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Theanine  (�-glutamylethylamide)  characteristically  present  in  tea leaves  (Camellia  sinensis).  It has  a  sim-
ilar chemical  structure  to  glutamate,  which  is  a  neurotransmitter  related  to memory.  Theanine  passes
through  the  blood–brain  barrier  and  has  been  shown  to have  a cerebroprotective  effect  and  a  preventive
effect  on  neuronal  cell  death  after  transient  cerebral  ischemia.  The  neuroprotective  effect  is partly  due  to
the  antagonistic  action  of  theanine  on  glutamate  receptor  subtype  AMPA  and  kainate  receptors,  but  the
affinity  is  very  low.  Theanine  also  acted  on glutamine  (Gln)  transporter  strongly  and  inhibited  the  incor-
poration  of  extracellular  Gln  into  neurons,  which  in  turn  suppressed  the  conversion  of  Gln  to  glutamate  by
ognitive dysfunction glutaminase,  a reaction  required  for condensation  into  synaptic  vesicles  to  form  a  neurotransmitter  pool
responsible  for  subsequent  exocytotic  release  upon  stimuli.  In  an  investigation  of elderly  persons  with
normal  or  slight  cognitive  dysfunction,  volunteers  who  ingested  powdered  green  tea  containing  a high
theanine  concentration  (equivalent  to  47.5  mg  day−1 of theanine)  showed  significantly  lower  decline  in
cognitive  function  compared  with  that  of  the  placebo  group.  This  result  suggested  that  theanine  might

gniti
have  improved  a slight  co

. Introduction

There are estimated to be approximately 2 million dementia
atients in Japan. Given the country’s rapidly aging society, the
umber of dementia patients is likely to increase further in the
ear future. Such patients will become an enormous burden on
are givers and a huge financial strain on society. The most com-
on  causes of dementia in the elderly include Alzheimer’s disease,

erebrovascular disease, and dementia with Lewy bodies. Of these,
lzheimer’s disease is the leading cause, followed by cerebrovas-
ular disease, and their mixed dementia is also found in Japan.

It has been reported that cerebrovascular dementia [1] is asso-
iated with blood vessel disorders of the brain caused by cerebral
nfarction [2],  diabetes [3],  high blood pressure [4],  cardiac vascu-
ar disease [5],  etc. The Framingham study in the U.S.A. reported
hat stroke increased a subject’s risk of dementia compared with
hat in age- and sex-matched controls. Primary and secondary pre-
ention of stroke should significantly decrease the risk of dementia
6]. Other studies have also reported that stroke is a significant risk
actor of cognitive impairment and dementia [7,8]. Glutamate can

ause neuronal cell death by acting as a powerful neurotoxin in
he central nervous system when its extracellular concentration is
levated because of cerebral ischemia such as stroke. In order to
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ve  dysfunction  in elderly  persons.
© 2011 Elsevier Ltd. All rights reserved.

diminish glutamate toxicity, the extracellular concentration must
be decreased, for example, by postsynaptic glutamate receptor
antagonists in glutamatergic neurons [9,10]. However, although
there are reports of neuroprotectants in stroke, such as N-methyl-
d-aspartate (NMDA) receptor antagonists [11,12], all have been
subject to side effects. Therefore, there is a need to develop use-
ful medicines, preventive medical supplies, and/or neuroprotective
supplements.

Kuriyama et al. [13] reported that high consumption of green tea
(≥2 cups per day) is associated with lower prevalence of cognitive
impairment in humans in epidemiology study of Tsurugaya project
in Japan. An attractive quality ingredient of green tea leaves is thea-
nine, which has an analogous chemical structure to glutamate and
glutamine (Gln) (important neurotransmitters related to memory)
(Fig. 1). There are several reports on the neuroprotective effects
of theanine on ischemic neuronal cell death [14–16],  and also on
its action mechanisms [17,18] and metabolism [19,20]. Kataoka et
al. [21] showed that long-term ingestion of a high concentration of
theanine in powdered green tea suppressed the progression of cog-
nitive dysfunction and suggested a preventive effect on dementia
in the elderly.

2. Metabolism of theanine
Common-grade green tea leaves contain 0.2–2.4% (w/w)  thea-
nine [22]. Kitaoka et al. [23] reported that intestinal absorption
of theanine and Gln was mediated by a common Na+-coupled

dx.doi.org/10.1016/j.phrs.2011.03.010
http://www.sciencedirect.com/science/journal/10436618
http://www.elsevier.com/locate/yphrs
mailto:t-kakuda@itoen.co.jp
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ig. 1. Chemical structure of l-theanine (�-glutamylethylamide), l-glutamate, and
-glutamine.

o-transporter in the brush-border membrane, the affinity of which
as lower for theanine than for Gln. Unno et al. [19] showed

hat when 200 mg  of theanine was orally administered to rats,
he plasma concentrations of theanine and ethylamine reached
heir highest levels approximately 0.5 and 2 h after administration,
espectively. Within the rat kidney, theanine is hydrolyzed to glu-
amate and ethylamine. Tsuge et al. [20] reported that theanine
as hydrolyzed by phosphate-independent glutaminase in the kid-
ey and proposed that the glutamyl moiety was transferred by
eans of a �-glutamyl transpeptidase reaction to other peptides

n vivo. In contrast, Yokogoshi et al. [24] reported that theanine
as transported into the brain through the blood–brain barrier via

 leucine-preferring transporter system. In this way, orally admin-
stered theanine was easily absorbed from the intestinal tract and
artially transported into the brain through the blood–brain bar-
ier.

. Neuroprotective effect of theanine

.1. Neuroprotective effect of theanine on delayed neuronal cell
eath after transient brain ischemia

Theanine has an inhibitory effect on the stimulation of the
entral nervous system by caffeine [25,26],  a reduction effect on
lood pressure [27], a relaxation effect [28], and an enhancing
uman �� T lymphocyte function [29]. The chemical structure
f l-theanine is a similar to that of glutamate, which is a very
mportant neurotransmitter related to memory. The neuroprotec-
ive effects of l-theanine on delayed neuronal cell death following
ransient ischemia were elucidated using an animal model [14].
ransient forebrain ischemia was induced by bilateral occlusion
f the common carotid arteries for 3 min  in gerbils. Seven days
fter ischemia, pyramidal neurons in the hippocampal CA1 region
egenerated or disappeared (Fig. 2b and e). No change in the num-
er of CA1 pyramidal neurons was observed in the sham-operated
roup (Fig. 2a and d). On the other hand, most CA1 pyramidal neu-
ons were preserved in animals that were administered 1 �L of
00 �M theanine solution 30 min  before ischemia (Fig. 2c and f).
heanine pretreatment significantly inhibited ischemic neuronal
ell death in the hippocampal CA1 field in a dose-dependent man-
er. Lowering the intraischemic brain temperature by 2 ◦C has been
hown to significantly reduce the extent of ischemic neuronal dam-
ge [30]. MK801, an NMDA-type glutamate receptor antagonist,
xerts protective effects when the brain temperature is lowered
31]. However, some NMDA-type glutamate receptor antagonists
ave been shown to exert their protective effects without a lower-

ng of the brain temperature [32]. In the animal model described
bove cerebral ischemic experiments were performed during brain
egulation at an ischemic insult temperature and continuous mon-
toring [33]. The tests were performed while maintaining the brain
emperature at 37 ◦C; this suggests that the neuroprotective effect

f theanine does not depend on lowering of the brain temperature
ut may  be due to a direct effect on neurons [14]. Egashira et al.
34] reported that theanine significantly prevented impairment of
pinal memory in rats subjected to repeated cerebral ischemia at 7
earch 64 (2011) 162– 168 163

days after the second reperfusion. They further reported that thea-
nine significantly inhibited the decrease in the number of surviving
cells in the hippocampal CA1 field of the same rats [34]. These
results indicate that theanine may  prevent cerebrovascular disease
by mitigating cognitive dysfunction through inhibition of ischemic
neuronal cell death.

3.2. Neuroprotective effect of theanine on middle cerebral artery
occlusion

Kakuda et al. [15] reported that theanine significantly prevented
neuronal cell death in rats using an occluded middle cerebral artery
(MCA) model similar to the clinical model described above. They
further suggested a cerebral protective action of theanine. Thea-
nine (125 �M,  250 �M,  and 500 �M)  was  injected through the
lateral ventricle 30 min before the onset of MCA  occlusion under
controlled body temperature (37 ◦C) and anesthesia. Focal cere-
bral ischemia was  induced by temporary MCA  occlusion for 1 h
with a suture technique. After 24 h, the brains were removed, and
infarct volumes were measured. The infarct volume was signifi-
cantly reduced by treatment with 250 �M and 500 �M theanine
in a dose-dependent manner. Egashira et al. [35] reported that
theanine (1 mg  kg−1) was  injected i.p. 3 h after occlusion or imme-
diately before occlusion significantly decreased the size of cerebral
infarcts 1 day after the occlusion. Thus, theanine has a neuropro-
tective effect on MCA  occlusion, which is often observed clinically
and might be clinically useful for preventing cerebral infarction.

4. Mechanisms underlying of the neuroprotective effects of
theanine

4.1. The neuronal excitotoxin glutamate and neuronal cell death

The human brain is thought to contain approximately 100 billion
neurons. These neurons form complicated neural networks from
several thousands to several tens of thousands of synapses. It is
thought that information entering the human body through vision,
audition, gustation, olfaction, and/or tactile sense is transferred to
the hippocampus, where it is consolidated and stored temporally
as short-term memory. Potent information is finally fixed in the
hemisphere as long-term potentiation (LTP). The memorized infor-
mation is judged in an association cortex and is thought to be used
functionally.

Glutamate is an important neurotransmitter concerned with
memory and is present at a concentration of approximately 10 mM
in the glutamatergic neurons. When electric information is trans-
mitted to the synapse via an axon, glutamate is discharged in the
synaptic cleft from synaptic vesicles in pre-synaptic terminals. Glu-
tamate receptors in the post-synaptic membrane are activated, and
information is transmitted as chemical information (Fig. 3). When
the transfer of information is complete, glutamate is eliminated
from the synaptic cleft and taken into glial cells and neurons by
glutamate transporter [36,37].  A low extracellular glutamate con-
centration (<2 �M)  is maintained to avoid excessive excitement
[38]. This process is very short term. However, when the supply
of oxygen and glucose (a nutrient source) stops because of cere-
bral infarction or cardiac arrest, the electric potential of the cell
membrane depolarizes, glutamate is excessively released into the
extracellular space, and glutamate receptors are excited in a disor-
derly manner [39]. There is a particularly vulnerable region in the
brain [40,41], in which neuronal cell death occurs approximately

2 days after 5 min  of cerebral ischemia [42]. Cerebral ischemia
results in excessive stimulation of glutamate receptors and abun-
dant flow of Ca2+ ions into neurons through NMDA receptors [43].
Such an excessive flow of Ca2+ ions into neurons results in excessive
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Fig. 2. Photograph showing the neuroprotective effects of theanine against ischemic delayed neuronal death in the gerbil hippocampus [14]. Brain sections were obtained
7  days after 3-min transient ischemia. (a and d) Animals were administered theanine solution 30 min  before a sham-operation. (b and e) Animals were administered saline
s  thea
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olution 30 min  before ischemia. (c and f) Animals were administered 1 �L of 500 �M
A1  field for each experimental group. The number of intact cells in the defined are
dministration.

ischarge of glutamate into the extracellular space and disor-
erly excitation of glutamate receptors. This serial process is called
xcitotoxicity. Likewise, glutamate is enormously important with
espect to excitotoxicity but this process is very long-term, espe-
ially when compared to memory consolidation. The flow of Ca2+

ons into neurons activates various type of enzymes [44] and gener-
tes reactive oxygen species [45]. Such serial reactions are thought
o cause neuronal cell death. Recently it has been suggested that
his excitatory neuronal toxicity participates in neurodegenerative
iseases such as Alzheimer’s disease [46,47].

.2. Antagonistic action of theanine on glutamate receptors
Theanine is a natural analog of glutamate (Fig. 1). Therefore,
ne of the mechanisms by which it exerts a neuroprotective
ffect on ischemic neuronal cell death is thought to be an antag-

ig. 3. Schematic representation. Theanine inhibits the incorporation of extracellu-
ar  glutamine (Gln) into neurons. This suppresses the conversion of Gln to glutamate
Glu) by glutaminase, a reaction required for condensation into synaptic vesicles to
orm a neurotransmitter pool responsible for subsequent exocytotic release upon
timuli. Extracellular Glu is incorporated into adjacent astroglia through excitatory
mino acid transporters (EAATs), whereas glutamine transporter (GlnT) mediates
he  import of extracellular Gln derived from synthesis by Gln synthetase enriched
n  astrocytes into neighboring neurons. Theanine also acted on Glu receptors [17],
ut  the action of theanine on Gln transporter is stronger than that of Glu receptors.
nine 30 min  before ischemia. Lower photographs show higher magnification of the
assessed. Ischemic neuronal destruction in the CA1 field was inhibited by theanine

onistic effect on ionotropic glutamate receptor subtypes, such
as NMDA receptor, dl-�-amino-3-hydroxy-5-methylisoxazole-4-
propioate (AMPA) receptor, and kainate receptor. Kakuda et al.
[17] compared the inhibitory effects of theanine and glutamate
on [3H]AMPA, [3H]kainate, and the NMDA glycine site antagonist
[3H]MDL 105,519 receptors. They found that theanine inhibited
binding on AMPA, kainate, and NMDA receptor subtypes of radioac-
tive ligands. However, although theanine bound the 3 receptors, the
IC50 was  80- to 30,000-fold less than that of glutamate. Moreover,
the binding activity of theanine on AMPA and kainate receptors
was  10-fold higher than that on NMDA glycine receptor. The IC50
for the binding activity of theanine on AMPA receptor was approx-
imately 10−5 M,  which was  80-fold weaker than that of glutamate.
Nevertheless, this activity might be pharmacologically significant.
Sheardown et al. [48] reported that administration of an antago-
nist of AMPA receptor before and after ischemic loading resulted
in pyramidal neuronal cell death in the hippocampal CAI region.
Ischemic neuronal cell death is thought to involve not only NMDA
receptors but also AMPA receptors. AMPA receptors regularly show
high permeability to Na+ ions but rarely show permeability to Ca2+

ions. However, the downregulation of gluR2 gene expression and an
increase in influx of Ca2+ ions through AMPA receptors in response
to endogenous glutamate are likely to contribute to delayed neu-
ronal cell death after global ischemia [49,50]. These results suggest
that the antagonistic effect of theanine on AMPA receptors con-
tributes to the prevention of neuronal cell death after cerebral
ischemia.

4.3. Action of theanine on glutamine transporter

The mechanism by which theanine exerts a neuroprotective
effect was initially thought to be solely due to the antagonistic
effects of theanine on glutamate receptors (theanine is a structural
analog of glutamate). However, as shown in Section 4.2, the affin-
ity of theanine for ionotropic glutamate receptor subtypes is very
low [17]. Kakuda et al. [18] studied the mechanism of action of
theanine on a glutamate and Gln receptors. The brain was removed
from the cranial cavity and homogenized for a short period, and
the homogenate was centrifuged. The granule (synaptosome) of the

nerve system postlude was broken off and the synaptosomal frac-
tion obtained. In this study, [3H]theanine was actively accumulated
in a temperature-dependent and saturable manner in rat brain
synaptosomal fractions. The accumulation of [3H]theanine was
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ig. 4. Effect of structural analogs on accumulation of [3H]theanine and [3H]Gl
3H]theanine (A) or 1 �M of [3H]Gln (B) at 30 ◦C for 20 min  in the presence or ab
Asp)  and asparagine (Asn). Values represent mean ± S.E. of 4–6 independent sets o

arkedly inhibited by Gln in a concentration-dependent manner
Fig. 4A left). Similarly, the accumulation of [3H]Gln was  inhibited
y theanine in a concentration-dependent manner (Fig. 4B left).
akuda et al. [18] then examined the accumulation of [3H]Gln and

3H]theanine in primary cultured neurons and astrocytes prepared
rom rat cerebral cortex, in place of synaptosomal fraction. They
ound that the accumulation of [3H]Gln and [3H]theanine increased
lmost linearly with incubation time, up to 20 min. Cultured neu-
ons and astrocytes were incubated with [3H]Gln in the presence
r absence or a range of theanine concentrations (0.1–10 mM).
n both cell cultures, addition of theanine induced a significant
ecrease in [3H]Gln accumulation in a concentration-dependent
anner (Fig. 5A and B). Cortex neurons were incubated for 3 days

n the presence or the absence of 10 mM theanine, followed by
ollection of the culture medium for determination of glutamate.
ustained exposure to theanine resulted in a slight but statisti-
ally significant decrease in extracellular glutamate level in the

ultured neurons (Fig. 5C). These results indicate that the exocytotic
elease of glutamate is suppressed by theanine. Glutamate released
nto the extracellular space is largely taken up into astrocytes via

ig. 5. Effects of theanine on [3H]Gln accumulation and glutamate efflux [18]. (A and B) C
n  the presence of a range of theanine concentrations (0.1–10 mM). (C) Cortex neurons 

y  collection of the culture medium for determination of glutamate. Values represent m
ignificant difference from control values obtained in the absence of theanine.
ynaptosomal fractions [18]. Synaptosomal fractions were incubated with 1 �M
 of a concentrations (10 nM to 1 mM)  of l-theanine, l-Gln, d-Gln, Glu, aspartate
riments performed in triplicate.

glutamate transporter and is synthesized into Gln by glutamine
synthetase. This Gln is released into the extracellular space, where
it is again taken up into glutamatergic neurons via Gln transporter
and is hydrolyzed by means of the phosphate-activated glutami-
nase [51]. The glutamate is pooled in synaptic vesicles, thus forming
a neurotransmitter pool in nerve terminals [51–53].

The prevailing view is that Gln exported to the extracellular
space is taken up through Gln transporter expressed by neurons to
fuel the glutamate/Gln cycle required for the neurotransmitter pool
of glutamate at the nerve terminals in glutamatergic neurons. Thea-
nine could at least partly alter extracellular Gln levels under the
delicate control of Gln transporter expressed by astrocytes adjacent
to the glutamatergic synapses in a particular pathological situation
such as brain ischemia. This mechanism of action of theanine is
thought to contribute to its protective effect on neuronal cell death
by alleviating the action of the neuronal excitotoxin glutamate.
Interestingly, Walton et al. [54] have suggested that alterations

in glutamate neurotransmission and glutamate/Gln cycling con-
tribute to Alzheimer’s disease pathology and are probably major
players in the propagation of neuronal destruction.

ortex neurons and astrocytes were incubated with 1 �M [3H]Gln at 30 ◦C for 20 min
were cultured for 3 days in the presence or absence of 10 mM theanine, followed
ean ± S.E. of the separate measurements indicated. *P < 0.05 and **P < 0.01 indicate
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Fig. 6. Regression coefficients of HDS-R scores over 12 months for individual sub-
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.4. Similarity of action mechanisms of theanine and memantine
or Alzheimer’s disease

Recently, memantine [55,56] has been approved as a curative
harmaceutical for Alzheimer’s disease. Memantine is an uncom-
etitive glutamate receptor subtype NMDA receptor antagonist
56] and has a preventive effect on glutamate toxicity. Although,
heanine also inhibits glutamate toxicity by acting on glutamate
eceptor subtype AMPA, kainate receptor, and NMDA receptor, its
ffinity is very low. It has been suggested that theanine at least
artly alters extracellular Gln levels under the delicate control of
ln transporter expressed by neurons to fuel the glutamate/Gln
ycle required for the neurotransmitter pool of glutamate at the
erve terminals in glutamatergic neurons. Moreover, this may
ontribute to the neuroprotective action of theanine on cerebral
schemia. These views suggest that theanine is useful as a curative
harmaceutical for Alzheimer’s disease because of its preventive
ffects on glutamate toxicity.

.5. Action of theanine on neurogenesis

The production of neurons is largely confined to the prenatal
eriod in most regions of the mammalian brain. However, neuro-
enesis occurs in a limited region such as the hippocampal dentate
yrus [57,58]. Several developments finally established neurogen-
sis in the adult rodent, including the introduction of the thymidine
nalog bromodeoxyuridine (BrdU), a marker of DNA synthesis that
abels proliferating cells and their progeny [59,60]. In the 1960s,
tudies were conducted using the newly introduced methods of
H-thymidine autoradiography, in which 3H-thymidine is taken
p by cells undergoing DNA synthesis in preparation for mitosis,
nd can thus be used as a marker for proliferating cells and their
rogeny. Exposure to stressful experience decreased the number
f new neurons in the dentate gyrus. Exposure to predator odor in
dult rats and to social stress in tree shrews and marmots inhib-
ted the proliferation of granule cell precursors in the dentate gyrus
61].

Abe et al. [62] investigated the effect of theanine on neu-
ogenesis in the hippocampal dentate gyrus. When mice were
xposed to psychosocial stressful conditions, the number of clus-
ers of BrdU-positive cells decreased. However, when theanine
as administered mice before and after stress exposure, the
umber of clusters of BrdU-positive cells was restored. These
esults suggested that theanine promotes neurogenesis. Abe et al.
62] also reported an increase in the reduction ability of 3-
4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
MTT), an index of cell proliferation ability and survival ratio, fol-
owing exposure of rat cerebral cortex nerve system precursor cells
o theanine. This suggests that theanine enhances the prolifera-
ive ability of nerve system precursor cells. These results further
ndicate that theanine can be used as part of neuronal regenera-
ion therapy in neuron-denaturalized disease, such as Alzheimer’s
isease.

.6. Summary of mechanisms

The mechanisms of underlying of neuroprotective effects of
heanine were summarized as follows. (1) Possible post-synaptic
eceptor antagonist action is rather weak (Fig. 3). (2) Possible pre-
ynaptic action to reduce glutamate release into the synaptic cleft

y acting glutamine transporter is strong (Fig. 3). (3) Possible effect
n neurogenesis either to promote cell proliferation and/or to pro-
ote cell survival is suggested, but this action mechanism need

tudy more.
jects in 3 groups (no ingestion, placebo capsules, and PGTH-theanine capsules) [21].
Regression coefficient for each subject (�) and average regression coefficient for
each group ( ). *P < 0.05 vs. placebo capsules (Student’s t-test).

5. Preventive effects of theanine on cognitive dysfunction
in aged person

Given the neuroprotective effects of theanine on neuronal
cell death after cerebral ischemia such as stroke, the preventive
effects of theanine on vascular dementia in aged persons were
investigated. Kataoka et al. [21] reported that the cognitive dys-
function of aged volunteers improved following consumption of
powdered green tea containing a high theanine concentration
(PGTH-theanine). The effects of long-term ingestion of PGTH-
theanine on cognitive dysfunction was  studied in 29 volunteers
(average age, 85 years), each with a score of >20 on the Hasegawa’s
Dementia Scale-Revised (HDS-R) score [63]. Green tea leaves con-
taining 2.33% (w/w)  of theanine and 7.95% (w/w) of catechins
were used. The green tea leaves were powdered like a Matscha
tea (using tea ceremony), mixed with cornstarch at a ratio of 1:5,
and encapsulated in size-2 capsules, each containing 170 mg  of
PGTH-theanine. As a placebo, cornstarch containing 25% (w/w)
low-grade powdered green tea (to match the color) was used. The
volunteers were instructed to take 4 capsules, 3 times per day,
after breakfast, lunch, and dinner, for 12 months. Thus, a total
of 12 capsules (2040 mg  day−1 of PGTH-theanine, equivalent to
47.5 mg  day−1 theanine and caffeine 64.8 mg  day−1) were ingested.
The HDS-R score was examined for all 3 groups, every month, and
changes in cognitive dysfunction were analyzed. Compared to the
placebo group, the PGTH-theanine group had a significantly higher
HDS-R score from the 7th month, except in the 11th month. For
each group, the mean HDS-R score gradient during the 12-month
test period was  examined by plotting the mean HDS-R score for
each month.

The gradients of the non-intake and placebo groups had negative
values (−0.087 and −0.116, respectively). In contrast, the gradient
of the PGTH-theanine group had a positive value of (0.119). The
HDS-R score gradient was  also calculated for each volunteer for the
12-month test period, and the mean value in each group was  plot-
ted. The mean value in the PGTH-theanine group was significantly
higher than that in the placebo group (Fig. 6). The results suggest
that decline in the HDS-R scores of aged volunteers was prevented
following ingestion of PGTH-theanine over a prolonged period.
This, in turn, suggests a preventive effect of PGTH-theanine on
senile dementia which is caused by ischemia with cerebrovascular
accidents such as stroke. On the other hand, Yamada et al. reported
that theanine-fed rats showed improved recognition, and that thea-
nine affected learning and memory [64]. This report showed that

theanine related to memory. From these results, slight improve-
ment of cognitive dysfunction in part of aged persons might be
suggested by long term ingestion of theanine, but we  need study
more in detail.
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The PGTH-theanine used in this study contained 2.33% (w/w) of
heanine, which is more than twice concentration of theanine con-
ained in regular green tea. The volunteers ingested 2040 mg day−1

f PGTH-theanine (equivalent to 47.5 mg  day−1 of theanine). This is
igher than the theanine intake from regular green tea. On the other
and, the consumption of powdered green tea at a tea ceremony is
pproximately 1000 mg  per person, and the theanine intake a single
up of common powdered green tea is estimated to be approx-
mately 35 mg.  Therefore, 47.5 mg  day−1 of theanine used in this
tudy is higher concentration than that of regular ingestion.

The PGTH-theanine used in this study contained 7.95% (w/w)
f catechins, resulting in a catechin consumption of approxi-
ately 162.1 mg  day−1. Given that regular green tea leaves contain

pproximately 15% (w/w) of catechins, a catechin ingestion of
pproximately 200 mg  per cup is common. Therefore, the ingestion
f catechins from the PGTH-theanine used in this study was slightly
ower than from regular green tea. However, the PGTH-theanine

as ingested periodically 3 times per day for 12 months. Thus, it is
ikely that the preventive effects of lowering the HDS-R score can
e attributed not only to theanine but also to the synergistic action
f catechins. It has been reported that a substantial proportion of
ngested catechins is absorbed via the intestines [65,66], with a
mall amount detected in the brain [66,67]. Although it is question-
ble weather phenolic compounds such as catechins pass through
he blood–brain barrier, the protective effects of catechins against
euronal damage after ischemia have been documented [68–70].
n the other hand, Unno et al. reported that catechins had a rad-

cal scavenging effect [71]. Reactive oxygen species are increased
y MCA  occlusion in the rat and by various types of central nerve
athological conditions [72]. Thus, the radical scavenging activity
f catechins might be useful for preventing neuronal cell death.
uriyama et al. [13] reported that a higher consumption of green

ea was associated with a lower prevalence of cognitive impair-
ent in humans in Tsurugaya project. This agrees with the findings

f Kataoka et al. [21] that ingestion of PGTH-theanine or high thea-
ine over a prolonged period may  have a preventive effect on senile
ementia.

. Conclusion

Orally administered theanine, an ingredient of green tea leaves,
s easily absorbed via the intestines and a small amount is trans-
orted to the brain through the blood–brain barrier. The theanine
cts directly on the central nervous system and shows neuroprotec-
ive effects by inhibiting neuronal cell death after cerebral ischemia
uch as stroke. Although these neuroprotective effects were partly
ue to the antagonistic action of theanine on ionotropic gluta-
ate receptor subtype AMPA and kainate receptor, the affinity was

ery low. It is thought that theanine can partly alter extracellu-
ar Gln levels under the control of Gln transporter expressed by
strocytes adjacent to glutamatergic synapses in a particular patho-
ogical situation such as brain ischemia. The action of theanine on
ln transporter is stronger than that on glutamate receptors. Thea-
ine was also shown to have a promoting effect on neurogenesis.
ecline in the HDS-R scores of aged volunteers was prevented fol-

owing ingestion of PGTH-theanine every day for 12 months. The
ffects of theanine were very mild compared with those of phar-
aceuticals, and daily consumption led to very few side effects.

hus, there is potential for theanine to be used not only for acute
herapy clinically but also for the prevention of cognitive dysfunc-
ion and/or dementia. Green tea contains more than 10% (w/w)  of
atechins, which are expected to exert synergistic effects. Eight

ears ago, Kakuda reviewed the biological activity of theanine,
n ingredient of green tea [73], and thereafter many studies of
s reviewed herein have elucidated the neuroprotective effects of
heanine.

[

[

earch 64 (2011) 162– 168 167

The chemical content of tea leaves varies considerably according
to variety and/or cultivation method. In Japan, the functionalities of
tea chemical compounds have recently been elucidated and devel-
oped for foods for specified health uses (FOSHU). It is anticipated
that In the future, theanine will find further application as a FOSHU
and pharmaceuticals for preventing cognitive dysfunction and/or
dementia.
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