Solved Paper 2023 Mathematics
 Class-XII

Time : 3 Hours

Max. Marks : 80

General Instructions:

Read the following instructions very carefully and strictly follow them:
(i) This question paper contains 38 questions. All questions are compulsory.
(ii) Question paper is divided into FIVE Sections-Section $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E}.
(iii) In Section A, Questions Number 1 to 18 are Multiple Choice Questions (MCQs) type and Questions Number 19 and 20 are Assertion-Reason based questions of 1 mark each.
(iv) In Section B, Questions Number 21 to 25 are Very Short Answer (VSA) type questions of 2 marks each.
(v) In Section C, Questions Number 26 to 31 are Short Answer (SA) type questions, carrying 3 marks each.
(vi) In Section D, Questions Number 32 to 35 are Long Answer (LA) type questions carrying 5 marks each.
(vii) In Section E, Questions Number 36 to 38 are case study based questions carrying 4 marks each where 2 VSA type questions are of $\mathbf{1}$ mark each and $\mathbf{1}$ SA type question is of $\mathbf{2}$ marks. Internal choice is provided in $\mathbf{2}$ marks question in each case-study.
(viii) There is no overall choice. However, an internal choice has been provided in $\mathbf{2}$ questions in Section $\mathbf{B}, \mathbf{3}$ questions in Section C, 2 questions in Section D and $\mathbf{2}$ questions in Section \boldsymbol{E}.
(ix) Use of calculators is NOT allowed.

SECTION - A

1. Let $A=\{3,5\}$. Then number of reflexive relations of A is:
(a) 2
(b) 4
(c) 0
(d) 8

Sol. Option (b) is correct
Explanation: The number of reflexive relations is $2^{n(n-1)}$
$\Rightarrow \quad 2^{2(2-1)}=4$
2. $\sin \left[\frac{\pi}{3}+\sin ^{-1}\left(\frac{1}{2}\right)\right]$ is equal to:
(a) 1
(b) $\frac{1}{2}$
(c) $\frac{1}{3}$
(d) $\frac{1}{4}$

Sol. Option (a) is correct
Explanation: $\sin \left[\frac{\pi}{3}+\sin ^{-1}\left(\frac{1}{2}\right)\right]$

$$
\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin \frac{\pi}{2}=1
$$

3. If for a square matrix $\mathrm{A}, A^{2}-A+I=\mathrm{O}$, then A^{-1} equals:
(a) A
(b) $\mathrm{A}+\mathrm{I}$
(c) $\mathrm{I}-\mathrm{A}$
(d) $\mathrm{A}-\mathrm{I}$

Sol. Option (c) is correct
Explanation:

$$
\begin{aligned}
A^{2}-A+I & =0 \\
A^{-1} A^{2}-A^{-1} A+A^{-1} I & =0 \\
I A-I+A^{-1} & =0 \\
A^{-1} & =I-A
\end{aligned}
$$

4. If $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{ll}x & 0 \\ 1 & 1\end{array}\right]$ and $A=B^{2}$, then x equals:
(a) ± 1
(b) -1
(c) 1
(d) 2

Sol. Option (c) is correct
Explanation:

$$
\begin{aligned}
A & =B^{2} \\
{\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] } & =\left[\begin{array}{ll}
x & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
x & 0 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
x^{2} & 0 \\
x+1 & 1
\end{array}\right]
$$

$$
x^{2}=1 \text { and } x+1=2
$$

$$
\therefore \quad x= \pm 1
$$

$$
\therefore \quad x=1
$$

Hence $x=1$
5. If $\left|\begin{array}{lll}\alpha & 3 & 4 \\ 1 & 2 & 1 \\ 1 & 4 & 1\end{array}\right|=0$, then the value of α is:
(a) 1
(b) 2
(c) 3
(d) 4

Sol. Option (d) is correct
Explanation:

$$
\begin{gathered}
{\left[\begin{array}{lll}
\alpha & 3 & 4 \\
1 & 2 & 1 \\
1 & 4 & 1
\end{array}\right]=0} \\
\Rightarrow \alpha(2-4)-3(1-1)+4(4-2)=0 \\
-2 \alpha+8=0 \\
\alpha=4
\end{gathered}
$$

6. The derivative of $x^{2 x}$ w.r.t. x is:
(a) $x^{2 x-1}$
(b) $2 x^{2 x} \log x$
(c) $2 x^{2 x}(1+\log x)$
(d) $2 x^{2 x}(1-\log x)$

Sol. Option (c) is correct
Explanation:

$$
\begin{aligned}
y & =x^{2 x} \\
\log y & =2 x \log x \\
\frac{d}{d x} \log y & =\frac{d}{d x} 2 x \log x \\
\frac{1}{y} \frac{d y}{d x} & =2\left[x \frac{d}{d x} \log x+\log x \frac{d}{d x} x\right] \\
\frac{d y}{d x} & =2 y\left[x \times \frac{1}{x}+\log x\right] \\
\frac{d y}{d x} & =2 x^{2 x}[1+\log x]
\end{aligned}
$$

7. The function $f(x)=[x]$, where $[x]$ denotes the greatest integer less than or equal to x, is continuous at:
(a) $x=1$
(b) $x=1.5$
(c) $x=-2$
(d) $x=4$

Sol. Option (b) is correct
Explanation: The function $f(x)=[x]$ is continuous for all except all integral values of x.
8. If $x=A \cos 4 t+B \sin 4 t$, then $\frac{d^{2} x}{d t^{2}}$ is equal to:
(a) x
(b) $-x$
(c) $16 x$
(d) $-16 x$

Sol. Option (d) is correct
Explanation:

$$
\begin{aligned}
x & =A \cos 4 t+B \sin 4 t \\
\frac{d x}{d t} & =-4 A \sin 4 t+4 B \cos 4 t \\
\frac{d^{2} x}{d t^{2}} & =-16 A \cos 4 t-16 B \sin 4 t \\
& =-16(A \cos 4 t+B \sin 4 t) \\
\therefore \quad \frac{d^{2} x}{d t^{2}} & =-16 x
\end{aligned}
$$

9. The interval in which the function $f(x)=2 x^{3}+9 x^{2}$ $+12 x-1$ is decreasing is:
(a) $(-1, \infty)$
(b) $(-2,-1)$
(c) $(-\infty,-2)$
(d) $(-1,1)$

Sol. Option (b) is correct
Explanation:

$$
\begin{aligned}
f(x) & =2 x^{3}+9 x^{2}+12 x-1 \\
f^{\prime}(x) & =6 x^{2}+18 x+12-0
\end{aligned}
$$

for decreasing function $f^{\prime}(x)<0$

$$
\begin{aligned}
6\left(x^{2}+3 x+2\right) & <0 \\
6(x+2)(x+1) & <0
\end{aligned}
$$

$f(x)$ is decreasing in interval $(-2,-1)$
10. $\int \frac{\sec x}{\sec x-\tan x} d x$ equals:
(a) $\sec x-\tan x+c$
(b) $\sec x+\tan x+c$
(c) $\tan x-\sec x+c$
(d) $-(\sec x+\tan x)+c$

Sol. Option (b) is correct
Explanation:
$\int \frac{\sec x}{\sec x-\tan x} d x$
$\int \frac{\sec x(\sec x+\tan x)}{(\sec x-\tan x)(\sec x+\tan x)} d x$
$\int \sec ^{2} x d x+\int \sec x \tan x d x \quad\left[\sec ^{2} x-\tan ^{2} x=1\right]$
$\tan x+\sec x+c$
11. $\int_{-1}^{1} \frac{|x-2|}{x-2} d x, x \neq 2$ is equal to:
(a) 1
(b) -1
(c) 2
(d) -2

Sol. Option (d) is correct
Explanation:
$\int_{-1}^{1} \frac{|x-2|}{x-2} d x$

$$
\int_{-1}^{1} \frac{-(x-2)}{x-2} d x=[-x]_{-1}^{1}=-2
$$

12. The sum of the order and the degree of the differential equation $\frac{d}{d x}\left(\left(\frac{d y}{d x}\right)^{3}\right)$ is:
(a) 2
(b) 3
(c) 5
(d) 0

Sol. Option (b) is correct
Explanation:

$$
\frac{d}{d x}\left[\left(\frac{d y}{d x}\right)^{3}\right]=3\left(\frac{d y}{d x}\right)^{2} \frac{d^{2} y}{d x^{2}}
$$

order is 2 and degree is 1
\therefore required answer $2+1=3$
13. Two vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \quad$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are collinear if:
(a) $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$
(b) $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$
(c) $a_{1}=b_{1}, a_{2}=b_{2}, a_{3}=b_{3}$
(d) $a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+b_{3}$

Sol. Option (b) is correct
Explanation:

$$
\text { Two vectors } \begin{aligned}
\vec{a} & =a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \\
\vec{b} & =b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}
\end{aligned}
$$

are collinear if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{c_{1}}{c_{2}}$
14. The magnitude of the vector $6 \hat{i}-2 \hat{j}+3 \hat{k}$ is:
(a) 1
(b) 5
(c) 7
(d) 12

Sol. Option (c) is correct
Explanation:

$$
\begin{aligned}
\vec{a} & =6 \hat{i}-2 \hat{j}+3 \hat{k} \\
|\vec{a}| & =\left|\sqrt{6^{2}+2^{2}+3^{2}}\right|=7 \text { units }
\end{aligned}
$$

15. If a line makes angles of $90^{\circ}, 135^{\circ}$ and 45° with the x, y and z axes respectively, then its direction cosines are:
(a) $0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
(b) $-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$
(c) $\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}$
(d) $0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

Sol. Option (a) is correct
Explanation: Direction cosines are $\cos 90^{\circ}, \cos 135^{\circ}$ and $\cos 45^{\circ}$
$\therefore\left(0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
16. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is:
(a) 0°
(b) 30°
(c) 45°
(d) 90°

Sol. Option (d) is correct
Explanation:
$2 x=3 y=-z \quad 6 x=-y=-4 z$
$\frac{x}{3}=\frac{y}{2}=\frac{z}{-6} \quad \frac{x}{2}=\frac{y}{-12}=\frac{z}{-3}$

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

$$
\cos \theta=\left|\frac{3 \times 2+2(-12)+(-6)(-3)}{\sqrt{3^{2}+2^{2}+6^{2}} \sqrt{2^{2}+(-12)^{2}+(-3)^{2}}}\right|
$$

$$
\cos \theta=\left|\frac{6-24+18}{7 \cdot \sqrt{157}}\right|=0
$$

$$
\therefore \quad \theta=\frac{\pi}{2}=90^{\circ}
$$

17. If for any two events A and $B, P(A)=\frac{4}{5}$ and
$P(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equals to:
(a) $\frac{1}{10}$
(b) $\frac{1}{8}$
(c) $\frac{7}{8}$
(d) $\frac{17}{20}$

Sol. Option (c) is correct
Explanation:

$$
\begin{aligned}
P(A) & =\frac{4}{5}, P(A \cap B)=\frac{7}{10} \\
P\left(\frac{B}{A}\right) & =\frac{P(A \cap B)}{P(A)}=\frac{\frac{7}{10}}{\frac{4}{5}} \\
& =\frac{7}{10} \times \frac{5}{4}=\frac{7}{8}
\end{aligned}
$$

18. Five fair coins are tossed simultaneously. The probability of the events that atleast one head comes up is:
(a) $\frac{27}{32}$
(b) $\frac{5}{32}$
(c) $\frac{31}{32}$
(d) $\frac{1}{32}$

Sol. Option (c) is correct
Explanation:
Probability of the event that at least one head comes up

$$
=1-\left(\frac{1}{2}\right)^{5}=\frac{31}{32}
$$

Assertion-Reason Based Questions
In the following questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices :
(a) Both (A) and (R) are true and (R) is the correct explanation of (A).
(b) Both (A) and (R) are true, but (R) is not the correct explanation of (A).
(c) (A) is true and (R) is false.
(d) (A) is false, but (R) is true.
19. Assertion (A): Two coins are tossed simultaneously. The probability of getting two heads, if it is known that at least one head comes up, is $\frac{1}{3}$.

Reason (R): Let E and F be two events with a random experiment, then $P(F / E)=\frac{P(E \cap F)}{P(E)}$.

Sol. Option (a) is correct
Explanation:

$$
S=\{(\mathrm{HH}),(\mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{H})(\mathrm{T}, \mathrm{~T})\}
$$

Probability of getting two heeds; $\{\mathrm{H}, \mathrm{H}\}$

$$
n(F)=\frac{1}{4}
$$

Probability of getting at least one head:
$\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})(\mathrm{T}, \mathrm{H})\}, n(E)=\frac{3}{4}$
Required probability $P\left(\frac{F}{E}\right)$

$$
\begin{aligned}
& =P \frac{(E \cap F)}{P(E)}=\frac{\frac{1}{4}}{\frac{3}{4}} \\
& =\frac{1}{3}
\end{aligned}
$$

20. Assertion (A): $\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x=3$

Reason (R): $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
Sol. Option (a) is correct
Explanation:

$$
\begin{aligned}
I & =\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x \\
& =\int_{2}^{8} \frac{\sqrt{10-10+x}}{\sqrt{10-x}+\sqrt{10-10+x}} d x \\
& =\int_{2}^{8} \frac{\sqrt{x}}{\sqrt{10-x}+\sqrt{x}} d x \\
2 I & =\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{10-x}+\sqrt{x}} d x+\int_{2}^{8} \frac{\sqrt{x}}{\sqrt{(10-x}+\sqrt{x}} d x \\
2 I & =\int_{2}^{8} d x=[x]_{2}^{8}=6 \\
I & =3
\end{aligned}
$$

SECTION - B

21. Write the domain and range (principle value branch) of the following functions:
$f(x)=\tan ^{-1} x$
Sol.

$$
f(x)=\tan ^{-1} x
$$

$$
\text { Domain }=\text { Real number }
$$

$$
\text { Range }=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

22. (a) If $f(x)=\left\{\begin{aligned} x^{2}, & \text { if } x \geq 1 \\ x, & \text { if } x<1\end{aligned}\right.$ then show that f is not differentiable at $x=1$.

OR

(b) Find the value(s) of ' λ ', if the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sin ^{2} \lambda x}{x^{2}}, & \text { if } x \neq 0 \\
1, & \text { if } x=0
\end{array} \text { is continuous at } x=0 .\right.
$$

Sol. (a)

$$
f(x)=\left\{\begin{aligned}
x^{2}, & \text { if } x \geq 1 \\
x, & \text { if } x<1
\end{aligned}\right.
$$

$f(x)$ is defined at $x=1$ and $f(1)=1$

$$
\begin{aligned}
f_{-}^{\prime}(1) & =\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} \\
& =\frac{1+h-1}{h}=1
\end{aligned}
$$

$$
\begin{aligned}
f_{+}^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2+h)}{h}
\end{aligned}
$$

$$
f_{-}^{\prime}(1) \neq f_{+}^{\prime}(1)
$$

Hence $f(x)$ is not differentiable at $x=1$

> OR
(b) $f(x)=\left\{\begin{array}{cl}\frac{\sin ^{2} \lambda x}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{array}\right.$ is continuous at $x=0$.

$$
\begin{aligned}
& f(0)=1 \\
& \begin{aligned}
f(x) & =\lim _{h \rightarrow 0^{-}} \frac{\sin ^{2} \lambda(0-h)}{(0-h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{\sin ^{2} \lambda h}{h^{2}} \\
& =\lim _{h \rightarrow 0} \lambda^{2}\left(\frac{\sin \lambda h}{\lambda h}\right)^{2} \\
& =\lambda^{2} \times 1=\lambda^{2} \\
f(0) & =\lim _{x \rightarrow 0^{-}} f(x) \\
1 & =\lambda^{2} \therefore \lambda= \pm 1
\end{aligned} . \therefore \lambda=1
\end{aligned}
$$

23. Sketch the region bounded by the lines $2 x+y=8$, $y=2, y=4$ and the y-axis. Hence, obtain its area using integration.
Sol.

Required Area $=\int_{2}^{4} x d y=\int_{2}^{4} \frac{8-y}{2} d y$
$=\left[4 y-\frac{y^{2}}{4}\right]_{2}^{4}$
$=[16-4-8+1]$
Required area $=5$ unit 2
24. (a) If the vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then find the angle between \vec{a} and \vec{b}.

OR
(b) Find the area of a parallelogram whose adjacent
side are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$
and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.
Sol. (a) Given $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$
Since, $\quad \vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
Now, $\quad|\vec{a} \times \vec{b}|=\frac{\vec{a} \times \vec{b}}{\hat{n}}=\frac{|\vec{a}||\vec{b}| \sin \theta \hat{n}}{\hat{n}}$

$$
\begin{aligned}
|\vec{a} \times \vec{b}| & =|\vec{a}||\vec{b}| \sin \theta \\
1 & =3 \times \frac{2}{3} \times \sin \theta \\
\sin \theta & =\frac{1}{2} \\
\theta & =30^{\circ}
\end{aligned}
$$

Angle between \vec{a} and \vec{b} is 30°

OR

(b)

$$
\begin{aligned}
\vec{a} & =\hat{i}-\hat{j}+3 \hat{k} \\
\vec{b} & =2 \hat{i}-7 \hat{j}+\hat{k}
\end{aligned}
$$

Required area of $\|\left.\right|^{\mathrm{gm}}$

$$
\begin{aligned}
& =|\vec{a} \times \vec{b}| \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 3 \\
2 & -7 & 1
\end{array}\right| \\
& =i(-1+21)-\hat{j}(1-6)+\hat{k}(-7+2) \\
& =|20 \hat{i}+5 \hat{j}-5 \hat{k}| \\
& =|\sqrt{400+25+25}| \\
& =15 \sqrt{2} \text { unit }^{2}
\end{aligned}
$$

25. Find the vector and the cartesian equations of a line that passes through the point $A(1,2,-1)$ and parallel to the line $5 x-25=14-7 y=35 z$.
Sol. Given point A $(1,2,-1)$
Given line $5 x-25=14-7 y,=35 z$,
$=5(x-5),=-7(y-2),=35 z$,
$=\frac{x-5}{7}=\frac{y-7}{-5},=\frac{z}{1}$ Divide by 35
Direction ration of the line $(7,-5,1)$
\therefore Direction ratio of the parallel line $(7,-5,1)$
Equation of the line passing through the point A $(1,2,-1)$ and parallel to the given line

$$
\frac{x-1}{7}=\frac{y-2}{-5}=\frac{z+1}{1}
$$

vector form of the line

$$
\hat{i}+2 \hat{j}-\hat{k}+\lambda(7 \hat{i}-5 \hat{j}+\hat{k})
$$

SECTION - C

26. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$, then show that $\mathrm{A}^{3}-23 A-40 I=0$.

Sol.

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right] \\
A^{2} & =A \times A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]
\end{aligned}
$$

$$
A^{2}=\left[\begin{array}{ccc}
1+6+12 & 2-4+6 & 3+2+3 \\
3-6+4 & 6+4+2 & 9-2+1 \\
4+6+4 & 8-4+2 & 12+2+1
\end{array}\right]
$$

$$
A^{2}=\left[\begin{array}{ccc}
19 & 4 & 8 \\
1 & 12 & 8 \\
14 & 6 & 15
\end{array}\right]
$$

$$
\begin{aligned}
& A^{2} \times A=\left[\begin{array}{ccc}
19 & 4 & 8 \\
1 & 12 & 8 \\
14 & 6 & 15
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
19+12+32 & 38-8+16 & 57+4+8 \\
1+36+32 & 2-24+16 & 3+12+8 \\
14+18+60 & 28-12+30 & 42+6+15
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
63 & 46 & 69 \\
69 & -6 & 23 \\
92 & 46 & 63
\end{array}\right]
\end{aligned}
$$

L.H.S.

$$
\mathrm{A}^{3}-23 \mathrm{~A}-40 \mathrm{I}
$$

$$
\left[\begin{array}{ccc}
63 & 46 & 69 \\
69 & -6 & 23 \\
92 & 46 & 63
\end{array}\right]-23\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]-40\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
A^{3}-23 A-40 I
$$

$$
=\left[\begin{array}{ccc}
63-23-40 & 46-46-0 & 69-69-0 \\
69-69-0 & -6+46-40 & 23-23-0 \\
92-92-0 & 46-46-0 & 63-23-40
\end{array}\right]
$$

$$
A^{3}-23 A-40 I=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\mathrm{A}^{3}-23 \mathrm{~A}-40 \mathrm{I}=0
$$

Hence proved.
27. (a) Differentiate $\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$
$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$.
OR
(b) If $y=\tan x+\sec x$, then prove that $\frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1-\sin x)^{2}}$.

Sol. (a) $u=\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$ and $v=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
Let $x=\sin \theta$

$$
\begin{aligned}
u & =\sec ^{-1}\left(\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right) \\
& =\sec ^{-1} \frac{1}{\cos \theta}=\theta \\
\therefore \quad u & =\sin ^{-1} x \\
v & =\sin ^{-1}\left(2 \sin \theta\left(\sqrt{1-\sin ^{2} \theta}\right)\right. \\
& =\sin ^{-1}(2 \sin \theta \cos \theta) \\
v & =\sin ^{-1} \sin 2 \theta=2 \theta \\
v & =2 \sin ^{-1} x \\
\frac{d u}{d x} & =\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d v}{d x} & =\frac{d}{d x}\left(2 \sin ^{-1} x\right)=\frac{2}{\sqrt{1-x^{2}}} \\
\frac{d u}{d v} & =\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{1}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y= \tan x+\sec x \\
& \frac{d y}{d x}=\frac{d}{d x}(\tan x)+\frac{d}{d x}(\sec x) \\
& \frac{d y}{d x}=\sec ^{2} x+\sec x \tan x \\
& \frac{d y}{d x}=\sec x(\sec x+\tan x) \\
& \frac{d^{2} y}{d x^{2}}=(\sec x+\tan x) \frac{d}{d x} \sec x \\
&+\sec x \frac{d}{d x}(\sec x+\tan x)
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=(\sec x+\tan x) \sec x \tan x
$$

$$
+\sec x\left(\sec x \tan x+\sec ^{2} x\right)
$$

$$
=(\sec x+\tan x) \sec x \tan x+\sec ^{2} x(\sec x+\tan x)
$$

$$
=\sec x(\sec x+\tan x)(\tan x+\sec x)
$$

$$
=\sec x(\sec x+\tan x)^{2}
$$

$$
\begin{aligned}
& =\frac{1}{\cos x}\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right)^{2} \\
& =\frac{1}{\cos x}\left(\frac{1+\sin x}{\cos x}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\cos x} \frac{(1+\sin x)^{2}}{\left(1-\sin ^{2} x\right)} \\
& =\frac{1+\sin x}{\cos x(1-\sin x)} \\
\frac{d^{2} y}{d x^{2}} & =\frac{(1+\sin x)}{\cos x(1-\sin x)} \times \frac{1-\sin x}{1-\sin x} \\
& =\frac{1-\sin ^{2} x}{\cos x(1-\sin x)^{2}}
\end{aligned}
$$

$$
\therefore \frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1-\sin x)^{2}}
$$

Hence proved.

28. (a) Evaluate: $\int_{0}^{2 \pi} \frac{1}{1+e^{\sin x}} d x$

OR

(b) Find: $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x$

Sol.

$$
\begin{aligned}
& I=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin x}} d x \\
& I=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin (2 \pi-x)}} d x \\
& I=\int_{0}^{2 \pi} \frac{1}{1+e^{-\sin x}} d x \\
& =\int_{0}^{2 \pi} \frac{e^{\sin x}}{1+e^{\sin x}} d x \\
& 2 I=\int_{0}^{2 \pi} \frac{1+e^{\sin x}}{1+e^{\sin \pi}} d x \\
& 2 I=\int_{0}^{2 \pi} 1 d x \\
& =[x]_{0}^{2 \pi} \\
& 2 I=2 \pi-0 \\
& \therefore \quad I=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin x}}=\pi \\
& \text { OR } \\
& \int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x \\
& \int \frac{x^{4}}{x^{3}-x^{2}+x-1} d x \\
& \begin{array}{l|l}
& x+1 \\
\hline x^{3}-x^{2}+x-1 & \begin{array}{l}
x^{4} \\
x^{4}-x^{3}+x^{2}-x
\end{array}
\end{array} \\
& (-)(+)(-)(+) \\
& x^{3}-x^{2}+x \\
& x^{3}-x^{2}+x-1 \\
& (-)(+)(-)(+) \\
& \int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x=\int\left[x+1+\frac{1}{(x-1)\left(x^{2}+1\right)}\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{2}+x+\int \frac{1}{(x-1)\left(x^{2}+1\right)} d x \\
& \frac{1}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1} \\
& 1=A\left(x^{2}+1\right)+(B x+C)(x-1) \\
& 1=(A+B) x^{2}+(A-C)+x(C-B) \\
& \therefore \quad A+B=0 \Rightarrow A=-B \\
& C-B=0 \Rightarrow C=B \\
& A-C=1 \\
& -2 C=1 \Rightarrow C=-\frac{1}{2} \\
& B=-\frac{1}{2} \text { and } A=\frac{1}{2} \\
& \int \frac{1}{(x-1)\left(x^{2}+1\right)} d x=\frac{1}{2} \int\left[\frac{+1}{x-1}+\frac{-x-1}{x^{2}+1}\right] d x \\
& =\frac{1}{2}\left[\int \frac{d x}{x-1}-\int \frac{x}{x^{2}+1} d x-\int \frac{d x}{x^{2}+1}\right] \\
& =\frac{1}{2}\left[\log |x-1|-\frac{1}{2} \log \left|x^{2}+1\right|-\tan ^{-1} x\right]+c_{1} \\
& =\frac{1}{2} \log \left|\frac{x-1}{\sqrt{x^{2}+1}}\right|-\frac{1}{2} \tan ^{-1} x+c \\
& \int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x \\
& =\frac{x^{2}}{2}+x+\frac{1}{2} \log \left|\frac{x-1}{\sqrt{x^{2}+1}}\right|-\frac{1}{2} \tan ^{-1} x+c
\end{aligned}
$$

29. Find the area of the following region using integration:
$\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.y \geq x-4\right\}$
Sol. Given:

$$
\begin{align*}
y^{2} & =2 x \tag{1}\\
y & =x-4 \tag{2}
\end{align*}
$$

Required area is OABCO
from (1) and (2)

$$
\begin{aligned}
(x-4)^{2} & =2 x \\
x^{2}-10 x+16 & =0 \\
(x-8)(x-2) & =0
\end{aligned}
$$

$x=8$ and $x=2$
\therefore Intersection points $(2,-2)$ and $(8,4)$

$$
\begin{aligned}
\text { Required Area } & =\left[\frac{y^{2}}{2}+4 y-\frac{y^{3}}{6}\right]_{-2}^{4} \\
& =\left(8+16-\frac{32}{3}-2+8-\frac{4}{3}\right) \\
& =30-12 \\
& =18 \text { unit }^{2}
\end{aligned}
$$

30. (a) Find the coordinates of the foot of the perpendicular drawn from the point $P(0,2,3)$ to the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$.

OR

(b) Three vectors $\vec{a} \cdot \vec{b}$ and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} . \quad$ Evaluate the quantity $\mu=$ $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=2$.

Sol. (a)

$$
\mathrm{P}(0,2,3)
$$

line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$
General point on the line is
$[(5 \lambda-3),(2 \lambda+1),(3 \lambda-4)]$
Direction ratio of the perpendicular line
[(5 $2-3),(2 \lambda-1),(3 \lambda-7)]$
$\therefore 5(5 \lambda-3)+2(2 \lambda-1)+3(3 \lambda-7)=0$
$25 \lambda-15+4 \lambda-2+9 \lambda-21=0$

$$
\begin{aligned}
38 \lambda-38 & =1 \\
\lambda & =1
\end{aligned}
$$

\therefore foot of perpendicular line is
$[(5-3),(2+1),(3-4)$
$(2,3,-1)$

OR

(b)

$$
\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \begin{aligned}
(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=0 \\
\begin{aligned}
& \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{c}+\vec{b} \cdot \vec{b} \\
&+\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c}=0
\end{aligned} \\
|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\
3^{2}+4^{2}+2^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\
2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=-29 \\
\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{29}{2}
\end{aligned}
\end{aligned}
$$

31. Find the distance between the lines:

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
& \vec{r}=(3 \hat{i}+3 \hat{j}-5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})
\end{aligned}
$$

Sol. Given:
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
$\vec{r}=(3 \hat{i}+3 \hat{j}-5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})$
These lines are parallel
\therefore Distance between two parallel lines

$$
\begin{aligned}
& =\frac{\left|\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)\right|}{|\vec{b}|} \\
a_{1} & =\hat{i}+2 \hat{j}-4 \hat{k} \\
a_{2} & =3 \hat{i}+3 \hat{j}-5 \hat{k} \\
\vec{a}_{2}-\vec{a}_{1} & =2 \hat{i}+\hat{j}-\hat{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & +6 \\
2 & 1 & -1
\end{array}\right| \\
& =\hat{i}(-3-6)-\hat{j}(-2-12)+\hat{k}(2-6) \\
& =-9 \hat{i}+14 \hat{j}-4 \hat{k} \\
\left|\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)\right| & =\left|\sqrt{9^{2}+14^{2}+4^{2}}\right| \\
& =|\sqrt{81+196+16}| \\
& =\sqrt{293} \text { units } \\
\text { Shortest distance } & =\frac{\sqrt{293}}{7} \text { units }
\end{aligned}
$$

SECTION - D

32. (a) The median of an equilateral triangle is increasing at the rate of $2 \sqrt{3} \mathrm{~cm} / \mathrm{s}$. Find the rate at which its side is increasing.

OR

(b) Sum of two numbers is 5 . If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.
Sol. (a) Let the length of the median be $x \mathrm{~cm}$

and side of equilateral triangle be $y \mathrm{~cm}$
In $\triangle \mathrm{ABD} \quad A B^{2}=A D^{2}+B D^{2}\left(\angle D=90^{\circ}\right)$

$$
y^{2}=x^{2}+\left(\frac{y}{2}\right)^{2}
$$

$$
\begin{aligned}
\frac{3}{4} y^{2} & =x^{2} \\
y^{2} & =\frac{4}{3} x^{2} \\
y & =\frac{2}{\sqrt{3}} x \\
\frac{d}{d t}(y) & =\frac{2}{\sqrt{3}} \frac{d}{d t}(x) \\
\frac{d y}{d t} & =\frac{2}{\sqrt{3}} \times \frac{d x}{d t} \\
\frac{d y}{d t} & =\frac{2}{\sqrt{3}} \times 2 \sqrt{3} \\
& =4 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Hence side of equilateral triangle be increase at $4 \mathrm{~cm} / \mathrm{s}$

OR

(b) Let the number be x and y
$\therefore \quad x+y=5$
from (1) \& (2)

$$
\begin{aligned}
S & =x^{3}+(5-x)^{3} \\
\frac{d S}{d x} & =3 x^{2}-3(5-x)^{2} \\
\frac{d S}{d x} & =3 x^{2}-75+30 x-3 x^{2} \\
& =-75+30 x
\end{aligned}
$$

for maximum and minimum

$$
\begin{aligned}
\frac{d S}{d x} & =0 \\
-75+30 x & =0 \\
x & =\frac{75}{30}=\frac{5}{2} \\
\frac{d S}{d x} & =-75+30 x \\
\frac{d^{2} S}{d x^{2}} & =30 \\
\frac{d^{2} S}{d x^{2}} & >0
\end{aligned}
$$

Hence S is minimum at $x=\frac{5}{2}$
Minimum value of $x^{2}+y^{2}$

$$
=\frac{25}{4}+\frac{25}{4}=\frac{25}{2}
$$

33. Evaluate : $\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x$

Sol. $\quad I=\int_{0}^{\pi / 2} \sin 2 x \tan ^{-1}(\sin x) d x$

$$
I=\int_{0}^{\pi / 2} 2 \sin x \cos x \tan ^{-1}(\sin x) d x
$$

Let $\quad \sin x=t$
$\cos x d x=d t$
when

$$
\begin{aligned}
& x=0, t=0 \\
& x=\frac{\pi}{2}, t=1
\end{aligned}
$$

$$
\begin{aligned}
\therefore & =\int_{0}^{1} 2 t \tan ^{-1} t d t \\
& =2\left[\tan ^{-1} t \int t d t-\int\left[\frac{d}{d x} \tan ^{-1} t\right] \int t d t\right] d t \\
& =2\left[\frac{t^{2}}{2} \tan ^{-1} t-\int \frac{t^{2}}{2\left(1+t^{2}\right)} d t\right]_{0}^{1} \\
& =\left[t^{2} \tan ^{-1} t\right]_{0}^{1}-\int_{0}^{1} \frac{t^{2}}{\left(1+t^{2}\right)} d t \\
& =\tan ^{-1} 1-\left[\int_{0}^{1} 1 d t-\int_{0}^{1} \frac{1}{1+t^{2}} d t\right] \\
& =\frac{\pi}{4}-\left[t-\tan ^{-1} t\right]_{0}^{1} \\
& =\frac{\pi}{4}-1+\frac{\pi}{4}=\frac{\pi}{2}-1 \\
\therefore \int_{0}^{\pi / 2} \sin 2 x & \tan ^{-1}(\sin x) d x=\frac{\pi}{2}-1
\end{aligned}
$$

34. Solve the following Linear Programming Problem graphically :
Maximize: $P=70 x+40 y$
Subject to: $3 x+2 y \leq 9$,

$$
\begin{aligned}
\mathbf{3 x + y} & \leq \mathbf{9} \\
x & \geq \mathbf{0}, y \geq \mathbf{0}
\end{aligned}
$$

Sol. Maximize: $P=70 x+40 y$
$3 x+2 y \leq 9,3 x+y \leq 9$
$x \geq 0, y \geq 0$

$3 x+2 y=9$$\quad$| x | 0 | 3 |
| :---: | :---: | :---: |
| y | $9 / 2$ | 0 |\quad| x | 0 | 3 |
| :---: | :---: | :---: |
| y | 9 | 0 |

Feasible area is OABO
$P=70 x+40 y$
At $(0,0)$

$$
P=70 \times 0+40 \times 0=0
$$

At $(3,0)$

$$
P=70 \times 3+40 \times 0=210
$$

At $\left(0, \frac{9}{2}\right)$

$$
P=70 \times 0+40 \times \frac{9}{2}=180
$$

Maximise at $(3,0)$
$x=3$ and $y=0$
Maximum value $=210$

35. (a) In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{5}$ be the probability that he knows the answer and $\frac{2}{5}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{3}$. What is the probability that the student knows the answer, given that he answered it correctly?

OR

(b) A box contains 10 tickets, 2 of which carry a prize of ₹ 8 each, 5 of which carry a prize of ₹ 4 each, and remaining 3 carry a prize of $₹ 2$ each. If one ticket is drawn at random, find the mean value of the prize.
Sol. (a) Let $E_{1}=$ Student knows the answer
$E_{2}=$ Student guesses the answer
$A=$ Student has answered the question correctly
$\therefore P\left(E_{1}\right)=\frac{3}{5}, P\left(E_{2}\right)=1-\frac{3}{5}=\frac{2}{3}$
$P\left(\frac{A}{E_{1}}\right)=$ Probability of student answered the question correctly given that he knows the answer
$=1$
$P\left(\frac{A}{E_{2}}\right)=$ Probability of student answered the question correctly given that he guesses the answer

$$
=\frac{1}{3}
$$

$$
\begin{aligned}
P\left(\frac{E_{1}}{A}\right) & =\frac{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)} \\
& =\frac{1 \times \frac{3}{5}}{1 \times \frac{3}{5}+\frac{2}{5} \times \frac{1}{3}} \\
P\left(\frac{E_{1}}{A}\right) & =\frac{\frac{3}{5}}{\frac{11}{15}}=\frac{9}{11}
\end{aligned}
$$

Required probability $=\frac{9}{11}$
OR
(b) Probability of prize ₹ 8 each $=\frac{2}{10}=\frac{1}{5}$

Probability of a prize ₹ 4 each $=\frac{5}{10}=\frac{1}{2}$

Probability of a prize $₹ 2$ each $=\frac{3}{10}$
Mean value of the prize

$$
\begin{aligned}
& =8 \times \frac{1}{5}+4 \times \frac{1}{2}+2 \times \frac{3}{10} \\
& =\frac{8}{5}+2+\frac{3}{5} \\
& =\frac{21}{5}
\end{aligned}
$$

\therefore Mean value of the prize $=₹ 4.20$

SECTION - E

Case Study I

36. An organization conducted bike race under two different categories-Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
let $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ and $G=\left\{g_{1}, g_{2}\right\}$, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:
(i) How many relations are possible from B to G ?
(ii) Among all the possible relations from B to G, how many functions can be formed from B to G ?
(iii) Let $\mathrm{R}: \mathrm{B} \rightarrow \mathrm{B}$ be defined by $R=\{(x, y): x$ and y are students of the same sex\}. Check if R is an equivalence relation.

OR

(iii) A function $f: \mathbf{B} \rightarrow \mathbf{G}$ be defined by $f=\left\{\left(b_{1}, g_{1}\right)\right.$, $\left.\left(b_{2}, g_{2}\right),\left(b_{3}, g_{1}\right)\right\}$.
Check if f is bijective. Justify your answer.
Sol. (i) Number of relations $=2^{\mathrm{mn}}$

$$
=2^{2 \times 3}=2^{6}=64
$$

(ii) Number of functions from B to G

$$
=2^{3}=8
$$

(iii) $\quad R=\{(x, y): x$ and y are students of same sex. $\}$

Since x and x are of the same sex
So $(x, x) \in \mathrm{R}$ for all x
$\therefore \mathrm{R}$ is reflexive
If x and y are of the same sex then y and x are also of the same sex
$\therefore \mathrm{R}$ is symmetric
If $(x, y) \in \mathrm{R}$ and $(y, z) \in \mathrm{R}$ then $(x, z) \in \mathrm{R}$
Then x and z will be of the same sex
$\therefore \mathrm{R}$ is transitive

Sine R is reflexive, symmetric and transitive
$\therefore \mathrm{R}$ is an equivalence relation.
OR
(iii) Given
$\mathrm{R}=\left\{\left(b_{1}, g_{1}\right),\left(b_{2}, g_{2}\right),\left(b_{3}, g_{1}\right)\right\}$

Since b_{1} and b_{3} have the same image g_{1}
$\therefore \mathrm{R}$ is not injective
Since all elements of G has a pre-image
$\therefore \mathrm{R}$ is bijective

Case Study II

37. Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹ 160 . From the same shop. Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹ 190 . Also Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹ 250 .
Based on the above information, answer the following questions:
(i) Convert the given above situation into a matrix equation of the form $A X=B$.
(ii) Find $|\mathrm{A}|$.
(iii) Find A^{-1}.

	OR			
(iii)	Determine $P=A^{2}-5 A$			
Sol.	Pen		Bags	Instrument
	Gautam	5	3	1
	Vikram	2	1	3
	Ankur	1	2	4

(i)
where

$$
\left[\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
160 \\
190 \\
250
\end{array}\right]
$$

$$
x=\text { cost of Pen }
$$

$y=$ cost of Bag
$z=$ cost of Instrument

$$
A=\left[\begin{array}{lll}
5 & 3 & 1 \tag{ii}\\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]
$$

$$
|A|=\left|\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right|
$$

$$
=5(4-6)-3(8-3)+1(4-1)
$$

$$
=-10-15+3
$$

$$
=-22
$$

$$
C_{11}=\left|\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right|=-2
$$

$$
C_{12}=-\left|\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right|=-5
$$

$$
\begin{aligned}
& C_{13}=\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=3 \\
& C_{21}=-\left|\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right|=-10 \\
& C_{22}=\left|\begin{array}{ll}
5 & 1 \\
1 & 4
\end{array}\right|=19 \\
& C_{23}=-\left|\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right|=-7 \\
& C_{31}=\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|=8 \\
& C_{32}=-\left|\begin{array}{ll}
5 & 1 \\
2 & 3
\end{array}\right|=-13 \\
& C_{33}=\left|\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right|=-1 \\
& \text { Adj } A=\left[\begin{array}{ccc}
-2 & -5 & 3 \\
-10 & 19 & -7 \\
8 & -13 & -1
\end{array}\right] \\
&=\left[\begin{array}{ccc}
-2 & -10 & 8 \\
-5 & 19 & -13 \\
3 & -7 & -1
\end{array}\right] \\
& A^{-1}=\frac{A d j A}{|A|} \\
&\left.=-\frac{1}{22} \left\lvert\, \begin{array}{ccc}
-2 & -10 & 8 \\
-5 & 19 & -13 \\
3 & -7 & -1
\end{array}\right.\right] \\
&=\frac{1}{22}\left[\begin{array}{ccc}
2 & 10 & -8 \\
5 & -19 & 13 \\
-3 & 7 & 1
\end{array}\right] \\
& \text { OR }
\end{aligned}
$$

(iii) $\quad P=A^{2}-5 A$

$$
\begin{aligned}
& \quad=\left[\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]-5\left[\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
25+6+1 & 15+3+2 & 5+9+4 \\
10+2+3 & 6+1+6 & 2+3+12 \\
5+4+4 & 3+2+8 & 1+6+16
\end{array}\right]-\left[\begin{array}{ccc}
25 & 15 & 5 \\
10 & 5 & 15 \\
5 & 10 & 20
\end{array}\right] \\
& =\left[\begin{array}{lll}
32 & 20 & 18 \\
15 & 13 & 17 \\
13 & 13 & 23
\end{array}\right]-\left[\begin{array}{ccc}
25 & 15 & 5 \\
10 & 5 & 15 \\
5 & 10 & 20
\end{array}\right] \\
& \therefore P=\left[\begin{array}{lll}
7 & 5 & 13 \\
5 & 8 & 2 \\
8 & 3 & 3
\end{array}\right]
\end{aligned}
$$

Case study III
38. An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form $\frac{d y}{d x}=F(x, y)$ is said to be homogeneous if $\mathrm{F}(x, y)$ is a homogeneous function of degree zero, whereas a function $\mathrm{F}(x, y)$ is a homogenous function of degree n if $\mathrm{F}(\lambda x, \lambda y)=\lambda^{n} F(x, y)$. To solve a homogeneous differential equation of the type $\frac{d y}{d x}=\mathrm{F}(x, y)=$ $g\left(\frac{y}{x}\right)$, we make the substitution $y=v x$ and then separate the variables.
Based on the above, answer the following questions:
(i) Show that $\left(x^{2}-y^{2}\right) d x+2 x y d x=0$ is a differential equation of the type $\frac{d y}{d x}=g\left(\frac{y}{x}\right)$.
(ii) Solve the above equation to find its general solution.
Sol. (i) $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

$$
\begin{align*}
\frac{d y}{d x} & =-\frac{\left(x^{2}-y^{2}\right)}{2 x y} \\
\frac{d y}{d x} & =\frac{y^{2}-x^{2}}{2 x y} \\
\frac{d y}{d x} & =\frac{x^{2}\left(\frac{y^{2}}{x^{2}}-1\right)}{2 x y} \\
& =\frac{\left(\frac{y^{2}}{x^{2}}-1\right)}{\frac{2 y}{x}} \\
\therefore \quad \frac{d y}{d x} & =g\left(\frac{y}{x}\right) \tag{ii}
\end{align*}
$$

Put

$$
y=v x
$$

$$
\therefore
$$

$$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$$

$$
v+x \frac{d v}{d x}=\frac{v^{2} x^{2}-x^{2}}{2 v x^{2}}=\frac{v^{2}-1}{2 v}
$$

$$
x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}-v
$$

$$
=\frac{v^{2}-1-2 v^{2}}{2 v}
$$

$$
x \frac{d v}{d x}=\frac{-\left(1+v^{2}\right)}{2 v}
$$

$$
\begin{aligned}
\frac{2 v}{1+v^{2}} d v & =-\frac{d x}{x} \\
\int \frac{2 v}{1+v^{2}} d v & =-\int \frac{d x}{x} \\
\log \left|1+v^{2}\right| & =-\log |x|+\log |c|
\end{aligned}
$$

$$
\begin{aligned}
\log \left|x\left(1+v^{2}\right)\right| & =\log |c| \\
x\left(1+v^{2}\right) & =c \\
x\left(1+\frac{y^{2}}{x^{2}}\right) & =c \\
x^{2}+y^{2} & =c x
\end{aligned}
$$

Delhi Set-II

Note: Except these, all other questions are from Delhi Set-1

SECTION - A

4. If $A=\left[a_{i j}\right]$ is a square matrix of order 2 such that $a_{i j}$ $=\left\{\begin{array}{ll}1, & \text { when } i \neq j \\ 0, & \text { when } i=j\end{array}\right.$ then A^{2} is:
(a) $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Sol. Option (d) is correct
Explanation:

$$
\begin{aligned}
& a_{i j}= \begin{cases}1 & \text { when } i \neq j \\
0 & \text { when } i=j\end{cases} \\
& A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
& A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

5. The value of the determinant $\left|\begin{array}{ccc}6 & 0 & -1 \\ 2 & 1 & 4 \\ 1 & 1 & 3\end{array}\right|$ is:
(a) 10
(b) 8
(c) 7
(d) -7

Sol. Option (d) is correct
Explanation: $\left|\begin{array}{ccc}6 & 0 & -1 \\ 2 & 1 & 4 \\ 1 & 1 & 3\end{array}\right|$

$$
\begin{aligned}
& =6(3-4)-0(6-4)-1(2-1) \\
& =-6-1 \\
& =-7
\end{aligned}
$$

9. The function $f(x)=x|x|, x \in \mathbf{R}$ is differentiable
(a) only at $x=0$
(b) only at $x=1$
(c) in R
(d) in $\mathrm{R}-\{0\}$

Sol. Option (d) is correct
Explanation: $f(x)=x|x|$ is not differentiable

$$
\text { at } x=0
$$

11. The value of $\int_{0}^{\pi / 4}(\sin 2 x) d x$ is:
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$

Sol. Option (c) is correct
Explanation: $\int_{0}^{\pi / 4}(\sin 2 x) d x$

Let

$$
=\int_{0}^{\pi / 4} 2 \sin x \cos x d x
$$

$$
\sin x=t
$$

$$
\cos x d x=d t
$$

when $x=0$ then $t=0$
when $x=\frac{\pi}{4}$ then $t=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& =2 \int_{0}^{1 / \sqrt{2}} t d t \\
& =2\left[\frac{t^{2}}{2}\right]_{0}^{\frac{1}{\sqrt{2}}} \\
& =\frac{1}{2}-0=\frac{1}{2}
\end{aligned}
$$

14. A unit vector \hat{a} makes equal but acute angles on the co-ordinate axes. The projection of the vector \hat{a} on the vector $\vec{b}=5 \hat{i}+7 \hat{j}-\hat{k}$ is:
(a) $\frac{11}{15}$
(b) $\frac{11}{5 \sqrt{3}}$
(c) $\frac{4}{5}$
(d) $\frac{3}{5 \sqrt{3}}$

Sol. Option (a) is correct
Explanation: \vec{a} makes equal acute angles from axis

$$
\begin{aligned}
& \therefore \quad \cos \alpha=\cos \beta=\cos \gamma \\
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
& 3 \cos ^{2} \alpha=1 \\
& \Rightarrow \quad \cos \alpha=\frac{1}{\sqrt{3}} \\
& \therefore \quad \vec{a}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{3} \hat{k} \\
& \hat{a}=\frac{\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{3} \hat{k}}{|\vec{a}|}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}}{\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}} \\
\hat{a} & =\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k} \\
\vec{b} & =5 \hat{i}+7 \hat{j}-\hat{k}
\end{aligned}
$$

Projection of vector \vec{a} on \vec{b}

$$
\begin{aligned}
& =\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \\
& =\frac{\left(\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}\right) \cdot(5 \hat{i}+7 \hat{j}-\hat{k})}{\left|\sqrt{5^{2}+7^{2}+1^{2}}\right|} \\
& =\frac{\frac{5}{\sqrt{3}}+\frac{7}{\sqrt{3}}-\frac{1}{\sqrt{3}}}{\sqrt{75}} \\
& =\frac{11}{\sqrt{3}} \times \frac{1}{5 \sqrt{3}}=\frac{11}{15}
\end{aligned}
$$

18. If A and B are two independent events such that $P(A)=\frac{1}{3}$ and $P(B)=\frac{1}{4}$, then $P\left(\frac{B^{\prime}}{A}\right)$ is:
(a) $\frac{1}{4}$
(b) $\frac{1}{8}$
(c) $\frac{3}{4}$
(d) 1

Sol. Option (c) is correct
Explanation: $P(A)=\frac{1}{3}, P(B)=\frac{1}{4}$
A and B are two independent events

$$
\begin{aligned}
\therefore \quad P(A) \cdot P(B) & =P(A \cap B) \\
P\left(B^{\prime}\right) & =1-P(B) \\
& =1-\frac{1}{4}=\frac{3}{4} \\
P\left(A \cap B^{\prime}\right) & =P(A) \cdot P\left(B^{\prime}\right) \\
& =\frac{1}{3} \cdot \frac{3}{4}=\frac{1}{4} \\
P\left(\frac{B^{\prime}}{A}\right) & =\frac{P\left(B^{\prime} \cap A\right)}{P(A)}
\end{aligned}
$$

$$
\therefore\left[P\left(\mathrm{~B}^{\prime} \cap \mathrm{A}\right)=\mathrm{P}\left(\mathrm{~B}^{\prime} \cap \mathrm{A}\right)\right]
$$

$$
=\frac{\frac{1}{4}}{\frac{1}{3}}=\frac{3}{4}
$$

21. Draw the graph of the principal branch of the function $f(x)=\cos ^{-1} x$.

Sol. $f(x)=\cos ^{-1} x$

25. Find the angle between the following two lines:

$$
\begin{aligned}
\vec{r} & =2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \\
\vec{r} & =7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

Sol.

$$
\begin{aligned}
& \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \\
& \vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k} \\
& \vec{c}=\hat{i}+2 \hat{j}+2 \hat{k} \\
& \therefore \cos \theta=\frac{\vec{b} \cdot \vec{c}}{|b||c|}=\frac{(3 \hat{i}+2 \hat{j}+6 \hat{k})(\hat{i}+2 \hat{j}+2 \hat{k})}{\left|\sqrt{3^{2}+2^{2}+6^{2}}\right|\left|\sqrt{1^{2}+2^{2}+2^{2}}\right|} \\
& \cos \theta=\frac{3+4+12}{7 \times 3} \\
& \cos \theta=\frac{19}{21} \\
& \theta=\cos ^{-1}\left(\frac{19}{21}\right)
\end{aligned}
$$

SECTION - C

26. Using determinants, find the area of $\triangle P Q R$ with vertices $P(3,1), Q(9,3)$ and $R(5,7)$. Also, find the equation of line $P Q$ using determinants.
27. Ar. $\Delta \mathrm{PQR}=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{lll}3 & 1 & 1 \\ 9 & 3 & 1 \\ 5 & 7 & 1\end{array}\right|$
$=\frac{1}{2}[3(3-7)-1(9-5)+1(63-1)]$
$=\frac{1}{2}|-12-4+48|$
$=\frac{32}{2}=16$ unit 2
Equation of the line PQ
$\left|\begin{array}{lll}x & y & 1 \\ 3 & 1 & 1 \\ 9 & 3 & 1\end{array}\right|=0$
$x(1-3)-y(3-9)+1(9-9)=0$
$-2 x+6 y=0$
$x-3 y=0$
28. (a) Evaluate: $\int_{-\pi / 4}^{\pi / 4} \frac{\cos 2 x}{1+\cos 2 x} d x$

OR
(b) Find: $\int e^{x^{2}}\left(x^{5}+2 x^{3}\right) d x$

Sol. (a) $\int_{-\pi / 4}^{\pi / 4} \frac{\cos 2 x}{1+\cos 2 x} d x$

$$
\begin{aligned}
f(x) & =\frac{\cos 2 x}{1+\cos 2 x} \\
\therefore \quad f(-x) & =\frac{\cos 2 x}{1+\cos 2 x}
\end{aligned}
$$

Hence $f(x)$ is even function

$$
\begin{aligned}
I & =\int_{-\pi / 4}^{\pi / 4} \frac{\cos 2 x}{1+\cos 2 x} d x \\
& =2 \int_{0}^{\pi / 4} \frac{\cos 2 x}{1+\cos 2 x} d x \\
& =2 \int_{0}^{\pi / 4}\left[1-\frac{1}{1+\cos 2 x}\right] d x \\
& =2\left[\int_{0}^{\pi / 4} 1 d x-\int_{0}^{\pi / 4} \frac{1}{2} \sec ^{2} x d x\right] \\
& =2\left[x-\frac{1}{2} \tan x\right]_{0}^{\pi / 4} \\
I & =2\left[\frac{\pi}{4}-\frac{1}{2}-0-0\right] \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

OR
(b) $\int e^{x^{2}}\left(x^{5}+2 x^{3}\right) d x$

$$
=\int x e^{x^{2}}\left(x^{4}+2 x^{2}\right) d x
$$

Let

$$
\begin{aligned}
x^{2} & =t \\
2 x d x & =d t
\end{aligned}
$$

$$
=\frac{1}{2} \int e^{t}\left(t^{2}+2 t\right) d t
$$

$$
\begin{aligned}
f(t) & =t^{2} \\
\therefore \quad f^{\prime}(t) & =2 t
\end{aligned}
$$

$$
\int e^{t}\left(f(t)+f^{\prime}(t)\right) d t=e^{t} f(t)
$$

$$
\therefore \quad \frac{1}{2} e^{t} \cdot t^{2}+c=\frac{1}{2} x^{4} e^{x^{2}}+c
$$

29. Find the area of the minor segment of the circle $x^{2}+y^{2}=4$ cut off by the line $x=1$, using integration.

Sol.

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& \therefore \quad y=\sqrt{4-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Required Area } & =2 \int_{0}^{1} y d x \\
& =2 \int_{0}^{1} \sqrt{4-x^{2}} d x \\
& =2\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{1}{2} \times 4 \sin ^{-1} \frac{x}{2}\right]_{0}^{1} \\
& =2\left[\frac{\sqrt{3}}{2}+2 \times \frac{\pi}{6}-0-0\right] \\
& =\left(\sqrt{3}+\frac{2 \pi}{3}\right) \text { units }^{2}
\end{aligned}
$$

SECTION - D

32. Evaluate: $\int_{0}^{\pi} \frac{x}{1+\sin x} d x$

Sol.

$$
\begin{aligned}
I & =\int_{0}^{\pi} \frac{x}{1+\sin x} d x \\
I & =\int_{0}^{\pi} \frac{\pi-x}{1+\sin (\pi-x)} d x \\
& =\int_{0}^{\pi} \frac{\pi-x}{1+\sin x} d x \\
2 I & =\int_{0}^{\pi} \frac{\pi}{1+\sin x} d x \\
& =\pi \int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x \\
& =\pi\left[\int_{0}^{\pi} \frac{1}{\cos ^{2} x} d x-\int_{0}^{\pi} \tan x \sec x d x\right] \\
& =\pi[\tan x-\sec x]_{0}^{\pi} \\
& =\pi[0+1-0+1]=2 \pi \\
I & =\int_{0}^{\pi} \frac{x}{1+\sin x} d x=\pi
\end{aligned}
$$

Delhi Set-III

(c) $(3,8) \in R$
(d) $(2,4) \in \mathrm{R}$

Sol. Option (b) is correct
Explanation: $\quad a=b-2, b>6$
$\therefore \quad 6=8-2$
2. If $A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$ and $A=A^{T}$, where A^{T} is the transpose of the matrix A , then
(a) $x=0, y=5$
(b) $x=y$
(c) $x+y=5$
(d) $x=5, y=0$

Sol. Option (b) is correct
Explanation: $\quad A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$

$$
\begin{aligned}
A^{T} & =\left[\begin{array}{ll}
5 & y \\
x & 0
\end{array}\right] \\
A & =A^{T} \\
{\left[\begin{array}{ll}
5 & x \\
y & 0
\end{array}\right] } & =\left[\begin{array}{ll}
5 & y \\
x & 0
\end{array}\right]
\end{aligned}
$$

$$
\therefore \quad x=y
$$

6. If $f(x)=|\cos x|$, then $f\left(\frac{3 \pi}{4}\right)$ is:
(a) 1
(b) -1
(c) $\frac{-1}{\sqrt{2}}$
(d) $\frac{1}{\sqrt{2}}$

Sol. Option (d) is correct
Explanation: $f(x)=|\cos x|$

$$
\begin{aligned}
f\left(\frac{3 \pi}{4}\right) & =\left|\cos \frac{3 \pi}{4}\right| \\
& =\left|-\frac{1}{\sqrt{2}}\right|=\frac{1}{\sqrt{2}}
\end{aligned}
$$

9. The function $f(x)=x^{3}+3 x$ is increasing in interval
(a) $(-\infty, 0)$
(b) $(0, \infty)$
(c) \mathbb{R}
(d) $(0,1)$

Sol. Option (c) is correct
Explanation: $f(x)=x^{3}+3 x$

$$
f^{\prime}(x)=3 x^{2}+3
$$

for increasing $f^{\prime}(x)>0$

$$
3 x^{2}+3>0 \therefore x \in R \quad\left(x \in R \therefore x^{2}>0\right)
$$

12. The order and the degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{2}=4 \frac{d^{3} y}{d x^{3}}$ respectively are:
(a) $1, \frac{2}{3}$
(b) 3,1
(c) 3,3
(d) 1,2

Sol. Option (c) is correct
Explanation:

$$
\left(1+3 \frac{d y}{d x}\right)^{2}=4 \frac{d^{3} y}{d x^{3}}
$$

\therefore order $=3$ and degree $=1$
13. If $\vec{a} \cdot \hat{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})=1$, then \vec{a} is:
(a) \hat{k}
(b) \hat{i}
(c) \hat{j}
(d) $\hat{i}+\hat{j}+\hat{k}$

Explanation: Let $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$

$$
\begin{aligned}
\vec{a} \cdot \hat{i} & =(x \hat{i}+y \hat{j}+z \hat{k}) i=x \\
\vec{a} \cdot(\hat{i}+\hat{j}) & =(x \hat{i}+y \hat{j}+z \hat{k})(\hat{i}+\hat{j}) \\
& =x+y \\
\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k}) & =(x \hat{i}+y \hat{j}+z \hat{k})(\hat{i}+\hat{j}+\hat{k}) \\
& =x+y+z \\
\text { Given, } \quad x & =x+y=x+y+z=1 \\
\therefore \quad x & =1, y=0 \text { and } z=0 \\
\therefore \vec{a} & =\hat{i}
\end{aligned}
$$

Given,

SECTION - B

21. (a) Find the value of k for which the function f given as
$f(x)=\left\{\begin{array}{cll}\frac{1-\cos x}{2 x^{2}}, & \text { if } & x \neq 0 \\ k, & \text { if } & x=0\end{array}\right.$ is continuous at $x=0$
OR
(b) If $x=a \cos t$ and $y=b \sin t$, then find $\frac{d^{2} y}{d x^{2}}$.

Sol. (a) $f(x)=\left\{\begin{array}{cll}\frac{1-\cos x}{2 x^{2}}, & \text { if } & x \neq 0 \\ k, & \text { if } & x=0\end{array}\right.$ is continuous at $x=0$

$$
\begin{aligned}
\text { L.H.L. }=\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{h \rightarrow 0} \frac{1-\cos (0-h)}{2(0-h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{1-\cos h}{2 h^{2}} \\
& =\lim _{h \rightarrow 0} \frac{2 \sin ^{2} h / 2}{2 h^{2}} \\
& =\lim _{h \rightarrow 0}\left(\frac{\sin h / 2}{2 h / 2}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

$f(x)$ is continuous at $x=0$

$$
\therefore \quad k=\frac{1}{4} \quad \therefore\left(f(0)=\lim _{x \rightarrow 0^{-}} f(x)\right)
$$

OR
(b) $x=a \operatorname{cost}, y=b \sin t$

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d}{d t}(a \cos t)=-a \sin t \\
\frac{d y}{d t} & =\frac{d}{d t}(b \sin t)=b \cos t \\
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t}=\frac{b \cos t}{-a \sin t} \\
& =\frac{-b}{a} \cot t
\end{aligned}
$$

Sol. Option (b) is correct

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-\frac{b}{a} \frac{d}{d x} \cot t \\
& =+\frac{b}{a} \operatorname{cosec}^{2} t \cdot \frac{d t}{d x} \\
& =\frac{b}{a} \operatorname{cosec}^{2} \times \frac{1}{-a \sin t} \\
& =-\frac{b}{a^{2}} \operatorname{cosec}^{3} t
\end{aligned}
$$

22. Find the value of $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]+\tan ^{-1} 1$.

Sol. $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]+\tan ^{-1} 1$
$=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]+\frac{\pi}{4}$
$=\tan ^{-1}\left(2 \times \frac{\sqrt{3}}{2}\right)+\frac{\pi}{4}$
$=\tan ^{-1}(\sqrt{3})+\frac{\pi}{4}$
$=\frac{\pi}{3}+\frac{\pi}{4}$
$=\frac{7 \pi}{12}$

SECTION - C

26. Show that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of θ.
Sol. $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$
$=x\left|\begin{array}{cc}-x & 1 \\ 1 & x\end{array}\right|-\sin \theta\left|\begin{array}{cc}-\sin \theta & 1 \\ \cos \theta & x\end{array}\right|+\cos \left|\begin{array}{cc}-\sin \theta & -x \\ \cos \theta & 1\end{array}\right|$
$=x\left(-x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)$

$$
+\cos \theta(-\sin \theta+x \cos \theta)
$$

$=-x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta$
$-\sin \theta \cos \theta+x \cos ^{2} \theta$
$=-x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=-x^{3}-x+x$
$=-x^{3}$
It is independent of 0 .
Hence Proved.
27. Using integration, find the area of the region bounded by $y=m x(m>0), x=1, x=2$ and the x-axis.

Sol. \quad Required Area $=\int_{1}^{2} y d x$

$$
=\int_{1}^{2} m x d x
$$

$$
=\left[\frac{m x^{2}}{2}\right]_{1}^{2}
$$

$$
=2 m-\frac{m}{2}
$$

$$
=\frac{3 m}{2} \text { unit }^{2}
$$

28. (a) Find the coordinates of the foot of the perpendicular drawn from point $(5,7,3)$ to the line $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

OR

(b) If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ then find a unit vector perpendicular to both $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

Sol. (a) Given line $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
General point of the line $(3 \lambda+15,8 \lambda+29,-5 \lambda+5)$ Direction ratio of the perpendicular line which is passes through $(5,7,3)$ is
$(3 \lambda+10,8 \lambda+22,-5 \lambda+2)$
lines are perpendicular: $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore 3(3 \lambda+10)+8(8 \lambda+22)-5(-5 \lambda+2)=0$
$9 \lambda+30+64 \lambda+176+25 \lambda-10=0$

$$
\begin{aligned}
98 \lambda & =-196 \\
\lambda & =-2
\end{aligned}
$$

foot of perpendicular $(-6+15,-16+29,10+5)$

$$
=(9,13,15)
$$

OR

$$
\begin{align*}
\vec{a} & =\hat{i}+\hat{j}+\hat{k} \tag{b}\\
\vec{b} & =\hat{i}+2 \hat{j}+3 \hat{k} \\
\vec{a}+\vec{b} & =2 \hat{i}+3 \hat{j}+4 \hat{k} \\
\vec{a}-\vec{b} & =-\hat{j}-2 \hat{k}
\end{align*}
$$

Perpendicular vector to both $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ is

$$
\begin{gathered}
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 4 \\
0 & -1 & -2
\end{array}\right|=\hat{i}(-6+4)-\hat{j}(-4-0)+\hat{k}(-2-0) \\
=-2 \hat{i}+4 \hat{j}-2 \hat{k}
\end{gathered}
$$

$$
\text { Required unit vector }=\frac{-2 \hat{i}+4 \hat{j}-2 \hat{k}}{\left|\sqrt{2^{2}+4^{2}+2^{2}}\right|}
$$

$$
=\frac{1}{\sqrt{6}}(-\hat{i}+2 \hat{j}-\hat{k})
$$

32. Solve the following Linear Programming Problem graphically:

Minimise: $Z=60 x+80 y$
Subject to constraints:

$$
\begin{aligned}
& 3 x+4 y \geq 8 \\
& 5 x+2 y \geq 11
\end{aligned}
$$

$$
x, y \geq 0
$$

Sol. $Z=60 x+80 y$
$3 x+4 y \geq 8 \quad 5 x+2 y \geq 11$

x	2	0	$8 / 3$						
y	0.5	2	0	\quad	x	0	1	2	$11 / 5$
:---:	:---:	:---:	:---:	:---:					
y	5.5	3	0.5	0					

Point (x, y)	$Z=60 x+80 y$
At $(0,11 / 2)$	$Z=60 \times 0+80 \times \frac{11}{2}$
	$=440$

At $(2,0.5)$	$Z=60 \times 2+80 \times 0.5=160$
$(8 / 3,0)$	$Z=60 \times \frac{8}{3}+80 \times 0=160$

	$\begin{aligned} & 60 x+80 y \leq 160 \\ & 60 x+80 y=160 \end{aligned}$		
x	0	2	8/3
y	2	0.5	0

feasible region is unbounded so we consider

$$
60 x+80 y \leq 160
$$

and feasible region.
Hence minimum value of Z is 160 which is each point of A and P.

Outside Delhi Set-I

SECTION - A

1. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then A^{2023} is equal to:
(a) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}0 & 2023 \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{cc}2023 & 0 \\ 0 & 2023\end{array}\right]$

Sol. Option (c) is correct
Explanation: $\quad A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$

$$
\begin{aligned}
A^{2} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
\therefore \quad & \mathrm{A}^{2023}
\end{aligned}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

2. If $\left[\begin{array}{ll}2 & 0 \\ 5 & 4\end{array}\right]=P+Q$, where P is a symmetric and Q is a skew symmetric matrix, then Q is equal to:
(a) $\left[\begin{array}{cc}2 & \frac{5}{2} \\ \frac{5}{2} & 4\end{array}\right]$
(b) $\left[\begin{array}{cc}0 & -\frac{5}{2} \\ \frac{5}{2} & 0\end{array}\right]$
(c) $\left[\begin{array}{cc}0 & \frac{5}{2} \\ -\frac{5}{2} & 0\end{array}\right]$
(d) $\left[\begin{array}{cc}2 & -\frac{5}{2} \\ \frac{5}{2} & 4\end{array}\right]$

Sol. Option (b) is correct
Explanation: $\left[\begin{array}{ll}2 & 0 \\ 5 & 4\end{array}\right]=P+Q$

$$
\begin{aligned}
& =\left(A+A^{t}\right)+\left(A-A^{t}\right) \\
2 A & =\left[\begin{array}{ll}
2 & 0 \\
5 & 4
\end{array}\right] \\
2 A^{t} & =\left[\begin{array}{ll}
2 & 5 \\
0 & 4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
Q & =A-A^{t} \\
& =\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
5 & 4
\end{array}\right]-\frac{1}{2}\left[\begin{array}{ll}
2 & 5 \\
0 & 4
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
0 & -5 \\
5 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & \frac{-5}{2} \\
\frac{5}{2} & 0
\end{array}\right]
\end{aligned}
$$

3. If $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1\end{array}\right]$ is non-singular matrix and $a \in A$, then the set A is:
(a) IR
(b) $\{0\}$
(c) $\{4\}$
(d) $\mathrm{IR}-\{4\}$

Sol. Option (d) is correct
Explanation: $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1\end{array}\right]$ is non-singular matrix

$$
\begin{aligned}
\therefore \quad\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & a & 1
\end{array}\right] & \neq 0 \\
\therefore & \neq 0 \\
1(3-a)-2(2-3)+1(2 a-9) & \neq 0 \\
3-a+2+2 a-9 & \neq 0 \\
\therefore & a \neq 4 \\
\therefore \quad A & =R-\{4\}
\end{aligned}
$$

4. If $|A|=|k A|$, where A is a square matrix of order 2 , then sum of all possible values of k is:
(a) 1
(b) -1
(c) 2
(d) 0

Sol. Option (d) is correct
Explanation: $\quad \begin{aligned}|A| & =|k A| \\ & |A|=k^{n}|A|\end{aligned}$
where n is the order of matrix

$$
\begin{aligned}
1 & =k^{n} \\
\Rightarrow \quad k^{2} & =1 \\
\Rightarrow & k \\
\text { Sum of all values of } k & = \pm 1 \\
& =+1-1=0
\end{aligned}
$$

5. If $\frac{d}{d x}[f(x)]=a x+b$ and $f(0)=0$, then $f(x)$ is equal to:
(a) $a+b$
(b) $\frac{a x^{2}}{2}+b x$
(c) $\frac{a x^{2}}{2}+b x+c$
(d) b

Sol. Option (b) is correct
Explanation: $\frac{d}{d x}[f(x)]=a x+b$

$$
\int \frac{d}{d x}[f(x)] d x=\int(a x+b) d x
$$

$$
\begin{array}{rlrl}
& =\frac{a x^{2}}{2}+b x+c \\
\therefore & f(0) & =0 \\
\text { Hence } & c & =0 \\
& f(x) & =\frac{a x^{2}}{2}+b x
\end{array}
$$

6. Degree of the differential equation $\sin x+\cos$ $\left(\frac{d y}{d x}\right)=y^{2}$ is:
(a) 2
(b) 1
(c) not defined
(d) 0

Sol. Option (b) is correct
Explanation:

$$
\begin{aligned}
\sin x+\cos \left(\frac{d y}{d x}\right) & =y^{2} \\
\cos \left(\frac{d y}{d x}\right) & =y^{2}-\sin x \\
\frac{d y}{d x} & =\cos ^{-1}\left(y^{2}-\sin x\right)
\end{aligned}
$$

Hence degree of the differential equation is 1
7. The integrating factor of the differential equation $\left(1-y^{2}\right) \frac{d x}{d y}+y x=a y,(-1<y<1)$ is:
(a) $\frac{1}{y^{2}-1}$
(b) $\frac{1}{\sqrt{y^{2}-1}}$
(c) $\frac{1}{1-y^{2}}$
(d) $\frac{1}{\sqrt{1-y^{2}}}$

Sol. Option (d) is correct
Explanation:

$$
\begin{aligned}
\left(1-y^{2}\right) \frac{d x}{d y}+y x & =a y \\
\frac{d x}{d y}+\frac{y}{1-y^{2}} x & =\frac{a y}{1-y^{2}} \\
\text { I.F. is } e^{\int \frac{y}{1-y^{2}} d y} & =e^{-\frac{1}{2} \log \left|1-y^{2}\right|} \\
\text { I.F. } & =e^{\log \left(1-y^{2}\right)^{-1 / 2}} \\
& =\frac{1}{\sqrt{1-y^{2}}}
\end{aligned}
$$

8. Unit vector along $\overrightarrow{P Q}$, where coordinates of P and Q respectively are $(2,1,-1)$ and $(4,4,-7)$ is:
(a) $2 \hat{i}+3 \hat{j}-6 \hat{k}$
(b) $-2 \hat{i}-3 \hat{j}+6 \hat{k}$
(c) $\frac{-2 \hat{i}}{7}-\frac{3 \hat{j}}{7}+\frac{6 \hat{k}}{7}$
(d) $\frac{2 \hat{i}}{7}+\frac{3 \hat{j}}{7}-\frac{6 \hat{k}}{7}$

Sol. Option (d) is correct
Explanation: $\mathrm{P}(2,1,-1)$ and $\mathrm{Q}(4,4,-7)$

$$
\overrightarrow{P Q}=(4-2) \hat{i}+(4-1) \hat{j}+(-7+1) \hat{k}
$$

$$
\begin{aligned}
& =2 \hat{i}+3 \hat{j}-6 \hat{k} \\
\hat{P Q} & =\frac{2 \hat{i}+3 \hat{j}-6 \hat{k}}{\sqrt{2^{2}+3^{2}+6^{2}}} \\
& =\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k}
\end{aligned}
$$

9. Position vector of the mid-point of line segment $A B$ is $3 \hat{i}+2 \hat{j}-3 \hat{k}$. If position vector of the point A is $2 \hat{i}+3 \hat{j}-4 \hat{k}$, then position vector of the point B is:
(a) $\frac{5 \hat{i}}{2}+\frac{5 \hat{j}}{2}-\frac{7 \hat{k}}{2}$
(b) $4 \hat{i}+\hat{j}-2 \hat{k}$
(c) $5 \hat{i}+5 \hat{j}-7 \hat{k}$
(d) $\frac{\hat{i}}{2}-\frac{\hat{j}}{2}+\frac{\hat{k}}{2}$

Sol. Option (b) is correct
Explanation: Position vector of $A=2 \hat{i}+3 \hat{j}-4 \hat{k}$
Position vector of midpoint $A B=3 \hat{i}+2 \hat{j}-3 \hat{k}$
Let Position vector of $B=x \hat{i}+y \hat{j}+z \hat{k}$
$\therefore \frac{x+2}{2}=3, \frac{y+3}{2}=2, \frac{z-4}{2}=-3$
$\therefore x=4, y=1$ and $z=-2$
Hence position vector of $B=4 \hat{i}+\hat{j}-2 \hat{k}$
10. Projection of vector $2 \hat{i}+3 \hat{j}$ on the vector $3 \hat{i}-2 \hat{j}$ is:
(a) 0
(b) 12
(c) $\frac{12}{\sqrt{13}}$
(d) $\frac{-12}{\sqrt{13}}$

Sol. Option (a) is correct
Explanation:
$\vec{a}=2 \hat{i}+3 \hat{j}, \quad \vec{b}=3 \hat{i}-2 \hat{j}$
Projection of \vec{a} on \vec{b} is $\left|\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right|$

$$
\begin{aligned}
& =\left|\frac{(2 \hat{i}+3 \hat{j}) \cdot(3 \hat{i}-2 \hat{j})}{\sqrt{3^{2}+2^{2}}}\right| \\
& =\left|\frac{6-6}{\sqrt{13}}\right|=0
\end{aligned}
$$

11. Equation of a line passing through point (1, 1, 1) and parallel to z-axis is:
(a) $\frac{x}{1}=\frac{y}{1}=\frac{z}{1}$
(b) $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}$
(c) $\frac{x}{0}=\frac{y}{0}=\frac{z-1}{1}$
(d) $\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{1}$

Sol. Option (d) is correct
Explanation: Direction ratio of z-axis is ($0,0,1$)
Line passing through the point $(1,1,1)$ and parallel to z-axis

$$
\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{1}
$$

12. If the sum of numbers obtained on throwing a pair of dice is 9 , then the probability that number obtained on one of the dice is 4 , is:
(a) $\frac{1}{9}$
(b) $\frac{4}{9}$
(c) $\frac{1}{18}$
(d) $\frac{1}{2}$

Sol. Option (d) is correct Explanation:

$$
\begin{aligned}
A= & \text { Sum of numbers obtained } \\
& \text { on the pair of dice is } 9 \\
& =\{(3,6),(4,5),(5,4),(6,3)\} \\
B & =\text { Number obtained on } 1 \text { dice } 1 \text { and } 4 \\
& =\{(4,5),(5,4)\} \\
P\left(\frac{B}{A}\right) & =\text { Required probability } \\
P\left(\frac{B}{A}\right) & =\frac{P(A \cap B)}{P(A)} \\
& =\frac{\frac{2}{36}}{\frac{4}{36}}=\frac{1}{2}
\end{aligned}
$$

13. Anti-derivative of $\frac{\tan x-1}{\tan x+1}$ with respect to x is:
(a) $\sec ^{2}\left(\frac{\pi}{4}-x\right)+c$
(b) $-\sec ^{2}\left(\frac{\pi}{4}-x\right)+c$
(c) $\log \left|\sec \left(\frac{\pi}{4}-x\right)\right|+c$
(d) $-\log \left|\sec \left(\frac{\pi}{4}-x\right)\right|+c$

Sol. Option (c) is correct
Explanation:
Anti-derivative of $\frac{\tan x-1}{\tan x+1}$ w.r.t. x is

$$
\begin{aligned}
\int \frac{\tan x-1}{\tan x+1} d x & =\int-\tan \left(\frac{\pi}{4}-x\right) d x \\
& \frac{-\log \sec \left(\frac{\pi}{4}-x\right)}{-1} \\
& =\log \left|\sec \left(\frac{\pi}{4}-x\right)\right|+c
\end{aligned}
$$

14. If $(a, b),(c, d)$ and (e, f) are the vertices of $\triangle \mathrm{ABC}$ and Δ denotes the area of $\triangle \mathrm{ABC}$, then $\left|\begin{array}{lll}a & c & e \\ b & d & f \\ 1 & 1 & 1\end{array}\right|^{2}$ is equal to:
(a) $2 \Delta^{2}$
(b) $4 \Delta^{2}$
(c) 2Δ
(d) 4Δ

Sol. Option (b) is correct
Explanation: $\Delta=\frac{1}{2}\left|\begin{array}{lll}a & c & e \\ b & d & f \\ 1 & 1 & 1\end{array}\right|$

$$
\begin{aligned}
2 \Delta & =\left|\begin{array}{lll}
a & c & e \\
b & d & f \\
1 & 1 & 1
\end{array}\right| \\
4 \Delta^{2} & =\left|\begin{array}{lll}
a & c & e \\
b & d & f \\
1 & 1 & 1
\end{array}\right|
\end{aligned}
$$

15. The function $f(x)=x|x|$ is:
(a) continuous and differentiable at $x=0$.
(b) continuous but not differentiable at $x=0$.
(c) differentiable but not continuous at $x=0$.
(d) neither differentiable nor continuous at $x=0$.

Sol. Option (a) is correct
16. If $\tan \left(\frac{x+y}{x-y}\right)=k$, then $\frac{d y}{d x}$ is equal to:
(a) $\frac{-y}{x}$
(b) $\frac{y}{x}$
(c) $\sec ^{2}\left(\frac{y}{x}\right)$
(d) $-\sec ^{2}\left(\frac{y}{x}\right)$

Sol. Option (b) is correct
Explanation: $\quad \tan \left(\frac{x+y}{x-y}\right)=k$

$$
\begin{aligned}
\frac{x+y}{x-y} & =\tan ^{-1} k \\
\frac{d}{d x} \frac{x+y}{x-y} & =\frac{d}{d x} \tan ^{-1} k
\end{aligned}
$$

$$
\begin{aligned}
\frac{(x-y)\left(1+\frac{d y}{d x}\right)-(x+y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}} & =0 \\
(x-y+x+y) \frac{d y}{d x}-2 y & =0 \\
\frac{d y}{d x} & =\frac{2 y}{2 x}=\frac{y}{x}
\end{aligned}
$$

17. The objective function $Z=a x+b y$ of an LPP has maximum value 42 at $(4,6)$ and minimum value 19 at $(3,2)$. Which of the following is true ?
(a) $a=9, b=1$
(b) $a=5, b=2$
(c) $a=3, b=5$
(d) $a=5, b=3$

Sol. Option (c) is correct
Explanation: $\quad Z=a x+b y$

$$
\begin{array}{ll}
\therefore & 4 a+6 b=42 \\
3 a+2 b & =19 \tag{ii}
\end{array}
$$

18. The corner points of the feasible region of a linear programming problem are $(0,4),(8,0)$ and $\left(\frac{20}{3}, \frac{4}{3}\right)$. If $Z=30 x+24 y$ is the objective function, then (maximum value of Z - minimum value of Z) is equal to:
(a) 40
(b) 96
(c) 120
(d) 136

Sol. Option (c) is correct
Explanation: $Z=30 x+24 y$
At $(8,0) \quad Z=30 \times 8+24 \times 0=240$
At $(0,4) \quad Z=30 \times 0+24 \times 4=96$ Minimum
At $\left(\frac{20}{3}, \frac{4}{3}\right) Z=30 \times \frac{20}{3}+24 \times \frac{4}{3}=232$ Maximum

$$
\begin{aligned}
& =\text { Maximum }- \text { Minimum } \\
& =232-96=136
\end{aligned}
$$

Assertion-Reason Based Questions

In the following questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices :
(a) Both (A) and (R) are true and (R) is the correct explanation of (A).
(b) Both (A) and (R) are true, but (R) is not the correct explanation of (A).
(c) (A) is true and (R) is false.
(d) (A) is false, but (R) is true.
19. Assertion (A): Maximum value of $\left(\cos ^{-1} x\right)^{2}$ is π^{2}.

Reason (R): Range of the principal value branch of $\cos ^{-1} x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
Sol. Option (c) is correct
Explanation: Range of the principal value of $\cos ^{-1} x$ is $[0, \pi]$
20. Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then $\sin ^{2}$ $\alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
Reason (R): The sum of squares of the direction cosines of a line is 1 .
Sol. Option (a) is correct
Explanation:

$$
\begin{aligned}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma & =1 \\
1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma & =1 \\
\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma & =2
\end{aligned}
$$

SECTION - B

21. (a) Evaluate $\sin ^{-1}\left(\sin \frac{3 \pi}{4}\right)+\cos ^{-1}(\cos \pi)+\tan ^{-1}$ (1).

OR

(b) Draw the graph of $\cos ^{-1} x$, where $x \in[-1,0]$. Also write its range.

Sol. (a) $\sin ^{-1}\left(\sin \frac{3 \pi}{4}\right)+\cos ^{-1}(\cos \pi)+\tan ^{-1}(1)$

$$
\begin{aligned}
& =\sin ^{-1}\left(\sin \left(\pi-\frac{\pi}{4}\right)\right)+\pi+\tan ^{-1}\left(\tan \frac{\pi}{4}\right) \\
& =\sin ^{-1} \sin \left(\frac{\pi}{4}\right)+\pi+\frac{\pi}{4} \\
& =\frac{\pi}{4}+\pi+\frac{\pi}{4} \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

OR
(b) Range of $\cos ^{-1} x$ is $[0, \pi]$

22. A particle moves along the curve $3 y=a x^{3}+1$ such that at a point with x-coordinate $1, y$-coordinate is changing twice as fast at x-coordinate. Find the value of a.
Sol.

$$
\text { Given: } \begin{aligned}
3 y & =a x^{3}+1 \\
\frac{d y}{d t} & =2\left(\frac{d x}{d t}\right) \text { at } x=1 \\
3 y & =a x^{3}+1 \\
\frac{3 d y}{d t} & =3 x^{2} a \frac{d x}{d t}+0 \\
\frac{d y}{d t} & =a x^{2} \frac{d x}{d t} \\
2\left(\frac{d x}{d t}\right) & =a(1)^{2} \frac{d x}{d t} \\
\therefore \quad a & =2
\end{aligned}
$$

23. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero unequal vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, then find the angle between \vec{a} and $\vec{b}-\vec{c}$.

Sol. $\quad \vec{a} \cdot(\vec{b}-\vec{c})=\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}$

$$
\begin{aligned}
& =0 \\
& \rightarrow
\end{aligned}
$$

$$
(a . b=a . c)
$$

\therefore Angle between \vec{a} and $(\vec{b}-\vec{c})$ is right angle i.e., 90°
24. Find the coordinates of points on line $\frac{x}{1}=\frac{y-1}{2}$ $=\frac{z+1}{2}$ which are at a distance of $\sqrt{11}$ units from origin.
Sol. Given line $\frac{x}{1}=\frac{y-1}{2}=\frac{z+1}{2}$
Gen. point on the line $(\lambda, 2 \lambda+1,2 \lambda-1)$

Distance from origin $\left|\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}\right|$

$$
\begin{aligned}
& \therefore \quad\left|\sqrt{\lambda^{2}}+(2 \lambda+1)^{2}+(2 \lambda-1)^{2}\right|
\end{aligned}=\sqrt{11} \quad \text { (Given) } \begin{aligned}
& \lambda^{2}+(2 \lambda+1)^{2}+(2 \lambda-1)^{2}=11 \\
& \lambda^{2}+4 \lambda^{2}+4 \lambda+1+4 \lambda^{2}-4 \lambda+1=11 \\
& 9 \lambda^{2}=9 \\
& \lambda \quad \lambda= \pm 1 \\
& \Rightarrow \quad \text { if } \lambda=1 \text { point on the line }(1,3,1) \\
& \text { if } \lambda=-1 \text { point on the line }(-1,-1,-3)
\end{aligned}
$$

25. (a) If $y=\sqrt{a x+b}$, prove that $y\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}=0$.
(b) If $f(x)=\left\{\begin{array}{ll}a x+b ; & 0<x \leq 1 \\ 2 x^{2}-x ; & 1<x<2\end{array}\right.$ is a differentiable function in $(0,2)$, then find the values of a and b.
Sol. (a)

$$
y=\sqrt{a x+b}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(\sqrt{a x+b}) \\
\frac{d y}{d x} & =\frac{1}{2 \sqrt{a x+b}}(a+0) \\
y \frac{d y}{d x} & =\frac{a}{2} \\
\frac{d}{d x}\left(y \frac{d y}{d x}\right) & =\frac{d}{d x}\left(\frac{a}{2}\right) \\
y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2} & =0
\end{aligned}
$$

Hence Proved
OR

$$
\begin{equation*}
f(x)=a x+b \quad 0<x \leq 1 \tag{b}
\end{equation*}
$$

$$
=2 x^{2}-x \quad 1<x<2
$$

$$
\begin{array}{lr}
\therefore & f(1)=a+b
\end{array}
$$

$$
\therefore \quad f^{\prime}(1)=f_{+}^{\prime}(1)
$$

$$
\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{2(1+h)^{2}-(a+b)-(1+h)}{h}
$$

$$
=\lim _{h \rightarrow 0^{-}} \frac{a(1+h)+b-(a+b)}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{2 h^{2}+3 h+1-a-b}{h}=\lim _{h \rightarrow 0^{-}} \frac{a h}{h}=a
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{2 h^{2}+3 h+1-a-b}{h}=a
$$

$f(x)$ is also continuous at $x=1$

$$
\begin{array}{rlrl}
\therefore & \lim _{x \rightarrow 1^{+}} f(x) & =f(1)=\lim _{x \rightarrow 1^{-}} f(1) \\
\therefore & a+b & =1 \tag{ii}\\
\lim _{h \rightarrow 0^{+}} \frac{2 h^{2}+3 h+1-1}{h} & =a \\
\lim _{h \rightarrow 0} \frac{h(2 h+3)}{h} & =a
\end{array}
$$

SECTION - C

26. (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$.

OR

(b) Find $\int \frac{d x}{\sqrt{\sin ^{3} \cos (x-\alpha)}}$

Sol. (a) $\quad I=\int_{0}^{\pi / 4} \log (1+\tan x) d x$

$$
\begin{aligned}
I & =\int_{0}^{\pi / 4} \log \left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x \\
I & =\int_{0}^{\pi / 4} \log \left(1+\frac{1-\tan x}{1+\tan x}\right) d x \\
I & =\int_{0}^{\pi / 4} \log \frac{2}{1+\tan x} d x \\
2 I & =\int_{0}^{\pi / 4} \log (1+\tan x) d x+\int_{0}^{\pi / 4} \log \frac{2}{1+\tan x} d x \\
2 I & =\int_{0}^{\pi / 4} \log (1+\tan x)\left(\frac{2}{1+\tan x}\right) d x \\
2 I & =\int_{0}^{\pi / 4} \log 2 d x \\
2 I & =[x \log 2]_{0}^{\pi / 4} \\
2 I & =\frac{\pi}{4} \log 2 \\
I & =\int_{0}^{\pi / 4} \log (1+\tan x)=\frac{\pi}{8} \log 2
\end{aligned}
$$

OR

(b) $\int \frac{d x}{\sqrt{\sin ^{3} x \cos (x-\alpha)}}$

$$
=\int \frac{d x}{\sqrt{\sin ^{3} x(\cos x \cos \alpha+\sin x \sin \alpha)}}
$$

$$
=\int \frac{d x}{\sin ^{2} x \sqrt{\frac{\cos x}{\sin x} \cos \alpha+\sin \alpha}}
$$

$$
=\int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\cot x \cos \alpha+\sin \alpha}}
$$

$$
=\frac{1}{\sqrt{\cos \alpha}} \int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\cot x+\tan \alpha}}
$$

Let $\cot x+\tan \alpha=t$
$-\operatorname{cosec}^{2} x d x=d t$

$$
=\frac{1}{\sqrt{\cos \alpha}} \int \frac{-d t}{\sqrt{t}}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0}(2 h+3)=a \\
& a=3 \\
& \text { from } \\
& \therefore \quad a=3 \text { and } b=-2
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2 \sqrt{t}}{\sqrt{\cos \alpha}}+c \\
& =-2 \frac{\sqrt{\cot x+\tan \alpha}}{\sqrt{\cos \alpha}}+c
\end{aligned}
$$

27. Find $\int e^{\cot ^{-1} x}\left(\frac{1-x+x^{2}}{1+x^{2}}\right) d x$.

Sol. $\int e^{\cot ^{-1} x}\left(\frac{1-x+x^{2}}{1+x^{2}}\right) d x$
Let $\cot ^{-1} x=t$
$-\frac{1}{1+x^{2}} d x=d t$

$$
\begin{aligned}
& =\int-e^{t}\left(1-\cot t+\cot ^{2} t\right) d x \\
& =\int-e^{t}\left(\operatorname{cosec}^{2} t-\cot t\right) d t \\
& =\int e^{t}\left(\cot t-\operatorname{cosec}^{2} t\right) d t \\
f(t) & =\cot t \\
f^{\prime}(t) & =-\operatorname{cosec}^{2} t \\
\int e^{t}\left(f(t)+f^{\prime}(t)\right) d t & =e^{t} f(t)+c \\
\therefore \quad & =e^{t} \cot t+c \\
& =e^{\cot ^{-1} x} \cot \cot ^{-1} x+c \\
& =x e^{\cot ^{-1} x}+c
\end{aligned}
$$

28. Evaluate $\int_{\log \sqrt{2}}^{\log \sqrt{3}} \frac{1}{\left(e^{x}+e^{-x}\right)\left(e^{x}-e^{-x}\right)} d x$

Sol.

$$
\begin{aligned}
& I=\int_{\log \sqrt{2}}^{\log \sqrt{3}} \frac{1}{\left(e^{x}+e^{-x}\right)\left(e^{x}-e^{-x}\right)} d x \\
& I=\int_{\log \sqrt{2}}^{\log \sqrt{3}} \frac{1}{\left(e^{x}+\frac{1}{e^{x}}\right)\left(e^{x}-\frac{1}{e^{x}}\right)} d x
\end{aligned}
$$

$$
I=\int_{\log \sqrt{2}}^{\log \sqrt{3}} \frac{e^{2 x}}{\left(e^{2 x}+1\right)\left(e^{2 x}-1\right)} d x
$$

Let $e^{2 x}=t$
$2 e^{2 x} d x=d t$
$x=\log \sqrt{3}$ then $t=3$
$x=\log \sqrt{2}$ then $t=2$

$$
\begin{aligned}
\therefore \quad & =\frac{1}{2} \int_{2}^{3} \frac{d t}{(t+1)(t-1)} \\
I & =\frac{1}{2} \int_{2}^{3} \frac{d t}{t^{2}-(1)^{2}} \\
& =\frac{1}{2} \cdot \frac{1}{2 \times 1} \log \left|\frac{t-1}{t+1}\right|_{2}^{3} \\
I & =\frac{1}{4}\left[\log \frac{2}{4}-\log \frac{1}{3}\right]=\frac{1}{4} \log \frac{3}{2}
\end{aligned}
$$

29. (a) Find the general solution of the differential equation:
$\left(x y-x^{2}\right) d y=y^{2} d x$.

OR

(b) Find the general solution of the differential equation:

$$
\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}
$$

Sol. (a)

$$
\begin{aligned}
\left(x y-x^{2}\right) d y & =y^{2} d x \\
\frac{d y}{d x} & =\frac{y^{2}}{x y-x^{2}}
\end{aligned}
$$

It is a homogenous equation

$$
\begin{aligned}
y & =v x \\
\frac{d y}{d x} & =v+x \frac{d v}{d x} \\
v+x \frac{d v}{d x} & =\frac{v^{2}}{v-1} \\
\frac{x d v}{d x} & =\frac{v^{2}}{v-1}-v=\frac{v}{v-1} \\
\frac{v-1}{v} d v & =\frac{d x}{x} \\
\int\left(1-\frac{1}{v}\right) d v & =\int \frac{d x}{x} \\
v-\log |v| & =\log |x|+\log |c| \\
v & =\log v c x \\
\frac{y}{x} & =\log c y \\
c y & =e^{y / x} \text { or } y=c_{1} e^{y / x} \quad\left(c_{1}=\frac{1}{c}\right)
\end{aligned}
$$

OR

(b) $\quad\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}$

$$
\frac{d y}{d x}+\frac{2 x}{x^{2}+1} y=\frac{\sqrt{x^{2}+4}}{x^{2}+1}
$$

Equation is the linear form
\therefore Integrating factor

$$
\begin{aligned}
& \text { I.F }=e^{\int \frac{2 x}{x^{2}+1} d x} \\
& \text { I.F. }=e^{\log \left|x^{2}+1\right|}=x^{2}+1
\end{aligned}
$$

\therefore Solution of differential equation

$$
\begin{aligned}
y \times \text { I.F. }= & \int \text { I.F. } \times \frac{\sqrt{x^{2}+4}}{x^{2}+1} d x \\
\left(x^{2}+1\right) y= & \int \sqrt{x^{2}+4} d x \\
\left(x^{2}+1\right) y= & \frac{x}{2} \sqrt{x^{2}+4} \\
& \quad+2 \log \left|x+\sqrt{x^{2}+4}\right|+c
\end{aligned}
$$

30. (a) Two balls are drawn at random one by one with replacement from an urn containing equal number or red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.

OR

(b) A and B throw a die alternately till one of them gets a ' 6 ' and wins the game. Find their respective probabilities of wining, if A starts the game first.
Sol. (a) Let the no. of Red balls $=$ no of Green balls be x

$$
\text { Total balls }=2 x
$$

Probability of no Red balls

$$
\frac{x}{2 x} \times \frac{x}{2 x}=\frac{1}{4}
$$

Probability of 1 Red balls

$$
2 \times \frac{x}{2 x} \times \frac{x}{2 x}=\frac{1}{2}
$$

Probability of 2 Red balls

$$
\begin{aligned}
\frac{x}{2 x} \times \frac{x}{2 x} & =\frac{1}{4} \\
\text { Required mean } & =0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{4}=1
\end{aligned}
$$

OR
(b) Let W and F be the probabilities for win and fail respectively when single die is thrown alternatively.
Since, $p($ getting 6$)=\frac{1}{6}$

$$
q(\text { not getting } 6)=1-p=1-\frac{1}{6}=\frac{5}{6}
$$

Starting with A ,
$P\left(A\right.$ win $1^{\text {st }}$ throw $)=W$
$P\left(A\right.$ Win $3^{\text {rd }}$ throw $)=F_{A} F_{B} W$
$P\left(A\right.$ Win $5^{\text {th }}$ throw $)=F_{A} F_{B} F_{A} F_{B} W$
So the probabilities for A to Win the game
$\mathbf{P}(\mathbf{A}$ Win $)=\mathbf{P}\left(\mathbf{1}^{\text {st }}\right)+\mathbf{P}\left(3^{\text {rd }}\right)+\mathbf{p}\left(5^{\text {th }}\right)$. \qquad
$=\mathbf{W}+\mathbf{F}_{\mathrm{A}} \mathbf{F}_{\mathbf{B}} \mathbf{W}+\mathbf{F}_{\mathrm{A}} \mathbf{F}_{\mathrm{B}} \mathbf{F}_{\mathrm{A}} \mathrm{F}_{\mathrm{B}} \mathbf{W}$. \qquad
$=p+q \cdot q p+q \cdot q . q . q . p .$.
$=\frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$.
$=\frac{1}{6}\left[1+\left(\frac{5}{6}\right)^{2}+\left(\frac{5}{6}\right)^{4} \cdots\right] \quad \because\left(\mathrm{S}_{\infty}=\frac{a}{1-r}\right) r<1$
$=\frac{1}{6} \times \frac{1}{1-\frac{25}{36}}$
$=\frac{1}{6} \times \frac{36}{11}=\frac{6}{11}$
$\mathbf{P}(\mathbf{B}$ Win $)=1-\mathbf{P}(\mathrm{A}$ Win $)$
$=1-\frac{6}{11}$
$=\frac{5}{11}$
31. Solve the following linear programming problem graphically :
Minimize: $Z=5 x+10 y$
subject to constraints :

$$
\begin{aligned}
x+2 y & \leq 120 \\
x+y & \geq 60 \\
x-2 y & \geq 0
\end{aligned}
$$

$$
x \geq 0, y \geq 0
$$

Sol.

$$
Z=5 x+10 y
$$

$x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0$
$x \geq 0, y \geq 0$

$x+2 y=120$			
x	0	120	60
y	60	0	30

$$
x+y=60
$$

x	0	60	30
y	60	0	30

$x-2 y=0$			
x	0	10	20
y	0	5	10

\(\left.\begin{array}{|l|l|}\hline Point(x, y) \& Z=5 x+10 y

\hline At(40,20) \& Z=5 \times 40+10+20=400

\hline At(60,0) \& Z=5 \times 60+10 \times 0=300

(Minimum)\end{array}\right]\)| At $(120,0)$ | $Z=5 \times 120+10 \times 0=600$ |
| ---: | :--- |
| At $(60,30)$ | $Z=5 \times 60+10 \times 30=600$ |

Minimum value $=300$
at $x=60$ and $y=0$

SECTION - D

32. (a) If $A=\left[\begin{array}{ccc}-3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$, then
find $A B$ and use it to solve the following system of equations:

$$
\begin{array}{r}
x-2 y=3 \\
2 x-y-z=2 \\
-2 y+z=3
\end{array}
$$

OR
(b) $\underset{=}{\text { If }} f(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, prove that $f(\alpha) \cdot f(-\beta)$

$$
f(\alpha-\beta)
$$

Sol. (a) $A=\left[\begin{array}{ccc}-3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{array}\right] \quad B=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$
$A B=\left[\begin{array}{ccc}-3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$ $=\left[\begin{array}{ccc}-3+4+0 & -6+2+4 & 0+4-4 \\ 2-2+0 & 4-1-2 & 0-2+2 \\ 2-2+0 & 4-1-3 & 0-2+3\end{array}\right]$ $=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\therefore \quad B^{-1}=A=\left[\begin{array}{ccc}-3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{array}\right]$

$$
x-2 y=3
$$

$$
2 x-y-1=2
$$

and $\quad-2 y+z=3$
Equation can be written in matrix form

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right] \\
B^{t} & =\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right] \\
\therefore \quad\left(B^{t}\right)^{-1} & =\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

$\therefore x=1, y=-1$ and $z=1$
OR
(b) $\quad f(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$f(-\beta)=\left[\begin{array}{ccc}\cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1\end{array}\right]$
$f(\alpha) . f(-\beta)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos \alpha \cos \beta+\sin \alpha \sin \beta & \cos \alpha \sin \beta-\sin \alpha \cos \beta & 0 \\ \sin \alpha \cos \beta-\sin \beta \cos \alpha & \sin \alpha \sin \beta+\cos \alpha \cos \beta & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (\alpha-\beta) & -\sin (\alpha-\beta) & 0 \\ \sin (\alpha-\beta) & \cos (\alpha-\beta) & 0 \\ 0 & 0 & 1\end{array}\right]$
$f(\alpha) \cdot f(-\beta)=f(\alpha-\beta)$
Hence Proved
33. (a) Find the equation of the diagonals of the parallelogram PQRS whose vertices are $P(4,2,-6), Q(5,-3,1), R(12,4,5)$ and $S(11,9,-2)$ Use these equation to find the point of intersection of diagonals.

OR

(b) A line l passes through point ($-1,3,-2$) and is perpendicular to both the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$. Find the vector equation of the line l. Hence, obtain its distance from origin.
Sol. (a)

Equation of the diagonal PR

$$
\begin{aligned}
\frac{x-x_{1}}{x_{2}-x_{1}} & =\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \\
\frac{x-4}{8} & =\frac{y-2}{2}=\frac{z+6}{11}
\end{aligned}
$$

Equation of the diagonal QS

$$
\begin{aligned}
\frac{x-5}{6} & =\frac{y+3}{+12}=\frac{z-1}{-3} \\
\text { or } & \frac{x-5}{2}
\end{aligned}=\frac{y+3}{4}=\frac{z-1}{-1}
$$

General point on the diagonal PR

$$
=(8 \lambda+4,2 \lambda+2,11 \lambda-6)
$$

General point on the diagonal QS

$$
=2 \mu+5,4 \mu-3,-\mu+1
$$

Intersection point of PR and QS

$$
\begin{array}{rlrl}
8 \lambda+4= & =2 \mu+5,2 \lambda+2=4 \mu-3,11 \lambda-6 & =-\mu+1 \\
8 \lambda-2 \mu & =1 & 11 \lambda+\mu & =7 \\
2 \lambda-4 \mu & =-5 & 11 \lambda+\mu & =7 \text { is } \\
14 \lambda & =7 & & \text { Satisfies these values } \\
\lambda & =\frac{1}{2} \text { and } \mu=\frac{3}{2} & &
\end{array}
$$

So intersection point of diagonals or mid point of diagonals is

$$
\begin{aligned}
& =\left(4+4,1+2, \frac{11}{2}-6\right) \\
& =\left(8,3,-\frac{1}{2}\right)
\end{aligned}
$$

OR

(b) Let the direction ratio of the line be (a, b, c)

Equation of the line passes through $(-1,3,-2)$

$$
\frac{x+1}{a}=\frac{y-3}{b}=\frac{z+2}{c}
$$

Line is perpendicular to the given line

$$
\begin{array}{rlrl}
\therefore & a+2 b+3 c & =0 \\
-3 a+2 b+5 c & =0 \\
\frac{a}{4} & =\frac{b}{-14}=\frac{c}{8} \\
& & & \\
& & \frac{a}{2} & =\frac{b}{-7}=\frac{c}{4}
\end{array}
$$

Required line

$$
\frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}
$$

Vector form

$$
=-\hat{i}+3 \hat{j}-2 \hat{k}+\lambda(2 \hat{i}-7 \hat{j}+4 \hat{k})
$$

General point on the line

$$
=(2 \lambda-1,-7 \lambda+3,4 \lambda-2)
$$

Direction ratio of the line passing through origin and $(2 \lambda-1,-7 \lambda+3,4 \lambda-2)$

$$
\begin{aligned}
\therefore \quad(2 \lambda-1)+(-7)(-7 \lambda+3)+4(4 \lambda-2) & =0 \\
4 \lambda-2+49 \lambda-21+16 \lambda-8 & =0 \\
69 \lambda-31 & =0 \\
\lambda & =\frac{31}{69}
\end{aligned}
$$

Foot of perpendicular from origin on the line is $\frac{-7}{69}, \frac{-10}{69}, \frac{-14}{69}$
Distance from origin $=\left|\sqrt{\left(\frac{-7}{69}\right)^{2}+\left(\frac{-10}{69}\right)^{2}+\left(\frac{-14}{69}\right)^{2}}\right|$
$=\left|\sqrt{\frac{49+100+196}{69^{2}}}\right|$
$=\sqrt{\frac{345}{69}}=\sqrt{\frac{5}{69}}$ units
34. Using integration, find the area of region bounded by line $y=\sqrt{3 x}$, the curve $y=\sqrt{4-x^{2}}$ and y-axis in first quadrant.

$$
\begin{aligned}
& y=\sqrt{4-x^{2}} \\
& y=\sqrt{3 x} \\
& y=\sqrt{4-x^{2}}
\end{aligned}
$$

Squaring both side

$$
\therefore \quad x^{2}+y^{2}=4
$$

Intersection point of $x^{2}+y^{2}=4$ and $y=\sqrt{3} x$

$$
\begin{aligned}
& & x^{2}+3 x^{2} & =4 \\
\Rightarrow & & x & = \pm 1
\end{aligned}
$$

Intersection point in I Quadrant is $(1, \sqrt{3})$

$$
\begin{aligned}
& \text { Required area }=\int_{0}^{\sqrt{3}} x_{\text {line }} d y+\int_{\sqrt{3}}^{2} x_{\text {circle }} d y \\
& =\int_{0}^{\sqrt{3}} \frac{y}{\sqrt{3}} d y+\int_{\sqrt{3}}^{2} \sqrt{4-y^{2}} d y \\
& =\left[\frac{y^{2}}{2 \sqrt{3}}\right]_{0}^{\sqrt{3}}+\left[\frac{y}{2} \sqrt{4-y^{2}}+\frac{1}{2} \times 4 \sin ^{-1} \frac{y}{2}\right]_{\sqrt{3}}^{2} \\
& =\left(\frac{\sqrt{3}}{2}-0\right)+\left[0+2 \sin ^{-1} 1-\frac{\sqrt{3}}{2}-2 \sin ^{-1} \frac{\sqrt{3}}{2}\right] \\
& =\frac{\sqrt{3}}{2}+2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2}-2 \times \frac{\pi}{3} \\
& =\pi-\frac{2 \pi}{3} \\
& =\frac{\pi}{3} \text { unit }^{2}
\end{aligned}
$$

35. A function $f:[-4,4] \rightarrow[0,4]$ is given by $f(x)=$ $\sqrt{16-x^{2}}$. Show that f is an onto function but not one-one function. Further, find all possible values of ' a ' for which $f(a)=\sqrt{7}$

Sol.

$$
f(x)=\sqrt{16-x^{2}}
$$

for $x=0$

$$
\begin{equation*}
f(0)= \pm 4 \tag{-4,4}
\end{equation*}
$$

So it is not one-one and for each value of y these exists x

$$
f(a)=\sqrt{7}
$$

$\therefore f$ is an onto function

$$
\sqrt{16-a^{2}}=\sqrt{7}
$$

Squaring both sides

$$
\begin{aligned}
16-a^{2} & =7 \\
a^{2} & =16-7=9 \\
a & = \pm 3 \\
a & =3 \text { and }-3
\end{aligned}
$$

SECTION - E

36. Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore

One complete cycle of a four-cylinder four stroke engine. The volume displaced is marked

The cylinder bore in the form of circular cylinder open at the top is be made from a metal sheet of area $75 \pi \mathrm{~cm}^{2}$.
Based on the above information, answer the following questions:
(i) If the radius of cylinder is $r \mathrm{~cm}$ and height is $h \mathrm{~cm}$, then write the volume V of cylinder in terms of radius r.
(ii) Find $\frac{d \mathrm{~V}}{d r}$
(iii) (a) Find the radius of cylinder when its volume is maximum.

OR
(b) For maximum volume, $h>r$. State true or false and justify.
37. Recent studies suggest that roughly 12% of the world population is left handed.

Depending upon the parents, the chances of having a left handed child are as follows:
A : When both father and mother are left handed:
Chances of left handed child is 24%.
B : When father is right handed and mother is left handed:
Chances of left handed child is $\mathbf{2 2 \%}$.
C : When father is left handed and mother is right handed: Chances of left handed child is 17%.
D : When both father and mother are right handed: Chances of left handed child is 9%.
Assuming that $P(A)=P(B)=P(D)=\frac{1}{4}$ and L denotes the event that child is left handed.
Based on the above information, answer the following question:
(i) Find $\mathrm{P}\left(\frac{\mathrm{L}}{\mathrm{C}}\right)$
(ii) Find $P\left(\frac{\bar{L}}{\mathbf{A}}\right)$
(iii) (a) Find $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{L}}\right)$
(ii)
(b) Find the probability that a randomly selected child is left handed given that exactly one of the parents is left handed.
Sol. \quad Area of bore $=75 \pi \mathrm{~cm}^{2}$

$$
\begin{aligned}
2 \pi r h+\pi r^{2} & =75 \pi \\
2 r h+r^{2} & =75 \\
h & =\frac{75-r^{2}}{2 r}
\end{aligned}
$$

(i) Vol. of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi r^{2}\left(\frac{75-r^{2}}{2 r}\right) \\
& =\frac{\pi}{2}\left(75 r-r^{3}\right) \mathrm{cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d V}{d r} & =\frac{\pi}{2}\left[75-3 r^{2}\right] \\
\frac{d V}{d r} & =0 \text { for maxima } \\
\frac{\pi}{2}\left(75-3 r^{2}\right) & =0 \\
\Rightarrow \quad r^{2} & =25 \\
r & = \pm 5 \\
\frac{d^{2} V}{d r^{2}} & =-6 r
\end{aligned}
$$

(iii) (a) $\left(\frac{d^{2} V}{d r^{2}}\right)_{(r=5)}=-30<0$

Hence volume is maximum at $r=5 \mathrm{~cm}$
(b) $\quad h=\frac{75-25}{2 \times 5}=5 \mathrm{~cm}$

So

$$
h=r
$$

at maximum volume
Hence statement is false.
38. The use of electric vehicles will curb air pollution in the long run.

The use electric vehicles is increasing every year and estimated electric vehicles in use at any time t is given by the function V :
$V(t)=\frac{1}{5} t^{3}-\frac{5}{2} t^{2}+25 t-2$
where t represents the time and $t=1,2,3 \ldots$ corresponds to year 2001, 2002, 2003, respectively.
Based on the above information, answer the following questions:
(i) Can the above function be used to estimate number of vehicles in the year 2000 ? Justify.
(ii) Prove that the function $\mathrm{V}(\mathrm{t})$ is an increasing function.
37.

$$
\text { num at } r=5 \mathrm{~cm}
$$

OR

$$
h=\frac{75-25}{2 \times 5}=5 \mathrm{~cm}
$$

$$
\begin{array}{ll}
P(A)=24 \% & P(C)=17 \% \\
P(B)=22 \% & P(D)=9 \%
\end{array}
$$

$$
\begin{equation*}
P\left(\frac{L}{C}\right)=\frac{1}{4} \times \frac{12}{100} \tag{i}
\end{equation*}
$$

$$
=\frac{17}{400}
$$

$$
=0.0425
$$

$$
\begin{align*}
P\left(\frac{\bar{L}}{A}\right) & =1-0.0425 \tag{ii}\\
& =0.9575
\end{align*}
$$

(iii) (a) $\quad P\left(\frac{A}{L}\right)=\frac{P(A) \cdot P\left(\frac{L}{A}\right)}{P(A) \cdot P\left(\frac{L}{A}\right)+P(B) \cdot P\left(\frac{L}{B}\right)}$

$$
+P(C) \cdot P\left(\frac{L}{C}\right)+P(D) \cdot P\left(\frac{L}{D}\right)
$$

$$
=\frac{\frac{1}{4} \times \frac{24}{100}}{\frac{1}{4} \times \frac{24}{100}+\frac{1}{4} \times \frac{22}{100}+\frac{1}{4} \times \frac{17}{100}+\frac{1}{4} \times \frac{9}{100}}
$$

$$
=\frac{24}{24+22+17+9}
$$

$$
=\frac{24}{72}=\frac{1}{3}
$$

(b)

$$
\begin{aligned}
& \text { OR } \\
& =\frac{1}{4} \times \frac{22}{100}+\frac{1}{4} \times \frac{17}{100} \\
& =\frac{39}{400}=0.0475
\end{aligned}
$$

38.

(i)

So the above function can not be used to estimate number of vehicles in the year 2000.
(ii)

$$
\begin{aligned}
V(t) & =\frac{1}{5} t^{3}-\frac{5}{2} t^{2}+25 t-2 \\
V^{\prime}(t) & =\frac{3}{5} t^{2}-5 t+25 \\
& =\frac{3}{5}\left[t^{2}-\frac{25}{3} t+\frac{125}{3}\right] \\
& =\frac{3}{5}\left[\left(t-\frac{25}{6}\right)^{2}-\frac{625}{36}+\frac{125}{3}\right] \\
& =\frac{3}{5}\left[\left(t-\frac{25}{6}\right)^{2}+\frac{875}{36}\right]
\end{aligned}
$$

$$
V^{\prime}(t)>0 \text { for any value of } t
$$

Hence $V(t)$ is increasing function.

Note: Except these, all other questions are from Outside Delhi Set-1

SECTION - A

1. If $\frac{d}{d x} f(x)=2 x+\frac{3}{x}$ and $f(1)=1$, then $f(x)$ is:
(a) $x^{2}+3 \log |x|+1$
(b) $x^{2}+3 \log |x|$
(c) $2-\frac{3}{x^{2}}$
(d) $x^{2}+3 \log |x|-4$

Sol. Option (a) is correct.
Explanation:

$$
\begin{aligned}
\frac{d}{d x} f(x) & =2 x+\frac{3}{x} \\
f(x) & =\int\left(2 x+\frac{3}{x}\right) d x \\
f(x) & =\frac{2 x^{2}}{2}+3 \log |x|+C \\
f(1) & =(1)^{2}+3 \log |1|+C \\
1 & =1+0+C \Rightarrow C=0 \\
f(x) & =x^{2}+3 \log |x|
\end{aligned}
$$

5. If in $\triangle \mathrm{ABC}, \overrightarrow{\mathrm{BA}}=2 \vec{a}$ and $\overrightarrow{\mathrm{BC}}=3 \vec{b}$, then $\overrightarrow{\mathrm{AC}}$ is:
(a) $2 \vec{a}+3 \vec{b}$
(b) $2 \vec{a}-3 \vec{b}$
(c) $3 \vec{b}-2 \vec{a}$
(d) $-2 \vec{a}-3 \vec{b}$

Sol. Option (c) is correct.
Explanation:

$$
\overrightarrow{B A}+\overrightarrow{A C}=\overrightarrow{B C}
$$

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{B C}-\overrightarrow{B A} \\
\overrightarrow{A C} & =3 \vec{b}-2 \vec{a}
\end{aligned}
$$

6. If $|\vec{a} \times \vec{b}|=\sqrt{3}$ and $\vec{a} \cdot \vec{b}=-3$, then angle between \vec{a} and \vec{b} is:
(a) $\frac{2 \pi}{3}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\frac{5 \pi}{6}$

Sol. Option (d) is correct.
Explanation:

$$
\begin{align*}
|\vec{a} \times \vec{b}| & =\sqrt{3} & \vec{a} \cdot \vec{b}=-3 \\
|\vec{a} \times \vec{b}| & =\frac{\vec{a} \times \vec{b}}{\hat{n}}=\frac{|a||b| \sin \theta \hat{n}}{\hat{n}} & \\
|a||b| \sin \theta & =\sqrt{3} & \ldots(\text { i) } \tag{i}\\
|a||b| \cos \theta & =-3 & \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

From eq. (i) and eq. (ii)

$$
\begin{aligned}
\tan \theta & =\frac{\sqrt{3}}{-3}=-\frac{1}{\sqrt{3}} \\
\theta & =\frac{5 \pi}{6}
\end{aligned}
$$

7. Equation of line passing through origin and making $30^{\circ}, 60^{\circ}$ and 90° wih x, y, z axes respectively is
(a) $\frac{2 x}{\sqrt{3}}=\frac{y}{2}=\frac{z}{0}$
(b) $\frac{2 x}{\sqrt{3}}=\frac{2 y}{1}=\frac{z}{0}$
(c) $2 x=\frac{2 y}{\sqrt{3}}=\frac{z}{1}$
(d) $\frac{2 x}{\sqrt{3}}=\frac{2 y}{1}=\frac{z}{1}$

Sol. Option (b) is correct.
Explanation: $\cos \alpha=\cos 30=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \cos \beta=\cos 60=\frac{1}{2} \\
& \cos \gamma=\cos 90=0
\end{aligned}
$$

Equation of required line

$$
\begin{aligned}
\frac{x-0}{\sqrt{3} / 2} & =\frac{y-0}{1 / 2}=\frac{z-0}{0} \\
\frac{2 x}{\sqrt{3}} & =\frac{2 y}{1}=\frac{z}{0}
\end{aligned}
$$

8. If A and B are two events such that $P\left(\frac{A}{B}\right)=$ $P\left(\frac{A}{B}\right)$ and $P(A)+P(B)=\frac{2}{3}$, then $P(B)$ is equal to
(a) $\frac{2}{9}$
(b) $\frac{7}{9}$
(c) $\frac{4}{9}$
(d) $\frac{5}{9}$

Sol. Option (a) is correct.
Explanation:

$$
\begin{aligned}
P\left(\frac{A}{B}\right) & =2 \times P\left(\frac{B}{A}\right) \\
\frac{P(A \cap B)}{P(B)} & =\frac{2 \times P(A \cap B)}{P(A)} \\
P(A) & =2 P(B) \\
P(A)+P(B) & =\frac{2}{3} \\
2 P(B)+P(B) & =\frac{2}{3} \\
P(B) & =\frac{2}{9} \\
P(A) & =\frac{2}{3}-\frac{2}{9}=\frac{4}{9}
\end{aligned}
$$

15. If A is a 2×3 matrix such that $A B$ and $A B^{\prime}$ both are defined, then order of the matrix B is
(a) 2×2
(b) 2×1
(c) 3×2
(d) 3×3

Sol. Option (d) is correct.
Explanation: $\quad A=2 \times 3 \quad B=m \times n$
For defined $\quad A B=m=3$
For defined $\quad A B^{\prime}=n=3$
$\therefore \quad B=3 \times 3$

SECTION - B

23. If the equation of a line is $x=a y+b, z=c y+d$, then find the direction ratios of the line and a point on the line.
Sol.

$$
\begin{aligned}
x & =a y+b \\
z & =c y+d \\
\frac{x-b}{a} & =y \\
\frac{z-d}{c} & =y
\end{aligned}
$$

\therefore Equation of the line

$$
\frac{x-b}{a}=y=\frac{z-d}{C}
$$

Direction ratio of the line ($a, 1, c$) Point on the line (b, 0, d)
25. If the circumference of circle is increasing at the constant rate, prove that rate of change of area is directly proportional to its radius.
Sol.

$$
\begin{aligned}
\frac{d C}{d t} & =k \text { (given) } \\
\frac{d}{d t}(2 \pi r) & =k
\end{aligned}
$$

(where C is the circumference of the circle)

$$
2 \pi \frac{d r}{d t}=k
$$

$$
\therefore \quad \frac{d r}{d t}=\frac{k}{2 \pi}=\text { Constant }
$$

$$
A=\pi r^{2} \quad \text { (A and } r \text { is the area and }
$$ radius of circle respectively)

$$
\frac{d A}{d t}=\pi 2 r \frac{d r}{d t}
$$

$$
\frac{d A}{d t}=\left(2 \pi \frac{d r}{d t}\right) r
$$

$$
\frac{d A}{d t} \propto r \quad \text { Hence Proved. }
$$

SECTION - C

29. Solve the following linear programming problem graphically:
Maximize: $\mathrm{Z}=x+2 y$
subject to constraints :

$$
\begin{aligned}
x+2 y & \geq 100 \\
2 x-y & \leq 0 \\
2 x+y & \leq 200 \\
x & \geq 0, y \geq 0 .
\end{aligned}
$$

Sol.

$$
z=x+2 y
$$

$$
x+2 y \geq 100
$$

$$
2 x-y \leq 0
$$

$$
2 x+y \leq 200
$$

$$
x \geq 0, y \geq 0
$$

$x+2 y=100$

x	0	100	60
y	50	0	20

$2 x-y=0$

x	10	0	20
y	20	0	40

$2 x+y=200$

x	0	100	50
y	200	0	100

$$
\begin{aligned}
z & =x+2 y \\
\text { At }(0,200) & =0+2 \times 200=400(\text { Maximum }) \\
\text { At }(50,100) & =50+2 \times 100=250 \\
\text { At }(20,40) & =20+2 \times 40=80
\end{aligned}
$$

Maximum value is 400 at $x=0$ and $y=200$

30. (a) Evaluate $\int_{-1}^{1}\left|x^{4}-x\right| d x$.

OR

(b) Find $\int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} d x$.

Sol. (a) $\int_{-1}^{1}\left|x^{4}-x\right| d x$

$$
\begin{aligned}
\therefore \quad I & =\int_{-1}^{0}\left(x^{4}-x\right) d x+\int_{0}^{1}-\left(x^{4}-x\right) d x \\
& =\left[\frac{x^{5}}{5}-\frac{x^{2}}{2}\right]_{-1}^{0}-\left[\frac{x^{5}}{5}-\frac{x^{2}}{2}\right]_{0}^{1} \\
& =\left(\frac{+1}{5}+\frac{1}{2}\right)-\left(\frac{1}{5}-\frac{1}{2}\right) \\
I & =\frac{1}{2}+\frac{1}{2}=1 \\
& \text { OR }
\end{aligned}
$$

(b)

$$
I=\int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} d x
$$

Let $\quad \sin ^{-1} x=t$

$$
\begin{aligned}
\frac{1}{\sqrt{t-x^{2}}} d x & =d t \\
I & =\int \frac{t}{\left(1-\sin ^{2} t\right)} d t=\int t \sec ^{2} t d t
\end{aligned}
$$

$$
\begin{aligned}
I & =t \int \sec ^{2} t d t-\int\left[\frac{d}{d t} t \int \sec ^{2} t d t\right] \\
& =t \tan t-\int \tan d t \\
& =t \tan t+\log |\cos t|+C \\
& =\frac{x}{\sqrt{1-x^{2}}} \sin ^{-1} x+\log \left|\sqrt{1-x^{2}}\right|+C
\end{aligned}
$$

Sol. Find $\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$
31. $I=\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$

$$
\begin{aligned}
& I=\int e^{x}\left(\frac{1-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2} \frac{x}{2}}\right) \\
& I=\int e^{x}\left(\frac{1}{2 \sin ^{2} \frac{x}{2}}-\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2} \frac{x}{2}}\right) \\
& I=\int e^{x}\left(\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2}-\cot \frac{x}{2}\right) d x \\
& I=\int e^{x}\left(-\cot \frac{x}{2}+\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2}\right) d x
\end{aligned}
$$

Let $f(x)=-\cot \frac{x}{2}$

$$
f^{\prime}(x)=+\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2}
$$

$$
\begin{aligned}
& \int e^{x}\left((f x)+f^{\prime}(x)\right) d x=e^{x} f(x)+C \\
& \begin{aligned}
\therefore \quad I & =\int e^{x}\left(-\cot \frac{x}{2}+\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2}\right) d x \\
& =-e^{x} \cot \frac{x}{2}+c
\end{aligned}
\end{aligned}
$$

33. Using Integration, find the area of triangle whose vertices are $(-1,1),(0,5)$ and $(3,2)$.
Sol. $A(-1,1), B(0,5), C(3,2)$

Equ. of the side $A B$

$$
\begin{aligned}
y-1 & =\frac{5-1}{0+1}(x+1) \\
y & =4 x+5
\end{aligned}
$$

Equ. of the side BC

$$
\begin{aligned}
y-5 & =\frac{2-5}{3-0}(x-0) \\
y-5 & =-x \\
y & =5-x
\end{aligned}
$$

Equ. of the side AC

$$
\begin{aligned}
y-1 & =\frac{2-1}{3+1}(x-1) \\
4 y-4 & =x+1 \\
y & =\frac{x+5}{4}
\end{aligned}
$$

Outside Delhi Set-III

Required Area of $\triangle \mathrm{ABC}$
$=\int_{-1}^{0}(4 x+5) d x+\int_{0}^{3}(5-x) d x-\int_{-1}^{3}\left(\frac{x+5}{4}\right) d x$
$=\left|\left[\frac{x^{2}}{2}+5 x\right]_{-1}^{0}\right|+\left[5 x-\frac{x^{2}}{2}\right]_{0}^{3}-\frac{1}{4}\left[\frac{x^{2}}{2}+5 x\right]_{-1}^{3}$
$=\left(0+\frac{9}{2}\right)+\left(\frac{21}{2}-0\right)-\frac{1}{4}\left(\frac{39}{2}+\frac{9}{2}\right)$
$=\frac{9}{2}+\frac{21}{2}-6$
$=15-6=9$ unit 2.

SECTION - A

1. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ and $|\vec{a} \times \vec{b}|=3 \sqrt{3}$, then the value of $\vec{a} \cdot \vec{b}$ is:
(a) 9
(b) 3
(c) $\frac{1}{9}$
(d) $\frac{1}{3}$

Sol. Option (b) is correct.
Explanation:

$$
\begin{aligned}
|\vec{a} \times \vec{b}| & =3 \sqrt{3} \\
|\vec{a} \times \vec{b}| & =\frac{\vec{a} \times \vec{b}}{\hat{n}}=\frac{|a||b| \sin \theta \hat{n}}{\hat{n}} \\
|\vec{a}||\vec{b}| \sin \theta & =3 \sqrt{3} \\
|\vec{a}||\vec{b}| \sin 60^{\circ} & =3 \sqrt{3} \\
|\vec{a}||\vec{b}| & =3 \sqrt{3} \times \frac{2}{\sqrt{3}}=6 \\
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =6 \cos 60^{\circ} \\
& =6 \times \frac{1}{2}=3
\end{aligned}
$$

2. The position vector of three consecutive vertices of a parallelogram ABCD are $A(4 \hat{i}+2 \hat{j}-6 \hat{k}), B(5 \hat{i}-3 \hat{j}+\hat{k})$ and $C(12 \hat{i}+4 \hat{j}+5 \hat{k})$.
The position vector of \mathbf{D} is given by
(a) $-3 \hat{i}-5 \hat{j}-10 \hat{k}$
(b) $21 \hat{i}+3 \hat{j}$
(c) $11 \hat{i}+9 \hat{j}-2 \hat{k}$
(d) $-11 \hat{i}-9 \hat{j}+2 \hat{k}$

Sol. Option (c) is correct.

Explanation:

$$
\begin{aligned}
& A(4 \hat{i}+2 \hat{j}-6 \hat{k}) \quad C(12 \hat{i}+4 \hat{j}+5 \hat{k}) \\
& B(5 \hat{i}-3 \hat{j}+\hat{k}) \quad D(x \hat{i}+y \hat{j}+z \hat{k})
\end{aligned}
$$

Diagonal of $\|^{\mathrm{gm}}$ bisect each other
\therefore Position vector of mid point of AC $\left(8 \hat{i}+3 \hat{j}-\frac{1}{2} \hat{k}\right)$
Position vector of midpoint of $\overrightarrow{B D}$

$$
\begin{array}{rlrl}
\left(\frac{5+x}{2} \hat{i}+\frac{y-3}{2} \hat{j}+\frac{z+1}{2} \hat{k}\right) & \\
\frac{5+x}{2} & =8 & \therefore x=11 \\
\frac{y-3}{2} & =y=9 & & \\
\frac{z+1}{2} & =-\frac{1}{2} \quad z=-2 & \therefore D(11 \hat{i}+9 \hat{j}-2 \hat{k})
\end{array}
$$

3. If for two events A and $B, P(A-B)=\frac{1}{5}$ and $P(A)=$ $\frac{3}{5}$, then $\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)$ is equal to
(a) $\frac{1}{2}$
(b) $\frac{3}{5}$
(c) $\frac{2}{5}$
(d) $\frac{2}{3}$

Sol. Option (d) is correct.
Explanation:

$$
\begin{aligned}
P(A-B) & =\frac{1}{5} \\
P(A)-P(A \cap B) & =\frac{1}{5} \\
P(A \cap B) & =\frac{3}{5}-\frac{1}{5}=\frac{2}{5} \\
P\left(\frac{B}{A}\right) & =\frac{P(A \cap B)}{P(A)} \\
& =\frac{\frac{2}{5}}{\frac{3}{5}}=\frac{2}{3}
\end{aligned}
$$

4. If $\int_{0}^{2 \pi} \cos ^{2} x d x=k \int_{0}^{\pi / 2} \cos ^{2} x d x$, then the value of k is
(a) 4
(b) 2
(c) 1
(d) 0

Sol. Option (a) is correct.
Explanation:

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos ^{2} x d x & =k \int_{0}^{\pi / 2} \cos ^{2} x d x \\
f(x) & =\cos ^{2} x \\
f(2 \pi-x) & =\cos ^{2}(2 \pi-x)=\cos ^{2} x \\
\therefore \quad \int_{0}^{2 \pi} \cos ^{2} x d x & =2 \int_{0}^{\pi} \cos ^{2} x d x
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \quad \int_{0}^{\pi} \cos ^{2} x & =2 \int_{0}^{\pi / 2} \cos ^{2} x d x \\
\therefore & \int_{0}^{2 \pi} \cos ^{2} x d x & =4 \int_{0}^{\pi / 2} \cos ^{2} x d x \\
\therefore & k & =4
\end{aligned}
$$

10. Number of symmetric matrices of order 3×3 with each entry 1 or -1 is
(a) 512
(b) 64
(c) 8
(d) 4

Sol. Option (b) is correct.
Explanation: Number of Symmetric matrices of order $3 \times 3=2^{6}=64$
18. Equation of a line passing through point $(1,2,3)$ and equally inclined to the coordinate axis, is 1
(a) $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
(b) $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
(c) $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}$
(d) $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$

Sol. Option (d) is correct
Explanation: Equation of line passing though Point $\left(x_{1}, y_{1}, z_{1}\right)$.
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
$x_{1}=1$
$y_{1}=2$
$z_{1}=3$
$a=1$
$b=1$
$c=1$
Required Eq.
$\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$

SECTION - B

21. If points A, B and C have position vectors $2 \hat{i}, \hat{j}$ and $2 \hat{k}$ respectively, then show that $\triangle \mathrm{ABC}$ is an isosceles triangle.
Sol. $A(2 \hat{i}) . B(\hat{j})$ and $\vec{C}(2 \hat{k})$

$$
\overrightarrow{A B}=\hat{j}-2 \hat{i} \quad|\overrightarrow{A B}|=\sqrt{1^{2}+2^{2}}=|\sqrt{5}| \text { unit }
$$

$\overrightarrow{B C}=2 \hat{k}-\hat{j} \quad|\overrightarrow{B C}|=\sqrt{2^{2}+1^{2}}=|\sqrt{5}|$ unit
$\overrightarrow{A C}=2 \hat{k}-2 \hat{i} \quad|\overrightarrow{A C}|=\sqrt{2^{2}+2^{2}}=|2 \sqrt{2}|$ unit
$\therefore A B=B C=\sqrt{5}$ unit
Hence $\triangle A B C$ is an isosceles triangle
23. If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of $4 \mathrm{~cm} / \mathrm{s}$, how fast is the area of triangle increasing at an instant when all sides become equal ?
Sol.

$$
\begin{aligned}
\operatorname{Ar} \triangle A B C & =\frac{1}{2} B C \times A D \\
& =\frac{1}{2} \times 10 \times \sqrt{x^{2}-25} \\
A & =5 \sqrt{x^{2}-25} \text { units } \\
A & =5 \sqrt{x^{2}-25} \\
\frac{d A}{d t} & =5 \frac{d}{d t}\left(\sqrt{x^{2}-25}\right) \\
& =5 \cdot \frac{1}{2}\left(x^{2}-25\right)^{-1 / 2}(2 x) \frac{d x}{d t} \\
& =\frac{5 x}{\sqrt{x^{2}-25}} \frac{d x}{d t} \\
& =\frac{50}{\sqrt{25}} \cdot 4=40 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

SECTION - C

26. Solve the following Linear Programming problem graphically:
Maximize: $\mathrm{Z}=3 x+3.5 y$
subject to constraints:

$$
\begin{aligned}
x+2 y & \geq 240, \\
3 x+1.5 y & \geq 270, \\
1.5 x+2 y & \leq 310, \\
x \geq 0, y & \geq 0 .
\end{aligned}
$$

Sol. $x+2 y \geq 240$
$3 x+1.5 y \geq 270 \quad x \geq 0, y \geq 0$
$1.5 x+2 y \leq 310$
$x+2 y=240$

x	0	240	80
y	120	0	80

$3 x+1.5 y=270$

x	0	90	80
y	180	0	20

$1.5 x+2 y=310$

x	$\frac{620}{3}$	0	100	60
y	0	155	80	110

Point (x, y)	$Z=3 x+3.5 y$
at $(40,100)$	$Z=3 \times 40+3.5 \times 100=470$
$\operatorname{at}(20,140)$	$Z=3 \times 20+140 \times 3.5=550$
$\operatorname{at}(140,50)$	$Z=3 \times 140+3.5 \times 50=594$
	(Maximum)

Maximum value 595
at $x=140$ and $y=50$
27. (a) Find $\int \frac{x+2}{\sqrt{x^{2}-4 x-5}} d x$

OR
(b) Evaluate $\int_{-a}^{a} f(x) d x$, where $f(x)=\frac{9^{x}}{1+9^{x}}$

Sol. (a) $\int \frac{x+2}{\sqrt{x^{2}-4 x-5}} d x$

$$
\begin{aligned}
I & =\int \frac{x+2}{\sqrt{x^{2}-4 x-5}} d x \\
& =\int \frac{\frac{1}{2}(2 x-4)+4}{\sqrt{x^{2}-4 x-5}} d x \\
& =\frac{1}{2} \int \frac{2 x-4}{\sqrt{x^{2}-4 x-5}} d x+4 \int \frac{d x}{\sqrt{x^{2}-4 x-5}} \\
& =\frac{1}{2} \cdot 2 \sqrt{x^{2}-4 x-5}+4 \int \frac{d x}{\sqrt{(x-2)^{2}-3^{2}}}
\end{aligned}
$$

$$
=\sqrt{x^{2}-4 x-5}+4 \log \left|x-2+\sqrt{(x-2)^{2}-3^{2}}\right|+C
$$

$$
=\sqrt{x^{2}-4 x-5}+4 \log \left|x-2+\sqrt{x^{2}-4 x-5}\right|+C
$$

OR

(b) $I=\int_{-a}^{a} f(x)=\int_{-a}^{a} \frac{9^{x}}{1+9^{x}}$

$$
I=\int_{-a}^{a} \frac{9^{(a-a-x)}}{1+9^{a-a-x}} d x
$$

$$
I=\int_{-a}^{a} \frac{9^{-x}}{1+9^{-x}} d x
$$

$$
=\int_{-a}^{a} \frac{1}{1+9^{x}} d x
$$

$$
2 I=\int_{-a}^{a} \frac{9^{x}}{1+9^{x}} d x+\int_{-a}^{a} \frac{1}{1+9^{x}} d x
$$

$$
2 I=\int_{-a}^{a} \frac{1+9^{x}}{1+9^{x}} d x=\int_{-a}^{a} d x
$$

$$
2 I=[x]_{-a}^{a}
$$

$$
2 I=2 a
$$

$$
\therefore \quad I=a
$$

31. (a) Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.

OR

(b) A fair coin and an unbiased die are tossed. Let A be the event, "Head appears on the coin" and B be the event, " 3 comes on the die". Find whether A and B are independent events or not.

Sol. (a) Given first sin positive even integer
$(2,4,6,8,10,12)$
Two numbers can be selected from the first six even integer $=6 \times 5=30$ ways
X denote the large of the two numbers
Hence x can take any value of $4,6,8,10,12$
For $x=4$ i.e., $(2,4)$ and $(4,2)$

$$
P(x)=\frac{2}{30}=\frac{1}{15}
$$

For $x=6$ i.e., $(2,6),(4,6),(6,2),(6,4)$

$$
P(x)=\frac{4}{30}=\frac{2}{15}
$$

For $x=8$ i.e., $(2,8),(8,2),(4,8),(8,4),(6,8),(8,6)$

$$
P(x)=\frac{6}{30}=\frac{3}{15}
$$

For $x=10$ i.e., $(2,10),(10,2),(4,10),(10,4),(6,10)$,
$(10,6)(8,10),(10,8)$

$$
P(x)=\frac{8}{30}=\frac{4}{15}
$$

For $x=12$ i.e., $(2,12),(12,2),(4,12),(12,4),(6,12)$,

$$
\begin{aligned}
& (12,6),(12,8),(8,12),(10,12),(12,10) \\
& P(x)=\frac{10}{30}=\frac{1}{3}
\end{aligned}
$$

x	4	6	8	10	12
y	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{5}{15}$

OR
(b) A fair coin and unbiased dice is tossed

$$
\begin{aligned}
& S=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\
&(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\} \\
& n(S)=12 \\
& A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\} \\
& n(A)=6 \\
& P(A)=\frac{n(A)}{n(S)}=\frac{6}{12}-\frac{1}{2} \\
& B=\{(H, 3),(3, T)\} \\
& n(B)=2 \\
& P(B)=\frac{n(B)}{n(S)}=\frac{2}{12}=\frac{1}{6} \\
& A \cap B=\{(H, 3)\} \\
& n(A \cap B)=1 \\
& P(A \cap B)=\frac{n(A \cap B)}{A(S)}=\frac{1}{12} \\
& \Rightarrow \quad P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{6}=\frac{1}{12} \\
& \\
& P(A \cap B)=\frac{1}{12} \\
& P(A \cap B)=P(A) \cdot P(B)
\end{aligned}
$$

These are independent events

SECTION - D

35. Find the area of the smaller region bounded by the curves $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and $\frac{x}{5}+\frac{y}{4}=1$, using integration.

Sol.

Eqn. the line $\frac{x}{5}+\frac{y}{4}=1$

$$
y=4\left(1-\frac{x}{5}\right)=4-\frac{4 x}{5}
$$

Eqn. of the ellipse

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \\
\qquad y=4 \sqrt{1-\frac{x^{2}}{25}}=\frac{4}{5} \sqrt{25-x^{2}} \\
=\int_{0}^{5}\left\{\frac{4}{5} \sqrt{25-x^{2}}-\left(4-\frac{4 x}{5}\right)\right] d x \\
=\int_{0}^{5} \frac{4}{5} \sqrt{25-x^{2}} d x-\int_{0}^{5}\left(4-\frac{4 x}{5}\right) d x \\
=\frac{4}{5}\left[\frac{x}{2} \sqrt{25-x^{2}}+\frac{1}{2} 25 \sin ^{-1} \frac{x}{5}\right]_{0}^{5}-\left[4 x-\frac{4 x^{2}}{10}\right] \\
=\frac{4}{5}\left[\frac{1}{2} \sin ^{-1} 1\right]-[20-10] \\
= \\
\frac{4}{5} \times \frac{\pi}{4}-10 \\
= \\
(5 \pi-10)
\end{array}
\end{aligned}
$$

Required Area $(5 \pi-10)$ unit 2

