Dual PT100 RTD to CAN-Bus Converter v1.0 August 2018

- Product name Dual PT100 RTD to CAN-Bus Converter
- Model number CAN-PT100-DUO
- Manufacturer SK Pang Electronics Ltd

Contents

Table of Contents

1. Introduction	3
1.1. Features	
1.2. CAN and Power Connection	
1.3. 120Ω Terminator	
1.4. UART Connection	
1.5. PT100 Connection	
1.6. RGB LED	5
2. CAN Message Format	
1.7. Fault Code	
 Reset to Factory Defaults	6
4. BOARD CONFIGURATION Data Format	7
1.9. Unit Configuration	7
1.10. Defaults	
5. Firmware Update	
1.12 Undate via CAN	
112. Opulle via oni,	

1. Introduction

This is a two channel PT100 RTD to CAN-Bus converter. Based on the MAX31865 integrated circuit. It also an UART for serial outputt. On board RGB LED for status indication. Firmware upgradable via CAN, UART or SWD.

1.1. Features

- Two channels
- Compatible with 2-, 3-, and 4-Wire Sensor Connections
- High Accuracy Facilitates Meeting Error Budgets
 - 15-Bit ADC Resolution; Nominal Temperature
 - Resolution 0.03125NC (Varies Due to RTD Nonlin-earity)
- Total Accuracy Over All Operating Conditions:
 - \circ 0.5NC (0.05% of Full Scale) max
- Programmable CAN message interval
- 6 to 20v supply voltage range
- UART serial output
- Firmware upgradable via UART, CAN or ISP

1.2. CAN and Power Connection

The CAN and power are connected via J3.

1.3.120 Ω Terminator

There is a 120Ω fitted to the board. To use the terminator solder a 2way header pin to JP1 then insert a jumper.

1.4. UART Connection

The UART connection is via J4. The UART voltage is 3.3v

1.5. PT100 Connection

The PT100 connection for Channel 1 is on JP2 and for Channel 2 is on JP1.

The default is 3-wire PT100 RTD sensor.

1.6. RGB LED

There is a RGB LED fitted to the board. This colour and function are:

Colour and State	Function
Flashing white	Booting up
Flashing blue	Transmit data
Flashing yellow	Set to factory defaults, waiting for power cycle
Solid blue	Baudrate changed, waiting for power cycle
Solid red	Unit fault

2. CAN Message Format

The default CAN ID is 0x700 at 500kbps for Channel 1 and 0x701 for Channel 2. The ID can be change, see section 4.

CAN ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x700	8	tempD0	tempD1	tempD2	tempD3	Fault	0	0	0

The temperature read is in a float variable format and it is transmitted in 4 bytes tempD0 to tempD4. The 4 bytes can be converted back to float by:

```
unsigned char data[4];
float temperature;
data[0] = rxmsg.buf[0]; /*CAN message in rxmsg.buf */
data[1] = rxmsg.buf[1];
data[2] = rxmsg.buf[2];
data[3] = rxmsg.buf[3];
memcpy(&temperature, data, 4); /* Convert 4 bytes data to temperature */
printf("Temperature %f \n", temperature);
```

1.7. Fault Code

The fault code is in D4. A 0x00 indicate no fault.

Below is a list of fault codes.

MAX31865_FAULT_HIGHTHRESH	0x80
MAX31865_FAULT_LOWTHRESH	0x40
MAX31865_FAULT_REFINLOW	0x20
MAX31865_FAULT_REFINHIGH	0x10
MAX31865_FAULT_RTDINLOW	0x08
MAX31865_FAULT_OVUV	0x04

3. Reset to Factory Defaults

The board can be reset to factory defaults.

1.8. Procedure

With the power removed from the board, place a jumper across PIO0_2. Power up the board. Wait until the LED is flashing yellow. Remove the jumper and power cycle the board.

4. BOARD CONFIGURATION Data Format

The board listens for a configuration message at CAN ID of 0x7E5.

1.9. Unit Configuration

CAN ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x7E5	8	CAN-ID_L	CAN-ID_H	Command	DataD0	DataD1	0	0xAA	0x55

D2 Command : 0x01 Set New CAN ID

0x02 Set CAN Baudrate

0x03 Set Tx Interval

0x04 Reboot

Current board CAN ID are in CAN-ID_L and CAN-ID_H. Default is 0x700.

Set New CAN ID 0x01

To set a new CAN ID issue a 0x01 command on D2.

Example : To change the CAN ID from 0x700 to 0x512 sent:

ID:0x7E5 DLC:8 Data : 00 07 01 12 05 00 AA 55

Set CAN Baudrate 0x02

To set a new CAN baudrate issue a 0x02 command on D2.

CAN Baudrate	0 : 125kbps
	1 : 250kbps
	2 : 500kbps (Factory default)
	3 : 1000kbps
Example : To set the CAM	N baudrate to 1000kbps sent:

ID:0x7E5 DLC:8 Data : 00 07 02 03 00 00 AA 55

Set Tx Interval 0x03

This sets the time delay between each temperature transmission. The delay is in milliseconds from 100 to 64000.

Example : To change the Tx Interval sent to 1500mS (0x05DC) interval sent :

ID:0x7E5 DLC:8 Data : 00 07 03 DC 05 00 AA 55

1.10. Defaults

The board is shipped with the following defaults:

CAN ID : 0x700

CAN Baudrate : 500kbps

Tx interval : 1000mS

5. Firmware Update

The board firmware can be updated by serial or CAN.

1.11. Update via Serial

Download and install Flash Magic software from Embedded Systems Academy.

1. Power down the board and insert a jumper on ISP_0. Connect 12v to J3.

2. Insert a FTDI board into J4.

SK Pang electronics

- 3. Start Flash Magic and select the LPC1517 device.
- 4. Click the Browse button and select new firmware hex file.
- 5. Click the Start button and wait.
- 6. Check it when finished with no errors.
- 7. Remove jumper on ISP_0 and power cycle.

🏟 Flash Magic	- NON PRO	DUCTION US	SE ONLY	—		\times	
File ISP Opt	ions Tools	Help					
🖻 🗟 🔍 🎯	। 🍏 🗸 🎩	> 💙 🛽	🔍 😵 😓				
Step 1 - Communi	cations		Step 2 - Era	se			
Select LPC1	1517		Erase block	0 (0x000000-0x	000FFF)	~	
Flash Bank:		\sim	Erase block	2 (0x002000-0x	:001FFF)		
COM Port: COM	3	~	Erase block Erase block	3 (0x003000-0x 4 (0x004000-0x	:003FFF) :004FFF)		
Baud Rate: 2304	400	~		5 JUXUU5UUU-UX Flash+Code Bd I	2005FFF		
Interface: Non-	e (ISP)	~	Erase blo	cks used by He:	x File		
Oscillator (MHz):							
						_	
Step 3 - Hex File							
Hex File: C:\temp	p\lpc1517_can_	uart_v11.hex			Brow	se	
Modified	d: Monday, Janu	ary 15, 2018, 2	0:01:52	more info	2		
Step 4 - Options			Ste	p 5 - Start!			
Verify after prog Fill unused Flash Gen block chec Execute Activate Flash B	iramming h oksums Bank			Sta	art		
Visit the "Flash Magic" home page for info on the latest revision							
www.flashmagicto	iol.com						
Finished				1			

1.12. Update via CAN

To update via CAN, insert a jumper on ISP_1. A PCAN-USB Pro from Peak System is required. Also Flash Magic software from Embedded Systems Academy. Ensure the PCAN-USB Pro driver is installed and working correctly first.

Note : This method of update requires the board to be removed from an existing CAN network because it operates at 100kbps.

1. Power down the board and insert a jumper across ISP_1 as shown below.

- 2. Ensure terminator JP1 is closed.Connect the CAN output from PCAN-USB Pro and power up the board via J3.
- 3. Start Flash Magic software.

- Select LPC1517 CAN as the device.
- 6. Tick the checkbox Erase blocks used by Firmware, Verify after programming and Fill unused Flash.
- 7. Click the Browse button and select new firmware hex file.
- 8. Click the Start button and wait.
- 9. Check it when finished with no errors.
- 10. Remove jumper on ISP_1 and power cycle.