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Appendix: 

SUPPLEMENTAL MATERIAL

The Supplemental Material covered here serves as a complement to the 
book, The Idea Space: The Science of  Awakening Your Non-Self. While the 
primary text delves into the concept of  an “idea space” and its relationship 
with the universe, this section highlights some technical points that were 
not included in the main narrative. Additionally available are the Bonus 
Chapters, which are a continuation of  the book. They distill complex 
physics topics into an accessible format, covering themes like the cosmic 
calendar, the Big Bang, star formation, black holes, and galaxy formation. 
Reading the main text is imperative in understanding this appendix.

BREATHING EXERCISES

Breathing is what makes us human. In the gentle rise and fall of  our chest, 
we find the rhythm of  life itself. Each breath, a dance of  the present 
moment, inviting us to find stillness within the chaos. These exercises not 
only anchor us back to the present but also sharpen our awareness, allowing 
us to navigate life’s challenges with grace and clarity. Depending on the 
situation, each technique offers its unique benefits, guiding us towards a 
centered state of  being.
	 The first breathing technique, which is often used by Navy Seals, is 
called box breathing (figure 1). The concept is simple: breath in for four 
seconds, hold for four seconds, breath out for four seconds, hold for four 
seconds. Rinse and repeat. Stop and try it a couple times and notice how 
it makes you feel. Feel free to change up how long you breathe in, breathe 
out, and hold for (e.g., 7 seconds instead of  4 seconds). 
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Inhale for 4 seconds

Exhale for 4 seconds

Figure 1. Box breathing. 

	 The second technique is called alternate nostril breathing (figure 2). 
This one is exactly what it sounds like: close your left nostril, breathe in 
through your right; close the right nostril, release the left one, and breath 
out through the left; breathe in through the left nostril, close the left, open 
the right, and breathe out through the right; etc. The key is to breath in on 
the same side that you last exhaled on, then switch. What do you notice 
after doing this breath a couple times? 
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Figure 2. Alternate nostril breathing. 
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	 The third technique are static apnea tables. These are different versions 
of  holding your breath. It’s pretty impressive—after trying these exercises, 
you’ll find that you can hold your breath much longer than you thought you 
previously could. If  you want to accustom your body to high levels of  CO2, 
then try table 1-a; if  you want to accustom your body to low O2 levels, then 
try table 1-b. 

 

	 A final technique is one that is useful as a base breath (i.e., everyday 
breath), called ocean breath. The breath works like this: Put your hand in 
front of  your face and try to fog it up, like it was a mirror. Give it a try. 
Now, do that same thing except with your mouth closed—breathing in and 
out only through the nose. Follow the deep inhalations and exhalations. 
	 For fun, try filling different parts of  your body with this breath. For 
instance, try taking your in breath into your lower back or lower stomach.
What does that feel like?
	 If  you want more exercises like these, then check out 100 Daily 
Meditations Cards at www.TheIdeaSpace.io.

STANDARD UNITS

There are seven fundamental units known as Système Internationale (S.I.) 
units (table 2). We measure everything in our universe using a combination 
of  these units. 

Table 1a. Building a high CO2 tolerance

1

2

3

4

Rest 2:15 min

Rest 2:00 min

Rest 1:15 min

Hold breath for 1:30 min

Hold 1:30 min

Hold 1:30 min

Hold 1:30 min

5

6

7

8

Rest 1:30 min

Rest 1:15 min

Rest 1:00 min

Rest 1:00 min

Hold 1:30 min

Hold 1:30 min

Hold 1:30 min

Hold 1:30 min

Table 1b. Building a low O2 tolerance

1

2

3

4

Rest 2:00 min

Rest 2:00 min

Rest 2:00 min

Hold breath for 1:00 min

Hold 1:15 min

Hold 1:30 min

Hold 1:45 min

5

6

7

8

Rest 2:00 min

Rest 2:00 min

Rest 2:00 min

Rest 2:00 min

Hold 2:00 min

Hold 2:15 min

Hold 2:30 min

Hold 2:30 min

Table 1-a. Building a high CO2 tolerance.

Table 1-b. Building a low O2 tolerance.
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Table 2. The SI units that make up our universe.
Unit Name SI Unit

Mass Kilogram (kg)
Length Meters (m)
Time Seconds (s)

Electric Current Amperes (A)
Temperature Kelvin (K)

Amount of  Chemical Substance Mole (moll)
Luminosity Intensity Candela (cd)

	 Force (F), is not a fundamental unit, because it can be written as a 
combination of  these seven units. Specifically, as Newton taught us, Force 
is proportional to mass times acceleration:

Force = mass × acceleration.

So, the unit for Force, which is called a Newton (N), would be the units of  
mass times the units of  acceleration, or:

1 Newton = kg × m/s2.

	 Similarly, Energy (E) is the amount of  force times the distance the 
force travels. So, the units for Energy, or Joules ( J ), is: 

1 Joule = N × m = kg × m2/s2.

	 Lastly, Power (P) is the amount of  energy per time. So, the units for 
Power, or Watts (W), is: 

1 Watt = J/s = kg × m2/s3.

NATURAL CONSTANTS AND PLANCK UNITS

For our purposes, there are three natural, or physical, constants in the 
universe:*

* The fourth is Boltzmann Constant: kB = 1.4 × 10-23 kg ∙m/(s 2∙K). It relates an 
object's energy to its temperature. Please note, "∙"means multiply, or "×".
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Gravitational Constant: G = 6.7 × 10-11 m3/(kg ∙s 2), dictates the 
gravitational effects between two bodies (figure 3-a).

Speed of  Light: c = 3 × 108  m/s, or 186,000 miles per second, is the 
speed light travels in a vacuum (figure 3-b).

Planck Constant: ℎ = 6.6 × 108  J ∙s, is the quantum measure of  angular 
momentum in particles, pointing either up or down (figure 3-c).

Figure 3. Natural Units. 

	 Max Planck (1858 – 1947 ) creatively thought to combine these three 
units to obtain our aforementioned SI units. Through dimensional analysis, 
we see that Planck’s units for length and time are:* 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 	𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , 𝑡𝑡. =
ℏ 1 𝐺𝐺
𝑐𝑐3 = 5.4×10:;;𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.

Essentially, Planck Length and Planck Time are hypothesized as the 
smallest, meaningful units of  measurement.

SELF-SIMILARITY DIMENSION

The self-similarity dimension, D, of  a fractal curve is given by:

D = log N/log(1/r),

where N is the number of  measuring sticks in a certain iteration, and r is 
the factor by which the size of  the original measuring stick is reduced.

(a) Gravitational Constant (b) Speed of light (c) Planck Constant(a) Gravitational Constant (b) Speed of  light (c) Planck Constant

* ℏ is the reduced Pllanck Constant, which is simply ℏ = ℎ/(2 ∙π ) .
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	 Let’s use the Koch Curve as an example (figure 4). Starting with E0, 
what is the dimension of  this line? Well, a line simply has dimension of  
one: D = 1. How about E1? Here, the number of  measuring sticks is four, 
N = 4. Furthermore, the measure of  each measuring stick is reduced by a 
factor of  r = 1/3. Plugging those numbers into our equation, you obtain 
a dimension of  D = 1.262. . . Now, what about E2? This time, we have 16 
measuring sticks, so N = 16. The measure of  the original measuring stick 
is reduced by r = 1/9. Thus, the dimension comes out to  D = 1.262. . .! 
Keep this going and you’ll find that the self-similarity dimension stays the 
same throughout.

Figure 4. The self-similarity dimension of  the Koch Curve is D = 1.262.

	 We can do the same process for the Standard Middle Thirds Cantor 
Set, which has a self-similarity dimension of  D = 0.63109. . . (figure 5). 
For example, at C1, the number of  measuring sticks is N = 2, and the size 
of  the original measuring stick is reduced by a factor of  r = 1/3. Plugging 
these values into our equation gives us D = 0.63109. . .

Figure 5. The self-similarity dimension of  the Cantor Set is D = 0.631.
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	 As a fun homework problem, what would dimension of  the Cantor Set 
if  I took out the middle quarter instead of  the middle third?*

HOW LONG IS GREAT BRITAIN? 

According to Lewis Fry Richardson’s experimental data, the self-similarity 
dimension of  the west coast of  Great Britain is close to D = 1.25. To 
achieve a Koch Curve with the same self-similarity dimension, we have to 
reduce the size of  our initial measuring stick by a factor of  approximately 
0.33 in the first iteration. Thus, the first iteration would have four measuring 
sticks, N = 4, each with a length of  0.33, or r = 0.33. Then, the second 
iteration of  The Koch Curve would have 16 measuring sticks, N = 16, each 
with a length of  0.11, or r = 0.11. 
	 You can repeat this process until the size of  your measuring stick is 
approximately Planck Length, or 1.6 × 10-35 meters. At the 72nd iteration, 
there are N = 2.2 × 1043 measuring sticks. Plus, each measuring stick 
measures r = 2.3 × 10-35 meters, which is close to Planck Length. Thus, the 
total length is N × r, which comes out to approximately 500,000 km. 

SPECIAL RELATIVITY EQUATIONS

Let’s bring back Joe and Misty. They want to perform an interesting 
experiment with their new toy. After a string of  failed attempts, the 
company behind Deep Rule and Deep Time sent the best friends a pair of  
their new, catch-all toy, callled Deep Measure. 
	 Deep Measure is a machine that changes the laws of  physics. It has 
two settings: classical and relativity. To test out their new toy, they decide to 
make various measurements to see if  there’s any difference between what 
Joe and Misty measure. 
	 As part of  the toy’s package, Joe gets a magic ruler that can measure 
the position (x, y, z) of  a point, P, and how long it took to make the 
measurement (t). In the experiment, the instruction indicate Joe must stay 
at rest, while Misty must move to the right with cerain velocity, vMisty. Then, 
as Misty moves in the x direction, she uses the other magic ruler to measure 
the position (x', y', z') of  the same point, P, and her own time (t').  

* For a Cantor Set with the middle 1/4 taken out, the first iteration, C1, has two 
measuring sticks, N = 2, and the original measuring stick is reduced by r = 3/8. 
Thus, the dimension is D = 0.7067. . . 



THE IDEA SPACE10

	 For clarity, all of  Misty's measurements are noted with a prime. Joe and 
Misty decide to run the experiment twice: once on the classical setting and 
once on the relativity setting. As the experiment runs, both Joe and Misty 
write down their respective measurements. We see the results from their 
experiment below (figure 6). On the left, Joe and Misty used the classical 
setting. On the right, Joe and Misty used the relativity setting. 
	 On the classical setting (figure 6-a), the two get the same measurements 
for everything, except distance. However, the two are smart. They know 
since Misty is moving, her measurements for distance must be different; 
and, they deduce that Misty’s measurements can relate to Joe’s measurement 
based on Misty’s speed. Since distance is equal to velocity multiplied by 
time (i.e., x  = v ∙t ),* Misty’s measured distance in relation to Joe’s is simply: 

 x'  = x − vMisty ∙t.

With this relation, both Joe and Misty agree that they’ve measured the same 
thing in all four dimensions. 
	 However. . . Something interesting happens on the relativity setting. 
Here, the two best friends don’t get the same expected measurement for 
the x distance, nor the same time (figure 6-b)! Joe and Mo are baffled. 
"What gives?", Joe and Misty ask one another, completely bewildered. 

Figure 6. Joe and Misty’s magical experiment. 

Joe Misty

(x, y, z)
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(x', y', z')
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y yı
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. t

Joe Measurements
distance = x;
distance = y;
distance = z;

time = t;

Misty Measurements
• t;distance = x'= x - 

distance = y' = y;
distance = z' = z;

time = t' = t;

(a) Joe and Misty’s measurements
based on the classical setting

•P

Joe Misty

(x, y, z)
or

(x', y', z')

x

y yı

xı

???

Joe Measurements
distance = x;
distance = y;
distance = z;

time = t;

Misty Measurements
• t;distance = x' ≠ x- 

distance = y' = y;
distance = z' = z;

time = t' ≠ t;

(b) Joe and Misty’s measurements
based on the relativity setting

•P

* To understand this equation, think of  the following: How much distance would 
you travel if  you travelled at 60 miles per hour for one hour? 60 miles.

(a) Joe and Misty's 
measurements are the same 
based on the classical setting

(b) Joe and Misty's 
measurements are different 

based on the relativity setting
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	 Thankfully, the toy came with an explanation inside the box that shows 
the discrepancy between the classical and relativity settings. A representation 
of  what’s in the box is illustrated below (figure 7). This equations represent 
Misty’s measurements in relation to Joe’s measurements. As always, "c" is 
the speed of  light which is 186,000 miles per second; and, all prime values 
are Misty’s measurements, while unprimed values are Joe’s measurements. 

Figure 7. The relation between distance and time for Joe and Misty based 
on the relativity setting. 

	 The transformation of  equations from the classical setting to the 
relativity settings are known as Lorentz Transformations after Hendrik 
Lorentz (1853 – 1928). Of  course, if  Misty were moving in the other  
directions as well, then a similar Lorentz transformation would occur in 
those spatial dimensions based on the speed Misty was moving in those 
directions. 
	 In short, these equations tell us: when you move in a direction relative 
to a stationary observer, you spatially contract in that direction for the 
stationary observer. And, to make up for that spatial contraction, your time 
slows down relative to the stationary observer. In other words, space and 
time are one; hence, spacetime. 

FAILURE OF SIMULTANEITY AT A DISTANCE

Another interesting property of  time is the concept known as “failure 
of  simultaneity at a distance”. Let’s bring back Lois and Clark and their 
synchronized clocks. Clark will stay still, while Lois moves rightward at the 
some velocity, vLois. Now, if  Lois takes a look at two events that happened 
at two different places, but at the same time, then those events do not 
happen at the same time when viewed by Clark! 
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	 For instance, in Lois’s reference frame she measured the clocks to be in 
synch: one event occurs at point x1 at time t0, and another event occurs at a 
different point x1 at the same time, t0. The catch is Lois does not know she 
is moving, but Clark does. For him, he’d find the two corresponding times 
differed by an amount of:

So, the clocks are not synchronized from Clark’s perspective. 

RELATIVITY OF A MUON

Let’s say that we have a muon, which is traveling at 9/10th the speed of  
light. How long will the muon last before disintegrating? Well, it depends. 
On one hand, from the muon’s perspective, it’s average lifetime is around 
2.2 × 10-6  seconds. So, if  we placed an observer to move along the same 
path as the particle, then they would see it live for that long (figure 8-a). 
On the other hand, if  we have a stationary observer (figure 8-b), then the 
muon lives for:  

The muon from the standpoint of  a stationary observer would live for 5 
× 10-6  seconds—twice as long! The muon appears to last longer for the 
stationary observer compared to the moving observer. 

Figure 8. The stationary observer (a) sees a particle live for  seconds, 
while (b) a moving observer sees a particle live for  seconds. 

(a) Moving observer

Lifespan =
2.2x10-6 seconds

9/10 c

(b) Static observer

Lifespan =
5x10-6 seconds

9/10 c

(a) Moving observer (b) Stationary observer
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QUARKS

There are six different “flavors” of  quarks, including: up, down, strange, 
charmed, bottom, and top. From there, each flavor comes in three different 
“colors”: red, green, and blue. Please note this is not the same thing as the 
red, green, and blue we see—it’s just a grouping physicists use. The reason 
we use colors is because when quarks combine, they tend to produce a 
neutral white color. The quark family is represented in the below figure—
and, yes, all these quarks have anti-quarks (anti-up, anti-down, etc.) and 
anti-colors (anti-red, anti-green, and anti-blue)!

Figure 9. Each of  the quarks with their respective antiquarks. 

	 For a concrete example, a proton has two up quarks and one down 
quark. One quark has to be red, one quark has to be blue, and one quark 
has to be green (figure 10-a). Similarly, the neutron is made up of  two 
down quarks and one up quark, each a separate color (figure 10-b). The 
green squiggly lines in the figure are the gluons, or the strong force carrying 
particles.
	 The astute reader will note that the proton and neutron mass isn’t 
simply the mass of  the quarks themselves. In fact, hadrons only get a 
portion of  their mass (about 1%) from the quarks themselves. The rest of  
the mass comes in the form of  the binding energy between quarks. This is 
possible through the mass-equivalence proposed by Einstein, E = mc2. 
	 For instance, a proton weighs around 2 × 10-7 kg. An up quark and 
down quark weigh around 4 × 10-10 kg and 8 × 10-10 kg, respectively. The 
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sum of  two up quarks and one down quark is only ~1.6 × 10-29 kg, which is 
about 1% of  the total mass of  a proton. As stated, the majority of  the rest 
of  the weight comes from the binding energy of  the quarks. Quarks are a 
weird and whacky world. 
	 Protons and neutrons aren’t the only creations of  quarks. In general, 
particles made up of  three quarks are called baryons, while particles made 
of  a quark/antiquark pair are called mesons. You may say, I thought you said 
quarks can only combine to produce a neutral white? How can that be with only two 
quarks? The answer lies in the fact a quark/antiquark pair can be colorless 
if  it meets with its anti-color counterpart, like a red quark meeting with an 
anti-red quark. Overall, baryons tend to be stable, while mesons tend to be 
unstable. This is because mesons annihilate when a particle meets with its 
antiparticle colleague. So, mesons live for a very, very short period of  time. 
 

Figure 10. (a) Proton (charge +1) with two up quarks and one down 
quark. (b) Neutron (charge 0) with two down quarks and one up quark. 

The green squiggly in both is the gluon.

UNCERTAINTY PRINCIPLE

In Chapter 8, we discussed particle-wave duality as being analogous to a 
clopen phenomenon. Quantum mechanics describes this phenomena more 
precisely through the Heisenberg Uncertainty Principle. There are multiple 
ways to summarize what it is, but I think it’s best said by physicists. So, I’ll 
let Richard Feynman’s and Kip Thorne’s words fill the ether:

One cannot design equipment in any way to determine 
which of  two alternatives is taken [i.e. wave path or particle 

Mass: 2x10-27 kg
Charge: +1

Mass: 2x10-27 kg
Charge: 0

(a) Proton (b) Neutron

Down
quark Up

quark

Gluon

Chapter 8
Figure 5

(a) Proton (b) Neutron
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path], without, at the same time, destroying the pattern of  
interference. . . If  we try to "pin down" a particle by forcing it 
to be at a particular place, it ends up having a high speed. Or 
if  we try to force it to go very slowly, or at a precise velocity, 
it “spreads out” so that we do not know very well just where 
it is.  (Richard Feynman)

The uncertainty principle is a fundamental feature of  the 
laws of  quantum mechanics. It says that, if  you make a highly 
accurate measurement of  the position of  an object, then in 
the process of  your measurement you will necessarily kick the 
object, thereby perturbing the object’s velocity in a random, 
unpredictable way. (Kip Thorne)

All in all, it is impossible to measure the precise location of  an object, like 
an electron. If  you make a precise enough measurement about its location, 
then there will be a high uncertainty about that object’s velocity. 
	 There is a way to put a more quantitative scope to the Heisenberg 
Uncertainty Principle. The basics of  it are the following formula:

ΔpΔx ≥ ℏ/2,

where, Δp signifies “the change in” momentum (i.e., momentum is mass 
times velocity), Δx is “the change in” the particular location of  a particle in 
question, and ℏ is the reduced Planck constant.
	 What this equation says is exactly what the two above physicists 
said: if  you try to measure the precise location of  a particle, then the less 
precisely you’ll be able to measure its momentum. Conversely, if  you try to 
measure the precise momentum of  a particle, then it’s location will more 
difficult to pin down. There’s an inherent trade off  in between location and 
momentum. 
	 The uncertainty principle is one of  the driving principles in 
understanding why we don’t fall through cold, solid objects, like the ground 
below you. It also happens to be the same reason small stars don’t collapse 
on themselves. The phenomena that prevents you from falling through 
your chair and a white dwarf  from collapsing on itself  is called electron 
degeneracy pressure. In neutron stars, a similar principle applies, but the name 
changes to neutron degeneracy pressure.
	 As stated in the text, an atom consists of  a nucleus with an electron 
cloud. The electron cloud is simply a probability distribution of  finding an 
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electron at a particular location around the nucleus. 
	 With that framing, let’s picture an atom in two states: State 1 and State 
2 (figure 11). The main difference between both states is that gravitational 
pressure in State 2 is larger the the one in State 1. As it is clear, the increase 
in gravitational pressure decreases the volume (i.e., −ΔxΔyΔz) of  the 
electron cloud. In other words, the electron is confined to a smaller space. 
	 Since the cloud is smaller, you can more accurately pin down the 
location of  an electron. And, if  we can more accurately measure the 
location of  an electron, then, by Heisenberg’s Uncertainty Principle, the 
momentum, or speed, of  the electron must go up (i.e., +Δp)! 
	 This increased speed acts as a resistive force against the gravitational 
pressure, which prevents the collapse of  cold, solid objects (e.g. chairs, 
floors, etc.). Surprisingly, it just so happens it is the same reason why white 
dwarfs don’t collapse onto themselves! Nature works in mysterious ways, 
no? 

Figure 11. The Heisenberg Uncertainty Principle helps explain electron 
degeneracy pressure, which is the phenomena that prevents us from 

falling through the ground.

	 Reiterating the phenomena: in atoms, electrons flow around the 
nucleus in an electron cloud. However, the more gravity pushes in, the less 
space there is for those electrons to flow around freely. In other words, 
the density of  electrons increases as the volume of  the electron cloud 
decreases. In turn, the electrons start to speed up. This speed up causes the 
electrons to create a sort of  pressure that resists the contracting gravity. Kip 
Thorne states the results well: “a 1 percent increase in density produced 
1.667 percent increase in pressure.” However, that is for non-relativistic 
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electrons. In other words, electrons that move well below the speed of  
light. For electrons moving closer to the speed of  light, a 1 percent increase 
in density produced a 1.333 percent increase in pressure.*

	 In larger stars, the gravitational pressure is so strong that the electrons 
move almost at the speed of  light. When this happens, the electrons and 
protons combine to form neutrons and electron neutrinos. During this 
phenomena, all the atoms in the iron core of  the star contracts from a size 
of  10-18 cm to 10-13 cm in a fragment of  a second. This contraction drags 
the outer layers of  the star towards the core and bounce off  the iron dome 
to create a supernova. What remains is an extremely dense object known as 
a neutron star. 
	 As the name implies, a neutron star is made up mostly of  neutrons. 
Here, neutron degeneracy pressure keeps the star afloat. In other words, 
the quarks making up the neutron are confined to less and less space. Thus, 
the quarks move faster and faster. The increased speed acts as a form 
of  internal resistance to the force of  gravity and prevents the star from 
collapsing into a black hole. 
	 All in all, the Heisenberg Uncertainty Principle states: if  Δx goes down, 
then Δp must go up; and, vice versa. If  you know the location of  a particle, 
then the speed of  the particle must increase. If  you know the speed of  a 
particle, then you are uncertain about its location. 

NEITHER GROUPINGS

In the main text, we saw a grouping can either be open, closed, or clopen 
(simultaneously open and closed). In reality, a grouping can also neither 
open nor closed, like figure 12-d. This means all groupings are either 
open, closed, clopen, or neither (figure 12).

Figure 12. The different topological types of  groupings. 

* As a caveat, using the uncertainty principle to explain the broader concept of  
degeneracy pressure only works for fermions (electrons, quarks, and hadrons). 
This is because, no two fermions can occupy the same quantum state in a 
particular region due to the Pauli Exclusion Principle. 

(a) Open (b) Closed (c) Clopen

-Ø

(d) Neither(a) Open (b) Closed (c) Clopen (d) Neither
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