## How to Calculate the Wattage Requirement of Your Room

## Step 1 - Measure your Room and Calculate the Total Volume

To calculate the wattage requirement for your room, you'll first need to calculate the volume of your room.

To do this, you'll need to multiply Room Area x Room Height = Room Volume.

- If you have a rectangular or square room, multiply the Room Width $x$ Room Length $x$ Room Height to calculate the room volume in cubic metres.
- If your room is an odd shape, you'll need to work out the total floor area of the space, then multiply Room Area x Room Height to calculate the room volume.


## Example

- Jim has a room that's 4 metres long, 5 metres wide and 2.4 metres high.
- Therefore the room volume is 4 metres $\times 5$ metres $\times 2.4$ metres $=48$ cubic metres.


## Step 2 - Calculate the Wattage Requirement of Your Room

Next, you'll need to consult the table below to find the appropriate watts/cubic metre figure for your room, so that you can calculate the total wattage requirement.

1. Find the column with the house efficiency description that best matches your home.
2. Find the row with the room description that best matches your room.
3. Multiply Room Volume $x$ Watts/Cubic Metre to calculate the wattage requirement for your room.
4. Select the radiator or combination of radiators that meets the wattage requirement of the room. Remember that it's always better to specify more heating than less. It won't cost more to run (because the radiators will only use the energy needed to keep the room at a stable temperature), but it will ensure the room stays warm and the heaters aren't working harder than they should.

- Jim worked out in Step 1 that the volume of his room is 48 cubic metres.
- He has a Good Modern Home that's at least 7 star efficiency.
- The room he's trying to heat has large windows and more than $50 \%$ of the walls are external facing, so it best matches the Living Space Poor row. Therefore, he needs 25 Watts/Cubic Metre.
- Jim multiples the room volume x watts/cubic metre to calculate the wattage requirement for the room. $48 \times 25=1200$ Watts
- Jim chooses a 1250W radiator as this is the closest match to his requirements

|  | Passive or Highly Efficient Home <br> Extremely well insulated \& high-efficiency double glazing. 8 stars + | Good Modern Home <br> Good insulation in most or all surfaces, double glazing. 7 stars+ | Typical Modern Home <br> Mass produced home from last 5 <br> years. Meets energy efficiency <br> standards (6 stars). <br> Single-glazing or basic double glazing. | Slightly Older <br> Home <br> 5 to 20 years old, mass <br> produced. Some insulation but not great. Single glazed windows. | Older, draughty home Pre-2000's basic or no insulation. Draughty. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Living Space Poor <br> Greater than 50\% external walls, large windows | $22.5$ <br> Watts/Cubic Metre | 25 Watts/Cubic Metre | 30 Watts/Cubic <br> Metre | $32.5$ <br> Watts/Cubic <br> Metre | ```50+ Watts/Cubic Metre``` |
| Living Space <br> Average <br> Between 25\% and 50\% external wall, medium windows | 20 Watts/Cubic Metre | $22.5$ <br> Watts/Cubic Metre | $27.5$ <br> Watts/Cubic Metre | 30 Watts/Cubic Metre | $42.5$ <br> Watts/Cubic Metre |
| Living Space Great <br> Less than 25\% external wall, small windows | 20 Watts/Cubic <br> Metre | 20 Watts/Cubic Metre | 25 Watts/Cubic Metre | $27.5$ <br> Watts/Cubic Metre | 35 Watts/Cubic Metre |


| Bedroom Poor <br> Greater than <br> 50\% external <br> walls, large <br> windows | 20 Watts/Cubic Metre | 25 Watts/Cubic Metre | 30 Watts/Cubic Metre | $32.5$ <br> Watts/Cubic Metre | 35 Watts/Cubic Metre |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bedroom <br> Average <br> Between 25\% <br> and 50\% <br> external wall, medium windows | 20 Watts/Cubic Metre | $22.5$ <br> Watts/Cubic Metre | $27.5$ <br> Watts/Cubic <br> Metre | 30 Watts/Cubic Metre | $32.5$ <br> Watts/Cubic Metre |
| Bedroom <br> Great <br> Less than 25\% external wall, small windows | 20 Watts/Cubic Metre | 20 Watts/Cubic Metre | 25 Watts/Cubic Metre | $27.5$ <br> Watts/Cubic <br> Metre | 30 Watts/Cubic Metre |
| Bathroom <br> Small or no window, 25\% 50\% external wall | 25 Watts/Cubic Metre | 30 Watts/Cubic Metre | $32.5$ <br> Watts/Cubic <br> Metre | 37.5 <br> Watts/Cubic <br> Metre | 45 Watts/Cubic Metre |
| Hallway <br> No windows, minimal external walls | 20 Watts/Cubic Metre | 20 Watts/Cubic Metre | 25 Watts/Cubic Metre | $27.5$ <br> Watts/Cubic <br> Metre | 30 Watts/Cubic Metre |

