

ery is discharging and battery capacity is 15%	,
--	---

Battery Type and Solar Panel Type Option				
Switch 1	Switch 2	Switch 3	Battery Type	Solar Panel Type
off	off	on/off(invalid)	12V lead acid battery	12V solar panel
off	on	on/off(invalid)	24V lead acid battery pack	24V solar panel
on	off	off	12V lithium battery pack	12V solar panel
on	off	on	14.8V lithium iron phosphate battery pack	12V/18V solar panel
on	on	off	24V lithium battery pack	24V solar panel
on	on	on	29.6V lithium iron phosphate battery pack	24V/36V solar panel
Switch 4	on	24V solar panel c	an charge 12V batteries for all types o	fbatteries

Warning: If the battery type is configured on web management page of the switch, the battery type switch is invalid.

When you need to configure the battery type via the DIP button on the switch, please ensure that the power of the device is turned off; turn on the power of the device after the configuration is complete.

The above recommendations are for reference only. Select the solar panel based on the actual open circuit voltage of the battery, the typical work voltage of the solar panel is higher than the open circuit voltage of the battery.

If you accidentally configure the wrong power parameters in the GUI and cause the device to power off, press the fourth button of the DIP button, dial up and down 5 times and all the lights will flash once to restore.

2.3 Down Panel

P1P2=V1V1 As an Ethernet switch, DC input 12-37V, 10A max. As a PoE switch, DC input 37-57V, 10A max.

3.Hardware Installation

Step 1: How to get 12V or 24V voltage battery?

Step 2: How to select a suitable solar panel?

	Maximum power voltage(Vmp)	≤26V	NODULE TYPE: S	P100W (M), 180
12V Solar Panel	Open circuit voltage(Voc)	<30V	Production Tolerance Bioinsm Drever Contrast (Inst) Bioinsm Prover Voltage (Verg) Bioins Contrast (Sec) Open Contrast (Sec) Open Contrast (Verg)	(%) 6°+3 (M) 532 (M) 18,78 (M) 22,44
24V Solar Panel	Maximum power voltage(Vmp)	≤30V	Weight Oineesians Maximum Bysien Voltage Maximum Beries Fuse Fating	(Kg)- 7.2 (in)- 26.4 x 26.8 x1.4 (NDC)- 1980 (A)- 12
	Open circuit voltage(Voc)	≤57V	Application class Fire safety class Rechanical load tested	(Pa). 2400
S+ S- Input Voltage		12-57V	AM=1.5 E=1000HKM ² Tc=25 [°] C	• CE

Step 3: Calculate solar panel and battery capacity Example: Load=15W (1 pc UPS PoE switch, 2 pcs IP camera, 1 pc wireless CPE) Sun: 8h/day. Solar Panel: 100W. Battery: 12V/40Ah = 480Wh (100%) Battery capacity at sunrise: 0% Charge: 100W x 8h x 70% efficiency = 560Wh onsumption: 15W x 8h = 120Wh Battery capacity at sunset: 560-120 = 440Wh = 93% y capacity at sunset: 440Wh (93%) ttery capacity at sunrise: 440-240Wh = 42% < 50% battery capacity, it's ok.

So you can use 12V/100W solar panel with 12V/40Ah battery.

The WI-PMS306GF-UPS-I max charge current is 10A, so solar power is 300W max.

PoE Load (if back up 24hours,8hours for solar charge, 16hours for battery discharge)	Battery Need	Solar Need
5W Max	12V 14AH	12V 50W
10W Max	12V 24AH	12V 120W
15W Max	12V 40AH	12V 150W
20W Max	24V 35AH	24V 240W
25W Max	24V 40AH	24V 260W
30W Max	24V 50AH	24V 280W

4: Power on device after completing all setting.

4. Hardware Installation

The following section describes the hardware installation of the WI-PMS306GF-UPS-I. Before connecting any network device to the WI-PMS306GF-UPS-I, read this chapter carefully.

Step 1: Adjust DIP Switch

 Adjust the DIP switch, select the correct battery type and volt. (Reference Product Overview> 2.2 Up Panel page)

If it is unconvience for you to adjust DIP Switch, you can set up the battery type and volt via Web Management (Reference **Web Management** page)

Step 2: Installing WI-PMS306GF-UPS-I

• Installing WI-PMS306GF-UPS-I, place the WI-PMS306GF-UPS-I in a desired location using the wall-mount or Din-rail fixtures.

Wall-Mount

Please install the WI-PMS306GF-UPS-I in a proper enclosure or shelter. The WI-PMS306GF-UPS-I must be grounded.

p 3: Installing Battery

Connect the negative electrode of the battery to the B- on the WI-PMS306GF-UPS-I. By default, the battery is in use.

onnect the positive electrode of the battery to B+ on the WI-PMS306GF-UPS-I. er the battery is well connected to the WI-PMS306GF-UPS-I, reference the (Product Overview>Up panel) to check the battery capacity and battery working status.

4: Installing Solar Panel

Connect the negative electrode of the solar panel to the S- on the WI-PMS306GF-UPS-I. nnect the positive electrode of the the solar panel to the S+ on the WI-PMS306GF-UPS 3. After the solar panel is well connected to the WI-PMS306GF-UPS-I, reference the (Product Overview>Up panel) to check the solar energy working status.

The solar panel can power up the WI-PMS306GF-UPS-I, at the same time, charge the battery.

t the 802.3af/at PoE devices to ports 1~2 on the WI-PMS306GF-UPS-I. Connect the 802.3a/at rob devices to ports 1/2 of the WI-PMS306GF-UPS-1.
Connect the 802.3bt or 24V passive PoE devices to ports 3~4 on the WI-PMS306GF-UPS-1.
Connect the fiber switch or fiber media converter to ports 5~6 on the WI-PMS306GF-UPS-1.
3. After clients are well connected to the WI-PMS306GF-UPS-1, reference the (Product Overview>Front panel) to check the solar energy working status

5.Web Management

The following shows how to start up the Web Management of the WI-PMS306GF-UPS-I. Please make sure the manager PC must be set to the same IP subnet address.

r example, the default IP address of the WI-PMS306GF-UPS-I is VLAN1 is 192,168.0.1.] nanager PC should be set to 192.168.0.x (where x is a number between 1 and254, except 1 . and the default subnet mask is 255.255.255.0.

_ogging in to the WI-PMS306GF-UPS-I

tep 1: Use Web browser to enter IP address http://192.168.0.1 (default IP address)

2: When the following dialog box appears, please enter the default user name "admin" and password "admin" (or the password you have changed before).

Step 3: After entering the password the main screen appears. The above page shows the information of solar power usage, PoE usage and battery capacity.

tep 4: The battery type and battery capacity will be auto display. The default of Wide Capacity CHG -- Off.

E.g. If you want to connect a 24V 200W solar panel, and 24V 100AH lead-acid battery.

Battery configuration -- Auto, the battery type is automatically displayed 24V lead-acid battery it is incorrect, please choose the battery type manually in the drop down box.

Battery Capacity: It is automatically displayed, if the data is incorrect you can enter the right data manually (Formula: Wh= V*Ah).

Charging Current: The max charge current of WI-PMS306GF-UPS-I is 10A max.

Wide voltage CHG: The default is Off for 12V solar panel connection. You connect 24V solar panel, please adjust Wide voltage CHG -- ON.

MI-PMS306GIF-LIPS-I			Solar Con	Iguration		
Golar Configuration Golar configuration Indextise Earlier Configuration	Butery Type 12V Lood	Betlery Capacity 6400MH	Installed Solar Power OV	Max Charging Current 15A	Mo Discharge Power 123W	Hardware Version HSUN V1.22
Antern Configuration Port Configuration	Wile Widage Charging Of	Dystem Temperature 1970	Ballery	Tergesalue xmoded	Base	er Stelus smol
KHC Configuration VLAN Certifiquitation	Our Volage	Bun Current	Sun Power	Monking Status	Balley Voltage 11,94V	Charging Current 0.304
MMP Configuration VCI, Configuration	6.00V	0.004	0.00W	Oscharge	Balley Level 75%	Charge&Discharge Time +3(#1+41)
QOS Configuration IP Basic Configuration	SUN URONY	Reded	Bobey Ealus Normal	Gulput Vallage of Controller 61.80V	Culput Current of Controller E105A	2.59N
AAA Configuration Ana Configuration State TP-Configuration Kose SouthProceedinguration Configuration Configuration Configuration Configuration EARS Configuration	Event Solar Tanka (Sava Aven		Event Settin	Execution 9.15 Chiltre Awar	Conditions	Status
	SYS TEMP Abern		Cose w	SYS TEMP gaip	100 10	Normal
	Batkey TEMP Alam		Cross w	Billo Liying galo Buhay TDMP ping	100 '0	Normal
luter Management RES Conferences	Buttery Level Alarm		Close +	at bying perp	10 %	Nomal
LDP-Configuration og Monagement Pull Power Control	Onarging Capacity of Single Battery		Refuse	Total Solar Generating Capacity Apply		2001
Cupyright (C) 2018 Heat-Tex Textercora Limited						

For more configuration info, please visit: http://wireless-tek.com/

Warranty Card

Username	
Address	
Telephone No.	
Purchase Shop	
Purchase Address	
Product Model No.	
Purchase Time	
Serial No.	
Dealer Signature	

• If the product defects within three months after purchase, we will provide you a new

• If the product defects within the three-year warranty period, we will provide the nrofessional maintenance service

• Proof of purchase and a complete product serial number are required to receive any services guaranteed as part of the limited warranty.

 Any other defects that are not caused by workmanship or product quality, su natural disasters, water damage, extreme thermal or environmental conditions damaged, warranty card losing will disgualify the product from limited warranty.

Technical Support Company Website Cloud Management

Wireless-Tek Technology Limited

Address: Biaofan Technology Building 402, Bao'an street Baoan District, Shenzhen City, Guangdong, China Website:www.wireless-tek.com Tel:86-0755-32811290 Email:sales@wireless-tek.com Technical Support:tech@wireless-tek.com

