

$D E \| B C$ (Converse of BPT)

$$
\angle A D E=\angle A B C
$$

(Corresponding angles) So, $\angle \mathrm{ABC}=48^{\circ} 1$
23. In $\triangle \mathrm{OTA}, \angle \mathrm{OTA}=90^{\circ}$

By Pythagoras theorem

$$
O A^{2}=O T^{2}+A T^{2}
$$

$$
(5)^{2}=O T^{2}+(4)^{2}
$$

$$
25-16=O T^{2}
$$

$$
\begin{align*}
9 & =O T^{2} \\
O T & =3 \mathrm{~cm} \tag{1}
\end{align*}
$$

radius of circle $=3 \mathrm{~cm}$.
24. $\sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$

On substituting the values we have,

$$
\begin{align*}
& =\left(\frac{\sqrt{3}}{2}\right)^{2}+2(1)-\left(\frac{\sqrt{3}}{2}\right)^{2} \tag{1}\\
& =\frac{3}{4}+2-\frac{3}{4}=2 \tag{1}
\end{align*}
$$

25. Area of the circle $=$ sum of areas of 2 circles

$$
\begin{align*}
\pi R^{2} & =\pi(40)^{2}+\pi(9)^{2} \\
\pi R^{2} & =\pi \times\left(40^{2}+9\right)^{2} \\
R^{2} & =1600+81 \\
R^{2} & =1681 \\
R & =41 \mathrm{~cm} .
\end{align*}
$$

$$
1 / 2
$$

$$
1 / 2
$$

Diameter of required circle $=41 \times 2=82 \mathrm{~cm} \quad 1 / 2$
OR
Radius of circle $=10 \mathrm{~cm}, \theta=90^{\circ}$
Area of minor segment $=\frac{\theta}{360^{\circ}} \pi r^{2}-$ Area of right angled triangle

$$
\begin{array}{lr}
=\frac{\theta}{360^{\circ}} \pi r^{2}-\frac{1}{2} \times b \times h & 1 / 2 \\
=\frac{90^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10-\frac{1}{2} \times 10 \times 10 & 1 / 2 \\
=\frac{314}{4}-50 & \\
=78.5-50=28.5 \mathrm{~cm}^{2} & 1 / 2 \\
\text { Area of minor segment }=28.5 \mathrm{~cm}^{2} & 1 / 2
\end{array}
$$

Section-C

26. Let $\sqrt{ } 3$ be a rational number

$$
\sqrt{ } 3=\frac{a}{b} \text { where } a \text { and } b \text { are co-prime. } 1
$$ squaring on both the sides

$$
\begin{aligned}
(\sqrt{3})^{2} & =\left(\frac{a}{b}\right)^{2} \\
3 & =\frac{a^{2}}{b^{2}} \\
a^{2} & =3 a^{2}
\end{aligned}
$$

a^{2} is divisible by 3 so a is also divisible by 3 ...(1) Let $a=3 c$ for any integer c.

$$
\begin{aligned}
(3 c)^{2} & =3 b^{2} \\
9 c^{2} & =3 b^{2} \\
h^{2} & =3 c^{2}
\end{aligned}
$$

since b^{2} is divisible by 3 so, b is also divisible by 3

From (1) \& (2) we can say that 3 is a factor of a and b
which is contradicting the fact that a and b are coprimes.
Thus, our assumption that $\sqrt{ } 3$ is a rational number is wrong.
Hence, $\sqrt{3}$ is an irrational number.
27.

$$
P(S)=4 S^{2}-4 S+1
$$

$4 S^{2}-2 S-2 S+1=0$
$2 S(2 S-1)-1(2 S-1)=0$
$(2 S-1)(2 S-1)=0$

$$
\begin{equation*}
S=\frac{1}{2}, S=\frac{1}{2} \tag{1}
\end{equation*}
$$

Zeroes of quadratic polynomial are $\frac{1}{2}, \frac{1}{2}$
From the quadratic equation, we have
$a=4, b=-4 c=1 \alpha=\frac{1}{2} \alpha \beta=\frac{1}{2}$

$$
\begin{aligned}
\alpha+\beta & =\frac{-b}{a}, \alpha \beta=\frac{c}{a} \\
\frac{1}{2}+\frac{1}{2} & =\frac{-(-4)}{4} \\
\frac{1+1}{2} & =\frac{+4}{4} \\
\text { L.H.S. } & =\text { R.H.S. }
\end{aligned}
$$

$$
\alpha \cdot \beta=\frac{c}{a}
$$

$$
\Rightarrow \quad \frac{1}{2}+\frac{1}{2}=\frac{1}{4}
$$

$$
\frac{1}{4}=\frac{1}{4}
$$

$$
\frac{2}{2}=1
$$

$$
1=1
$$

Hence, the relationship between zeroes and coefficient is verified
28. Let cost of one bat be ₹ x

Let cost of one ball be ₹ y ATQ

$$
\begin{align*}
4 x+1 y & =2050 \tag{1}\\
3 x+2 y & =1600 \tag{2}\\
4 x+1 y & =2050 \\
y & =2050-4 x
\end{align*}
$$

from (1)
in (2)

Substitute value of y in (2)
$[3 x+2(2050-4 x)=1600]$

$$
\begin{aligned}
3 x+4100-8 x & =1600 \\
-5 x & =-2500 \\
x & =500
\end{aligned}
$$

Substitute value of x in (1)

$$
\begin{aligned}
4 x+1 y & =2050 \\
4(500)+y & =2050 \\
2000+y & =2050 \\
y & =50
\end{aligned}
$$

Hence
Cost of one bat $=₹ 500$
Cost of one ball $=₹ 50$

OR
Let the fixed charge for first 3 days $=₹ x$
and additional charge after 3 days $=₹ y$
According to given conditions,

$$
\begin{array}{r}
x+4 y=27 \\
x+2 y=21 \tag{2}
\end{array}
$$

Subtract eqn. (2) from (1)

$$
\begin{align*}
x+4 y & =27 \\
x+2 y & =21 \\
2 y & =6 \\
y & =3 \tag{1}
\end{align*}
$$

Substitute value of y in (2)

$$
\begin{aligned}
x+2 y & =21 \\
x+2(3) & =21 \\
x & =21-6 \\
x & =15
\end{aligned}
$$

Fixed charge $=₹ 15$
Additional charge $=₹ 3$
29. Given circle touching sides of quadrilateral $A B C D$ at P, Q, R and S
To prove: $A B+C D=A D+B C$

Proof:

$$
\begin{array}{rlr}
A P & =A S \ldots(1) \text { tangents from same point } \\
P B & =B Q \ldots(2) \text { to a circle are equal in length } \\
D R & =D S \\
C R & =C Q & \ldots(4) 1 \tag{1}
\end{array}
$$

Adding eqn (1),(2),(3) \& (4)

$$
A P+B P+D R+C R=A S+D S+B Q+C Q
$$

$$
A B+D C=A D+B C \quad \text { Hence Proved } 1
$$

30. $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

$$
\begin{aligned}
& \text { L.H.S. }=(\operatorname{cosec} \theta-\cot \theta)^{2} \\
&=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2} \\
&=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2} \\
&=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} \\
&=\frac{\left(1-\cos ^{2}\right)^{2}}{1-\cos ^{2} \theta} \\
&=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)} \\
&=\frac{1-\cos \theta}{1+\cos \theta} \quad 1 / 2 \\
& \text { L.H.S. }=\text { R.H.S. } \quad 1 \\
& \text { Hence Proved } 1
\end{aligned}
$$

OR
$\operatorname{Sec} A(1-\sin A)(\sec A+\tan A)=1$

$$
\begin{aligned}
\text { LHS } & =\frac{1}{\cos \mathrm{~A}}(1-\sin \mathrm{A})\left(\frac{1}{\cos \mathrm{~A}}+\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}\right) \quad \mathbf{1} \\
& =\frac{(1-\sin \mathrm{A})}{\cos \mathrm{A}} \frac{(1+\sin \mathrm{A})}{\cos \mathrm{A}} \\
& =\frac{(1-\sin \mathrm{A})(1+\sin \mathrm{A})}{\cos ^{2} \mathrm{~A}} \\
& =\frac{1-\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \quad\left(1-\sin ^{2} \mathrm{~A}=\cos ^{2} \mathrm{~A}\right) \mathbf{1} \\
& =\frac{\cos ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \\
& =1
\end{aligned}
$$

L.H.S. = R.H.S.

Hence Proved
31. (i) Red balls $=6$, Black balls $=4$, White balls $=x$

$$
\mathrm{P}(\text { white ball })=\frac{x}{10+x}=\frac{1}{3}
$$

$\Rightarrow 3 x=10+x \Rightarrow x=5$ white balls
(ii) Let y red balls be removed, black balls $=4$, white balls $=5$
$\mathrm{P}($ white balls $)=\frac{5}{(6-y)+4+5}=\frac{1}{2}$
$\Rightarrow \quad \frac{5}{15-y}=\frac{1}{2}$
$\Rightarrow 10=15-y \Rightarrow y=5$ white balls So 5 balls should be removed.

Section - D

32. Let the speed of train be $x \mathrm{~km} / \mathrm{hr}$

$$
\text { distance }=360 \mathrm{~km}
$$

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

$$
\text { Time }=\frac{360}{x}
$$

$$
\text { New speed }=(x+5) \mathrm{km} / \mathrm{hr}
$$

$$
\begin{aligned}
\text { Time } & =\frac{D}{5} \\
(x+5) & =\frac{360}{\left(\frac{360}{x}-1\right)} \\
(x+5)\left(\frac{360}{x}-1\right) & =360 \\
(x+5)(360-x) & =360 x \\
-x^{2}-5 x+1800 & =0 \\
x^{2}+5 x-1800 & =0 \\
x^{2}+45 x-40 x-1800 & =0 \\
x(x+45)-40(x+45) & =0 \\
(x+45)(x-40) & =0 \\
x+45=0, x-40 & =0 \\
x=-45 \text { and } x & =40
\end{aligned}
$$

Speed cannot be negative

Speed of train $=40 \mathrm{~km} / \mathrm{hr}$

OR

Let the speed of the stream $=x \mathrm{~km} / \mathrm{hr}$
Speed of boat $=18 \mathrm{~km} / \mathrm{hr}$
Upstream speed $=(18-x) \mathrm{km} / \mathrm{hr}$
Downstream speed $=(18+x) \mathrm{km} / \mathrm{hr}$
1
$1 / 2$

Time taken $($ upstream $)=\frac{24}{(18-x)}$
Time taken $($ downstream $)=\frac{24}{(18+x)}$
According to the given conditions,

$$
\begin{align*}
& \frac{24}{(18-x)}=\frac{24}{(18+x)}+1 \tag{1}\\
& \frac{24}{(18-x)}-\frac{24}{(18+x)}=1 \\
& 24(18+x)-24(18-x)=(18-x)(18+x) \\
& 24(18+x-18+x)=(18)^{2}-(x)^{2} \\
& 24(2 x)=324-x^{2} \\
& 48 x-324+x^{2}=0 \\
& x^{2}+48 x-324=0 \tag{1}\\
& x^{2}-6 x+54 x-324=0 \\
& x(x-6)+54(x-6)=0 \\
&(x-6)(x+54)=0 \tag{1}\\
& x-6=0, x+54=0 \\
& x=6 \text { and } x=-54
\end{align*}
$$

1
Speed of stream $=6 \mathrm{~km} / \mathrm{hr}$
33. Given: $\triangle \mathrm{ABC}=D E \| B C$

To prove $\frac{A D}{D B}=\frac{A E}{E C}$
Construction: Join $B E$ and $C D$
$1 / 2$
Draw $D M \perp A C$ and $E N \perp A B$

Proof: Ar. $\triangle A D E=\frac{1}{2} \times b \times h$

$$
\begin{equation*}
=\frac{1}{2} \times A D \times E N \tag{1}
\end{equation*}
$$

$$
\text { Ar. } \triangle D B E=\frac{1}{2} \times D B \times E N
$$

Divide eqn (1) by (2)

$$
\begin{align*}
& \frac{\text { Ar. } \triangle A D E}{\text { Ar. } \triangle B D E}=\frac{\frac{1}{2} \times A D \times E N}{\frac{1}{2} \times D B \times E N}=\frac{A D}{D B} \\
& \text { Ar. } \triangle A D E=\frac{1}{2} \times A E \times D M \\
& \text { Ar. } \triangle D E C=\frac{1}{2} \times E C \times D M
\end{align*}
$$

Divide eqn (3) by (4)

$$
\begin{equation*}
\frac{\text { Ar } \triangle A D E}{\text { Ar. } \triangle D E C}=\frac{\frac{1}{2} \times A E \times D M}{\frac{1}{2} \times E C \times D M}=\frac{A E}{E C} \tag{1}
\end{equation*}
$$

$\triangle B D E$ and $\triangle D E C$ are on the same base $D E$ and between same parallel lines $B C$ and $D E$

$$
\operatorname{Ar} \cdot(B D E)=\operatorname{Ar} \cdot(D E C)
$$

hence

$$
\begin{aligned}
\frac{\operatorname{Ar} \cdot \triangle A D E}{\text { Ar. } \triangle B D E} & =\frac{\text { Ar. } \triangle A D E}{\text { Ar. } \triangle D E C} \\
\frac{A D}{D B} & =\frac{A E}{E C} \quad[\text { from (3) and (6)] } 1 / 2
\end{aligned}
$$

Hence Proved
Given $\quad \frac{P S}{S Q}=\frac{P T}{T R}$

$$
\angle \mathrm{PST}=\angle \mathrm{PRQ}
$$

To prove : PQR is an isoscles triangle

Proof : $\quad \frac{P S}{S Q}=\frac{P T}{T R}$

$$
\angle P S T=\angle P Q R
$$

(Corresponding angles) $\mathbf{1}$
But $\quad \angle P S T=\angle P R Q$

$$
\angle P Q R=\angle P R Q
$$

$P R=P Q$ (sides opposite to equal angles are equal $-\triangle \mathrm{PQR}$ is isosceles triangle.
34. Diameter of cylinder and hemisphere $=5 \mathrm{~mm}$ radius $(r)=\frac{5}{2}$
Total length $=14 \mathrm{~mm}$
Height of cylinder $=14-5=9 \mathrm{~mm}$
CSA of cylinder $=2 \pi r h$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{5}{2} \times 9 \\
& =\frac{990}{7} \mathrm{~mm}^{2} \\
\text { CSA of hemispheres } & =2 \pi r^{2} \\
& =2 \times \frac{22}{7} \times\left(\frac{5}{2}\right)^{2} \\
& =\frac{275}{7} \mathrm{~mm}^{2} \\
\text { CSA of } 2 \text { hemispheres } & =2 \times \frac{275}{7} \\
& =\frac{550}{7} \mathrm{~mm}^{2}
\end{aligned}
$$

Life time (in hours)	Number of lamps	$\operatorname{Mid} \boldsymbol{x}$	\boldsymbol{d}	$f \boldsymbol{f}$
$1500-2000$	14	1750	-1500	-21000
$2000-2500$	56	2250	-1000	-56000
$2500-3000$	60	2750	-500	-30000
$3000-3500$	86	3250	0	0
$3500-4000$	74	3750	500	37000
$4000-4500$	62	4250	1000	62000
$4500-5000$	48	4750	1500	72000
	400			64000

Using Assumed Mean Method,

$$
\text { Mean }=a+\frac{\sum f d}{\sum f}
$$

$$
1 / 2
$$

$$
\begin{aligned}
a & =3250 \\
\text { Mean } & =3250+\frac{64000}{400} \\
& =3250+160 \\
& =3410
\end{aligned}
$$

Average life of lamp is 3410 hr

Section - E

36. $a_{6}=16000, a_{9}=22600$

$$
\begin{align*}
a+5 d & =16000 \tag{1}\\
a & =16000-5 d \\
a+8 d & =22600 \tag{2}
\end{align*}
$$

substitute in (2)

$$
\begin{aligned}
16000-5 d+8 d & =22600 \\
3 d & =22600-16000 \\
3 d & =6600 \\
d & =\frac{6600}{3}=2200 \\
a & =16000-5(2200) \\
a & =16000-11000 \\
a & =5000
\end{aligned}
$$

(i) $a_{n}=29200, a=5000, d=2200$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
29200 & =5000+(n-1) 2200 \\
29200-5000 & =2200 n-2200 \\
24200+2200 & =2200 n \\
26400 & =2200 n \\
n & =\frac{264}{22} \\
n & =12
\end{aligned}
$$

in $12^{\text {th }}$ year the production was ₹ 29200
(ii) $n=8, a=5000, d=2200$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =5000+(8-1) 2200 \\
& =5000+7 \times 2200 \\
& =5000+15400 \\
& =20400
\end{aligned}
$$

The production during $8^{\text {th }}$ year is ₹ 20400
OR
$n=3, a=5000, d=2200$

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{3}{2}[2(5000)+(3-1) 2200] \\
\mathrm{S}_{3} & =\frac{3}{2}(10000+2 \times 2200) \\
& =\frac{3}{2}(10000+4400) \\
& =3 \times 7200 \\
& =21600
\end{aligned}
$$

The production during first 3 year is ₹ 21600
(iii)

$$
\begin{aligned}
a_{4} & =a+3 d \\
& =5000+3(2200) \\
& =5000+6600 \\
& =11600 \\
a_{7} & =a+6 d \\
& =5000+6 \times 2200 \\
& =5000+13200 \\
& =18200 \\
a_{7}-a_{4} & =18200-11600=6600
\end{aligned}
$$

$$
1 / 2
$$

37. Coordinates of $\mathrm{A}(2,3)$ - Alia's house coordinates of B $(2,1)$ - Shagun's house coordinates of $\mathrm{C}(4,1)$ - library
(i)

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(2-2)^{2}+(1-3)^{2}} \\
& =\sqrt{(0)^{2}+(-2)^{2}} \\
\mathrm{AB} & =\sqrt{0+4} \\
& =\sqrt{4} \text { unit }=2 \text { units }
\end{aligned}
$$

Distance of Alia's house from shagun's house is 2 unit
(ii) $\mathrm{C}(4,1), \mathrm{B}(2,1)$

$$
\begin{array}{rlr}
C B & =\sqrt{(2-4)^{2}+(1-1)^{2}} & 1 / 2 \\
& =\sqrt{(-2)^{2}+(0)^{2}} \\
& =\sqrt{4+0} \\
& =\sqrt{4}=2 \text { unit } & 1 / 2
\end{array}
$$

Distance of shagun's house from library is 2 unit (iii) $\mathrm{O}(0,0), \mathrm{B}(2,1)$

$$
\begin{align*}
\mathrm{OB} & =\sqrt{(2-0)^{2}+(1-0)^{2}} \\
& =\sqrt{2^{2}+1^{2}} \\
& =\sqrt{4+1}=\sqrt{5} \text { units } \tag{1}
\end{align*}
$$

Distance between Alia's house and Shagun's house $A B=2$ units
Distance between Library and Shagun's house CB $=2$ units
$O B$ is greater than $A B$ and $C B$, $1 / 2$
For shagun, school [O] is farther than Alia's house [A] and Library [C]

> OR

C $(4,1) \mathrm{A}(2,3)$

$$
\begin{aligned}
\mathrm{CA} & =\sqrt{(2-4)^{2}+(3-1)^{2}} \\
& =\sqrt{(-2)^{2}+2^{2}} \\
& =\sqrt{4+4}=\sqrt{8} \\
& =2 \sqrt{2} \text { units, } A C^{2}=8
\end{aligned}
$$

Distance between Alia's house and Shagun's house $A B=2$ units
Distance between Library and Shagun's house CB $=2$ units
$A B^{2}+B C^{2}=2^{2}+2^{2}=4+4=8=A C^{2}$
$1 / 2$
Therefore A, B and C form a right triangle.
38. (i) $X Y \| C D$ and AP is transversal.

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

$$
\mathrm{PD}=100 \mathrm{~m}
$$

Boat P is 100 m from the light house
1
OR
In $\triangle A D Q$

$$
\tan 30^{\circ}=\frac{100}{D Q}
$$

$$
\frac{1}{\sqrt{3}}=\frac{100}{D Q}
$$

$$
\mathrm{DQ}=100 \sqrt{3} \mathrm{~m}
$$

Boat Q is $100 \sqrt{3} \mathrm{~m}$ from the light house

