KEMAR vs CARL

Electroacoustic measurements comparison

Objectives

- Measure crosstalk or interaural attenuation for KEMAR and CARL.
- Compute and compare the Head Related Transfer Functions (HRTFs) for KEMAR and CARL.
- Compute objective metrics from speech samples recorded through KEMAR and CARL, for quantifying signal fidelity.

Methodology – Interaural Attenuation

- DD450 circumaural headphones were placed on both KEMAR and CARL in a sound booth.
- Narrowband noise, centred at the audiometric frequencies, was played back through DD450s using the ShoeBox Audiometer at 70 dB HL.
- Interaural attenuation was measured separately for the left and right ears.

KEMAR & CARL Interaural Attenuation

- * No statistically significant difference in the interaural attenuation when the stimulus was presented to the left or right ear.
- * Lower interaural attenuation in the mid frequencies for CARL.

Methodology - HRTFs

- Both KEMAR and CARL were placed at the centre of a loudspeaker array in the National Centre for Audiology (NCA)'s anechoic chamber.
- Maximal length sequences (MLSs) were presented from 0, 90, 180, 270 degrees azimuth.
 - The corresponding left and right ear impulse responses for KEMAR and CARL were subsequently estimated.
 - Third octave spectra were then calculated from the impulse responses.

KEMAR & CARL HRTFs – 0° azimuth

3rd octave band centre frequency (Hz)

3rd octave band centre frequency (Hz)

KEMAR & CARL HRTFs – 90° azimuth

KEMAR & CARL HRTFs – 180° azimuth

CARL (newer)

3rd octave band centre frequency (Hz)

KEMAR & CARL HRTFs – 270° azimuth

Methodology – Signal Fidelity Measures

- Both KEMAR and CARL were placed at the centre of a loudspeaker array in the National Centre for Audiology (NCA)'s anechoic chamber.
- Male and female speech sentences were presented from 0, 90, 180, 270 degrees azimuth.
 - The corresponding left and right ear responses for KEMAR and CARL were recorded.
 - These recordings were compared to each other using the speech envelope and fine structure "closeness" indices.

Signal fidelity measures

- * Envelope distortion and STOI metrics were statistically similar when KEMAR and when KEMAR and CARL speech recordings were compared, for both ears.
- * Fine structure differences were evident, due to the differences in the HRTFs.

